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Resumo

A śıntese de movimento humano utilizando técnicas de aprendizado de máquina tem se

tornado cada vez mais promissora para reduzir a necessidade de captura de dados para a

produção de animações. Aprender a mover-se de maneira natural a partir de um áudio,

e particularmente aprender a dançar, é uma tarefa dif́ıcil que humanos frequentemente

realizam com pouco esforço. Cada movimento de dança é único, mas ainda assim esses

movimentos preservam as principais caracteŕısticas do estilo de dança. A maioria das

abordagens existentes para o problema de śıntese de dança utiliza redes convolucionais

clássicas e redes neurais recursivas no processo de aprendizagem. No entanto, elas en-

frentam problemas no treinamento e na variabilidade dos resultados devido à geometria

não Euclideana da estrutura da variedade do espaco de movimento. Nesta dissertação é

proposta uma nova abordagem inspirada em redes convolucionais em grafos para tratar

o problema de geração automática de dança a partir de áudio. O método proposto uti-

liza uma estratégia de treinamento adversário condicionada a uma música para sinteti-

zar movimentos naturais preservando movimentos caracteŕısticos dos diferentes estilos

musicais. O método proposto foi avaliado em um estudo de usuário e com três métricas

quantitativas, comumente empregadas para avaliar modelos generativos. Os resultados

mostram que a abordagem proposta utilizando redes convolucionais em grafos supera o

estado da arte em geração de dança condicionada a música em diferentes experimentos.

Além disso, o modelo proposto é mais simples, mais fácil de ser treinado, e capaz de

gerar movimentos com estilo mais realista baseado em diferentes métricas qualitativas e

quantitativas do que o estado da arte. Vale ressaltar que o método proposto apresentou

uma qualidade visual nos movimentos gerados comparável a movimentos reais.

Palavras-chave: Geração de movimento humano, Processamento de áudio e dança,

Aprendizado multi-modal, Redes adversárias condicionadas, Redes convolucionais em

grafos.



Abstract

Synthesizing human motion through learning techniques is becoming an increasingly

popular approach to alleviating the requirement of new data capture to produce anima-

tions. Learning to move naturally from music, i.e., to dance, is one of the more complex

motions humans often perform effortlessly. Each dance movement is unique, yet such

movements maintain the core characteristics of the dance style. Most approaches ad-

dressing this problem with classical convolutional and recursive neural models undergo

training and variability issues due to the non-Euclidean geometry of the motion man-

ifold structure. In this thesis, we design a novel method based on graph convolutional

networks to tackle the problem of automatic dance generation from audio information.

Our method uses an adversarial learning scheme conditioned on the input music audios

to create natural motions preserving the key movements of different music styles. We

evaluate our method with three quantitative metrics of generative methods and a user

study. The results suggest that the proposed GCN model outperforms the state-of-the-

art dance generation method conditioned on music in different experiments. Moreover,

our graph-convolutional approach is simpler, easier to be trained, and capable of gen-

erating more realistic motion styles regarding qualitative and different quantitative

metrics. It also presented a visual movement perceptual quality comparable to real

motion data.

Keywords: Human motion generation, Sound and dance processing, Multi-modal

learning, Conditional adversarial nets, Graph convolutional neural networks.
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Chapter 1

Introduction

One of the enduring grand challenges in computer graphics is to provide plausible

animations to virtual avatars. Humans have a rich set of different movements when

performing activities such as walking, running, jumping, or dancing to music. Over the

past several decades, modeling such movements has been relegated to motion capture

systems. Despite remarkable results achieved by highly skilled artists using captured

data, the human motion has a rich spatiotemporal distribution with an endless variety

of different motions. Moreover, human motion is affected by complex situation-aware

aspects, including the auditory perception, physical conditions such as the person’s age

and its gender, and cultural background.

Synthesizing motions through learning techniques is becoming an increasingly

popular approach to alleviating the requirement for new data capture to produce an-

imations. The motion synthesis has been applied to a myriad of applications such

as graphic animation for entertainment, robotics, and in multimodal graphic render-

ing engines with human crowds as presented by Ikeuchi et al. [2018], to name a few.

Movements of a human being can be considered unique having its particularities, yet

such movements preserve the characteristics of the motion style (e.g., walking, jump-

ing, or dancing), and we are often capable of identifying the style effortlessly. When

animating a virtual avatar, the ultimate goal is not only retargeting a movement from

a real human to a virtual character but embodying motions that resemble the original

human motion. In other words, a crucial step to achieve plausible animation is to learn

the motion distribution and then draw samples (i.e., motions) from it. For instance,

a challenging human movement is dancing, where the animator does not aim to copy

and paste poses into the avatar skeleton but to generate a set of poses that match the

music’s choreography, preserving the quality of being individual.

Moreover, in the last years, we witness the use of multimodal data to improve
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Figure 1.1. The amount of publicly available data on the internet allows the
construction of algorithms able to model a distribution of the data that is closer
to the real data. Moreover, the growth over the years further improve the results
of data-driven approaches. Image courtesy of cloudnine e-discovery daily2.

the results of learning-based techniques. In a scene there is visual information that

often is related to the audio information, the use of the audio data to help learning

techniques to improve their results in commonly visual problems has shown impressive

achievements, as the work presented by Aytar et al. [2016]. Together with the advances

of the techniques, we observe an explosion in the amount of data publicly available on

the internet, the increasing number of content creators 1 yielded the growth of publicly

available data on every modality (visual, textual, sound, etc.). Figure 1.1 shows both,

the amount of data created over a minute on the internet for several social media, and

the growth of the data created on the last year. The algorithms capable of dealing

with multimodal information, and the increasing amount of publicly available data on

the internet allow us to create solutions based on data-driven approaches, which has

shown impressive results in several motion, appearance, and related generation tasks.

Problem: In this thesis, we address the problem of synthesizing dance movements

from music using adversarial training and a convolutional graph network architecture

(GCN). Dancing is a representative and challenging human motion since dancing is

more than just performing pre-defined and organized locomotor movements, but it

comprises steps and sequences of self expression. In dance moves, both the particular-

1https://medium.com/should-you-consider-becoming-a-content-creator-in-2019-statistics-say-
you-should

2https://cloudnine.com/ediscoverydaily/electronic-discovery/no-fooling-its-time-for-the-2020-
internet-minute-infographic-ediscovery-trends/
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ities of a person performing the choreography and the characteristics of the movement

play an essential role in recognizing the dance style. Thus, a central challenge in our

work is to synthesize a set of poses taking into account three main aspects:

1. The motion must be plausible, i.e., a blind evaluation should present similar

results when compared to real motions;

2. The synthesized motion must retain all the characteristics present in a typical

performance of the music’s choreography;

3. Each new set of poses should not be strictly equal to another set, i.e., when

generating a movement for a new avatar, we must retain the quality of being

individual.

Creating motions from sound relates to the paradigm of embodied music cogni-

tion. It couples perception and action, physical environment conditions, and subjective

user experiences (cultural heritage) as addressed by Leman [2014]. Moreover, creating

realistic motions to be used in animations to virtual avatars become even a harder prob-

lem when we aim to create realistic animations according to a sound, as the authors

of Shlizerman et al. [2018] explored in their work. Therefore, synthesizing realistic hu-

man motions regarding embodying motion aspects remains as a challenging and active

research field with recent works as Ginosar et al. [2019] and Yan et al. [2019]. Modeling

distributions over movements is a powerful tool that can help us to create a large vari-

ety of motions while not removing the individual characteristics of each sample that is

drawn. Furthermore, by conditioning these distributions, for instance, using an audio

signal like music, we are able to select a sub-population of movements that match with

the input signal.

Generative models have demonstrated impressive results in learning data distri-

bution. These models have been improved over the decades through machine learning

advances that broadened the understanding of learning models from data. In particu-

lar, advances in the deep learning techniques yielded an unprecedented combination of

effective and abundant techniques able to predict and generate data. The result was an

explosion in highly accurate results in tasks of different fields. The explosion was felt

first and foremost in the computer vision community: from high accuracy scores in im-

age classification using convolutional neural networks (CNN) to photo-realistic image

generation provided by generative adversarial networks (GAN) proposed by Goodfel-

low et al. [2014], computer vision field has been benefited with several improvements in

the deep learning methods. It is worth noting that the computer vision and computer

graphics fields achieved great advances in processing multimodal data present in the
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scene by using several types of sensors. These advances are assigned to the recent

rise of learning approaches to process signal data, especially the convolutional neural

networks. Moreover, these approaches have been explored to synthesize data from

multimodal sources. And the audio data is one that is achieving the most impressive

results, as the work presented by Cudeiro et al. [2019]. However, when we aim to model

the distribution of the human motion, the manifold structure poses several issues to

traditional CNN models.

Most recently, networks operating on graphs have emerged as promising and ef-

fective approaches to deal with the tasks when the structure is known a priori. A rep-

resentative approach is the work of Kipf and Welling [2017], where a convolutional ar-

chitecture that operates directly on graph-structured data is used in a semi-supervised

classification task. Since graphs are natural representations for the human skeleton,

several approaches using graph convolutional networks (GCN) have been proposed in

the literature to estimate and generate human motion. The work of Yan et al. [2019],

for instance, presented a framework based on GCNs. The authors’ framework gener-

ates a set of skeleton poses by sampling random vectors from a Gaussian process (GP).

Despite being able to create sets of poses that mimic a person dancing, the framework

does not provide any control over the rhythm or dance style, in other words there is

no mechanism to condition the motion generation. Our methodology to synthesize

human movements also makes use of GCN, but unlikely the work of Yan et al. [2019],

we can control the dance style using audio data while preserving the plausibility of the

final motions. We argue that human movements, as having a graph-structured model,

follow complex sequences of poses that are temporal related, and the set of defined

and organized locomotions can be better modeled using a convolutional graph network

trained using adversarial regime.

In this context, we propose in this thesis an architecture that is able to manage

multimodal data to synthesize motion, especially an architecture capable of managing

audio data to synthesize motion data. Our method starts encoding a sound signal and

extracts the style using a CNN architecture. This architecture maps a sound signal

to a dense representation of the audio class and generates a spatial-temporal latent

vector, conditioned on the dance style. The music style provides control to the mo-

tion generation architecture that is based on a graph convolutional neural network.

This second architecture is trained in an adversarial regime and predicts the 2D hu-

man body joint positions over time. Experiments with a user study and quantitative

metrics showed that our method outperforms the state-of-the-art method and provides

plausible movements while maintaining the characteristics of different dance styles.
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Thesis Statement: We argue that the auditory information (from music) is closely

related to dance styles movements of people on videos (motion). Thus, we propose

to explore this relationship between auditory and visual data to synthesize realistic

human dance performances.

Contributions: The main contributions of this thesis can be summarized as follows:

• A new conditional GCN architecture to synthesize human motion based on au-

ditory data. In our method, we push further the adversarial learning to provide

a motion generation algorithm conditioned on the audio information;

• A novel multi-modal dataset. The dataset comprises audio and visual motion

data, and the motion data is represented as a set of temporally coherent human

poses.

The proposed method outperforms the state-of-the-art in human dance generation

from audio, achieving in a blind user study scores similar to real movements. The results

achieved by the method in the thesis resulted in a paper accepted for publication in

the Computers & Graphics journal, Ferreira et al. [2020].

This thesis is organized as follows: i) The Chapter 2 introduces some discussions

and gives background information to familiarize the reader with the terminology and

motion generation techniques are further discussed. It also presents related works in the

field and discuss their approaches, results, and contributions. Finally, some previous

modelling attempts are briefly described with their results; ii) In Chapter 3 we present

our proposed approach to handle the problem, and explain the details about our new

conditional GCN architecture; iii) In Chapter 4 we introduce our novel multi-modal

dataset, we also clarify the pipeline used to collect and prepare the data; iv) Then we

present our experiments protocol together with our results in Chapter 5; v) We present

our conclusions on Chapter 6 with future research directions that can be explored to

improve our work.
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Chapter 2

Background & Related Work

In this Chapter we introduce some of the techniques we adopted to build our motion

generation approach. Also, this Chapter aims to present some of the terms we will

use during this thesis, and bring the reader closer to them. In addition to that, we

present closely related problems that paved the way to our method of motion generation

based on auditory data. Moreover, we present a discussion of our previous attempts

to address the problem, with the insights we had to improve the results.

