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Abstract

With the growth of the internet, movie review websites have changed the cinematog-
raphy industry. It has been affecting the movie’s box office, for example. The review
polarity is very important in several applications. Some of them use machine learning
classifiers to define the review polarity. However, these classifiers are not perfect. They
are often criticized for the lack of explanation of their successes and failures. This
work helps to fill this gap by proposing a methodology to characterize, identify, and
measure the impact of problematic instances in the task of polarity classification of
movie reviews. We characterize such instances by two types of attribute noise: neu-
trality , where the review text does not convey a clear polarity, and discrepancy , where
the polarity of the text does not match the polarity of its rating. To do that, we
propose a human classifier which is composed of three independent human annotators.
Each annotator classifies the reviews on two levels. On the first level, they classify the
review in relation to its polarity, that is, positive or negative. Next, on the second
level, they answer whether they are confident or not about their classification and why.
Then, we aggregate their answers using the majority vote. Finally, we test state-of-
the-art machine learning classifiers on these reviews. From these steps, we quantify
the amount of attribute noise in polarity classification of movie reviews and provide
empirical evidence about the need to pay attention to such problematic instances, as
they are much harder to classify, for both machine and human classifiers. Our proposed
methodology is simple and can be easily applied to other classification tasks. To the
best of our knowledge, this is the first systematic analysis of the impact of attribute
noise in polarity detection from well-formed textual reviews.

Keywords: Attribute Noise; Deep Learning; Explainability; Opinion Reviews;
Opinion Mining; Movie Reviews.
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Resumo

A partir do crescimento da Internet, sites de críticas de filmes mudaram o setor cine-
matográfico. Eles podem afetar as bilheterias dos filmes, por exemplo. A polaridade
dessas críticas é muito importante em várias aplicações. Algumas delas usam classifi-
cadores baseados em aprendizado de máquina para definir a polaridade. No entanto,
esses classificadores não são perfeitos. Eles são frequentemente criticados pela falta
de explicação dos seus sucessos e fracassos. Este trabalho ajuda a preencher essa la-
cuna, propondo uma metodologia para caracterizar, identificar e medir o impacto de
instâncias problemáticas na tarefa de classificação da polaridade de críticas de filmes.
Caracterizamos essas instâncias por dois tipos de ruído de atributo: neutralidade,
quando o texto da crítica não transmite uma polaridade clara e discrepância, quando a
polaridade do texto não corresponde à polaridade definida pelo autor. Para fazer isso,
propomos um classificador humano composto por três juízes humanos independentes.
Cada juíz classifica as críticas em dois níveis. No primeiro nível, eles classificam em
relação à sua polaridade, isto é, positiva ou negativa. Em seguida, no segundo nível,
eles respondem se estão confiantes ou não sobre a sua classificação e o por quê. Em
seguida, agregamos suas respostas usando o voto da maioria. Por fim, testamos os
classificadores baseados em aprendizado de máquina nessas críticas. A partir dessas
etapas, quantificamos a quantidade de ruído em atributo na classificação de polaridade
de críticas de filmes e fornecemos evidências empíricas sobre a necessidade de prestar
atenção a essas instâncias problemáticas, pois são muito mais difíceis de classificar,
tanto para os classificadores máquinas quanto para os humanos. Nossa metodologia
proposta é simples e pode ser facilmente aplicada a outras tarefas de classificação. Até
onde sabemos, esta é a primeira análise sistemática do impacto do ruído de atributo
na detecção de polaridade a partir de críticas textuais bem formadas.

Palavras-chave: Ruído em Atributo; Aprendizado Profundo; Explicabilidade;
Críticas de opinião; Mineração de Opinião; Críticas de Filmes.
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Chapter 1

Introduction

Movie review websites are popular online services that allow users to evaluate movies
using a score and a text explaining the score. In addition, users can also view other
users’ reviews and start discussions. Several studies revealed that these reviews can
influence other people’s behavior, affecting the audience and consequently the cine-
matography industry [Nagamma et al., 2015; Wankhede and Thakare, 2017]. Many
people prefer to read the reviews about a movie before deciding whether to watch it
or not [Topal and Ozsoyoglu, 2016]. In the United States, for example, about 36% of
moviegoers check the site’s reviews often before seeing a movie.1 Furthermore, research
has shown that 7 out of 10 people are less interested in watching a movie if its Rotten
Tomatoes score is between 0 and 25 points.2 Therefore, reviewers have the power to
increase or decrease the audience of a movie [Boatwright et al., 2007].

The problem is that reviewers have their personal biases and own quality stan-
dards [Xiaojing Shi and Xun Liang, 2015]. In a scale from 0 to 100, a score of 70 for
a highly demanding reviewer may have the same meaning as a 90 for a more tolerant
one. This can also happen when reviewers value movie aspects, such as acting, script,
lighting, costumes, soundtrack, photography, special effects, among others, differently.
For instance, one is very critical towards the movie script, while the other disregards
the quality of the script at the expense of good action scenes. Thus, the textual con-
tent of reviews is generally much more meaningful and rich to assess the quality and
to serve as basis for recommendations than their numerical scores [Xiaojing Shi and
Xun Liang, 2015]. Because of that, and allied to the fact that many reviews do not
have a numerical score associated with them, several solutions exist in the literature

1Available in: https://www.latimes.com/business/hollywood/la-fi-ct-rotten-tomatoes-20170721-
htmlstory.html. Accessed: 06-13-2020.

2Available in: https://www.hollywoodreporter.com/news/studios-fight-back-withering-rotten-
tomatoes-scores-1025575. Accessed: 06-13-2020.
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1. Introduction 2

to automatically classify the polarity of movie reviews [Ouyang et al., 2015; Lai et al.,
2015; Hassan and Mahmood, 2018; Zhou et al., 2015; Wang et al., 2016].

A common approach to solve this problem is through supervised machine learning,
i.e., the target function to output the polarity of a review is estimated using labeled
data [Zhu et al., 2003]. The problem is that if the training data is not representative nor
reliable, most likely the trained model will not perform well in production. Imagine,
for instance, a training set containing a significant number of examples in which human
specialists, when presented to them, do not fully (or need more information to) agree
with their labels. Again, models trained with this data will most likely present high
error rates. Under these circumstances, a challenging problem is to identify whether
and which particular sets of training data led the model to perform poorly. Identifying
such sets of data is of fundamental importance to build better and more general models
that can cope with large portions of noisy data in the problem of review classification.

In fact, a huge challenge for all the existing supervised machine learning solutions
is data noise, that is, anything that obscures the relationship between the features and
the class of a given instance [Frenay and Verleysen, 2014; Beigman and Klebanov,
2009; Beigman Klebanov and Beigman, 2014]. There are two classes of noise in the
training data: class noise and attribute noise [Gupta and Gupta, 2019; Frenay and
Verleysen, 2014; Nettleton et al., 2010; Van Hulse et al., 2007; Zhu and Wu, 2004; Teng,
1999]. Class noise occurs when the training data contains instances that are wrongly
labeled [Gupta and Gupta, 2019; Frenay and Verleysen, 2014; Beigman and Klebanov,
2009; Beigman Klebanov and Beigman, 2014]. For instance, a negative review is labeled
as positive by mistake by the reviewer. On the other hand, attribute noise occurs when
the training data contains one or more attributes with wrong, incomplete or missing
values [Gupta and Gupta, 2019; Van Hulse et al., 2007]. A simple example addressed
in this work is a review that does not have an explicit opinion. A more complex one is a
review of a highly acclaimed movie where only negative points are highlighted to justify
a positive but different from perfect score. These attribute noises may dramatically
affect the effectiveness of the supervised learning solutions [Gupta and Gupta, 2019].

1.1 Thesis Statement

Besides degrading the performance of supervised learning solutions [Gupta and Gupta,
2019], attribute noise is hard to characterize and identify, especially in textual data [Van
Hulse et al., 2007]. Arguably, human-generated unstructured textual data is inherently
prone to attribute noise, which can take the form of grammar errors, dialects, slangs,
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profanities/slurs, humour, off-topic content, irony and sarcasm, among others [Michel
and Neubig, 2018; Eisenstein, 2013]. Several studies have characterized and measured
the impact of naturally occurring noisy text inputs. However, such studies either inject
synthetic noise to the attributes [Agarwal et al., 2007] or focus on simpler forms of noise
like ungrammatical constructs [Baldwin et al., 2013; Michel and Neubig, 2018; Dey and
Haque, 2009], which can be easily identified and automatically corrected. To the best
of our knowledge, no previous study has systematically characterized attribute noise
in real samples of well-written text reviews or its impact on polarity classification.

Other important problem that affects machine learning classifiers is explainabil-
ity. Despite their potential in many tasks, these solutions have a lack of explanation
of their outputs [Lipton and Steinhardt, 2019]. Generally, how the model makes a
decision is not clear or simple to understand. For this reason, they are known as black
boxes models. This lack of explanation makes humans insecure about their output and
utilization. Many works were proposed to open these black boxes and understand their
behaviour [Raaijmakers et al., 2017; Park et al., 2017; Lundberg and Lee, 2017]. A
common way to do it in the literature is through the design of controlled test datasets.
In other words, some authors usually create these datasets to evaluate how the model
behaviour in a specific problem. Then, they compare the results with original ones,
generally created by human annotators [Poliak et al., 2018; Marvin and Linzen, 2018;
Conneau et al., 2018], to understand and analyze their performance.

In this master thesis, we join these two problems: attribute noise and explain-
ability. We propose a methodology to characterize, quantify and measure the impact
of attribute noise in polarity classification tasks. We demonstrate its usefulness in
the task of movie review polarity classification. Our goal is to investigate the impact
of attribute noise of real samples of well-written text reviews on the performance of
human and machine classifiers. Also, in terms of explainability, we propose a human
classifier able to identify noisy instances and generate a controlled test set to evaluate
the behaviour of state of the art classifiers on noisy textual data.

1.2 Our Solution

In order to quantify the amount and impact of attribute noise, we collected 415.867

movie reviews fromMetacritic3, a website that contains user-generated reviews on many
domains, including movies. One advantage of using Metacritic is that the meaning of
the scores is clearly stated to the users when a review is being submitted: positive

3Available in: https://www.metacritic.com/movie. Accessed: 06-13-2020.
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reviews are between 61 and 100, mixed are between 40 and 60, and negative from 0 to
39. Because of that, class noise and biases should be rare, i.e., a user who liked (disliked)
a movie will very unlikely give a negative (positive) score to it. To make this error
even less prone to occur, we collected only positive and negative reviews. Thus, we are
basically left with only attribute noise, which we assign into two disjoint categories:
neutrality and discrepancy . A neutral review does not have a clear polarity and a
discrepant review has a human-perceived polarity that is different from its associated
score. Note that this categorization is complete, i.e., every instance that, for a human,
does not reveal its class clearly has one of these two types of attribute noise.

To formally define neutral and discrepant reviews, we propose a methodology
based on a well-defined human classifier, which differently from machine classifiers,
uses human reasoning to infer the class of the example. Our proposed human classifier
is composed by three independent human annotators and predicts the polarity based
on the majority vote among these annotators. When the class assigned by the human
classifier is incorrect, we label the review as discrepant, i.e., the human-perceived po-
larity of the text is different from its associated score. When the human classifier is
not confident about its prediction, we label the review as neutral. In total, the hu-
man classifier labeled 1, 200 reviews and found 198 neutral and 64 discrepant reviews.
We trained state of the art methods and the best classifiers achieved an accuracy of
approximately 90% [Devlin et al., 2019]. Then, we tested the machine classifiers on
these reviews and results revealed that attribute noise can significantly decrease their
performances.

