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Resumo

Textos curtos estão em todo lugar na Web, incluindo mídias sociais, sites de perguntas

e respostas (Q&A), textos de propagandas e um número cada vez maior de outras apli-

cações. Eles são caracterizados pelo escasso contexto de palavras e extenso vocabulário.

Estas características tornam a descoberta de conhecimento em texto curto desafiadora,

motivando o desenvolvimento de novos métodos.

Técnicas de mineração de texto são dependentes da forma como textos são rep-

resentados. A necessidade de entradas de tamanho fixo para a maioria dos algortimos

de aprendizado de máquina exige representações vetoriais, tais como as representações

clássicas TF e TF-IDF. Contudo, estas representações são esparsas e podem induzir a

“maldição da dimensionalidade”. No nível de palavras, modelos de vetores de palavras,

tais como Skip-Gram e GloVe, produzem embeddings que são sensíveis a semântica e

consistentes com álgebra de vetores.

Este trabalho apresenta contribuições em representação de texto curto para clas-

sificação de documentos e modelagem de tópicos para texto curto. Na primeira linha,

uma investação sobre combinações apropriadas de vetores de palavras para geração

de vetores de documentos é realizada. Estratégias variam de simples combinações

até o método PSO-WAWV, baseado na meta-heurística PSO. Resultados em classi-

ficação de documentos são competitivos com TF-IDF e revelam ganhos significativos

sobre outros métodos. Na segunda linha de pesquisa, um arcabouço que cria pseudo-

documentos para modelagem de tópicos é proposto, além de duas implementações: (1)

CoFE, baseado na co-ocorrência de palavras; e (2) DREx, que usa vetores de palavras.

Também são propostos o modelo Vec2Graph, que induz um grafo de similaridade de

vetores de palavras, e o algoritmo VGTM, um modelo de tópicos probabilístico para

texto curto que funciona sobre Vec2Graph. Resultados experimentais mostram ganhos

significativos em NPMI e F1-score quando comparados com métodos estado-da-arte.

Palavras-chave: Modelo de tópicos para texto curto, representação de texto curto,

vetores de palavras.



Abstract

Short texts are everywhere in the Web, including social media, Q&A websites, adver-

tisement text, and an increasing number of other applications. They are characterized

by little context words and a large collection vocabulary. This makes the discovery

of knowledge in short text challenging, motivating the development of novel effective

methods. An important part of this research is focused on topic modeling that, beyond

the popular LDA method, have produced specific algorithms for short text.

Text mining techniques are dependent on the way text is represented. The need of

fixed-length input for most machine learning algorithms asks for vector representations,

such as the classics TF and TF-IDF. These representations are sparse and eventually

induce the curse of dimensionality. In the level of words, word vector models, such

as Skip-Gram and GloVe, produce embeddings that are sensitive to semantics and

consistent with vector algebra. A natural evolution of this research is the derivation of

document vectors.

This work has contributions in two lines of research, namely, short text represen-

tation for document classification and short text topic modeling (STTM). In first line,

we report a work that investigates proper ways of combining word vectors to produce

document vectors. Strategies vary from simple approaches, such as sum and average

of word vectors, to a sophisticated one based on the PSO meta-heuristic. Results on

document classification are competitive with TF-IDF and show significant improve-

ment over other methods. Regarding the second line of research, a framework that

creates larger pseudo-documents for STTM is proposed, from which we derive two im-

plementations: (1) CoFE, based on the co-occurrence of words; and (2) DREx, which

relies on word vectors. We also propose Vec2Graph, a graph-based representation for

corpora induced by word vectors, and VGTM, a probabilistic short text topic model

that works on the top of Vec2Graph. Comparative experiments with state of the art

baselines show significant improvements both in NPMI and F1-score.

Keywords: Short Text Topic Modeling, Short Text Representation, Word Vectors.
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Chapter 1

Introduction

Writing is an ancestral technology developed by humans that remains essential in

almost all functional aspects of our daily lives. Its product is text, pieces of symbols

recorded in some kind of persistent media that provides a particularly rich way of

representing language, alternatively to, for example, speech.

In the same way as speech, text has the linguistic properties of syntax and seman-

tics (Akmajian et al. [2001]). But unlike speech, text is relatively persistent in the long

run, enabling a lot of goods, such as registering our history, codifying legal systems

(i.e. laws, contracts), providing a substract for cultural evolution and the civilization

process. From the last century to the present, it contributed to the so called 3rd indus-

trial revolution (Schwab [2017]), which includes automating processes through software

development.

The rising of the Web and social media has increased the volume of text produced

in the world dramatically. Twitter, for example, was producing about 8,500 tweets per

second in early 20191, or approximately 730 million tweets a day. Suppose that 1% of

these documents are classified as “breaking news”, which results in around 7,3 millions

tweets/day. A Twitter user interested in these news will never be able to read all these

messages. Hence, we can assume that a smart daily news service, for example, will be

able to automatically process, understand and organize this huge volume of data.

Notice that tweets are a small fraction of the Web2. Given the severe restriction

of available human resources to organize it and the growing demand for general text

understanding, building automated processes to extract useful meaning from text is

essential.
1Live Internet statistics available at: http://www.internetlivestats.com/one-second/
2The volume of e-mails, for example, is much bigger. In early 2019, about 2,8 millions e-mails per

second were being produced.

http://www.internetlivestats.com/one-second/
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The main source of complexity in the interpretation of texts lies on the com-

bination of meaning assigned by different participants in the communication, an in-

tersection between the fields of Linguistics and Semiotics (Peirce et al. [1932]). For

example, the writer of a text and a reader can have an approximate agreement about

the text meaning, but not an exact agreement because of their different contexts and

particular historical knowledge. This happes because semantics is not only related to

syntax and pragmatics, but also to the learning attributes of communicators, making

the automatic interpretation of text by machines a potentially tricky task. A general

challenge is to understand how to build systems that are aware of context and “intelli-

gent enough” to achieve an acceptable performance in text interpretation, or to extract

concepts from text.

Some properties of texts are of great importance for automatic text understanding

(Pinto et al. [2011]). Among them, smallness stands out (Rosso et al. [2013]), creating

different scenarios of analysis for short and long texts. We are particularly interested in

the short text analysis scenario, as it presents more technical challenges and is highly

relevant today. It is relevant because short texts are present in a variety of contexts,

including microblogging messages (e.g. tweets, Tumblr image captions), short message

service (SMS), search engine queries, chat messages (e.g. Telegram and Whatsapp

messages), product reviews and descriptions, among others.

Smallness is usually associated with the number of different words in a docu-

ment and the size of the target vocabulary, i.e. the sparsity of the document-term

matrix. The main problem of associating short text with “highly” sparse document-

term matrices is that one cannot precisely define how sparse a document-term matrix

has to be for characterizing the corpus as containing short texts. Collections of doc-

uments that would naturally be defined as long (e.g. books, articles) also have very

sparse document-term matrices because of their vocabulary size. The lack of scientific

consensus on how sparse a text needs to be to be considered small indicates that an

alternative definition has to be pursued.

An important challenge in text processing is to choose a suitable representation

for text. For example, if one wants to perform an automatic unsupervised clustering

of text documents (Zaki et al. [2014]), it could be more appropriate to adopt a vector

representation for texts instead of dealing with the traditional plain representation (i.e.

readable text, expressed by means of characters). This is because of the existence of

natural distance metrics for scalar and vector values upon which clustering algorithms

are developed. A generalization of this argument is that the plain text representation

is rarely a good choice for automatic inference on text, with fixed-length vector rep-

resentations being preferred. Even among the vector-based representations, such as
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bag of words and matrix factorization products, some are more appropriate to a given

task than others. For example, distance metrics when applied to sparse vectors of high

dimensionality are associated with the curse of dimensionality (Houle et al. [2010]).

Therefore, dense vector representations are preferred. For short texts, with the little

context and low co-occurrence of words in the collection, the representation problem

is amplified.

Despite all challenges in text processing, there has been advances in, mostly

supported by natural language processing (NLP), statistical inference and machine

learning (ML) algorithms. For example, the discovery of latent semantic structures in

text has been consolidated in the topic modeling field, whose most popular and rep-

resentative method is latent Dirichlet allocation (LDA) (Blei et al. [2003]). Among

other well-established methods for topic modeling are probabilistic latent semantic

analysis/indexing (pLSA or pLSI) (Hofmann [1999a,b]) and non-negative matrix fac-

torization (NMF) (Sra and Dhillon [2006]; Tandon and Sra [2010]).

In LDA, topics are latent variables in a Bayesian network. Posterior distribution

of words per topic and posterior distribution of topics per document are informative

about the meaning of topics and documents, respectively. The mixture of topics per

document in LDA has been successfully used as feature vectors for text representation

in classification (Blei et al. [2003]) and clustering (Lu et al. [2011]), as an alternative to

classic vector-based representation models like one-hot encoding, term frequency (TF)

and term frequency inverse document frequency (TF-IDF) (Salton et al. [1975]). The

latter ones are sparse representations of high dimensionality, i.e. they induce the curse

of dimensionality in some situations (Houle et al. [2010]). This has been a major

motivation for research on efficient and potentially dense text representations.

While most of traditional NLP techniques consider words as atomic units of

processing, the last decade (2008–2018) produced a lot of research contributions in

word vector representations (Collobert and Weston [2008]; Turian et al. [2010]; Huang

et al. [2012]; Lebret and Collobert [2013]; Socher et al. [2013a,b]; Luong et al. [2013];

Zhila et al. [2013]; Mikolov et al. [2013a,b,d,c]; Levy and Goldberg [2014a]; Pennington

et al. [2014]; Faruqui and Dyer [2014]; Yogatama et al. [2015]; Faruqui et al. [2015]).

The purpose of these techniques is to produce embeddings in the form of word vectors,

vector representations that are conceived to capture semantics of words by coding

each term and its context in a real vector-space embedding. Word vectors have been

explored to bring out interesting representations for texts longer than n-grams (Le and

Mikolov [2014]). Word embeddings have also a great potential for application in short

text representation and mining, since they provide contextual information of words.

Short text has also received a lot of attention from the topic modeling community.
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In general, classic methods, such as pLSA and LDA, present worse results for short text

than those obtained with long text. This happens mainly due to the lack of context in

documents and scarce word-word co-occurrence. At the same time, the growth of the

use of short text documents in the Web and social media motivates the development

of novel methods to tackle this problem (Wenyin et al. [2010]; Gao et al. [2015]).

Topic models specially design to work with short text can be broadly classified

(but not mutually exclusive) as: (i) expansions of the LDA probabilistic graphical

model and (ii) methods that generate pseudo-documents. In the first category, Yan

et al. [2013] proposed the biterm topic model for short text (BTM), a probabilistic

method that models the co-occurrence of all sequences of two words (biterms) for the

entire collection. Yin and Wang [2014], in turn, proposed Dirichlet Mixture Model

(DMM), a simplification of LDA to deal with only one topic per document.

In the second category (pseudo-documents generation) we can find the word net-

work topic model (WNTM) (Zuo et al. [2016b]), which generates a pseudo-document

for each word using external knowledge. More recently, other short text topic mod-

els that fit in both categories have been proposed, such as the self-aggregation based

topic model (SATM) (Quan et al. [2015]) and the pseudo-document-based topic model

(PTM) (Zuo et al. [2016a]).

Regardless of the category they fall, there is a recent and successful trend of

incorporating the idea of word embeddings into the methods of topic modeling for

short text. The idea is to enrich the topic modeling process with information about

the context in which the words appear, an essential but most of the time missing

information in short text documents.

Methods for short text topic modeling that use word vectors include the Latent-

Feature LDA (LF-LDA) (Nguyen et al. [2015]) and an extension of DMM called GPU-

DMM (generalized Pólya urn dirichlet multinomial mixture) (Li et al. [2016]), which

injects semantic information of word vectors into the Gibbs sampling process of the

DMM model. A recent method that is not based on probabilistic graphical models or

pseudo-documents but that presents state-of-the-art results is the semantics-assisted

non-negative matrix factorization (SeaNMF) (Shi et al. [2018]), which is based in the

factorization of document and term co-occurrence matrices. Viegas et al. [2019] pro-

pose the CluWords, a word embedding-based representation that, combined with non-

negative matrix factorization, produce coherent latent topics. There are other short

text topic models that are application-specific (e..g. for Twitter) (Hong and Davison

[2010]; Mehrotra et al. [2013]).

This thesis presents novel methods that benefit from word embedding models

to create suitable short text representations for text analysis and mining. Depending
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on the problem to be solved, different word embedding-based representations can be

explored. The next sections detail our motivation, what tasks were chosen to be tackled,

their associated issues, the research questions and the main contributions of the thesis.

1.1 Motivation

This work is motivated by the problems text mining techniques face when dealing with

short text, which is characterized by the scarce context information and low frequency

of word co-occurrence. The main hypothesis of this thesis is that word embeddings

can provide the missing contextual information that statistical and machine learning

methods need to improve their quality when applied to short text.

We focus in two groups of machine learning tasks: (i) short text classification; and

(ii) short text topic modeling. While short text classification explores supervised learn-

ing and an objective view based on categorization of texts, short text topic modeling is

unsupervised and exploratory, giving a more general perspective of knowledge discov-

ery. As such, they are representatives of the supervised and unsupervised paradigms

in the machine learning research field.

In the light of the hypothesis and the machine learning tasks selected for investi-

gation, we highlight two issues that were the main drivers for the development of this

work:

Issue 1 – Word embedding-based representations for representing document vectors

for short text classification are still underexploited.

Literature reports works in document vector representation that are a natural

evolution of word vectors research. Le and Mikolov [2014] propose Paragraph Vector,

a method essentially similar to the learning of word vectors described in Mikolov et al.

[2013a], but that learns paragraph vectors instead. Rodrigues [2018] proposes the

bag of hyperwords representation, which incorporates word vector similarities and an

optimization for document classification.

A gap in this research area is the lack of exploration in literature of more obvious

and simpler mechanisms that combine word vectors to produce document vectors, such

as variations of linear composition, for example, linear combination weighted by TF-

IDF, or any other (user-defined) weighting function. More sophisticated algorithms

to find sub-optimal combination strategies (e.g. particle swarm optimization, genetic

algorithms and genetic programming) can also be applied and investigated. We report

contribution in this issue.
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Issue 2 – Traditional topic modeling is not appropriate for short text.

Due to the lack of context information in short documents in comparison with long

ones, traditional topic models when applied to short text tend to produce worse results.

A promising line of research is the investigation of short text expansion techniques for

topic modeling that makes use of word vectors. As the name suggests, text expansion

methods aims to increase the size of text, adding to it words ideally related to the

subjects it represents. Another promising line of research is the development of novel

short text probabilistic topic models that uses word embedding-based representations.

1.2 Objective

The objective of this thesis is to investigate novel methods for short text representation

based on word embeddings, focusing on short text classification and short text topic

modeling. To achieve this goal, the following research questions were derived from

issues presented in previous section:

Research Question 1 (RQ1) – Which are the most appropriate strategies for com-

bining word embeddings to produce representations for short text classification? (relates

to issue 1)

In this research line, we investigate strategies for derivation of document vec-

tor representation from word embeddings for short text classification. Metaheuristics

are used to perform combinatorial optimization of word vectors aiming to maximize

document classification accuracy.

Research Question 2 (RQ2) – Can we enhance short text topic modeling with word

embedding-based text expansion? (relates to issue 2)

In this research line, we explore the usage of word embeddings algebra for ex-

pansion of short text and generation of pseudo-documents. The idea is that larger

documents can produce more coherent topics than short documents.

Research Question 3 (RQ3) – Can we develop a competitive probabilistic short text

topic model with word embedding-based representations? (relates to issue 2)

In this research line, we undertake the development of a graph-based probabilistic

topic model for short text grounded on word embedding networks.
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1.3 Overview of the contributions

This thesis presents contributions in the fields of short text classification and short text

topic modeling, according to the research questions stated in Section 1.2. They are

listed below.

Definition of short text: The lack of consensus in the literature around a precise

definition of short text motivated us to create a particular definition based on a quan-

titative analysis of real world corpora. The study and the consequent definition are

presented in the early pages of Chapter 2.

Strategies for combining word embeddings for short text classification (RQ1):

We propose the PSO-WAWV (Particle Swarm Optimization + Weighted Average of

Word Vectors) model, which is designed to find sub-optimal weights in a weighted av-

erage of word vectors representation aiming to optimize short text classification. In

addition to PSO-WAWV, this research also investigates other arithmetical combina-

tions of word vectors. These contributions are presented in Chapter 4.

General framework for short text expansion (RQ2): This framework allows the

implementation of several strategies for the expansion of short text. This is achieved

by a general expansion algorithm parameterized by a metric space, which defines how

new pieces of text are added to the original documents. It is explained in Chapter 5

and provides the base algorithm for the specific implementations CoFE and DREx,

two other contributions of this thesis.

Co-Frequecy Expansion (CoFE) method (RQ2): The CoFE is a preliminary im-

plementation of the general expansion framework, designed for short text topic mod-

eling and based on the co-occurrence of words. It is presented in Chapter 5.

Distributed Representation Expansion (DREx) method (RQ2): The DREx

method is an implementation of the expansion framework the uses the semantic prop-

erties of word embeddings to create pseudo-documents for short text topic modeling.

It is explained in Chapter 5.

Vec2Graph representation (RQ3): Vec2Graph is a corpus representation model

that captures the patterns of semantic similarity of word embeddings in a word graph

structure. It is proposed in Chapter 6 and is the basis for the Vec2Graph Topic Model

(VGTM) method.
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Vec2Graph Topic Model (VGTM) (RQ3): The VGTM method is a graph-based

probabilistic short text topic model that explores the Vec2Graph structure to discover

topics. VGTM infers topics as overlapping communities in the word graph. The method

is presented in the Chapter 6.

1.4 Outline of the thesis

The thesis is organized as follows. Chapter 2 presents our definition of short text and

does a literature review of text representations, including word embedding models.

Chapter 3 introduces well established techniques for short text topic modeling. Chapter

4 address the RQ1, exploring short text vector representation strategies for document

classification on the basis of word embedding algebra and numeric optimization using

particle swarm optimization (PSO) (Zhang et al. [2015]). Chapter 5 addresses the RQ2,

proposing a framework for expansion of short text, as well as two of its implementations.

The first one, CoFE, expands short documents based on co-occurrence patterns of

words, while the last one, DREx, uses word embeddings to identify potential good

words for expansion. Following, Chapter 6 presents a novel probabilistic topic model

that uses a (also proposed) word vector network structure called Vec2Graph, addressing

the RQ3. Finally, Chapter 7 makes some conclusions and lists future work.
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Chapter 2

Short Text Representation

The majority of definitions for short text are based on the sparsity of the document-

term matrix (Pinto et al. [2011]). This cannot be considered a precise definition,

since longer pieces of text also have highly sparse document-term matrices, making

it difficult to use this single characteristic as the difference of short and long texts.

More importantly, how influential the sparsity of a document-term matrix is on the

performance of machine learning tasks, and, for short text, how sparse it has to be?

Although we do not present definitive answers for these questions, this chapter presents

a study that grounds our particular definition.

Following, the chapter does a background on general text representation and how

appropriate they are for short text. We will see that most approaches look for fixed-

length mathematical objects, namely real-valued vectors, aiming to capture syntactic

and semantic patterns in the level of words, sentences or longer pieces of text. It is

important to note that this allows not only the representation of unstructured text as

input feature vectors to machine learning algorithms, but also creates possibilities of

direct algebraic manipulation of the semantic properties represented.

2.1 Short text definition

2.1.1 Text Sparsity and Machine Learning Performance

The most adopted definition for short text in the literature is probably the one based

on the sparsity of the document-term matrix (Pinto et al. [2011]). Equation 2.1 defines

the sparsity of a document-term matrix DN×M , which is the proportion of zeros in the
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whole matrix.

sparsity(DN×M) =

∑N−1

i=0

∑M−1

j=0
[Di,j = 0]

N ×M
(2.1)

A matrix D is considered sparse if it has more zeros than other values, i.e.

sparsity(D) > 50%. However, according to this definition almost all actual text

datasets are sparse. For example, the 20 newsgroups dataset1, although considered

long, has a sparsity of 99.56%. In this thesis we work with a version of the 20 news-

groups dataset in which messages are trimmed to a maximum size of 20 words. This

adapted dataset has sparsity of 99.79%, just 0.23% of difference in comparison with

the long version. Despite this small difference, we experimentally observe significant

differences in the results of machine learning tasks, such as classification and topic

modeling, in favor of the longer version.

Table 2.1 shows the mean F1 score (5-fold cross validation) for the 20 newsgroups

long and short datasets using a TF-IDF representation and a tuned support vector

machine (SVM) for text classification. The bold value indicates that the long 20

newsgroups dataset produces the best results with statistical significance (Wilcoxon

signed-rank test with 95% of confidence).

Table 2.1: Mean F1 score for long and short versions of the 20 newsgroups classification
dataset. Bold values indicate statistically significant positive differences.

20news_long 20news_short

Mean F1 score: 0.7438022 0.6755164

Following, Table 2.2 compares the mean normalized pointwise mutual information

(NPMI) of topics (20, 50 and 100 topics) for the long and short versions of the 20

newsgroup datasets. Again we observe the best results for the long version when

compared with the short one.

When looking for the small difference in sparsity of long and short text datasets,

but a statistically significant difference on the performance of machine learning tasks,

we conclude that the relationship between sparsity and machine learning performance

may not be obvious.

Figure 2.1 shows the distribution of the number of documents per document

length (number of words) for the long version of the 20 Newsgroups dataset. This

histogram considers only documents with length up to 150 words, but we observe that

the majority of documents have length between 10 and 70 words.
1Available at: http://ana.cachopo.org/datasets-for-single-label-text-categorization

http://ana.cachopo.org/datasets-for-single-label-text-categorization
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We can observe how restrictions defined by context affect sentence length in the

Twitter statistics shown in Table 2.3. Twitter present shorter sentences than usual

long texts. However, the number of sentences in tweets remain similar to regular

paragraphs, with a median of 3 and an average of 3.21(±1.33) sentences per tweet.

This corroborates the compromise of using 3 as the number of sentences per short text.

According to the study above, we define short text as any piece of text shorter

than 51 words (3 sentences with an average of 17 words). This is also the criterion used

to characterize the datasets used in this thesis. Since this threshold can be redefined

according to different contexts, we propose a simple metric, shown in Equation 2.2,

which defines the smallness of a document d, of length |d|, relative to a threshold t.

smallness(d, t) =
t− |d|

t
(2.2)

According to Equation 2.2, a smallness equals to zero indicates a document with

size equals to the threshold; positive values, with a maximum of 1.0, indicate short

documents; negative values, without lower limit, indicate long documents4.

Characterization of the Datasets of the Experiments

The experiments reported in this thesis used a total of 9 (nine) datasets:

• 20 Newsgroups (20news) – A collection of messages from 20 public newsgroups.

Experiments were carried out only with short messages of up to 19 words, as

suggested by Nguyen et al. [2015]5.

• Tweets Sanders (Sanders) – A Twitter sentiment corpus related to companies

Apple, Google, Microsoft and Twitter.

• Web Snippets (Snippets) – A sample dataset with summaries of documents (snip-

pets) related to eight subjects, retrieved from queries on a search engine (Phan

et al. [2008]).