2.1 Theoretical Background

In this section we present some formulations that are adopted to design our approach.

Together with these formulations, the literature terminology is presented with some

illustrations.

2.1.1 Graph Convolutional Layers

Graph Convolutional Networks (GCN) are becoming in the last years a suitable mecha-

nism to create deep learning models using data structured as graphs, as social networks

and protein-interaction networks for example. Since Kipf and Welling [2017] formu-

lated in their work a method to construct graph convolutional networks, several tasks

improved results following their formulation, as an example the action recognition task.

To create their formulation Kipf and Welling [2017] assumes an information prop-

agation rule defined as:

f(H(l), A) = σ(AH(l)W (l)), (2.1)

where σ is a non-linear activation function, A is the adjacency matrix , matrix which

defines the conections between the nodes in the graph, H(l) are the features in the l-th
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layer, and W (l) are the weights of the l-th layer. Thus, with the propagation function

defined in Equation 2.1 we can also build classic convolutional neural networks (CNN

models), in addition to GCNs.

With the formulation of the propagation function described in Equation 2.1, we

can define a propagation rule that can be used in graphs, by changing the adjacency

matrix to represent a graph. However, two major issues raise when using the adjacency

matrix of a graph. First, real problems modeled with graphs generally do not have self-

loops, for example, in a social media network like Twitter, you cannot follow yourself,

or on Facebook, you cannot be a friend of yourself, thus creates an issue since features

of a node in a graph will normally not be propagated to itself. The second major issue

is that the adjacency matrix is typically not normalized, most graph topologies are not

as well structured as the image topology (pixels neighborhood). Thus, the usage of the

propagation rule defined in Equation 2.1 can create scale problems in the features.

Both major limitations were addressed by Kipf and Welling [2017] in their work.

The formulation they proposed follows a two-step process, to address both challenges.

First, to deal with the problem of nodes receiving features of them during the propaga-

tion process, an addition between the adjacency matrix and an identity matrix is done,

creating self-loops or enhancing them if they already exist in the graph. Second, to

address the scale problems due to the not normalized adjacency matrix, a symmetric

normalization, that averages the adjacency matrix nodes’ neighbourhood is applied.

With this, the formulation proposed by Kipf and Welling [2017] can be defined as:

f(H(l), A) = σ(D̂−
1

2 ÂD̂−
1

2H(l)W (l)), (2.2)

where σ(·) is a non-linear activation function, like LeakyRelu, Â is the result of sum

between the adjacency matrix and the identity matrix, the mechanism to address the

first issue, D̂ is the diagonal node degree matrix used to normalize the adjacency

matrix, used in the symmetric normalization of Â, addressing the second issue. Ŵ is

the weight matrix of the layer and H are the values of the features for each layer.

In practice, as addressed by Wu et al. [2020] an image can be considered a special

case of graphs, where the adjacency of pixels, i.e., their adjacency matrix, is well defined

and known. This relationship between images and graphs can be seen in Figure 2.1.

To address our problem and to fulfill the restrictions inherent to the manifold of the

human body motion, we construct our model architecture using graph convolutional

layers.
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Figure 2.1. Illustration of a classic two-dimensional convolution and a graph
convolution. In left an illustration of standard two-dimensional convolution op-
eration, and in the right an illustration of a graph convolution operation. Image
courtesy of Wu et al. [2020].

2.1.2 Generative Models

The goal of generative models is, given a set of training data, generate new samples

from the same distribution. In other words, generative models address the density

estimation problem, which is try to model the probability density function based on

observed data. Generative models can be used in several applications, such as super-

resolution, colorization, and content generation (as in our case).

Although there is a set of generative models and each one of them with its pros and

cons, one of them has been widely adopted by the community. This generative model

is GAN’s (Generative Adversarial Networks), in which we are particularly interested in

one of its variations, cGAN’s (Conditional Generative Adversarial Networks). GAN’s

were first introduced by the breakthrough work of Goodfellow et al. [2014], and cGAN’s

were introduced latter on by Mirza and Osindero [2014]. GAN’s are networks that learn

to sample from a distribution of data. To do so, we train two networks to compete

against each other, looking towards a Nash equilibrium. The network which learns to

sample from the distribution is called generator, and the network competing against the

generator is usually called discriminator. The discriminator network aims to distinguish

the real samples, taken from the training set, from the fake ones, generated by the

generator network. cGAN’s in another hand, follow the same principle of GAN’s,

however they have the ability of condition the generated sample. The approach with

GAN’s and cGAN’s is not to explicit model the probability density function of the

data, but instead we are looking for the ability to sample from the data. To be
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Figure 2.2. Example of cGAN in MNIST dataset, which is a large database of
handwritten digits. Each row shows generated samples conditioned by one label
(i.e. one number between 0 and 9). Image courtesy of Mirza and Osindero [2014].

able of sampling from the data GAN’s and cGAN’s follow a game-theoretic approach,

where two players (generator and discriminator) compete against each other until the

generator is able to produce realistic samples. This game-theoretic approach is modeled

by Equation 2.3 in GAN’s case, and by Equation 3.6 in cGAN’s case. Generally GAN’s

aim to implicit model the probability density function of the dataset distribution.

Following Equation 2.3 we have the generator (G), the discriminator (D), a sample of

the dataset (x), and finally a random noise (z). The random noise is usually called

latent space, the generator uses it to synthesize a fake sample, trying to approximate

it to the samples in the real dataset, using a minmax loss:

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+

+Ez∼pz(z)[log(1−D(G(z)))]
(2.3)

The results GAN’s and cGAN’s can achieve jointly made them a suitable approach

for our problem. In our problem, we seek to generate realistic samples of human motion

conditioned on auditory data, which perfectly fits with cGAN’s techniques. The realism

of the samples generated using these techniques, and the ability of cGAN’s to condition

the sampling process are impressive, and can be seen in Figure 2.2. However, as stated

in literature using GAN’s or cGAN’s with others classical loss functions can improve

the results, an important work of the area that stated this is the work of Wang et al.

[2018].
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2.1.3 Human Motion Estimation

Human Motion Estimation is a widely studied problem in the computer vision com-

munity. Estimate the motion can be useful in various scenarios, e.g. Human Machine

Interface, Realistic Animation of Virtual Avatars, and Sports Analytics to name a few.

Most of the methods for human motion estimation are based on estimate human pose

throughout time. We found in literature methods for human pose estimation in 2D,

2.5D, and 3D, all of them can be adapted to be used in human motion estimation

problem. The community also started to step forward in methods considering the tem-

poral constrains of the problem of human motion estimation. An notorious example

of methods specifically designed for human motion estimation is the work of Kocabas

et al. [2020]. In this thesis, as we are interested in generating human motion, these

methods for human pose estimation suit as automatic data annotators.

Despite the fact that, the human motion is for definition in a three-dimensional

space, the data (i.e. images) we use to infer it are essentially in a two-dimensional space.

It is possible to infer the human pose and shape, and go beyond to infer the human

motion in a three-dimensional space. Several works address the problem of human

pose and shape estimation in a three-dimensional space, e.g. Kanazawa et al. [2019],

and Kolotouros et al. [2019]. Moreover, adding temporal constraints to the initial

problem to model the human motion in a three-dimensional space we can highlight

the work of Kocabas et al. [2020]. An illustration of these methods are shown in

Figure 2.3. Nevertheless, these methods have some drawbacks to fit in the context of

an automatic data annotator for our task of human motion generation. The two major

drawbacks are: i) The three-dimensional techniques are more sensible to noise than

the two-dimensional ones; ii) The 3D representation for human body and shape are

way more complex than 2D representations. Thus, both these drawbacks increase our

problem complexity, on one hand adding more noise to our dataset, and on the other

hand learning a data structure more complex than we need to tackle the problem.

Also, the data structure used to represent the human pose, and over time the

human motion in a 2D space is remarkably simpler. There was a notably effort of the

community in the last few years, looking towards the improvement of the results for the

human pose estimation problem in the wild Wei et al. [2016]; Cao et al. [2017]; Simon

et al. [2017]; Fang et al. [2017]; Li et al. [2019]; Xiu et al. [2018]; Cao et al. [2019]. There

are even methods to estimate a dense representation of the human body in the image

space, thus resulting in a 2.5D representation of the human body pose, and human

motion Güler et al. [2018]. Most of these methods were implemented in challenges

motivated by the industry Lin et al. [2014]. Moreover, most of these methods has
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Figure 2.3. Comparison between a temporal aware method for 3D human
motion estimation and a state-of-the-art method for 3D human pose and shape
estimation. Image courtesy of Kocabas et al. [2020]

Figure 2.4. OpenPose framework results on three different commonly used
datasets standards. Image courtesy of Cao et al. [2019]

been continuously improved over time, with new features, or new datasets standards,

, as shown in Figure 2.4. In this thesis, we choose the state-of-the-art work of Cao

et al. [2019], entitled OpenPose framework, because of its accurate results, maximal

compatibility with existing datasets, and for being a two-dimensional technique.
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2.2 Related Work

Techniques based on data-driven methods using multimodal data are becoming a clever

way to explore the increasing amount of publicly available data on the internet, to

improve the results of non-multimodal approaches. In the following sections we present

some remarkable works in the related literature of motion generation based on auditory

data.

2.2.1 Sound and Motion

Recently, we have witnessed an overwhelming growth of new approaches to deal with

the tasks of transferring motion style and building animations of people from sound.

Early methods were based on editing existing videos by selecting the visual segments

that match a particular audio. For example, Bregler et al. [1997] create videos of a

subject saying a phrase they did not say originally, by reordering the mouth images in

the training input video to match the phoneme sequence of the new audio track. In

the same direction, Weiss [2005] applied a data-driven audio-visual approach to pro-

duce a 2D video-realistic audio-visual “Talking Head”, using F0 and Mel-Cepstrum

coefficients as acoustical features to model the speech. Aiming to synthesize human

motion according to music characteristics such as rhythm, speed, and intensity, Shira-

tori and Ikeuchi [2008] established keyposes according to changes in the rhythm and

body movement (performer’s hands, feet, and center of mass), and then used music

and motion feature vectors to select candidate motion segments that match music and

motion intensity. Despite their impressive results, its method fails when these keyposes

are present in fast passages of a music.

Cudeiro et al. [2019] presented an encoder-decoder network that utilizes audio

features extracted from DeepSpeech presented by Hannun et al. [2014]. The network

generates realistic 3D facial animations conditioned on subject labels to learn different

individual speaking styles. To deform the human face mesh, Cudeiro et al., similarly

to our work, encode the audio features in a low-dimensional embedding space. Al-

though their model is capable of generalizing facial mesh results for unseen subjects,

the generated animations are reported to be distant from the natural captured se-

quences. Also, introducing a new style is cumbersome, since it requires a collection of

4D scans paired with audios. Similarly, Ginosar et al. [2019] enable translation from

speech to gesture, generating arms and hands movements by mapping audio to pose.

This is accomplished via adversarial training, where a U-Net architecture transforms

the encoded audio input into a temporal sequence of 2D poses. In order to produce
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more realistic results, the discriminator is conditioned on the differences between each

pair of subsequent generated poses, but the method is subject specific and does not

generalize to other speakers.

Recently, the problem of motion generation, more specifically, the problem of

dance generation has been addressed by several works Ren et al. [2019]; Huang et al.

[2020]; Li et al. [2020]; Zhuang et al. [2020]; Ye et al. [2020]. The work of Ren et al.