1.3 Contributions

In summary, the main contributions of this thesis are:

• A simple and reproducible methodology based on a well-defined human classifier
to characterize and identify attribute noise for polarity classification tasks;

• A thorough analysis of the impact of attribute noise in the task of movie review
polarity classification;

• Publicly available datasets of movie reviews describing the expected amounts of
five classes (discrepant and neutral , which can be of four types: factual, mixed
opinions, contextual and undefined) of attribute noise.
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1.4 Chapter organization

The remainder of this thesis is organized as follow: Chapter 2 is dedicated to funda-
mentals and related work. We review works on polarity classification of documents,
attribute noise, movie reviews polarity classification and machine learning explainabil-
ity. In Chapter 3, we describe our proposed methodology for identifying and measuring
the impact of attribute noise in the task of movie review polarity classification. Next,
in Chapter 4, we describe the experimental setup used to apply our proposed method-
ology, including dataset, machine classifiers and model training. In Chapter 5, we
present the results. Finally, in Chapter 6, we present concluding remarks and future
work.



Chapter 2

Fundamentals and Related Work

This Chapter presents the related works to this thesis. Section 2.1 defines the polarity
classification task of documents. Next, Section 2.2, we explore polarity classification
of movie reviews using supervised machine learning. Section 2.3 describes a common
problem, known as attribute noise, that affects classifiers. Finally, we discuss the lack
of explanation of machine learning classifiers in Section 2.4.

2.1 Polarity Classification

With the rapid growth of the internet, the volume of online reviews available increased
considerably. Thereby, sentiment analysis of reviews has gained focus [Vinodhini and
Chandrasekaran, 2012; Zhang et al., 2018; Tang et al., 2009]. Sentiment analysis (SA),
also known as opinion mining, is one of the most active research areas in natural
language processing (NLP), data mining and information retrieval [Zhang et al., 2018;
Tang et al., 2009]. Its main goal is to identify the mood about a particular product
or a topic [Vinodhini and Chandrasekaran, 2012]. Due to the fact that people do not
express opinions in a same way and an opinion word can be considered positive or
negative depending on the situation, there are many challenges in this field [Vinodhini
and Chandrasekaran, 2012; M. et al., 2016]. In addition, SA is studied in three levels
of granularity: document level, sentence level, and aspect level [Medhat et al., 2014;
Zhang et al., 2018; Baldania, 2017; Vinodhini and Chandrasekaran, 2012; M. et al.,
2016]. This work focuses on document level analysis.

Document level sentiment classification consists of classifying the polarity of a
document, which must (or should) contain opinions about a single entity (e.g. a
book) [Zhang et al., 2018; Medhat et al., 2014]. For instance, given a book review,
the system determines whether the review text expresses an overall positive, negative,

6
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or neutral opinion about the book. Although polarity classification naturally suits to
analyze consumer opinions about products and services [Zhou et al., 2015; Gui et al.,
2017; Fang and Zhan, 2015], it is also well suited to various types of applications,
such as to infer votes in elections [Goldberg et al., 2007], civilian sentiment during
terrorism scenarios [Cheong and Lee, 2011], citizens’ perception of government agen-
cies [Arunachalam and Sarkar, 2013] and recommendation systems [Zhang, 2015]. In
this work, the entities are movies and the documents, reviews. Movie reviews can be
associated with scores from various scales (e.g. 0 to 100, for Metacritic, and 0 to 10,
for IMDB) as a regression task, but also with a single binary opinion (e.g. positive or
negative, for Rotten tomatoes) that ignores neutral sentiment as a binary classification
task [Zhang et al., 2018].

The study of SA dates back to the late 1990s. In spite of that, it only became
a major sub field of the information management discipline in the early 2000s [Tang
et al., 2009; Vinodhini and Chandrasekaran, 2012]. Since then, several works have been
published defining different techniques. Nowadays, the literature indicates that SA
techniques can be divided in two categories. The first category considers approaches
based on machine learning. On the other hand, the second category considers ap-
proaches based on the lexicon [Vinodhini and Chandrasekaran, 2012; Lu et al., 2018;
M. et al., 2016; Shelke et al., 2012; Medhat et al., 2014]. Some authors also consider
a third one, called hybrid approach, which is a combination of the first two [Lu et al.,
2018; Medhat et al., 2014; Rezaeinia et al., 2019].

Machine learning (ML) is a subset of Artificial Intelligence (AI) that studies com-
puter algorithms that improve automatically through experience [Mitchell et al., 1997].
These algorithms are widely used in SA to classify the polarity of a document. In this
context, they can be subdivided into two groups: supervised and unsupervised learning
methods. In supervised learning, it is necessary that the training documents contain
labels. Considering movie reviews, for example, the label can has two levels (positive or
negative) or more (for instance, 1 to 5). There are different kinds of supervised meth-
ods in the literature such as probabilistic, linear and decision tree classifiers. While
supervised methods depend on labeled training documents, unsupervised methods do
not have this need [Medhat et al., 2014]. These methods try to infer the label from
the data. It is important when we need to classify documents but the training set is
unlabeled. One common approach is to cluster the data into categories based on their
statistical properties [Baldania, 2017].

Lexicon-based approach mainly consists of creating a sentiment lexicon to identify
the sentiment polarity and strength of words and phrases. It is a list of words where
each one is assigned with their respective positive or negative score [Tang et al., 2015].
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There are two approaches to build it: Dictionary-based and Corpus-based. In the
first one, a set of opinion words is selected manually with known polarity. Next, this
set is expanded with their synonyms and antonyms using well known corpora like
WordNet [Miller et al., 1990]. After added these new words to the seed list, the process
is repeated until no new words are found [Medhat et al., 2014]. A major drawback of
this approach is the inability of finding the domain and context specific orientations of
opinion words. This problem is solved by the Corpus-based approach which is based
on syntactic patterns or patterns that occur together [Medhat et al., 2014].

2.2 Movie Reviews Polarity Classification

In this section, we focus on polarity classification in the context of movie reviews. We
will briefly describe the most common supervised machine learning approaches giving
examples of works that used movie reviews as dataset.

2.2.1 Probabilistic Classifiers

Probabilistic classifiers, also known as generative classifiers, are constructed from gener-
ative models which enables to analyze complex domains [Garg and Roth, 2001]. Naive
Bayes (NV), Bayesian Network (BN) and Maximum Entropy Classifier (ME) are among
the most popular probabilistic classifiers [Bhavitha et al., 2017; Medhat et al., 2014].
The first classifier estimates the posterior probability of a class, based on the distribu-
tion of the words in the document, assuming word independence [Medhat et al., 2014;
Vinodhini and Chandrasekaran, 2012]. The second classifier is a directed acyclic graph
where nodes are variables and edges correspond to conditional dependency [Bhavitha
et al., 2017; Medhat et al., 2014]. However, due to its expensive computation, it is not
usually used in text classification [Bhavitha et al., 2017]. Lastly, ME converts labeled
feature sets to vectors through encoding which is used to calculate combined weights
for each feature to determine the most likely label for a feature set [Medhat et al.,
2014]. Pang et al. [2002] compared NV and ME in movie reviews domain. According
to them, NB tends to have the worst performance.

2.2.2 Linear Classifiers

Linear classifiers use linear functions in the classification as a separating hyperplane
between different classes [Medhat et al., 2014]. Support Vector Machines (SVM) is an
example of linear classifier that was originally proposed by Boser et al. [1992]. The idea
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behind it is to find hyper-planes with maximal distance which can separate different
classes [Bhavitha et al., 2017]. Pang et al. [2002] also compared SVM in their work.
The results showed that SVM tend to do best than NV and ME, regardless of the
small difference. Neural Network (NN) is another example of linear classifier which is
composed of multiple neurons as an elemental unit. Anyhow, Multilayer neural network
are used for non-linear margins, in this case, the output of the previous layer is used
as input of the next one and the training is more complicated due to the fact that the
errors have to be back-propagated over the layers [Medhat et al., 2014; Bhavitha et al.,
2017]. Moraes et al. [2013] compared SVM with Artificial Neural Networks (ANN)
in different domains for balanced and unbalanced datasets. For movie reviews, ANN
outperformed SVM significantly in both cases.

2.2.3 Decision Tree Classifiers

Many variations of Decision trees (DT) have been developed over the years. The core
idea behind this concept is to combine a sequence of simple tests where each test is
a comparison of an attribute against a value. The value can be a threshold, if it is a
numerical attribute, or a set of possible values, if it is a nominal attribute. Unlike neu-
ral networks, this method is very easy to interpret [Kotsiantis, 2013]. However, it has
difficulty handling noisy data and overfitting problems [Bhavitha et al., 2017]. Palkar
et al. [2016] compared NB, ME, SVM, DT and Random Forest (RF), which is con-
structed from several DT. They evaluated the algorithms in binary classification using
three movie reviews datasets. For each algorithm, they also evaluated pre-processing
based on whether it was carried out or not. Although they used three datasets, two
of them were too large to NB, DT and DF operate without pre-processing the input.
Considering only the other dataset, NB performed quite poorly, mainly without pre-
processing. SVM and ME outperformed the other algorithms. Last, DT and RF also
produced average results with and without pre-processing. These classifiers were also
compared by Yasen and Tedmori [2019]. In their work, RF got the best accuracy.

2.2.4 Deep Learning

Deep learning has become widely used in recent years. Its architectures have improved
the state-of-the-art of sentiment classification of documents [Tang et al., 2015]. In
the past, researchers began to abandon the study of neural networks due to the high
computational cost of training networks with more than one or two layers, that is, deep
neural networks. Howbeit, the hardware advancement, the huge amount of training
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data available and the powerful learning representations enabled the growth of these
networks [Zhang et al., 2018]. Tang et al. [2015] summarized deep learning as follows:

Deep learning is a kind of representation learning approach. It learns mul-
tiple levels of representation with nonlinear neural networks, each of which
transforms the representation at one level into a representation at a higher
and more abstract level. The learned representations can be naturally used
as features and applied for detection or classification tasks.

Traditionally, documents can be represented using bag of words (BOW) or Term
frequency-inverse document frequency (TF-IDF). In BOW, the document is represented
as a vector of words where each position contains the word occurrence (whether the
word occurs or not in the document) or the word frequency [Kusner et al., 2015; Zhang
et al., 2018]. In TF-IDF, each position contains the TF-IDF score which evaluates
how relevant a word is in a document. In other words, a term that appears in many
documents is less important than one that appears just a few times. Nevertheless, the
vector of words in these representations is the size of the vocabulary in the dataset,
which makes the vector sparse and with high computational cost [Zhang et al., 2011].
Furthermore, the order and semantics of words are ignored.

