
UMA ABORDAGEM BASEADA EM

APRENDIZADO DE MÁQUINA PARA SELEÇÃO

DE ESTRUTURAS DE DADOS

TARSILA BESSA NOGUEIRA ASSUNÇÃO

UMA ABORDAGEM BASEADA EM

APRENDIZADO DE MÁQUINA PARA SELEÇÃO

DE ESTRUTURAS DE DADOS

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Gisele Lobo Pappa

Coorientador: Fernando Magno Quintão Pereira

Belo Horizonte

Dezembro de 2020

TARSILA BESSA NOGUEIRA ASSUNÇÃO

A MACHINE LEARNING APPROACH FOR DATA

STRUCTURE SELECTION

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
ful�llment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Gisele Lobo Pappa

Co-Advisor: Fernando Magno Quintão Pereira

Belo Horizonte

December 2020

© 2020, Tarsila Bessa Nogueira Assunção.

 Todos os direitos reservados

 Assunção, Tarsila Bessa Nogueira.

A851m A machine learning approach for data structure selection
 [manuscrito] / Tarsila Bessa Nogueira Assunção. – 2020.
 xix, 67 f. il.

 Orientadora: Gisele Lobo Pappa.
 Orientador: Fernando Magno Quintão Pereira.
 Dissertação (mestrado) - Universidade Federal de Minas
 Gerais, Instituto de Ciências Exatas, Departamento de Ciência
 da Computação.
 Referências: f.61-67
 .
 1. Computação – Teses. 2. Aprendizado de máquina –
 Teses. 3. Estrutura de dados – Seleção – Teses. 4. Redes
 neurais (Computação) – Teses. I. Pappa, Gisele Lobo. II. Pereira,
 Fernando Magno Quintão. III. Universidade Federal de Minas
 Gerais, Instituto de Ciências Exatas, Departamento de Ciência da
 Computação. III.Título.

CDU 519.6*82.6(043)

Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende Costa
CRB 6ª Região nº 1510

Aos meus pais, José Tarcísio e Teresa Cristina.

Agradecimentos

Primeiramente, eu gostaria de agradecer aos meus pais José Tarcísio e Teresa

Cristina, por sempre me amarem e me apoiarem incondicionalmente. Eu não estaria

aqui hoje sem vocês. Ao meu irmão Eduardo, por ter decidido estudar Engenharia da

Computação primeiro, mostrando que esse era um caminho que eu também poderia

seguir. À minha tia Simoni, por todo o apoio, e visitas à Belo Horizonte nestes últimos

sete anos. E a todos os meus familiares, que estão sempre torcendo por mim.

Gostaria também de agradecer à minha orientadora Gisele e ao meu coorientador

Fernando por acreditarem neste trabalho e pelo suporte e ensinamentos durante este

mestrado. Agradeço aos meus amigos da graduação e da pós: André, Ana Luiza,

Bernardo, Cristiano, Gabriel, Hugo, Lívia, Matheus, Nathália, Rodrigo, Ronaldo, e

Vinicius, por toda ajuda com trabalhos práticos, sessões de estudo e monitoria, e pela

companhia por todos estes anos na UFMG. Agradeço também ao Artur, por revisar

esta dissertação, e por estar sempre disposto a me ajudar a debuggar meu código ou

discutir ideias.

Aos meus amigos do Laboratório de Compiladores: Angélica, Breno, Caio, Ca-

rina, Guilherme, Junio, Marcelo, Marcus, Rubens, Roberto, Pedro Caldeira, Pedro

Ramos, e Yukio, por toda a ajuda e companhia desde 2015, pelas idas ao Aeroburguer,

pelos Compilassandos, e pelas maratonas de Switch no laboratório. Aos meus amigos

do Laboratório de Inteligência Computacional: Alex, Karen, Iago, Felipe, Renato, Pe-

dro, por me receberem tão bem no grupo, por toda ajuda com aprendizado de máquina,

pelas ótimas sugestões durante a prévia de defesa, e pelos happy hours.

Também gostaria de agradecer ao meu time durante o estágio e trabalho no

Google por sempre me ensinar tanto. Agradeço, em especial, aos meus maiores men-

tores na empresa, que também se tornaram meus grandes amigos: Luciana, por estar

sempre disposta a ouvir sobre minhas alegrias e frustrações com este projeto, e por ter

discutido ideias comigo, sugerindo possíveis soluções para os problemas que encontrei,

e ao Vitor, por sempre me apoiar e me lembrar que devo con�ar em mim.

Finalmente, gostaria de agradecer à CAPES por ter �nanciado este trabalho, e

vii

ao DCC pelos ótimos programas de graduação e mestrado. Agradeço aos funcionários

do departamento por todo o suporte, e em especial à Sônia pela atenção e cuidado

na preparação para a defesa. Finalmente, agradeço também à UFMG, por ter sido a

minha segunda casa pelos últimos sete anos.

viii

�Trouble, trouble, trouble.�

(Taylor Swift)

ix

Resumo

Uma seleção de estrutura de dados adequada pode melhorar bastante o desem-

penho e uso de memória de um programa. Porém, é difícil entender o comportamento

de uma estrutura de dados em uma aplicação antes de executá-la, o que torna complexa

a tarefa de escolher a melhor estrutura de dados para o uso em um programa de com-

putador. Esta dissertação apresenta um framework capaz de selecionar, de maneira

automática, estruturas de dados para um programa e sua entrada. O framework é

formado por quatro componentes: um componente para extração de dados, que coleta

informação sobre o comportamento das estruturas de dados usadas no programa dado

como entrada; um construtor de features, que transforma as informações extraídas em

features para modelos de aprendizado de máquina; dois modelos de aprendizado de

máquina que selecionam automaticamente estruturas de dados para serem usadas com

o conjunto de programa e entrada; e um reconstrutor de programas que cria uma nova

versão da aplicação dada como entrada usando as estruturas de dados selecionadas

pelos modelos. O framework é avaliado em aplicações sintéticas e reais e é capaz de

atingir a mesma acurácia que os desenvolvedores originais ao escolher estruturas de

dados para as aplicações.

Palavras-chave: Seleção de estrutura de dados, aprendizado de máquina, classi�cação

de sequências, LSTMs.

x

Abstract

Accurate data structure selection can vastly improve a program's performance

and memory usage. However, it is hard to understand the behavior of a data structure

in an application before running it, making choosing the best data structure to use in a

computer program a complex task. This dissertation presents a framework capable of

automatically selecting data structures for a given program and input. The framework

consists of four components: a program data extractor, which collects information on

the behavior of the data structures used in the input program; a feature constructor

that transforms the extracted data into machine learning features; two di�erent o�ine

machine learning models which automatically select data structures to be used with

the given application/input combination; and a program reconstructor that creates a

new version of the input program using the data structures selected by the models.

The framework is evaluated with synthetic and real world applications and is capable

of reaching the same level of accuracy as the original developers when selecting the

data structures for the applications.

Keywords: Data Structure selection, machine learning, sequence classi�cation,

LSTMs.

xi

Resumo Estendido

Uma estrutura de dados é um formato especializado e�ciente para organizar e ar-

mazenar dados. Linguagens de programação disponibilizam frameworks de coleções que

oferecem ao desenvolvedor tipos abstratos de dados para gerenciar coleções de dados,

enquanto escondem a implementação dessas estruturas. Este é o caso do framework

de coleções de Java e da Standard Template Library de C++. Algoritmos e estruturas

de dados são fortemente conectados. Por exemplo, ao utilizar uma lista ordenada em

uma aplicação, o desenvolvedor usaria um algoritmo de busca otimizado para essa es-

trutura. Portanto, a escolha da melhor estrutura de dados para uma aplicação é uma

parte importante de programação. A escolha de uma estrutura inadequada para um

programa pode trazer problemas de desempenho e memória. Muitos estudos identi-

�caram as estruturas de dados como responsáveis pela ine�ciência do desempenho de

programas.

A escolha da estrutura de dados para um programa de computador é uma tarefa

complexa. Geralmente, os desenvolvedores utilizam bibliotecas de estrutura de dados

e con�am na complexidade assintótica para decidir qual implementação utilizar. Essa

abordagem funciona bem para algoritmos, mas complexidade assintótica não é tão útil

para estruturas de dados, pois não considera o comportamento das coleções durante a

execução de um programa. Por exemplo, quando consideramos a linguagem Java, bus-

car por um elemento em um TreeSet ou HashSet tem tempo logarítimico e constante

amortizado, respectivamente. Porém, se estamos lidando com um conjunto de poucos

elementos, uma busca linear será mais rápida na prática. Além disso, a e�ciência de

uma estrutura de dados também depende de outros fatores além do comportamento

assintótico, como a arquitetura que executa o programa e o que é passado como entrada.

Nesta dissertação, nós investigamos o problema de selecionar a melhor estrutura

de dados para uma determinada aplicação e entrada. Nós propomos um framework

baseado em aprendizado de máquina para escolher, de maneira automática, a estrutura

de dados que melhora o desempenho de um programa. No nosso caso, desempenho se

refere ao tempo de execução da aplicação. O framework disponibiliza uma solução

xii

completa, que recebe um programa como entrada, o modela como entrada para um

modelo de aprendizado de máquina, executa um modelo preditivo, e retorna a aplicação

modi�cada com as melhores estruturas de dados. O framework é instanciado usando

duas abordagens para classi�cação de sequências, um baseado em features, e o outro em

modelos. Classi�cação de sequências é uma modelagem preditiva para um problema,

no qual, dado um conjunto de classes, o objetivo é associar cada classe à uma sequência.

Neste trabalho, nós focamos na substituição de variações da estrutura de dados Set

de Java. Nós decidimos trabalhar com essa interface porque ela é uma implementação

estabelecida, recomendada para armazenar elementos únicos.

O nosso modelo baseado em features extrai informações para aprendizado da

representação sequencial de um programa, como o número de operações add, remove,

contains, e iterator invocadas, e o número máximo de elementos armazenados na

estrutura de dados. Esse conjunto de features é dado como entrada para diferentes clas-

si�cadores, como Random Forest, e Support Vector Machine. A abordagem baseada

em modelos utiliza uma Long Short-Term Memory Network (LSTM), que recebe dados

sequenciais como entrada. A LSTM é muito utilizada para problemas como reconhec-

imento de fala e tradução graças à sua capacidade de aprender dependências de longo

prazo em sequências.

O framework proposto foi avaliado em conjuntos de dados sintéticos e reais, e um

de seus modelos de aprendizado é capaz de atingir o mesmo nível de acurácia que o

desenvolvedor original ao escolher estruturas de dados para os programas. Além disso,

o outro modelo conseguiu encontrar a estrutura correta para metade dos casos em que o

programador fez uma escolha equivocada, comprovando que o framework pode auxiliar

o desenvolvedor na tarefa de seleção de estrutura de dados para aplicações.

xiii

List of Figures

3.1 Fluxogram of the proposed framework. 13

3.2 Example of input and output of the program data extractor. 14

3.3 Output �les generated by our program data extractor for Algorithm 3.3. . 16

3.4 Example of input �le given to the program reconstructor. 17

4.1 On the left: an application that creates a HashSet object and invokes the

add, remove, contains, and iterator interface operations. On the right:

a sequence representation of the behavior of the HashSet object in the

application on the left. 19

4.2 A sequence of add, remove, and contains operations. 19

4.3 Schematic of the LSTM model used in this work. 21

4.4 Pre-processing of sequences of operations using the sliding window approach. 23

4.5 Pre-processing of program data using the sliding window approach. 23

5.1 E�ectiveness of the proposed feature-based model with four di�erent clas-

si�ers and four datasets with di�erent number of features. 33

5.2 E�ectiveness of the proposed feature-based model using the Random Forest

classi�er and di�erent methods of oversampling. 35

5.3 E�ectiveness of the proposed LSTM model for the four datasets. 38

5.4 Speedup of the versions using the data structures recommended by our

learning models when compared to the original benchmark. 47

5.5 Number of sequences, of each class, containing add, contains, and remove

operations in the ith position, in which 0 <= i <= 10. 48

5.6 Number of sequences, of each class, containing add, contains, remove and

iterator operations in the ith position, in which 0 <= i <= 10. 49

5.7 Preprocessing of sequences using the split approach. 49

xiv

List of Tables

2.1 A summary of the work related to our framework. 8

5.1 System con�guration . 25

5.2 Number of samples of each class in each dataset. 28

5.3 De�nition of the seven features analyzed in this section. 29

5.4 Distribution of a few features for the mixed dataset. 30

5.5 Information gain for the top �ve features for the four datasets. 30

5.6 Search space for grid search with RF, SVM, and KNN. 31

5.7 Final features selected for each dataset using the Random Forest classi�er. 32

5.8 Final values for the hyperparameters of the Random Forest classi�er for all

datasets. 32

5.9 Execution time, in seconds, of feature construction and model training for

all datasets. 34

5.10 Number of subsequences generated from each dataset with the sliding

method, and the ratio of duplicated subsequences from di�erent classes. . . 36

5.11 Hyperparameters tested during cross validation. 37

5.12 Execution time, in minutes, of LSTM training for all datasets. 39

5.13 Execution time, in milliseconds, of the AreAnagrams and FindSums algo-

rithms with di�erent implementations of Set. 41

5.14 F1-score of original benchmarks and proposed learning models when com-

pared with the best versions found empirically. 42

5.15 Distribution of features for the small dataset and DaCapo benchmarks. . . 43

5.16 Distribution of features for the medium dataset and DaCapo benchmarks. 43

5.17 The median and maximum of number of swaps recommended by our LSTM

network for the DaCabo benchmark suite. 44

5.18 Confusion matrix of the RF classi�er, trained with mixed dataset, applied

to the DaCapo suite. 45

xv

5.19 Confusion matrix of the model-based with LSTMs approach, trained with

mixed dataset, applied to the DaCapo suite. 45

5.20 Confusion matrix of the choices of the original developer. 45

5.21 Median and maximum number of data structure swaps that can be done in

a program without a�ecting performance. 51

B.1 Information gain for all features using the four datasets. 57

xvi

List of Algorithms

3.1 Example of a program creating a new instance of HashSet and invoking

interface functions. 14

3.2 An application that declares a variable using its concrete type TreeSet,

instead of its abstract type Set. 14

3.3 An application that creates a new instance of HashSet and uses a casting

operation. 15

5.1 Application creating an instance of TreeSet and replacing it for a HashSet. 50

A.1 Implementation of the InstrHashSet class which logs information re-

garding its interface functions. 54

A.2 Implementation of the InstrHashSet class which logs information re-

garding its interface functions. 55

xvii

Contents

Agradecimentos vi

Resumo ix

Abstract x

Resumo Estendido xi

List of Figures xiii

List of Tables xiv

1 Introduction 1

2 Related work 4

2.1 Data structure performance impact . 4

2.2 Data structure selection methods . 6

2.2.1 Language support . 7

2.3 Sequence classi�cation . 9

3 A Framework for Data Structure Selection 12

3.1 Program data extractor . 13

3.2 Program reconstructor . 17

4 Learning to select data structures 18

4.1 Feature-based sequence classi�cation 18

4.1.1 Feature extraction . 19

4.1.2 Machine learning model . 20

4.2 Model-based sequence classi�cation with LSTMs 20

4.2.1 Machine learning model . 21

xviii

4.2.2 Feature construction . 22

5 Experimental evaluation 25

5.1 Programs data . 26

5.1.1 Program generator . 26

5.1.2 Datasets . 28

5.2 Feature-based sequence classi�cation model 28

5.2.1 Feature selection . 29

5.2.2 Model evaluation . 31

5.3 Model-based sequence classi�cation with LSTM 35

5.4 Application on real programs . 39

5.4.1 Synthetic programs . 39

5.4.2 DaCapo . 41

5.5 Alternatives considered . 46

5.5.1 Dataset with no iterations . 46

5.5.2 No sliding window . 47

5.5.3 Sliding window parameters . 48

6 Conclusion 52

Appendix A Classes for Instrumentation 54

Appendix B Feature selection 57

Bibliography 61

xix

Chapter 1

Introduction

A data structure is a specialized format for organizing and storing data e�ciently.

