
ASSESSING MOCK CLASSES: AN EMPIRICAL

STUDY



GUSTAVO HENRIQUE ALVES PEREIRA

ASSESSING MOCK CLASSES: AN EMPIRICAL

STUDY

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como re-
quisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Andre Cavalcante Hora

Belo Horizonte

Setembro de 2021



GUSTAVO HENRIQUE ALVES PEREIRA

ASSESSING MOCK CLASSES: AN EMPIRICAL

STUDY

Thesis presented to the Graduate Program
in Computer Science of the Federal Univer-
sity of Minas Gerais in partial fulfillment of
the requirements for the degree of Master
in Computer Science.

Advisor: Andre Cavalcante Hora

Belo Horizonte

September 2021



© 2021, Gustavo Henrique Alves Pereira. 
   Todos os direitos reservados 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
                Pereira, Gustavo Henrique Alves.  

 
P436a          Assessing mock classes: an empirical study [manuscrito] /    
                     Gustavo Henrique Alves Pereira . – 2021. 
                    xv, 55 f. il. 
                      
                    Orientador: André Cavalcante Hora. 
                    Dissertação (mestrado) - Universidade Federal de Minas    
                Gerais, Instituto de Ciências Exatas, Departamento de Ciência  
                da Computação. 
                    Referências: f.51-55 
                  .                  
                    1. Computação – Teses. 2. Software – Testes –Teses. 3.  
               Software – Validação – Teses. 4. Framework (Programa de  
               computador) – Teses. I. Hora, André Cavalcante. II.Universidade  
               Federal de Minas  Gerais, Instituto de Ciências  Exatas,  
               Departamento de Ciência da Computação. III.Título. 

 
CDU 519.6*32(043) 

 
Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende Costa 
CRB 6ª Região nº 1510 



�������������

�

���

�������

�

�

������������ �����

��

�

�� ����������

����

�

��

�

�

���

�

��� �� �� ����

�� �� ��� ���������������� ��� �� ��

���������

�������

���

�

�����

���

���

��

���

���

����

���

�

�����������������

�

�

�

����

�

�

��

������������������������������������

�����������������������������

���������������������������������������������������

�������������������

������������������������������������������

������������������������������

�����������������������������������������������������������������������������������

��������������������������� � �����������

��������������������������������������� �����

�������������������������������������

��������������������������������������� �����

�������������������������������������

������������������������� �����

���������������������������������������

��������������������������������������������������������������������������������������������������

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

���� �� ������������������������������������������

�

������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

��� �������������������� � ������������������������������������������������ ������������������������������������������������� �� ������������������������������������������������������������������������������



Acknowledgments

Este trabalho foi produto de anos de preparo e dedicação, contando sempre com o
apoio de várias pessoas. Agradeço particularmente a:

Minha mãe, Vanessa, que sempre encorajou meu percurso na vida acadêmica.

Meu pai, Nilson, que me incentivou a seguir uma carreira técnica, e tão cedo nos
deixou durante o curso deste mestrado.

Minha esposa, Lorena, que apoiou este trabalho desde o princípio, mesmo quando
ele ocupou parte do nosso tempo juntos, incluindo nossa celebração de casamento.

Meu mentor e amigo, professor Leandro Maia, inspirador de minha formação em
Ciência da Computação, por admirar sua inspiradora didática e ética de trabalho.

Meu orientador, professor André Hora, que acreditou na proposta e sempre
ofereceu conselhos valiosos, me guiando com seu senso de excelência e rigor científico.

Aos membros do ASERG, pelas discussões relevantes e ampliadoras de horizontes.

Meus colegas de trabalho, sempre compreensivos, incentivando e se interessando
por este trabalho.