[2019] present a method based on RNNs, more precisely, gated recurrent unit (GRU),

to deal with temporal constraints of the problem, the authors feed their RNN with

an encoded space of the audio data, they also train their method using an adversarial

regime, however, their loss function takes into account the activation layers of a GCN,

in their case, the ST-GCN proposed by Yan et al. [2018]. Another work addressing the

problem of dance generation is the one proposed by Huang et al. [2020]. In their work

a music encoder and a dance decoder is used to generate motion, the main difference

of their method from the previous methods in the literature for dance generation,

is the learning approach. They use a learning strategy called Curriculum Learning

proposed by Bengio et al. [2009], which consists of providing the network with easier

samples in the beginning of the training stage and then increasing the difficulty of the

samples throughout the training stage. Finally, the work of Li et al. [2020] adopted

transformer networks, which is a suitable way to treat temporal constraints using self-

attention techniques. Differently from most existing approaches, Li et al.’s work can

generate 3D dance motions.

Another related work to ours is the approach proposed by Lee et al. [2019]. The

authors use a complex architecture to synthesize dance movements (expressed as a

sequence of 2D poses) given an input music. Their architecture is elaborated based

on a decomposition-to-composition framework trained with an adversarial learning

scheme. Our graph-convolutional based approach, on its turn, is simpler, easier to be

trained, and generates more realistic motion styles regarding qualitative and different

quantitative metrics.

2.2.2 Generative Graph Convolutional Networks

Since the seminal work of Goodfellow et al. [2014], generative adversarial networks

(GAN) propose a new technique to generative models where two networks compete

against each other in a minimax game. In the game, one network aims to generate

realistic samples to fool the second network. On the other hand the second network

aims to be able of distinguish the real samples from the fake ones, generated by the

first network. GAN’s have been successfully applied to a myriad of hard problems,
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notably for the synthesis of new information, such as of images Karras et al. [2018],

motion Chan et al. [2019], and pose estimation Chen et al. [2017], to name a few.

Mirza and Osindero [2014] take a step further from the traditional GANs pre-

sented by Goodfellow et al., Mirza and Osindero proposed Conditional GANs (cGAN),

which provides some guidance into the data generation. Differently from Goodfellow et

al.’s work, they were able to control each class of images they aimed to synthesize.

Then, improving the technique proposed by Mirza and Osindero [2014] of cGANs, the

work proposed by Reed et al. [2016] demonstrated the possibility to use multi-modal

data to conditional generative adversarial networks, specifically textual information.

In their work, they synthesize realistic images, in other words, given a sentence de-

scribing a scene, their method can produce a realistic image that fits the description of

the input sentence. Their result demonstrates that cGANs can also be used to tackle

multi-modal problems.

Graph Convolutional Networks (GCN) recently emerged as a powerful tool for

learning from data by leveraging geometric properties that are embedded beyond n-

dimensional Euclidean vector spaces, such as graphs. This was addressed by Kipf and

Welling [2017], where a semi-supervised classification on a complex network is per-

formed, achieving impressive results. The work of Jain et al. [2016] uses a recurrent

neural network (RNN) as a mechanism to solve temporal issues inherent to the prob-

lem, however, the method proposed by Jain et al. [2016] uses spatial-temporal graphs,

showing that introducing the data structure of the problem to the learning pipeline

can improve the results. In our context, conversely to classical convolutional neural

networks (CNNs), GCNs are capable of modeling the motion manifold space structure

as shown in the works of Yan et al. [2018]; Yan et al. [2019].

Yan et al. [2018] applied GCNs to model the movement of the human body and

classify actions. After extracting 2D human body poses for each frame from the input

video, the skeletons are processed by a Spatial-Temporal Graph Convolutional Network

(ST-GCN). Their architecture combines the graphs (2D human body poses) informa-

tion in both, the temporal and spatial dimensions, making their architecture suitable

to deal with human motion, which has temporal constraints. Therefore, we also adopt

their ST-GCN layer in our GCN architecture. Yan et al. go forward in the repre-

sentation power of GCNs in Yan et al. [2019] the Convolutional Sequence Generation

Network (CSGN). By sampling correlated latent vectors from a Gaussian process and

using temporal convolutions, the CSGN architecture was capable of generating tempo-

ral coherent long human body action sequences as skeleton graphs. They showed the

effectiveness of their method in both 2D and 3D human motion. Our method goes one

step further than Yan et al. [2018]; Yan et al. [2019]. It generates human skeletal-based
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graph motion sequences conditioned on acoustic data, i.e., music. By conditioning the

movement distributions, our method learns not only creating plausible human motion

but also it learns the music style signature movements from different domains.

2.2.3 Estimating and Forecasting Human Pose

Motion synthesis and motion analysis have been benefited from the impressive im-

provements in the accuracy of the human pose estimation methods. Human pose

estimation from images, for its turn, greatly benefited from the recent emergence of

large datasets Lin et al. [2014]; Andriluka et al. [2014]; Güler et al. [2018] with an-

notated joints positions, and dense correspondences from a 2D image to a 3D human

shape. This increase in the amount of available data, and the investment of players of

the industry1 led to a variety of methods, each one with your advantages and disadvan-

tages, some of these works are Cao et al. [2019]; Li et al. [2019]; Xiu et al. [2018]; Güler

et al. [2018]; Kolotouros et al. [2019]; Kanazawa et al. [2019]; Kocabas et al. [2020].

The work of Cao et al. [2019] is a CNN that uses the human body structure to process

an image and find individually parts of the human body, then combines it to predict

the human body pose in the input image. Similar to the work of Cao et al. [2019], the

work proposed by Xiu et al. [2018] predicts 2D human body pose, however they go for-

ward on tracking the human movements throughout a video sequence. The work of Li

et al. [2019] improves the results of the human pose estimators in a scene with multi-

ple persons, where miss detections are common, they solve the problem by modeling

the person nodes, and solving an optimization problem. Güler et al. [2018] add more

information to the human pose estimators, by estimating a 2.5D representation of the

human pose, where a dense correspondence for a person is given. The works of Kolo-

touros et al. [2019]; Kanazawa et al. [2019]; Kocabas et al. [2020] estimates the 3D

pose and shape of each person. The main difference between these methods is that the

method proposed by Kocabas et al. [2020] works on video sequences, while Kolotouros

et al. [2019] and Kanazawa et al. [2019] work on each image individually.

This large amount of annotated data made possible important milestones to-

wards predicting and modeling human motions as the works of Wang et al. [2014];

Fragkiadaki et al. [2015]; Ghosh et al. [2017]; Gui et al. [2018] and Wang et al. [2019].

Fragkiadaki et al. [2015], for instance, proposed a recurrent autoencoder model for

recognition and prediction of human body pose from videos and motion capture sys-

tems. The recent trend in time-series prediction with recurrent neural networks (RNN)

has been applied in several frameworks for human motion prediction besides the work

1https://cocodataset.org/#keypoints-2016
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of Fragkiadaki et al. [2015], the works of Martinez et al. [2017] and Ghosh et al.

[2017] also address the same problem. Nevertheless, the pose error accumulation in the

predictions allows mostly predicting over a limited range of future frames as addresed

by Gui et al. [2018]. Gui et al. [2018] proposed to overcome this issue by applying

adversarial training using two global recurrent discriminators that simultaneously val-

idate the sequence-level plausibility of the prediction and its coherence with the input

sequence. Wang et al. [2019] proposed a network architecture to model the spatial and

temporal variability of motions through a spatial component for feature extraction.

Yet, these RNN models are known to be difficult to train and computationally cum-

bersome as addressed by Pascanu et al. [2013]. Additionally, as also noted by Lee et al.

[2019], motions generated by RNNs tend to collapse to certain poses regardless of the

inputs.

2.2.4 Transferring Style and Human Motion

Synthesizing motion with specific movement style has been studied in a large body of

prior works, as for example, the works of Peng et al. [2018]; Wang et al. [2018]; Kim and

Lee [2019]; Smith et al. [2019]; Chan et al. [2019] and Gomes et al. [2020], to name a

few. Most methods formulate the problem as transferring a specific motion style to an

input motion as done by Xia et al. [2015]; Kim and Lee [2019] and Smith et al. [2019],

or transferring the motion from one character to another, commonly referred as motion

retargeting as defined by Gleicher [1998] in his seminal work. Other works, following

the definition proposed of motion retargeting are the works of Choi and Ko [2000]

and Villegas et al. [2018]. Recent approaches explored deep reinforcement learning to

model physics-based locomotion with a specific style as done by Peng et al. [2017]; Liu

and Hodgins [2018] and Peng et al. [2018].

Another active research direction is transferring motion to video sequences as

the work of Wang et al. [2018]; Chan et al. [2019] and Gomes et al. [2020] address

in their respective works. However, the generation of stylistic motion from audio is

much less explored and it is still a challenging research field. On one hand, the work

presented by Wang et al. [2018] is a GAN with a multi-resolution trainning scheme,

their framework is generic and the author present results in several contexts, including

the rendering of a person that moves accordingly to a motion made by another person.

On the other hand, the work proposed by Chan et al. [2019] is a specific framework for

video transfer of a person performing a motion, the authors address some issues that

the work of Wang et al. [2018] does not, such as improving face details. Finally, the

work proposed by Gomes et al. [2020] address the problem of appearance and motion
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retargeting between videos of different characters with a model-based transferring ap-

proach, which provides two advantages: i) Their method does not need a large amount

of data to deliver satisfactory results; ii) Because the nature of their method, they can

treat issues related to motion restrictions (interactions between the actor and the envi-

ronment) this approach is also shape-aware, which allows handling differences between

the actors’ shapes can produce unfeasible human-to-object interactions in the resulting

video.

Villegas et al. [2017] presented a video generation method based on high-level

structure extraction, conditioning new frames creation on how this structure evolves

in time, therefore preventing pixel-wise error prediction accumulation. This approach

was employed on long-term video prediction of humans performing actions by using

2D human poses as high-level structures. Wang et al. [2020] discussed how adver-

sarial learning could be used to generate human motion from sequence autoencoders,

focusing on three tasks: motion synthesis, conditional motion synthesis, and motion

style transfer. As our work, their framework enables conditional movement genera-

tion according to a style, but there is not multimodality associated with it. Jang and

Lee [2020] presented a method inspired by sequence-to-sequence models to generate a

motion manifold. As a major drawback, the performance of their method decreases

when creating movements longer than 10s, which makes the method inappropriate to

generate long sequences. Our approach, on the other hand, is capable of generating

long movement sequences conditioned on different music styles, by taking advantage of

the adversarial GCN’s power to generate new long, yet recognizable, motion sequences.

We outline that from the works dealing with the problem of dance motion gener-

ation, as the works presented by Lee et al. [2019]; Ren et al. [2019]; Huang et al. [2020];

Li et al. [2020]; Zhuang et al. [2020] and Ye et al. [2020], we are the only method

tackling the problem with graph convolutional networks, an architecture aware of the

problem manifold structure. Moreover, our approach as the approaches of Lee et al.

[2019] and Ren et al. [2019] can produce video sequences with virtual avatars of an ac-

tor performing the synthetic motion, while guiding the motion style. Differently from

the works of Huang et al. [2020]; Ye et al. [2020] and Zhuang et al. [2020] who treat the

temporal issues of the problem using recurrent models that can be difficult to train,

as addressed by Pascanu et al. [2013], we solve temporal issues directly in the latent

space sampling.
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2.3 Our First Modelling Attempts

In this section we present some our previous modelling attempts that did not present

satisfactory results. We describe the issues with each approach, and how these issues

drive us to the final method presented in the Chapter 3 of this thesis. It is noteworthy

that the attempts here presented could produce the desired results. However, during

the research we decide to change the approach, following what we observe from the

initial experiments and results, and what the literature present to us that could be

used in our problem to improve the results.

2.3.1 Convolutional Neural Networks

Our initial approach was inspired in the seminal work of Aytar et al. [2016], hereinafter

entitled SoundNet. The SoundNet work shown to the computer vision community that

was possible to use deep convolutional networks to address classical visual tasks using

multimodal data, in SoundNet case, auditory data.