Programming languages o�er collection frameworks that provide the developer with

abstract data types for managing collections of data, while hiding the underlying data

structure implementation [Shacham et al., 2009]. That is the case of the Java framework

collection1 and the Standard Template Library (STL) in C++ [Stepanov and Lee,

1995]. Algorithms and data structures are strongly connected. For example, when

using a sorted list in an application, one would use a search algorithm optimal for this

data structure. Therefore, selecting the best data structure for an application is an

important part of programming. Choosing the wrong data structure for a program

may result in problems with performance and memory bloat [Costa and Andrzejak,

2018]. Multiple studies have identi�ed data structures as responsible for applications

performance ine�ciency [Gil and Shimron, 2012; Georges et al., 2007; Liu and Rus,

2009].

Choosing which data structure to use in a computer program is a complex task.

Usually, developers use data structure libraries and mainly rely on asymptotic complex-

ity to choose which implementation to use. This approach works well when it comes to

algorithms, but asymptotic complexity is not as useful for data structures, as it does

not consider the actual behavior of the collection during the execution of a program.

For example, when we consider the Java language, a search for an element in a TreeSet

or HashSet has logarithmic and constant amortized time, respectively. However, if we

are dealing with a small set of elements, a linear search will be faster in practice. Be-

sides, the e�ciency of a data structure also depends on di�erent aspects other than

asymptotic behavior, such as the underlying architecture and program inputs.

Most data structure libraries provide di�erent implementations for an abstract
1https://docs.oracle.com/javase/8/docs/technotes/guides/collections/overview.html

1

1. Introduction 2

data type, with each one focusing on o�ering at least one distinct feature. As an exam-

ple, in Java, there are �ve concrete implementations of the Set collection. The HashSet

implementation o�ers constant time performance for the basic operations (add, remove,

contains, and size), while the TreeSet maintains a sorted set of elements. All of

these concrete implementations are interchangeable because they share the same ab-

stract data type. For this reason, choosing which implementation to use for an abstract

data type is a more speci�c instance of the data structure selection problem, and also

a complex task.

In this work, we investigate the problem of selecting the best data structure for

a given application and input, while focusing on di�erent concrete implementations of

one abstract data type. We propose a framework based on machine learning to auto-

matically choose the data structure implementation that improves the performance of

a program. In our case, performance refers to the execution time of a given applica-

tion. However, our framework can be easily extended to focus on other performance

aspects, such as energy and memory consumption. Following a machine learning ap-

proach is promising here, as these approaches have shown to be more e�ective than

human designed models in a number of di�erent situations related to compiler opti-

mization [Leather et al., 2009; Monsifrot et al., 2002; Stephenson et al., 2003].

The framework provides a fully-�edged solution, which receives as input a pro-

gram, creates an appropriate machine learning representation to it, runs a prediction

model and returns the program with the modi�ed data structure. The framework was

instantiated using two di�erent types of sequence classi�cation models: a feature-based

and a model-based. Sequence classi�cation is a predictive modeling problem in which,

given a set of class labels, the goal is to associate one class label to a sequence [Xing

et al., 2010]. In this �rst version, we test the replacement of variations of the Set data

strucute in Java. We decided to work with the Set interface as it is a long-established

collection, highly recommended for storing unique elements.

The feature-based model extracts features from the sequence representation of

the program, such as number of add, remove, contains, and iterator instructions

invoked, and the maximum number of elements in the data structure, and feed them

to conventional classi�ers such as Random Forest [Breiman, 2001] and Support Vector

Machine [Cortes and Vapnik, 1995]. The model-based sequence classi�cation approach

is based on a Long Short-Term Memory Network (LSTM) [Hochreiter and Schmid-

huber, 1997], which receives sequence data directly. An LSTM is a type of Recurrent

Neural Network [Rumelhart et al., 1985], which has been notably used for speech recog-

nition and machine translation due to its capability to learn long term dependencies

in sequences.

1. Introduction 3

The framework o�ers both a static and a dynamic solution to the data structure

selection problem. While the feature-based model is static, as it outputs one alternative

data structure to be used during the whole execution of the program, the model-based

with LSTM approach �nds di�erent optimal data structures for di�erent parts of a

program, identifying points in the execution when one implementation ought to be

replaced by another.

Constructing a diverse set of data for training machine learning models is a hard

task. For this work, there was not a well-known large dataset focused on Java collec-

tions available. For this reason, we have implemented an application generator that

can simulate synthetic applications exploring the di�erent behaviors of multiple data

structures. We have trained our models on this data and applied the trained models in

real-world algorithms written by us, and from the DaCapo benchmarks suite [Black-

burn et al., 2006].

The contributions of this work include:

� A de�nition of the data structure selection problem modeled as a sequence clas-

si�cation problem.

� The implementation of a framework that automatically selects data structure

implementations for a program.

� An analysis of which characteristics of an application's behavior are important

to take into account when choosing a data structure implementation.

� An empirical evaluation of two di�erent learning models on six real-life applica-

tions from the DaCapo benchmarks suite.

This dissertation is organized as follows. Chapter 2 addresses related work. Chap-

ter 3 presents a general view of the framework proposed here and details the process of

creating a machine learning representation from input programs. Chapter 4 describes

the feature-based and model-based approaches proposed for data structure selection.

In Chapter 5, we evaluate both learning models on synthetic data and real-world ap-

plications. Chapter 6 concludes the dissertation and addresses future work.

Chapter 2

Related work

Many works have previously investigated the problem of data structure selec-

tion [Shacham et al., 2009; Liu and Rus, 2009; Jung et al., 2011; Xu, 2013; Manotas

et al., 2014; Basios et al., 2018; Costa and Andrzejak, 2018]. These works proposed dif-

ferent approaches for data structure selection, such as automatic tools and hand-made

models. Some solutions are dynamic, as they �nd di�erent optimal data structures for

di�erent points of the execution of a program. Others are static: one unique solution

is given for the whole application. In a di�erent perspective, numerous researchers

have focused on how the use of inappropriate data structures causes performance in-

e�ciencies regarding energy consumption, execution time and memory use [Mitchell

and Sevitsky, 2007; Xu and Rountev, 2010; Yang et al., 2012; Hasan et al., 2016; Pinto

et al., 2016; de Oliveira Júnior et al., 2019; Costa et al., 2017]. Their works do not

automatically provide alternative data structures to be used in a program. In this

chapter, we review these two categories of related works, and emphasize the unique

characteristics of the framework presented in this dissertation. Furthermore, we ex-

plore a few works regarding sequence classi�cation, as the models we propose for data

structure selection are based on this approach.

2.1 Data structure performance impact

Wirth [1976] stated that Algorithms + Data Structures = Programs, making

the selection of e�cient data structures for an application an important part of pro-

gramming. Numerous researchers have studied the impact of the inappropriate use

of data structures as a cause of performance ine�ciencies regarding energy consump-

tion [Hasan et al., 2016; Pinto et al., 2016; de Oliveira Júnior et al., 2019], execution

time [Costa et al., 2017], and memory consumption [Mitchell and Sevitsky, 2007; Yang

4

2. Related work 5

et al., 2012; Xu and Rountev, 2010]. In this section, we focus on studies related to

the performance of Java collections. Costa et al. [2017] present an analysis of memory

consumption and execution performance of collection classes o�ered by six libraries.

They used a dataset containing 10,896 Java projects from GitHub to analyze the pop-

ularity and usage pattern of each library. Then, they collected the execution time and

memory allocation of the benchmarks using the four most used collection types with

di�erent implementations. Their work indicates that alternative libraries can provide

a signi�cant reduction of execution time and memory consumption.

Various studies have focused on memory bloat as a performance bottleneck. The

work by Mitchell and Sevitsky [2007] proposes a framework that o�ers the ability

to compare di�erent implementations and understand when it makes sense to use a

speci�c implementation. They introduce the concept of health of a data structure,

which depends on the relationship between the actual data and structural overhead.

Yang et al. [2012] propose a dynamic analysis that tracks and records the �ow of

elements to and from containers to analyze behavior and performance. Their results

indicate that optimization focused on containers is a target for performance analysis

and tuning. The work by Xu and Rountev [2010] presents static and dynamic tools

to �nd inappropriate use of Java containers. They identify interface functions such as

add and get and analyze their execution frequencies. They conclude that it is possible

to �nd optimization opportunities when focusing on containers with high allocation

frequency during runtime.

In a di�erent perspective, some researchers present studies on the energy con-

sumption of Java collections. The work by Hasan et al. [2016] presented detailed pro�les

of the energy consumed by common operations done on Java List, Map, and Set ab-

stractions. They conclude that choosing the wrong data structure implementation can

increase the energy consumption of the application in up to 300%. Pinto et al. [2016]

performed an empirical investigation on the energy consumption of Java's thread-safe

collections. They observed that di�erent implementations of the same collection can

have widely di�erent energy consumption behaviors. This also applies to individual

operations. An implementation that works well with insertions can be way less e�ective

than another implementation when it comes to iterating through data. The work by

de Oliveira Júnior et al. [2019] proposes a framework that combines static analyses and

application-independent energy pro�les to produce energy-saving recommendations for

alternative collection implementations. Their results indicate that widely used collec-

tions such as ArrayList and HashMap should be avoided when energy consumption is

a major concern.

While the aforementioned works identify performance ine�ciencies related to data

2. Related work 6

structure selection, they do not provide alternatives that could improve application

performance. The framework proposed in this dissertation comes to �ll this gap: it

�nds the best implementation for each object instance of a data structure in the code

to improve performance.

2.2 Data structure selection methods

The most direct inspiration of this work has been Brainy [Jung et al., 2011]. Like

our framework, Brainy is a program analysis tool that automatically selects the best

data structure for a given program. It generates traces of various runtime character-

istics of a combination of application, input and architecture, and feeds them into an

o�ine model constructed using machine learning; this model is then used to select the

best data structure. Jung et al. have chosen to work with C++ programs and use a

conventional arti�cial neural network modeling the data structure selection problem as

a classi�cation task. Brainy collects information from the program, such as the number

of interface operations called, combined with a cost model for each invocation based on

the number of elements accessed. Their approach selects only one data structure to be

used in the whole program, regardless of the number of objects created. In contrast,

our work selects di�erent data structures for each allocation site in the application.

Furthermore, we use sequence data to represent the interface functions called in the

program.

The work by Basios et al. [2018] presents the de�nition of Darwinian Data Struc-

tures: distinct data structures that are interchangeable because they share an abstract

data type. Their goal is to solve the Darwinian data structure optimization problem,

which tries to �nd the optimal implementation for a Darwinian data structure used

in an input program. Their tool, ARTEMIS, �nds tunable Darwinian data structures

in the code, and uses a multi-objective genetic search algorithm to provide optimized

solutions. Unlike ours, their framework is source-to-source, and they provide as out-

pust a transformed version of the original code with the optimized data structures.

Additionally, they rely on testing to de�ne a performance search space, so their tool

can only be applied to programs with a test suite.

The Chameleon [Shacham et al., 2009] and Per�int [Liu and Rus, 2009] projects

instrument applications to collect runtime statistics on behaviors such as interface

function calls. Like us, Chameleon works with Java programs, while Per�int works with

C++. Chameleon also collects heap-related information from the garbage collector.

Both projects feed the collected features into hand-constructed diagnostics to determine

2. Related work 7

if the data structures should be replaced. Our work expands on this by using machine

learning models to automatically select the best data structure instead of relying on

hand-constructed models. The SEEDS [Manotas et al., 2014] project uses exhaustive

search to tune the collections implementation used in a program. However, while our

work focuses on improving runtime performance, SEEDS focuses on energy e�ciency.

Some researches have focused on dynamic solutions to the data structure selection

problem, which transforms one data structure implementation into another in speci�c

points of the program. For example, the CollectionSwitch [Costa and Andrzejak, 2018]

project presents a framework that selects, at runtime, collection implementations to

optimize the execution and memory performance of an application. Their tool identi�es

allocation sites which instantiate suboptimal collection variants, and selects optimized

implementations for future instantiations. They present a dynamic approach and deal

with overhead as the collection variants presented are capable of changing their internal

data structures depending on the collection size. The work by Xu [2013] presents

CoCo, a framework that identi�es at runtime, for each container instance used in a

program, whether or not there exists another container implementation that is more

suitable for the execution. If so, the tool automatically performs the switch to the other

implementation for increased e�ciency. While our work does not swap data structure

implementations at runtime, our LSTM-based solution is capable of identifying points

in the execution when one implementation should be replaced by another.

Table 2.1 presents a summary comparing our proposed approaches to the works

referenced in this section. For each work, it is presented which programming language

the work focus on, whether it's a static or dynamic solution, what methods are used

for solving the problem, and which performance aspect they focus on.

2.2.1 Language support

Using a di�erent perspective, some researchers suggest language support for data

structure selection. For example, the work by Dewar et al. [1979] presents, for the

high-level programming language SETL, new declarations that allow the developer to

control the data structures that will be used to implement an algorithm that has al-

ready been written in pure SETL. They describe the features of this new sublanguage

and the data structures that it can generate at runtime. Besides, they also propose

an heuristic, based on global program analysis, which is capable of automatically se-

lecting an e�cient data structure representation for the SETL program. Additional

work on this subject by Schonberg et al. [1986] focuses on eliminating the need for

manually specifying the structures in the sublanguage. They present an optimizer that

2. Related work 8

Work Language Static
or dy-
namic

Method Optimization

ARTEMIS Java Static Multi-objective genetic
search algorithm

Execution time,
memory and
CPU usage

Brainy C++ Static Modeling the problem as
a classi�cation task with
ANNs

Execution time

Chameleon Java Static Feeding runtime statistics
to hand-constructed mod-
els

Execution time
and memory
consumption

Coco Java Dynamic Monitoring application
usage at the instance level

Memory bloat

CollectionSwitch Java Dynamic Cost model and selection
rules based on the behav-
ior of collection variants

Execution time
and memory
consumption

Per�int C++ Static Feeding runtime statistics
to hand-constructed mod-
els

Execution time

SEEDS Java Static Exhaustive search Energy consump-
tion

Our feature-
based approach

Java Static Modeling the problem as
a classi�cation task with
feature extraction and
classi�ers

Execution time

Our model-based
approach

Java Dynamic Modeling the problem as
a classi�cation task with
LSTMs

Execution time

Table 2.1: A summary of the work related to our framework.

uses techniques that allow relations of inclusion and membership to be established, the

domains and ranges of mappings to be estimated, and the single-valuedness of map-

pings to be proved. With these de�nitions, automatic selection of data structures is

possible. This line of work focused more on using only static analysis for data structure

selection and the performance of those tools was generally worse than hand-selected

implementations.

2. Related work 9

2.3 Sequence classi�cation

A sequence is an ordered list of elements that can be represented as symbolic

values, real numbers, a vector of real values or a complex data type. In this work,

we propose to represent the behavior of a data structure in a given input program as

a sequence of instructions. Therefore, we can also model the data structure selection

problem as a sequence classi�cation problem. The task of sequence classi�cation is to

associate one class label to a sequence, when given a set of class labels [Xing et al.,

2010]. In this section, we go over a few methods for solving the sequence classi�cation

problem.