• Tag My News (TMN) – English RSS news from seven different categories. In

the short text experiments, only titles were considered, according to Vitale et al.

[2012].
4Note that there is a upper limit because the shortest document cannot be shorter than zero, but

no lower limit, since documents can be arbitrarily long.
5At the time of the experimentation we had not yet elaborated our definition of short text.
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• Tweets NBA (NBA) – A Twitter dataset collected in August 2015 about the

NBA teams Golden State Warrios (hashtag #warriors) and Los Angeles Lakers

(#lakers)6.

• Tweets Politics (Politics) – A Twitter dataset collected in August 2015 about the

political parties Democrats (hashtag #democrats) and Republicans (#republi-

cans)6.

• CLEF 2012 Tweet Contextualization (CLEF) – Collection of tweets from informa-

tive accounts (e.g. CNN)7, created for the INEX 2012 Tweet Contextualization

track at CLEF conference.

• SERPRO Courses’ Objectives (Courses) – Real-world collection of Portuguese

texts describing the objectives of 1,706 courses conducted by the Serviço Federal

de Processamento de Dados (SERPRO), a Brazilian Federal Government com-

pany. The courses are offered to employees and customers and are related to 25

categories of business subjects. In the short text experiments, texts were trimmed

to have up to 51 words.

• SERPRO Customer Service Messages (Customers) – Real-world messages in Por-

tuguese received by a customer service at SERPRO. The dataset is anonymized8

and consists on 17,438 texts obtained by phone call transcription or directly

through e-mail and Web form. Messages are related to a business domain and

are mapped to 13 categories of technical service attendance group. In the short

text experiments, texts were trimmed to have up to 51 words.

Note that documents in the 20news, TMN, Courses and Customers datasets were

shorten for the experiments of this thesis. Table 2.4 shows, among other characteristics,

the smallness of the original datasets (not shortened). Sanders, Snippets, TMN, NBA,

Politics and CLEF datasets are natural short text datasets according to our short text

definition, i.e. all documents with less than 51 words. If we consider the average

smallness, this list also includes the Courses and Customers datasets. The 20news

dataset has very large documents (maximum length of 5,551 words), with negative

average smallness and a very low value of minimum smallness (-107.84).

In our experiments we consider only the titles of the messages from the TMN

dataset, instead of the whole (short text) document. Even though the Courses and
6Available at: http://www.github.com/gabrielmip/st-topic-modeling.
7Available at: http://inex.mmci.uni-saarland.de/data/documentcollection.html#qa
8No information about people or organizations.

http://www.github.com/gabrielmip/st-topic-modeling
http://inex.mmci.uni-saarland.de/data/documentcollection.html#qa
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Table 2.4: Characterization of the datasets used in the experiments of this thesis (not
shortened), regarding the number of documents, document length and smallness.

Dataset #Docs Avg doc len
Min-max
doc len

Avg smallness
Min-max
smallness

20news 18768 102.69 (± 210.00) [2, 5551] -1.01 (± 4.12) [-107.84, 0.96]

Sanders 3770 6.14 (± 2.67) [2, 16] 0.88 (± 0.05) [0.69, 0.96]

Snippets 12117 14.34 (± 4.42) [2, 37] 0.72 (± 0.09) [0.27, 0.96]

TMN 31447 17.99 (± 5.06) [2, 46] 0.65 (± 0.10) [0.10, 0.96]

NBA 70707 8.58 (± 3.01) [2, 18] 0.83 (± 0.06) [0.65, 0.96]

Politics 70712 8.08 (± 2.56) [2, 20] 0.84 (± 0.05) [0.61, 0.96]

CLEF 1001 6.31 (± 2.81) [2, 17] 0.88 (± 0.06) [0.67, 0.96]

Courses 1706 17.65 (± 12.65) [2, 90] 0.65 (± 0.25) [-0.76, 0.96]

Customers 17438 45.65 (± 52.44) [4, 396] 0.10 (± 1.03) [-6.76, 0.92]

Customers datasets are short on average (0.65 and 0.10, respectively), for the exper-

iments we trimmed the documents that exceeds the length threshold (in our case, 51

words). For the 20news dataset we applied a stronger pruning, limiting the documents

to a maximum of 19 words, resulting in 1,723 documents. The datasets with documents

of reduced size are characterized in the Table 2.5.

Table 2.5: Characterization of the datasets with shortened documents, regarding the
number of documents, document length and smallness.

Dataset #Docs Avg doc len
Min-max
doc len

Avg smallness
Min-max
smallness

20news (trimmed) 1723 8.17 (± 3.52) [2, 19] 0.84 (± 0.07) [0.63, 0.96]

TMN (title) 30376 4.94 (± 1.51) [2, 16] 0.90 (± 0.03) [0.69, 0.96]

Courses (trimmed) 1706 17.26 (± 11.23) [2, 51] 0.66 (± 0.22) [0.00, 0.96]

Customers (trimmed) 17438 30.13 (± 15.35) [4, 51] 0.41 (± 0.30) [0.00, 0.92]

2.2 Overview of models for text representation

Text mining and natural language processing (NLP) techniques are highly dependent

on the way text is represented. For short text – a scenario characterized by low avail-



38

ability of contextual information – the expressiveness of the chosen representation is

particularly important.

Among the classic document representation models, regardless of whether they

have been used for representing long or short text, we highlight three. The first one is

the simplified bag of words (BoW) binary model, initially proposed as an solution to

the problem of indexing terms and documents for information retrieval (Salton et al.

[1975]). The BoW representation creates a document-term matrix that indicates which

words appear in each document. The second classic representation model is the term

frequency (TF) model, a variation of the BoW model that represents documents as

quantizations over the vocabulary. Instead of producing a binary matrix, which is a

simple indication of presence or absence of terms in documents, TF gives the frequency

of each term in each document. Finally, the third classic text representation model is

the term frequecy–inverse document frequency (TF-IDF), which besides considering the

frequency of terms in the documents also considers the rarity of terms in the corpus.

TF-IDF is still a widely used text representation model9, usually working as input for

a variety of machine learning models. For short text, TF-IDF turns out to be a more

expressive and appropriate model, because it considers the rarity of terms in the corpus.

TF information, in contrast, is maybe insufficient to make words discriminative in text

in which almost all words have low frequency.

Document-tem matrices are in general large and sparse. This is due to the poten-

tially large number of documents and terms in a corpus. Therefore, the likelihood of

any word appearing in any document is, a priori, very low. Matrix-decomposition-based

methods (Kishore Kumar and Schneider [2017]) have been applied in text representa-

tion with the objective of obtaining compact versions of document-term matrices, while

trying to preserve variational information. A very used technique for this kind of rep-

resentation is latent semantic indexing (LSI)10, which obtains low-rank representations

(i.e. representations derived from low-rank approximations) for documents by apply-

ing the singular value decomposition (SVD) transformation to document-term matrices

(Manning et al. [2008]). Another technique is non-negative matrix factorization (NMF),

a matrix decomposition method that meets the property of, given a non-negative ma-

trix, producing two other non-negative matrices (Xu et al. [2003]; Wang et al. [2012]).

This property is especially interesting for applications where natural interpretation

of data is non-negative (Schmidt et al. [2007]; Burkholder and van Antwerp [2013]),

and generates more easily auditable matrices. Very sparse document-term matrices
9Beel et al. [2016] reports that TF-IDF was the most used weighting scheme in recommender

systems until 2016 (the publication date of the report).
10Also known as latent semantic analysis (LSA).
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(usual in short text), when used with distance-based methods, can produce bad results

because of the curse of dimensionality (Houle et al. [2010]). Matrix decomposition

methods also help reducing this sparsity with low rank approximations.

Topic models have also been used for text representation. This is the case of

latent Dirichlet allocation (LDA) (Blei et al. [2003]), in which documents are described

as distributions of probabilities over discovered topics in the corpus. LDA is further

explained in Chapter 3. Topic models like LDA depend on the high frequency of

occurrence of words in documents to be effective for discovering topics, and therefore

are not recommended for short text corpora (Tang et al. [2014]).

In recent years a lot of progress has been made in the area of vector represen-

tation of words (Mikolov et al. [2013b]; Pennington et al. [2014]). Word vectors, or

embeddings, were conceived to capture semantics of words by coding each term and its

context – an important component for assigning meaning to it – in a real vector-space

embedding. Therefore, by incorporating context information to the representation,

word vectors can help to enhance the quality of statistical and machine learning meth-

ods when applied to short text.

This thesis reports works that extensively use word embeddings for document

representation and, mainly, short text topic modeling. The next section provides more

details about the field and models used in the contributions of this thesis.

2.3 Word embedding representations

2.3.1 Related work

The literature reports many works that, directly or not, propose vector models for

words. Although there are earlier works that marginally contributed to the research

field (see for example Deerwester et al. [1990], Schütze [1993], Bellegarda [1997]), the

work with neural language models of Bengio et al. [2003] is considered the seminal,

because it explicitly addresses the problem. In that work, the authors suggest that

improvements in representation quality are achieved by jointly learning word vectors

with the subjacent language model. The generalized alternative name “distributed

representation of words” for word vectors also came from Bengio et al. [2003], though

strictly it is only suitable for connectionist models (i.e. neural networks), in which the

expression “distributed representation” is frequently used. Resultant word vectors of

Bengio et al. [2003] have been successfully applied in other domains to improve NLP

tasks (Turney and Pantel [2010]; Turian et al. [2010]), evidencing the importance of

vector representation of words and text in general.
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The last decade11 was particularly intense in this research field. Next we briefly

explain some of the most cited methods in this period.

Collobert and Weston [2008] (CW) – This work presents a convolutional neural

network architecture based on the seminal work of Bengio et al. [2003] and inspired

by the convolutional characteristics of the LeNet architecture (LeCun et al. [1998]).

The objective is to jointly train a bunch of NLP tasks, such as POS tagging, chunking

(parsing), NER, semantic role labeling (SRL), prediction of semantically related words

and a language model. The architecture is considered a deep neural network, since its

output, i.e. features over sentences, can be stacked with subsequent models to produce

higher level features.

Hierarchical Log-Bilinear Model (HLBL) – Mnih and Hinton [2009] propose a

neural probabilistic language model, the HLBL model, which extends the previous work

of Morin and Bengio [2005]. This latter work is an evolution of Bengio et al. [2003],

and learns word embeddings in order to achieve smoothed representations of words

and contexts to relieve the effects of high sparsity (large vocabularies). It proposes a

hierarchical binary decomposition of the language model probabilities based on prior

knowledge from the WordNet “IS-A” hierarchy. The objective of the HLBL model is

to replace the expert knowledge constraints extracted from the WordNet taxonomy to

produce a binary tree only from training data.

Multi-Prototype Neural Language Model (MPNLM) – MPNLM (Huang et al.

[2012]) approaches the important problem of homonymy and polysemy by learning

multiple vectors per word considering both local and global contexts.

Hellinger PCA (HPCA) – Lebret and Collobert [2013] propose a simplified method

for generating word vectors that consists on applying principal component analysis

(PCA) (Wold et al. [1987]) over a word co-occurrence matrix as an alternative to

previously described NNLM models, which are more complex and costly to train.

Morphologically-aware word representations (morphoRNN) – Luong et al. [2013]

address the problem of poor estimation of word vectors for rare words, proposing a

method that combines recursive neural networks (RNN) and NNLM and builds vector

representations from word morphemes.
11Period of 2008 to 2018.
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Recurrent neural network language model (RNNLM) – Mikolov et al. [2013d]

explores words vector representations that are learned by the input layer of a RNN. It

demonstrates that not only word vectors capture the concept of similarity among words,

but also other important linguistic regularities, such as the relationships of genre (male-

female) and quantity (singular-plural). Relationship regularities are discovered through

a simple vector offset method based on cosine distance. For example, one can observe

that v(“apples”)− v(“apple”) ≈ v(“cars”)− v(“car”) ≈ v(“mice”)− v(“mouse”) and that

this (approximately) same resultant vector captures the singular-plural relationship.

The RNNLM model is the basis for the continuous bag-of-words (CBOW) and Skip-

Gram models explained, with more detail, in the next section, as they will be explored

in this thesis.

2.3.2 Continuous Bag of Words

The continuous bag of words (CBOW) model is one of two the artificial neural network

(ANN) archictectures proposed in Mikolov et al. [2013a]. The second architecture the

Skip-gram (SG), which will be explained in next section. Implementations of these

models became known by the machine learning community as word2vec.

Word2vec models are an evolution of the RNN model of Mikolov et al. [2013d],

eliminating the complexity of the non-linear neuron at the hidden layer, transforming

it in a projection layer that performs a weighted sum of inputs, without activation

function. The CBOW architecture is illustrated in Figure 2.4.

The objective of the network is to model a classification task, especifically to infer

a missing word in a given context of size C. The context is made of a set of words,

except the target missing word, and because the order of words in the context is not

relevant, the model is named “bag of words”. Notice this mapping makes possible to

transform any text corpus into a training dataset for classification.

The input of the model are C one-hot encoding vectors of size V (the vocabulary

size), one for each word in the context (x1, x2, · · · , xC). The desired output is an one-hot

enconding vector of size V representing the target missing word, with the actual output

being a multinomial distribution achieved by a softmax regression function. Though

replicated in the ilustration of Figure 2.4, a unique WV×d weights matrix is shared

among all 1-of-V input vectors. Therefore, the size of word vectors, d, is regulated by

the number of units on the hidden (or projection) layer. They are extracted from the

WV×d weight matrix, after training, one vector by row. The output of the hidden layer

is a simple mean of correspondent on/off vectors in WV×d.

Parameters are learned through backpropagation and stochastic gradient descent.
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Figure 2.4: CBOW neural network architecture.

Performance is optimized by using hierarchical softmax and negative sampling (Mikolov

et al. [2013a]).

Vectors can be qualitatively evaluated considering different kinds of relationships

between pairs of words. For example, while it is natural to think of “Brazil” as similar

to “Argentina” (both are countries), it is also intuitive that there is some similarity-

based relationship between pairs of words like “car” and “cars”, or “large” and “largest”.

Mikolov et al. [2013a] propose a general similarity task which answers questions like

“Which word is similar to house in the same sense that cars is similar to car?”. As word

vectors are expected to be semantically consistent with simple algebric operations,

such as sum and subtraction, the same example question can be formulated as X =

vector(“cars”)−vector(“car”)+vector(“house”). Because the probability of X being

the exact representation of “houses” is very small, the closest vector to X is retrieved.

2.3.3 Skip-Gram

The SG model is an ANN whose architecture is shown in Figure 2.5. Its objective is to

learn the opposite task of CBOW, that is, given a word, infer its surrounding context

of it. Therefore, the input of the model is a word x (one-hot encoding of size V , the

vocabulary size) and the output is a set of words (each word one-hot encoded) within

a context window of size C (y1, y2, · · · , yC).

All words in the output layer share the W ′
d×V weight matrix and produce a multi-
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Figure 2.5: SG neural network architecture.

nomial distribution using a softmax function. Word vectors of size d (parameter, and

the size of the hidden layer) are extracted from the WV×d weight matrix, one vector

by row. As in CBOW, parameters are learned through backpropagation and stochas-

tic gradient descent, and performance is optimized by using hierarchical softmax and

negative sampling (Mikolov et al. [2013a]).

2.3.4 Global Vectors

Pennington et al. [2014] presents a taxonomy that discriminate two categories of meth-

ods for generating word vectors: those based on matrix factorization and those based

on local context windows. Methods like LSI and HPCA are in the matrix factorization

category. On the other hand, word2vec methods (CBOW and SG) (Mikolov et al.

[2013a]), which define context windows of size C, are in the second category. The au-

thors then propose the Global Vectors (GloVe) method, which contains elements from

both categories.

Let X be the co-occurrence matrix for the whole corpora. Xi,j is the frequency

in which the word j co-occurs with the word i in the same observation window. Let

Xi =
∑

k Xi,k be the total frequency of the word i, or the frequency in which any word

co-occurs in the context of i. Therefore, Pi,j = P (j|i) = Xi,j/Xi is the probability of

word j appear in the context of word i.

The GloVe model is fundamented on the concept of similarity between words i
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and j given the context word k. This similarity is captured by the ratio Pi,k/Pj,k.

Let wi, wj and w′
k be the vector representation of word i, j k, respectively, where

wi, wj, w
′
k ∈ R

d and d is the dimensionality of words and context vectors. Equation 2.3

hypothesizes that there is a function F over vectors which is proportional to Pi,k/Pj,k.

F (wi, wj, w
′
k) = Pi,k/Pj,k (2.3)

The parameters to be learned are the vectors. Restrictions over F impose a way

of combining wi, wj and w′k, considering the linearity of the vector space structure.

Linear combination of parameters is represented by Equation 2.4.

F ((wi − wj)
T · w′

k) = Pi,k/Pj,k (2.4)

Symmetry between word vectors and context word vectors are partially restored

by stating that F is a homomorphism between groups (R,+) and (R>0,×) (equations

2.5 and 2.6).

F ((wi − wj)
T · w′

k) = F (wT
i · w

′
k)/F (wT

j · w
′
k) (2.5)

F (wT
i · w

′
k) = Pi,k = Xi,k/Xi. (2.6)

The solution to equation 2.5 is F = exp. The implication of this over equation 2.6

is shown by equation 2.7.

wT
i · w

′
k = log(Pi,k) = log(Xi,k)− log(Xi) (2.7)

In equation 2.8 log(Xi) is absorbed by a bias bi and symmetry between words

and context vectors is finally restored by adding a bias b′k.

wT
i · w

′
k + bi + b′k = log(Xi,k) (2.8)

Equation 2.8 produces a cost function Y (equation 2.9) to be minimized through

weighted least squares (AdaGrad algorithm).

Y =
V∑

i,j=1

f(Xi,j)(w
T
i · w

′
k + bi + b′k − log(Xi,k)) (2.9)

The function f(Xi,j) in equation 2.9 alleviates the effects of extreme values of

Xi,j, and it is defined by equation 2.10. This function obeys the following properties:

(i) f(0) = 0; (ii) f(x) is not decreasing, avoiding overweighting of rare co-occurrences;
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(iii) f(x) is relatively small for large values of x, avoiding overweighting of very frequent

co-occurrences.

f(x) =

{
(x/xmax)

α if x < xmax

1 otherwise
(2.10)

It is important to clarify that although GloVe obtains the best results when

compared to other state-of-the-art methods (SG and CBOW), the computational cost of

training GloVe word vectors is much higher, specialy because it includes the generation

of the full co-occurrence matrix X for the corpus.

2.3.5 Extensions of word embedding representations

This section presents two extensions of word embedding models for document repre-

sention, namely, Paragraph Vector (PV) and Bag of Hyperwords (BOHW).

Paragraph Vector

Le and Mikolov [2014] present Paragraph Vector (PV), an extension of Mikolov et al.

[2013a] that aims to learn continuous vector representations for longer pieces of text,

such as paragraphs or entire documents.

The paragraph vectors are parameters (weights) to be learned by a neural network

and used as predictors of words in the paragraph. They eventually capture semantics,

in the same way as word vectors, as a side effect of the prediction task. The authors

propose two variations of the method, PV-DM and PV-DBOW, as explained below.

The Distributed Memory of PV (PV-DM) is designed similarly to the Word2Vec

CBOW model, i.e. C − 1 word vectors of a context of size C and the corresponding

paragraph vector are learned in the task of predicting the next context word. The

context size C, as well the paragraph vectors size d, are user-defined parameters. The

model is illustrated in Figure 2.6.

Each paragraph is associated with a unique vector in the matrix W 1

|D|×d, where D

is the set of paragraphs, or documents. The hidden layer simply average or concatenate

the paragraph and word vectors (matrix W|D|×d). Compared to CBOW, a paragrah

vector can be seen as another word vector. All parameters of the network are learned

using stochastic gradient descent with backpropagation.

The matrix W 1

|D|×d, after training, contains a vector for each paragraph in the

training set. The inference step for unseen paragraphs is also performed using stochastic

gradient descent and backpropagation, but fixing all previously learned weights and
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Figure 2.6: Ilustration of the PV-DM model. Both paragraph and word vectors are
used as predictors for the next word of the context.

adjusting the weights for the new paragraphs. These new paragraphs temporarily

becomes new columns added to W 1.

The alternative PV model is the Distributed Bag of Word of Paragraph Vectors

(PV-DBOW), which has a design similar to the Word2Vec SG model. In PV-DBOW,

only the paragraph vector is used as a predictor to the C (context size) randomly

sampled words picked from the paragraph. Therefore, no words order is considered.

The model is ilustrated in Figure 2.7

The PV-DBOW is simpler and has less spatial complexity than PV-DM. The

authors suggest to use a concatenation of PV-DM and PV-DBOW to represent docu-

ments, arguing that this combination produces the best results in general.

Bag of Hyperwords

The bag of hyperwords (BOHW) model (Rodrigues [2018]) brings together elements of

the TF-IDF and word embedding representations. A hyperword ht = (w1, w2, . . . , w|V |)
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Figure 2.7: Ilustration of the PV-DBOW model. Paragraph vectors are used as pre-
dictors for C randomly sample words from the paragraph.

for a term t is a similarity vector of size |V |. Each i-th element of this vector is the

cosine similarity s(v(t), v(ti)), where v(t) and v(ti) are word vector representations of

t and ti, respectively, and ti ∈ V . There is a threshold α, below which values of s are

0 (zero). In other words, ht is a semantically enriched version of the one-hot-encoding

representation of t. The word vector model and α are parameters.

BOHW is based on the TF-IDF representation for documents, but instead of

words in V it uses the set of all hyperwords, H = {ht : t ∈ V }. The TF-IDF of a

hyperword ht in a document d is calculated according to Equation 2.11.

tf-idf(ht, d) = tf(ht, d) idf(ht) (2.11)

The TF of a hyperword ht in d is defined as follows:

tf(ht, d) =
∑

1≤i≤|V |

tf’(ti, d) wi

where tf’(t, d) is the classic TF, i.e. the frequency of term t in d, and wi is the

similarity between v(t) and v(ti).
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The IDF of ht is calculated according to Equation 2.12.

idf(ht) = log
|D|

∑

1≤d≤|D| µht,d

(2.12)

where µht,d is the mean of values of weights in the hyperword ht that occur in hyper-

words of d, Vd,ht
, as follows:

µ(ht, d) =
1

|Vd,ht
|

∑

ti∈Vd,ht

wi

For classification datasets (i.e. labeled datasets), the value of α can be optimized

to make hyperwords more discriminate regarding categories. This is important because

a general value of α for all hyperwords cannot deal with different degrees of generality

of related concepts in a same hyperword. Therefore, BOHW implements a dynamic

alpha selection mechanism based on mutual information.

Some of the calculated hyperwords can contain very similar hyperwords. The

BOHW algorithm defines a β parameter that defines the maximum degree of similarity

between two hyperwords to not merge them. When merging occurs, the final hyperword

is the mean vector of both hyperwords.

The BOHW method has a strong relationship with the CluWords representation

proposed by Viegas et al. [2019]. Since we are using CluWords for short text topic

modeling, this method is explained in Chapter 3.
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Chapter 3

Short Text Topic Modeling

Topic models are a class of statistical and machine learning models used in the discovery

of latent semantic patterns, the topics, in collections of documents (Alghamdi and

Alfalqi [2015]). Learned topics are often described as weights for words in the corpus

vocabulary, and documents as weights of topics. The statistical foundation of the

majority of the topic modeling techniques is the counting of word co-occurrence in

documents. It turns out that, in short texts, this count is hampered due the scarce

context for words. Therefore, short text-specific topic models have been proposed.