To alleviate these problems, a new technique called word embedding was created.
Word embedding is used as input for deep learning methods. This technique converts
vocabulary words to vectors of continuous real numbers. The vectors, known as dense
vectors, are low dimensional. Unlike BOW and TF-IDF, this technique is not only
concerned with whether the words occur or not in the document. It is also capable of
learning the semantic and syntactic of words. The document representation is gener-
ated from word embedding using neural networks [Zhang et al., 2018]. Mikolov et al.
[2013a,b] proposed Word2Vec, a model that learns high-quality word vector represen-
tations from huge datasets. Recently, Devlin et al. [2019] proposed a new method of
pre-training language representations called BERT (Bidirectional Encoder Represen-
tations from Transformers) that considers left and right context of the word. This
method obtained new state-of-the-art results on eleven natural language processing
tasks.

Two deep learning models have achieved great successes recently in text classifica-
tion: convolutional neural network (CNN) and Long short-term memory (LSTM) [Zhou
et al., 2015]. CNN was first invented for computer vision, then it also proved to be
effective for NLP tasks. It uses word sequences as input and it is capable of capturing
local correlations of spatial or temporal structures. Moreover, it applies two operations:
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convolution filters and pooling. With convolution filters, it obtains multiple features.
Afterwards, it applies pooling operations over the features to select the most important
ones, learning short and long-range relations [Kim, 2014; Zhou et al., 2015]. Several
architectures were proposed using variations of CNN [Ouyang et al., 2015; Lai et al.,
2015; Kim, 2014]. Although CNN is capable of learning local response from temporal
and spatial data, it lacks the ability to capture learning sequential correlations [Liu
and Guo, 2019; Zhou et al., 2015]. For this purpose, Recurrent Neural Network (RNN)
is a neural network class that has a kind of memory formed through the directed cy-
cle between neuron connections. This memory is able to process a sequence of inputs
where the outputs are dependent on all previous computations, forming a remembering
mechanism.

Despite the fact that RNN can learn contextual information, for long data se-
quences, some traditional implementations cause shortcomings like exploding. LSTM
is a kind of RNN architecture created for this purpose. Thus, it is capable of learn-
ing long-term dependencies, becoming a powerful approach to extract the high-level
text informations [Zhang et al., 2018; Liu and Guo, 2019; Zhou et al., 2015]. Many
works proposed architectures combining these models with pre-trained word embed-
dings, achieving great results [Hassan and Mahmood, 2018; Zhou et al., 2015; Wang
et al., 2016; Liu and Guo, 2019; Zhou et al., 2016]. Wang et al. [2016], for instance, com-
bined CNN with Gated Recurrent Units (GRU), which is a slight variation of LSTM
with pre-trained word embeddings. Different from their work, Zhou et al. [2015] used
LSTM instead of GRU.

2.3 Attribute Noise

Supervised machine learning is one of the most common and successful approaches for
polarity classification [Jochim and Schütze, 2014; Pozzi et al., 2016; Lee et al., 2018;
Deriu et al., 2017]. The problem with this approach is that the quality of training
and test data can significantly influence the results. These data may contain noise
generated during the data collection and preprocessed phase from human error while
translating information or limitations of the measurement equipment [Nettleton et al.,
2010]. The noise can occur in the attribute values (attribute noise) or in the class
values (class noise). Class and attribute noise can increase the learning complexity
and, consequently, reduce classification accuracy [Zhu andWu, 2004; Gupta and Gupta,
2019; Beigman Klebanov and Beigman, 2014].

Class noise is considered to be more harmful than attribute noise [Frenay and
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Verleysen, 2014], but it is easier to detect [Van Hulse et al., 2007]. Therefore, class noise
is more addressed in the literature [Zhu and Wu, 2004; Gupta and Gupta, 2019], and
several studies analyzed the impact of class noise in classification tasks [Jamison and
Gurevych, 2015; Beigman and Klebanov, 2009; Beigman Klebanov and Beigman, 2014]
and proposed approaches to deal with this problem [Fefilatyev et al., 2012; Hendrycks
et al., 2018; Toledo et al., 2015; Sukhbaatar et al., 2015; Frenay and Verleysen, 2014;
Natarajan et al., 2013; Prati et al., 2019; Barbosa and Feng, 2010; Younes et al.,
2010; Liu et al., 2017; Rehbein and Ruppenhofer, 2017; Jindal et al., 2019]. Beigman
Klebanov and Beigman [2014], for example, showed that is important to pay attention
in instances from annotated data that are problematic and disagreeable because they
can be disruptive to the classifier. On the other hand, some works proposed a classifier
that is robust to label noise [Jindal et al., 2019; Younes et al., 2010; Barbosa and Feng,
2010; Sukhbaatar et al., 2015; Hendrycks et al., 2018]. There are also approaches to
detect it automatically [Rehbein and Ruppenhofer, 2017; Toledo et al., 2015; Fefilatyev
et al., 2012] and to correct it dynamically [Liu et al., 2017; Toledo et al., 2015]. Different
from those, Sáez et al. [2016] considered that the performance and noise robustness
of the classifiers are two different concepts. To minimize the impact of considering
these two concepts separately, they proposed a new measure to determine the expected
behavior of a classifier against class noise.

Despite of being less harmful, attribute noise can also bring severe problems
to data analysis [Gupta and Gupta, 2019] and it should not be ignored [Zhu and
Wu, 2004]. In addition, many studies suggests that a good idea to deal with class
noise is eliminating the instances that contain it, which may not be a good strategy
for attribute noise, given that other attributes of the instance can contain valuable
information. Besides, in real-world data, the class information is usually cleaner than
attributes. In other words, during the pre-processing phase of the data the attributes
need more attention [Zhu and Wu, 2004].

Most of the studies that investigated the impact of attribute noise and proposed
solutions to deal with it did so by inserting synthetic noise in the attributes [Nettleton
et al., 2010; Teng, 1999; Pujara et al., 2017; Vaibhav et al., 2019; Zhu and Wu, 2004;
Mannino et al., 2009; Agarwal et al., 2007]. Nettleton et al. [2010], for example, tested
classifiers on a synthetic dataset perturbed with different proportions of attribute noise
and class noise to compare the effect of noise in both training and test datasets. The
datasets contain only numerical attributes. To generate attribute noise, they altered
some values according to Gaussian and uniform distributions. Results showed that
the type and percentage of noise in the dataset influences the behavior of classifiers.
In addition, noise in the training dataset is more harmful. Following the same idea,
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Zhu and Wu [2004] concluded that correcting test set attribute noises can improve the
classification accuracy even if the training set has noise, and the lowest classification
accuracy occurs when both training and test set are corrupted.

Instead of comparing the classifiers behaviour on different amounts of noise, Teng
[1999] focused on correcting the noisy instances. They proposed an approach to handle
this problem in the training data by identifying possible noisy attributes and classes.
Their approach consists of two phases. First, it identifies possible noisy attributes,
trying, for each attribute, to predict it using the class and the other attributes as
features with the goal to exploit the interdependence between attributes. Then, using
the grouped results for each attribute, it selectively replaces some of the attribute and
classes values to obtain a better fit of the instance, preserving much of the original
information. To test it, they artificially corrupted the training set with random noise
and tested it on a classifier. As a result, the accuracy of the classifier has increased
using the polished data. Unlike the last two works, Pujara et al. [2017] introduced
noise in the dataset to determine how performance degrades in the context of graphs.

According to Van Hulse et al. [2007], there are two main problems of inserting
synthetic noise in the attributes into datasets. First, it is not known whether the
original dataset is noise-free or clean. Adding noise to a dataset that is already noisy
makes it difficult to analyze the performance of the algorithms. Second, the synthetic
noise may not be a good representation of the real-world dataset for a given domain.

Different from the last cited works about synthetic noise, Valdivia et al. [2019]
showed that ratings in TripAdvisor reviews are not strongly correlated with sentiment
scores given by unsupervised sentiment analysis methods. They observed that users
tend to choose a high score even when they write the review using negative words in
some sentences. These negative words suggest a not-so-high score, potentially making
the score and review inconsistent. As a consequence, sentiment analysis methods pre-
dict the review as neutral or negative. To solve this problem, they proposed a unified
index that aggregates the review and score polarities. Basically, the model consists of a
geometric mean between the polarities that is capable of fixing the mismatch between
humans and unsupervised sentiment analysis methods.

Furthermore, Li et al. [2020] investigated the impact of the reviews’ textual qual-
ity on sentiment analysis task of movie reviews using deep learning approaches. They
used two measures: word count and readability. Results showed that short length and
high readability achieved the best performance.

Regarding attribute noise in textual data, many studies have analyzed how they
affect computational tasks [Baldwin et al., 2013; Michel and Neubig, 2018; Agarwal
et al., 2007; Arora and Kansal, 2019; Contractor et al., 2010; Dey and Haque, 2008,
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2009; Lopresti, 2005; Bermingham and Smeaton, 2010; Subramaniam et al., 2009; Esuli
and Sebastiani, 2013; Vinciarelli, 2005; Florian et al., 2010]. For instance, Bermingham
and Smeaton [2010] showed that it is easier to classify sentiment in short documents
(e.g. tweets) than in longer ones, as short documents have less non-relevant infor-
mation. Other works [Vinciarelli, 2005; Subramaniam et al., 2009; Lopresti, 2005]
analyzed the impact text generated through automatic recognition processes (e.g op-
tical character recognition (OCR), automatic speech recognition (ASR) systems) have
on text processing algorithms. Although these texts contain several forms of noise (e.g.
deletions and insertions of character or words), many techniques exist to circumvent
their negative effects [Subramaniam et al., 2009].

The same is true for attribute noise in the form of errors in language rules, such as
typos, grammatical errors, improper punctuation, irrational capitalization and abbrevi-
ations, which are very common but easy to deal with [Lourentzou et al., 2019; Agarwal
et al., 2007; Arora and Kansal, 2019; Contractor et al., 2010; Dey and Haque, 2008,
2009; Subramaniam et al., 2009; Florian et al., 2010; Michel and Neubig, 2018]. Con-
tractor et al. [2010], for instance, presented an unsupervised method to translate noisy
text in clean text. Moreover, there are also works that proposed a sentiment analy-
sis framework with a pre-processing phase to reduce these linguistic noises [Dey and
Haque, 2008; Arora and Kansal, 2019]. Different from those, Esuli and Sebastiani
[2013] assumed that the noise is in the class instead of the text which became a class
noise problem.

In addition to us, other studies have proposed systematic processes to identify
attribute noise and quantify its impact on classifiers [Baldwin et al., 2013; Van Hulse
et al., 2007; Khoshgoftaar and Van Hulse, 2009; Michel and Neubig, 2018; Dey and
Haque, 2009; Agarwal et al., 2007]. Agarwal et al. [2007] measured the impact noisy
documents have on automatic text classifiers by inputting synthetic noise on their fea-
tures. To inject synthetic noise and estimate its effect, they artificially introduced
spelling errors and noisy from automatic speech recognition transcription in different
levels. They found that the performance was not very affected even with high noise
levels. As we previous mentioned, using synthetic data is not reliable [Van Hulse et al.,
2007]. Dey and Haque [2009] investigated how noise introduced due to incorrect English
affects the performance of opinion mining techniques and proposed a framework that
is able to effectively handle such noisy inputs. Baldwin et al. [2013] analyzed YouTube,
Twitter, web user forum, blogs and Wikipedia to investigate how linguistically noisy
social media are. They compared these sources with more conventional texts using
statistical and linguistic analyses, like language distribution, lexical analysis, gram-
maticality and similarity.
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Similarly, Van Hulse et al. [2007] used a software engineering expert to manually
identify instances with noise in one or more attributes in a real-world software mea-
surement dataset. They used the software engineering expert in two different phases.
In the first phase, they applied an unsupervised clustering technique to partitioned the
dataset into clusters. Then, the expert labeled instances that he was completely confi-
dent. Finally, they compared the labels assigned by the expert with the actual labels
and verified the instances that did not have matching labels. These instances were
considered with class noise and removed from the dataset, remaining only naturally
occurring attribute noise. In the second phase, they proposed a approach for detecting
instances with attribute noise and used the expert again to evaluate its effectiveness.
Their approach is interesting because it can be used with or without knowledge of
class labels, unlike other noise approaches. In their other work, instead of identify-
ing noisy instances, they proposed a technique to rank attributes from most to least
noisy also using software measurement dataset and software engineering expert for
inspection [Khoshgoftaar and Van Hulse, 2009].