Sequence classi�cation methods can be divided into three groups: feature-based,

distance-based, and model-based [Xing et al., 2010]. In feature-based sequence clas-

si�cation, we transform a sequence into a vector of features and then run conven-

tional classi�ers, such as Random Forest [Breiman, 2001], Support Vector Machine

(SVM) [Cortes and Vapnik, 1995], and k-Nearest Neighbor [Tan et al., 2016]. The

simplest method for feature extraction is to use each element and its position as a

feature. Among other alternatives of features extracted from sequences are k-grams:

consecutive k symbols of the original sequence. They have been heavily used in biolog-

ical sequence classi�cation [Ounit et al., 2015; Kawulok and Deorowicz, 2015; Yousef

et al., 2017; Breitwieser et al., 2018]. For example, Wang et al. [2000] propose an

approach for protein classi�cation consisting of transforming a sequence into a feature

vector of k-grams and feeding them as input to an ANN. Di�erent methods can be

used to reduce the dimensionality of k-grams vectors when the sequence vocabulary

is large. For instance, some approaches allow inexact matchings for k-grams, such as

the gapped k-grams. Additionally, extracted features can also be pattern-based [Dong

and Pei, 2007]. Arbitrary sequence patterns can be used as features or their running

counts, which is the number of matches of a pattern P in each position of a sequence

S.

Distance-based methods de�ne a distance function to measure the similarity be-

tween two sequences [Xing et al., 2010]. The Levenshtein [Miller et al., 2009] and

Hamming [He et al., 2004] distances are two of the most well-known distance functions

used in this problem. The former considers the number of editions (inserting or delet-

ing an element) needed to transform one sequence into another. The latter is used for

sequences with the same length and counts the number of elements that are di�erent.

Both distance functions consider one mismatch as one unit of dissimilarity. Works

by Wilbur [1985] and Heniko� and Heniko� [1993] propose di�erent cost measures for

mismatches. Furthermore, in biological sequence classi�cation, alignment-based dis-

2. Related work 10

tances functions are the most applied, with tools such as the ones by Altschul et al.

[1997] and Pearson [1990].

Model-based classi�cation is based on generative models, which assume that se-

quences in a class are generated by an underlying model [Xing et al., 2010]. The Naive

Bayes sequence classi�er [Rish et al., 2001] is one of the most used model-based clas-

si�ers due to its simplicity and low-computation cost. As an example, Cheng et al.

[2005] propose protein classi�cation based on text documentation classi�cation using

Naive Bayes. The work by Yan et al. [2004] presents a framework that combines an

SVM and a Bayesian classi�er to identify protein interface residues. Blasiak and Rang-

wala [2011] propose a Hidden Markov Model [Baum et al., 1970] variant to produce a

set of �xed-length description vectors from a set of sequences. They use three di�erent

algorithms to infer model parameters and conclude that their approach is useful for

classifying sequences of amino acids into structural classes.

Another common model for sequence classi�cation is Arti�cial Neural Networks

(ANN) [Goodfellow et al., 2016], which is one of the models we explore in this work.

ANNs are classi�cation methods inspired by biological neural networks. They are used

to solve numerous problems in pattern recognition, prediction, and optimization [Yeg-

nanarayana, 2009]. In sequence classi�cation, ANNs are heavily used in the biological

�eld to classify sequences of proteins and DNA [Wang et al., 2000; Blekas et al., 2005;

Ma et al., 2001; Wu, 1997].

A Long Short-Term Memory Network (LSTM) [Hochreiter and Schmidhuber,

1997] is a special type of a Recurrent Neural Network (RNN) [Rumelhart et al., 1985].

RNNs are arti�cial neural networks that allow information to persist. They are com-

posed of hidden states, which act as the memory of the network, holding information on

previous data. This chain-like nature makes RNNs suitable for learning sequences and

lists. However, this network becomes unable to connect information when the length

of the sequence grows. LSTMs have been designed to �ll this gap, being capable of

learning long-term dependencies, as remembering information for long periods of time

is their default behavior. The key idea behind the architecture of LSTMs is a memory

cell that can maintain its state throughout the whole processing of the sequence, and

gating units that control the information �ow into and out of the cell [Gre� et al.,

2016]. Due to its capability to learn long-term dependencies, the use of LSTMs has

been notable in language modeling [Zaremba et al., 2014], speech-to-text transcription

[Graves et al., 2013], and handwriting recognition [Breuel et al., 2013]. For sequence

classi�cation, LSTMs have been heavily used in the biological �eld. As an example, Hu

et al. [2019] propose a combination of Convolutional Neural Networks (CNN) [LeCun

et al., 1999] and bidirectional LSTMs to identify DNA binding proteins. Furthermore,

2. Related work 11

Muller et al. [2018] present an LSTM approach for classi�cation of amino acid sequences

and generation of new data instances.

Making a parallel between sequences of amino acids and sequences of program

operations, here we propose a feature-based and a model-based approaches for data

structure selection in Java programs.

Chapter 3

A Framework for Data Structure

Selection

As previously mentioned, the data structure selection problem is de�ned as the

task of selecting data structures that optimize a performance-related aspect of a given

input program, such as memory consumption, execution time, and energy consumption.

In this work, we propose a framework that focuses on the runtime performance under

a machine learning perspective.

Figure 3.1 presents the framework proposed for data structure selection. It is

composed of four components. The program data extractor (1) receives the input code

in binary format and runs it to extract information on the behavior of the data struc-

tures used in the application, such as the number of interface functions invoked, the

number of elements in the collection, and execution time of each function called. This

component will be explained in more details in Section 3.1. The feature constructor (2)

uses the information extracted from the program to create features for di�erent machine

learning models (3). The models are responsible for �nding the best data structures

to improve the runtime performance of the input program. In this work, we model the

data structure selection problem as a classi�cation task. The feature construction and

the learning models components are explained in more details in Chapter 4. The last

component is the program reconstructor (4), which creates a new version of the input

code, in binary format, using the data structures recommended by the models. Due

to its similarity to the program data extractor, this component will be described in

Section 3.2.

12

3. A Framework for Data Structure Selection 13

Figure 3.1: Fluxogram of the proposed framework.

3.1 Program data extractor

The program data extractor is built on top of Soot [Vallée-Rai et al., 2010], a

framework for analyzing and transforming Java and Android applications. Our ap-

proach is to iterate through an intermediate representation of an input program, which

is generated by Soot, searching for each use of the target data structure, e.g. HashSet.

Then, we replace it with our implementation of a subclass for that structure, e.g.

InstrHashSet. The InstrHashSet class creates a log of each add (A), remove (R),

contains (C), and iterator (I) operation in the code. Its source code can be found

in Appendix A.

Figure 3.2 presents an example of input and output for the program data extrac-

tor. In Figure 3.2a, there's an application that creates a new instance of HashSet and

invokes di�erent interface functions. Figure 3.2b, presents the information that the

program data extractor generates by using Algorithm 3.1 as input. In the id column

of the comma-separated values (CSV), there's the object ID; the type of operation in-

voked in op; in the st column, we present the instant when the instruction was called;

the execution time, in nanoseconds, of the operation, in the et column; the number of

elements in the data structure in size; and in the impl column, what implementation

of set is being used. This information is collected for each interface operation men-

tioned above and refers to the state of the data structure in that point of the program

execution.

We can safely replace objects of type HashSet with objects of type InstrHashSet

3. A Framework for Data Structure Selection 14

1 public class Example {
2 public stat ic void main () {
3 Set<Integer> s =
4 new HashSet<>() ;
5

6 for (int i = 0 ; i < 3 ; i++) {
7 s . add (i) ;
8 }
9

10 s . remove (0) ;
11 i f (s . conta in s (1)) {
12 for (int element : s) {}
13 }
14 }
15 }

Algorithm (3.1) Example of a program

creating a new instance of HashSet and

invoking interface functions.

(a) Input program for the data extractor gen-

erator.

(b) Information generated by our program

data extractor for Algorithm 3.1.

Figure 3.2: Example of input and output of the program data extractor.

due to the Liskov substitution principle. It states that properties that are provable

about objects of type T should be true for objects of type S, with S being a

subtype of T [Liskov and Wing, 1994]. However, some code practices prevent us

from simply replacing the instructions that instantiate a new object. For instance,

in line 2 of Algorithm 3.2, the variable ts is declared with the concrete type

TreeSet, instead of the abstract data type (ADT) Set. Replacing the variable type

in this case triggers a compilation error. To handle these cases, our framework

�rst transforms the code by declaring each variable with its ADT. We apply this

transformation to function parameters and return type, local variables, and class �elds.

1 void f oo () {

2 TreeSet<Integer> t s = new TreeSet <>() ;

3 t s . add (1) ;

4 }

Algorithm 3.2: An application that declares a variable using its concrete type TreeSet,

instead of its abstract type Set.

The code instrumentation is divided into two phases: abstract and concrete. In

the abstract phase, our tool converts the type of the target implementation to that of

their ADT, for example, TreeSet<T> � Set<T>. In the concrete phase, we transform

3. A Framework for Data Structure Selection 15

the type of the original data structure to their subtype, one of our instrumentation

classes. As an example, the code in line 2 of Algorithm 3.2 is replaced with new

InstrTreeSet<>(). In the concrete phase, we only need to change the type used in

instructions of object creation (method new) and casting. We also add a function call

at each exit point of the program to print the collected information. All data collected

from a program is added to a list to avoid calling Java's print instruction multiple

times in the execution. After both phases end, the Soot framework transforms the

intermediate representation back to Java bytecode.

During the concrete phase, we also store the source code line of each object

creation and casting instruction. We do this in order to know which instructions to

replace with a di�erent data structure later. For each object creation, we store the

object ID, the code line of the instruction, and in which class the object was created.

For the casting instructions, we run an analysis that returns the de�nition sites for the

variable being cast. Then, we store the line of the de�nition site of the variable, the

class in which it is used, and the source code line of the cast operation. When the

instrumentation ends, we create two output �les with the stored values. Figure 3.3

presents the output �les of the instrumentation of Algorithm 3.3. In line 3, there is an

object creation. So in Figure 3.3a the id column represents the object ID, the class

column is the name of the class ConstructorCastingExample, and the line column is

the source code line of the instruction. Figure 3.3b presents information on the casting

operation in line 5. It shows that if we change the Set implementation de�ned in line

3 of the ConstructorCastingExample class, then we also need to change the type of

the casting instruction in line 5.

1 public class ConstructorCastingExample {

2 public stat ic void main () {

3 Set<Str ing> sample = new HashSet<Str ing >() ;

4 check_1 (sample , 1) ;

5 check_2 ((HashSet) sample , 2) ;

6 }

7

8 private stat ic void check_1 (Set<Str ing> sample , int x) {

9 sample . add ("check−1") ;
10 }

11

12 private stat ic void check_2 (HashSet<Str ing> sample , int x) {

13 sample . add ("check−2") ;
14 }

3. A Framework for Data Structure Selection 16

15 }

Algorithm 3.3: An application that creates a new instance of HashSet and uses a

casting operation.

(a) File with information about instructions

of object creation.

(b) File with information about casting in-

structions.

Figure 3.3: Output �les generated by our program data extractor for Algorithm 3.3.

The TreeSet class implements a sorted version of Set by using the natural or-

dering of its elements, or a provided comparator. If the elements are not comparable

and a comparator is not provided, the program will throw an exception at runtime.

We need to mitigate this issue in order to replace any Set implementation with our

InstrTreeSet class. For this reason, we have implemented a customized comparable

that works with any type of element. If the set is composed of primitive types, our

comparator simply uses its natural ordering. However, if the type is unknown, the

comparator uses the element's hash code for the comparison. All of the IntrTreeSet

constructors call TreeSet's comparator constructor, passing our customized compara-

tor as the argument. The comparator source code is provided in Appendix A.

In this work, we use the program data extractor to generate appropriate program

representations for machine learning. As here we deal with a classi�cation task, our

classes are the possible data structures that can be selected, which in our case are

three: HashSet, TreeSet, and LinkedHashSet. Classi�cation algorithms usually work

with two sets of data: a training set and a testing set. Each example in these datasets

correspond to a program. In the training set, used to learn the model, information

about the actual best data structure to be used needs to be available. In our case, we

also need this information for the testing set, in order to evaluate the generalization of

the produced models in new programs.

Having said that, we use the extractor to create three versions of the input pro-

gram: one only using InstrHashSet, one using InstrLinkedHashSet, and the other

using InstrTreeSet. This way, we can have information on the program while using

di�erent implementations of Set. Then, we run analyses to �nd which of the three

implementations is the fastest for each object instance in the input code. We extract

the program runtime by adding the execution time of each interface function invoked.

With this approach, we can �nd di�erent optimal solutions for each object in the code,

3. A Framework for Data Structure Selection 17

but we only take into account the time needed to perform interface operations. To �nd

the fastest data structure, we run the three generated versions of the code ten times

and calculate the average time of each operation. Then, we sum the average time and

�nd which data structure took the least time to run. We consider one data structure

faster only if its runtime is at least 5% smaller than the second alternative.

3.2 Program reconstructor

Our framework also provides a program reconstructor, which replaces a target

data structure with another implementation with the same ADT. For example, is

allows us to replace an instance of LinkedHashSet with TreeSet. This tool is used to

transform the input program by using the best data structure implementations chosen

by the machine learning models that we will describe in Chapter 4. Similarly to the

program data extractor, this replacement process is also divided into two phases. The

�rst phase (abstract) converts the type of the target implementation to that of their

ADT. In the second phase (concrete), we use two �les received as input. The input

�les describe which object creation and casting instructions should be replaced. As

illustrated in Figure 3.4, in each �le, for every line, in the line column is the source

code line of the instruction, the class column is the class in which the operation is

called, and in impl is the implementation type that should be used. When we analyze

casting and object creation instructions, we check if the source code line is in one of

the input �les, and if its class matches the one in the �le. If both criteria is reached,

we perform the transformation.

Figure 3.4: Example of input �le given to the program reconstructor.

Chapter 4

Learning to select data structures

In Chapter 3, we presented a general view of our framework and how we extract

information from programs to generate appropriate data classi�cation representations.

This chapter presents two more components of our framework: the feature constructor

and the machine learning models, as detailed in Figure 3.1. We propose two learning

models to solve the data structure selection problem modeled as a sequence classi�ca-

tion problem.

A sequence is an ordered list of events, in which an event can be represented

as a symbolic value, a numerical real value, a vector of real values, or a complex

piece of data. The interaction between data structures and an application can be

represented as a sequence of operations that are performed in the collection. Therefore,

we can represent a data structure behavior in Java as a sequence of interface operations.

Figure 4.1 presents an example of this representation. On the left, there is a snippet

of code creating an instance of HashSet, and on the right, a sequence representation

of the same code.

Given L as a set of class labels, the task of sequence classi�cation is to associate

one class label to a sequence [Xing et al., 2010]. In this work, we represent the data

structure selection problem as a sequence classi�cation problem. In this representation,

the class labels are the set of possible data structures to be selected, and the sequences

are the sequence representation of that data structure in the program.

4.1 Feature-based sequence classi�cation

In sequence classi�cation, the feature-based approach is a method that transforms

a sequence into a feature vector and then apply conventional classi�cation methods,

such as Random Forest, and SVM. Sequence features can be divided into pattern-

18

4. Learning to select data structures 19

(a) Application creating an instance of

HashSet and invoking di�erent interface func-

tions.

AAAAACRCRCRI
(b) Sequence representation of the instance

of HashSet in Algorithm 4.1a.