Ao DCC/UFMG e CNPq pelo suporte financeiro na participação em eventos, e
pela manutenção do PPGCC.

vii



“The programmer should not ask how applicable the techniques of sound programming
are, he should create a world in which they are applicable; it is his only way of

delivering a high-quality design.”
(Edsger W. Dijkstra)

viii



Resumo

Em atividades de teste, desenvolvedores frequentemente utilizam dependências que tor-
nam os testes mais difíceis de serem implementados. Neste cenário, eles podem utilizar
objetos mock para simular o comportamento de tais dependências, o que contribui
para tornar os testes rápidos e isolados. Na prática, as dependências simuladas po-
dem ser dinamicamente criadas com o apoio de frameworks de mock ou manualmente
codificadas em classes mock. Enquanto frameworks de mock são bem explorados pela
literatura, classes mock ainda são pouco estudadas. Avaliar classes mock pode fornecer
as bases para melhor compreender como estes mocks são criados e consumidos por
desenvolvedores e para detectar novas práticas e desafios. Nesta dissertação, propomos
um estudo empírico e um survey para avaliar classes mock. Ao analisar projetos de soft-
ware populares na linguagem Java, detectamos mais de 600 classes mock e avaliamos
o seu conteúdo, projeto, evolução e utilização. Também conduzimos um survey com
39 desenvolvedores que fizeram manutenção em classes mock para melhor compreender
motivações de uso. Descobrimos que classes mock: frequentemente simulam obje-
tos de domínio, dependências externas, e serviços web; são tipicamente parte de uma
hierarquia; são em sua maior parte públicas, mas 1/3 são privadas; e são largamente
consumidas por projetos clientes, particularmente para apoiar testes de aplicações web.
Desenvolvedores argumentam que frameworks de mock podem reduzir a qualidade do
código e possuem limitações, enquanto classes mock podem melhorar a qualidade do
código e são simples de se configurar em testes. Além disso, desenvolvedores declaram
diversas razões sobre quando criarmos classes mock, por exemplo, para testes complexos
e para apoiar o reuso; frameworks de mock deveriam, idealmente, serem utilizados para
criar testes unitários simples, mas também para testar entidades externas e para testar
código com mudanças mínimas. A percepção geral é que a utilização de classes mock
é preferível do que os frameworks de mock, entretanto, existem casos específicos onde
o uso dos frameworks de mock são uma escolha adequada. Finalmente, fornecemos
implicações e observações para pesquisadores e profissionais.

ix



Palavras-chave: Engenharia de Software, Teste de Software, Test Doubles, Frame-
works de Mock, Classes Mock.

x



Abstract

During testing activities, developers frequently rely on dependencies that make the
test harder to be implemented. In this scenario, they can use mock objects to emulate
the dependencies’ behavior, which contributes to make the test fast and isolated. In
practice, the emulated dependency can be dynamically created with the support of
mocking frameworks or manually hand-coded in mock classes. While the former is
well-explored by the research literature, the latter lacks further empirical analysis.
Assessing mock classes would provide the basis to better understand how those mocks
are created and consumed by developers and to detect novel practices and challenges. In
this dissertation, we propose an empirical and a survey study to assess mock classes. We
analyze popular Java software projects, detect over 600 mock classes, and assess their
content, design, evolution, and usage. We also conduct a survey with 39 developers
who maintained mock classes to better understand usage motivations. We find that
mock classes: often emulate domain objects, external dependencies, and web services;
are typically part of a hierarchy; are mostly public (but 1/3 are private); and are largely
consumed by client projects, particularly to support web testing. Developers argue that
mocking frameworks may reduce code quality and have limitations, while mock classes
may improve code quality and are simple to set up in tests. Moreover, developers state
several reasons to create mock classes, for example, for complex testing and to support
reuse; mocking frameworks should ideally be used to create simple unit tests, but also
to test external entities and to test code with minimal change. The overall perception
is that the usage of mock classes is preferable over mocking frameworks, however, there
are specific cases in which mocking frameworks are a better choice. Finally, we provide
implications and insights to researchers and practitioners working with mock classes.