More related to our work, Michel and Neubig [2018] proposed a benchmark
dataset for Machine Translation of Noisy Text (MTNT), composed by noisy comments
posted on Reddit with their respective professionally sourced translations. They con-
sidered common social media types of noise such as abbreviations, typographical errors,
obfuscated profanities, inconsistent capitalization, internet slang and emojis. To Iden-
tify noisy English texts, they pre-filtering the texts, eliminating comments that contain
URL, automated comments from bots and comments in another language. Next, they
selected comments that contain at least one out-of-vocabulary word which is a indi-
cation of noise. Their last step is to compute, for each comment, the normalized log
probability of each of its lines in a language model, selecting those with low probability
and labeling them as noisy. The authors also showed that existing machine translation
models are heavily impacted by attribute noise. This dataset was used later to design
an MT system resilient to such type of noise [Vaibhav et al., 2019].

Unlike this work, these approaches focused on noise that proved to be easy to
detect, easy to deal with, or both, such as noise in the form of errors in language rules
and in communication. Here we are interested in the attribute noise characterized
by well-written texts that are not conveying their true classes clearly, e.g., attribute
noise that hides the true polarity of textual reviews. To the best of our knowledge, we
are the first to characterize, identify and measure the impact of such type of noise on
classifiers.

Finally, it is important to point out that problems in the annotation of instances
are related but very different from the problem tackled in this work. Several stud-
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ies have shown that noisy (or hard) instances can significantly affect the annotation
process [Beigman and Klebanov, 2009; Sharoff et al., 2010], which can potentially de-
grade the measures of inter-annotator agreement [Artstein and Poesio, 2008]. In this
work, our proposed labeling process is not affected by noisy instances, but instead
serves to identify them. In other words, the labels defined in this work (neutrality
and discrepancy) are not directly associated with the class labels, but come from the
labeling process. If the annotator is uncertain, the instance is marked as neutral . If
certain, but the assigned label (e.g. polarity) is incorrect, the instance is marked as
discrepant . Note that this process can be applied to practically any labeling task to
identify attribute noise in instances, no matter the labels available to the annotators,
and even when only one annotator is available, i.e., no inter-annotator agreement can
be computed.

In our previous work [Martins and Vaz de Melo, 2019], we started to analyze
and quantify the discrepancies in movie reviews through a sentiment analysis task.
We defined that a text is considered discrepant from the score when the classifier
fails. To do that, we applied a state of the art deep learning architecture on a large
collection of movie reviews posted on Metacritic. We also proposed a metric capable
of differentiating discrepancies between scores and text of movie reviews. Our results
revealed that the score and text are usually not compatible. Unlike this work, we
did not take into account that actually the classifier can fail because of the learning
problem and noise present in the data, that is, the classifier error is mixed with the
discrepancies and neutrality. In this thesis, we changed the definitions and proposed
a different methodology to improve our analysis, considering both errors. Our work
offers an alternative approach to characterize and quantify the types of noise in textual
data. More specifically, we propose a well defined human classifier capable of identifying
(and labeling) two mutually exclusive types of attribute noise in movie reviews relevant
to the task of polarity classification, namely discrepancy and neutrality . We show
that the performance of machine classifiers on such data degrade substantially, what
corroborates with the labels given by the human classifier.

2.4 Machine Learning Explainability

Machine learning solutions, especially deep learning models, are often criticized for
the lack of explanation of their successes and failures [Lipton and Steinhardt, 2019;
Pelevina et al., 2016]. These models are known as black boxes due to the fact that
it is not clear how they arrived at a given output from an input [Samek et al., 2017].
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The explanation is important to ensure confidence of the model. Gilpin et al. [2018]
defined explainability as “models that are able to summarize the reasons for neural
network behavior, gain the trust of users, or produce insights about the causes of their
decisions.” An explainable model can be appraised according to its interpretability
and completeness, which are hard to achieve simultaneously. Interpretability is defined
by Gilpin et al. [2018] as “the science of comprehending what a model did (or might have
done)”. It aims to “describe the internals of a system in a way that is understandable to
humans.” On the other hand, the objective of completeness is to “describe the operation
of a system in an accurate way.” Although explainability and interpretability are often
used interchangeably, there is a distinction between their definitions. While explainable
models must be interpretable, interpretable models are not always explainable [Gilpin
et al., 2018; Došilović et al., 2018].

There are many works that address explainability. Tenney et al. [2019] investi-
gated Bert’s layers to understand how syntactic and semantic information is maintained
in the structure. Results showed that the initial layers keep basic syntactic information
and higher layers keep the semantic information. Besides, the model uses layers as hier-
archies to deal with complex interactions. Similarly, Raaijmakers et al. [2017] developed
a mechanism to identify statistical patterns of neighbor similarity across hidden layers
in deep text mining with the aim of understanding the internal semantic representa-
tions, interpreting the hidden layer. Park et al. [2017] applied rotation algorithm on
high-dimensional word vectors to improve their interpretability. Unlike those, Lund-
berg and Lee [2017] presented SHAP (SHapley Additive exPlanations) which is a game
theoretic approach to interpret the output of complex models. In the polarity classifi-
cation task of reviews, for example, it is able to understand the most important words
for the machine classifiers. In other words, for a given review, it can describe which
words led the classifier to choose the output.

More associated to our work, some authors designed test datasets to evaluate
models behavior and understand what they are capturing in different aspects such
as their ability to represent types of reasoning [Poliak et al., 2018], grammar of the
language [Marvin and Linzen, 2018] and linguistic features of sentences [Conneau et al.,
2018]. These works also used human annotators to compare if their errors are similar
to the models. Furthermore, two of them aggregated these annotations using majority
voting [Poliak et al., 2018; Conneau et al., 2018].

In this work, we designed a controlled test set to evaluate the behaviour of state
of the art classifiers on noisy textual data. To identify noisy instances, we proposed
a human classifier which consists of the majority vote of three human annotators.
Our test set contains three main labels to indicate whether the review is neutral (the
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annotators are uncertain), discrepant (the annotators are certain, but the assigned
polarity is incorrect) or no noise (the annotators are certain and the assigned polarity
is correct). Then, we analyzed its impact on machine classifiers.

2.5 Human vs. Machine Classifiers

According to researchers, AI will probably outperforming humans in all tasks in 45
years [Grace et al., 2017]. In this way, humans are considered to be upper bound
in terms of performance in many tasks such as classification. Many works compared
the performance of humans, also known as human classifiers, and machine classifiers.
Most of them focused on image classification task [Stallkamp et al., 2012; Wichmann
et al., 2004; Graf and Wichmann, 2003; Ciresan et al., 2012; Geirhos et al., 2018; Han
et al., 2015; Dodge and Karam, 2017]. Ciresan et al. [2012] evaluated their architecture,
which achieved near-human performance, on object recognition benchmarks such as
digits, Latin and Chinese characters, and traffic signs. Graf and Wichmann [2003]
and Wichmann et al. [2004] analyzed gender classification in frontal views of human
faces. Geirhos et al. [2018] compared the robustness of humans and convolutional deep
neural networks on object recognition under image degradations. Similarly, Dodge
and Karam [2017] and Geirhos et al. [2017] compared deep neural networks under
image quality distortions and degradations. Han et al. [2015] investigated automatic
demographic estimation, that is, estimation of race, gender and age of a person from
his face image. Finally, Taigman et al. [2014] compared human performance in face
recognition and Goodfellow et al. [2013] in arbitrary multi-digit numbers recognition.

Different from those, Mesaros et al. [2017] compared human and machine per-
formance in acoustic scene classification. Tsapatsoulis and Djouvas [2017] focused on
feature extraction for sentiment classification of tweets. They proposed a human-
created index of terms that were generated by humans during tweet annotation. Then,
they compared these tokens with automatically extracted features, under a machine
learning framework in different classifiers. Results showed that human indicated tokens
have the best tweet classification performance. In their other work, Tsapatsoulis and
Djouvas [2019], they compared features indicated by humans with features extracted
through deep learning in sentiment classification of short texts.

In this work, we proposed a human classifier which is able to identify attribute
noise. Then, we compare human and machine classifiers in polarity classification of
movie reviews. Our goal is to identify how they deal with attribute noise of well-
written text reviews.



Chapter 3

Methodology

This chapter introduces the methodology used to investigate the effects of attribute
noise on movie reviews classification. The problem setting is defined in Section 3.1.
In Section 3.2, we define two possible hypotheses for attribute noise in reviews. The
methodology to identify attribute noise will be described in Section 3.3.

3.1 Problem Setting

In this work, we focus on the problem of document-level polarity detection. More
formally, in a dataset D = (X, Y ) composed by a set of textual movie reviews X and
their corresponding binary scores Y , each review xi ∈ X is associated with a score
yi ∈ Y that can be either 0 (positive) or 1 (negative). For the purposes of this work,
it is important that D does not contain any movie reviews that have been explicitly
associated with a neutral score by their author, e.g. a score between 40 and 60 on
Metacritic, to isolate attribute noise from the unclear descriptors of neutral reviews,
avoiding class noise and biases.

To assess the impact of attribute noise, we test two types of classifiers to infer
the polarity of textual movie reviews, a machine classifier fM and a human classifier
fH . A classifier is defined as a function f(xi) that receives a textual movie review xi

as input and returns its polarity ŷi ∈ {0, 1}. Both classifiers will be explained in the
next sections.

We use the human classifier to assign a label li to a large set of movie reviews xi

to indicate whether xi has attribute noise or not. This label can be one (and only one)
of a set L of manually defined labels that indicate the absence of attribute noise (“no
noise”) or a characteristic of xi (i.e., a type of attribute noise) that can contribute to (or
cause) prediction errors. With that, we will be able to quantify the impact of attribute
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noise on machine classifiers and provide explanations about why they occur and how
to avoid them in order to improve machine classifiers’ accuracy. More specifically, for
a machine classifier fM and for all labels l ∈ L, “no noise” included, we will calculate
the probabilities P (li = l|yi 6= ŷi) and P (yi = ŷi|li = l).

3.2 Types of Attribute Noise

A strong premise of this work is that the dataset D has no (or negligible) class noise,
i.e., all polarity scores yi ∈ Y reflect the real opinion of the reviewer. To guarantee
that, one needs to construct D using movie reviews from systems like Metacritic or
Rotten Tomatoes, which have well defined meanings for the scores that are always
visible to the reviewers, as will be discussed in Chapter 4. Thus, every time the
polarity of text xi is inconsistent with its score yi, we assume xi contains attribute
noise. More specifically, we define two possible hypotheses explaining inconsistencies
in the text, i.e., two disjoint types of attribute noise: (1) the text does not have a
clear polarity, namely neutrality , and (2) the text has a clear polarity, but its score
is the opposite one, namely discrepancy . These two types of attribute noise can be
easily and unequivocally identified by our proposed human classifier described in the
following section. In Section 4.2, we also discuss possible directions on how this can be
done using automated methods.