Figure 4.1: On the left: an application that creates a HashSet object and invokes the
add, remove, contains, and iterator interface operations. On the right: a sequence
representation of the behavior of the HashSet object in the application on the left.

based, or property-based [Dong and Pei, 2007]. The former is composed of patterns

the appear in the original sequence, while the latter refers to properties of the sequence

or the objects in it. For this �rst model, the next sections describe both their feature

extraction and machine learning model components of the framework presented in

Figure 3.1.

4.1.1 Feature extraction

When dealing with sequence data, it is desirable to keep the sequential nature of

the elements. K-grams are pattern-based features that keep the order of the items in

a sequence. They are de�ned as short segments of k symbols of a sequence, and can

be represented with vectors of the absence or presence of a k-gram, or vectors of their

frequencies. As an example, considering that our problem has four possible symbols,

when x = 2, we can have as many as C4,2 2-grams. For the sequence in Figure 4.2, the

2-grams present are AC, CA, AR, RA, AA, and AI. The 2-grams AC and CA appear

two times in the sequence, while the other 2-grams only appear once.

ACARAACAI

Figure 4.2: A sequence of add, remove, and contains operations.

In this work, we have used our feature constructor to generate the input for our

4. Learning to select data structures 20

feature-based model. This component is used to extract k-grams from the sequences

extracted from the programs by the program data extractor component from our frame-

work. We chose k = 1, 2, 3 to be used as features for the learning model. We have used

the frequencies of each k-gram in the sequence, totaling 84 features. Since all sequences

must have the same number of features, when a k-gram is not present in the sequence,

we use 0 for their frequency. We also extract other properties of the sequences, such as

the number of operations in the sequence (length); the maximum, the minimum, and

the median of the number of elements in the data structure during the whole program

execution. In total, we extracted 88 features from each sequence of our dataset.

4.1.2 Machine learning model

After feature extraction, we can apply any classi�cation method to learn a model

that associates these features with the most appropriate data structure. We propose

using four classi�ers: Decision Tree (DT) [Rokach and Maimon, 2008], k-Nearest Neigh-

bors (KNN) [Tan et al., 2016], Random Forest (RF) [Breiman, 2001], and Support

Vector Machine (SVM) [Cortes and Vapnik, 1995]. The Decision Tree classi�er splits

the dataset into smaller subsets based on splitting rules created according to the infor-

mation gain of the features. These rules are applied recursively to each derived subset

until splitting no longer adds value to the predictions. The k-Nearest Neighbors algo-

rithm assumes that similar examples (programs) are close to each other in the feature

space. The algorithm classi�es an unlabeled vector by assigning the label which is the

most frequent between the k training samples closest to the unlabeled one. Random

Forest consists of a number of decision trees that work as an ensemble. Each individ-

ual tree in the forest predicts one class, and the class with the most votes becomes

the �nal prediction. This is based on the idea that a group of uncorrelated outcomes

outperforms individual predictions. The Support Vector Machine classi�er represents

the dataset as points in a n-dimensional space and �nds hyperplanes that divides the

points into di�erent classes.

4.2 Model-based sequence classi�cation with

LSTMs

A long short-term memory network (LSTM) [Hochreiter and Schmidhuber, 1997]

is a special type of a recurrent neural network (RNN). The use of LSTMs has been

notable in language modeling, speech-to-text transcription, and machine translation

4. Learning to select data structures 21

due to its capability to learn long term dependencies in sequences. In this work, the

interaction between data structures and an application can be represented in terms of

sequential data. So, provided that a su�ciently diverse and representative training set

is available, the model can directly learn from the operations sequence. In this section,

we present an LSTM-based approach for solving the data structure selection problem.

4.2.1 Machine learning model

We have used the recurrent network structure presented in Figure 4.3 for model

training. We trained a unidirectional LSTM with one hidden layer with 100 neurons.

The output of the layer was fed into a densely connected feed-forward layer with 3

output neurons, combining the output signals with a softmax function. We have used

the Adam [Kingma and Ba, 2014] adaptive algorithm for learning rate optimization

and categorical cross-entropy as loss function. To mitigate over�tting, we also added

dropout to our hidden layer. The network receives 70 inputs and the three outputs

represent, respectively, HashSet, TreeSet, and LinkedHashSet. The number of inputs

is based on the length of the input sequences and the number of features, which are de-

scribed next. We have implemented our LSTMmodel in Python using the Keras library

(version 2.1.5) [Chollet et al., 2015] with the Tensor�ow backend (version 1.4.0) [Abadi

et al., 2015].

Figure 4.3: Schematic of the LSTM model used in this work.

4. Learning to select data structures 22

4.2.2 Feature construction

As in the previous model, the feature constructor is used to generate the inputs

for the network. We generate three di�erent types of input features: (i) the sequence of

interface operations called in the program, (ii) the sequence of the number of elements

in the data structure after each interface instruction is called, and (iii) the length of the

original sequence of operations. The �rst feature is transformed into one-hot vectors,

binary vectors with length equal to the number of the possible values, which in our

case are the four interface operations and a space character that is used to pad the

sequences. The second and third features are rescaled so that all values are withing

the range of zero and one. We use the min-max normalization, where the scaled value

y is given by the formula y = (x − min)/(max − min), where the minimum and

maximum values comes from the set which contains the x being normalized. We use

the MinMaxScaler class from the Sci-kit Learn library to perform the normalization.

We use only the training data to estimate the minimum and maximum observable

values to avoid leaking validation data to our model.

As later showed in Section 5.1, the sequences extracted by the program data ex-

tractor component of the framework have lengths ranging from 25 to 12000 operations.

Given that we want to feed these sequences to a classi�cation model, we need to �nd a

way for all sequences to have the same size. One solution is to pre-process the data by

splitting it into smaller subsequences of operations. Our feature constructor performs

this pre-processing using a sliding window approach, which is presented in Figure 4.4.

Firstly, if needed, we pad the sequence with space characters up to the point it reaches

the size of the window we are using. Then, we extract a subsequence of size N starting

from the �rst character; then from the second character; then from the third, until we

get to the end of the original sequence. For instance, for P1 in Figure 4.4, the original

sequence is composed of nine operations. When using a sliding window of length four,

we �rst generated a subsequence with the �rst four operations of the original sequence

(ARAI), then with the second to �fth operations (RAIC), third to sixth (AICI), and

so on. In this example, the sliding window always moves one character to the right,

but we can choose how many characters to slide.

We also need to pre-process the other two features: the size of the data structure

and the sequence length. Each operation in a sequence is linked to a value of data

structure size, so we apply the sliding window approach to the sequences of sizes as

well. For the length of the original sequence, we repeat its value for each subsequence

generated. Figure 4.5 illustrates this approach for P1 of Figure 4.4. For the sequence

of data structure size, we extract the subsequence of length four starting from the �rst

4. Learning to select data structures 23

Figure 4.4: Pre-processing of sequences of operations using the sliding window ap-
proach.

value, then from the second, and so on. For the sequence length, we repeat the original

sequence length, which is nine in the example, for all subsequences. As previously

mentioned, our LSTM model receives 70 inputs. That is because we have used a

sliding window of length ten and seven features. The seven features are a set of the

encoded sequences of operations (�ve features), the size of the data structure, and the

length of the sequence.

Figure 4.5: Pre-processing of program data using the sliding window approach.

The biggest advantage of the sliding window approach is the generation of more

subsequences. This is interesting because it helps mitigating a great problem in data

structure selection: datasets with not enough data. Additionally, this method allows

us to �nd points in the execution of the input program when a data structure should

be replaced by another. For example, the model could output that HashSet should be

4. Learning to select data structures 24

used for the �rst 100 interface operations of a sequence, and LinkedHashSet should

replace it afterwards. However, since our framework does not focus on dynamically

replacing data structures at runtime, we need to select only one data structure as

the �nal output. We propose two methods for this: selecting the most recommended

implementation and the last recommended.

Chapter 5

Experimental evaluation

In this chapter, we will present the datasets generated to test the proposed

framework in Section 5.1, and evaluate the e�ectiveness of the proposed feature-based

and model-based approaches, in Sections 5.2 and 5.3. Next, in Section 5.4 we will

present results on the application of both models on real-world benchmarks, comparing

our models to the best data structures found empirically and the ones chosen by the

developer. Finally, in Section 5.5, we will present di�erent alternatives that were

considered, but that are not present in our �nal models. All the experiments described

in this chapter were performed on a system with Intel Xeon microarchitecture, and a

GeForce GTX GPU. The detailed system con�guration is described in Table 5.1.

Table 5.1: System con�guration

CPU Model Intel (R) Xeon (R) CPU E5520 @ 2.27 GHz
CPU core count 16
Memory 50 GiB
Operating system Debian GNU/Linux 9.12 (stretch)
GPU Model GeForce GTX 1080 Ti
Cuda Version 9.0
OpenJDK Version 1.8.0_272
OpenJDK Runtime Environment build 1.8.0_272-8u272-b10-0+deb9u1-b10
OpenJDK 64-bit Server VM build 25.272-b10, mixed mode
Javac version javac 1.8.0_272

25

5. Experimental evaluation 26

5.1 Programs data

In this work, we focus on the Set abstract data type. It is a well-known Java col-

lection interface used for algorithms that require storing a collection of unique values.

Its implementations can be grouped into general-purpose and special-purpose. We fo-

cus on the special-purpose implementations: HashSet, TreeSet, and LinkedHashSet.

To generate accurate machine learning models, it is important to have datasets that

are representative of the many di�erent behaviors of these data structures in real-world

applications. Representative training sets help avoid over�tting the model. Over�tting

happens when a model �ts the training data too well by memorizing various peculiari-

ties such as noise, rather than �nding a general predictive rule [Hawkins, 2004]. How-

ever, the large design space makes the creation of representative training sets complex.

It is hard to understand the behavior of real-world benchmarks before instrumentation,

making them ine�ective for training the learning models.

As an example, we have instrumented the benchmarks from the DaCapo

suite [Blackburn et al., 2006]. The suite is composed of a collection of open-source,

client-side Java benchmarks, which comes with built-in evaluation of execution time

and memory consumption. Our instrumentation tool could �nd instances of Set in six

benchmarks from DaCapo: antlr, avrora, bloat, luindex, lusearch, and pmd. From

these benchmarks, we extracted only 135 sequences of operations that could be used

for training. This number is not enough to train an accurate learning model. There-

fore, we propose a program generator, which creates several synthetic applications that

explore di�erent behaviors of multiple data structures.

5.1.1 Program generator

Algorithm 1 presents the pseudocode of the proposed generator. We create an

empty set and a queue of L numbers, in lines 2 and 3. The queue is initialized by

taking the modulo with a constant, which is an input parameter of the algorithm. The

generator receives a con�guration �le with the following constants as input: L, which

limits the number of operations invoked in the code; M , N , O, P , and Q, which de�ne

if we add e to our set (line 12), remove e from it (line 14), search for e (line 16), get the

maximum element from the set (line 18), or simply iterate through the set once (lines

20 and 21). By changing the values of these constants, we can simulate the behavior

of di�erent data structures.

We have decided not to use random functions in our code, in order to better

control the generated applications. For example, we can easily limit the number of

5. Experimental evaluation 27

1 ApplicationGenerator (config)
2 Q← empty queue ;
3 S ← empty set ;
4 for i← 0; i < config.L; i← i+ 1 do
5 Q.push(i%config.M) ;
6 end
7 i← 0 ;
8 while Q is not empty do
9 i← i+ 1 ;

10 e← Q.pop() ;
11 if i % config.N == 0 then
12 S.add(e) ;
13 else if i % config.O == 0 then
14 S.remove(e) ;
15 else if i % config.P then
16 S.contains(e) ;
17 else if i == config.Q then
18 max← max(S) ;
19 else if i == config.R then
20 foreach elem ∈ S do

21 end

22 end
Algorithm 1: Pseudocode of the proposed application generator.

operations called in the code with the constant L, since this value controls the number

of iterations of the loop in line 8 of Algorithm 1. It is also easy to estimate the number

of instructions called in the program, grouped by operation type, before running the

generator. This makes it easier to simulate situations where we perform one speci�c

operation more, for example, performing more additions. By controlling the number

of operations called, we can simulate di�erent behaviors.

It is important that our training sets are also representative of the multiple im-

plementations of Set available. To create training examples for the di�erent implemen-

tations, we simply run the program generator with our program data extractor, which

was described in Chapter 3. We use our instrumentation to create three versions of our

generator: one using InstrHashSet, one with InstrLinkedHashSet, and the last one

with InstrTreeSet. Then, we run each version with the same con�guration �les, check

which version is faster, and add this sample to our training set. However, since we can

not know for certain when one implementation is better than the others, creating a bal-

anced training set regarding the three data structures is still a hard task. We chose not

to use the Set implementations ConcurrentSkipListSet and CopyOnWriteArraySet

5. Experimental evaluation 28

as they are recommended for concurrent execution with multiple threads. Yet, we can

easily add these two implementations as alternative data structures for our framework

as well.

5.1.2 Datasets

We used the proposed generator to create four datasets: small, medium, large,

and mixed sequences. The small dataset contains sequences with lengths between 25

and 500. For medium sequences, the length is between 500 and 1,000; and between

1,000 and 12,000 for large sequences. The mixed dataset contains all of the sequences

of the other three datasets. Table 5.2 presents the number of samples of each class

for each dataset. Even though our generator can easily create di�erent examples, it

is hard to generate samples of an speci�c class. Given a con�guration �le for the

generator, we can calculate how many operations of each type will be called. However,

it is a complex task to understand which data structure will run faster with that

con�guration. We can only know which data structure is the fastest after executing

the generated application and measuring its runtime. For this reason, the classes are

not always equally represented in our datasets. Besides, equally represented classes

is not our focus here, instead, we aim on creating a dataset that represents real

application behavior.

Dataset Sequence length HashSet LinkedHashSet TreeSet Total
small 25 ≤ x ≤ 500 1786 1511 640 3937
medium 501 ≤ x ≤ 1000 481 330 76 887
large 1001 ≤ x ≤ 10000 1720 717 133 2570
mixed 25 ≤ x ≤ 10000 3987 2558 849 7394

Table 5.2: Number of samples of each class in each dataset.

5.2 Feature-based sequence classi�cation model

In this section, we present analyses regarding the feature-based model described

in Section 4.1. We will present an analysis of the distribution of the features extracted

from the datasets described in the previous section and a study on the e�ectiveness of

each feature for the learning model. Table 5.4 presents a pro�le of the mixed dataset

5. Experimental evaluation 29

that was generated with the Pandas Pro�ling1 tool. We show the distribution of seven

features out of the 88 features described in Section 4.1.1: the number of add (A),

remove (R), contains (C), and iterator (I) operations; the sequence length; the

median and the maximum number of elements in the dataset throughout the execution

of the program. Table 5.3 presents the de�nition of these seven features. We chose to

display only these features as the others are mainly a combination of the �rst four.

Table 5.3: De�nition of the seven features analyzed in this section.

A Number of add operations in the sequence
C Number of contains operations in the sequence
I Number of iterator operations in the sequence
R Number of remove operations in the sequence
len Total number of operations in the sequence
max Maximum number of elements in the data structure
median Median number of elements in the data structure

This analysis presents some interesting aspects of our mixed dataset. Table 5.4

presents, for each feature, the percentage of values equal to zero, the minimum,

maximum, mean, and median of values. All of the sequences are composed of at least

one and at most 5,550 add operations. It is the only instruction that is present in all

of the sequences. In the other extreme, the iterator operation is absent in 32% of

the sequences. The length feature presents information on the number of operations in

the sequences. While the shortest sequence contains only 26 instructions, the longest

sequence is composed of 8,368 operations. The average sequence length is 1,390.6

instructions. The median and max features refer to the number of elements in the

data structure during the whole execution of the program. At any execution point,

there are at most 5550 elements in the set, so the data structures used here are of

moderate size.