Palavras-chave: Software Engineering, Software Testing, Test Doubles, Mocking
Frameworks, Mock classes.

xi



List of Figures

2.1 The Test Pyramid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Examples of mocking frameworks usage. . . . . . . . . . . . . . . . . . . . 12
2.3 Examples of mock classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Distribution of the number of methods in mock and regular classes. . . . . 32
4.2 Usage of mock classes according to their categories. . . . . . . . . . . . . . 35

xii



List of Tables

3.1 Selected projects and detected mock classes. . . . . . . . . . . . . . . . . . 19
3.2 Examples of mock classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Mock-related terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Mock-related terms in Boa. . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1 Mock class categories. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Top-3 most frequent terms per mock class category. . . . . . . . . . . . . . 29
4.3 Class extension and interface implementation in the mock classes. . . . . . 30
4.4 Visibility in the mock classes. . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Number of methods in the mock and regular classes. . . . . . . . . . . . . 31
4.6 Evolution of the classes - Changes. . . . . . . . . . . . . . . . . . . . . . . 33
4.7 Evolution of the classes - Developers. . . . . . . . . . . . . . . . . . . . . . 34
4.8 Most frequent mock categories in the Boa dataset. . . . . . . . . . . . . . . 34
4.9 Most frequent mock classes in the Boa dataset. . . . . . . . . . . . . . . . 36

5.1 Categories for Question 1: What is the goal of this mock class? . . . . . . 41
5.2 Categories for Question 2: Why has a mocking framework not been used

instead? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Categories for Question 3: When should developers create mock classes and

when should they rely on mocking frameworks? . . . . . . . . . . . . . . . 44

xiii



Contents

Acknowledgments vii

Resumo ix

Abstract xi

List of Figures xii

List of Tables xiii

1 Introduction 1
1.1 Motivation and Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Proposed Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions and Publications . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Dissertation Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Related Work 6
2.1 Software Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Test Doubles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Mocking Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Mock Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Study Design 18
3.1 Selecting the Software Projects . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Detecting Mock Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Survey Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 RQ1 (Content) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xiv



3.4.2 RQ2 (Design) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.3 RQ3 (Evolution) . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4.4 RQ4 (Usage) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.5 RQ5 (Motivation) and RQ6 (Choice) . . . . . . . . . . . . . . . 25

3.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Empirical Results 27
4.1 RQ1 (Content): What is the content of mock classes? . . . . . . . . . . 27
4.2 RQ2 (Design): How are mock classes designed? . . . . . . . . . . . . . 29
4.3 RQ3 (Evolution): How do mock classes evolve over time? . . . . . . . . 32
4.4 RQ4 (Usage): How are mock classes used by developers? . . . . . . . . 33
4.5 Discussion and Implications . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5.1 Novel empirical data on mock classes . . . . . . . . . . . . . . . 35
4.5.2 Reuse and lack of visibility of the mock classes . . . . . . . . . . 37
4.5.3 Widespread usage of the mock classes . . . . . . . . . . . . . . . 37

4.6 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6.1 Focus on libraries instead of end-user products . . . . . . . . . . 37
4.6.2 Manual classification . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6.3 Lack of mock classes categorized as Database . . . . . . . . . . 38
4.6.4 Identifying mock classes . . . . . . . . . . . . . . . . . . . . . . 39
4.6.5 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Survey Results 40
5.1 RQ5 (Motivation): Why do developers rely on mock classes instead of

mocking frameworks? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.1 Against Mocking Frameworks . . . . . . . . . . . . . . . . . . . 42
5.1.2 In Favor of Mock Classes . . . . . . . . . . . . . . . . . . . . . . 43

5.2 RQ6 (Choice): When should developers create mock classes and when
is it better to rely on mocking frameworks? . . . . . . . . . . . . . . . . 43
5.2.1 When developers should create mock classes . . . . . . . . . . . 43
5.2.2 When developers should rely on mocking frameworks . . . . . . 45