A movie review xi has attribute noise of type neutrality when its polarity is
not clear. In particular, we define four labels for this type of attribute noise: neu-
tral_mixed (text has mixed opinions), neutral_factual (text is purely factual), neu-
tral_contextual (polarity needs context) and neutral_undefined (reasons are unclear).
The neutral_mixed label considers reviews that have both positive and negative points
about the movie but the overall opinion is not clearly stated. For instance: “As dumb
as the film is, the actors escape relatively unscathed.” The neutral_factual label defines
non-opinionated reviews, that is, the review only describes facts about the movie. For
instance: “It is a movie about the World War II and its consequences on the lives of
those who survived.” The label neutral_contextual characterizes reviews where context
is needed to understand its polarity, including those containing irony and sarcasm. For
instance: “Ultimately, Collin’s film is one of forgiveness and that’s not the usual way
great tragedies end.” Finally, the label neutral_undefined is given to reviews where
the reasons for the lack of polarity are not clear. For instance: “Wow, can’t believe the
critics on this one.”

The second type of attribute noise, namely discrepancy , is given to reviews where
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the polarity of its text is the opposite of the polarity of its score. For this type, we
define a single label: discrepant (polarity of text and score are discrepant). For instance,
consider a highly acclaimed movie of a prestigious director, such as Martin Scorsese.
Now, consider a reviewer who liked this movie, but unlike the vast majority of critics,
found many points that prevent her from giving it a perfect score. Thus, the text
will mostly be about its negative points to justify why she is not giving the expected
perfect score. Consequently, the text review will appear negative although the score
is positive. For instance, consider the following review, which has a negative polarity,
but its score is positive: “Thoroughly predictable from start to finish.”

3.3 Human Classifier

A fundamental building block of our methodology is the human classifier fH . Human
classifiers are often considered to be the upper bound in terms of performance of clas-
sification tasks [Stallkamp et al., 2012; Wichmann et al., 2004; Graf and Wichmann,
2003; Ciresan et al., 2012; Geirhos et al., 2018]. This means that when it makes a pre-
diction error, machine classifiers will most likely also miss. Moreover, when a human
classifier working on its full capacity makes a mistake, and the class label is correct
(i.e. no class noise), then what caused the error is most likely attribute noise [Zhu and
Wu, 2004]. We use this premise to define the two types of attribute noise discussed in
the previous section.

In the task of polarity classification of movie reviews, a human classifier mistake
on movie i can be due to two causes: (C1) the text of the review xi is not clear about
its polarity yi, or (C2) the score yi is different from the (clearly) perceived polarity
of xi. In other words, the human classifier fH can be characterized by two binary
features when executing this task: whether it is confident about its prediction (F1)
and whether it correctly classified the polarity of the review xi (F2). Thus, when it
makes a mistake, if it was not confident, an error of type C1, occurs, and when it was
confident, an error of type C2 occurs. The first one (C1) is associated with attribute
noise of type neutrality and the second one (C2) is associated with attribute noise
of type discrepancy . Also, while the second only occurs when the human classifier fH
makes a mistake, the first occurs every time fH is not confident, i.e., it is independent of
the prediction ŷi. Instances for which the human classifier is not confident can be seen
as the hard cases defined by Beigman and Klebanov [2009], where labels are unreliable
due to some difficulty faced by the annotator in giving such labels. This difficulty can
make the labels reflects the human classifier preferences and biases which can cause
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annotation noise.
With the aforementioned rationale, we are ready to propose a well-defined human

classifier fH that is able to identify attribute noise in movie reviews. First, and in order
to construct a robust classifier, fH is an ensemble composed by three independent
human classifiers fh1, fh2 and fh3. In other words, we will use three annotators to
label a movie review xi in terms of its polarity and attribute noise. Each annotator
j ∈ {1, 2, 3} is asked to classify the reviews in two levels. First, they are asked to make
a prediction ŷji , i.e., to classify the polarity of the review xi as positive or negative
toward the movie in question. Second, they are asked to indicate whether they are
confident or not about their classification ŷji . We denote the confidence of annotator
j on review xi by cji ∈ {0, 1}, where cji = 1 if j is confident and cji = 0 otherwise. If
cji = 0, then we assume that xi does not contain sufficient information for j to infer its
polarity, that is, xi has attribute noise of type neutrality . So, annotator j is asked to
choose one label lji that fits best to the neutrality attribute noise present in xi, which
can be either neutral_mixed , neutral_factual or neutral_contextual . If cji = 1, then lji
is set to “no noise”. This process is illustrated in Figure 3.1. Of course, each annotator
j cannot see the others’ responses while giving their own annotations ŷji , c

j
i and lji .

Figure 3.1: Confidence diagram.

At the end of this process, for each instance xi, we will have three annotation
triples (ŷji , c

j
i , l

j
i ), where ŷji ∈ {0, 1} (positive or negative), cji ∈ {0, 1} (not confident

or confident) and lji ∈ LN = { neutral_mixed , neutral_factual , neutral_contextual ,
“no noise” }. Assuming that all annotators are equally skilled, we aggregate these
annotations using majority voting to set the outputs of our human classifier fH . For
the polarity ŷi and the confidence ci, the aggregation is straightforward, as described
in Equations 3.1 and 3.2, respectively:
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ŷi =

0 if
∑3

j=1 ŷ
j
i ≤ 1

1, otherwise,
(3.1)

ci =

0 if
∑3

j=1 c
j
i ≤ 1

1, otherwise.
(3.2)

Setting the final attribute noise label li of review xi is more involved. Let Li =

[l1i , l
2
i , l

3
i ] be the list of labels lji given by the annotators to review xi (e.g. L1 =

[neutral_mixed , neutral_mixed , “no noise” ]) and N(l,Li) the number of elements
of Li that are equal to label l (e.g. N(neutral_mixed,L1) = 2). Then, li is the
majority vote if at least two annotators gave that label to xi and, if not, li is set to
neutral_undefined , indicating no consensus. Thus, the label neutral_undefined only
occurs when the third annotator does not agree with the first two annotators. This
process is formally described by Equation 3.3:

li =

argmaxl∈LN
N(l,Li) if N(l,Li) ≥ 2

neutral_undefined, otherwise.
(3.3)

Finally, when the human classifier is confident about its classification of xi (ci =
1), but it makes a mistake (ŷi 6= yi), we update the label li of xi to discrepant . In other
words, the human classifier did not agree with the author’s original score. Note that
we are comparing the human classifier results ci and ŷi, not each annotator results. It
is easy to see that this update step will be executed only if li was previously set to “no
noise”, i.e., it will not overwrite a neutrality label. Equation 3.4 formally defines the
discrepancy update step:

li = discrepant if ŷi 6= yi and ci = 1. (3.4)

It is important to note that the noise labels are completely dependent on human
classification. In other words, they are generated by the human classifier. Whenever
the human classifier has doubts about an instance or mistakes it, it is considered noisy.
Also, the other way around, every time an instance has noise is because the human
classifier had doubts or made a mistake.



Chapter 4

Experimental Setup

This chapter presents the experimental setup to evaluate the impact of attribute noise
on machine classifiers. The dataset collected from Metacritic is described in Section 4.1
and the three machine classifiers used in the analysis in Section 4.2. Then, in Sec-
tion 4.3, we presented our model training.

4.1 Data Set

According to our problem formulation described in Section 3.1, it is important that
the dataset D does not contain any movie reviews that have been explicitly associated
with neutral scores. Because of that, we collected data from Metacritic1, a website
that publishes reviews about movies, television shows, music albums, video games and
books. Movie reviews on Metacritic can be authored by regular users and experts , i.e.,
people working in the movie industry or important communication channels (e.g. The
New York Times). In case of experts , the review provided by Metacritic is actually
a short summary of the original review and, as we show in Chapter 5, this can be a
problem for polarity classifiers. Also, each experts review is associated with a score
ranging from 0 to 100, where scores from 0 to 39 are negative, from 40 to 60 are
neutral , and from 61 to 100 are positive. Movies also have their metascore, an overall
score ranging from 0 to 100 that is calculated from the expert’s scores using a weighted
average. On the other hand, reviews made by regular users are produced by any
person that has an account and are associated with a score ranging from 0 to 10,
where scores between 0 and 3 are negative, between 4 and 6 are neutral , and over 7

are positive. Because of these thick and well defined lines that separate positive from
negative reviews, Metacritic is highly appropriate for the construction of D.

1Available in: https://www.metacritic.com/movie. Accessed: 06-28-2020.
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In total, we collected 415, 867 reviews for 8, 170 different movies, where 227, 348

of those are from regular users and 188, 519 from experts . Our data collection was
executed using the following steps. First, we collected the most popular experts from
the website, as provided by Metacritic 2. Then, we generated a list of all movies
reviewed by the top 10 experts. From this list, which contains 8, 170 movies, we
collected all reviews from experts and regular users that were posted until August,
2018, using the BeautifulSoup library 3. For the purpose of this work, we avoided
reviews that do not have a clear polarity (neutral reviews), i.e., we only considered
positive and negative reviews.
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Figure 4.1: Score distribution.

Figure 4.1 shows the histogram of our data grouped by score and user type after
2Available in: https://www.metacritic.com/browse/movies/critic/popular. Accessed: 06-

28-2020.
3Available in: https://www.crummy.com/software/BeautifulSoup/bs4/doc/. Accessed:

06/28/2020.

https://www.metacritic.com/browse/movies/critic/popular
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
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selecting non-neutral reviews with English text. Note that we have much more positive
than negative reviews in both cases. In addition, usually a movie contains more regular
users reviews than experts . For experts , there are more reviews with score between 61

and 80 and just a few with score between 0 and 19. While, for regular users , there
are more reviews with score between 9 and 10 and the amount of reviews for the two
negative groups is similar.
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Figure 4.2: Number of words per review for expert and regular user .

As we mentioned, reviews from experts are actually a short summary of the orig-
inal review. Thus, they are usually shorter than reviews from regular users , containing
an average of 26 words (std. dev. of 13) against an average of 100 words (std. dev.
of 129) for reviews by regular users . Figure 4.2 shows the histogram of the number of
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words. Note that the distribution is very different for regular users and experts . For
experts , it is similar to a normal distribution which means that the number of words is
symmetric in relation to the mean. For regular users , it is similar to a power law dis-
tribution. In other words, many reviews have up to 200 words and an smaller amount
has more words than that. In addition, we observed that experts use a more elaborate
language. We also calculated the entropy of words for both users. The entropy for
experts is 11, 08 and 10, 53 for regular users . This result show that experts are more
unpredictable than regular users . Because of these differences, we will condition our
analyses on the type of user (experts or regular users) and score polarity (positive or
negative).