5.2.1 Feature selection

It is important to understand which subset of features is relevant for our

feature-based model or if all of them contribute to selecting di�erent data structures.

Using more features than necessary may add noise to the model and slow down

convergence [Guyon and Elissee�, 2003]. We use the information gain metric to
1https://pandas-pro�ling.github.io/pandas-pro�ling/docs/master/rtd/

5. Experimental evaluation 30

Feature Zeros (%) Min Mean Median Max
A 0.0 1 519.90 157.0 5550.0
C 24.1 0 279.57 65.0 4967.0
I 32.0 0 236.82 47.0 4950.0
R 13.7 0 354.36 93.0 5124.0
len 0.0 26 1390.66 519.0 8368.0
median 2.0 0 219.10 49.5 2775.5
max 0.0 1 423.65 78.0 5550.0

Table 5.4: Distribution of a few features for the mixed dataset.

decide which features are relevant for our model. The information gain measures

the reduction in entropy or surprise when making changes to a dataset. In feature

selection, information gain is also called mutual information, and is de�ned as the

amount of information one can obtain from one random variable given another [Witten

and Frank, 2002]. If the mutual information between one feature and the target

classes is high, then this feature brings a lot of information to the model. We have

used the Sci-kit Learn library (version 0.22.1) [Pedregosa et al., 2011] to calculate

the mutual information between the 88 features described in Chapter 4 and the

target classes. Table 5.5 presents the information gain for the �ve features with

higher gain. Note that the top �ve features are the same for the small, medium,

and mixed datasets. On the other hand, for the large dataset, the number of

add operations brings more information than the length of the sequences, and the

number of reduce instructions is more important than the number of iterator oper-

ations. The full table with the information gain values for all features is in Appendix B.

Small Medium Large Mixed
Feature Score Feature Score Feature Score Feature Score
max 0.4189 max 0.4605 max 0.4267 max 0.4267
median 0.3945 median 0.4220 median 0.3902 median 0.3947
len 0.3908 len 0.3287 A 0.3702 len 0.3496
A 0.3097 A 0.2918 len 0.2580 A 0.3315
I 0.2520 I 0.2593 R 0.2023 I 0.2135

Table 5.5: Information gain for the top �ve features for the four datasets.

5. Experimental evaluation 31

5.2.2 Model evaluation

Having a ranking of features generated according to the information gain, we used

the features incrementally to train a classi�er. We started with one and increased the

size of the set up to 88. This procedure was performed using �ve-fold cross-validation

using from one to 88 features. For example, when using two features, we used only the

top two features with higher information gain.

We ran our experiments with four classi�ers: Random Forest (RF), k-Nearest

Neighbors (KNN), Support Vector Machine (SVM), and Decision Tree (DT). The

classi�ers were implemented with the Sci-kit Learn library. During each iteration of

cross-validation, we performed a grid search to tune the values of each parameter of

the method in the training set, and used the model with the best parameters to predict

the testing samples. The grid search method also uses the cross-validation approach

to �nd the best parameters, but in this case, we used only three folds. Table 5.6

presents the search space for grid search with RF, SVM, and KNN. Usually, the only

hyperparameter that is tuned for decision tress is the depth of the tree, so we did not

perform grid search for this model. Instead, we use entropy as a criterion for split and

we do not limit the depth of the tree.

Model Hyperparameter Values Default
RF Number of trees 10, 100, 1000 10

Max features
√
features, 0.25, 0.5, 0.75

√
features

Max depth None, 2, 4, 6, 8, 10, 20 None
SVM γ 0 or 2x for x in -15, -13, ..., 1, 3 0

C 1 or 2x for x in -5, -3, ..., 13, 15 1
KNN Number of neighbors 3, 5, 11, 19 5

Weights uniform, distance uniform
Metric euclidean, manhattan minkowski

Table 5.6: Search space for grid search with RF, SVM, and KNN.

Results were evaluated using the F1-score, which is the harmonic mean of the

precision and recall measures. In binary classi�cation, precision is the fraction of true

positive examples among all of the samples classi�ed as positive by the model. Recall

is the fraction of examples classi�ed as positive among the total number of positive

examples. Our work deals with three classes, so the F1-score is calculated as the

average of F1-score for each class, weighted by the number of instances of each label.

This metric is commonly used for imbalanced datasets like ours. We have used Sci-Kit

5. Experimental evaluation 32

Learn's metrics module to calculate the weighted F1-score for our learning models

both during training and testing.

Figure 5.1 summarizes the e�ectiveness improvement of each classi�er according

to the number of features used. While the Decision Tree classi�er and the Random

Forest had similar values of F1-score during training, RF reached the highest values

of F1-score during testing on all datasets. The SVM was the worst classi�er during

training. However, it did better than the k-Nearest Neighbors classi�er during testing

depending on the dataset and the number of features used. The model produced by all

classi�ers converges fast as we increase the number of features considered, so it is not

necessary to use all of the 88 features during training. We selected the best number of

features for each dataset by �nding the point in the training curve where the F1-score

became the highest. This point was di�erent for the datasets, but all of them reached

a F1-score value of 0.99 during training and 0.88 during testing.

Table 5.7 presents the features that were selected for each dataset. They are

sorted from the higher to lower information gain value. The medium dataset needs the

most number of features and it is also the dataset with the least number of samples.

The large and mixed datasets needed the least number of features to be e�ective.

Table 5.8 presents the best parameters for each dataset when using the features in

Table 5.7. Experiments described next use these features and parameters for the

Random Forest classi�er.

Dataset Number of features Features
small 10 max, median, len, A, I, AA, AI, IA, R, II
medium 11 max, median, len, A, I, AA, AAA, R, IA, RI, C
large 7 max, median, A, len, R, AA, I
mixed 7 max, median, len, A, I, AA, R

Table 5.7: Final features selected for each dataset using the Random Forest classi�er.

Dataset Number of trees Max features Max depth
small 100 0.75 10
medium 100 0.75 10
large 100 0.25 None
mixed 1000 0.25 20

Table 5.8: Final values for the hyperparameters of the Random Forest classi�er for all
datasets.

5. Experimental evaluation 33

(a) Small dataset. (b) Medium dataset.

(c) Large dataset. (d) Mixed dataset.

Figure 5.1: E�ectiveness of the proposed feature-based model with four di�erent clas-
si�ers and four datasets with di�erent number of features.

Another point to account for is that our datasets are imbalanced, as the classes

are not equally represented. The machine learning community has addressed the issue

of class imbalance in two ways: assigning distinct costs to training examples or re-

sampling the original dataset. In this work, to deal with data imbalance, we used two

re-sampling methods: Random Oversampling (ROS) and Synthetic Minority Oversam-

pling (SMOTE) [Chawla et al., 2002]. In the former, instances of the minority class

5. Experimental evaluation 34

are randomly duplicated. The latter approach re-samples the minority class by adding

new synthetic samples instead of simply duplicating original examples. In our im-

plementation, we used both methods from the imbalanced-learning library [Lemaître

et al., 2017]. Figure 5.2 presents the e�ectiveness of the RF model with the original

dataset and using the oversampling methods described above. While there are some

di�erences between the three methods, the training and testing curves are really similar

for all datasets, and specially for the mixed one. We believe that performing the over-

sampling adds complexity to the models and the results show it does not improve the

values of F1-score, so we still use the RF model with the original dataset for following

experiments described in Section 5.4.

We performed one last experiment with the features in Table 5.7 to measure the

execution time of the feature-based model. We extracted the average execution time

for the feature construction for each dataset. The time is really small as at most only

11 features are used. Table 5.9 presents the execution time of feature construction

and model training for each dataset. It takes less than one second to perform feature

extraction on the small, medium, and large datasets, while it takes a little bit more

than one second for the mixed dataset. Furthermore, it does not take long to train

the datasets, with medium and large needing less than one second to train. The

highest execution time is for the small dataset, which takes almost 7 seconds to train.

Therefore, our feature-based approach is a really fast, and does not a lot of time

overhead to the program.

Dataset Feature extraction (sec) Model training (sec)
small 0.2137 6.8778
medium 0.1112 0.2717
large 0.7478 0.2471
mixed 1.0401 5.0886

Table 5.9: Execution time, in seconds, of feature construction and model training for
all datasets.

Our feature-based model for sequence classi�cation achieved an F1-score value

of 0.88 when trained with the RF classi�er and the mixed dataset. This model is the

most relevant for this work as it might better represent a real-world scenario, due to

its variation on the sequence length. Additionally, the model is really fast, taking less

than ten seconds both to extract the relevant features and to train the model.

5. Experimental evaluation 35

(a) Small dataset. (b) Medium dataset.

(c) Large dataset. (d) Mixed dataset.

Figure 5.2: E�ectiveness of the proposed feature-based model using the Random Forest
classi�er and di�erent methods of oversampling.

5.3 Model-based sequence classi�cation with

LSTM

In this section, we present the evaluation results for our second model described

in Section 4.2. As previously mentioned, we need to pre-process our sequences before

feeding them to the LSTM network. In these experiments, we have used the sliding

5. Experimental evaluation 36

window approach to split our data into smaller subsequences of ten operations. At

each step of this method, the sliding window also skips ten characters. Both values

were chosen empirically. At �rst, we proposed starting with two values for the window

length: the minimum and median sequence length of the sequence. However, that did

not generate as many subsequences as we needed for training, so we decreased the

window length to ten.

Due to the splitting method previously described, this model is capable of recom-

mending alternative data structures for di�erent points in the execution of the input

program. The number of data structure swaps in the application is directly linked to

the number of characters that are skipped during window sliding. To decide on this

number, we performed an analysis that found the number of data structure swaps that

did not slowdown the original programs in our datasets. From this analysis, we decided

on always skipping ten characters when generating new subsequences with the sliding

window. The full analysis will be described in details in Section 5.5.

Even though the sliding window method is practical for augmenting the number

of samples, it can generate identical subsequences with di�erent labels. For this reason,

we removed most sequences that generated duplicate subsequences from di�erent

classes. Table 5.10 presents the �nal number of subsequences used for training our

LSTM. The ratio of duplicate sequences from di�erent classes is below 1% for each

dataset, so this should not a�ect our results.

Dataset Total of subsequences Duplicate subsequences Ratio (%)
small 122,965 242 0.1968039686
medium 81,963 234 0.2854946744
large 826,428 23 0.0027830616
mixed 1,031,356 553 0.0536187311

Table 5.10: Number of subsequences generated from each dataset with the sliding
method, and the ratio of duplicated subsequences from di�erent classes.

We have used the Keras library to implement the LSTM model used in this

work. It is composed of only one hidden layer, 70 inputs, and three output neurons.

We performed �ve-fold cross-validation in order to train our model, tuning the

following parameters: number of neurons in the hidden layer, dropout and learning

rates, and number of training epochs. Table 5.11 presents the values tested during

parameter tuning. We used SciKit Learn's StratifiedKFold class to create the

training and testing sets for cross validation. It splits the data into folds that preserve

5. Experimental evaluation 37

the percentage of samples for each class. To avoid leaking information to the testing

phase, we performed the split in the original sequences and only then generated the

subsequences from it. This way, we ensure that the testing set does not contain pieces

of sequences from the training set.

Parameter Values
Neurons in the hidden layer 50, 100, 150, 200, 250, 300
Dropout rate 0.5, 0.6, 0.7, 0.8, 0.9
Learning rate 0.1, 0.01, 0.001, 0.0001, 0.00001
Training epochs 50, 100, 200, 300, 400, 500

Table 5.11: Hyperparameters tested during cross validation.

Figure 5.3 presents the e�ectiveness of our �nal LSTM model. It uses 100 neurons

in the hidden layer, a dropout rate of 0.5, and a learning rate of 0.00001. We have

trained it for 100 epochs, and it reached an F1-score of 0.87 for the mixed dataset.

Similar to the feature-based model, we used the weighted F1-score metric from the

Sci-Kit Learn library for training and testing. For all datasets, our network reached

an F1-score value of at least 0.82 during training and 0.80 during testing. The loss

function was smaller than 0.5 for all training and testing sets. These results show

that our network is capable of generalizing and having good values of F1-score in both

training and testing phases.

We also analyzed the execution time of the LSTM model. Table 5.12 presents

how long it takes to train all datasets with the LSTM network running on a GeForce

GTX 1080 Ti GPU, with Cuda 9.0. Training this model takes longer than the

feature-based one mainly due to the huge di�erence on the data size, as our sliding

window approach generates a lot more samples for the LSTM training. For this

reason, training takes from 30 minutes to 14 hours depending on the dataset size.

Even though training is not fast, this phase needs to be performed only once and then

the trained model can be used to predict other unseen data.

The previous sections presented an evaluation of the feature-based and the model-

based with LSTMs sequence classi�cation models from our framework. Both models

reached an F1-score of 0.87 when trained with the mixed dataset, which, as previously

mentioned, is the closest representation of a real-world scenario. The feature-based

model should be used for small programs and when time is a priority, as feature ex-

traction and training time is really low. On the other hand, the model-based with

5. Experimental evaluation 38

(a) F1-score for the small dataset. (b) Loss for the small dataset.

(c) F1-score for the medium dataset. (d) Loss for the medium dataset.

(e) F1-score for the large dataset. (f) Loss for the large dataset.

(g) F1-score for the mixed dataset. (h) Loss for the mixed dataset.

Figure 5.3: E�ectiveness of the proposed LSTM model for the four datasets.

5. Experimental evaluation 39

Dataset Execution time (min)
small 51.1053
medium 34.9117
large 332.0877
mixed 882.5953

Table 5.12: Execution time, in minutes, of LSTM training for all datasets.

LSTMs approach is recommended for large applications, as it outputs di�erent data

structures for di�erent points in the execution, taking into account the diverse behav-

iors of the application throughout its execution.

5.4 Application on real programs

We have previously demonstrated the e�ectiveness of our framework with a syn-

thetic dataset created using our program generator. While the generator e�ectively

simulates di�erent behaviors of data structures, it is not a real algorithm. It only calls

di�erent interface functions according to a con�guration �le. In this section, we apply

our framework to real algorithms: two created by us, and �ve benchmarks from the

DaCapo suite. In this case, we used the models already trained with the RF classi�er

and LSTM and gave this new data as input to test the model.

5.4.1 Synthetic programs

We have implemented two well-known algorithms to help illustrate how to apply

the framework proposed in this work. Algorithm 2 receives two strings as input and

checks if they are anagrams. Algorithm 3 uses a brute force approach to �nd the

number of pairs in a set whose sum is equal to a given input. The latter receives a list

of possible sums and outputs the pair of values for each sum.

We implemented Algorithms 2 and 3 using an instance of HashSet. We used our

framework to verify if this implementation was indeed the fastest one for both programs.

We used the program data extractor to collect information on the Set implementation

used. We also created other two versions of each algorithm to empirically �nd which

implementation was the fastest. We used a random generator to create inputs for both

programs. The two input strings were composed of 10,000 characters. Similarly, the

list of target sums in Algorithm 3 was composed of 10,000 values varying from 1 to

15,000, while the list of numbers added to the Set contained 100 numbers varying from

1 to 20,000.

5. Experimental evaluation 40

1 AreAnagrams (string s1, string s2)
2 S ← empty set ;
3 for elem in s1 do
4 S ← S + elem ;
5 end
6 for elem in s2 do
7 if elem not in S then
8 print "s1 and s2 are not anagrams." ;
9 end

10 print "s1 and s2 are anagrams" ;
Algorithm 2: Pseudocode of an algorithm to �nd if two strings are anagrams.