Short text topic models are basically organized in two major groups: (i) proba-

bilistic graphical models, usually extensions of LDA; and (ii) methods that create larger

pseudo-documents from the original short ones. There are also hybrid methods, i.e.

models that have elements from both categories i and ii, such as the self-aggregation

based topic model (SATM) (Quan et al. [2015]), which aggregates short text based

on topics during the topic inference process in a LDA-based probabilistic graphical

model, and pseudo-document-based topic model (PTM) (Zuo et al. [2016a]), where

pseudo-documents are latent variables in the probabilistic graphical model. Regardless

of their type, some of the methods detailed in this chapter incorporate word embed-

dings into their formulation to take advantage of the context captured by these word

representations.

Literature reports other topic models that have been applied or can be useful to

short text. Chen and Liu [2014] propose the Lifelong Topic Model (LTM), a lifelong

learning algorithm (Thrun [1998]) for topic modeling which dynamically explores prior

knowledge to increase the coherence of inferred topics. LTM iterativelly explore topical

data from several domains and identifies similarities among the topics discovered, an

information that is used to improve their coherence. In the reference paper, LTM was

applied to 50 domains of product reviews.
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Das et al. [2015] proposes the Gaussian LDA method, which incorporates word

vectors into the LDA topic model by modeling each document as a sequence of word

embeddings. Although the method was not proposed to overcome the problem of

little context in short text, the incorporation of word embeddings adds prior context

knowledge that could be useful in this scenario.

Qiang et al. [2017] present the Embedding-based Topic Model (ETM), which also

considers word embeddings to overcome the little word-word co-occurrence in short

texts. Word embeddings generated from an external large corpus are used to create

clusters of short texts, i.e. pseudo-documents. Next, latent topics are inferred using a

Markov Random Field Regularized (MRF) model (Xie et al. [2015]), which increases

the probability of semantically related words to be assigned to the same topic. A

very similar approach is proposed by Gao et al. [2019] recently, which presents the

Conditional Random Field regularized Topic Model (CRFTM).

Shi et al. [2017] proposes a method that, instead of using pre-trained word vectors

to enhance topic modeling, it learns both word embeddings and the topic model. The

method, named skip-gram topical word embedding, can generate topic-specific word

embeddings, dealing with the problem of polysemy, at the same time it is capable of

generating coherent topics.

The Topic Memory Networks (TMN) method (Zeng et al. [2018]) aims to improve

quality of short text classification by jointly learning topic models. The method does

not use any external knowledge and is based on a neural topic model (Miao et al.

[2017]) and a proposed class-sensitive topic memory mechanism. The reference paper

mainly reports results on short text classification, but also topic modeling.

Chen et al. [2019] present the Knowledge-guided Non-negative Matrix Factoriza-

tion (KGNMF) method, designed to use a word-word semantic graph as regularizer for

a low-rank approximation produced by NMF over short texts.

Li et al. [2019] proposes the Relational Biterm Topic Model (R-BTM) as an

extension of the Biterm Topic Model (BTM) (see section 3.1.2) that links short texts

with similar words. The similarity between pairs of words are inferred using word

vector cosine similarity.

3.1 Probabilistic graphical models

The work of Blei et al. [2003] is considered seminal in the topic modeling field. The

authors presented latent Dirichlet allocation (LDA), a Bayesian network that imple-

ments a probabilistic generative model for document writing. After LDA, probabilistic
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graphical models became very influential. Although it was initially proposed to deal

with longer texts, LDA is the basis for many other methods with characteristics that

suit better for short text.

Among the probabilistic graphical topic models for short text, we highlight the

Dirichlet mixture model (DMM) (Yin and Wang [2014]), a simplification of LDA that

considers only one topic per document, the biterm topic model (BTM) (Yan et al.

[2013]), which creates distributions of topics per biterms (pairs of words in the same

short context) instead of individual words, the latent feature LDA (LF-LDA) (Nguyen

et al. [2015]), which incorporates word embeddings into a LDA-based probabilistic

graphical model and the generalized Pólya urn Dirichlet mixture model (GPU-DMM)

(Li et al. [2016]), an extension of DMM that includes word embeddings into the Gibbs

sampling process. This section first introduces LDA and then discusses BTM, LF-LDA

and GPU-DMM.

3.1.1 Latent Dirichlet Allocation

Blei et al. (Blei et al. [2003]) formalized a generative probabilistic technique especially

designed to discover topics in corpora, the latent Dirichlet allocation (LDA) method.

LDA is a probabilistic graphical model, in this case a Bayesian network that assumes

a generative process of document writing, as follows.

Suppose there are latent topics in the mind of a writer (e.g. politics and technol-

ogy) that guide the process of writing documents. A particular document is understood

as a probabilistic mixture of topics (e.g. 65% of chance for politics and 35% for tech-

nology). Each topic, in turn, is represented as a probabilistic mixture of words in the

vocabulary. For example, the word “government” has a higher probability to belong to

the topic politics than the word “software”, which has a higher probability of belonging

to the topic technology.

In LDA, a document of size N is assumed to be written following a particular

Dirichlet distribution over K topics. Each topic is probabilistic selected from this

distribution. Vocabulary words for a selected topic are also probabilistic sampled from

the distribution. This process is repeated until N words are selected and the document

is complete.

The generative process described above is clearly an oversimplification of the

process of document writing, since the real process is much more complex. Given a

set of documents, and assuming they were generated using the aforementioned process,

LDA learns to infer the original set of topics (latent variables) from the observed words

in documents (visible variables).
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The LDA Bayesian inference model is shown in plate notation1 in Figure 3.1. The

variable |D| indicates the collection size (number of documents), N is the size of each

document (number of terms) and K the number of topics. The only visible variable

(with gray background) is T , the terms in documents. The variable α is a positive real

parameter, the a priori Dirichlet probability distribution of topics per document, which

usually is the same for all topics and controls the sparsity of the posterior distribution.

Especifically, high values of α tend to produce less discriminative distribution of topics

per document. The role of the variable β is similar to the one of α, but it controls the

sparsity of the posterior distribution of words per topic. High values of β produce less

discriminative distribution of words per topic. Parameters α and β can be estimated

using Minka’s fixed point iteration technique (Minka [2000]).

Figure 3.1: LDA probabilistic graphical model in plate notation.

Following with the plate model representation, variable ϕk is the posterior dis-

tribution of vocabulary words for topic k, for k = 1...K. Variable θm is the posterior

distribution of topics for document m, for m = 1...|D|. Finally, variable Zmn is the

selected topic for document m and word n, for n = 1...N .

The inference problem of LDA is to calculate the posterior distribution of latent

variables θ, Z and ϕ, according to equation 3.1.

p(θ, Z, ϕ | T, α, β) =
p(θ, Z, ϕ, T | α, β)

p(T | α, β)
(3.1)

Since calculating this probability distribution is computationally expensive, ap-

proximation methods are considered. Blei et al. [2003] use variational inference (Beal

[2003]). Griffiths and Steyvers [2004] use a Markov Chain Monte Carlo (MCMC)

method known as Gibbs sampling (Geman and Geman [1984]). Another alternative
1The plate notation for Bayesian models allows the compact representation of wide networks by

expressing repetition structures only once.
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is to use expectation propagation (Minka and Lafferty [2002]). The inference method

most popular in the literature is the Gibbs sampling.

Although LDA is a powerful method to deal with longer documents, it presents

some difficulties for dealing with short text. This is mainly due to the limited context

available in short text documents, which produces low frequency of word co-occurrence.

The next section presents the BTM model, which tries to circumvent this problem by

aggregating terms.

3.1.2 Biterm Topic Model

Biterm topic model (BTM) (Yan et al. [2013]) tackles the sparsity problem by explicitly

incorporating into the probabilistic graphical model the patterns of co-ocurrence of

words in documents. When doing this, it ignores the boundaries imposed by document

modeling, considering co-occurrences in the whole corpus. While other probabilistic

topic models also implicitly capture this notion of word co-occurrence in the learning

process through statistical inference, BTM explicitly includes the biterms in the model.

Bitems are pairs of words that co-occur in the same document2. They are repre-

sented in the graphical model of Figure 3.2 as the pair of variables T . Notice that the

BTM graphical model is similar to LDA, except that there is no plate for documents

and that probabilities are inferred for biterms instead of individual words. This is con-

venient for overcoming the sparsity problem, but the posterior probabilities of topics

per document have to be derived after the learning process. Specifically, the proportion

of topics for a document is inferred from the proportion of topics for the biterms of the

document. The generative process of BTM is described in Algorithm 1. Observe that

there is only one distribution of probability of topics for the whole corpus (line 4) and

that, different from LDA, biterms are drawn instead of single words (line 7).

Algorithm 1 BTM generative process

Require: α, β,D ⊲ Dirichlet priors and corpus
1: Initialize Z ⊲ Topics
2: for z ∈ Z do

3: ϕz ∼ Dir(β) ⊲ Multinomial distribution over the vocabulary

4: θ ∼ Dir(α) ⊲ Multinomial distribution over the topics for the whole corpus
5: for i, j ∈ D do ⊲ Biterms in the corpus
6: Zij ∼Multinomial(θ) ⊲ Draw a topic
7: Ti, Tj ∼Multinomial(ϕz) ⊲ Draw words

2Do not confuse with bigrams, which are pairs of words that co-occur sequentially in the same
document. Bigrams are biterms, but not the other way round.
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Figure 3.2: BTM probabilistic graphical model.

3.1.3 Latent Feature LDA

Nguyen et al. [2015] proposed an extension of LDA, the latent feature LDA (LF-LDA)3,

which incorporates knowledge from word vectors to the graphical model to give more

density to word semantics.

Figure 3.3 shows the probabilistic graphical model of LF-LDA. Notice that it is

largely similar to LDA, except for the relationship between topics and words variables.

The new variables τ and ω represent matrices of latent features weights for topics and

words, respectively. The probability of LF-LDA generating a word w is a categorical

distribution4 over τt·ω
T, according to Equation 3.2. The product τt·ω

T can be inter-

preted as a vector of scores indexed by words. The variable ω is visible and fixed,

because LF-LDA uses pre-trained word vectors.

Figure 3.3: LF-LDA probabilistic graphical model.

CatE(w | τt·ω
T) =

exp(τt·ωw)
∑

w′∈V exp(τt·ωw′)
(3.2)

3The expression latent feature vectors are also used as a synonym of word vectors.
4A categorical distribution is the multinomial version of the Bernoulli distribution.
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The parameter λ is the probability of a word being generated by word and topic

vectors, instead of the traditional inference of LDA. The generative process of LF-LDA

is described in Algorithm 2.

Algorithm 2 LF-LDA generative process

Require: α, β, λ,D, ω ⊲ Priors, corpus and word vectors matrix
1: Initialize Z ⊲ Topics
2: Initialize τ ⊲ Topic vectors
3: for z ∈ Z do

4: ϕz ∼ Dir(β) ⊲ Multinomial distribution over the vocabulary

5: for d ∈ D do

6: θd ∼ Dir(α) ⊲ Multinomial distribution over the topics
7: for w ∈ d do ⊲ Future words in d
8: Sd,w ∼ Ber(λ) ⊲ Binary switch (0 or 1)
9: Zd,w ∼ Cat(θd) ⊲ Draw a topic

10: Td,w ∼ (1− Sd,w)Cat(ϕZd,w
) + Sd,wCatE(τZd,w

ωT) ⊲ Draw a word

Gibbs sampling is used as the inference method. After each Gibbs sampling

iteration, the topic vectors τ are estimated using regularized maximum a posteriori

(MAP) likelihood.

3.1.4 GPU-DMM

Li et al. [2016] propose an extension of the DMM model (Yin and Wang [2014]) that

uses an external auxiliary set of word embeddings to find semantically related words

in the Gibbs sampling process. The DMM model is similar to LDA, but it assumes

only one topic per document, according to the probabilistic graphical model shown in

Figure 3.4. The variable d represents the observed document.

Figure 3.4: DMM probabilistic graphical model.

The GPU-DMM process is illustrated in Figure 3.5. For each document, after the

topic inference process in the Gibbs sampling (Word Filtering phase), the generalized

Pólya urn (GPU) algorithm (Mahmoud [2008]) promotes, for the selected topic, the
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3.2.1 Self-term expansion

Pinto et al. [2011] propose the self-term expansion (STE) method, originally for short

document clustering in narrow domains (i.e. domains whose documents have a high

vocabulary overlapping). Posteriorly STE was adapted for topic modeling in Bicalho

et al. [2017].

STE first calculates a correlation score for each pair of words in the corpus. The

authors argue that this score may be any metric based on co-occurrence of terms,

so they used pointwise mutual information (PMI), an information theory-based co-

occurrence metric defined in Equation 3.3. In the equation, P (titj) is the number of

times terms ti and tj appear together in the same context (in this case, the document),

and P (t) is the number of times term t appears alone.

PMI(ti, tj) = log
2

P (titj)

P (ti)P (tj)
(3.3)

This correlation score produces a co-occurrence list, used to expand the docu-

ments. The procedure is simple, and consists of concatenating each term of a docu-

ment with its corresponding set of co-related terms. Correlated terms for each word

are defined through a term selection technique. The authors suggest three techniques:

(i) document frequency – the number of documents the term appears; (ii) term strength

(Pekar et al. [2004]) – the consistency of a term appearing in similar documents; and

(iii) transition point (Pinto et al. [2006]). The threshold used for selecting words is a

percentage of the vocabulary, which the authors vary from 10% to 90%.

One advantage of STE when compared to other text expansion methods is that

it does not use any external dataset to enhance the documents (Pinto et al. [2011]).

This makes the method domain independent, and is one less variable the user to worry

about.

3.2.2 Word network topic model

Zuo et al. [2016b] present a word co-occurrence graph-based model named word network

topic model (WNTM) to generate pseudo-documents. The work relies on the following

assumptions: (1) while the word-by-document space is sparse, the word-by-word space

for the whole corpus remains dense, so it is interesting to learn topics from the word co-

occurrence network; (2) as the number of words is larger than the number of documents

associated with rare topics, the distribution of words per topic is less skewed, so topics

should to be estimated for words instead of documents.
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The first step of the method is to generate the word co-occurrence network (or

simply word network). In this structure, words of the corpus are nodes and undirected

edges indicate some degree of co-occurrence between words in the same context. This

context can be a document or an arbitrary word neighborhood. The absence of an edge

between two words indicates that they never co-occurred in the same context. Nodes

also have a degree – which is the sum of all edges weights, and an activity level – which

is the average of all adjacent weights. The method creates one pseudo-document per

word, with each pseudo-document being formed by the word itself and its neighbors.

The generated pseudo-documents are used as input to LDA. The authors argue

that this input transformation changes the original LDA generative model, because it

no longer models the generation of documents, but the patterns of co-occurrence in the

word network.

Like in BTM, WNTM indirectly estimates the distribution of topics per docu-

ment, since the characteristics of the original dataset is lost in the process of generating

the pseudo-documents. This is done according to Equation 3.4, where P (z|d) is the

desired distribution of topics for document d, P (z|wi) is the known distribution of

topics per word and P (wi|d) can be inferred by the presence of wi in d.

P (z|d) =
∑

wi

P (z|wi)P (wi|d) (3.4)

3.2.3 LDA-#

Mehrotra et al. [2013] propose an input modification method for topic modeling in

Twitter, generating pseudo-documents that are the output of pooling schemes and

then processed with LDA. The authors highlight the aggregation of tweets by hashtag

and an automatic hashtag labeling algorithm for unlabeled tweets. We call it LDA-#.

The following pooling schemes are proposed: (1) unpooled, where tweets are not

aggregated by any heuristic; (2) author-wise pooling, which produces one document

per author; (3) burst-score wise pooling, which is related to trends in Twitter (trend

topics) and it is based on the detection of explosion in the frequency of some words

in a given period of time; (4) temporal pooling, where tweets posted within the same

hour are pooled; (4) hashtag-based pooling, which produces one document per Twitter

hashtag.
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Table 3.1: General features of short text topic modeling methods.

BTM
(2013)

STE
(2011)

WNTM
(2016)

LF-LDA
(2015)

GPU-DMM
(2016)

LDA-#
(2013)

SeaNMF
(2018)

CluWords
(2019)

LDA
adaptation

• • •

Word
embeddings

• • • •

Explicit
patterns of

co-occurrence
• • • • •

Document
pooling

• • •

Pseudo-
document

• • •

Application-
dependent

•

Previous sections organized the methods according to the following criteria: prob-

abilistic graphical models or adaptations of LDA; and generation of pseudo-documents.

These criteria are also features in Table 3.1 along with other general features.

The methods that produce pseudo-documents (feature “Pseudo-document”), com-

pared to probabilistic graphical models (feature “Probabilistic graphical model”), have

advantages and disadvantages. The main advantage is the independence the of topic

modeling technique, since the usual approach is to transform the input data with the

objective of improving the quality of a user-defined short text topic modeling method.

On the other hand, a major disadvantage is the extra memory and computational costs

to proceed the transformation.

The mentioned word embedding-based short text topic models, namely, Clu-

Words, GPU-DMM and LF-LDA, explore semantic properties of word embeddings.

An disadvantage of this approach is the dependence of an external source of knowledge

(i.e. the word vectors). The SeaNMF method, although use a word co-occurrence

matrix equivalent to a positive skip-gram word embeddings matrix, does not get this

context information from an external source, but from the corpus.

In the context of this thesis, we highlight the short text topic models that use

word embeddings. Chapters 5 and 6 present contributions in short text topic modeling

that explore word embeddings with the same objective of aggregating semantic and

contextual information of words into the topic modeling process. The first one proposes

a framework for pseudo-document generation. The second, a graph-based probabilistic

topic model.
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Application-specific methods (feature “Application-dependent”), such as the ones

for Twitter, have the advantage of exploiting the domain information. For example,

the methods for Twitter topic modeling can use information about authors, hashtags,

user geographical location, etc. The same advantage becomes a disadvantage, because

the method is rarely enabled to function outside the application context.

The feature of “Document pooling” evaluates if documents are pooled (i.e. ag-

gregated) in some way. This characteristic is important because, in this case, the

representation of original documents is lost. The methods BTM, WNTM and LDA-#

perform pooling. In BTM, for example, the biterms are defined in the context of docu-

ments, but the document object itself is not represented. WNTM redefines the context

according to patterns of words co-occurrence in a graph. LDA-# is based on pooling

schemes for tweets, that is, tweets are aggregated according to a specified criterion,

such as hashtag or author. In any of these techniques, document representations are

not directly extracted.

There is also the feature “Explicit patterns of co-occurrence”, which is present in

methods where patterns of words co-occurrence are explicitly modeled. For example,

the presence of biterms in the BTM model, co-occurrence edges in the WNTM’s word

graph, the PMI-based document expansion in the STE method, the word co-occurrence

matrix in SeanNMF or the CluWords TF-IDF-based matrix.

Short text topic models presented in this chapter that are cited in literature as

reporting state-of-the-art results include CluWords, GPU-DMM, SeaNMF and BTM.

All methods shown in Table 3.1 were included in one or more experiments in Chapters

5 and 6.
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Chapter 4

Short Text Vector Representations

for Document Classification

As explained in Chapter 2, many document representation models have been proposed

in the literature and successfully applied to different problems and domains, most of

them based on vector representation. This chapter investigates and proposes strategies

for creating word embedding-based representations that improve short text classifica-

tion.

We defined our research assumptions about distributed representation of docu-

ments on the top of the representation of text atomic units, words. To keep conceptual

consistency with distributed representations, word vector models are our basic frame-

work from which document vector models are derived. Given this premise, the funda-

mental question on deriving document embeddings from word embeddings is: How can

we consistently combine word vectors?

The literature shows that useful word vectors models must capture semantics

by implementing at least two features: (1) similarity of word concepts, expressed in

terms of word vector similarity (usually cosine similarity); and (2) combinations of

word concepts, expressed in terms of word vector operations, such as vectors sum and

difference. Both features are important to answer the question stated in the previous

paragraph, but in practice they have issues that are related to the cumulative error

when performing vector operations with relatively many words (Le and Mikolov [2014]).

While exploring word vector arithmetic is certainly a good starting point, the

literature states that the direct chained application of such vector operations for min-

imally long sequences does not produce good results (Le and Mikolov [2014]). We

investigate the use of arithmetic operations for short text, but we are particularly

interested in other forms of word combination.
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We propose a novel method, PSO-based weighted average of word vectors (PSO-

WAWV), which finds sub-optimal weights in weighted average of word embeddings for

document classification, as detailed in the next section.

4.1 Word vector combinations with PSO

The usually recommended way of combining word vectors is through averaging1 (Socher

et al. [2013b]; Le and Mikolov [2014]). In this case, for example, for a short document

d “President Trump will visit North Korea”, the vector representation of d, after the

removal of the stop word “will”, is v(d) = ( v(president)+v(trump)+v(visit)+v(north)+

v(korea) )/5, i.e. the average of the corresponding 5 word vectors in the text.

In the case of this average, all words from the document have the same weight.

But what if the importance of words is different within a given corpus? Finding an ideal

set of weights for words in the vocabulary is a continuous optimization problem. In our

particular case, it consists of finding real values that, multiplied to their respective word

vectors, produce document representations with optimal or sub-optimal classification

performance. The PSO-WAWV method performs this optimization using the particle

swarm optimization (PSO) metaheuristic (Zhang et al. [2015]).

4.1.1 Particle Swarm Optimization

Particle swarm optimization (PSO) is a method for global optimization proposed by

Kennedy and Eberhart [1995] and inspired by the social behavior of animals.

In the PSO algorithm, individuals are represented as particles that move in a

search space and are evaluated by a fitness function f . Iterativelly, PSO changes the

position of particles – the free learning parameters of f – in search of the optimal value,

usually the global minimum or maximum. The dynamics of a particle is controlled by

a set of combined factors: its current position; a cognitive factor, which is the influence

of the own particle history of success; the social factor, which is the influence of other

particles in the neighborhood; and randomness, which helps the algorithm not to get

stuck at local optima.

The basis of the PSO algorithm are the equations for updating the velocity and

position of particles. Since particles exist in a multidimensional optimization space,
1See the recommendation of word vectors averaging or concatenation by Richard Socher in the

Lecture 2 of the Stanford class “Deep Learning for Natural Language Processing” (March, 2016). Video
available at: https://youtu.be/aRqn8t1hLxs?t=46m46s (last access: 2018/04/20). Concatenating,
altough suggested, is not an actual option, since it does not produces fixed-length document vectors.

https://youtu.be/aRqn8t1hLxs?t=46m46s
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their position and velocity are real vectors. At iteration t + 1 of the heuristic, the

velocity vector of a particle i is updated according to Equation 4.1.

vi(t+ 1) = vi(t)
︸︷︷︸

Inertia factor

+ c1r1(pi(t)− xi(t))
︸ ︷︷ ︸

Cognitive factor

+ c2r2(ni(t)− xi(t))
︸ ︷︷ ︸

Social factor

(4.1)

where i = 1, · · · , P , P is the number of particles, c1 and c2 are the cognitive and

social factors, respectively, r1 and r2 are random numbers from a uniform distribution

U(0, 1), pi(t) is the best position of the particle found so far, ni(t) is the best position

of the neighborhood found so far, and xi(t) is the current position of the particle. The

neighborhood of a particle is defined by a communication topology, but in general it

consists of the whole set of particles. Once the velocity of all particles are updated,

their positions are also updated according to Equation 4.2.

xi(t+ 1) = xi(t) + vi(t+ 1) (4.2)

The classic PSO heuristic pseudo-code is described in the Algorithm 3.