4.2 Machine Classifiers

Our goal is to measure the impact of attribute noise in the performance of machine
learning classifiers in the task of movie review polarity classification. That said, a
fundamental step of our methodology is to choose state-of-the-art models that are
able to detect the polarity of movie reviews, that is, to classify a review as positive
or negative toward the movie in question. Thus, we selected three supervised deep
learning architectures with reported success in the task of polarity detection of movie
reviews: BERT [Devlin et al., 2019], CNN-GRU [Wang et al., 2016] and C-LSTM [Zhou
et al., 2015].

The C-LSTM architecture is represented in Figure 4.3. It utilizes a CNN to
extract a sequence of higher-level phrase representations, which are then fed into a
LSTM unit to obtain the sentence representation. The network is initialized with
pre-trained Word2vec vectors from Google News Dataset4 and words not found in the
vocabulary were initialized with a uniform distribution [-0.25, 0.25]. The output ŷi is
given by a dense layer with a sigmoid function. For regularization, we add two dropouts
to prevent co-adaptation, one after the embedding layer and another after the LSTM
layer.

Similarly, CNN-GRU, Figure 4.4, connects a CNN with a GRU to extract lo-
cal and global features. Their model consists of an embedding layer initialized with
Word2vec vectors from Google News Dataset in the same way as C-LSTM. In addition,
two convolution layers with max-pooling. Then, a concatenate layer combining these
two CNNs. To generate the sentence representation, the next layer is a GRU. Finally,
their final representations are connected to two dense layers, with a relu and sigmoid

4Available at: https://code.google.com/archive/p/word2vec/. Accessed on 06/28/2020

https: //code.google.com/archive/p/word2vec/
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Embedding CNN LSTM

Text Input

Dense

Output

Figure 4.3: C-LSTM architecture.

function, respectively. For regularization, we add three dropouts: after the embedding
layer, concatenate and second dense layer.

Embedding
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Dense
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Max-pooling

Max-pooling

Figure 4.4: CNN-GRU architecture.

Finally, BERT uses a masked language model (MLM) to pre-train deep bidirec-
tional representations from unlabeled text that considers both the left and right context
of sentences and words. In this work, we used an architecture composed by BERT em-
beddings pre-trained with data from Wikipedia connected with two dense layers. The
first dense layer used a relu function and the second one a sigmoid function.

The code of the three machine classifiers used in this work are publicly available
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BERT

Text Input

Output

Dense Dense

Figure 4.5: BERT architecture.

in the Internet. CNN-GRU and BERT were published by their authors and C-LSTM
by researchers who used this method in their work Elaraby and Abdul-Mageed [2018].
We made small modifications in the codes so they are able to process our movie reviews
data. We also created a log module to register all the results and changed the final
output layer to a sigmoid function, since our problem is a binary classification. We also
made BERT use the Keras library 5 just to facilitate our comparisons, but this is not
a necessary step to reproduce our results. The link to each repository is listed bellow:

• C-LSTM: https://github.com/EngSalem/TextClassification_Off_the_

shelf;

• CNN-GRU: https://github.com/ultimate010/crnn;

• BERT: https://github.com/google-research/bert;

4.3 Model Training

To train the machine classifiers, we randomly generated two balanced partitions of
our data with the same size, one for experts and other for regular users . Each training
dataset contains 4, 398 positive and 4, 398 negative reviews, for a total of 8, 796 reviews.
It is important to note that these datasets do not contain any review labeled by the
human classifier. After that, we performed a 5-fold cross-validation to choose the best
hyperparameters for our data. The set of hyperparameter configurations we tested
were the same used in the original articles [Wang et al., 2016], [Zhou et al., 2015] and

5Available at: https://faroit.github.io/keras-docs/1.0.1/. Accessed on 06/28/2020

https://github.com/EngSalem/TextClassification_Off_the_shelf
https://github.com/EngSalem/TextClassification_Off_the_shelf
https://github.com/ultimate010/crnn
https://github.com/google-research/bert
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[Devlin et al., 2019]. Since the BERT architecture is very simple, it has only a single
hyperparameter, the batch size, for which we tested values of 16, 32 and 64. For C-
LSTM, we tested layers with 100, 150 and 200 filters, and filters of size 2, 3 and 4,
memory dimensions of size 100, 150 and 200, and batch size of 16, 32 and 64. Finally,
for CNN-GRU, we tested layers with 100 and 200 filters, filters of size 3 and 4, GRU
dimensionality of 100 and 150, pool sizes of 2 and 3, and batch sizes of 16 and 32. To
run our experiments, we use a computer with the following configuration: 32 RAM,
Intel Core i7 CPU 3.40 GHz and NVIDIA GeForce GTX GPU.

After executing cross-validation, we selected the best hyperparameters for each
architecture and type of users comparing their F1-Score. We use 256 words for models
trained with expert data and 512 for those trained with regular user data in all archi-
tectures. BERT achieved the best results using a batch size of 16 for both user types.
For experts , C-LSTM uses a batch size of 32, 100 filters with size 3 in the convolutional
layer, and 200 as memory dimension for LSTM. For regular users , the hyperparameters
are the same, except in the LSTM layer, where a memory dimension of 100 was used.
For experts , CNN-GRU uses 100 filters with size 5 as filter length and 3 as pool size
for both CNNs. In the GRU, we used dimensionality of 150 and batch size of 16. For
regular users , the differences are that we used a dimensionality of 100 in the GRU
layer, size 3 as filter length and 2 as pool size for both CNNs. For both C-LSTM and
CNN-GRU the differences in the hyperparameters are explained by the fact that our
expert reviews are significantly shorter than the ones wrote by regular users .

After selecting the best hyperparameters, we trained two models for each archi-
tecture, one for experts and other for regular users . Also, each result reported in this
work is the average of five runs, where for each run the model is trained from start us-
ing the whole training dataset. With that, we can measure their parameter sensitivity
and calculate confidence intervals for the results. In addition, C-LSTM and CNN-GRU
took approximately half a day to train and BERT one day. Finally, we noted that the
performance of all three models were not significantly affected by the hyperparameter
configurations we tested.



Chapter 5

Results

In this Chapter we quantify the presence of attribute noise in movie reviews (Sec-
tion 5.1) and its impact on the task of polarity classification (Section 5.2). We also
created additional experiments (Section 5.3).

5.1 Amount of Attribute Noise

The first question we need to answer is: how much attribute noise exists in movie
reviews? In the context of our Metacritic dataset D, the answer to this question can
be influenced by two factors: (1) the type of user and (2) the polarity of their rating.
Thus, the following results are conditioned on whether the authors are experts or regular
users and whether the reviews are positive or negative. Because of that, we sampled a
collection DH of 800 movie reviews from D that is both balanced in terms of user type
and score polarity, i.e., this collection has 200 reviews for each of the four combinations
of user type and score polarity.

In order to quantify the amount of attribute noise in DH , we use our proposed
human classifier fH described in Section 3.3 to label every review xi ∈ DH . Since
this annotation process is very expensive, in this work, only two annotators were used
initially. The third annotator was called to classify instance xi if, and only if, the
first two had any kind of disagreement, i.e., a disagreement regarding the polarity
yi, the confidence ci, or attribute noise label li. In order not to influence the third
annotator only with difficult instances, we randomly select other reviews and mix with
the disagreement instances. As annotators, we selected three people who are fluent in
the English language. Despite not having practice in movie labeling, they often watch
movies. Again, each annotator cannot see the others’ responses while giving their own
annotations.

31
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Recall that fH assigns a polarity ŷi ∈ {positive, negative } to xi and, more
important to our purpose here, a label li, which can be either “no noise” (absence
of attribute noise), discrepant (the polarity of the text is different from the score
polarity), or one of the four neutrality labels: neutral_mixed (text has mixed opinions),
neutral_factual (text is purely factual), neutral_contextual (polarity needs context)
and neutral_undefined (reasons are unclear). Also, let ui ∈ {expert , regular user }
be the user type of the author of review xi. Our goal with the following results is to
estimate the probability P (li = l | yi = y, ui = u) for the four combinations of score
polarity y and user type u.

label (li) positive negative total
experts

no noise 146(36.5%) 162(40.5%) 77%
discrepant 20(5%) 3(0.8%) 5.8%
neutral 34(8.5%) 35(8.8%) 17.3%

mixed 10(2.5%) 7(1.8%) 4.3%
factual 14(3.5%) 3(0.8%) 4.3%
contextual 7(1.8%) 20(5%) 6.8%
undefined 3(0.8%) 5(1.3%) 2%

regular users
no noise 177(44.3%) 187(46.8%) 91%
discrepant 3(0.8%) 2(0.5%) 1.3%
neutral 20(5%) 11(2.8%) 7.8%

mixed 16(4%) 7(1.8%) 5.8%
factual 1(0.3%) 2(0.5%) 0.8%
contextual 0(0%) 1(0.3%) 0.3%
undefined 3(0.8%) 1(0.3%) 1%

Table 5.1: Amount of attribute noise in reviews.

In Table 5.1 we show the number and proportion of movie reviews with and
without attribute noise for experts . From the 400 labeled reviews, almost one quarter
(92) contains attribute noise. From those, note that neutral reviews are more common
than discrepant ones, but while the first is equally present in both positive and negative
reviews, discrepant noise is significantly more present in positive reviews. In such
cases, the author gave a positive score to the movie, but its review demonstrates the
opposite sentiment. This often occurs when the expert is using the review to justify
a good, but far from perfect score, to a critically acclaimed movie. As for the neutral
reviews, the most predominant type is neutral_contextual (6.8%), followed equally by
neutral_mixed (4.3%) and neutral_factual (4.3%). Also, neutral_contextual noise is
more common in negative reviews, when experts often use figures of speech (e.g. irony,
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simile) together with external knowledge to create humour. In the example listed in
Table 5.2, the expert uses irony in the review. Finally, neutral_factual noise is more
present in positive reviews, where often the experts simply describe some characteristic
of the movie that impressed them without explicitly saying that. Table 5.2 shows real
examples of reviews posted by experts for each type of attribute noise.

class label
(li)

Example

discrepant “Figgis’s film doesn’t match its reach.” (Positive)
mixed “Pleasant but dull formula film.” (Negative)

factual
“Without trivializing the disease, the film challenges AIDS’ stigma
(albeit for heterosexuals) at a moment when it was still considered

a death sentence.” (Positive)

contextual “Disheveled tripe pieced together with the good intentions.”
(Negative)

undefined “More interesting as history, re-written, than as the moral parable
this true story became.” (Positive)

Table 5.2: Examples of experts reviews with attribute noise.

Also, in Table 5.1 we show the number and proportion of movie reviews with
and without attribute noise for regular users . First, note that the number of reviews
with attribute noise significantly decreased in comparison with the ones written by
experts . From the 400 labeled reviews, only 36(9%) contains attribute noise, of which
31 are neutral and only 5 are discrepant . Different from what was verified for experts ,
the most predominant noise label for regular users was neutral_mixed , which occurred
significantly more in positive reviews. For the other labels, their occurrences were fairly
balanced between negative and positive reviews. We observed that regular users use a
much more direct and simple language to state their opinions than experts . Because of
that, most of the attribute noise is concentrated in cases where the author lists both the
negative and positive aspects of the movie without stating their final opinions about
the movie, which is the definition of neutral_mixed . Table 5.3 shows real examples of
reviews posted by regular users for each type of attribute noise.