1 FindSums (list of numbers, list of target sums)
2 setS ← list of numbers ;
3 for sum in targetsums do
4 for elem1 in S do
5 for elem2 in S do
6 if elem1 6= elem2 then
7 if elem1 + elem2 = sum then
8 print elem1 plus elem2 are equal to sum. ;
9 end

10 end

11 end
Algorithm 3: Pseudocode of an algorithm to �nd two values whose sum is equal
to a given input.

We have used the feature constructor component of our framework to extract fea-

tures from the sequences for our feature-based model, and to pre-process the sequences

for the model-based with LSTMs approach. For the former, we used the features for

the two sequences of length 10,000. For the latter we generated 2,000 subsequences for

Algorithm 2 and 50,510 subsequences for Algorithm 3. Both models were previously

trained using the mixed dataset.

For both algorithms, the two learning models correctly suggested to keep using

HashSet in Algorithm 2 and to replace it with LinkedHashSet in Algorithm 3.

Table 5.13 presents the execution time, in milliseconds, of both Algorithms using the

three di�erent implementations of Set.

5. Experimental evaluation 41

AreAnagrams FindSums
HS 64.74 26664.67
LH 71.59 18220.44
TS 101.85 21806.93

Table 5.13: Execution time, in milliseconds, of the AreAnagrams and FindSums algo-
rithms with di�erent implementations of Set.

5.4.2 DaCapo

The DaCapo benchmarks suite is a set of open-source, Java real world applications

with non-trivial memory loads. It comes with built-in evaluation of execution time and

memory consumption and is used for Java benchmarking by the programming language,

memory management and computer architecture communities. In this section, we

present the results of applying our trained learning models on some benchmarks from

DaCapo.

We have used the program data extractor described in Section 3.1 on the

antlr and bloat benchmarks from the 2006 DaCapo suite and the avrora, luindex,

lusearch, and pmd benchmarks from the 2009 version. We only used the bench-

marks from the older version that are not available in the newer one. We used a bash

script2 written by Eric Bodden from McGill University to process the 2006 bench-

marks with our Soot-based program data extractor. For the 2009 suite, we used Tam-

iFlex [Bodden et al., 2011], a tool for handling re�ection in the static analysis of Java

programs. In total, we extracted the interface operations of 155 instances of Set in

the code. We created three versions of each benchmark using one of InstrHashSet,

InstrLinkedHashSet, and InstrTreeSet. We ran each version ten times and calcu-

lated the total runtime by addition of the execution time of each interface operation

extracted. With this approach, we found the best implementation for each Set in-

stance, which are used as class labels for testing our learning models. The class distri-

bution found is the following: 91 samples of HashSet, 31 of LinkedHashSet, and 33 of

TreeSet.

We used the feature constructor described in Chapter 4 to transform the ex-

tracted information from DaCapo into inputs for our already trained models. Table 5.14

presents the weighted F1-score values of the models when compared with the best data

structures found empirically as described above. The dataset column identi�es which

dataset was used to train our models. The original column presents the accuracy of

the original benchmark, identifying if the developer made a good choice for the data
2http://dacapobench.sourceforge.net/batchsoot

5. Experimental evaluation 42

structures in the code. We used di�erent approaches to apply our learning models to

the DaCapo suite. Since it does not take long to train the feature-based model, we

retrained it with the complete datasets using the best parameters found by the grid

search with cross-validation. Then, we applied the trained model to the data extracted

from DaCapo. On the other hand, training the LSTM network takes longer, so we used

the trained model that had the highest F1-score for validation during cross-validation.

We did not retrain it with the complete dataset before applying it to DaCapo.

Our feature-based model reached an F1-score of at most 0.34, which shows

that while this model had great results with our synthetic data, it had a hard time

generalizing for real-world applications. This could be explained due to the di�erences

between the data extracted from DaCapo and our datasets. Tables 5.15 and 5.16

present the comparison of the mean, median, and maximum values of the features

from DaCapo and the small and medium datasets. The model trained with the small

dataset had the lowest F1-score on DaCapo and the model trained with the medium

dataset had the highest. The biggest di�erence between our synthetic datasets and

DaCapo is the length of the sequences. The ones from the benchmark suite have

a large range, having up to 1,384,527 operations. However, the median length on

the medium dataset is 748, similar to DaCapo's 768. This could contribute to the

better results achieved by our model trained with the medium dataset. Another

huge di�erence between our sets and DaCapo is the number of addition operations.

The latter is composed of sequences that have up to 978,874 operations, while the

maximum is 1,000 for the medium dataset and 500 for the small one. However, the

median of add operations on DaCapo is in the middle of both sets.

Dataset Programmer Feature-based LSTM - most LSTM - last
small 0.43 0.13 0.07 0.09
medium 0.43 0.34 0.09 0.10
large 0.43 0.21 0.12 0.28
mixed 0.43 0.22 0.45 0.44

Table 5.14: F1-score of original benchmarks and proposed learning models when com-
pared with the best versions found empirically.

Our LSTM network is capable of �nding after how many operations in the pro-

gram execution the current data structure implementation should be replaced. How-

ever, as this work does not focus on dynamically changing the data structure, we use

two di�erent methods to decide on only one implementation to be used throughout

5. Experimental evaluation 43

Mean Median Max
small DaCapo small DaCapo small DaCapo

a 92.69 15520.46 70 168 500 978874
aa 27.10 6618.6 0 52 355 454031
ai 19.22 1058.33 5 0 437 104709
i 88.99 8341.53 27 2 495 405653
ia 19.13 1057.33 5 0 438 104710
ii 45.18 3779.83 0 0 490 165566
len 308.13 30246.13 254 768 500 1384527
max 68.94 178.58 36 15 500 6366
median 36.57 50.99 19 2 250.5 2764
r 70.78 84.70 50 0 497 2817

Table 5.15: Distribution of features for the small dataset and DaCapo benchmarks.

Mean Median Max
medium DaCapo medium DaCapo medium DaCapo

a 324.38 15520.46 280 168 1000 978874
aa 27.10 123.82 0 52 999 454031
aaa 87.38 4136.36 0 22 998 288340
len 919.94 30246.13 748 768 5000 1384527
max 252.06 178.58 200 15 1000 6366
median 132.59 50.99 110 2 500.5 2764
r 202.20 84.70 167 0 997 2817
ri 47.41 5.16 0 0 975 320

Table 5.16: Distribution of features for the medium dataset and DaCapo benchmarks.

the whole execution. The �rst method �nds the implementation that was the most

recommended for a certain instance. The second chooses the last recommended im-

plementation. The F1-score values for both methods on the DaCapo benchmarks is

presented in Table 5.14. Our LSTM, trained with the mixed dataset, reached an F1-

score value of 0.44. Even though this is very low, it is a bit higher than F1-scores

reached by the programmer in the current implementations.

Since our LSTM network can make suggestions of when to replace one data

structure with another, it is important to consider that swapping a data structure

implementation at runtime has a cost. So it is desirable do minimize the number of

swaps throughout the execution of the application. Table 5.17 presents the median and

maximum of number of swaps suggested for DaCapo. The median suggested varies

between 2 and 4 swaps, which is really low and would not cause too much overhead

on the program execution. The maximum values recommended go up to 8,486, which

5. Experimental evaluation 44

is a high number, but it is a direct re�ection of the length of this sequence, which is

composed of 1,384,527 operations.

Dataset Median Max
small 2 3264
medium 2 5103
large 4 8486
mixed 2 6088

Table 5.17: The median and maximum of number of swaps recommended by our LSTM
network for the DaCabo benchmark suite.

Even though our learning models had di�culties to generalize for real-world ap-

plications, both models correctly predicted the data structure for a few samples when

the original developer did not. Tables 5.18, 5.19, and 5.20 presents the confusion

matrices when comparing the best data structures for DaCapo found empirically to

the ones recommended by our learning models, and chosen by the original developer.

From Table 5.18, we �nd that the feature-based model predicted a lot of instances of

HashSet as LinkedHashSet. This confusion is expected as the two implementations

are the most similar to each other. On the other hand, this model correctly predicted

14 instances of LinkedHashSet, and eight instances of TreSet that were not chosen

by the developer. This shows that this model can still help the developer with the task

of selecting which data structures to use on a given application, even though it also

mispredicted samples that the developer chose correctly.

The model-based with LSTMs approach had a performance similar to the devel-

oper, when trained with the mixed dataset. Tables 5.19 and 5.20 present that both

our model and the developer chose to mainly use HashSet in the benchmarks, with

100% and 98% of recall, respectively. For our model, this could be explained by the

large number of HashSet samples in our unbalanced training sets. On the other hand,

the original developer may have primarily chosen this implementation as it is highly

recommended by Java's documentation. It is worth highlighting that our model-based

approach correctly predicted the best implementation for two instances when the

developer did not: one for HashSet, and another for TreeSet. Besides, the devel-

oper also wrongly used two instances of TreeSet when HashSet should have been used.

Finally, we used the program reconstructor described in Section 3.2 to create

versions of the DaCapo suite using the data structures recommended by our models.

5. Experimental evaluation 45

Predicted class
HS LH TS Recall (%)

True class
HS 12 77 2 13
LH 11 14 8 42
TS 7 16 8 26

Precision (%) 40 13 44

Table 5.18: Confusion matrix of the RF classi�er, trained with mixed dataset, applied
to the DaCapo suite.

Predicted class
HS LH TS Recall (%)

True class
HS 91 0 0 100
LH 33 0 0 0
TS 30 0 1 3

Precision (%) 59 0 100

Table 5.19: Confusion matrix of the model-based with LSTMs approach, trained with
mixed dataset, applied to the DaCapo suite.

Predicted class
HS LH TS Recall (%)

True class
HS 89 0 2 98
LH 33 0 0 0
TS 31 0 0 0

Precision (%) 58 0 0

Table 5.20: Confusion matrix of the choices of the original developer.

Figure 5.4 presents the speedup of the versions generated with our framework, com-

pared to the original benchmarks. In the chart, the benchmarks are represented with

their �rst two letters and a letter representing its input size. For example, an-l repre-

sents the antlr benchmark with large input. For most of the benchmarks, there is not

a signi�cant di�erence in execution time between each version. This can be explained

by the fact that DaCapo is an older benchmark suite, which has been improved over

the years. Besides, the majority of the benchmarks are already pretty fast and take less

than �ve seconds to run. The exceptions are avrora with default and large input sizes

and bloat with default input size. Furthermore, the DaCapo benchmarks do not focus

on the performance of data structures, so improving this aspect would not necessarily

result in an improvement for the program. The execution time of input and output

operations, for example, has way more impact on the benchmarks' performance than

5. Experimental evaluation 46

the time needed to perform operations on the data structures used. While there is not

a signi�cant di�erence in runtime between our models and the original code, as the

highest speedup was 1.31x, replacing the data structures with our suggestions did not

add much slowdown to the benchmarks either, the lowest value being 0.78x.

It is important to mention that we can not replace all Set implementation with

another in all applications. For example, if one program depends on printing the

elements of a set in the order that they were added, we can not use HashSet. We can

not replace TreeSet with another implementation when we expect the set to be sorted

either. For the same reason, if the elements in a set are not comparable, we can not use

TreeSet. We have mitigated this with our customized classes for instrumentation, but

that is not true for the original TreeSet implementation. Our framework does not take

these cases into account. This was not a problem for our synthetic applications, as we

only implemented algorithms that could use any Set implementation. However, that is

not the case for DaCapo. As there are not that many Set instances on the benchmark

suite, we decided not to take a conservative approach, like �ltering the instances to

avoid replacing TreeSet. We replaced all data structures with the ones recommended

by our learning models and relied on DaCapo's veri�cation to check if the new version

did not change the original code. This was true for all benchmarks, except for bloat.

The implementations recommended by our feature-based model did not work on the

original code and, for this reason, we did not add its execution time to the chart in

Figure 5.4.

5.5 Alternatives considered

We studied di�erent approaches before deciding on the �nal learning models pre-

viously described in this chapter. In this section, we present the alternative approaches

that we tried, explaining their positive points, and why we decided to not follow with

these ideas.

5.5.1 Dataset with no iterations

At �rst, we thought that the add, contains, and remove interface functions

contained su�cient information of a data structure behavior during the execution of a

program. We extracted data for only these operations in our dataset and ran both the

feature-based and neural network approaches with the resulting features and sequences.

Figure 5.5 presents the histogram of the number of sequences that contain the add,

contains, and remove operations in the ith position, in which 0 <= i <= 10. This

5. Experimental evaluation 47

Figure 5.4: Speedup of the versions using the data structures recommended by our
learning models when compared to the original benchmark.

is computed for each of the target data structures, and we can see that there is not a

signi�cant di�erence between them. For all of the classes, the number of add operations

is higher, followed by remove, and then contains. With the distribution of operations

being similar, it is hard for our LSTM model to di�erentiate between the classes.

Adding the number of iterator operations mitigated this problem, as illustrated by

Figure 5.6. In this last histogram, we can see how iterations are heavily used in

programs that are faster using LinkedHashSet. On the other hand, when we use the

TreeSet, the number of iterations is really low.

5.5.2 No sliding window

We proposed an alternative approach for splitting a sequence into smaller

subsequences. Figure 5.7 presents this approach: after padding the sequence with

space characters, we simply split it into smaller chunks of the same length. Each

subsequence is then transformed into a one-hot vector as well. This splitting method

is simpler as it is not necessary to consider other parameters, such as the window

length, and how many steps it takes when sliding. On the other hand, it does not

contribute to generating more subsequences like the sliding window method. Our

5. Experimental evaluation 48

(a) Sequences that have HashSet as the suit-

able data structure.

(b) Sequences that have LinkedHashSet as

the suitable data structure.

(c) Sequences that have TreeSet as the suit-

able data structure.

Figure 5.5: Number of sequences, of each class, containing add, contains, and remove

operations in the ith position, in which 0 <= i <= 10.

datasets do not contain enough sequences for training an LSTM network, so gen-

erating more subsequences with the sliding window contributed to a larger training set.

5.5.3 Sliding window parameters

The sliding window approach for splitting a sequence depends on two parameters:

the window length, which is the length of the generated subsequences, and the step

size, which is the number of characters that we skip when sliding the window. As an

example, if we set the window len to 3 and the step size to 2, we generate the following

subsequences from the sequence "ARIACC": ARI, IAC, and CC_. These parameters

have direct e�ect on the number of generated subsequences.

We proposed starting with two di�erent values for the window length: the min-

5. Experimental evaluation 49

(a) Sequences that have HashSet as the suit-

able data structure.

(b) Sequences that have LinkedHashSet as

the suitable data structure.

(c) Sequences that have TreeSet as the suit-

able data structure.

Figure 5.6: Number of sequences, of each class, containing add, contains, remove and
iterator operations in the ith position, in which 0 <= i <= 10.

Figure 5.7: Preprocessing of sequences using the split approach.

imum and median sequence length in the dataset. We also set the step size as one.

However, after running our LSTM with the small dataset, we thought we still did not

5. Experimental evaluation 50

have enough samples for training. For this reason, we decided to choose an arbitrary

smaller value that would result in a larger number of sequences. The window length

set to ten worked well with our experiments and is the value used in this work.

Our LSTM is capable of suggesting di�erent data structure implementations for

di�erent points in the execution of a program due to its sliding window approach. For

example, our model could recommend one implementation for the ARI subsequence

mentioned above, and another one for the IAC subsequence. However, replacing a

data structure causes an overhead, so it is desirable to minimize the number of data

structure swaps throughout the execution of an application. The step size directly

a�ects this.