The SoundNet model propose to address Object and Scene Recognition problems

using the auditory data for each one of them. For the Object Recognition problem, it

aims to learn the sound that each object generally make (e.g. the sound of a musical

instrument). To learn this, the authors use the Kullback-Leibler divergence, presented

by Kullback and Leibler [1951] with one deep convolutional network trained in the same

task. In that way, the approach learns the distribution of a already trained network

in visual data, and learn the relationship between the auditory and visual data in the

scene. With this protocol and the paired data (i.e. paired visual and auditory data), the

SoundNet was able to learn the distribution of the “teacher” network and reproduce

the results using only auditory data. In the same way SoundNet was also able to

present results for Scene Recognition, another classical visual task. An illustration of

the SoundNet architecture is shown in Figure 2.5

In one hand, both tasks SoundNet aims to tackle are essentially classification

tasks, our problem in other hand, is essentially a regression task (i.e. generate motion

in a continuous space). The first attempt during the work of this thesis was to adapt

the SoundNet architecture to work as a regression model. We choose this, because

the paired data is intrinsic to our problem, we need both, the audio to synthesize the

motion and the motion to use as ground truth.

Our modifications consisted of changing the final layer of classification to a re-

gression, where we want the layer to predict the 25 joints of the human body following

the standard adopted by the OpenPose framework Cao et al. [2019]. Moreover, we
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Figure 2.5. SoundNet architecture, a one dimensional CNN model for multi-
modal data. SoundNet is able of learn to tackle classical visual tasks (e.g. Object
and Scene Recognition) using auditory data. Image courtesy of Aytar et al. [2016]

changed the loss, since we do not have a “teacher” network, so we use the L1 norm

in our experiments. With these modifications, we expected that for each time interval

in the auditory data we could predict a human pose using the SoundNet architecture.

However, we observed that we need to develop our loss function, and use an adversarial

training strategy, because the initial results converged to a mean human pose, where

the L1 norm assumes the minimum value for the entire dataset. Our discriminator was

an vanilla two dimensional convolutional network. Even though we were able to bypass

the mean pose issue with the adversarial strategy, this approach using the SoundNet

architecture as backbone, presented several issues related to the temporal stability for

the human poses. In others words, the temporal constraints of the problem were not

respected, since it generated samples with strong variations between the poses in a

small time interval.

With the temporal stability of the generated human poses in mind, we decided

to tackle the problem using RNN’s (Recurrent Neural Networks), since the main goal

of these networks is to have a temporal behavior in their outputs. The steps we take

in this direction will be presented in the following Section 2.3.2

2.3.2 Recurrent Neural Networks

After the first attempts using convolutional networks failed to address the tempo-

ral issues of the problem of human motion generation, we started to explore RNN’s
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(Recurrent Neural Networks) aiming to circumvent the temporal issues in the initial

approach. In our experiments we use LSTM (Long Short Term Memory) and GRU

(Gated Recurrent Unit) to construct our model. In our case, the GRU units presented

better results, probably because the lower number of parameters.

We start our model based on RNN’s following the same principles we use in

the first attempt using the SoundNet. We create a RNN using GRU’s that receive

auditory data as input and predict a human pose following the OpenPose framework

convention. We also started our experiments with only the L1 norm as loss function.

In the initial experiments the model preserved the mean pose prediction, this can be

seen in Figure 2.6. However, we observed a second issue, some predictions, especially

the first ones did not respect the human body constraints. In other words, our model

was predicting human poses that cannot be performed by a human, this can also be

seen in Figure 2.6, and in Figure 2.7. In Figure 2.6 we highlight both issues: a) a

synthetic pose violating the human body constraints; b) the mean pose overtime.

Again to tackle the mean pose issue we improved our loss function to consider

a adversarial training strategy. We introduced a discriminator network, following the

same strategy we adopted in the CNN attempt. Our discriminator was a vanilla two

dimensional convolutional network, similar to the one we use in the first attempt. This

modification significantly improve our results, some of them can be seen in Figure 2.7.

Nonetheless the improvement in the results only regards the mean pose issue, the issue

regarding the human body constraints is still present. However, the issue now affects

not only the initial poses, but the entire generated movement in some cases. Some of

the synthetic poses generated by our RNN model that did not respect the human body

constraints are highlighted in Figure 2.7.

Disregarding the issue with the human body constraints, this approach with

RNN’s begins to deliver promising results. The movements generated by the RNN

model trained with an adversarial strategy showed characteristic movements for each

dance style, some of them can be seen in Figure 2.7, mainly in the Michael Jackson

dance style. These results raised an issue with our dataset. In the first version of our

dataset we use the Country dance style. However, as can be seen in the preliminary

results shown in Figure 2.7, the Country movements have not enough visual features

to be easy to distinguish the dance style in a blind study. This issue with the Country

dance style is related with a space normalization we perform in our data. Since the

Country initial results were not so promising as the initial results of the other dance

style classes, we decided to replace the Country dance style of our dataset by Salsa.

The issue of the predicted poses not respecting the human body constraints shows

us that our model architecture, in this case RNN’s, were not the most suitable approach
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Figure 2.6. One of our first attempts was to use Recurrent Neural Networks.
Here are some examples for our model without an adversarial strategy. Never-
theless, two issues arise from this approach: a) Some human poses do not respect
the human body constraints; b) The model converges for a mean human pose,
in other words, the motion sequence is static.

for human pose data. The human pose using the OpenPose framework pose convention

is essentially a tree (i.e. a graph). The intrinsic representation of human pose as a

graph, lead us to use GCN’s in our approach. GCN’s are a recently new class of

networks that are presented impressive results in several tasks, because of their ability

of modelling the manifold of problems with geometric data structures. We introduce

some GCN’s and its usage in the previous Section 2.1.1, and we discuss and give the

details of our final model using GCN’s in the Chapter 3, in which our method is

described.

Finally, we would like to emphasizethat although we did not achieve our desired
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Figure 2.7. Examples for our model with an adversarial strategy. The model
was able to learn some movements of the dance style. However, most of the
human poses in the sequence remain not respecting the human body constraints.

results using CNN’s or RNN’s, it can be possible to address the problem of human

motion generation using these techniques such as in Wang et al. [2020]; Ren et al.

[2019]; Huang et al. [2020]
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Chapter 3

Methodology

The problem of automatic dance generation has two major challenges: i) The tem-

poral constraint of the human motion; ii) The motion manifold, which adds physical

constriant’s to the joints’ spatial configuration of the human body. To address both

challenges we develop an architecture based on graph convolutional networks (GCN)

since they can be used to both, dealing with the motion manifold and the temporal

constraints of the problem.

Moreover, to explore the relationship between auditory and visual data, and to

address the lack of visual data in human motion animation, we propose a generative

architecture to produce new dance movements. In our architecture, we explore the

relationship between auditory and visual data by using the music to condition the

generation of our synthetic motion. Thus, our approach aims to address the problem

of automatic dance generation, using as input a music song by creating a sequence of

human poses and finally creating a video sequence of an actor performing the synthetic

motion. An illustration of our proposed approach can be seen in Figure 3.1.

Our method has been designed to synthesize a sequence of 2D human poses

resembling a human dancing according to a sound style that is provided by a music

as input. Specifically, we aim to estimate a motion M that provides the best fit for a

given input music style. M is a sequence of N human body poses defined as:

M = [P0,P1, · · · ,PN ] ∈ R
N×25×2, (3.1)

where Pt = [J0,J1, · · · ,J24] is a graph representing the body pose in the frame t and

Ji ∈ R
2 is the 2D image coordinates of i-th node of this graph (see Figure 3.2).

The advantages of adopting this motion representation are twofold. First, it al-

lows adopting state-of-the-art approaches of human pose estimation to annotate our
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Figure 3.1. Our approach is composed of three main steps: i) First, given a
music sound as input, we classify the sound to its closest dance style; ii) Second,
we generate a temporal coherent latent vector to condition the motion generation,
i.e., the spatial and temporal position of joints that define the motion. iii) Finally,
a generative model based on a graph convolutional neural network is trained in
an adversarial manner to generate the sequences of human poses. To exemplify
an application scenario (and also with visualisation purposes), we also render
automatic animations of virtual characters performing the motion generated by
our method.

dataset as the work of Cao et al. [2019]. Second, it is also a commonly used rep-

resentation in motion generation state-of-the-art methods (e.g., Vid2Vid from Wang

et al. [2018] or Everybody Dance Now presented by Chan et al. [2019]), which allows

evaluations and comparisons in similar conditions.

Our approach consists of three main components, outlined in Figure 3.8. We start
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Motion Representation

Motion:

...

time

Pose: Pose: Pose: Pose:

Figure 3.2. Motion and skeleton notations. In our method, we used a skeleton
with 25 2D joints.

training a 1D-CNN classifier to define the input music style. Then, the result of the

classification is combined with a spatial-temporal correlated latent vector generated by

a Gaussian process (GP). The GP allows us to sample points of Gaussian noise from

a distribution over functions, where for each function exits a correlation between the

sampled points of that function. This correlation can be different for each function

sampled by the process. Our goal is to sample temporally correlated points from

functions with different frequencies. This variation in the signal frequency enables our

model to infer which skeleton joint is responsible for more prolonged movements and

explore a large variety of poses. The latent vector aims at maintaining spatial coherence

of the motion for each joint over time. At last, we perform the human motion generation

from the latent vector. In the training phase of the generator, we use the latent vector

to feed a graph convolutional network that is trained in an adversarial regime on the

dance style defined by an oracle algorithm. In the test phase, we replace the oracle

by the 1D-CNN music classifier. Thus, our approach has two training stages: i) The

training of the audio classifier to be used in the test phase and ii) the GCN training

with an adversarial regime that uses the music style to condition the motion generation.
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3.1 Sound Processing and Style Feature Extraction

To generate realistic human motion coherent with the input music, we must be able

to classify the auditory data. Thus, we address the problem of music classification by

training a 1D-CNN classifier. With the music style class, we can condition our motion

generation to synthesize a motion sequence coherent with the music style.

Our motion generation is conditioned by a dense representation of the music style

in the sound provided by a 1D-CNN classifier presented in Figure 3.3. In this context,

we used the architecture of SoundNet proposed by Aytar et al. [2016] as backbone

to a one-dimensional CNN. The model receives sound in waveform and outputs the

most likely music style. The 1D-CNN classifier is trained in a dataset composed of

107 musics, divided into three music-dance styles: Ballet, Salsa, and Michael Jackson

(MJ).

Our audio classifier architecture is better described in Table 3.1. In general, we

use classic one-dimensional convolutions to extract features from the audio data and a

fully connected layer in the end to work as a classifier. We standardize the output, to

be a vector of probabilities using the SoftMax function. The dimensions of the tensors

at each layer are shown in Table 3.1, where the first one is the channels dimension and

second one is the length of the sinal.

3
2

conv1

6
4

conv2

1
2
8

conv3

2
5
6

conv4

1
0
2
4

conv5

1

1
0
2
4

fc1

3

SoftMax

Figure 3.3. Our audio classifier architecture. After every convolutional layer we
apply a 1D-Batch Normalization layer and 1D-MaxPolling, also we use LeakyRelu
as activation function.
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Table 3.1. The architecture of our sound classifier. MaxP is MaxPolling op-
eration, AvgP is Adaptative Average Polling operation, LR is the LeakyRelu
activation function, Soft is the SoftMax function, BN1 is a BatchNormaliza-
tion1D layer, Conv1D is a one-dimensional standard convolutional layer, and
Fc1 is Fully Connected layer. The ◦ operator defines the sequence of layers in
our architecture.