Algorithm 3 Particle swarm optimization pseudo-code

1: Initialize P particles with random xi (position) and vi (velocity)
2: Set each pi = xi

3: Set each ni as the best position found in the neighborhood of i
4: while stop criteria not met do

5: for i ∈ P do

6: Calculate the particle fitness f(xi)
7: Update vi and xi (Equations 4.1 and 4.2)
8: Update pi

9: Update particles ni

The PSO algorithm was widely extended and applied in many domains (Zhang

et al. [2015]). In the present work we used a variation that incorporates a constriction

coefficient χ in the velocity equation, with the objective of avoiding the explosion of

particles velocities, a frequent problem in the classic PSO. The constriction coefficient

is dependent on constants c1 and c2 and is calculated according to Equation 4.3.

χ =
2

|2− ϕ−
√

ϕ2 − 4ϕ|
, ϕ = c1 + c2 (4.3)

The velocity equation with the incorporation of χ is represented by Equation 4.4.

vi(t+ 1) = χ [ vi(t) + c1r1(pi(t)− xi(t)) + c2r2(ni(t)− xi(t)) ] (4.4)
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Eberhart and Shi [2000] compared the constriction coefficient approach with the

inertia weights, another approach to limit velocities, and concluded that the constric-

tion factor strategy is the best. Clerc and Kennedy [2002] provides a convergence proof

when ϕ > 4, for which we use the recomended ϕ = 4.1 (i.e. c1 = c2 = 2.05).

4.1.2 The PSO-WAWV Model

We propose a general weighting scheme, in which weights – one per word in the vocab-

ulary – are free parameters to be adjusted in an optimization process. The learning

of weights in the PSO-WAWV model is accomplished by the PSO algorithm with con-

striction factor. The positions of particles are real vectors t1, t2, · · · , t|V |, where |V | is

the number of terms in the vocabulary. The fitness function f is task dependent. In

our case it is a metric to assess document classification performance, to be maximized.

Figure 4.1 ilustrates this optimization problem with fictitious particles and function.

Here the fitness is the F1-score.

Figure 4.1: Ilustration of PSO-WAWV optimization problem, with some fictitious par-
ticles (blue circles) of size |V |.
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4.2 Arithmetical combinations of word embeddings

4.2.1 Sum of word vectors (SWV)

The direct sum of word vectors is reported in literature as a non-effective method for

producing general representations of long documents (Le and Mikolov [2014]). The

procedure has the advantage of simplicity, and it consists on the sum of all word

vectors correspondent to the words of the target document. For example, consider

the following document d: “President Trump will visit North Korea”. The vector

representation of d, after the removal of the stop word “will”, is the reduction v(d) =

v(president) + v(trump) + v(visit) + v(north) + v(korea).

The word vectors’ literature has mainly reported results for the task of relational

similarity2 with the objective of verifying semantic capabilities of word vectors. Im-

plementations of the relational similarity task are usually performed with normalized

word vectors (length equal to 1), because the interpretation of the vectors’ length is not

related to word semantics, but with the word frequency in the dataset. Furthermore,

the similarity between words is determined by the cosine metric, which is insensitive to

vector length. The interpretation of word vector length is confirmed in the word2vec-

toolbox mailing list by Mikolov [2014]:

“The length of the vectors is closely related to the word frequency, ie. more

frequent words will be represented by longer vectors than infrequent words.

This is related to the training algorithm which starts with very small vectors,

and the incremental updates make the vectors longer.”

The SWV procedure is performed using raw word vectors, i.e. unnormalized. This

means that words are indirectly weighted by their frequency in the dataset. Figures

4.2(a) and 4.2(b) illustrate, with two bi-dimensional vectors, the normalized and non-

normalized sum of word vectors, respectively3. Note that in Figure 4.2(b) the resultant

vector is closer to vector A, because A is bigger than B. Therefore, the SWV method

overestimates words with higher frequency.
2The classic example of a relational similarity question is: “man” is to “king” as “woman” is to...?

– for which the answer is “queen”. The test in this case is algebraically expressed by the operation
v(king)− v(man) + v(woman), which must produce a vector whose nearest word vector is v(queen).

3Figures are merely illustrative and vectors are two-dimensional for didactic purposes. In general,
actual word vectors have much higher dimensionality, usually tens or hundreds, sometimes thousands.
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(a) Normalized vector sum (b) Non-normalized vector sum

Figure 4.2: Illustrative comparison between normalized and non-normalized vector
sum.

4.2.2 TF-IDF-Weighted Sum of Word Vectors

(TFIDF-WSWV)

This operation is similar to SWV, except that the correspondent document’s word

vectors are weighted by their TF-IDF values, instead of the original vectors magnitude.

The TF-IDF values are pre-calculated using the target collection and form a matrix

DT|D|×|V |, where |D| is the number of documents in the collection and |V | is the

vocabulary size. Ultimately, DT|D|×|V | quantifies the importance of terms to documents

and the corpus.

We also have the matrix W|V |×d, which contains the learned word vectors, one

vector of size d per row. Naturally, W can be derived from any distributional semantics

method applied to words, like those described in Chapter 2 (e.g. SG, CBOW, GloVe).

The matrix of document vectors W′
|D|×d is the result of the product of matrices

DT and W, i.e. W′ = DT×W, one document vector per row. Equation 4.5 illustrates
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the TFIDF-WSWV method, in matrix notation.

W′
|D|×d =









term1 term2 ... term|V |

doc1 dt11 dt12 . . . dt1|V |

doc2 dt21 dt22 . . . dt2|V |

...
...

...
. . .

...

doc|D| dt|D|1 dt|D|2 . . . dt|D||V |









︸ ︷︷ ︸

DT|D|×|V |

×









feat1 feat2 ... featd

term1 w11 w12 . . . w1d

term2 w21 w22 . . . w2d

...
...

...
. . .

...

term|V | w|V |1 w|V |2 . . . w|V |d









︸ ︷︷ ︸

W|V |×d

(4.5)

4.2.3 Average of Word Vectors (AWV)

This method has already been explained in the Section 4.1, in the context of the

proposed method PSO-WAWV. It consists on obtaining the average vector that results

from the word embeddings correspondent to the words in the document.

4.2.4 TF-IDF-Weighted Average of Word Vectors

(TFIDF-WAWV)

The TFIDF-WAWV is a combination of the AWV and TFIDF-WSWV methods. In-

stead of performing an arithmetic mean of the word vectors like in AWV, we use the

TF-IDF matrix information to perform a weighted average of the word vectors. In

matrix notation, we perform the product of the normalized TF-IDF matrix DT′
|D|×|V |

by the matrix W|V |×d
4. So, the TFIDF-WAWV operation is basically similar to the

TFIDF-WSWV method, except that the normalized DT′ have rows that sum 1.0.

4.3 Experimental setup

The methods were compared varying parameter d (word vector size). Document vector

representations were evaluated using a logistic regressor. Experiments were repeated

in a 10-fold cross-validation and F1 scores reported. Comparison among methods were

statistically validated with the non-parametric Wilcoxon signed-rank hypothesis test

over the means with 0.05 of significance level.
4The weighted average of values a, b and c, with weights wa, wb and wc, is usually expressed by

waa+wbb+wcc

wa+wb+wc

. This is equivalent to awa/(wa+wb+wc)+bwb/(wa+wb+wc)+cwc/(wa+wb+wc), or the

multiplication of vectors x = [a, b, c] and y = [wa/(wa+wb+wc), wb/(wa+wb+wc), wc/(wa+wb+wc)].
The vector y is precisely the normalized version (sum equal to 1) of the vector [wa, wb, wc].
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Table 4.1: Dataset statistics.

Dataset #Docs Vocabulary size #Classes Words/doc Unique words/doc

20nshort 1723 964 20 8.2 (±3.5) 7.1 (±2.9)
Sanders 3770 1311 4 6.1 (±2.7) 5.8 (±2.5)
Snippets 12117 4677 8 14.3 (±4.4) 10.3 (±3.1)
TMN 30376 6314 7 4.9 (±1.5) 4.9 (±1.5)

4.3.1 Datasets

Four short text datasets were used in the experiments5: 20 Newsgroups (20nshort);

Tweets Sanders (Sanders); Web Snippets (Snippets); and Tag My News (TMN). Ta-

ble 4.1 summarizes the datasets’ main characteristics including average number of terms

and unique terms per document. All resultant datasets have few words per document

on average, as shown by columns “Words/doc” and “Unique words/doc” in table 4.1.

Standard deviation is also small. The largest dataset is TMN (30,376 docs) and the

smallest is 20nshort (1,723 docs). The vocabulary size also presents a large variation

(from 964 in 20nshort to 6,314 in TMN).

4.3.2 Text preprocessing

All datasets were submitted to the following preprocessing steps:

• Standardization of text to lowercase. This is important to avoid semantic differ-

entiation of similar words based on case.

• Removal of non-alphabetic characters. This procedure is also related to avoiding

semantic differentiation of similar words in free natural text (e.g. minimizing

differentiation by errors in word accentuation) and exclusion of characters that

are not informative to the current application (e.g. punctuation).

• Removal of stop words, i.e. words that are not relevant to analysis, such as

articles, prepositions, some verbs, among others6.

• Removal of words shorter than 3 characters and longer than 25 characters, min-

imizing the chance of occurring “noise” words in text.
5Datasets available at: https://github.com/marcelopita/datasets/
6English stop words used in the experiments available at: http://homepages.dcc.ufmg.br/

~marcelo.pita/short_text_tm/preproc/english_stopwords.

https://github.com/marcelopita/datasets/
http://homepages.dcc.ufmg.br/~marcelo.pita/short_text_tm/preproc/english_stopwords
http://homepages.dcc.ufmg.br/~marcelo.pita/short_text_tm/preproc/english_stopwords
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4.3.3 Word vectors

We used SG word vectors generated with the fastTex software (Bojanowski et al.

[2016])7, for vector sizes 100, 300, 600 and 1000. The training dataset was a dump of

the English Wikipedia from 2015/02/06, containing 8,102,107 documents and 2,120,659

words. The size of the context window was defined to be 10, with negative sampling

(5 negative examples) and default initial learning rate of 0.025.

4.3.4 Evaluation metric for classification

Macro average F1 score was the evaluation metric used. It consists of averaging the F1

score for all classes, which in turn is the harmonic mean between precision and recall

for each class c, as shown in Equation 4.6.

F1c =
2× Precisionc × Recallc

Precisionc + Recallc
(4.6)

Precisionc is the fraction of correct predictions for c, according to Equation 4.7,

where tprc is the true positive rate for c and fprc the false positive rate. Recallc is the

fraction of instances of c that were correctly predicted (Equation 4.8), where fnrc is the

false negative rate.

Precisionc =
tprc

tprc + fprc
(4.7)

Recallc =
tprc

tprc + fnrc
(4.8)

4.4 Results of arithmetical combinations of word

embeddings

We first compare the quality of the document vectors generated by the SWV, TFIDF-

WSWV, AWV and TFIDF-WAWV models, which will serve as baselines for the pro-

posed method.

Table 4.2 shows the results for all models mentioned above, all datasets and vary-

ing the word vector size d. Higher values of d are expected to carry more information

about the representation, therefore producing better results. This tendency is observed
7There is no essential difference between the SG model generated with fastText and the traditional

word2vec implementation, except that fastText also creates vectors for subwords (i.e. parts of words).
FastText is available at: https://fasttext.cc/.

https://fasttext.cc/
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in Table 4.2. Bold values indicate the best achieved for the dataset, and comparisons

are non-blocked, i.e. all combinations of d and models are performed.

Table 4.2: Results of document classification (mean F1-score) for the 20nshort, Sanders,
Snippets and TMN datasets, for each word vector operations and different values of d
(word vector size).

Word vector size (d)

100 300 600 1000 100 300 600 1000

20nshort Sanders

SWV 0.412 0.441 0.475 0.505 0.973 0.985 0.987 0.984

TF-IDF-SWV 0.396 0.439 0.482 0.493 0.838 0.925 0.952 0.976

AWV 0.430 0.513 0.521 0.528 0.975 0.984 0.986 0.986

TF-IDF-WAWV 0.392 0.471 0.504 0.517 0.831 0.926 0.953 0.963

Snippets TMN

SWV 0.904 0.916 0.927 0.936 0.731 0.753 0.761 0.762

TF-IDF-SWV 0.898 0.911 0.923 0.930 0.721 0.746 0.757 0.760

AWV 0.901 0.926 0.940 0.942 0.727 0.754 0.765 0.770

TF-IDF-WAWV 0.888 0.913 0.928 0.934 0.711 0.735 0.749 0.751

For the 20nshort, the AWV with L = 1000 (AWV-1000) method achieves the

higher mean, although there is no statistical evidence that it is better than SWV-1000,

AWV-300, AWV-600, TFIDF-WAWV-600 and TFIDF-WAWV-1000. AWV has 3 win-

ning variations. The second best method is the TFIDF-WAWV (2 winning variations),

followed by the SWV method (1 winning variation).

It is important to notice that the weighting scheme with TF-IDF, both in the

TFIDF-WSWV and TFIDF-WAWV methods, seems to worsen the results of pure

SWV and AWV, as suggested by the general classification performance drop observed

in Table 4.2.

The document classification task for the Sanders dataset provides little oppor-

tunity for improvement, because all methods achieve high classification performance,

according to Table 4.2. All best values (in bold) are above the F1 score of 0.98. Even

so, it is worth to notice the superiority of the SWV and AWV methods.

The classification results for the Snippets and TMN datasets present very similar

results. In both cases, AWV was the best method. Results also confirm that the

TF-IDF weighting scheme worsen the results of pure SWV and AWV.
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4.4.1 Scale of TF-IDF and word vector values

We investigated if the worse results with the TF-IDF weighting schema are related

to differences in scale when word vectors are combined with TF-IDF values. Fig-

ure 4.3(a) displays a histogram of word vector values (whole Wikipedia collection),

while Figures 4.3(b) to 4.3(e) show histograms of TF-IDF values (without zeros) for

each short text dataset. Notice that word vector values follow an well shaped zero-

mean normal distribution with most of values in the range [−1, 1], while TF-IDF values

are left-skewed with variable scale.

To adjust scales, TF-IDF values were transformed by a softmax function (Equa-

tion 4.9), which gives a probability interpretation to its values (range [0, 1]). Next,

we multiplied the TF-IDF values by the average word vectors, originating the TFIDF-

WAWV-SOFTMAX document vector model. Table 4.3 compares the results of TFIDF-

WAWV-SOFTMAX-1000 with the original TFIDF-WAWV-1000. The conclusion is

that results of both models present no statistical difference, suggesting that the differ-

ence in scale is not an issue for the logistic regression classifier.

σ(xj) =
exj

∑

i e
xi

(4.9)

Table 4.3: Comparison of TFIDF-WAWV-1000 and TFIDF-WAWV-SOFTMAX-1000
methods.

Method 20nshort Sanders Snippets TMN

TFIDF-WAWV-1000 0.517 0.963 0.934 0.751
TFIDF-WAWV-SOFTMAX-1000 0.513 0.966 0.933 0.752

4.4.2 Qualitative analysis of TF-IDF weighting

One advantage of having document vectors represented in the same semantic space as

the original word vectors is that they can potentially work together and be compared.

We used this characteristic to analyse the document vectors’ nearest words vectors for

each class in the Snippets dataset. For each document of a class (business, computers,

culture-arts-enternainment, education-science, engineering, health, politics-society and

sports), we count the occurrence of the nearest word in the word vector space, and

summarize by class. These counts were used to produce word clouds of the most

representative words for TFIDF-WAWV-1000 and AWV-1000, as shown in Table 4.4.

The word clouds of Table 4.4 can explain, at least partially, why the TF-IDF

weighting scheme in the TFIDF-WAWV-1000 method produces worse results than
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of TFIDF-WAWV-1000 in comparison with AWV.

Table 4.4: Word clouds of the most representative words in the Snippets dataset by
class, for TFIDF-WAWV-1000 and AWV-1000 document vectors. The size of words
are proportional to the their frequency in a list of documents’ nearest words for each
class. Colors do not encode any information.

Snippets Method

Class TFIDF-WAWV-1000 AWV-1000

Business

Computers

Engineering

Culture-Arts-Entertainment

Continued on next page
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Table 4.4 – Continued from previous page

Snippets Method

Class TFIDF-WAWV-1000 AWV-1000

Sports

Education-Science

Health

Politics-Society

4.4.3 Summary

Table 4.5 sums up the results, showing the number of times each method was the

winner, or was among the winners. Only two variations of AWV, namely AWV-600

and AWV-1000, were the best for all four datasets. These variations will be used as
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baselines for the proposed PSO-WAWV method.

Table 4.5: Number of times each method was statistically the best or presented no
statistical difference to other methods.

Method 20nshort Sanders Snippets TMN Total
SWV-300 • 1
SWV-600 • 1
SWV-1000 • • 2
AWV-300 • • 2
AWV-600 • • • • 4

AWV-1000 • • • • 4

TFIDF-WAWV-600 • 1
TFIDF-WAWV-1000 • 1

4.5 Results for PSO-WAWV

The classification performance of the representation produced by the proposed PSO-

WAWV-1000 model was compared with the best variations of arithmetical combina-

tions of word embeddings. It was compared with TF-IDF, PV and BOHW, as well.

4.5.1 Parameter settings

We used the PSO-WAWV with constriction coefficient and ϕ = 4.1, i.e. c1 = c2 = 2.05.

The number of particles in all experiments were 25 and the total number of iterations

was set to 150. The algorithm can stop earlier after 50 iterations without any increase

in fitness values. We defined the minimum and maximum values for initialization of

particles positions as [0.8, 1.2]. These values form a uniform distribution around 1.0

with a little standard deviation. When all values are 1.0, the representation becomes

equal to AWV, which already presented good results. The objective is to promote a fine

tuning of the weights. We also investigated if a second level of optimization in PSO-

WAWV, namely, incorporating an optimization of weights for word vectors dimensions

as well (PSO-WAWV-dims), would improve classification compared to original PSO-

WAWV.

Three other baselines, apart from the best arithmetical combinations of word

vectors were considered: TF-IDF, PV and BOHW.

For PV, we have replicated the IMDB document classification experiment of Le

and Mikolov [2014] to adjust the parameters of PV. In this experiment, document
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vectors have size 800 and are formed from the concatenation of PV-DBOW and PV-

DM models, both of size 400. The concatenation is mentioned in Le and Mikolov

[2014] as the best PV model. All experimental protocols were followed, including

the precise separation of training and testing sets, as well as the usage of a logistic

regressor. Test document vectors were generated by inference8 with 200 steps (learning

epochs), although this parameter has not been defined in the paper. Authors report a

classification error rate of 7.42%, result that could not be replicated by the community,

including this author, whose best result was an error rate of 19.2%. For the experiments

in this section, we used the general parameters of the IMDB replication, but with

document vectors of size 1000, for a fair comparison with other methods.

The bag of hyperwords (BOHW), an extension of the bag of word TF-IDF rep-

resentation that considers word vectors to determine the influence of words in the

vocabulary on each document (described in Section 2.3.5), used word vectors of size

1000, dynamic α selection and β = 0.3.

Document classification was evaluated in a 10-fold cross-validation, i.e. 10 PSO

runs. At each PSO execution, a fraction of the training set was used for validation.

This validation set, used to evaluate particles, is responsible by the attribution of fitness

(F1 score). The 20nshort and Sanders datasets used a validation fraction of 50%, while

Snippets and TMN datasets used a validation fraction of 90%. This high fraction of

validation data for Snippets and TMN does not affect the learning process, since these

datasets have a high number of documents. The validation fraction is a parameter

and must be adjusted according to dataset characteristics. Additionally, it controls the

fraction of training data for each particle and, ultimately, the general performance of

the PSO-WAWV algorithm.

4.5.2 Results

Table 4.6 shows the results for the PSO-WAWV-1000 model and the baselines. Notice

that PSO-WAWV-1000 results and AWV results present no statistical difference. An

exception to this is in the Snippets dataset, where the classification performance of

PSO-WAWV-1000 is really worse than AWV, only with results better than PV-DBOW-

DM-1000.

In the 20nshort dataset, BOHW-1000 presented worse results than other methods.

In the Sanders dataset, all methods are statistically equivalent. In the TMN dataset,

results are competitive with AWV and TF-IDF.
8The inference process in PV consists on fixing the neural network parameters for the word vectors

and learning the free parameters for the new paragraph.
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Table 4.6: Comparison of the method PSO-WAWV-1000 with baselines TF-IDF, PV-
DBOW-DM-1000, BOHW-1000, AWV-600 and AWV-1000 using F1-score.

Dataset

Method 20nshort Sanders Snippets TMN

TF-IDF 0.518 0.985 0.956 0.769
PV-DBOW-DM-1000 0.496 0.986 0.822 0.713
BOHW-1000 0.483 0.985 0.948 0.751
AWV-600 0.521 0.986 0.940 0.765
AWV-1000 0.528 0.986 0.942 0.770

PSO-WAWV-1000 0.549 0.990 0.914 0.773

The results of PSO-WAWV show that, besides the previous worse results using

TF-IDF as weights, the general objective of finding optimal weights for a specific task

is feasible. The weights found using the PSO optimization technique are competitive

with the baselines for short text classification.

Analysis of the representation size

A clear advantage of the AWV and PSO-WAWV methods over TF-IDF is a more com-

pact representation, i.e. less spatial complexity, and the non-sparsity, which allows

a safer application of distance metrics without incurring in the curse of dimensional-

ity. The reduction in the size of representation and correspondent improvements in

classification performance are shown in Table 4.7.

Table 4.7: Reduction in the representation size and relative classification improvement
for AWV-600, PSO-WAWV-1000 and TF-IDF models.

TF-IDF AWV-600 PSO-WAWV-1000

Dataset size % size % F1 score % size % F1 score

20nshort 964 -60.67% +0.58% +3.73% +5.98%
Sanders 1311 -118.5% +0.1% -31.1% +0.51%
Snippets 4677 -679.5% -1.7% -367.7% -4.60%
TMN 6314 -952.33% -0.52% -531.4% +0.52%

Extending PSO-WAWV with Weights for Dimensions of Word Embeddings

Table 4.8 shows the compared results for the variations PSO-WAWV and PSO-WAWV-

dims (PSO-WAWV plus optimization of weights for word embeddings dimensions).

Note that both methods are statistically equivalent in three datasets, except TMN, in

which PSO-WAWV-dims shows an inferior result. We conclude that the addition of

a second level of optimization (word vector dimensions) didn’t improve classification

quality. Therefore, we suggest the usage of the original setting of PSO-WAWV.
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Table 4.8: Comparison of the method PSO-WAWV-1000 with PSO-WAWV-dims-1000
using F1-score.