We wrote Algorithm 5.1 to measure the overhead of replacing one Set imple-

mentation with another. The code creates a new instance of TreeSet and add 100

elements to it in lines 11 to 14. The swap function in lines 3 to 8, creates a new

HashSet with the elements in the Set passed as parameter, and returns its execution

time, in seconds. We call this function 10000 times for warm up (lines 16 to 19),

and �nally we call it one more time in line 22 to measure the time needed to swap

the data structure. We changed the implementation of the data structure in line 11

and the one the replaces it in line 5, and we also varied the number of elements in the set.

1 public class Swap {

2

3 private stat ic long swap (Set<Integer> s) {

4 long s t a r t = System . nanoTime () ;

5 s = new HashSet (s) ;

6 long end = System . nanoTime () ;

7 return end − s t a r t ;

8 }

9

10 public stat ic void main () {

11 Set<Integer> s = new TreeSet <>() ;

12 for (int i = 0 ; i < 100 ; i++) {

13 s . add (i) ;

14 }

15

16 System . out . p r i n t l n ("Warming up . ") ;

17 for (int i = 0 ; i < 10000 ; i++) {

18 swap (s) ;

19 }

20

21 System . out . p r i n t l n (" S ta r t i ng ac tua l benchmark . ") ;

5. Experimental evaluation 51

22 long sw = swap (s) ;

23 System . out . p r i n t l n ("Swapping data s t r u c t u r e s : " + sw) ;

24 }

25 }

Algorithm 5.1: Application creating an instance of TreeSet and replacing it for a

HashSet.

We used the algorithm described above to get the average execution time

of performing a data structure replacement in a program. Then, we used our

synthetic datasets to calculate the di�erence of runtime between the code with

the fastest and slowest Set implementation. By dividing this value by the average

swap time, we could �nd how many data structure swaps could be done during the

execution of our input applications. Table 5.21 presents the median and maximum

number of swaps for each dataset that does not a�ect a program's performance. We

used this values to �nd how many steps our sliding window should take at each

iteration without decreasing the program's e�ciency. With this experiment, the

step size was set to ten. While this analysis was only done on our old datasets,

which did not contain information on the iterator operation, we continued using

this value with our new datasets. As previously presented, this value worked well

for our experiments, keeping the median of swaps very low for the DaCapo benchmarks.

Dataset Median Max
small 3.88 24.27
medium 11.97 51.71
large 24.67 108.55

Table 5.21: Median and maximum number of data structure swaps that can be done
in a program without a�ecting performance.

Chapter 6

Conclusion

This dissertation has presented a framework to automatically select the best data

structure for a given application and input. This framework is composed of four com-

ponents: a program data extractor, a feature constructor, machine learning models,

and a program reconstructor. The program data extractor is built on top of the Soot

framework and extracts information on the behavior of the data structures used in a

given input program. The feature constructor transforms this information into features

that are fed to machine learning models capable of automatically selecting data struc-

tures for the input program. Finally, the program reconstructor creates a new version

of the input program, in binary format, which uses the data structure implementations

selected by our models. Even though this work focus on improving the execution time

of applications, this framework can be used to improve other performance aspects such

as memory and energy consumption.

We have evaluated our framework on synthetic applications and real world pro-

grams from the DaCapo benchmarks suite. One of our models was capable of reaching

slightly better values of F1-score as the original developer when selecting data struc-

tures to be used in the benchmarks. Besides, our models could also correctly select

data structure implementations that were not chosen by the developer, but that im-

proved the programs's execution time. When comparing the original benchmarks with

the versions generated by our framework, we did not observe any slowdown.

Future work should primarily invest on improving the proposed machine learn-

ing models by augmenting the training sets with data from real-world applications.

The di�erences between our synthetic datasets and real benchmarks make it hard to

train machine learning models that can perform well on real data. Furthermore, we

should also regenerate our synthetic benchmark using speci�c frameworks for reliable

performance measurement in Java. These frameworks would allow us to generate syn-

52

6. Conclusion 53

thetic data with a warmup phase, and multiple iterations. Besides, we could also try

to use cost-sensitive classi�cation, in which we aim to minimize the model costs with-

out assuming that all misclassi�cation errors are equal. As an example, developers

would normally already choose to use HashSet in their code, as it is recommended on

Java's documentation, so misclassifying one of these samples would not be as bad as

misclassifying LinkedHashSet and TreeSet samples. So we could add a higher cost

to the incorrect prediction of the latter implementations. More work can be done on

parameter tuning as well.

For the LSTM model, we should also work on tuning the window length, and the

number of characters that it skips with the window slide. After improving the learnings

models, we could also work on expanding our framework by collecting examples of

parallel programs that use the ConcurrentSkipListSet and CopyOnWriteArraySet

data structures. These two implementations could easily be added as possible classes

to be selected by the models. Besides, the framework could be expanded to work with

di�erent abstract data types such as List and Map. Extending its implementations to

collect information on interface functions would be enough to make our program data

extractor work with these classes as well.

Appendix A

Classes for Instrumentation

In order to extract data structure information from computer programs, we use

the Soot instrumentation tool to replace all instances of Set in the code with a class

used for instrumentation. As an example, all instances of HashSet are replaced with

InstrHashSet. Algorithm A.1 presents its implementation.

1 import java . u t i l . HashSet ;

2

3 public class InstrHashSet<E> extends HashSet<E> {

4

5 private stat ic List<Str ing> log = Co l l e c t i o n s . synchron i z edL i s t (new

ArrayList<Str ing >()) ;

6 private long id ;

7

8 public InstrHashSet (long id) {

9 super () ;

10 this . id = id ;

11 }

12

13 @Override

14 public boolean add (E e) {

15 long s t a r t = System . nanoTime () ;

16 boolean a = super . add (e) ;

17 long end = System . nanoTime () ;

18 InstrHashSet . l og . add (this . id + " ,A, " + s t a r t + " , " + (end − s t a r t) +

" , " + this . s i z e () + " ,HS") ;

19 return a ;

20 }

21

22 @Override

54

A. Classes for Instrumentation 55

23 public boolean conta in s (Object o) {

24 long s t a r t = System . nanoTime () ;

25 boolean c = super . c onta in s (o) ;

26 long end = System . nanoTime () ;

27 InstrHashSet . l og . add (this . id + " ,C, " + s t a r t + " , " + (end − s t a r t) +

" , " + this . s i z e () + " ,HS") ;

28 return c ;

29 }

30

31 @Override

32 public boolean remove (Object o) {

33 long s t a r t = System . nanoTime () ;

34 boolean r = super . remove (o) ;

35 long end = System . nanoTime () ;

36 InstrHashSet . l og . add (this . id + " ,R, " + s t a r t + " , " + (end − s t a r t) +

" , " + this . s i z e () + " ,HS") ;

37 return r ;

38 }

39

40 public stat ic void printLog () {

41 for (S t r ing s : InstrHashSet . l og) System . out . p r i n t l n (s) ;

42 }

43 }

Algorithm A.1: Implementation of the InstrHashSet class which logs information

regarding its interface functions.

TreeSet is an implementation of Set in which the added elements are sorted.

Elements can be ordered using their natural ordering or by a comparator provided

at set creation time. If the elements are not comparable, and a comparator is not

provided, the code will throw an exception at runtime. To avoid this, we have imple-

mented the HashComparator class. It uses natural ordering for primitive types, and

sorts the elements using their hash code for other types. Its source code is presented

in Algorithm A.2. When replacing any implementation of Set with InstrTreeSet,

our instrumentation class for TreeSet, we use TreeSet's constructor with comparator,

passing HashComparator as argument.

1 import java . u t i l . Comparator ;

2

3 public class HashComparator<E> implements Comparator<E> {

4

5 @Override

6 public int compare (E arg0 , E arg1) {

A. Classes for Instrumentation 56

7 i f (arg0 instanceof I n t eg e r) {

8 return ((In t eg e r) arg0) . compareTo ((In t eg e r) arg1) ;

9 } else i f (arg0 instanceof Double) {

10 return ((Double) arg0) . compareTo ((Double) arg1) ;

11 } else i f (arg0 instanceof St r ing) {

12 return ((S t r ing) arg0) . compareTo ((S t r ing) arg1) ;

13 } else i f (arg0 instanceof Long) {

14 return ((Long) arg0) . compareTo ((Long) arg1) ;

15 } else i f (arg0 instanceof Boolean) {

16 return ((Boolean) arg0) . compareTo ((Boolean) arg0) ;

17 } else i f (arg0 instanceof Short) {

18 return ((Short) arg0) . compareTo ((Short) arg1) ;

19 } else i f (arg0 instanceof Character) {

20 return ((Character) arg0) . compareTo ((Character) arg1) ;

21 } else i f (arg0 instanceof Float) {

22 return ((Float) arg0) . compareTo ((Float) arg1) ;

23 } else i f (arg0 instanceof Byte) {

24 return ((Byte) arg0) . compareTo ((Byte) arg1) ;

25 } else {

26 i f (arg0 . hashCode () < arg1 . hashCode ()) {

27 return −1;
28 } else i f (arg0 . hashCode () > arg1 . hashCode ()) {

29 return 1 ;

30 } else {

31 return 0 ;

32 }

33 }

34 }

35 }

Algorithm A.2: Implementation of the InstrHashSet class which logs information

regarding its interface functions.

Appendix B

Feature selection

We used our feature constructor to extract 88 di�erent features from the datasets

created with our program generator. However, using too many features can add noise

to the model, making it important to verify if all features are relevant to the learning

model. To do this, we calculated the information gain for each extracted feature. In

feature selection, information gain measures the amount of information one feature

brings to the model. Table B.1 presents the results.

Table B.1: Information gain for all features using the four datasets.

Small Medium Large Mixed

Feature Score Feature Score Feature Score Feature Score

max 0.4189 max 0.4605 max 0.4267 max 0.4267

median 0.3945 median 0.4220 median 0.3902 median 0.3947

len 0.3908 len 0.3287 A 0.3702 len 0.3496

A 0.3097 A 0.2918 len 0.2580 A 0.3315

I 0.2520 I 0.2593 R 0.2023 I 0.2135

AA 0.2068 AA 0.2427 AA 0.1973 AA 0.1845

AI 0.1874 AAA 0.1971 I 0.1946 R 0.1648

IA 0.1871 R 0.1859 AAA 0.1874 AI 0.1614

R 0.1411 IA 0.1749 RRA 0.1775 IA 0.1600

II 0.1402 RI 0.1641 RAR 0.1617 AAA 0.1291

RI 0.1373 C 0.1473 CCC 0.1587 ARA 0.1087

IR 0.1330 IR 0.1420 RA 0.1546 RA 0.1035

AAA 0.1217 AI 0.1395 AR 0.1534 RR 0.1004

IC 0.1213 AR 0.1250 RRR 0.1473 AR 0.1003

57

B. Feature selection 58

CI 0.1168 IAI 0.1237 CCA 0.1472 IRI 0.0968

IRI 0.1162 RR 0.1211 IA 0.1471 C 0.0961

AAI 0.1115 RA 0.1141 ARR 0.1464 II 0.0940

ARA 0.1107 IRI 0.1132 AI 0.1342 IR 0.0922

IAI 0.1089 RRA 0.1110 RAA 0.1324 CCC 0.0921

IAA 0.1045 IC 0.1086 ARA 0.1322 RI 0.0919

RAA 0.1039 AAI 0.1077 AAR 0.1301 RRR 0.0892

AIA 0.0995 CRI 0.1020 ACC 0.1277 RAI 0.0887

RII 0.0939 ARA 0.1011 CAC 0.1261 IC 0.0878

RA 0.0933 AIR 0.0998 RR 0.1246 CI 0.0865

IAR 0.0922 II 0.0993 CC 0.1209 IAA 0.0863

ICI 0.0881 RIA 0.0960 IC 0.1204 RRA 0.0858

IIR 0.0873 CA 0.0957 C 0.1193 RAA 0.0806

RAI 0.0866 RAA 0.0945 RI 0.1182 CC 0.0796

RR 0.0856 IIA 0.0925 ACA 0.1141 IAR 0.0779

C 0.0827 RAR 0.0924 CA 0.1119 AIA 0.0776

IIC 0.0820 IAA 0.0918 IR 0.1106 AAI 0.0769

CII 0.0805 CI 0.0905 CCR 0.1104 ARR 0.0766

RRA 0.0801 AIA 0.0868 AC 0.1087 RAR 0.0762

ARI 0.0800 CCC 0.0852 CI 0.1067 IIR 0.0759

IRA 0.0789 IRC 0.0841 CAA 0.1062 ICI 0.0754

AAR 0.0775 IAC 0.0833 RCC 0.1006 RII 0.0732

AIC 0.0760 CAI 0.0831 RAC 0.0996 IAI 0.0716

IIA 0.0743 RRR 0.0824 AAC 0.0994 AIR 0.0707

AII 0.0741 RAI 0.0820 CRC 0.0966 AII 0.0701

AR 0.0734 CR 0.0803 RCR 0.0864 RIA 0.0678

AIR 0.0726 ARR 0.0803 RIC 0.0826 ARI 0.0669

CIR 0.0726 CC 0.0797 RCI 0.0816 CII 0.0669

RRR 0.0671 AII 0.0797 CIR 0.0814 AAR 0.0664

ICA 0.0671 CIR 0.0795 IRI 0.0778 AC 0.0654

ICR 0.0669 AIC 0.0787 CR 0.0767 CRI 0.0638

CC 0.0664 CAC 0.0783 RCA 0.0760 CAI 0.0635

CCC 0.0656 ARI 0.0778 CRA 0.0754 CA 0.0635

ACA 0.0649 RII 0.0750 CAR 0.0746 CRC 0.0633

CAI 0.0631 AAR 0.0713 CRR 0.0713 CIR 0.0623

IAC 0.0599 IIR 0.0700 RRC 0.0707 IIC 0.0618

B. Feature selection 59

RIC 0.0595 RRI 0.0695 AIR 0.0680 ACA 0.0607

RCI 0.0591 RCI 0.0680 IAI 0.0673 RIC 0.0595

III 0.0586 IAR 0.0673 IAR 0.0637 AIC 0.0592

ACI 0.0585 IIC 0.0669 ICR 0.0636 CIA 0.0584

IRC 0.0579 III 0.0643 ARC 0.0634 IRA 0.0579

RIA 0.0578 ACC 0.0642 RC 0.0622 IIA 0.0575

CAA 0.0575 CIA 0.0641 IRC 0.0615 mIn 0.0572

CRI 0.0574 ACA 0.0639 RIR 0.0609 IAC 0.0572

mIn 0.0567 RAC 0.0636 IRA 0.0599 CCR 0.0567

CIA 0.0556 RIC 0.0628 II 0.0592 CCA 0.0549

RAR 0.0540 RIR 0.0626 ACR 0.0584 RCC 0.0543

CR 0.0533 CII 0.0609 AAI 0.0572 CAC 0.0523

AAC 0.0523 mIn 0.0599 RIA 0.0571 RCI 0.0515

CIC 0.0512 IRA 0.0596 CRI 0.0569 ICA 0.0514

CCR 0.0479 ACI 0.0577 RAI 0.0552 ICR 0.0514

ARR 0.0476 CAA 0.0575 IAA 0.0532 CAA 0.0498

CRC 0.0476 ICI 0.0554 AIA 0.0506 III 0.0495

RIR 0.0444 IRR 0.0547 ARI 0.0503 ACI 0.0490

CRR 0.0401 ICR 0.0545 ACI 0.0499 IRC 0.0485

RC 0.0401 CRC 0.0494 ICI 0.0470 RRC 0.0482

RCR 0.0388 AC 0.0484 IRR 0.0459 ACC 0.0471

RCC 0.0388 RCR 0.0475 CIC 0.0450 RIR 0.0457

AC 0.0366 AAC 0.0449 IIR 0.0441 CRR 0.0417

CCI 0.0347 RC 0.0409 ICA 0.0441 CRA 0.0381

CA 0.0317 CRR 0.0404 AIC 0.0434 AAC 0.0376

RRC 0.0275 CAR 0.0396 CAI 0.0425 RCR 0.0374

CCA 0.0265 RCC 0.0354 CIA 0.0411 CR 0.0368

ICC 0.0249 CCR 0.0353 ICC 0.0392 RAC 0.0366

CAR 0.0203 ACR 0.0328 IIC 0.0380 RC 0.0346

ACC 0.0167 ARC 0.0311 mIn 0.0374 RCA 0.0321

ACR 0.0149 ICA 0.0308 CII 0.0338 CAR 0.0320

RAC 0.0143 CCA 0.0299 CCI 0.0338 CCI 0.0304

RRI 0.0126 RRC 0.0271 AII 0.0313 ICC 0.0276

CRA 0.0094 CRA 0.0269 RII 0.0309 ARC 0.0271

CAC 0.0092 ICC 0.0232 IAC 0.0297 CIC 0.0265

RCA 0.0042 RCA 0.0205 III 0.0275 RRI 0.0262

B. Feature selection 60

ARC 0.0035 CCI 0.0179 IIA 0.0274 IRR 0.0220

IRR 0.0030 CIC 0.0150 RRI 0.0206 ACR 0.0118

Bibliography

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,

Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving,

G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané,

D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner,

B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F.,

Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015).