Block Operations Tensor Size

1 MaxP ◦ LR ◦BN1 ◦ Conv1D (1,64000)
2 MP ◦ LR ◦BN1 ◦ Conv1D (32,8000)
3 MP ◦ LR ◦BN1 ◦ Conv1D (64,1000)
4 LR ◦BN1 ◦ Conv1D (128,125)
5 LR ◦BN1 ◦ Conv1D (256,63)
6 Soft ◦ Fc1 ◦ AvgP (1024,5)
7 Output (1,3)

3.2 Latent Space Encoding for Motion Generation

In order to create movements that follow the music style, while keeping unique motion

particularities and being temporally coherent, we build a latent vector that combines

the extracted music style with a spatiotemporal correlated signal from a Gaussian

process. It is noteworthy that our latent vector differs from the work of Yan et al.

[2019], since we condition our latent space using the information provided by the audio

classification. The information used to condition the motion generation and to create

our latent space is a trainable dense representation of each class. The dense represen-

tation works as a categorical dictionary, which maps a dance style class to a higher

dimensional space.

Generative models, more specifically GAN’s, aim to generate samples from the

real data distribution using a random noise, often a Gaussian noise. Gaussian process

is a suitable mechanism to deal with temporal constraints and a collection of random

variables that has a multivariate normal distribution. In this context, Gaussian process

allows sampling from a distribution of functions, where there is a correlation between

the points sampled for each function. In Figure 3.4, we vary the value of σc parameter

of the Gaussian process shown in Equation 3.2, this variation in the signal frequency

enables our model to infer which skeleton joint is responsible for more prolonged move-

ments and explore a large variety of poses.

The temporal coherent signals are sampled from Radial Basis Function kernel

(RBF) proposed by Rasmussen [2003] to enforce temporal relationship among the N

frames. A zero-mean Gaussian process with a covariance function κ is given by (z
(c)
t ) ∼

GP (0, κ), where (z
(c)
t ) is the c-th component of zt. The signal is composed of c functions,



3. Methodology 42

Figure 3.4. Example of the Gaussian process used to generate random noise.
Four functions are sampled with different σc (frequency) values.

each function with t, t′ ∈ R
N/16 temporally coherent values. This process provides a

signal with a shape of (C, T, V ), where C is interpreted as the channels (features) of

our graph, T is related to the length of the sequence we want to generate, and V is the

spatial dimension of our graph signal. The covariance function κ is defined as:

κ(t, t′) = exp

(

−
|t− t′|2

2σ2
c

)

. (3.2)

In our training experiments, we used C = 512, T = 4, V = 1 and σc = σ
(

ci
C

)

, where

σ = 200 was chosen empirically and ci varies for every value from 1 to C + 1.

Then, we combine the temporal coherent random noise with the music style

representation to generate coherent motions over time. Thus, the final latent vector

is the result of concatenating the dense trainable representation of the audio class

with the coherent temporal signal from the Gaussian process in the dimension of the

features, as shown in Figure 3.5. This concatenation plays a key role in the capability

of our method to generate synthetic motions with more than one dance style when the

audio is a mix of different music styles. In other words, unlike a vanilla conditional

generative model, which conditioning is limited to one class, we can condition over

several classes over time.

The process to create our latent space is illustrated in Figure 3.5. In Figure 3.5 (a)

we can sample from a space a set of functions given by the Gaussian process, thus in

Figure 3.5 (a) we illustrate the sampling of three possible gaussian noise for our formu-
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lation. The classification of the input audio is represented by Figure 3.5 (b) where any

classification algorithm receives the auditory data and returns a vector of probabilities

of the input data belongs to each class, then we take this representation (vector of

probabilities) and transform in a higher-dimensional space with dense representation,

i.e., the colors, this space is composed of trainable values (the colors will change during

training stage). Finally, in Figure 3.5 (c) we compose our latent space by concatenating

both information the gaussian noise and the dense representation of the music class.

Our latent space, which will be fed in our generator has both information, the tem-

poral constraints addressed by the gaussian noise from the Gaussian process, and the

dense representation of the auditory data, which is responsible for condition the motion

generation.

The final tensor representing our latent vector has the size (2C, T, V ), where C

and T has the same size of the temporal coherent signal. Note that the length of

the final sequence is proportional to T used in the creation of the latent vector. The

final motion, after propagated in our motion generator, will have 2lT = N frames,

where l is the number of temporal upsampling layers in the architecture. Therefore, we

can generate samples for any FPS, and any length by changing the dimensions of the

latent vector, more precisely changing the parameter T in the size of the final tensor.

Moreover, as we conditioned by the channels dimension, it is possible to change the

conditioning dance style over time.

As an example, to generate a sequence with two dance styles we create a tensor

of size (2C, 2T, V ), where the first part of the tensor has (2C, T, V ) values to condition

the motion generation in one style and the other part to condition in another style.

Note that the temporal dimension follows the Gaussian process so we have correlated

values in each function, what we change is the C × T values we use to condition the

generator. In the end, we have a sequence of 32T frames where in the first 16T frames

of the motion are from one style, and in the left 16T frames the motion performed is

from another dance style.

Following the commonly used notation of GAN’s, the Gaussian process generates

our random noise z and the dense representation of the dance style is the variable

used to condition our model y. The combination of both data is used as input for the

generator.
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c)

a) b)

Dense RepresentationGaussian Noise

Figure 3.5. Illustration of our latent space. We first sample a set of functions
using a Gaussian process, then we define the class of an input audio data, and
transform the vector of probabilities of the classification in a higher dense repre-
sentation of the most probable class, finally we concatenate both, the gaussian
noise and the dense representation to create our latent space. (a) Samples of the
Gaussian noise using the Gaussian process. (b) The dense representation used to
conditioned the motion generation. (c) Our latent space. In figure (a) we sample
three gaussian noise using the Gaussian process, where each function with dif-
ferent values for σc has its own color, for visualization purposes we illustrate the
sampling space as a sphere. In (b) we illustrate the process of audio classifica-
tion where a vector of probabilities is the output, for instance, in the figure the
classify the audio as for the first class (black value in the vector), we then change
the representation to a dense representation in a higher dimensional space, the
colors in our illustration represent the values of the dense representation, which
can change during training. In figure (c) we combine both the dense representa-
tion of the audio most probable class and the gaussina noise from the Gaussian
process, concatenating both tensors in the channels dimension, the concatenation
operator is defined as

⊕

.

3.3 Upsampling & Downsampling Operators

When using GCNs, one challenge that appears in an adversarial training is the re-

quirement of upsampling the latent vector in the spatial and temporal dimensions to

fit the motion space M (Equation 3.1). To allow us to transform the latent space

into a sequence of human poses, we need an upsampling operator. In practice since

our latent space is organized in features, time, and vertex dimensions, we need two
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Downsample

Upsample

Figure 3.6. Graph schemes for upsampling and downsampling operations. The
red links shows the relationship between vertex over each pair of graphs, and from
right to left the graph S to the graph S′ illustrates our first spatial upsampling
operator.

upsampling operators, one of them for the time dimension and another for the vertex

dimension. Our operators are based on the work presented by Yan et al. [2019], where

an upsampling and downsampling operators are defined. The downsampling operator

is useful for the discriminator network since the discriminator aims to reduce the di-

mensionality of the sequence of human poses to a probability of that sequence to be

real or fake.

The first step to produce our upsampling and downsampling operators is to create

an adjacency matrix that links smaller graphs to bigger ones, as shown in Figure 3.6.

For example, in Figure 3.6 going for graph S (in blue) to the graph S ′ (in green), we

create an adjacency matrix that follows the Algorithm 1.

With the adjacency matrix between every pair of graphs represented in Figure 3.6

created following the Algorithm 1 we can define our aggregation function, which will

transform a smaller graph into a bigger one, and vice-versa.

Inspired by the work of Yan et al. [2019], we included in our architecture a

spatial upsampling layer. This layer operates using an aggregation function defined by

an adjacency matrix Aω that maps a graph S(V,E) (representing an human skeleton)

with V vertices and E edges to bigger graph S ′(V ′, E ′) (see Figure 3.6). Differently
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Algorithm 1: Algorithm to construct the adjacency matrix used by the
upsampling and downsampling operators

Result: return adj
S; // smaller graph

S ′; // bigger graph

k = 2; // geodesic distance used in our experiments

adj; // intialization of adjacency matrix

; i = 0; // variable to iterate over the geodesic distance

; while i < k do
foreach v ∈ S do

foreach v′ ∈ S ′ do
if geodesic distance(v, v′) == i then

adji,v,v′ = 1;
else

adji,v,v′ = 0;
end

end

end
i++;

end

from Yan et al. [2019], our upsampling and downsampling operators can learn the

best values of Aω that leads to a good upsampling of the graph by assigning different

importance of each neighbor to the new set of vertices. However, the matrix Aω is

initialized using the adjacency matrix result of the Algorithm 1, and the values change

during the training stage. This modification we made in the operator defined by Yan

et al. [2019] show that the method achieve the same results faster, than without it.

The first spatial upsampling layer starts from a graph with one vertex and then

increases it to a graph with three vertices. When creating the new vertices, the features

fj from the initial graph S are aggregated by Aω as follows:

f ′i =
∑

k,j

Aω
kijfj, (3.3)

where f ′i contains the features of the vertices in the new graph S ′, and k indicates the

geodesic distance between vertex j and vertex i in the graph S ′.

For instance, in Figure 3.6, from right to left, we can see the upsampling operation,

where we move from a graph with one vertex S to a new graph containing three vertices

S ′. The aggregation function in Aω is represented by the red links connecting the

vertices between the graphs and the topology of graph S ′. When k = 0, vertex v is

directly mapped to vertex v′ (i.e., the geodesic distance between v0 and v′0 is 0) and
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all values are zeros except the value of i = 0, j = 0 then f ′0 = Aω
0,0,0f0. Following the

example, when k = 1, we have f ′1 = Aω
1,1,0f0 and f ′2 = Aω

1,2,0f0. All the others values of

Aω are zeros.

The spatial downsampling layers follows the same procedure of upsampling op-

erations but using an aggregation matrix Bφ with trainable weights φ, different from

the weights learned by the generator. Again the matrix Bφ is initialized with the ad-

jacency matrix result fo the Algorithm 1. Since the aggregation is performed from a

large graph G′ to a smaller one G, the final aggregation is given by

fi =
∑

k,j

B
φ
kijf

′

j. (3.4)

Finally, the temporal upsampling and downsampling operators are implemented

using traditional two-dimensional convolutions, in the case of the upsampling we use

transposed convolutions, and for the downsampling operator classic convolutions, the

same used in traditional CNN’s models.

3.4 Spatio-Temporal Convolutional Operator

To deal with the temporal issue of the problem, we adopt the Spatial-Temporal Graph

Convolutional Network (ST-GCN) proposed by Yan et al. [2018]. The layers used in

these networks consider a sequence of graphs, more precisely, a set of human poses.

The network aims to relate the temporal features of the subsequent graphs, and use

this relationship to help in an action recognition task. The features of the graph can

be 2D image joints’ coordinates, as in our work, or 3D coordinates.

The layer defined by Yan et al. [2018] can be used as our spatio temporal operator

since they use a sequence of graphs to infer actions an actor is doing over time. Their

formulation follows the same principle of the formulation of traditional graph convo-

lutional networks as proposed by Kipf and Welling [2017]. The aggregation function

used in ST-GCN is defined as follows:

fout =
∑

j

Λ
−

1

2

j AjΛ
−

1

2

j finWj, (3.5)

where Aj is the result of an element-wise product between the adjacency matrix with

self-loops in every node and a matrix of learnable weights, and this is the main difference

between their approach and the approach proposed by Kipf and Welling [2017] and

defined in Equation 2.2, Λ denotes the diagonal node degree matrix, and Wj is a
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Figure 3.7. Spatial Temporal Graph Convolutional Networks applied in the task
of action recognition, as proposed by Yan et al. [2018]. Image courtesy of Yan
et al. [2018].

weight matrix for the j-th neural network layer. Moreover, the temporal issue of the

problem is implemented using classic two-dimensional convolutions operators.