Dataset

Method 20nshort Sanders Snippets TMN

PSO-WAWV-1000 0.549 0.990 0.914 0.773
PSO-WAWV-dims-1000 0.524 0.990 0.891 0.764

Qualitative analysis of PSO weighting

We generated word clouds arranged by class similar to those of Table 4.4, this time com-

paring PSO-WAWV-1000 and AWV-1000 with some classes of the 20nshort dataset.

They are shown in Table 4.9. A total of six classes out of twenty were selected, aiming

to show the main differences between the methods.

Table 4.9: Word clouds of the most representative words in the 20nshort dataset by
class, for PSO-WAWV-1000 and AWV-1000 document vectors. The size of words are
proportional to the their frequency in a list of documents’ nearest words for each class.
Colors do not encode any information.

20nshort Method

Class PSO-WAWV-1000 AWV-1000

rec.motorcycles

comp.sys.mac.hardware

Continued on next page
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Table 4.9 – Continued from previous page

20nshort Method

Class PSO-WAWV-1000 AWV-1000

comp.sys.ibm.pc.hardware

sci.crypt

sci.space

rec.autos

It is possible to observe in Table 4.9 that all classes are well represented by the

word clouds. Regarding the class rec.motorcycles (first line of the table), the AWV-1000

method seems to be closer to more generic words, which at first is good for document

classification. However notice the introduction of the word “jerry” in the PSO-WAWV-

1000 model, probably referring to the famous American motorcycle racer Jerry Smith.
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Table 4.10 shows the top-20 words in the 20nshort vocabulary with higher and lower

weights. The word “jerry” was the third most valued word in the whole vocabulary,

what explains its introduction. Maybe this word be a good discriminator for the

rec.motorcycles class.

Table 4.10: Top-20 and bottom-20 words in the 20nshort dataset in terms of PSO-
WAWV-1000 weights.

20nshort Top-20 Bottom-20

Position Word PSO weight Word PSO weight

1 man 7.392680 quote -3.021191

2 band 7.383803 pick -2.582671

3 jerry 7.031429 machine -2.171138

4 press 5.775304 luck -1.751085

5 stop 5.424319 hst -1.410809

6 convert 5.405484 modem -1.284652

7 sun 5.312865 server -1.155327

8 listen 5.292923 rgb -0.766275

9 stuff 5.159168 read -0.678372

10 performa 5.072030 surface -0.548096

11 cute 5.021564 andrew -0.545905

12 bitmap 4.993816 literature -0.500627

13 compare 4.902909 hate -0.367920

14 dec 4.889331 atheists -0.220502

15 client 4.864289 exists -0.056248

16 widget 4.780086 keyboard -0.021405

17 instructions 4.768953 quadra 0.015236

18 bruins 4.764550 paul 0.059694

19 price 4.743247 fact 0.116571

20 matter 4.647711 advantage 0.231546

The high and low values for weights of words like the ones listed in Table 4.10

could help to explain why PSO-WAWV-1000 present competitive results in the 20nshort

dataset, as well the other datasets in general. But, because finding such weights is an

optimization process which involves uncertainty, it is not always possible to generate

the best classification results, as reported by the Snippets dataset. We understand

that the PSO-WAWV results are encouraging, despite preliminary, and deserve fur-

ther investigation for enhancement, including the exploration of other optimization

techniques.
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Chapter 5

Methods to Expand Short Text for

Topic Modeling

This chapter addresses RQ2, and proposes a framework to expand short text by creating

a generalization for the pseudo-document based approaches reported in Section 3.2.

The strategy is to produce larger pseudo-documents representations from the original

texts that carry more information for the task of topic modeling.

One advantage of pseudo-document methods for topic modeling is that they are

usually simpler than methods that modify LDA or create new probabilistic graphical

models, while remaining independent of the underlying topic modeling technique. This

is because only input data is transformed by these methods.

We perform two instantiations of the general framework, generating two new

methods: (1) Co-occurrence Frequency Expansion (CoFE); and (2) Distributed Rep-

resentation Expansion (DREx). CoFE makes use of patterns of words co-occurrence

(or correlation) to expand documents. It is perhaps the most intuitive approach to

expand documents, and has been previously explored by short text topic models, such

as BTM, WNTM and STE.

Our second method, DREx, takes advantage of word embeddings for document

expansion. Word embeddings carry the type of semantic information that allows an

accurate selection of the nearest neighbors of a word in the process of document ex-

pansion.

5.1 A General Framework to Expand Short Text

Section 3.2 reviews a few pseudo-document based methods. The main problems of

these methods are the following: (1) they were designed to perform well in other
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text mining task than topic modeling (e.g. STE for short document clustering); (2)

they degenarate the structure of documents (e.g. WNTM, which creates one pseudo-

document per word); and (3) they are context-specific (e.g. LDA-# for Twitter).

We propose a general framework to expand short text that, in this case, is being

used for topic modeling. At the same time, it is not a specialization of a particular topic

model. In fact, it can be applied to short text and the expanded dataset can feed any

topic modeling algorithm. The framework also maintains the structure of documents,

meaning that the correspondence between original and expanded documents are kept.

Lastly, it is not application-specific, so it can be used in any type of short text.

In our framework, the process of enriching a document with new terms goes

through the identification of words in the vocabulary that are similar to components in

the original text. These components are usually terms, but this is not a restriction. The

proposed mathematical framework is generic because it does not impose any restriction

over the definition of components and the similarity metric among them, the metric

space. It allows the specification of the desired size of documents as well. A document

is enriched with words that already belong to the collection vocabulary, because this

does not degenerate the original vocabulary and increases the co-occurrence of similar

terms, minimizing the low co-occurrence frequency problem in short text corpora.

The framework is extensible, enabling the implementation of different approaches

that define the way words are added to the documents. This is possible due the

formalization of a metric space, a set for which is defined the distance between any

pair of elements. Formally, it is a pair (V , g), where V is a set of components and g is

a metric distance between every pair of components vi, vj ∈ V . Different combinations

of V and g generate different metric spaces, hence different approaches for document

expansion. The following properties have to be satisfied:

i. The distance between every pair of components is non-negative, g(vi, vj) ≥ 0.

ii. The distance between two components is zero if, and only if, they are equal,

g(vi, vj) = 0 ⇐⇒ vi = vj.

iii. The distance between components is symetric, g(vi, vj) = g(vj, vi).

iv. Distances comply with the triangle inequality, g(vi, vj) ≤ g(vi, vk) + g(vk, vj).

The framework defines a generic metric space whose elements of V are n-grams

and g is a distance between them. Specific implementations can determine the cardi-

nality of these n-grams, i.e. if they are unigrams, bigrams and so on. The expansion

procedure is regulated by the following definitions.
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Definition 5.1. Let V be the set of n-grams in a corpus, v ∈ V one of these n-grams

and g a distance function. We define a t-nearest neighbor function, NN (v, t) which

calculates the t closest n-grams to v in V . Formally, NN (v, t) = A : |A| = t ∧ ∀p ∈

A, ∀x ∈ (V −A), g(v, p) ≤ g(v, x). In other words, A contains the t closest n-grams to

v.

For each document d, the framework calculates a intermediate graph represen-

tation Gd. This representation allows to observe the closest n-grams to the whole

document, as stated by the next definition.

Definition 5.2. Let Gd = (Ld ∪ Rd, Ed) be a bipartite graph, where Ld ∪ Rd ⊆ V ,

which have two types of nodes: l ∈ Ld, the n-grams extracted from d, and r ∈ Rd,

the candidate n-grams to expand d among the t nearest neighbors. An edge ed ∈ Ed,

ed = (l, r, w), defines a relationship between pairs of nodes l and r, where w is the

weight of ed, equivalent to the similarity s (derived from the distance g) between the

referred n-grams. Formally, ed = (l, r, w) : l ∈ d, r ∈ NN (l, t), w = s(l, r) and

NN (l, t) ⊆ V .

Algorithm 4 shows the general expansion procedure, where D is the corpus to

be expanded, (V , g) is the metric space (V is the set of n-grams and g is a distance

function), t is the number of neighbors words returned by function NN and M is the

minimum expected length of documents. The procedure expands documents shorter

than M until it reaches this expected size, if possible.

Algorithm 4 General expansion framework.

Require: D, (V , g), t,M
1: for d ∈ D do

2: if |d| < M then

3: Gd ← Graph (Ld ∪Rd, Ed) generated from (V , g) and t ⊲ Def. 5.2
4: Cd ← ∅ ⊲ Candidate words
5: for ed = (l, r, w) ∈ Ed do

6: Cd ← Cd ∪ {r, w}

7: while |d| < M do

8: h← SelectionMethod(Cd) ⊲ Selected word
9: d← d ∪ h

Algorithm 4 expands each document d in the corpus D according to the condition

of line 2, that is, having less than M words. Those documents that already have this

minimum expected size are kept as they are originally. For those documents that

need to be expanded, the metric space (V , g) and t are used to generate the similarity
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graph Gd, according to definition 5.2 (line 3). The details of the generation of Gd

are implementation-specific, since it depends on the precise definition of g. Lines 4-

6 extract the set of candidate words Cd, which consists in collecting all nodes in Rd

and their corresponding weights of edges to nodes in Ld. Lines 7-9 are responsible for

iteratively adding a word h to d until it reaches the expected size M . The selection

of h (line 8) is also implementation-dependent, but we recomend a stochastic selection

based on the weights, because it avoids a deterministic definition of pseudo-documents.

It is important to clarify that, eventually, documents do not reach the expected

size M , because the number of neighbor words t considered for each n-gram in the orig-

inal document may not be enough. In a first analysis, it may seem obvious to conclude

that this can be adjusted, since t is a parameter, but at least two observations related

to this adjustment must be taken into account: (i) as t increases, the chance of NN to

return unrelated words to the original ones also increases, because the neighborhood

becomes much wider; (ii) depending on the function g, calculating large neighborhoods

can be computationally costly, so this is a tradeoff for some implementations.

Another way to work around the issue of documents shorter than M without

adjusting t is to recursivelly apply Algorithm 4 to the target corpus until all documents

have at least size M . Unfortunatelly this does not invalidate the ponderations of the

last paragraph, so the probability of arising unrelated words and the computational

cost will grow as more words are added to the documents. Because of that, experiments

carried out with the methods described in this chapter do not consider this alternative

implementation (i.e. recursive expansion of corpus), and some documents can still

remain shorter than M even after the expansion procedure.

The word selection procedure (line 8) used in all implementations in this chapter is

a probabilistic weight proportionate selection applied over a multinomial distribution of

candidate words. This means that words with higher accumulated weights have higher

probability of being selected. The probabilistic selection prevents the appearance of

the same nearest n-grams in the pseudo-documents. Preliminary experiments with

LDA, associated with implementations of Algorithm 4, showed to be sensitive to the

selection method, exhibiting better results with the probabilistic approach.

The next sections explain in details two implementations of the proposed frame-

work: CoFE and DREx.
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5.2 Co-occurrence Frequency Expansion

The co-occurrence frequency expansion (CoFE) method implements the general expan-

sion framework by defining a metric space (VCoFE, gCoFE), where VCoFE is the vocab-

ulary of the corpus (i.e. unigrams) and gCoFE is a measure of distance between two

words in VCoFE considering the frequency in which these words co-occur in the same

context. The intuition is that semantically related words are more likely to occur in

the same document.

Formally, the distance function gCoFE is defined according to Equation 5.1. For a

word wk, we define Ok as the set of documents that contains wk. The equation adapts

the Jaccard index, which is a metric of similarity between sets. Words with high co-

frequency (i.e. co-occurrence frequency) have high values of Jaccard index, therefore

small values of distance.

gCoFE(wi, wj) = 1− Jaccard(wi, wj) = 1−
|Oi ∩Oj|

|Oi ∪Oj|
(5.1)

The formal specification of the metric space requires the definition of the dis-

tance gCoFE, but the weights in the similarity graph are derived from the similarity

sCoFE(wi, wj) = Jaccard(wi, wj). For a document d, |d| < M , the expansion procedure

considers the graph Gd = (Ld ∪ Rd, Ed), where Ld are nodes that represent each word

in the original document, and Rd represents each word that co-occurs at least once

with some of the original words (with the limit of t expansion words for each original

word). Co-occurrences are represented in the graph as edges Ed and the weights of

these edges are similarity values calculated with sCoFE.

Figure 5.1 shows an example of CoFE similarity graph for the text “olympic

games” for t = 4. For a pseudo-document of size M = 5, three words – because the

document already have two – from Rd (gold, phelps, pool, rio, silver or brazil) are

probabilistically selected. For a word w, its selection probability is proportional to

the sum of weights of edges of the node that represents w. For example, the word rio

have a probability of selection proportional to 0.27+ 0.11 = 0.38. Precisely, the actual

probabilities are the normalized values of the sum of weights for each expansion word.

5.3 Distributed Representation-based Expansion

The distributed representation-based expansion (DREx) method uses the semantic prop-

erties of word embeddings (see Section 2.3) to build similarity graphs for documents.

Word vector algebra is used to quantify the distance or similarity among n-grams. A
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Figure 5.1: Example of similarity graph for CoFE (“olympic games”).

metric space (VDREx, gDREx) is defined, where the set VDREx contains all vectors v,

which represent words and bigrams of the corpus. We use the cosine similarity be-

tween two vectors vi and vj, sDREx(vi, vj) = cos θ = cos (vi · vj/ ‖vi‖ ‖vj‖), where θ

is the angle between vectors vi and vj. From sDREx we formalize the distance metric

gDREx (Zhang and Korfhage [1999]), as shown by equation 5.2.

gDREx(vi, vj) = 1−
cos−1 θ

π
= 1−

cos−1 θ(vi · vk/ ‖vi‖ ‖vj‖)

π
(5.2)

For a document d in the collection, the expansion bipartite graph Gd = (Ld ∪

Rd, Ed) has Ld as the set of nodes for the vector representation of all bigrams in d, and

Rd the set of nodes for the the word vectors that are closest to the bigram vectors in

Ld (with the limit of t expansion words for each original word).

Word vectors have to be previously trained with a preferably large external cor-

pora (e.g. Wikipedia), with the condition of the vocabulary being large enough to

contemplate all words in the target corpus. Rd elements are directly extracted from

the full word vectors set. A bigram vector b in Ld is the sum of its two constituent word

vectors vm and vn, i.e. b = vm + vn. This calculation is coherent with results already

discussed in literature (Mikolov et al. [2013b,d]) and produces a resultant vector – the

bigram vector – that “merge” the semantics of both words.

Figure 5.2 shows an example of DREx similarity graph for the text “president

obama visited cuba”, with t = 3. The bigrams of the text are: “president obama”;

“obama visited”; and “visited cuba” – as ilustred in the upper partition of the graph.

The expansion words (presidency, barack, reagan, visiting, havana, traveled) – in the

lower partition of the graph – are the nearest words relative to the bigrams, with edges

weighted by sDREx.

The selection probabilities are calculated in a similar way to CoFE, i.e. normal-

ized sum of weights for each expansion word. In the figure 5.2, the word reagan is the

more likely to be selected (0.67+0.52 = 1.19), but the resultant pseudo-document can
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5.5 Experimental Evaluation

This section reports the experiments carried out with the purpose of evaluating the

implementations of CoFE and DREx regarding topic discovery quality on short text.

Experiments are organized in five phases:

1. Preliminary evaluation of CoFE and DREx implementations by applying LDA

over expanded datasets, varying paremeter M (desired lenght of documents after

expansion) for both algorithms and different word vector models for DREx;

2. Analysis of topics and pseudo-documents generated by CoFE and DREx;

3. Evaluation of the best method obtained in the phase 1 (LDA with DREx, M = 60

and GloVe word vector model) with pure LDA and other pseudo-document-based

topic modeling techniques;

4. Evaluation of different combinations of our selected implementation (DREx with

M = 60 and GloVe) with LDA and the state-of-the-art techniques for short text

topic modeling;

5. Evaluation of different combinations of our selected implementation (DREx with

M = 60 and GloVe) with LDA and the state-of-the-art techniques for short text

topic modeling for document classification.

Next we present the datasets used in the experiments, the preprocessing steps, the

evaluation metrics and the experimental setup. Following the results of the mentioned

five phases are presented and explained.

5.5.1 Datasets and text preprocessing

Seven short text datasets were used in the experiments. Four of them, namely,

20nshort, Sanders, Snippets and TMN, are described in Section 4.3.1. The other three

datasets are:

• Tweets NBA (NBA) – A Twitter dataset collected in August 2015 about the

NBA teams Golden State Warrios (hashtag #warriors) and Los Angeles Lakers

(#lakers)6.

• Tweets Politics (Politics) – A Twitter dataset collected in August 2015 about the

political parties Democrats (hashtag #democrats) and Republicans (#republi-

cans)6.
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Table 5.1: Datasets statistics.

Dataset #Docs Vocabulary size #Classes Words/doc Unique words/doc

TMN 30376 6314 7 4.9 (±1.5) 4.9 (±1.5)
NBA 70707 12504 - 8.6 (±3.0) 8.4 (±3.0)
Politics 70712 15029 - 8.1 (±2.6) 8.0 (±2.5)
20Nshort 1723 964 20 8.2 (±3.5) 7.1 (±2.9)
Sanders 3770 1311 4 6.1 (±2.7) 5.8 (±2.5)
Snippets 12117 4677 8 14.3 (±4.4) 10.3 (±3.1)
CLEF 1001 1639 - 6.3 (±2.8) 6.0 (±2.6)

• CLEF 2012 Tweet Contextualization (CLEF) – a collection of tweets from infor-

mative accounts (e.g. CNN)1, created for the INEX 2012 Tweet Contextualization

track at CLEF conference.

Figure 5.1 shows that datasets have few words per document on average (columns

“Words/doc” and “Unique words/doc”) and small standard deviation. The largest

datasets are NBA and Politics (≈ 70,000 docs) and the smallest is 20Nshort (1,723

docs). The vocabulary size also presents a large variation (from 964 in 20Nshort to

15,029 in Politics). Only four datasets have a set of predefined classes, namely, TMN,

20Nshort, Sanders and Snippets. CLEF has no labels at all, while NBA and Politics

have hashtags, which can be indirectly used to label data, but not classes.

Datasets were preprocessed according to the same steps described in Section 4.3.2.

5.5.2 Evaluation Metrics

Experiments were planed to assess both the quality of topic modeling and the power of

the representation of documents using topics. In the latter case, documents are repre-

sented as vectors of probability distributions over topics and subjected to a classifica-

tion task. We have selected one evaluation metric for each problem, namely, normalized

pointwise mutual information score (NPMI-score) (Bouma [2009]) for evaluating topics

and macro-average F1 score (Yang and Liu [1999]) for document classification.

The NPMI-score is the normalized version of the PMI-score (Newman et al.

[2010]), which verifies if semantic agreement between pairs of words in a topic model

is coherent with co-occurrence patterns of these words in a larger external reference

dataset.

The co-occurrence frequency of words wi and wj in a sliding window of arbitrary

size (in our case, 10 words) is the basis for the estimation of the probability p(wi, wj).

According to Equation 5.3, when wi and wj always occur together in the external
1Available at: http://inex.mmci.uni-saarland.de/data/documentcollection.html#qa

http://inex.mmci.uni-saarland.de/data/documentcollection.html#qa
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dataset, then NPMI(wi, wj) = 1, and when they never occur together, NPMI(wi, wj) =

−1. The NPMI-score for a topic is calculated with Equation 5.4, where t is the topic

and Wk is the k most probable words for t, and represents the mean of all NPMI(wi, wj)

for all wi, wj ∈ Wk, i 6= j.

NPMI(wi, wj) = ln
p(wi, wj)

p(wi)p(wj)
/− ln p(wi, wj) (5.3)

NPMI-score(t;Wk) =
k∑

i=2

i−1∑

j=1

NPMI(wi, wj)/k(k − 1) (5.4)

The NPMI-score for a topic model is the mean of the NPMI-score for all topics. In

our experiments, k = 10 and the external dataset was a sample of 15,000,000 documents

from the WMT11 news corpus2. We used the NPMI-score implementation described

in Röder et al. [2015].

The NPMI metric has a strong correlation with human judgement (Lau et al.

[2014]), the main reason why it was selected. Note that the PMI and NPMI, as de-

scribed in Röder et al. [2015]; Lau et al. [2014]; Nguyen et al. [2015]; Li et al. [2016];

Zuo et al. [2016a], are extrinsic metrics, i.e. they use an external dataset instead of the

topic model target dataset. The usage of an external dataset reinforces an independent

evaluation of topics.

An important point to be clarified with regard to the NPMI between two words

x and y is that they are normalized in the interval [−1, 1], −1 being interpreted as

no co-occurrence of x and y in the reference corpus, 0 as independence, i.e. x and y

co-occur randomly in the reference corpus, and 1 as complete dependence, i.e. x and

y always co-occur in the reference corpus (Bouma [2009]). If the reference corpus is

the target dataset, naturally NPMI becomes an intrinsic metric and tends to present

higher values, because the topic model was built over the co-occurrence patterns of

the same data3. When the reference corpus is an external dataset – usually large and

with a broader set of domains and topics – it is natural that, on average, NPMI values

are lower, as previously reported in literature (Lau et al. [2014]; Nguyen et al. [2015]).

This is the reason why most NPMI values reported in this thesis are negative and near

zero. Nevertheless, in this case, NPMI values remain useful for comparative purposes.

The macro-average F1 score metric is the same described in Section 4.3.4.
2Available at: http://www.statmt.org/wmt11/training-monolingual.tgz.
3This is the case of Viegas et al. [2019]

http://www.statmt.org/wmt11/training-monolingual.tgz
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5.5.3 Parameter setting

This section details the parameter settings for the methods used in the experiments.

All word vectors used in the experiments have 300 dimensions and were generated

using the original versions of SG, CBOW and GloVe (see Section 2.3 for details). The

training dataset was a dump of the English Wikipedia from 06/02/2015, with 8,102,107

documents and a vocabulary of 2,120,659 words. The size of the context window was

set to 10. SG and CBOW used both negative sampling with 5 negative examples and

default initial learning rate of 0.025 and 0.05, respectively. GloVe used the default

parameter values suggested by Pennington et al. [2014], i.e. xmax = 100 and α = 0.75.

CoFE and DREx were initially tested with M assuming values 30, 40, 50 and

60. Initially DREx used all word vectors configurations, after which assumed GloVe

vectors of size 300 and M = 60.

Topic models LDA, LF-LDA and BTM share four parameters: (1) the number of

topics k, which assumed values 20, 50 and 100; (2) the prior α and β for the Dirichlet

distribution, which regulate the symmetry of topic per document and word per topic

probabilities, respectively, and in our experiments were estimated in execution time

using the Minka’s fixed point iteration method (Minka [2000]); and (3) the number of

sampling iterations, set to 2000.

It is important to notice that defining the number of topics for a collection is still

an open problem, and that is why we varied the values in a similar way as done in the

literature, including the original papers of baselines (Nguyen et al. [2015]; Yan et al.

[2013]; Zuo et al. [2016b]).

LF-LDA has two extra parameters, which are the word vectors and the mixture

factor λ. Regarding word vectors, we used GloVe vectors of size 300 from Wikipedia.

The factor λ assumed the value 0.6, as suggested in Nguyen et al. [2015].

In the document classification experiment, we used a support vector machine

(SVM) classifier (Cortes and Vapnik [1995]) with Gaussian kernel, which had parame-

ters γ and C tuned using a grid search procedure. Features describing the documents

were derived from the posterior distribution of 20 topics per document.