TensorFlow: Large-scale machine learning on heterogeneous systems. Software avail-

able from tensor�ow.org.

Altschul, S. F., Madden, T. L., Schä�er, A. A., Zhang, J., Zhang, Z., Miller, W., and

Lipman, D. J. (1997). Gapped blast and psi-blast: a new generation of protein

database search programs. Nucleic acids research, 25(17):3389--3402.

Basios, M., Li, L., Wu, F., Kanthan, L., and Barr, E. T. (2018). Darwinian data

structure selection. In Proceedings of the 2018 26th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering, pages 118--128.

Baum, L. E., Petrie, T., Soules, G., and Weiss, N. (1970). A maximization technique

occurring in the statistical analysis of probabilistic functions of markov chains. The

annals of mathematical statistics, 41(1):164--171.

Blackburn, S. M., Garner, R., Ho�man, C., Khan, A. M., McKinley, K. S., Bentzur,

R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S. Z., Hirzel, M., Hosking, A.,

Jump, M., Lee, H., Moss, J. E. B., Phansalkar, A., Stefanovi¢, D., VanDrunen, T.,

von Dincklage, D., and Wiedermann, B. (2006). The DaCapo Benchmarks: Java

benchmarking development and analysis (extended version). Technical report TR-

CS-06-01, ANU. http://www.dacapobench.org.

61

Bibliography 62

Blasiak, S. and Rangwala, H. (2011). A hidden markov model variant for sequence

classi�cation. In Twenty-Second International Joint Conference on Arti�cial Intel-

ligence.

Blekas, K., Fotiadis, D. I., and Likas, A. (2005). Motif-based protein sequence classi�-

cation using neural networks. Journal of Computational Biology, 12(1):64--82.

Bodden, E., Sewe, A., Sinschek, J., Oueslati, H., and Mezini, M. (2011). Taming

re�ection: Aiding static analysis in the presence of re�ection and custom class load-

ers. In 2011 33rd International Conference on Software Engineering (ICSE), pages

241--250. IEEE.

Breiman, L. (2001). Random forests. Machine learning, 45(1):5--32.

Breitwieser, F., Baker, D., and Salzberg, S. L. (2018). Krakenuniq: con�dent and fast

metagenomics classi�cation using unique k-mer counts. Genome biology, 19(1):1--10.

Breuel, T. M., Ul-Hasan, A., Al-Azawi, M. A., and Shafait, F. (2013). High-

performance ocr for printed english and fraktur using lstm networks. In 2013 12th

International Conference on Document Analysis and Recognition, pages 683--687.

IEEE.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: syn-

thetic minority over-sampling technique. Journal of arti�cial intelligence research,

16:321--357.

Cheng, B. Y. M., Carbonell, J. G., and Klein-Seetharaman, J. (2005). Protein clas-

si�cation based on text document classi�cation techniques. Proteins: Structure,

Function, and Bioinformatics, 58(4):955--970.

Chollet, F. et al. (2015). Keras. https://keras.io.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning,

20(3):273--297.

Costa, D. and Andrzejak, A. (2018). Collectionswitch: a framework for e�cient and

dynamic collection selection. In Proceedings of, pages 16--26.

Costa, D., Andrzejak, A., Seboek, J., and Lo, D. (2017). Empirical study of usage and

performance of java collections. In Proceedings of the 8th ACM/SPEC on Interna-

tional Conference on Performance Engineering, pages 389--400.

https://keras.io

Bibliography 63

de Oliveira Júnior, W., dos Santos, R. O., de Lima Filho, F. J. C., de Araújo Neto,

B. F., and Pinto, G. H. L. (2019). Recommending energy-e�cient java collections.

In 2019 IEEE/ACM 16th International Conference on Mining Software Repositories

(MSR), pages 160--170. IEEE.

Dewar, R. B., Grand, A., Liu, S.-C., Schwartz, J. T., and Schonberg, E. (1979). Pro-

gramming by re�nement, as exempli�ed by the setl representation sublanguage. ACM

Transactions on Programming Languages and Systems (TOPLAS), 1(1):27--49.

Dong, G. and Pei, J. (2007). Sequence data mining, volume 33. Springer Science &

Business Media.

Georges, A., Buytaert, D., and Eeckhout, L. (2007). Statistically rigorous java perfor-

mance evaluation. ACM SIGPLAN Notices, 42(10):57--76.

Gil, J. and Shimron, Y. (2012). Smaller footprint for java collections. In European

Conference on Object-Oriented Programming, pages 356--382. Springer.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep learning, vol-

ume 1. MIT press Cambridge.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep

recurrent neural networks. In 2013 IEEE international conference on acoustics,

speech and signal processing, pages 6645--6649. IEEE.

Gre�, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., and Schmidhuber, J.

(2016). Lstm: A search space odyssey. IEEE transactions on neural networks and

learning systems, 28(10):2222--2232.

Guyon, I. and Elissee�, A. (2003). An introduction to variable and feature selection.

Journal of machine learning research, 3(Mar):1157--1182.

Hasan, S., King, Z., Ha�z, M., Sayagh, M., Adams, B., and Hindle, A. (2016). Energy

pro�les of java collections classes. In Proceedings of the 38th International Conference

on Software Engineering, pages 225--236.

Hawkins, D. M. (2004). The problem of over�tting. Journal of chemical information

and computer sciences, 44(1):1--12.

He, M. X., Petoukhov, S. V., and Ricci, P. E. (2004). Genetic code, hamming distance

and stochastic matrices. Bulletin of mathematical biology, 66(5):1405--1421.

Bibliography 64

Heniko�, S. and Heniko�, J. G. (1993). Performance evaluation of amino acid substi-

tution matrices. Proteins: Structure, Function, and Bioinformatics, 17(1):49--61.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural compu-

tation, 9(8):1735--1780.

Hu, S., Ma, R., and Wang, H. (2019). An improved deep learning method for predicting

dna-binding proteins based on contextual features in amino acid sequences. PloS one,

14(11).

Jung, C., Rus, S., Railing, B. P., Clark, N., and Pande, S. (2011). Brainy: e�ective

selection of data structures. In ACM SIGPLAN Notices, volume 46, pages 86--97.

ACM.

Kawulok, J. and Deorowicz, S. (2015). Cometa: classi�cation of metagenomes using

k-mers. PloS one, 10(4).

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Leather, H., Bonilla, E., and O'Boyle, M. (2009). Automatic feature generation for

machine learning based optimizing compilation. In Proceedings of the 7th annual

IEEE/ACM International Symposium on Code Generation and Optimization, pages

81--91. IEEE Computer Society.

LeCun, Y., Ha�ner, P., Bottou, L., and Bengio, Y. (1999). Object recognition with

gradient-based learning. In Shape, contour and grouping in computer vision, pages

319--345. Springer.

Lemaître, G., Nogueira, F., and Aridas, C. K. (2017). Imbalanced-learn: A python

toolbox to tackle the curse of imbalanced datasets in machine learning. Journal of

Machine Learning Research, 18(17):1�5.

Liskov, B. H. and Wing, J. M. (1994). A behavioral notion of subtyping. ACM

Transactions on Programming Languages and Systems (TOPLAS), 16(6):1811--1841.

Liu, L. and Rus, S. (2009). Per�int: A context sensitive performance advisor for c++

programs. In Code Generation and Optimization, 2009. CGO 2009. International

Symposium on, pages 265--274. IEEE.

Ma, Q., Wang, J. T., Shasha, D., and Wu, C. H. (2001). Dna sequence classi�cation

via an expectation maximization algorithm and neural networks: a case study. IEEE

Bibliography 65

Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),

31(4):468--475.

Manotas, I., Pollock, L., and Clause, J. (2014). Seeds: a software engineer's energy-

optimization decision support framework. In Proceedings of the 36th International

Conference on Software Engineering, pages 503--514.

Miller, F. P., Vandome, A. F., and McBrewster, J. (2009). Levenshtein distance: Infor-

mation theory, computer science, string (computer science), string metric, damerau?

levenshtein distance, spell checker, hamming distance.

Mitchell, N. and Sevitsky, G. (2007). The causes of bloat, the limits of health. In

Proceedings of the 22nd annual ACM SIGPLAN conference on Object-oriented pro-

gramming systems and applications, pages 245--260.

Monsifrot, A., Bodin, F., and Quiniou, R. (2002). A machine learning approach to

automatic production of compiler heuristics. In International conference on arti�cial

intelligence: methodology, systems, and applications, pages 41--50. Springer.

Muller, A. T., Hiss, J. A., and Schneider, G. (2018). Recurrent neural network model

for constructive peptide design. Journal of chemical information and modeling,

58(2):472--479.

Ounit, R., Wanamaker, S., Close, T. J., and Lonardi, S. (2015). Clark: fast and

accurate classi�cation of metagenomic and genomic sequences using discriminative

k-mers. BMC genomics, 16(1):236.

Pearson, W. R. (1990). [5] rapid and sensitive sequence comparison with fastp and

fasta.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-

del, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine

learning in python. Journal of machine learning research, 12(Oct):2825--2830.

Pinto, G., Liu, K., Castor, F., and Liu, Y. D. (2016). A comprehensive study on

the energy e�ciency of java's thread-safe collections. In 2016 IEEE International

Conference on Software Maintenance and Evolution (ICSME), pages 20--31. IEEE.

Rish, I. et al. (2001). An empirical study of the naive bayes classi�er. In IJCAI 2001

workshop on empirical methods in arti�cial intelligence, volume 3, pages 41--46.

Bibliography 66

Rokach, L. and Maimon, O. Z. (2008). Data mining with decision trees: theory and

applications, volume 69. World scienti�c.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1985). Learning internal rep-

resentations by error propagation. Technical report, California Univ San Diego La

Jolla Inst for Cognitive Science.

Schonberg, E., Schwartz, J. T., and Sharir, M. (1986). An automatic technique for

selection of data representations in setl programs. In Readings in arti�cial intelligence

and software engineering, pages 235--243. Elsevier.

Shacham, O., Vechev, M., and Yahav, E. (2009). Chameleon: adaptive selection of

collections. In ACM Sigplan Notices, volume 44, pages 408--418. ACM.

Stepanov, A. and Lee, M. (1995). The standard template library, volume 1501. Hewlett

Packard Laboratories 1501 Page Mill Road, Palo Alto, CA 94304.

Stephenson, M., Amarasinghe, S., Martin, M., and O'Reilly, U.-M. (2003). Meta opti-

mization: improving compiler heuristics with machine learning. In ACM SIGPLAN

Notices, volume 38, pages 77--90. ACM.

Tan, P.-N., Steinbach, M., and Kumar, V. (2016). Introduction to data mining. Pearson

Education India.

Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., and Sundaresan, V. (2010).

Soot: A java bytecode optimization framework. In CASCON First Decade High

Impact Papers, pages 214--224. IBM Corp.

Wang, J. T., Ma, Q., Shasha, D., and Wu, C. H. (2000). Application of neural networks

to biological data mining: a case study in protein sequence classi�cation. In Proceed-

ings of the sixth ACM SIGKDD international conference on Knowledge discovery

and data mining, pages 305--309.

Wilbur, W. J. (1985). On the pam matrix model of protein evolution. Molecular biology

and evolution, 2(5):434--447.

Wirth, N. (1976). Algorithms+ Data Structures= Programs Prentice-Hall Series in

Automatic Computation. Prentice Hall.

Witten, I. H. and Frank, E. (2002). Data mining: practical machine learning tools and

techniques with java implementations. Acm Sigmod Record, 31(1):76--77.

Bibliography 67

Wu, C. H. (1997). Arti�cial neural networks for molecular sequence analysis. Computers

& chemistry, 21(4):237--256.

Xing, Z., Pei, J., and Keogh, E. (2010). A brief survey on sequence classi�cation. ACM

Sigkdd Explorations Newsletter, 12(1):40--48.

Xu, G. (2013). Coco: sound and adaptive replacement of java collections. In European

Conference on Object-Oriented Programming, pages 1--26. Springer.

Xu, G. and Rountev, A. (2010). Detecting ine�ciently-used containers to avoid bloat.

In Proceedings of the 31st ACM SIGPLAN Conference on Programming Language

Design and Implementation, pages 160--173.

Yan, C., Dobbs, D., and Honavar, V. (2004). A two-stage classi�er for identi�cation of

protein�protein interface residues. Bioinformatics, 20(suppl_1):i371--i378.

Yang, S., Yan, D., Xu, G., and Rountev, A. (2012). Dynamic analysis of ine�ciently-

used containers. In Proceedings of the Ninth International Workshop on Dynamic

Analysis, pages 30--35.

Yegnanarayana, B. (2009). Arti�cial neural networks. PHI Learning Pvt. Ltd.

Yousef, M., Khalifa, W., Acar, �. E., and Allmer, J. (2017). Microrna categorization

using sequence motifs and k-mers. BMC bioinformatics, 18(1):170.

Zaremba, W., Sutskever, I., and Vinyals, O. (2014). Recurrent neural network regu-

larization. arXiv preprint arXiv:1409.2329.

	Agradecimentos
	Resumo
	Abstract
	Resumo Estendido
	List of Figures
	List of Tables
	1 Introduction
	2 Related work
	2.1 Data structure performance impact
	2.2 Data structure selection methods
	2.2.1 Language support

	2.3 Sequence classification

	3 A Framework for Data Structure Selection
	3.1 Program data extractor
	3.2 Program reconstructor

	4 Learning to select data structures
	4.1 Feature-based sequence classification
	4.1.1 Feature extraction
	4.1.2 Machine learning model

	4.2 Model-based sequence classification with LSTMs
	4.2.1 Machine learning model
	4.2.2 Feature construction

	5 Experimental evaluation
	5.1 Programs data
	5.1.1 Program generator
	5.1.2 Datasets

	5.2 Feature-based sequence classification model
	5.2.1 Feature selection
	5.2.2 Model evaluation

	5.3 Model-based sequence classification with LSTM
	5.4 Application on real programs
	5.4.1 Synthetic programs
	5.4.2 DaCapo

	5.5 Alternatives considered
	5.5.1 Dataset with no iterations
	5.5.2 No sliding window
	5.5.3 Sliding window parameters

	6 Conclusion
	A Classes for Instrumentation
	B Feature selection
	Bibliography