In practice to implement the graph operator of the ST-GCN layer, we use stan-

dards two-dimensional convolutions multiplied by the normalized adjacency matrix

with the learnable weights. An illustration of the ST-GCN can be seen in Figure 3.7,

where the first part of the image shows the input of the method, in that case, a video

sequence. The center of Figure 3.7 illustrates the operations in the graphs over time,

which is the ability we are interested, and the final part of Figure 3.7 shows the results

of a classification task, since the problem addressed by Yan et al. [2018] was of action

recognition.

3.5 Conditional Adversarial GCN for Motion Synthesis

To generate realistic movements, we trained our graph convolutional neural network

(GCN) with an adversarial strategy. The key idea in adversarial conditional training

is to learn the data distribution while two networks compete against each other in

a minimax game. In our case, the motion generator G seeks to create new motion

samples as similar as possible to those in the motion training set, while the motion

discriminator D tries to distinguish generated motion samples (fake) from real motions

of the training dataset (real). This training scheme is illustrated in Figure 3.8.

3.5.1 Generator

The architecture of our generator G is mainly composed of three types of layers: tempo-

ral and spatial upsampling operations, and spatial-temporal graph convolutions. The

architecture of our generator is described in Table 3.2.

The temporal upsampling layer of our generator consists of transposed 2D con-

volutions that double the time dimension, this convolutions only change the shape of
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Figure 3.8. Overview of our method. (a) Our motion GCN Generator G; (b)
Motion GCN Discriminator D; and (c) an overview of the adversarial training
regime. Our motion generator with the upsampling operators transforms a one-
dimensional latent space into a sequence of human poses. Our discriminator takes
a sequence of human poses and tries to distinguish real samples from the fake
(generated by the generator) ones. An to train our motion generation approach,
we use an oracle algorithm, to define the class of the input music, combine the
classification of the oracle, with the gaussian noise from the Gaussian process,
feed our generator network, then the output is used in the classification of the
discriminator network.

the tensor in the temporal dimension, ignoring all others dimensions. The spatial up-

sampling layer is defined in Section 3.3. The spatial-temporal graph convolutions are

described in Section 3.4.

In the first layer of the generator, we have one node containing a total of N

features; these features represent our latent space (half from the Gaussian Process

and a half from the audio representation). The features of the subsequent layers are

computed by the operations of upsampling and aggregation. The last layer outputs a

graph with 25 nodes containing the (x, y) coordinates of each skeleton joint.

After applying the temporal and spatial upsampling operations, our generator

uses the graph convolutional layers defined in Section 3.4. These layers are respon-

sible to create the spatial-temporal relationship between the graphs. Then, the final

architecture comprises three sets of temporal, spatial, and convolutional layers: first

temporal upsampling for a graph with one vertex followed by an upsampling from one

vertex to 3 vertices, then one convolutional graph operation. We repeat these three

operations for the upsampling from 3 vertices to 11, and finally from 11 to 25 ver-

tices, which represents the final pose. Figure 3.8-(a) illustrates this GCN architecture.



3. Methodology 50

Table 3.2. The architecture of our motion generator. LR is the LeakyRelu
activation function, BN2 is a BatchNormalization2D layer, Drop is a standard
dropout layer, GCNst is a ST-GCN layer as proposed by Yan et al. [2018] and de-
scribed in Section 3.4, Ups is graph upsampling operator as defined in Section 3.3,
and Upt is a standard two-dimensional convolution with stride to always double
the length of the sequence. The ◦ operator defines the sequence of layers in
our architecture. The dimensions of the tensor are channels, time and vertex
respectively.

Block Operations Input Tensor Size

1 LR ◦GCNst (1024,4,1)
2 LR ◦BN2 ◦GCNst ◦ Ups (512,5,1)
3 Drop ◦ LR ◦BN2 ◦GCNst ◦ Upt (256,4,3)
4 LR ◦BN2 ◦GCNst ◦ Ups ◦ Upt (128,8,3)
5 Drop ◦ LR ◦BN2 ◦GCNst ◦ Upt (64,16,11)
6 LR ◦BN2 ◦GCNst ◦ Ups ◦ Upt (32,32,11)
7 GCNst (16,64,25)
8 Output (2,64,25)

Moreover, in all layers, we use LeakyRelu as an activation function, and after every

upsampling followed by the graph convolutional layer we apply a Batch Normalization

layer, furthermore, we apply dropout layers in every graph convolutional layer to avoid

overfitting issues. The architecture of our generator is described in Table 3.2.

3.5.2 Discriminator

The discriminator D has the same architecture used by the generator but using down-

sampling layers instead of upsampling layers. Thus, all transposed 2D convolutions are

converted to standard 2D convolutions, and the spatial downsampling layers follow the

same procedure described in Section 3.3.

In the discriminator network, the feature vectors (the discriminator input) are

assigned to each node as follows: the first layer contains a graph with 25 nodes, where

their feature vectors are composed of the (x, y) coordinates on a normalized space and

the class of the input motion. In the subsequent layers, the features of each node

are computed by the operations of downsampling and aggregation. The last layer

contains only one node that outputs the classification of the input data being fake

or real. Figure 3.8-(b) illustrates the discriminator architecture. We use the same

activation function as used in the Generator (LeakyRelu), and the same procedures

with BatchNormalization and Dropout layers were adopted in the discriminator as

well, however, the dropout layers in the discriminator are being applied together with
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Table 3.3. The architecture of our motion discriminator. LR is the LeakyRelu
activation function, Sig is the Sigmoid function, BN2 is a BatchNormalization2D
layer, GCNst is a ST-GCN layer as proposed by Yan et al. [2018] and described
in Section 3.4, Dws is graph downsampling operator as defined in Section 3.3,
and Dwt is a standard two-dimensional convolution with stride to always cut
half of the length of the sequence. The ◦ operator defines the sequence of layers
in our architecture. The dimensions of the tensor are channels, time and vertex
respectively.

Block Operations Input Tensor Size

1 LR ◦GCNst (3,64,25)
2 LR ◦Dwt ◦GCNst (2,64,25)
3 LR ◦BN2 ◦Dws ◦Dwt ◦GCNst (32,32,25)
4 LR ◦BN2 ◦Dwt ◦GCNst (64,16,11)
5 LR ◦BN2 ◦Dws ◦Dwt ◦GCNst (128,8,11)
6 Dwt ◦GCNst (256,4,3)
7 Sig (1,1,1)
7 Output (1)

the spatial-temporal operator. The architecture of our discriminator is described in

Table 3.3.

3.5.3 Adversarial Training

Given the motion generator and discriminator, our conditional adversarial network

aims at minimizing the binary cross-entropy loss:

LcGAN(G,D) = min
G

max
D

(Ex∼pdata(x)[logD(x|y)]+

Ez∼pz(z)[log(1−D(G(z|y)))]) ,
(3.6)

where the generator aims to maximize the error of the discriminator, while the dis-

criminator aims to minimize the classification fake-real error shown in Equation 3.6.

In particular, in our problem, pdata represents the distribution of real motion samples,

x = Mτ is a real sample from pdata, and τ ∈ [0 − Dsize] and Dsize is the number of

real samples in the dataset. Figure 3.8-(c) shows a concise overview of the steps in our

adversarial training.

The latent vector, which is used by the generator to synthesize the fake samples x′,

is represented by the variable z, the coherent temporal signal. The dense representation

of the dance style is determined by y, and pz is a distribution of all possible temporal

coherent latent vectors generated by the Gaussian process. The data used by the

generator G in the training stage is the pair of temporal coherent latent vector z, with
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a real motion sample x, and the value of y guaranteed by an oracle algorithm that

returns the dance style to be used in the dense audio representation.

To improve the generated motion results, we designed a motion reconstruction

loss term using L1 distance in all skeletons over the N motion frames as follows:

Lrec =
1

N

N
∑

i=1

Lpose(Pt,P
′

t), (3.7)

with P′

t ∈ M′ is the generated pose and Pt ∈ M is a real pose from the training set and

extracted with the OpenPose framework presented in the work of Cao et al. [2019]. The

pose distance is computed as Lpose =
1
25

∑24
i=0 |Ji − J′

i|1, following the notation shown

in Equation 3.1.

Our final loss is then a weighted sum of the motion reconstruction and cGAN

discriminator losses given by

L = LcGAN + λLrec, (3.8)

where λ weights the reconstruction term. The λ value was chosen empirically, and was

constant throughout the training stage. The initial guess regarding the magnitude of

λ followed the values chosen in the work of Wang et al. [2018].

In the last step, when generating the motion, we apply a cubic-spline interpolation

proposed by De Boor et al. [1978] to remove eventual high-frequency artifacts present in

the generated motion frames M′. Moreover, all motions generated by our formulation

are in a normalized space to avoid space translation and scale problem during the

trainnig. In order to handle different shapes of the actors and to reduce the effect

of translations in the 2D poses of the joints, we normalized the motion data used

during the adversarial GCN training. We managed changes beyond body shape and

translations, such as the situations of actors lying on the floor or bending forward, by

selecting the diagonal distance of the bounding box encapsulating all 2D body joints

Pt of the frame as scaling factor. The normalized poses are given by:

J̄i =
1

δ

(

Ji −

(

∆u

2
,
∆v

2

))

+ 0.5, (3.9)

where δ =
√

(∆u)2 + (∆v)2, and (∆u,∆v) are the differences between right-top posi-

tion and left-bottom position of the bounding box of the skeleton in the image coor-

dinates (u, v). This normalization removes problems of skeleton scale and translation

in the image and puts the range of the joint poses for training J̄i ∈ [0, 1], without
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Figure 3.9. Illustration of the normalization process. We use the bound box in
red to define the new space of 2D joints’ coordinates, thus every joint in the new
space has a normalized scale without necessarily being on the limits of the space.
Translation issues are solved by this formulation.

necessarily having at least one joint J in the interval limits. An illustration of the

bound box can be seen in Figure 3.9, the bound box varies according to the actors’

poses, removing translation problems and reducing the scale issues.

3.6 Virtual Avatar Animation

The final step of our formulation, is to animate a virtual avatar using the generated

motions to different musics, thus we can synthesize a video sequence of an actor per-

forming a synthetic motion. The image-to-image translation technique vid2vid pre-

sented by Wang et al. [2018] was selected to synthesize videos from the avatar given

sequences of poses generated by our method. We trained vid2vid to generate new im-

ages for these avatars, following the multi-resolution protocol described in Wang et al.

[2018].

For inference, we feed the synthesized motion by our generator to the vid2vid

framework, after desnormalizing the output following the inverse operation of Equa-

tion 3.9 and apply the splines described in Section 3.5.3. We highlight that any video

translation style transfer method can be used with few adaptations, as for instance the

works of Chan et al. [2019] and Gomes et al. [2020].

For visualization purposes we show in Figure 3.10 three actors used in our ex-

periments. We also present the synthetic views generated by the trained vid2vid for

each actor. The first column original images of the actors used in the training phase of

vid2vid, the second column shows a synthetic pose generated by our approach after the
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denormalization process, and in the third column the virtual avatars for each actor per-

forming the same synthetic pose generated by our method, after the denormalization

using the inverse operation of Equation 3.9.

Original SyntheticGenerated Pose

Figure 3.10. Actors, synthetic pose and the respective avatar animations. In
the first column are real images from the actors, used to train vid2vid framework
presented by Wang et al. [2018]. The second column, shows the synthetic pose
generated by our graph convolutional motion generator. In the third column,
we show the output of the vid2vid for the same synthetic human pose generated
by or method, note that the actors in the synthetic image have a similar height,
because of our normalization operation.
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Chapter 4

Audio-Visual Dance Dataset

To train and evaluate the motion generation from music, we need a dataset with

representatives movements for different music/dance styles. To our knowledge, only

one publicly available dataset exists for the considered problem. However, their dataset

is structured in dance units, small sets of consecutive frames to represent a typical

movement for a dance style, the problem with dance units are that they are usually to

small to represent a motion. Furthermore, the dataset presented by Lee et al. [2019]

instead of prioritizing the quality of the data, the authors collected a huge amount of

video data and create an algorithm to automatically detect representative movements

in the videos. The difference in the structure of the dataset (dance units) and lower

quality of poses, to favor the quantity of data, are two major drawbacks of their dataset.