Experiments for evaluation of topics were repeated 5 times. The experiments of

document classification were performed with 5 replications of a 5-fold cross validation

(1 fold for tuning SVM parameters through grid search, 3 folds for training the model

and 1 fold for testing it), totalizing 25 repetitions. All experiments were statistically

validated with the non-parametric Wilcoxon signed-rank hyphotesis test over the means

with 0.05 of significance level.
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Table 5.2: Average results of NPMI for CoFE and DREx run with LDA (mean of
different values of M).

20 Topics 50 Topics 100 Topics 20 Topics 50 Topics 100 Topics

NBA Politics

CoFE -0.130 -0.145 -0.149 -0.099 -0.116 -0.130
DREx-CBOW -0.073 -0.083 -0.099 -0.033 -0.064 -0.084
DREx-GloVe -0.033 -0.023 -0.025 0.020 0.018 0.006

DREx-SG -0.045 -0.045 -0.051 -0.006 -0.024 -0.041

Sanders 20Nshort

CoFE -0.124 -0.143 -0.146 -0.191 -0.204 -0.205
DREx-CBOW -0.019 -0.053 -0.078 -0.076 -0.107 -0.129
DREx-GloVe 0.040 0.011 -0.005 0.010 -0.029 -0.060

DREx-SG -0.021 -0.051 -0.078 -0.091 -0.141 -0.166

TMN Snippets

CoFE -0.035 -0.067 -0.108 -0.024 -0.062 -0.083
DREx-CBOW 0.003 -0.023 -0.047 0.006 -0.018 -0.046
DREx-GloVe 0.060 0.062 0.053 0.057 0.047 0.023

DREx-SG -0.041 -0.056 -0.076 -0.018 -0.029 -0.062

CLEF

CoFE -0.138 -0.152 -0.154
DREx-CBOW -0.053 -0.063 -0.085
DREx-GloVe 0.011 0.001 -0.028

DREx-SG -0.091 -0.101 -0.116

5.5.4 CoFE and DREx Parameter Analysis

We compare the performance of CoFE and DREx for topic modeling in all seven

datasets when combined with LDA, varying the values of parameters k (number of

topics: 20, 50, 100), M (target document size after expansion: 30, 40, 50, 60) and

word vector model (SG, CBOW, GloVe). Combining methods with the different values

of M , k and word vector models, we reported 48 results (mean over 5 replications

each). They are detailed in Appendix A.

Table 5.2 shows summarized results for each method, averaging over the values

of NPMI relative to variations of M , where values in bold show the best statistically

significant results. Notice that DREx-GloVe shows the best values of NPMI in all

datasets, except in the NBA dataset for 20 topics, where it ties with DREx-SG. Detailed

results in appendix A suggest the adoption of DREx-GloVe-60 (i.e. DREx combined

with GloVe considering M = 60), since it was the combination with the best overall

results.

The intuition behind the fact that DREx performs better than CoFE in any

scenario is related to the difference in the generality of words added to documents for

CoFE and DREx. While CoFE uses semantic relationship of words considering only

the target dataset, DREx works in a broader domain by exploiting word vectors built
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over an external general dataset like Wikipedia. Moreover, in the similarity graph of

DREx, the expansion words are sorted by similarity to the sum of n-grams word vectors.

In other words, DREx also uses the semantic properties of word vector operations to

discover more suitable expansion words.

NPMI values decrease when k increases. This is because the number of predefined

classes of the datasets is at most 20. A much higher number of topics can worsen the

quality of inferred topics, because this eventually forces the allocation of documents

with similar characteristics to different majoritary topic distributions.

5.5.5 Analysis of Topics and Pseudo-documents Generated by

CoFE and DREx

We analyzed the distribution of the 10 most probable words for 20 topics discovered

with LDA over the Snippets dataset expanded with both CoFE and DREX-GloVe-

60 (as it presented the best overall results), regarding the most probable classes for

the topics4, namely: (1) business; (2) computers; (3) culture-arts-entertainment; (4)

education-science; (5) sports; (6) politics-society; (7) engineering; and (8) health.

The results are shown in Table 5.3, whose columns indicate: a sequential topic

number; the most probable words of CoFE; the most probable words of DREx; the

likely classes (when CoFE and DREx do not agree, two classes are shown); and the co-

sine similarity between CoFE and DREx topics (probability distributions over words).

Topics are paired and ordered in the table according to degree of similarity. It is

expected that good topics be aligned with one of the dataset classes.

The majority of topics in Table 5.3 are easily identified as belonging to specific

classes. For example, topics 1, 2 and 3 are clearly about engineering, health and sports,

respectively. Exceptions are topics 11 and 15, where models seem to disagree about

categories.

A general observation of data in this table is that CoFE adds more context-

specific words than DREx. For example, in topic 4 (about computers) we see DREx

producing words like “hardware” – which is less context-specific than “cpu” or “intel”

– with higher probabilities in CoFE. Under the NPMI evaluation perspective, general

concepts like the ones exploited by DREx tend to produce better results.

We also analyzed the expansion words to see if the proposed expansion methods

change the original meaning of documents. Particularly, this potentially happens with

high values of M and very short documents (i.e. with little discriminative words),

when the generated expansion graphs have edges with low weights and almost uniform
4According to visual inspection of words of topics and likely classes.
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probabilities of selecting expansion words. In this scenario, the result is the potential

generation of almost random pseudo-documents.

Table 5.3: Topics discovered by LDA for Web snippets expanded by CoFE and DREx-
GloVe. Column class indicates the respective dataset class(es) the topic refers to.
Column Sim indicates the cosine similarity for topics in the same row.

# CoFE DREx class sim

1
car engine electrical motor wheels car engine cars equipment manufacturing

7 0.75
electric cars gear fuel automatic electrical vehicle motor components

2
health cancer medical disease healthy health medical care treatment cancer

8 0.74
nutrition information diet treatment hiv patients disease patient medicine clinical

3
sports football games news game sports football soccer league teams

5 0.74
soccer com league team scores game basketball games sport team

4
intel computer memory chip processor computer hardware computers intel

2 0.72
device cpu cache core pentium software processor memory computing

5
political democracy party democratic political government politics party

6 0.71
social politics parties communist democratic election democracy

6
research edu science university school university graduate edu faculty education

4 0.70
department graduate program students college student students school harvard

7
news information online yahoo web information web online internet links

2, 4 0.65
directory com search sites links external google search websites blog

8
business trade services management business industry financial market

1 0.65
marketing gov development international companies company investment finance

9
movie movies film imdb awards music movie film video movies

3 0.64
actor video director academy tom feature best films shows released

10
software programming computer web data computer software systems application

2 0.61
java systems linux code parallel applications internet information based

11
wikipedia encyclopedia wiki culture wikipedia articles article wiki https

3, 4 0.61
history article American ancient category pages org page encyclopedia doesn

12
theory physics quantum philosophy theory theoretical analysis methods

4 0.55
theorem mathematical newton mathematical instance physics concepts

13
journal theoretical journals biology natural research science study scientific

4 0.40
paper papers research theory evolution technology studies institute development

14
music art rock band pop art work works gallery museum

3 0.40
classical artists lyrics arts album arts photo collection artist painting

15
amazon com books fashion online published book books publications

4 0.35
selection design book shopping manga journal publication literature work

16
system gov house government president development public business government

6 0.27
presidential republic united congress education economic information

17
war military navy force air culture history american world part

3, 4 0.17
army nuclear revolution civil weapons united europe modern america first

18
tickets tennis golf ski buy news media coverage cnn chicago

5, 3 0.17
chicago grand diego maradona woods broadcast bbc interview york washington

19
market stock finance financial exchange food health healthy diet nutrition

1, 8 0.05
bank investment income quotes money calorie eating fitness eat foods

20
network internet security wireless education students teaching learning

2, 4 0.04
bandwidth test mobile speed access school learn work help experience

Table 5.4 shows the most frequent words added to documents of categories busi-

ness and health in the Snippets and TMN datasets, using DREx-GloVe and CoFE.

Each word is followed by its frequency. Results weaken the hyphotesis raised in the

last paragraph, since methods do not seem to degenerate the original meaning of the

documents, but there are clear differences between CoFE and DREx. First, in most

cases DREx adds less words than CoFE, and includes the same relevant words to a

greater number of documents. Second, as already confirmed in Table 5.3, CoFE adds
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Table 5.4: List of words most frequently added to documents labeled as health and
business. For both CoFE and DREx, the target document size M is to 60. Each word
is followed by the number of times it was added to that class documents.

CoFE DREx-GloVe CoFE DREx-GloVe

Snippets

business health

finance (150) business (1109) medical (133) health (803)
financial (136) financial (856) health (133) medical (646)
services (128) industry (809) disease (124) care (586)
business (118) development (712) care (119) research (527)

information (114) information (683) nih (110) education (518)
market (113) investment (659) nutrition (107) patients (499)

research (111) management (602) treatment (105) treatment (495)
online (108) companies (586) symptoms (105) information (484)
money (107) finance (573) diseases (104) study (464)

news (106) based (550) research (101) patient (421)

TMN

business health

stocks (429) time (1380) study (195) health (373)
prices (392) financial (1296) risk (188) patients (344)
billion (390) business (1120) cancer (184) due (338)

oil (362) investment (1026) heart (163) care (321)
rise (357) increase (977) drug (158) treatment (300)

profit (356) money (924) linked (156) disease (299)
shares (354) market (894) diabetes (147) time (294)
report (347) make (867) drugs (147) medical (240)

sales (346) due (818) disease (132) make (238)
higher (343) brought (679) kids (131) life (233)

words that are more context-specific than DREx. For example, in the health class

of the TMN dataset, DREx produces the word “health” as the most frequent, while

CoFE adds more specific terms, like names of diseases (DREx simply adds the word

“disease”).

Table 5.5 shows examples of TMN documents (one for each category) and the

respective expansion words selected by DREx-GloVe. We can see the overall semantic

agreement between the original and expanded words.

5.5.6 Comparison of DREx with State-of-the-art methods

The previous section showed that LDA combined with DREx-GloVe (M = 60) presents

the best results for NPMI when compared to CoFE. This result reinforces the hypoth-
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Table 5.5: Examples of TMN documents expanded by DREx-GloVe. The last column
shows the selected words during the document expansion step.

Class Original text Words added by DREx
Business delta air lines q1 loss grows to

$318 million
flight due grown base force bil-
lion line lose grow losing jet
growing service reaches aircraft
lost operations makes

Entertainment “like a rolling stone” dylan’s best
song

miller bob love rolling called
singer rock written songs album
band wall ones recording times
gave live tribute features music

Health fda to regulate e-cigarettes as to-
bacco products

produce smoking restricting
drug approved company increase
drugs manufacturing drink
marijuana food smoke reduce
industry alcohol regulatory

Science &
Technology

apple co-founder wozniak: com-
puters can teach kids

company students early learn
ceo computer programs allowed
teaching founders dedicated read
business teachers based com-
puting studying lessons children
named

Sports nadal cruises past ljubicic into
quarters

future open beginning rafael fed-
erer tennis djokovic day half
cruise sharapova sets years run-
ner roddick finals ferrer time
days

US arizona supreme court stays exe-
cution

oregon cases appeals leave states
case rest court appeal justice
judge ruling kansas texas state
months takes oklahoma courts
remain nevada united california
finally

esis that word vector models, which capture complex semantics of words, are more

appropriate to expand documents than a co-occurrence-based approach. In this sec-

tion we compare DREx with pure LDA and other state-of-the-art document expansion

methods, namely, LDA-#, WNTM and STE (see Sections 3.2.3, 3.2.2 and 3.2.1 for a

description of these methods). In order to make comparisons fair, STE was adapted

to contemplate the parameter M , which in any case was set to 60.

Table 5.6 compares the values of NPMI obtained for each method, varying

datasets and the number of topics. Since LDA-# is specific for Twitter data with

hashtags, it can only be applied to the NBA, Politics and CLEF datasets. The Sanders
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Table 5.6: Results of NPMI for document expansion methods.

20 topics 50 topics 100 topics 20 topics 50 topics 100 topics

Topic Model NBA Politics

LDA - Original -0.158 -0.156 -0.154 -0.072 -0.090 -0.095
LDA-DREx-GloVe-60 -0.037 -0.019 -0.021 0.024 0.018 0.006
LDA-# -0.158 -0.151 -0.153 -0.124 -0.116 -0.117
WNTM -0.135 -0.141 -0.135 -0.086 -0.089 -0.099
STE -0.087 -0.070 -0.069 -0.043 -0.045 -0.055

Sanders 20Nshort

LDA - Original -0.087 -0.099 -0.116 -0.184 -0.188 -0.193
LDA-DREx-GloVe-60 0.047 0.015 -0.002 0.009 -0.029 -0.056
WNTM -0.085 -0.113 -0.125 -0.194 -0.194 -0.198
STE -0.156 -0.164 -0.170 -0.232 -0.241 -0.239

TMN Snippets

LDA - Original -0.062 -0.056 -0.085 -0.061 -0.102 -0.106
LDA-DREx-GloVe-60 0.056 0.062 0.058 0.061 0.050 0.030
WNTM -0.026 -0.047 -0.067 0.004 -0.034 -0.064
STE -0.245 -0.217 -0.220 -0.115 -0.141 -0.153

CLEF

LDA - Original -0.137 -0.140 -0.135
LDA-DREx-GloVe-60 0.008 0.004 -0.026
LDA-# -0.114 -0.125 -0.126
WNTM -0.149 -0.139 -0.141
STE -0.176 -0.178 -0.175

dataset, despite being a collection of tweets, has no hashtag information.

DREx-GloVe-60 combined with LDA was better than other baselines in all

datasets for any number of topics. LDA-# was better than pure LDA only in one out of

three datasets. STE was better than LDA in three out of seven datasets and WNTM

in two out of seven. This shows that state-of-the-art baselines in pseudo-document

generation eventually present better results than LDA, and that DREx-GloVe repre-

sents a breakthrough over the baselines. Ultimately this is due to the robustness of the

combination of word vector representations trained with an external large dataset and

a general framework to document expansion.

5.5.7 Combining DREx with Topic Models for Short Text

The previous section compared DREx against other document expansion methods. In

this section, we evaluate the combination of DREx with LDA and the state-of-the-art

topic modeling techniques for short text, namely, LF-LDA and BTM. The objective

is to understand the effect of the expansion method over the topic models, comparing

the quality of topics discovered with the original text paired with the quality of topics

discovered with the text expanded with DREx-GloVe-60.
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Table 5.7: NPMI values for LDA, LF-LDA and BTM methods with 20 topics con-
sidering both the original and expanded versions (DREx-GloVe-60) of the dataset.
Percentage of improvement of expansion are in parenthesis.

Dataset Original DREx-GloVe Original DREx-GloVe

NBA Politics

LDA -0.158 -0.037 (76.58%) -0.072 0.024 (133.33%)
LF-LDA -0.149 -0.014 (90.60%) -0.059 0.027 (145.76%)
BTM -0.168 -0.036 (78.57%) -0.085 0.022 (125.88%)

Sanders 20Nshort

LDA -0.087 0.047 (154.02%) -0.184 0.009 (104.89%)
LF-LDA -0.079 0.055 (169.62%) -0.179 0.019 (110.61%)
BTM -0.085 0.038 (144.71%) -0.202 0.005 (102.48%)

TMN Snippets

LDA -0.062 0.056 (190.32%) -0.061 0.061 (200.00%)
LF-LDA -0.039 0.055 (241.03%) -0.061 0.069 (213.11%)
BTM -0.048 0.070 (245.83%) -0.042 0.082 (295.24%)

CLEF

LDA -0.137 0.008 (106.01%)
LF-LDA -0.129 0.013 (110.07%)
BTM -0.149 0.001 (110.07%)

Results are shown in Table 5.7. We used 20 topics in all experiments, due the

time complexity of methods and the fact that previous experiments demonstrated that

NPMI is degraded with higher number of topics for the used datasets. In all cases

the results show statistically significant improvement of the expanded version with

DREx over the non-expanded ones. Improvements range from 76.58% (LDA on NBA

dataset) to 295.24% (BTM on Snippets dataset). Despite this impressive improvement

in percentage terms, these results should not be overrated due to the very low absolute

values of NPMI.

The best results of DREx shows that this implementation of the expansion frame-

work can be used to overcome the low co-occurrence frequency problem in short text

without the need of a specific topic modeling technique, since it works on the text in-

put. Notice that the best overall results were obtained with the application of LF-LDA

(5 out of 7) or BTM (2 out of 7).
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Table 5.8: Classification results of mean macro-average F1 score when representing
documents by topics extracted from original and expanded documents. Percentage
improvements of expansion are in parenthesis.

LDA BTM LF-LDA
Original DREx-GloVe Original DREx-GloVe Original DREx-GloVe

20Nshort 0.216 0.24 (+11.1%) 0.252 0.267 (+5.8%) 0.239 0.235 (-1.6%)
TMN 0.599 0.62 (+3.4%) 0.652 0.689 (+5.7%) 0.618 0.624 (+0.9%)
Sanders 0.842 0.901 (+6.9%) 0.88 0.924 (+4.9%) 0.852 0.899 (+5.5%)
Snippets 0.757 0.836 (+10.4%) 0.857 0.872 (+1.7%) 0.729 0.841 (+15.4%)

5.5.8 Document Classification Task

In this section we evaluate the quality of document representations extracted from LDA,

LF-LDA and BTM models, both for original and expanded datasets (DREx-GloVe-

60). Representations are evaluated through a document classification task, therefore

only the datasets with class information are considered: 20Nshort, TMN, Sanders and

Snippets. The number of classes for each of these datasets are shown in Table 5.1.

We used the posterior probability distribution of topics to create a vector repre-

sentation for documents. This feature set fi for a document di and k topics is defined

according to Equation 5.5. In this experiment, k = 20 (i.e. |fi| = 20). For each topic

model two feature datasets were generated, the first one with the posteriors obtained

from the application of the topic model on the original dataset, and the second one

considering the expanded dataset.

fi = [ p(z1|di), p(z2|di), . . . , p(zk|di) ] (5.5)

Table 5.8 shows the classification results of the mean macro-average F1 score.

Pairs of columns “Original” and “DREx-GloVe” are compared and bold values indicate

the statistically significant best result. Results suggest that, in general, DREx-GloVe

generates better document representations inferred from topics models for classification.

An exception to this assertion is the result for the 20Nshort dataset with LF-LDA, but

the difference is not statistically significant. All other results show improvement when

applying DREx-GloVe.

The results for not expanded datasets presented in Table 5.8 are consistent with

the ones reported in Yan et al. [2013]. However, they point out to the relevance of

DREx in improving even more the classification results through document expansion.

The best overall results are obtained by BTM-DREx.

An important observation is that these results evidence the independence of the

expansion method from subjacent topic modeling techniques. In fact, they reveal a
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potential for consistent improvement in all topic models considered. Also, the suspi-

cion of document meaning degeneration with the application of DREx to datasets is

undermined, since the resultant expanded data contains words that induce topics that

are more discriminative regarding class information.

5.6 Final Remarks

This chapter presented a general framework to expand short text for topic modeling,

from which two implementations were derived, CoFE and DREx. DREx address the

RQ2, showing that the usage of word vectors algebra for text expansion can be explored

to produce a new state-of-the-art method for short text topic modeling.

Preliminary results for NPMI shows that DREx, when combined with GloVe and

M = 60, presents better results than CoFE. Analysis of the most probable words per

topic and expanded documents shows that the best results for DREx can be related

to the addition of less context-specific words into documents, characteristic which is

valued by the NPMI metric.

When compared with baselines for pseudo-document methods, DREx presented

the best results for NPMI. Our proposed expansion method based on word vectors

also consistently improve the results of state-of-the-art method for topic discovery

in short text. This positive result is confirmed with a document classification task.

The realization that DREx expansion can produce all sorts of improvement in topic

modeling related tasks evidences that word vector models carry a lot of useful semantic

information about words that reflects on topics quality.
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Chapter 6

Vec2Graph Topic Model

This chapter presents a novel word embedding-based probabilistic topic model for short

text. The fundamental structure of the proposed model is a word network that repre-

sents the semantic relationship between all pairs of words in a target dataset vocabu-

lary, from which topics are inferred. The adopted strategy purposely ignore word-word

co-occurrence patterns at the level of documents, taking advantage of similar patterns

already represented in word vectors that are learned by algorithms such as Word2Vec,

GloVe and fastText.

The word network is generated by our proposed Vec2Graph1 algorithm, which

has the main advantage of not being based on word-word patterns in short texts,

admittedly underrepresented due the smallness of documents. Therefore, topics are

inferred from a Vec2Graph structure that represents the entire collection, a task that

is accomplished by our Vec2Graph Topic Model (VGTM) method. The advantage of

not considering word patterns in documents for topic discovery brings no cost to the

posterior distribution of topics per document, as they are posteriorly inferred by the

strength of topics in the particular document terms.

VGTM is grounded on the hypothesis that communities (David and Jon [2010])

in the Vec2Graph structure are discriminators of topics. This reason is that, while it

is natural that in social network analysis we understand the link between two “agents”

(usually humans) in a graph as an indicator of social affinity, in a network of words

derived from word embeddings, links are naturally interpreted as semantic affinity. It

turns out that the discovery of high level affinity patterns among nodes in any complex

network is precisely the problem of community detection. Therefore, in the VGTM

method communities are groups of semantically related words, here an approximation

of latent topics in the collection.
1Vec2Graph because it creates a word graph from word vector similarity.
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Among the community detection methods available in complex network anal-

ysis research field, we are particularly interested in those suitable for the discovery

of overlapping communities (Xie et al. [2013]; Fortunato and Hric [2016]), i.e. those

in which nodes can belong to more than one community. This is not a restriction,

since any community detection algorithm can be plugged to VGTM. Our default im-

plementation expects a probabilistic interpretation of topics, so it is expected that a

word can have non-zero probability for more than one topic, what makes overlapping

communities more interesting. Precisely, we use a non-negative matrix factorization

algorithm (Wang et al. [2011]) to ensure that all words have a degree of membership

to all communities (or topics), not only a binary indicator of membership.

Looking at previous works related to VGTM, Wang et al. [2016] presented a

method for Twitter topic modeling using graphs that are derived from hashtags. Chen

et al. [2016] also proposed a graph-based topic model for question answering. Viegas

et al. [2019] proposes an approach in which topics are inferred through non-negative

matrix factorization (Lee and Seung [2001]) applied to document vectors derived from

word embedding-based representations (CluWords).

6.1 Vec2Graph

Vec2Graph2 uses the semantics of words captured by theirs correspondent word vectors.

It uses the cosine similarity of the angle θij between two word vectors ~vi and ~vj, which

is interpreted, to a certain extent, as an estimator of the degree of semantic similarity

between words i and j (Mikolov et al. [2013b]). The Vec2Graph algorithm induces a

word embedding network GC for a corpus C using this estimator.

In GC , nodes are mapped to words and edges are weighted by the degree of

semantic similarity between words (i.e. cosine similarity between word vectors). Docu-

ments are not directly represented in the graph, but they can be obtained by sampling

sub-graphs that correspond to words present on them.