A note about the human classifier. For the first two annotators, they agreed on
91.13% of the polarity scores, on 90.5% of their confidence levels and on 88% of their
attribute noise labels. Regarding the third annotator, only 1.5% of the instances were
not in total agreement with at least one of the first two annotators. The Cohen’s kappa
coefficient for the first two annotators was 0.82 in relation to polarity scores, 0.58 on
their confidence levels and 0.49 on their attribute noise labels.
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class label
(li)

Example

discrepant

“The actors try their best with the lines they are given, but the
"movie about a real bank robbery" is on auto-pilot most of the
time. It greatly resembles a 70’s film by letting the characters
drive the story. As a result there’s a lot of dialog. But its not
very interesting dialog. It is an instantly forgettable film.”

(Positive)

mixed
“I think the director did an incredible job. I loved the way it was
shot. The scifi world they created was also awesome. But I think
the story was way too subtle and wasn’t clear enough.” (Positive)

factual

“(...) The 1953 film about a provincial old couple’s pilgrimage to
the big city provokes sympathy for the mother and father, who
are so frail, so gentle, and yet are treated so badly by their

urbanized son and daughter. (...)” (Positive)

contextual “Only go if you’re interested in seeing Bening’s new facelift.”
(Negative)

undefined “Wow, can’t believe the critics on this one.” (Positive)

Table 5.3: Examples of regular users reviews with attribute noise.

5.2 Impact of Attribute Noise

In this section, we quantify the impact of attribute noise in machine classifiers. Also,
by putting these results in perspective with what was achieved by the human classifier,
we hope to provide an accurate assessment on how distant machine classifiers are with
respect to human performance in the task of polarity detection of movie reviews. We
guide our analyses by the following questions:

1. What are the probabilities of a correct and a misclassification given the label l?
In other words, we want to estimate the probabilities P (ŷi = yi | li = l) and
P (ŷi 6= yi | li = l) for all labels l ∈ L.

2. What are the probabilities of label l given that the classifier was correct and
that it made a mistake? In other words, we want to estimate the probabilities
P (li = l | ŷi 6= yi) and P (li = l | ŷi = yi) for all labels l ∈ L.

To address these questions, we test the three classifiers described in Chapter 4
in the labeled dataset DH (see Section 5.1), which contains 800 reviews. Because this
labeled dataset is completely balanced, we created two balanced training datasets, one
containing solely reviews from experts , namely Dexperts

T , and another containing solely
reviews from regular users , namely Dusers

T . Each training dataset contains 8, 796 re-
views, 4, 398 of each polarity. Again, this dataset is completely balanced and solely
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Figure 5.1: Classification error for all classifiers.

used to train the machine classifiers. Because these classifiers are sensitive to initializa-
tion parameters, we trained and tested them 5 times and the corresponding error bars
are shown in Figure 5.1. Finally, recall that yi refers to the author’s original polarity
score and ŷi refers to the polarity predicted by the classifiers, including the human
classifier. Thus, our golden standard is the original score given by the author, not the
human classifier polarity.

Figure 5.1 shows the classification error (with their respective error bars) for the
three machine classifiers and for the human classifier in the labeled dataset DH . The
classification error is simply the proportion of instances that were misclassified. Each
bar is also colored according to the labels’ proportion in the misclassified instances. For
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each classifier, the left (right) bar shows the error with respect to positive (negative)
instances. In general, the human classifier was the one that achieved the smallest
error, followed by BERT and C-LSTM. Also, the errors are always higher for experts ,
as these reviews have significantly less words (see Section 4.1) and much more noise.
The latter is also one of the main reasons for the error being almost always higher
for positive instances than for negative instances. For expert reviews, while negative
instances always have more “no noise” instances, positive instances have almost twice
more noisy instances, particularly discrepant ones. For regular user reviews, positive
instances also have more noisy instances, but the difference in terms of neutral reviews
is more significant. Note that, for both experts and regular users , this difference in the
instances misclassified by the human classifier is striking.

For a more precise assessment of the impact of attribute noise, we show in Ta-
ble 5.4 the accuracy of the classifiers considering instances of each label separately. In
other words, these results provide estimates for the probabilities of our first question,
P (ŷi = yi | li = l) and P (ŷi 6= yi | li = l). First, note that for all classifiers the accuracy
significantly degrades in instances with neutral noise and get even worse in instances
with discrepant noise. Recall that a discrepant review is a review where the human
classifier was sure about its polarity, but the originally assigned polarity is the oppo-
site. Thus, by definition, the human classifier accuracy on discrepant reviews is zero.
For neutral instances, the human classifier always outperforms the machine classifiers.
However, the machine classifiers are not always tricked by discrepant reviews as the
human classifier is, although their performances are not better than a coin toss. Con-
sidering the specific neutral labels, note that BERT achieves human level performance
for neutral_contextual , which is coherent with the nature of this classifier, given that
its embeddings are supposed to carry much more contextual information in comparison
with the embeddings used in C-LSTM and CNN-GRU. The most inconclusive results
refer to neutral_undefined , which is also the label with the least instances, 12 out of
800.

C-LSTM CNN-GRU BERT Human
no noise 0.91 0.91 0.94 1
discrepant 0.55 0.52 0.45 0
neutral 0.76 0.73 0.76 0.78
mixed 0.75 0.72 0.76 0.75
factual 0.78 0.77 0.71 0.80
contextual 0.67 0.64 0.79 0.79
undefined 0.97 0.90 0.77 0.83

Table 5.4: Accuracy of the classifiers considering only instances of a particular label.
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To answer our second question, related to the probabilities P (li = l | ŷi 6= yi)

and P (li = l | ŷi = yi), we sample an additional dataset Derror
H to be labeled by

our human classifier fH . First, we run the BERT classifier, which was the one that
achieved the best results, on two new balanced sets of reviews extracted from D, one
containing 2, 752 reviews from experts and the other 2, 752 reviews from regular users .
Again, we used the same BERT classifiers that were trained for generating the results
in Figure 5.1, one for each user type. After running BERT, we construct Derror

H by
sampling 100 misclassified and 100 correctly classified instances authored by each user
type, for a total of 400 reviews. Then, we run fH on Derror

H to have a more accurate
estimate of P (li = l | ŷi 6= yi) and P (li = l | ŷi = yi).

Table 5.5 shows the percentages of each label for correctly and incorrectly classi-
fied instances, which provide estimates for the probabilities of P (li = l | ŷi 6= yi) and
P (li = l | ŷi = yi). For both experts and regular users , it is much more likely to find
neutral and discrepant reviews in misclassified instances. In other words, one easy way
to find instances with attribute noise in movie reviews is to run BERT and sample from
misclassified instances. Our estimates for the probabilities of finding a misclassified in-
stance with attribute noise is 0.64 for experts and 0.56 for regular users . Recall from
Table 5.1 that we found only 23% of instances with attribute noise in reviews from
experts and only 9% in reviews from regular users in our first balanced sample DH .
The most striking difference is for discrepant reviews, where the number of instances
increased by one order of magnitude in misclassified instances. Regarding the neutral
labels, our results reveal that we are at least twice as likely to find neutral_contextual
noise in misclassified expert reviews and neutral_mixed noise in misclassified regular
users reviews.

We investigated misclassified “no noise” instances and found two patterns that
explain the errors. First, reviews that have positive and negative points, but where
humans can easily identify what side has the most weight. Second, reviews that have
some “irony” that is clear to humans, but is created using words with the opposite
polarity of the final score yi. Table 5.6 shows real examples of misclassified “no noise”
reviews with their original polarities given by their authors. The first and last review
belong to the second pattern. While, the second review belongs to the first one.

We further investigate these patterns by using SHAP [Lundberg and Lee, 2017],
which is a game theoretic approach to explain the output of deep learning models and
designed to understand the most important words for the machine classifiers. Figure 5.4
shows the result for the last review in Table 5.6. The words are plotted in descending
order according with their importance. Note that all listed words have a positive
polarity when they are analyzed separately. As a result, their combination contributes
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label (li) ŷi = yi ŷi 6= yi

experts
no noise 96 (78%) 28 (36%)
discrepant 1 (1%) 19 (25%)
neutral 26 (21%) 30 (39%)
mixed 10 (8%) 9 (11%)
factual 6 (5%) 3 (4%)
contextual 8 (6%) 11 (14%)
undefined 2 (2%) 7 (9%)

regular users
no noise 111 (86%) 31 (44%)
discrepant 2 (2%) 14 (19%)
neutral 16 (12%) 26 (37%)
mixed 13 (10%) 15 (21%)
factual 0 (0%) 1 (1%)
contextual 1 (1%) 6 (8%)
undefined 1 (1%) 5 (6%)

Table 5.5: Percentage of labels in correct (ŷi = yi) and incorrect (ŷi 6= yi) predictions
by BERT.

Examples
"Michael Bay may think that special effects can substitute for good acting and a

good story, but that does not fly around here." (Negative)
"Fun movie if you can suspend your disbelief enough to sit through it. Plot
breaks no new ground which means you basically know what you are getting
as soon as you walk in to it. Ice Cube and Charlie Day were great at playing
extensions of themselves and theres alot of laughs to be had whenever either of

them are on screen." (Positive)
"The trailer was promising to me; I expected it to be a really good movie, but

instead it was "meh". I didn’t really like Cruz; it was heartwarming how
Lightning McQueen made a tribute to Doc at the end, but the trailer made

it seem action packed; it wasn’t as good as I expected." (Negative)

Table 5.6: Examples of misclassified “no noise” reviews.

to the classifier misclassify the review. Differently, the classifier was uncertain for the
first review. However, the word "good" appeared twice and helped to slightly classify
the review as positive which can be seen Figure 5.2. The second review was a little
divergent. Although, the most important word was "great", it was not enough to the
classifier consider the review as positive. The classifier got confused with the first and
second sentence. Nevertheless, it also got confused with a name. Results can be seen
in Figure 5.3.
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Figure 5.2: SHAP plot for the first review in Table 5.6.
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Figure 5.3: SHAP plot for the second review in Table 5.6.

We conjecture that these instances can be correctly classified with extra training
and more modern (and complex) architectures. On the other hand, we feel that dealing
with instances with attribute noise is not that simple, where more guided and focused
approaches are probably needed, such as the one proposed by Valdivia et al. [2019].

5.3 Additional Experiments

We also created additional experiments to further understand the neutral and dis-
crepant reviews. In Section 5.3.1, we analyzed the BERT output for neutral and
discrepant reviews. Next, in Section 5.3.2, we trained a new model to classify whether
a review is neutral or not. Finally, in Section 5.3.3 we analyze a case of study about
Star Wars.
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Figure 5.4: SHAP plot for the last review in Table 5.6.

5.3.1 BERT output for neutral and discrepant reviews

In order to further understand how the classifiers work with discrepant and neutral
reviews, we analyze the BERT output value for these reviews. Since our BERT classifier
output is generated by a sigmoid function, the output is a value between 0 and 1, where
0 is positive and 1 is negative. Thus, values close to 0.5 means that the classifier was
not sure about the polarity attribute for the review. From that, we used a metric to
evaluate how uncertain the classifier was for discrepant and neutral reviews. For each
output, we applied the following:

s = 2 ∗ |score− 0.5|. (5.1)

From Equation 5.1, the output is uncertain, if it is close to 0, or certain if it
is close to 1. The results are shown in Figure 5.5. Note that all medians are above
0.6. For regular users reviews, the classifier is more confident. In addition, neutral
reviews from experts generate more uncertainty than the others. Considering the users
separately, neutral reviews create more distrust than discrepant .