Therefore build a new dataset composed of paired videos of people dancing three

different music styles. The dataset is used to train and evaluate the methodologies

for motion generation from audio. We split the samples into training and evaluation

sets that contain multimodal data for the following music/dance styles: Ballet, Michael

Jackson, and Salsa. These two sets are composed of two data types: i) visual data from

carefully-selected parts of publicly available videos of dancers performing representative

movements of the music style and, ii) audio data from the styles we are training.

Figure 4.1 shows some data samples of our dataset. We also highlight two samples of

the Ballet dance class for visualization purposes, shown in Figure 4.2.

The styles in our dataset were selected to be representative and challenging at

the same time. By choosing Salsa, we selected a representative dance style with a

plurality of movements performed by male and female dancers. With the Michael

Jackson style, we attempted to explore the capability of synthesizing motions of a

specific choreography: the movements of Michael Jackson are characteristic and also

have a significant diversity of movements. Ballet style has the most characteristic
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Figure 4.1. Video samples of the multimodal dataset with carefully annotated
audio and 2D human motions of the three different dance styles.

Figure 4.2. Example of two motion samples from the Ballet class on our dataset.

movements of the three styles, being challenging to the learning approach since the

human poses are not conventional.

In order to collect meaningful audio information, several playlists from YouTube

were chosen with the name of the style/singer as a search query. The audios were

extracted from the resulting videos of the search and resampled to the standard audio

frequency of 16KHz. For the visual data, we started by collecting videos that matched

the music style and that had representative moves. Each video was manually cropped

in parts of interest, by selecting representative moves for each dance style present in

our dataset. Then, we standardize the motion rate throughout the dataset and convert

all videos to 24 frames-per-second (FPS), maintaining a constant relationship between

the number of frames and speed of movements of the actors. We annotate the 25 2D
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Table 4.1. Dataset statistics for data used for the training and evaluation. The
bold values are the number of samples used in the experiments.

Training Dataset Evaluation Dataset

Setup Ballet MJ Salsa Total Ballet MJ Salsa Total

w/o Data Augmentation 16 26 27 69 73 30 126 229
w/ Data Augmentation 525 966 861 2,352 134 102 235 471

human joint poses for each video by estimating the pose with OpenPose presented

by Cao et al. [2019]. Each motion sample is defined as a set of 2D human poses of 64

consecutive frames.

To improve the quality of the estimated poses in the dataset, we handled the miss-

detection of joints by exploiting the body dynamics in the video. Since abrupt motions

are not expected in the joints in a short interval of frames, we recreate a missing joint

and apply the transformation chain of its parent joint. In other words, we infer the

missing-joint position of a child’s joint by making it follow its parent movement over

time. Thus, we can keep frames with a miss-detected joint on our dataset.

4.1 Motion Augmentation

We also performed motion data augmentation to increase the variability and number

of motion samples. We used the Gaussian process described in Section 3.2 to add

temporally coherent noise in the joints lying in legs and arms over time. Also, we

performed temporal shifts (strides) to create new motion samples.

For the training set, we collected 69 samples and applied the temporal coherent

Gaussian noise and a temporal shift of size 32. In the evaluation set, we collected

229 samples and applied only the temporal shift of size 32 for Salsa and Ballet and

16 for Michael Jackson because of the lower number of samples (see Table 4.1). The

temporal Gaussian noise was not applied in the evaluation set. The statistics of our

dataset are shown in Table 4.1. The resulting audio-visual dataset contains thousands

of coherent video, audio, and motion samples that represent characteristic movements

for the considered dance styles.1

To evaluate the importance of the data augmentation in our results we performed

evaluations with the same architecture and hyperparameters. We use the Fréchet In-

ception Distance (FID), a common metric for generative models, first introduced in the

work of Heusel et al. [2017], the FID is calculated by estimating the distances between

1The dataset and project are publicly available at: https://www.verlab.dcc.ufmg.br/

motion-analysis/cag2020.
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two distributions of features vectors, one distribution from the generated data, and

other from the real data, the closer the distance the better the results of the generative

model. The results showed that without data augmentation, the performance on the

Fréchet Inception Distance (FID) metric was on average 3 times worse than when using

data augmentation. Moreover, we observed that the motions did not present variabil-

ity, the dance styles were not well pictured, and in the worst cases, body movements

were difficult to notice.
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Chapter 5

Experiments and Results

To assess our method, we conduct several experiments evaluating different aspects

of motion synthesis from audio information. We also compared our method to the

state-of-the-art technique proposed by Lee et al. [2019], hereinafter referred to as

D2M. We choose to compare our method to D2M since other methods does not allow

a fair comparison without major modifications. As an example, the work proposed

by Ginosar et al. [2019], presents two major drawbacks that make a comparison with

our method unsuitable: i) Their work does not synthesize human motions for the entire

human body, only for the upper half part of the human skeleton; ii) Their approach is

actor specific, i.e., it is not conditioned over classes and must be re-trained for every

new person the method is trying to generate motions.

The experiments are as follows: i) We performed a perceptual user study using a

blind evaluation with users trying to identify the dance style of the dance moves. Given

a generated dance video, the user was asked to choose what style the avatar on the

video is dancing (e.g., Ballet, Michael Jackson (MJ), or Salsa); ii) Aside from the user

study, we also evaluated our approach on commonly adopted quantitative metrics in

the evaluation of generative models, such as Frechet Inception Distance (FID) proposed

by Heusel et al. [2017], GAN-train, and GAN-test both proposed by Shmelkov et al.

[2018].

5.1 Implementation and Training Details

In this section, we present the implementation details, and the training details for

both, the GCN and the 1D-CNN audio classifier. Moreover, we provide details on the

implementation of our competitor, since during our experiments their method was not

fully publicly available.
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5.1.1 Audio Classifier and Competitor Details

The one-dimensional audio CNN presented in Section 3.1 was trained for 500 epochs,

with batch size equal to 8, Adam optimizer with β1 = 0.5 and β2 = 0.999, and learning

rate of 0.01. Similar to work of van den Oord et al. [2016], we preprocessed the input

music audio using a µ − law non-linear transformation to reduce noise from audio

inputs that were not recorded properly.

To find the best hyperparameters, we run a 10-fold cross-validation and kept the

best model to predict the music style to condition the generator. We highlight that

our architecture is one-dimensional and works directly in the waveform, conversely

to the works of Arandjelovic and Zisserman [2018] and Hershey et al. [2017] that

require 2D pre-processed sound spectrograms, which show lower performances during

our experiments. Moreover, during our experiments, the classifier shows always an

average accuracy above 85% in the validation set.

To evaluate the capability of our classifier in extracting good features for auditory

data, we apply a dimensionality reduction method. More precisely the T-distributed

Stochastic Neighbor Embedding (t-SNE) method presented by Maaten and Hinton

[2008]. The visualization of the feature space of our one-dimensional classifier can

be seen in Figure 5.1, and show that our one-dimensional audio classifier can extract

good features for the auditory data. We can notice the harder music style for the

classifier was Salsa, as we can see in Figure 5.1, the Salsa class was the class with more

misclassification instances.

Unfortunately, due to the lack of some components in the publicly available im-

plementation of D2M, few adjustments were required in their audio preprocessing step.

We standardized the input audio data by selecting the maximum length of the audio

divisible by 28, defined as L, and reshaping it to a tensor of dimensions
(

L
28
, 28

)

to

match the input dimensions of their architecture.

5.1.2 Training

We trained our GCN adversarial model for 500 epochs. We observed that additional

epochs only produced slight improvements in the resulting motions. In our experiments,

we select N = 64 frames, roughly corresponding to a motion between two to three

seconds at 24 frames-per-second. We select 64 frames as the size of our samples to

follow a similar setup presented in the work of Ginosar et al. [2019]. Moreover, the

motion sample size in the work of Lee et al. [2019] also adopted motion samples of

32 frames. In general, the motion sample size is a power of 2, because the nature of

the conventional convolutional layers adopted in both Ginosar et al. [2019] and Lee
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Figure 5.1. Result of the t-SNE algorithm over our 1D-CNN audio classifier
model, we show approximately 18k samples. In red samples of Michael Jackson
class, blue samples of Ballet class, and in green samples of Salsa class.

et al. [2019]. However, it is worth noting that our method is able to synthesize long

motion sequences. We use a batch size of 8 motion sets of N frames each. We optimize

our graph convolutional conditional adversarial network with Adam optimizer for the

generator with β1 = 0.5 and β2 = 0.999. The discriminator was optimized with

Stochastic Gradient Descent (SGD) using λ = 100.

We also train the vid2vid method proposed by Wang et al. [2018] not follow-

ing the standard training protocol. The standard training protocol of vid2vid, our

video transfer technique, uses data from OpenPose framework proposed by Cao et al.

[2019] and DensePose framework proposed by Güler et al. [2018], the information pro-

vided by DensePose framework is a 2.5D representation of the human pose. Since our

method cannot provide data in a 2.5D representation of the human pose, we modify the

training protocol of the vid2vid framework, thus making possible the last step of our

formulation, the virtual avatar animation. Note that, with this modification vid2vid

framework only uses OpenPose data to train, the same kind of data we can generated

using our motion generator.
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a) b)

c) d)

Figure 5.2. Profile of the participants of our User Study. The plots a), b), c)
and d) show the profile distribution of the participants of our user study. The
participant profile is defined as his/her age, gender, experience with computer
vision and machine learning, familiarity with different dance styles.

5.2 User Study

We conducted a perceptual study with 60 users and collected the age, gender, computer

vision/machine learning experience, and familiarity with different dance styles for each

user. Figure 5.2 shows the profiles of the participants. Figure 5.4 show the results of

the user study, that will be discussed further in this section.

The perceptual study was composed of 45 randomly sorted videos. For each video,

the user watches the video (with no sound) synthesized with the vid2vid framework

from generated 2D poses and then was asked to associate the motion performed on the

synthesized video as belonging to one of the audio classes (i.e., Ballet, Michael Jackson,

or Salsa). In each video, the users were supposed to listen to three audios (one for each

audio class) to help them to classify the video. We had 60 users participating in our

study. The website used to conduce the user study publicly available1

The set of videos was composed of 15 videos of movements generated by our

approach, 15 videos generated by D2M proposed by Lee et al. [2019], and 15 placebos,

1https://www.verlab.dcc.ufmg.br/rhythm2motion
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Figure 5.3. User interface used in the user study. The participants watch a video
and listen to three audios, then they must choose which dance class the motion
performed in the video sequence is more related to. The participants could stop
answering questions any time, and they could also re-watch some examples of
real artists performing motions of the dance styles we were evaluating any time.

i.e., videos of real movements extracted from our training dataset. We applied the

same transformations to all data, thus every video should have an avatar performing

a motion with a skeleton with approximately the same dimensions. Also, we split the

15 videos shown by each one of the evaluated methods equally in three dance styles.

Thus, we have 5 videos of each dance class, for each method in our study.

From Table 5.1 and Figure 5.4, we draw the following observations: first, our

method achieved similar motion perceptual performance to the one obtained from real

data. Second, our method outperformed the D2M method with a large margin. Thus,

we argue that our method was capable of generating realistic samples of movement

taking into account two the following aspects: i) Our results are similar to the real data

results in a blind study; ii) Users show higher accuracy in categorizing our generated

motion. Furthermore, as far as the quality of a movement being individual is concerned,

Figures 5.5, 5.6, 5.7 and 5.8 show that our method was also able to generate samples
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Figure 5.4. The plots a), b), c) and d) show the results of the study. In the
plots of semi-circles are shown the results of the user evaluation; each stacked bar
represents one user evaluation and the colors of each stacked bar indicates the
dance styles (Ballet = yellow, Michael Jackson (MJ) = blue, and Salsa = purple).
a) We show the results for all 60 users that fully answered our study; b) Results
for the users which achieved top 27% scores and the 27% which achieved the
bottom scores; c) Results for the 27% user which achieved top scores; d) Results
for the 27% users which achieved worst scores.

with motion variability among samples.