Creation of the corpus graph

Let GC(W,S) be a corpus graph, where W is the set of nodes (words of the vocabulary)

and S the set of edges, where sij ∈ S is an edge that represents the relationship

between nodes i and j. The weight wij of an edge sij is the cosine similarity between
2Code available at: https://github.com/marcelopita/vec2graph (2019/09/23).

https://github.com/marcelopita/vec2graph
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the correspondent word vectors ~vi and ~vj, as shown in Equation 6.1.

wij = cos θij = cos(~vi · ~vj/{||~vi|| · ||~vj||}) (6.1)

The condition for sij ∈ S is the following:

sij ∈ S ⇐⇒ wij ≥ σ, (6.2)

where σ is a threshold that indicates the smallest acceptable similarity between any

pair of words. That is, a pair of words whose similarity is less than σ are not linked in

GC . The restriction 6.2 avoids a fully connected GC and controls the clustering level of

the graph, which is important for the VGTM topic model (described in section 6.2). In

practice, the parameter σ is optimized for the target corpus and Vec2Graph application.

On the other hand, the restriction 6.2 can produce a disconnected graph GC
(i.e. with many connected components). In this case, we relax this restriction by

allowing the creation of edges with weight bellow σ, but only the necessary to make

GC connected. These edges are those that work as bridges between components and

with the highest weight values. Furthermore, this property ensures the existence of at

least one path between every pair of words in GC .

Figure 6.1 shows an example of corpus graph GC for the Sanders dataset, which

consists on tweets related to IT companies3. We used Skip-Gram word vectors of size

1,000 and σ = 0.44.

6.2 Vec2Graph Topic Model

The Vec2Graph Topic Model (VGTM)5 explores the community structure of the corpus

graph GC with the objective of learning a probabilistic topic model. The structure of GC
provides an extended context for words in documents, what is positive for the discovery

of topics, notably in short text.

As a probabilistic topic model, VGTM must provide at least the following set of

posterior probability distributions: probability of topics, probability of words per topic

and probability of topics per document. In the remainder of this section we explain

how VGTM discovers topics in the corpus graph and how they are converted into the

mentioned posterior probability distributions.
3Dataset available at: https://github.com/marcelopita/datasets/blob/master/sanders.csv
4An interactive version of this graph can be found at:

https://homepages.dcc.ufmg.br/∼marcelo.pita/vec2graph/corpus_graph.html
5Code available at: https://github.com/marcelopita/vgtm (2019/09/23).

https://github.com/marcelopita/datasets/blob/master/sanders.csv
https://homepages.dcc.ufmg.br/~marcelo.pita/vec2graph/corpus_graph.html
https://github.com/marcelopita/vgtm
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this perspective, and considering a probabilistic point of view, the degree of membership

of a word to a community becomes a fundamental variable that defines the probability

of words to topics. To achieve this soft clustering of words on the VGTM algorithm,

we have to explore overlapping community techniques.

Topics are extracted from overlapping communities in GC . Naturally, each topic

is represented as a probability distribution over the vocabulary. This means that every

word in GC belongs to all communities, but with different degrees of membership.

Consequently, VGTM demands an overlapping community detection method with full

membership of nodes to communities.

The majority of overlapping community detection methods (Amelio and Pizzuti

[2014]) have the peculiarity of producing communities with little overlapping. An al-

ternative to them are methods based on Non-negative Matrix Factorization (NMF)

(Zarei et al. [2009]; Psorakis et al. [2011]; Wang et al. [2011]; Zhang and Yeung [2012]).

For this purpose, VGTM uses the weighted version of the SNMF (symmetric non-

negative matrix factorization) proposed by Wang et al. [2011], where edges are sym-

metric (i.e. undirected), but weighted by similarities among the correspondent word

vectors. SNMF can be replaced by any other overlapping community detection method

with full membership of nodes. Note that the use of NMF as an overlapping commu-

nity detector here is different from the classic use of NMF for topic modeling. In

our case, GC produces a word-word adjacency matrix, while in the traditional case

document-term TF-IDF matrices are usually employed.

Let G ∈ R
V×V be the symmetric adjacency matrix of GC , where V is the corpus

vocabulary. The matrix G is usually sparse, because the threshold σ reduces the

number of neighbors per node. Therefore, since we have potentially many zero values

in G, we reduce the frequency of zero probabilities by replacing all zeros by a very

small number (in our current implementation, 10−4). The NMF of G with rank k is

the approximation G ≈ XA, where A is the k × |V | community-word (or topic-word)

affinity matrix. From A, VGTM infers the following probabilities:

• The posterior probability of topics per word, P (t|w);

• The posterior probability of words per topic, P (w|t);

• The posterior probability of topics, P (t);

• The posterior probability of topics per document, P (t|d).
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6.2.2 Probability of topics per word

To obtain the probability of topics per word, rows of the matrix A (i.e. words) must

be normalized such that
∑

t Awt = 1, i.e. the affinity of topics to a word w sums 1. In

other words, each value of a row for a word w can be interpreted as the probability of

w belonging to topic t.

Figure 6.2 illustrates an example with the corpus graph for the Sanders dataset6.

In this example we use Skip-Gram word vectors of size 1000 and σ = 0.4. In VGTM

we define k = 5 (i.e. 5 topics)7. Nodes in the graph of Figure 6.2 are drawn as small

pie charts with colored slices indicating the proportion of topics. Note the regions

dominated by specific topics (topics 2, 3 and 4), as well as the mixture of topics (topics

1 and 5). With the exception of topic 3 (Technology), all other topics in this example

capture the notion of idiom (Spanish, Dutch and English).

6.2.3 Probability of words per topic

The probability of words per topic is the inferred posterior probability distribution used

to characterize topics. To obtain this distribution, columns of A (i.e. topics) must be

normalized such that
∑

w Awt = 1, i.e. the affinity of all words to a topic t sums 1. In

other words, each value of a column for a topic t can be interpreted as the probability

of t being represented by the word w. Figure 6.3 shows the top-10 words (in terms of

probability) for the topics 1, 2 and 3 illustrated in Figure 6.2 (topic colors remain the

same).

6.2.4 Probability of topics

Topics appear in different proportions in the dataset. We infer the posterior probability

of a topic t, P (t), from A by adding up the proportion of t in each word and normalizing

this value by the proportions of all other topics in the words, according to Equation 6.3.

Figure 6.4 shows the proportion of topics for the Sanders corpus graph of Figure 6.2

(topic colors remain the same).

P (t) =

∑

w P (t|w)
∑

j

∑

w P (j|w)
(6.3)

6Dataset available at: https://github.com/marcelopita/datasets/blob/master/sanders.

csv
7An interactive version of this graph can be found at: https://homepages.dcc.ufmg.br/

~marcelo.pita/vgtm/sanders.html

https://github.com/marcelopita/datasets/blob/master/sanders.csv
https://github.com/marcelopita/datasets/blob/master/sanders.csv
https://homepages.dcc.ufmg.br/~marcelo.pita/vgtm/sanders.html
https://homepages.dcc.ufmg.br/~marcelo.pita/vgtm/sanders.html
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Figure 6.3: Probability distribution of top-10 words per topic (“Spanish”, “Dutch” and
“Technology”) for the Sanders dataset inferred with VGTM, 5 topics, for a Vec2Graph
corpus graph, σ = 0.4.
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Figure 6.4: Posterior probability distribution of topics for the VGTM, Vec2Graph
corpus graph with σ = 0.4, applied to the Sanders dataset.

6.3 Complexity analysis

The Vec2Graph algorithm creates a corpus graph with |V | vertices, where V is the

vocabulary, demanding |V |(|V | − 1)/2 word vector cosine distance operations, that is,
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O(|V |2). This implementation of VGTM algorithm internally runs NMF with rank k

(number of topics) over the |V |× |V | matrix GC , for overlapping community detection.

We use an implementation based on Févotte and Idier [2011], which is O(k × |V |2).

The posterior probabilities are calculated over the k× |V | matrix A. P (w|t) and P (t)

are both obtained in O(k), while P (t|w) in O(|V |). The probability of topics per

document, P (t|d), depends on the number of words per document, |V | in the worst

case, and k, resulting in a complexity O(|V |+ k). The overall complexity of VGTM is

O(|V |2 + k|V |2 + 3|k|+ 2|V |) = O(k|V |2).

6.4 Experimental analysis

We evaluated the coherence of topics generated by the VGTM method when applied

to four short text benchmark datasets, as well as two real-world applications short text

datasets. We start the experimental analysis by assessing the impact of the σ parameter

(Vec2Graph similarity threshold) on the results, then compare the best results found

with consolidated topic models and state-of-the-art topic models for short text. Next,

structural patterns of the corpus graph are analyzed to help understanding which

factors actually interfere with the coherence of topics in VGTM.

The experiments reported in this chapter used the same four short text dataset

introduced in Section 4.3.1. Additionally, two real-world industry short text datasets

were used in the experiments: SERPRO Courses’ Objectives (Courses); and SER-

PRO Customer Service Messages (Customers). Table 6.1 shows some statistics for the

datasets, all of them with few words per document on average (column w/doc) and

unique words per document on average (column unique w/doc). This information was

partially introduced in Sections 4.3.1 and 5.5.1, but is repeated here for convenience.

All datasets have class labels. The Courses and Customers datasets were manually

labeled by experts and attendants, respectively.

Datasets were preprocessed following the same steps described in Section 4.3.2.

Topic models were evaluated using the NPMI score, described in Section 5.5.2.
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Table 6.1: Statistics for the short text datasets. Columns indicate (left to right):
dataset identifier; number of documents; vocabulary size (number of different terms);
number of classes or categories; average number of words per document; and average
number of unique (distinct) words per document.

Dataset #docs Vocab. size #classes w/doc unique w/doc

20Nshort 1723 964 20 8.2 (±3.5) 7.1 (±2.9)
Sanders 3770 1311 4 6.1 (±2.7) 5.8 (±2.5)
Snippets 12117 4677 8 14.3 (±4.4) 10.3 (±3.1)
TMN 30376 6314 7 4.9 (±1.5) 4.9 (±1.5)
Courses 1706 4791 25 17.3 (±11.2) 16.1 (±9.5)
Customers 17438 19679 13 30.1 (±15.3) 26.6 (±12.5)

6.4.1 Experimental setup

We chose as baselines the widely used topic models LDA8 and BTM9. We also con-

sidered as baselines the methods for short text DREx10, GPU-DMM11, SeaNMF12 and

CluWords13.

For all these methods, the number of topics k assumed values 20, 50 and 100,

similar to values used in original papers of the baselines (Yan et al. [2013]; Bicalho et al.

[2017]). Regarding LDA parameters, the values of α and β (Dirichlet prior distribu-

tions) were optimized using the fixed point iteration method proposed by Minka [2000].

The algorithm ran for 2000 iterations. BTM also performed with 2000 iterations, with

β = 0.005 and α = 50/k, as indicated in Yan et al. [2013].

DREx, GPU-DMM, CluWords and VGTM use pre-trained word vectors. For

English datasets (20nshort, Sanders, Snippets and TMN), word vectors were obtained

from a English Wikipedia dump dated from 2015/06/0214, using the Skip-Gram model

with 1000 dimensions, context window of size 10, negative sampling and initial learning

rate of 0.025. Pre-trained Portuguese word vectors, used for the datasets Courses and

Customers, were obtained from the STIL Corpora 2017 (Hartmann et al. [2017])15,

using the fastText Skip-Gram model (Bojanowski et al. [2016]) with 1000 dimensions.

DREx enriches short texts using correlated words to produce longer pseudo-

documents. However, it is not a topic modeling algorithm, so it must be used in
8Code available at: https://github.com/gabrielmip/LDAOpt (2019/09/23).
9Code available at: https://github.com/xiaohuiyan/BTM (2019/09/23).

10Code available at: https://github.com/marcelopita/drex_published (2019/11/06).
11GPU-DMM implementation of the STTM tool (Qiang et al. [2018]). Code available at: https:

//github.com/qiang2100/STTM (2019/09/23).
12Code available at: https://github.com/tshi04/SeaNMF (2019/09/23).
13Code available at: https://github.com/feliperviegas/cluwords (2020/12/20).
14Data extracted from a XML file containing 8,102,107 articles and 2,120,659 words.
15Data extracted from 17 Brazilian and European Portuguese corpora totalizing 1,395,926,282

words. Available at: http://www.nilc.icmc.usp.br/embeddings.

https://github.com/gabrielmip/LDAOpt
https://github.com/xiaohuiyan/BTM
https://github.com/marcelopita/drex_published
https://github.com/qiang2100/STTM
https://github.com/qiang2100/STTM
https://github.com/tshi04/SeaNMF
https://github.com/feliperviegas/cluwords
http://www.nilc.icmc.usp.br/embeddings
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combination with a general purpose topic model for long text. We used it with LDA,

producing the LDA-DREx topic model. DREx ran with M = 60 (target expanded

document size), according to results of the Chapter 5.

The GPU-DMM model used the default parameters proposed in Li et al. [2016],

with α = 0.1 and β = 0.01. The algorithm ran for 2000 iterations, just as in the other

probabilistic graphic topic models analyzed. SeaNMF also used the default parameters

proposed in the original paper (Shi et al. [2018]), with α = 1.0 and β = 0.0, which

means disabling the sparsity constraint.

The CluWords method was parameterized with α = 0.4, the same used in Vie-

gas et al. [2019] (fastText WikiNews word vectors), indicating that only word cosine

similarities above this threshold was considered.

Experiments were repeated 5 times with a 5-fold cross validation, totalizing 25

results per experiment. Results were statistically validated with the non-parametric

Wilcoxon signed-rank test with 0.05 of significance level over means.

6.4.2 Impact of the similarity threshold

We assessed the impact of the parameter σ (similarity threshold) on the quality of the

topics produced by VGTM. It is important to notice that σ has a direct influence on

the connectivity patterns of the Vec2Graph corpus graph GC . Since VGTM uses GC
as the fundamental data structure for topics inference, different patterns can emerge

from variations of σ, which in our experiments ranges from 0.2 to 0.9 in 0.1 intervals.

Figure 6.5 shows the NPMI values (Y-axis) for the VGTM method applied to

the datasets with different values of σ (X-axis) and k (number of topics). We observe

that the best values of σ for the datasets 20nshort, Sanders, Snippets and TMN fall

in the range [0.2, 0.4], with the best general results for σ = 0.4. For the Courses and

Customers datasets, our choice is σ = 0.7, which presents overall higher NPMI values.

The values of NPMI shown in the graphs are listed in the Appendix B.

In general, the values of NPMI for the 20nshort, Sanders, Snippets and TMN

datasets increase monotonically with the values of σ until a global maximum is

achieved, when the values start to decrease. However, the unstable behavior of Snip-

pets, TMN, Courses and Customers datasets deserve a more detailed study, since it

indicates that σ and k are not enough to explain the observed variations in NPMI.

For all datasets, in general, models with 20 topics present higher NPMI absolute

values, which could be attributed to the proximity of this value to the number of class

labels in the data: less than 25 for all datasets (see column #classes of Table 6.1).
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Figure 6.5: Plots of NPMI values (Y-axis) for the VGTM method with different values
of σ (X-axis), considering 20, 50 and 100 topics.
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6.4.3 Comparison with baselines

This section analyses the coherence of topics generated by VGTM, with σ = 0.4 and

σ = 0.7, when compared with the baseline methods, namely LDA, BTM, LDA-DREx,

GPU-DMM, SeaNMF and CluWords. The results are shown in Table 6.2.

In terms of the number of times a method was statistically the best method or

presented no statistical difference to other methods, VGTM was the best with 11 out

of 18 experiments, being statistically the best (with no ties) in 8 out of 18 experiments.

CluWords and LDA-DREx also achieved good performance, both being the best

method or presenting no statistical difference to others in 7 experiments, while SeaNMF

in 2 experiments. CluWords was statistically the best in 3 out of 18, while LDA-DREx

in 1 experiments. LDA, BTM and GPU-DMM obtained the worse results in all cases.

For the real-world datasets Courses and Customers, VGTM with σ = 0.7 had

consistently statistically significant better results than the other methods. On the

other hand, CluWords was consistently the best method in the TMN dataset, with

positive NPMI values for 20 and 50 topics.

The similarities between the operation of VGTM and CluWords, as well as the

good results achieved by both approaches for different datasets, suggest further inves-

tigation on the situations in which each method is more appropriate, which could lead

to a combined method. This is left as a future work.

6.4.4 Analysing structural patterns of the corpus graphs

The properties of the graph generated using Vec2Graph can directly influence the topic

discovery task, as showed in the results in Section 6.4.2. In particular, VGTM presented

an unstable behaviour as the values of σ increased for the Snippets, TMN, Courses and

Customers datasets.

These results may suggest that the corpus graph induced by the similarity thresh-

old σ presents emergent structural properties which are instrumental to achieve better

NPMI results. Some of these properties and their correlation with topic coherence

quality are investigated in this section.

An extensive analysis of structural network metrics was conducted on the corpus

graphs produced by Vec2Graph. The study consisted in selecting the networks gener-

ated by Vec2Graph using all values of σ (similarity threshold) tested, for each dataset

and number of topics. In total, 144 networks were selected (8 σ values, for 6 datasets

and 3 variations of number of topics). We extracted a number of metrics for these

networks, and then calculated the Pearson correlation between network characteristics

and the performance of the topic modeling algorithm (measured by NPMI). It is im-
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Table 6.2: Comparison of NPMI results of VGTM (σ = 0.4 and σ = 0.7) and baselines
for short text datasets. Bold values indicate the best results in the column for a dataset
and k.

20 topics 50 topics 100 topics 20 topics 50 topics 100 topics

20nshort Sanders
LDA -0.188 -0.189 -0.203 -0.085 -0.113 -0.120
BTM -0.211 -0.208 -0.205 -0.088 -0.098 -0.114

LDA-DREx -0.045 -0.073 -0.099 -0.024 -0.047 -0.063
GPU-DMM -0.216 -0.203 -0.204 -0.077 -0.091 -0.101
SeaNMF -0.21 -0.227 -0.228 -0.122 -0.145 -0.143
CluWords -0.137 -0.162 -0.184 -0.014 -0.052 -0.086

VGTM-0.4 -0.056 -0.118 -0.146 -0.012 -0.025 -0.053
VGTM-0.7 -0.150 -0.175 -0.185 -0.040 -0.089 -0.124

Snippets TMN
LDA -0.076 -0.092 -0.107 -0.061 -0.058 -0.079
BTM -0.055 -0.083 -0.087 -0.048 -0.054 -0.064

LDA-DREx -0.023 -0.037 -0.051 -0.061 -0.046 -0.053
GPU-DMM -0.077 -0.09 -0.11 -0.051 -0.063 -0.073
SeaNMF -0.006 -0.057 -0.087 -0.034 -0.075 -0.111
CluWords -0.045 -0.042 -0.058 0.006 0.002 -0.037

VGTM-0.4 -0.072 -0.078 -0.079 -0.052 -0.051 -0.055
VGTM-0.7 -0.103 -0.155 -0.153 -0.108 -0.139 -0.169

Courses Customers
LDA -0.258 -0.243 -0.236 -0.164 -0.161 -0.159
BTM -0.248 -0.242 -0.241 -0.151 -0.151 -0.145

LDA-DREx -0.200 -0.185 -0.181 -0.150 -0.146 -0.144

GPU-DMM -0.233 -0.238 -0.238 -0.151 -0.148 -0.136
SeaNMF -0.183 -0.175 -0.189 -0.099 -0.080 -0.077
CluWords -0.159 -0.167 -0.177 -0.252 -0.264 -0.257

VGTM-0.4 -0.114 -0.123 -0.130 -0.065 -0.072 -0.071
VGTM-0.7 -0.113 -0.119 -0.115 -0.024 -0.029 -0.034

portant to note that this correlation study was done after the networks were already

formed, and not with the goal of optimizing the networks to improve topic modeling

performance.

This analysis found interesting relationships between the network metrics of de-

gree assortativity and transitivity and NPMI values. Figure 6.6 presents the values

for the Pearson correlations, where the color indicates if the correlation is negative

(closer to red) or positive (closer to blue). The ellipses represent the format of the plot

(scatterplot) between every pair of variables. All correlations shown are statistically

significant, with a significance level (p-value) under 0.01.

Degree Assortativity: It measures the preference for nodes that have similar degrees

to attach to each other (Newman [2002, 2003]). The values assumed by this metric,
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graph G = (V,E) is composed by three vertices {u, v, w} ∈ V connected pairwise,

i.e. {(u, v), (v, w)} ∈ E. A triad is considered closed (triangle) if there exists an edge

between the vertices on its ends (u, w) ∈ E. The intuition for interpreting transitivity

comes from social networks studies, when it is interesting to know the fraction of

friendships that began due to a close acquaintance (the idea is that “friends of friends

are also friends”).

In our corpus graph, transitivity means the fraction of similar words w1 and w2

that have another similar word w3 as a neighbor. It gives a general idea of how dense

the network is, and how tightly woven are the communities of similar words.

Our analysis showed that the similarity threshold is strongly negatively correlated

to transitivity (r = −0.86, with p-value < 2 × 10−16), which is plausible because the

higher σ is, the more strict the connectivity constraints are (two words, or nodes, will

only share an edge if their cosine similarity is very high). As σ increases, the graph

tends to have less edges, and is more prone to being disconnected. However, transitivity

correlates positively with NPMI (r = 0.41, with p-value = 0.0046), which makes sense

due to the fact that a high transitivity value for the graph indicates that words connect

to other similar words very easily, therefore forming groups more easily. In these highly

connected networks, it is easier for the VGTM algorithm to find communities of words

that represent a coherent topic, resulting in a high NPMI value. Both correlations are

statistically significant, with p-values under 0.01.

6.5 Final remarks

VGTM uses the highly informative representation of Vec2Graph to infer topics as over-

lapping communities in the corpus graph, addressing the lack of context information

available in short text. The results obtained by VGTM in terms of NPMI were com-

pared to five other state-of-the-art methods for short text topic modeling.

VGTM obtained the best overall results among the compared methods, and they

were particularly expressive for the real-world application datasets.

Note that Vec2Graph is general enough to be not only used in topic modeling for

short text, but also in other tasks that involve language, e.g. text summarization and

query expansion.

The good results of VGTM and CluWords on different datasets deserve further

investigation on how this factor affect their performance, especially because both meth-

ods have a very similar architecture (e.g. both are based on word embedding similarities

above a threshold). This is left as a future work that could lead to a combined approach
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that merge the best characteristics of both models.

The analyses of structural patterns in the corpus graphs showed that there is no

direct relevant correlation between the σ threshold and NPMI. Otherwise, we observe

a significant positive correlation of NPMI with both degree assortativity and transitiv-

ity. In particular, transitivity has a significant negative correlation with σ, indicating

that variations on the threshold do affect NPMI only indirectly. These observations

are consistent with the unstable behavior observed in some results in Section 6.4.2,

suggesting a complex relationship between NPMI and σ.
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Chapter 7

Conclusions and Future Work

This thesis introduced novel methods that explore alternative representations for short

text based on word embeddings in scenarios of text analysis and mining. The infor-

mation provided by word embeddings is explored by the proposed algorithms with the

objective of mitigate the low word co-occurrence frequency problem in collections of

short texts. This problem makes learning methods suffer with the absence of a min-

imal context to capture semantics. The proposed methods focus on two groups of

applications, namely, short text classification and short text topic modeling.

The first contribution of our work was to propose a definition of short text.