We also analyzed a box plot containing only misclassified reviews. The results are
represented in Figure 5.6. Unlike the previous result, neutral reviews from experts have
a median less than 0.5. Moreover, the median for neutral reviews decreased slightly.
On the other hand, the median for discrepant reviews increased moderately. In other
words, the classifier is more confident about misclassified discrepant reviews and less
confident about misclassified neutral reviews.
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Figure 5.5: BERT output for neutral and discrepant reviews.
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Figure 5.6: BERT output for neutral and discrepant misclassified reviews.

5.3.2 Neutral classifier

In order to identify reviews with neutral noise, we trained a new BERT classifier to
categorize reviews as neutral or non-neutral, using our labeled collection. To do that,
we randomly created two balanced training datasets, one containing solely reviews
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from experts and another containing solely reviews from regular users . Each dataset
contains 4, 000 neutral and 4, 000 non-neutral reviews. For neutral, we selected reviews
with score between 40−60 (expert), and 4−6 (regular user). For non-neutral, between
0 − 39 and 61 − 100 (expert), and 0 − 3 and 7 − 10 (regular user). To test the new
classifiers, we generated five test sets for each user. Each test set contains the same
amount of neutral and “no noise” reviews, for each neutrality label. The amount of
reviews in each class for each combination is defined in Table 5.7.

expert regular user
neutral + no noise 124 73
mixed + no noise 36 52
factual + no noise 32 4
contextual + no noise 42 8
undefined + no noise 14 9

Table 5.7: Amount of neutral and “no noise” review in each combination.

Our goal is to evaluate if the classifier is able to correctly classify the reviews
with neutrality labels as neutral and “no noise” as non-neutral. The results are shown
in Table 5.8. Note that the neutral_mixed and “no noise” have the best F1 Score
for experts . On the other hand, neutral_contextual reviews has the worst result. In
additional, the other results were around 0.5. Considering regular users , the results
were higher, except for neutral_contextual reviews. Furthermore, neutral_mixed and
“no noise” also have the best F1 Score.

In order to reduce the uncertainty of neutral reviews, we trained other two BERT
classifiers, one for experts and other for regular users . Instead of using training datasets
created from a range of neutral scores like in the previous analysis, for these classifiers,
the training datasets contain only neutral reviews with score 50 (experts) and 5 (regular
users). The results are also shown in Table 5.8. Note that, comparing with the previous
results, the F1 Score improved for most of the test sets for experts and regular users .
Moreover, the neutral class had more impact than the non-neutral. In other words,
the classifier is able to hit more neutral and non-neutral reviews when the classifier is
trained with a smaller range of scores. The only test sets that got worse F1 Scores
were neutral_mixed for experts and neutral_factual for regular users .

Additionally, we plotted the confusion matrix. The confusion matrices for experts
is shown in Figure 5.7. Note that the classifier trained with smaller range of scores
(neutral score 50) improved the true positive results. However, true negative decreased
a little. The same happened with regular users as we can observe in Figure 5.8.
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experts
Neutral score 40-60 50
Class Neutral Non-neutral Neutral Non-neutral
neutral + no noise 0.53 0.58 0.58 0.59
mixed + no noise 0.71 0.63 0.67 0.67
factual + no noise 0.45 0.56 0.53 0.62
contextual + no noise 0.4 0.59 0.6 0.64
undefined + no noise 0.5 0.5 0.55 0.51

regular users
Neutral score 4-6 5
Class Neutral Non-neutral Neutral Non-neutral
neutral + no noise 0.63 0.7 0.71 0.73
mixed + no noise 0.71 0.74 0.79 0.76
factual + no noise 0.67 0.8 0.4 0.73
contextual + no noise 0.14 0.33 0.18 0.57
undefined + no noise 0.5 0.6 0.5 0.6

Table 5.8: Neutral classifiers F1 Score results.
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Figure 5.7: Confusion matrix for experts .

5.3.3 Star Wars

We mentioned previously that a complex example of attribute noise is a review of a
highly acclaimed movie where only negative points are highlighted to justify a positive
but different from perfect score. During our experiments, we noticed that the classifier
usually misses more often reviews from Star Wars movies. These reviews are usually
very long, with average number of words of 37 for experts and 142 for regular users .
From these insights, we decided to further investigate the relationship between the
number of words per review and the scores. To do that, we used positive and negative
reviews from all nine Star Wars movies. Altogether there are 7, 458 reviews from regular
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Figure 5.9: Box plot of the number of words per review grouped by score for regular
users .

The box plot for regular users is shown in Figure 5.9. Considering only positive
scores, 7, 8, 9 and 10, note that as the scores decreases, the median of the number
of words per review increases. In other words, regular users usually use more words
to justify their positive but not perfect score. On the other hand, for negative scores,
0, 1, 2 and 3, as the scores increases, the median of the number of words per review
also increases. The higher the negative score, the greater is the number of words per
review. That is, regular users usually use a smaller number of words to write about a
review very negative. For experts , the box plot is shown in Figure 5.10. The number
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Figure 5.10: Box plot of the number of words per review grouped by score for experts .

of reviews written by experts is very small, specially comparing with the number of
regular users reviews. For this reason, it is not possible to analyze some scores such
as 0 − 9 and 10 − 19. Moreover, the pattern noted earlier for regular users was not
observed for experts . However, we can note that the median is greater for positive
scores.

The pattern found for regular users shows that they are more straightforward
to write reviews with perfect positive or negative scores. In other words, they use a
smaller number of words. Due to the fact that these reviews usually are more direct
and have less context, this form of writing facilitates the understanding of the polarity
for machine classifiers. On the other hand, reviews with a greater number of words
tend to have more context, mixed opinions and lack of clarity. Consequently, they are
more prone of being noisy.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

One of the main criticisms about ML is its lack of explainability for successes and
failures [Lipton and Steinhardt, 2019]. In NLP tasks solved by deep learning archi-
tectures, this is an even bigger problem, since features are usually encoded into dense
vector embeddings that are difficult to interpret [Pelevina et al., 2016]. This work helps
to fill this gap by proposing a methodology to characterize, identify and measure the
impact of problematic instances in the task of polarity classification of movie reviews.
We characterized such instances by two types of attribute noise: neutrality , where the
textual review does not clearly convey a polarity, and discrepancy , where the polarity
of the text does not match the polarity of its rating.

Our methodology is summarized in the creation of a human classifier capable
of assigning a label to a movie review to indicate whether it has noise or not. The
human classifier is composed of three independent human annotators. The first two
annotators classified each review in two levels and the third one was called to classify
instances in case of disagreement between the first two. Initially, they determined if
the review is positive or negative. Then, they declared their reliability in relation to
the polarity of the review. If they were not confident, they also chose a reason. To
aggregate the classification of the three annotators and create our human classifier, we
used the majority vote. Basically, when the human classifier was not confident about
its prediction, we labeled the review as neutral . Moreover, if the review was no longer
classified as neutral and the class assigned by the human classifier was different from
the author’s rating, we labeled the review as discrepant . To test the human classifier,
we collected movie reviews posted on Metacritic from experts and regular users . Al-
together, the human classifier classified 1, 200 reviews and found 198 neutral and 64

46
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discrepant . Finally, we selected three state-of-the-art machine learning classifiers to
test on these reviews and measured the impact of neutral and discrepant reviews.

We analysed the amount of attribute noise that exists in movie reviews considering
the influence of two factors: type of user and the polarity of their rating. Results
showed that neutral reviews are more present for both type of users. After that, we
also analysed their influence on human and machine classifiers. We answered two
questions: "What are the probabilities of a correct and a miss classification given the
label l?" and "What are the probabilities of label l given that the classifier was correct
and that it made a mistake?". From this perspective, we provided empirical evidence
about the need to pay attention to instances with attribute noise, as they are much
harder to be classified, for both machine and human classifiers. We also showed that
one easy way to find instances with attribute noise in movie reviews is to run BERT
and sample from misclassified instances.

In our proposed methodology, if the annotator was uncertain, the instance was
marked as neutral . If certain, but the assigned label (e.g. polarity) was incorrect, the
instance was marked as discrepant . This process is simple and can be easily applied to
other classification tasks to identify attribute noise in instances, no matter the labels
available to the annotators. We made the dataset containing attribute noise labels
publicly available so it can be used as a standard benchmark for robustness to noise in
polarity classification tasks, and to potentially foster research on models, datasets and
evaluation metrics tailored for this problem.

6.2 Future Work

There are many aspects of this work that can still be explored. Since our proposed
methodology is simple and can be easily applied to other classification tasks, an easy
approach is to apply it in other contexts. With the growth of the internet, the volume
of online reviews available is huge. These reviews are found in several contexts such
as books, series, musics, video games and others. A context that interested us a lot
and can bring great results are reviews from papers of conferences or journals. These
reviewers are known for being inconsistent with their rating, so it would be more likely
to find discrepant reviews.

Since reviews from experts are actually a short summary of the original review,
another idea for future work is to summarize the large reviews from regular users before
the classification task and analyze its impact. In this work, we showed that instances
with attribute noise are much harder to be classified. We analyzed its impact in three
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deep learning models: BERT, C-LSTM and CNN-GRU. As future work, we can explore
other models such as SVM and Decision trees. We trained the models using a random
balanced dataset that probably contains noise. Another experiment that could be done
is to train the models with and without noise and analyze how they behave.

A very important point of our methodology is to choose the annotators. They
need to be familiar with the language of the reviews, for example. In our experiments,
we used three annotators who are considered fluent in the English language. However,
they are not native speakers. For this reason, it is possible that there are differences if
the human classifier is formed by other people. Therefore, a next work could be done
applying the methodology with native speakers as annotators and comparing with this
work.

In addition to the annotators, the main labels (neutrality and discrepancy) are
also very important in our methodology. Petrović et al. [2010] focused on event detection
on tweets, which may be plagued with spam. Although this is not directly related to
our own contribution, it poses an interesting direction for a future extension focused on
analyzing the impact of malicious attribute noise, i.e., noise deliberately generated to
mislead readers into visiting the spammer’s website, for instance. Following the same
idea, content generated by robots is also considered noise. In this way, methods used
to identify robots can also identify noise. Thus, we can test these methods as baselines.

In this work, we discussed how machine learning methods are known as black
boxes and caused lack of confidence in users. Moreover, we run three machine learning
classifiers in our labeled reviews to understand their behaviour. In other words, we
started to open these black boxes and analyzed how they deal with noise data. Nev-
ertheless, we did not go further to explain each one specifications and limitations. As
future work, one idea is to analyze them further. For instance, how each Bert’s layers
conduct on noise data, similar to Tenney et al. [2019].

Another idea is to consider the results discussed in this work to create more robust
classifiers such as proposed by Valdivia et al. [2019]. These classifiers would be able
to deal with noise and be less harmed by them. Following the same idea, the chance
of finding discrepant and neutral reviews when the classifier makes mistakes increases
in order of magnitude. Therefore, it can be used to detect instances with attribute
noise. Furthermore, to point out neutral instances, the neutral classifier could be used.
Performing a sanitation on the dataset before training the classifier is important in
several applications such as recommendation systems. These systems use reviews to
recommend movies, for example. If these reviews are noisy, they will cause problems
in the recommendation. Consequently, removing or giving less importance to these
instances is very important.
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