In order to test the validity of the questions in the study, we ran two statistical

tests used in item analysis: Difficulty Index and Item Discrimination Index. The

Difficulty Index measures how easy to answer an item is by determining the proportion

of users who answered the question correctly, i.e., the accuracy. On the other hand,

the Item Discrimination Index measures how a given test question can differentiate

between users that mastered the motion identification from those who have not. Our

methodology analysis was based on the guidelines described by Luger and Bowles

[2016]. The average values of the indexes for all questions in the study are shown in the

Table 5.1. One can clearly observe that our method’s questions had a higher difficulty

index value, which means it was easier for the participants to answer them correctly
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Table 5.1. Quantitative metrics for user perceptual study

Difficulty Index1 Discrimination Index 2

Dance Style D2M Ours Real D2M Ours Real

Ballet 0.183 0.943 0.987 0.080 0.080 0.033
MJ 0.403 0.760 0.843 0.140 0.240 0.120
Salsa 0.286 0.940 0.820 0.100 0.030 0.180
Average 0.290 0.881 0.883 0.106 0.116 0.111

1
Better closer to 1.

2
Better closer to 1.

and, in some cases, even easier than the real motion data. Regarding the discrimination

index, we point out that the questions cannot be considered good enough to separate

the ability level of those who took the test, since items with discrimination indexes

values between 0 and 0.29 are not considered good selectors as addressed by Ebel and

Frisbie [1991]. These results suggest that our method and the videos obtained from real

sequences look too natural for most users, while the videos generated by the method

proposed by Lee et al. [2019] were confusing.

5.3 Quantitative Evaluation Metrics

For a more detailed performance assessment regarding the similarity between the

learned distributions and the real ones, we use the commonly used Fréchet Incep-

tion Distance (FID), as explained in Chapter 4 the Fréchet Inception Distance (FID),

is a common metric for generative models, first introduced in the work of Heusel et al.

[2017], the FID is calculated by estimating the distances between two distributions

of features vectors, one distribution from the generated data, and other from the real

data, the closer the distance the better the results of the generative model. We com-

puted the FID values using motion features extracted from the action recognition

Spatial-Temporal Graph Convolutional Network (ST-GCN) model presented by Yan

et al. [2018], similar to the metric used in the works of Yan et al. [2019]; Lee et al.

[2019]. We train the ST-GCN model 50 times using the same set of hyperparameters,

since there is no such established action recognition method for extracting reasonable

features vectors. The trained models achieved high accuracy scores, above 90% for

almost all 50 training trials. It is noteworthy that the data used to train the feature

vector extractor was not used to train any of the methods evaluated in this thesis. The

results for FID metric are shown in Table 5.3.

We also computed two other well-known GAN evaluation metrics proposed
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Table 5.2. Quantitative values of FID for generative models. We use as feauture
extractor the work of Yan et al. [2018], which as been designed to address the
problem of action recognition.

FID1

Dance Style D2M Ours Real

Ballet 20.20± 4.41 3.18± 1.43 2.09± 0.58
MJ 4.38± 1.94 8.03± 3.55 5.60± 1.42
Salsa 12.23± 3.20 4.29± 2.38 2.40± 0.75
Average 12.27± 7.27 5.17± 3.33 3.36± 1.86

1
Better closer to 0.

Table 5.3. Quantitative evaluation metrics: GAN-Train and GAN-Test.

GAN-Train 1 GAN-Test 2

Dance Style D2M Ours Real D2M Ours Real

Ballet 0.36± 0.15 0.89± 0.10 0.80± 0.12 0.07± 0.04 0.80± 0.14 0.77± 0.11
MJ 0.34± 0.15 0.60± 0.13 0.59± 0.04 0.70± 0.14 0.46± 0.18 0.60± 0.09
Salsa 0.32± 0.17 0.31± 0.11 0.50± 0.16 0.26± 0.14 0.96± 0.11 0.90± 0.06
Average 0.34± 0.16 0.60± 0.26 0.63± 0.17 0.34± 0.29 0.74± 0.25 0.76± 0.15

1
Better closer to 1.

2
Better closer to 1.

by Shmelkov et al. [2018]: GAN-Train and GAN-Test. To compute the values of

the GAN-Train metric, we trained the ST-GCN presented by Yan et al. [2018] in a set

composed of dancing samples generated by our method and another set with generated

motions by D2M. Then we tested the model in the evaluation set (real samples). The

GAN-Test values were obtained by training the same classifier in the evaluation set

and tested in the sets of generated motions. For each metric, we ran 50 training rounds

and reported the average accuracy with the standard deviation in Table 5.3.

We can also note that the generator performs better in some dance styles. Since

some motions are more complicated than others, the performance of our generator

can be better synthesizing less complicated motions related to a particular audio class

related to a dance style. For instance, the Michael Jackson style contains a richer set of

motions with the skeleton joints rotating and translating in a variety of configurations.

The Ballet style, on the other hand, is composed of fewer poses and consequently, easier

to synthesize.

5.4 Qualitative Visual Results

We show some qualitative results in Figures 5.5, 5.6, 5.7, 5.8 and 5.9. We can notice

that the sequences generated by D2M presented some characteristics clearly inherent
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Figure 5.5. Results of our approach in comparison to D2M presented by Lee
et al. [2019] for Ballet, the dance style shared by both methods. We highlight
some frames generated by both method, showing that our method holds more
characteristics of the original motion in the synthetic one.
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Figure 5.6. Qualitative results using audio sequences for Ballet dance style.
First row: input audio; Second row: the sequence of skeletons generated with our
method; Third row: the animation of an avatar by vid2vid using our skeletons.
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Figure 5.7. Qualitative results using audio sequences for Michael Jackson dance
style. First row: input audio; Second row: the sequence of skeletons generated
with our method; Third row: the animation of an avatar by vid2vid using our
skeletons.
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Figure 5.8. Qualitative results using audio sequences for Salsa dance style.
First row: input audio; Second row: the sequence of skeletons generated with our
method; Third row: the animation of an avatar by vid2vid using our skeletons.
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Figure 5.9. Experiment 1 shows the ability of our method to generate different
sequences with smooth transition from one given input audio composed of differ-
ent music styles. Experiment 2 illustrates the responsiveness of our method to
the audio style changes.

to the dance style, but they are not present along the whole sequence. For instance, in

Figure 5.5, one can see that the last generated skeleton/frame looks like a spin, usually

seen in ballet performances, but the previous poses do not indicate any correlation to
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this dance style. Conversely, our method generates poses commonly associated with

ballet movements such as rotating the torso with stretched arms.

Both results for our approach, the sequence of human poses generated by our

motion generator, and the video sequence with a virtual avatar are shown in Figures 5.6,

5.7 and 5.8 shows that for all three dance styles, the movement signature was preserved.

Another characteristic of our method, shown in Figures 5.6, 5.7 and 5.8, is the ability

to synthesize video sequences of different actors.

Moreover, the Experiment 1 in Figure 5.9 demonstrates that our method is highly

responsive to audio style changes since our classifier acts sequentially on subsequent

music portions. This enables it to generate videos where the performer executes move-

ments from different styles. In other words, the motion generated varies over time

following the classification of the music also over time. Together these results show

that the proposed approach holds the ability to create highly discriminative and plau-

sible dance movements.

On the other hand, Experiment 2 in Figure 5.9 also shows that our method can

generate different sequences from one given input audio. Since our model is conditioned

on the music style from the audio classification pipeline, and not on the music itself.

Therefore it exhibits the capacity of generating varied motions while still preserving

the learned motion signature of each dance style. The variability in the movements

for the same audio classification is due to variations in the spatio-temporal signal from

the Gaussian process as addressed in Section 3.2 and illustrated in Figure 3.5. In other

words, for the same input audio, our approach can deliver different motion sequences,

and consequently different video sequences, the variability of the motion is related to

the gaussian noise from the Gaussian process, and not with the input music itself. Thus,

we can generate uncountable samples of motion for the same music, always preserving

the motion signature.
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Chapter 6

Conclusion

In this thesis, we propose a new method for synthesizing human motion from music.

Unlike previous methods, we explore graph convolutional networks trained in an adver-

sarial regime to address the problem. We use the music style information to condition

the motion generation and produce realistic human movements with respect to a dance

style. We achieved qualitative and quantitative performance as compared to state of

the art. Our method outperformed Dancing to Music method proposed by Lee et al.

[2019], in terms of FID, GAN-Train, and GAN-Test metrics. We also conducted a user

study, which showed that our method received similar scores to real dance movements,

which was not observed in the competitor. Moreover, we presented a new dataset with

audio and visual data, carefully collected to train and evaluate algorithms designed to

synthesize human motion in dance scenarios. We expect our method and the dataset

to be one step further towards fostering new approaches for generating human motions.

The work present in this thesis, indicates that, when working with learning tech-

niques or data-driven approaches, the model awareness of the data structure inherent

to the motion generation problem can result in simpler models and with better re-

sults. Moreover, we found that exploring the relationship between information from

the different motion, audio and visual modalities in videos of people dancing, allows

us to create an effective approach to produce realistic animations of virtual characters.

Finally, we would like to highlight two major points: i) The data structure has a key

role in learning motion; ii) Auditory information can help to solve visual problems,

more precisely motion problems, since we explore the relationship between audio data

and the motion a human being is performing.

Yet our approach has some limitations: i) We condition the motion generation

on the audio class, however, if during inference time our audio classifier misclassify

the audio, we will condition the motion to the wrong dance style; ii) Since we only



6. Conclusion 71

condition the motion to the style, the variability of the movements in one dance style

is related only with the random noise from the Gaussian process. Simultaneously using

the audio information to create this variability should be a more suitable approach;

iii) To create our dataset, we need humans to manually select representatives parts of

a video where there is a representative dance performance, which increases the cost to

collect data to train to train the proposed model.

6.1 Future Work

The problem of automatic dance generation, and beyond that, the problem of automatic

video generation of a virtual avatar performing a dance motion, has several aspects that

can be explored to improve the method proposed in this thesis. For instance, we could

generate motions in 3D beyond the image space (2D coordinates). One situation where

the generation of 3D motions can be attractive is when we are designing a game, where

realistic dance motions for the characters should make the game more immersive. For

that, there are two major modifications to be done in our approach: i) We need to

change the dataset annotation to corresponding 3D joints of an avatar compatible with

the ones in the game. Automatic data generation should help in this task; ii) The

network architecture must consider 3D coordinates instead of 2D coordinates. Also

modifications in the loss function should be applied since the 3D world space is more

complex than the image space.

The most natural improvement in our approach is the extension of the dataset

in terms of dance styles. This extension should allow us to stress our approach, and

create samples to be used in realistic animations following the auditory data of videos.

This can be done by following the pipeline described in Chapter 4.

Another future work is the option to change the video synthesis, which can explore

methods designed specifically for the task of video transfer in human motion contexts.

This modification can produce better results if the selected method has elements to

deal with video transfer of the human motion. As examples of methods that could be

used, we can cite the methods proposed by Chan et al. [2019] and Gomes et al. [2020],

where the method of Chan et al. [2019] uses a facial GAN to improve results in the

face of the virtual avatar in contrast with the method of Wang et al. [2018]. On the

other hand, the work of Gomes et al. [2020] allows adding motion restrictions to the

movement, making possible realistic interactions with the environment.

Finally, some changes in the designing of our latent space could solve limitations

of our method, such as the misclassification of the audio classifier leading to wrong style
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motion generation, and the issue with temporal constraints of the problem. They could

be addressed using the auditory information, since this data has temporal information.

By changing our latent space, we could produce results where the final generated motion

is more connected to the audio data, in other words, the motion follows better the beat

of the music. This could be done by exploring other techniques to deal with temporal

constraints as done by Li et al. [2020], who have employed transformers to solve the

temporal constraints of the problem.
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