The most common definition found in the literature is based on the sparsity of the

corpus’ document-term matrix. However, this definition does not make clear how

sparse this matrix has to be for characterizing a document collection as short text,

as both short and long texts present highly sparse document-term matrices despite

significant differences in machine learning performance. In Chapter 2 we presented a

study that grounds our particular definition. In qualitative terms, we defined short

text as the minimum amount of text needed to express a single thought, connecting

it to the concept of a paragraph. Quantitatively, we analyzed statistics regarding

the number of sentences and the number of words in sentences extracted from real-

world text datasets (Wikipedia and Twitter). We propose a mathematical definition

of smallness of a text, parameterized by a length threshold. We concluded that short

texts are documents shorter than 51 words, a threshold that was used in most datasets

of this thesis. Datasets were characterized according to this definition.

The research questions (RQ) stated in Chapter 1 guided the development of the

proposed methods. Next we detail the contributions, conclusions and future work in

each of these RQ.
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7.1 Strategies for combining word embeddings for

short text classification

RQ1: Which are the most appropriate strategies for combining word em-

beddings to produce representations for short text classification?

Chapter 4 reported an investigation on strategies for creating word embedding-

based representations that improve short text classification. We propose PSO-WAWV,

a method that learns sub-optimal weights for words in documents – represented as

weighted average of words vectors – for document classification.

We analyzed simple word embedding arrangements, including the sum of word

vectors (SWV), average of word vectors (AWV) and TF-IDF-weighted versions of SWV

and AWV. Among these arrangements, AWV presented the best classification results

(F1 score).

PSO-WAWV was compared to TF-IDF, PV (paragraph vector), BOHW (bag of

hyperwords) and AWV. TF-IDF is a strong baseline, but the method demonstrated to

be competitive with AWV and TF-IDF. PSO-WAWV has the advantage of producing

more compact instead of lesser representations than TF-IDF. We verified if a second

level of optimization, namely weighting the dimensions of word embeddings, produced

better results than the original PSO-WAWV, but results presented no statistical dif-

ference. Qualitative results with word clouds for the 20nshort dataset also give some

examples that help understanding which words are overestimated and underestimated

by the heuristic search.

Among directions of future work in RQ1 are:

• Test the proposed methods with other word vector models, such as CBOW and

GloVe;

• Evaluate methods with tasks other than document classification, such as cluster-

ing and query expansion;

• Verify whether the produced document vectors have dimensions that are discrim-

inative regarding topics.

7.2 Word embedding-based short text expansion
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RQ2: Can we enhance short text topic modeling with word embedding-based

text expansion?

A major contribution in RQ2 was the general framework for expansion of short

text, described in Chapter 5. It allows the implementation of different expansion

mechanisms through specific definitions of metric spaces.

As an implementation of the expansion framework, we proposed CoFE, a method

based on a metric space whose elements are the words of the corpus vocabulary and

the distance function is an adaptation of the Jaccard index, which in turn captures the

notion of co-occurrence frequency between pairs of words.

Although CoFE is not our best proposed method in the standard NPMI metric,

preliminary published experiments (Pedrosa et al. [2016]) show that CoFE achieved

state-of-the-art results using the coherence metric (Mimno et al. [2011]). This metric

is similar to NPMI, except that it is based on the co-occurrence of the most probable

words of topics in the analyzed dataset (i.e. not an external dataset, as NPMI). Since

CoFE is precisely defined by the co-occurrence patterns of words in the dataset, it

is expected to produce good results of coherence. Still in Pedrosa et al. [2016], the

distribution of topics per document, derived from the application of LDA over datasets

expanded with CoFE, are used as feature vectors for short document clustering, indi-

cating positive results for CoFE.

These preliminary results were not extensively documented in this thesis, because

the proposed DREx method presented better results in the standard NPMI metric.

This leads us to the contributions related to the RQ2.

The DREx method, another implementation of the general expansion framework,

uses the semantic properties of word vectors to define a metric space whose elements

are bigrams in documents and the distance function is the cosine distance between

word vectors. It presupposes a large external set of word vectors that contains the

collection terms.

We performed evaluations on topic modeling and document classification for a

variety of short text datasets, and compared it with both methods that generate pseudo-

documents and methods for short-text topic modeling.

When compared with the pseudo-document generation methods LDA-#, WNTM

and STE,results showed the superiority of DREx. When compared with short text topic

modeling methods, namely pure LDA, BTM and LF-LDA, applied over the original

datasets and the expanded ones, improvement percentages of NPMI varied from 76.58%

to 295.24%. Large but less impressive improvements were also obtained when using

the distribution of topics per document as predictors for the short text classification
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task.

Future works regarding RQ2 include:

• Exploration of other metric spaces for the framework;

• In DREx, we use the sum of the word embeddings in bigrams from the original

text to find the most similar expansion words. Other ways of combining word

embeddings for n-grams can be explored.

7.3 Probabilistic short text topic model based on

word embedding networks

RQ3: Can we develop a competitive probabilistic short text topic model with

word embedding-based representations?

Chapter 6 presented a new representation for document corpora named

Vec2Graph, which captures patterns of semantic similarity between words in a cor-

pus using the cosine similarity of word vectors. This new representation was exploited

to create a graph-based probabilistic topic model for short text, named Vec2Graph

Topic Model (VGTM). VGTM infers topics as overlapping communities in Vec2Graph

structures. Each word in the corpus graph has different degrees of membership to

topics, from which all the posterior probability distributions are derived.

The Vec2Graph algorithm has a σ threshold parameter that regulates the min-

imum similarity between pairs of words in the graph. We analyzed the impact of a

range of σ values over the VGTM quality (NPMI) on 4 benchmark datasets (20nshort,

Sanders, Snippets and TMN) and 2 real-world application datasets (Courses and Cus-

tomers). VGTM was compared with 6 baselines: LDA, BTM, DREx, GPU-DMM,

SeaNMF and CluWords.

VGTM was statistically the best method or presented no statistical difference in

11 out 18 experiments, being the best with no ties in 8 out of 18 experiments. In this

very experiment, CluWords and DREx shared the second best results. CluWords was

statistically better than the other methods in 3 out of 18 cases, and competitive in 7

out of 18. VGTM was the only winner in the real world datasets, while CluWords the

only winner in the TMN dataset.

The irregular behavior of NPMI value for different values of σ suggested a ex-

ploratory study of the structural properties of the corpus graphs generated. We an-

alyzed the Pearson correlation between the threshold σ, the degree assortativity and
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the transitivity of graphs with the NPMI values obtained. Results showed that there is

no direct relevant correlation between σ and NPMI, but a positive correlation between

NPMI and assortativity and transitivity. Transitivity has a negative correlation with

σ, meaning that variations on σ affect NPMI indirectly.

Directions of future work in RQ3 are the following:

• Use other word vector models, such as GloVe [Pennington et al., 2014], to generate

the graph weights;

• Associate VGTM with an optimization mechanism over the Vec2Graph algorithm

to find corpus graphs that optimize structural metrics that are highly correlated

with topic coherence, such as the ones studied in this paper, i.e., transitivity and

degree assortativity;

• Investigate other overlapping community detection methods than non-negative

matrix factorization;

• Investigate VGTM regarding document representation quality (P (t|d)) using

other tasks, such as document classification and clustering.

• Investigate the factors that affect positively the quality of VGTM and CluWords

methods on different datasets, leading to a combined approach that merge the

best characteristics of both models.

7.4 Publications

The contributions of this thesis generated the following publications:

• Regarding contributions on the RQ1:

Pita, M., & Pappa, G. L. (2018, October). Strategies for Short Text

Representation in the Word Vector Space. In 2018 7th Brazilian Con-

ference on Intelligent Systems (BRACIS) (pp. 266-271). IEEE.

• Regarding contributions on the RQ2:

Pedrosa, G., Pita, M., Bicalho, P., Lacerda, A., & Pappa, G. L. (2016,

October). Topic modeling for short texts with co-occurrence frequency-

based expansion. In 2016 5th Brazilian Conference on Intelligent Sys-

tems (BRACIS) (pp. 277-282). IEEE.
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Bicalho, P., Pita, M., Pedrosa, G., Lacerda, A., & Pappa, G. L. (2017).

A general framework to expand short text for topic modeling. Infor-

mation Sciences, 393, 66-81.

• Regarding contributions on the RQ3:

Pita, M., Nunes, M., & Pappa, G. L. (2019). Probabilistic topic mod-

eling for short text based on word embedding networks. Information

Sciences. (SUBMITTED)
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Appendix A

Detailed results for CoFE and DREx

Here we present detailed results of NPMI for CoFE and DREx combined with LDA.

Experiments probe the number of topics (20,50 and 100), the desired document lenght

after expansion M (30, 40, 50 and 60) and, for DREx, three different word vector

models (CBOW, GloVe and SG). Tables A.1 to A.7 show complete results of NPMI for

all datasets, where the name of the expansion method is followed by its parameters.

Results in bold are the best in the column (Friedman statistical test). Notice that

DREX-GloVe-60 was the best in 12 of 21 tests, among 16 expansion methods.

Table A.1: Detailed NPMI results for CoFE and DREx in the NBA dataset.

NBA
20 Topics 50 Topics 100 Topics

Expansion method NPMI NPMI NPMI
CoFE-30 -0.130(0.005) -0.146(0.004) -0.151(0.003)
CoFE-40 -0.130(0.005) -0.148(0.003) -0.150(0.005)
CoFE-50 -0.134(0.010) -0.149(0.004) -0.152(0.005)
CoFE-60 -0.127(0.007) -0.138(0.006) -0.143(0.005)
DREx-CBOW-30 -0.081(0.011) -0.082(0.003) -0.099(0.006)
DREx-CBOW-40 -0.076(0.009) -0.082(0.007) -0.096(0.005)
DREx-CBOW-50 -0.065(0.011) -0.083(0.006) -0.099(0.004)
DREx-CBOW-60 -0.068(0.010) -0.083(0.005) -0.101(0.003)
DREx-GloVe-30 -0.044(0.004) -0.027(0.005) -0.033(0.005)
DREx-GloVe-40 -0.028(0.011) -0.024(0.006) -0.023(0.002)
DREx-GloVe-50 -0.024(0.012) -0.023(0.007) -0.023(0.006)
DREx-GloVe-60 -0.037(0.009) -0.019(0.007) -0.021(0.002)
DREx-SG-30 -0.071(0.007) -0.055(0.003) -0.059(0.004)
DREx-SG-40 -0.038(0.009) -0.050(0.004) -0.053(0.005)
DREx-SG-50 -0.040(0.007) -0.039(0.006) -0.046(0.004)
DREx-SG-60 -0.031(0.010) -0.038(0.005) -0.047(0.006)
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Table A.2: Detailed NPMI results for CoFE and DREx in the Politics dataset.

Politics
20 Topics 50 Topics 100 Topics

Expansion method NPMI NPMI NPMI
CoFE-30 -0.103(0.004) -0.115(0.004) -0.125(0.007)
CoFE-40 -0.104(0.002) -0.119(0.010) -0.133(0.005)
CoFE-50 -0.092(0.006) -0.117(0.004) -0.131(0.001)
CoFE-60 -0.097(0.008) -0.112(0.007) -0.130(0.002)
DREx-CBOW-30 -0.025(0.011) -0.060(0.007) -0.081(0.006)
DREx-CBOW-40 -0.030(0.006) -0.061(0.004) -0.083(0.005)
DREx-CBOW-50 -0.033(0.011) -0.068(0.008) -0.086(0.005)
DREx-CBOW-60 -0.043(0.009) -0.068(0.008) -0.086(0.002)
DREx-GloVe-30 0.008(0.007) 0.016(0.006) 0.007(0.004)
DREx-GloVe-40 0.024(0.006) 0.020(0.006) 0.008(0.004)
DREx-GloVe-50 0.025(0.007) 0.017(0.004) 0.004(0.002)
DREx-GloVe-60 0.024(0.007) 0.018(0.002) 0.006(0.005)
DREx-SG-30 -0.013(0.010) -0.025(0.005) -0.048(0.005)
DREx-SG-40 -0.001(0.010) -0.024(0.008) -0.040(0.004)
DREx-SG-50 -0.003(0.006) -0.022(0.010) -0.039(0.003)
DREx-SG-60 -0.006(0.008) -0.025(0.010) -0.037(0.005)

Table A.3: Detailed NPMI results for CoFE and DREx in the Sanders dataset.

Sanders
20 Topics 50 Topics 100 Topics

Expansion method NPMI NPMI NPMI
CoFE-30 -0.118(0.012) -0.135(0.004) -0.133(0.006)
CoFE-40 -0.124(0.010) -0.145(0.007) -0.143(0.004)
CoFE-50 -0.127(0.009) -0.139(0.010) -0.149(0.003)
CoFE-60 -0.128(0.008) -0.153(0.006) -0.158(0.002)
DREx-CBOW-30 -0.025(0.011) -0.052(0.006) -0.075(0.006)
DREx-CBOW-40 -0.016(0.016) -0.055(0.006) -0.076(0.004)
DREx-CBOW-50 -0.016(0.013) -0.055(0.007) -0.081(0.005)
DREx-CBOW-60 -0.020(0.006) -0.049(0.008) -0.081(0.001)
DREx-GloVe-30 0.029(0.011) 0.010(0.002) -0.010(0.003)
DREx-GloVe-40 0.043(0.008) 0.008(0.004) -0.008(0.004)
DREx-GloVe-50 0.043(0.005) 0.010(0.008) -0.001(0.002)
DREx-GloVe-60 0.047(0.005) 0.015(0.005) -0.002(0.004)
DREx-SG-30 -0.020(0.005) -0.051(0.006) -0.078(0.004)
DREx-SG-40 -0.023(0.016) -0.051(0.010) -0.080(0.005)
DREx-SG-50 -0.017(0.007) -0.050(0.005) -0.077(0.004)
DREx-SG-60 -0.025(0.003) -0.053(0.005) -0.078(0.005)
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Table A.4: Detailed NPMI results for CoFE and DREx in the 20Nshort dataset.

20Nshort
20 Topics 50 Topics 100 Topics

Expansion method NPMI NPMI NPMI
CoFE-30 -0.185(0.008) -0.204(0.006) -0.208(0.002)
CoFE-40 -0.193(0.009) -0.209(0.004) -0.211(0.004)
CoFE-50 -0.194(0.008) -0.203(0.006) -0.202(0.005)
CoFE-60 -0.194(0.013) -0.199(0.004) -0.200(0.002)
DREx-CBOW-30 -0.075(0.008) -0.109(0.005) -0.131(0.003)
DREx-CBOW-40 -0.082(0.004) -0.109(0.006) -0.128(0.005)
DREx-CBOW-50 -0.068(0.004) -0.102(0.004) -0.131(0.005)
DREx-CBOW-60 -0.078(0.011) -0.109(0.003) -0.127(0.003)
DREx-GloVe-30 0.008(0.006) -0.031(0.007) -0.063(0.005)
DREx-GloVe-40 0.015(0.007) -0.024(0.004) -0.061(0.006)
DREx-GloVe-50 0.009(0.003) -0.031(0.006) -0.058(0.004)
DREx-GloVe-60 0.009(0.011) -0.029(0.007) -0.056(0.004)
DREx-SG-30 -0.085(0.011) -0.141(0.004) -0.167(0.002)
DREx-SG-40 -0.093(0.008) -0.143(0.007) -0.169(0.004)
DREx-SG-50 -0.091(0.010) -0.139(0.006) -0.161(0.002)
DREx-SG-60 -0.094(0.003) -0.140(0.005) -0.165(0.003)

Table A.5: Detailed NPMI results for CoFE and DREx in the TMN dataset.

TMN
20 Topics 50 Topics 100 Topics

Expansion method NPMI NPMI NPMI
CoFE-30 -0.025(0.010) -0.069(0.009) -0.108(0.008)
CoFE-40 -0.042(0.010) -0.070(0.008) -0.108(0.010)
CoFE-50 -0.031(0.012) -0.061(0.012) -0.110(0.004)
CoFE-60 -0.040(0.015) -0.067(0.009) -0.107(0.006)
DREx-CBOW-30 0.003(0.015) -0.019(0.012) -0.038(0.007)
DREx-CBOW-40 0.002(0.015) -0.024(0.002) -0.044(0.004)
DREx-CBOW-50 0.000(0.014) -0.033(0.011) -0.057(0.005)
DREx-CBOW-60 0.006(0.014) -0.018(0.008) -0.051(0.006)
DREx-GloVe-30 0.062(0.007) 0.061(0.005) 0.052(0.003)
DREx-GloVe-40 0.062(0.003) 0.059(0.002) 0.052(0.005)
DREx-GloVe-50 0.061(0.008) 0.063(0.009) 0.049(0.001)
DREx-GloVe-60 0.056(0.011) 0.062(0.005) 0.058(0.004)
DREx-SG-30 -0.046(0.010) -0.057(0.004) -0.081(0.001)
DREx-SG-40 -0.036(0.009) -0.064(0.008) -0.071(0.006)
DREx-SG-50 -0.051(0.016) -0.052(0.009) -0.074(0.011)
DREx-SG-60 -0.034(0.010) -0.052(0.010) -0.078(0.002)



129

Table A.6: Detailed NPMI results for CoFE and DREx in the Snippets dataset.

Snippets
20 Topics 50 Topics 100 Topics

Expansion method NPMI NPMI NPMI
CoFE-30 -0.025(0.011) -0.072(0.008) -0.092(0.005)
CoFE-40 -0.032(0.009) -0.066(0.010) -0.085(0.006)
CoFE-50 -0.018(0.008) -0.058(0.004) -0.076(0.004)
CoFE-60 -0.024(0.012) -0.054(0.004) -0.079(0.006)
DREx-CBOW-30 0.010(0.007) -0.013(0.005) -0.043(0.007)
DREx-CBOW-40 0.001(0.016) -0.019(0.006) -0.045(0.004)
DREx-CBOW-50 0.006(0.016) -0.012(0.003) -0.049(0.007)
DREx-CBOW-60 0.007(0.015) -0.027(0.005) -0.049(0.005)
DREx-GloVe-30 0.053(0.005) 0.034(0.004) 0.007(0.007)
DREx-GloVe-40 0.056(0.012) 0.052(0.005) 0.023(0.004)
DREx-GloVe-50 0.057(0.006) 0.050(0.004) 0.033(0.005)
DREx-GloVe-60 0.061(0.006) 0.050(0.007) 0.030(0.003)
DREx-SG-30 -0.018(0.014) -0.027(0.009) -0.059(0.007)
DREx-SG-40 -0.015(0.016) -0.034(0.008) -0.062(0.007)
DREx-SG-50 -0.020(0.005) -0.026(0.004) -0.064(0.005)
DREx-SG-60 -0.018(0.009) -0.030(0.011) -0.063(0.003)

Table A.7: Detailed NPMI results for CoFE and DREx in the CLEF dataset.

CLEF
20 Topics 50 Topics 100 Topics

Expansion method NPMI NPMI NPMI
CoFE-30 -0.140(0.000) -0.141(0.005) -0.146(0.000)
CoFE-40 -0.148(0.004) -0.150(0.000) -0.156(0.001)
CoFE-50 -0.134(0.009) -0.162(0.001) -0.160(0.002)
CoFE-60 -0.131(0.005) -0.155(0.000) -0.150(0.001)
DREx-CBOW-30 -0.043(0.008) -0.061(0.002) -0.085(0.002)
DREx-CBOW-40 -0.052(0.004) -0.062(0.002) -0.081(0.005)
DREx-CBOW-50 -0.065(0.014) -0.060(0.002) -0.085(0.003)
DREx-CBOW-60 -0.052(0.009) -0.068(0.011) -0.086(0.005)
DREx-GloVe-30 0.003(0.005) -0.003(0.003) -0.030(0.003)
DREx-GloVe-40 0.016(0.006) 0.001(0.003) -0.028(0.005)
DREx-GloVe-50 0.016(0.002) 0.002(0.004) -0.028(0.003)
DREx-GloVe-60 0.008(0.005) 0.004(0.007) -0.026(0.003)
DREx-SG-30 -0.096(0.006) -0.104(0.004) -0.114(0.003)
DREx-SG-40 -0.084(0.006) -0.104(0.008) -0.118(0.002)
DREx-SG-50 -0.090(0.009) -0.096(0.005) -0.115(0.004)
DREx-SG-60 -0.092(0.012) -0.099(0.005) -0.115(0.006)
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Appendix B

Detailed results for VGTM

Table B.1: NPMI results of VGTM for short text datasets, varying σ (0.2 to 0.9) and
k. Bold values indicate the best results in the column for a dataset and k value.

20 topics 50 topics 100 topics 20 topics 50 topics 100 topics

20nshort Sanders
VGTM-0.2 -0.051 -0.093 -0.107 -0.068 -0.079 -0.089
VGTM-0.3 -0.061 -0.087 -0.111 -0.032 -0.053 -0.065
VGTM-0.4 -0.056 -0.118 -0.146 -0.012 -0.025 -0.053
VGTM-0.5 -0.118 -0.157 -0.175 -0.025 -0.061 -0.082
VGTM-0.6 -0.146 -0.172 -0.183 -0.045 -0.088 -0.117
VGTM-0.7 -0.150 -0.175 -0.185 -0.040 -0.089 -0.124
VGTM-0.8 -0.148 -0.175 -0.188 -0.030 -0.089 -0.125
VGTM-0.9 -0.152 -0.174 -0.190 -0.040 -0.099 -0.127

Snippets TMN
VGTM-0.2 -0.099 -0.109 -0.108 -0.151 -0.120 -0.126
VGTM-0.3 -0.103 -0.097 -0.099 -0.103 -0.088 -0.079
VGTM-0.4 -0.072 -0.078 -0.079 -0.052 -0.051 -0.055
VGTM-0.5 -0.103 -0.095 -0.117 -0.079 -0.084 -0.103
VGTM-0.6 -0.108 -0.158 -0.155 -0.114 -0.153 -0.150
VGTM-0.7 -0.103 -0.155 -0.153 -0.108 -0.139 -0.169
VGTM-0.8 -0.150 -0.145 -0.150 -0.186 -0.171 -0.166
VGTM-0.9 -0.120 -0.144 -0.150 -0.188 -0.176 -0.164

Courses Customers
VGTM-0.2 -0.142 -0.154 -0.156 -0.098 -0.095 -0.097
VGTM-0.3 -0.100 -0.116 -0.133 -0.077 -0.073 -0.090
VGTM-0.4 -0.114 -0.123 -0.130 -0.065 -0.072 -0.071
VGTM-0.5 -0.116 -0.120 -0.136 -0.038 -0.054 -0.060
VGTM-0.6 -0.129 -0.122 -0.129 -0.040 -0.048 -0.048
VGTM-0.7 -0.113 -0.119 -0.115 -0.024 -0.029 -0.034
VGTM-0.8 -0.125 -0.115 -0.123 -0.046 -0.039 -0.040
VGTM-0.9 -0.105 -0.119 -0.123 -0.030 -0.030 -0.035
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Table B.1 shows the NPMI results for the VGTM method applied to the datasets

20nshort, Sanders, Snippets, TMN, Courses and Customers. It compares different

values of σ (arranged along the columns) and k (number of topics). Bold font indicates

the best values. We observe that the best values of σ for the datasets 20nshort, Sanders,

Snippets and TMN fall in the range [0.2, 0.4], with the best general results for σ = 0.4.

For the Courses and Customers datasets, our choice is σ = 0.7, which presents overall

higher NPMI values.
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