5.3 Discussion and Implications . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.1 Reasons for Using Mock Classes and Mocking Frameworks . . . 46
5.3.2 Mock and test double terminology . . . . . . . . . . . . . . . . . 47

5.4 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4.1 Survey answers and assessment . . . . . . . . . . . . . . . . . . 47

xv



5.4.2 Terminology and context . . . . . . . . . . . . . . . . . . . . . . 48
5.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Conclusion 49
6.1 Summary and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Bibliography 51

xvi



Chapter 1

Introduction

1.1 Motivation and Problem

Software testing is a key practice in modern software development. Often, during test-
ing activities, developers are faced with dependencies (e.g., web services, database,
etc.) that make the test harder to be implemented [Meszaros, 2007]. In this scenario,
developers can either instantiate these dependencies inside the test or use mock ob-
jects to emulate the dependencies’ behavior [Spadini et al., 2017, 2019]. The use of
mock objects can contribute to make the test fast, isolated, repeatable, and deter-
ministic [Meszaros, 2007]. A test case that, for example, relies on an unstable and
slow external service can mock this dependency to be stable and faster. To support
the learning of mock objects, technical literature is available for distinct programming
languages and ecosystems (e.g., Feathers [2004]; Meszaros [2007]; Freeman and Pryce
[2009]; Osherove [2009]; Percival [2014]).

In practice, there are two solutions to adopt mock objects. The emulated depen-
dency can be dynamically created with the support of mocking frameworks or man-
ually hand-coded in mock classes [Meszaros, 2007]. Indeed, mocking frameworks are
quite popular nowadays and are found in distinct software ecosystems. For example,
JavaScript developers may use SinonJS1 and Jest,2 which is supported by Facebook;
Java developers can rely on Mockito,3 while Python provides unittest.mock4 in its core
library. The other solution to create mock classes is by hand, that is, manually creating
emulated dependencies so they can be used in test cases. In this case, developers do not

1https://sinonjs.org
2https://jestjs.io
3https://site.mockito.org
4https://docs.python.org/3/library/unittest.mock.html

1



1. Introduction 2

need to rely on any particular mocking framework, since they can directly consume the
mock class. For example, to facilitate web testing, the Spring web framework includes
a number of classes dedicated to mocking.5 Similarly, the Apache Camel integration
framework provides mock classes to support distributed and asynchronous testing.6

In those cases, instead of using a mocking framework to simulate a particular depen-
dency, developers can directly use mock classes on their test cases, such as MockServer,
MockHttpConnection, MockServlet, etc.

Past research showed that mocking frameworks are largely adopted by software
projects [Mostafa and Wang, 2014] and that they may indeed support the creation of
unit tests [Marri et al., 2009; Arcuri et al., 2017; Spadini et al., 2017, 2019]. Moreover,
recent research showed how and why practitioners use mocks and the challenges faced
by developers [Spadini et al., 2017, 2019]. However, those researches are restricted
to the context of mocking frameworks. To the best of our knowledge, mock classes
have not yet been studied by the research literature. In this context, some important
questions are still open, such as: what dependencies are emulated by those mock
classes? are they any different from framework mocks? how are mock classes designed
and used by developers? why and when mock classes are adopted instead of mocking
frameworks? Thus, assessing mock classes would provide the basis (i) to understand
how those mock objects are created and consumed by developers and (ii) to detect
novel practices and challenges.

1.2 Proposed Work

In this dissertation, we propose an empirical and a survey study to assess mock classes.
First, we analyze 12 popular Java software projects hosted on GitHub (including Elas-
ticsearch, Spring Boot, and Google Guava) and detect 604 mock classes. We then
propose the following research questions to assess the content, design, evolution, and
usage of those mock classes:

• RQ1 (Content): What is the content of mock classes? We manually categorize
the 604 mock classes with respect to the dependency they are emulating. We
observe that mock classes typically emulate domain objects, external dependen-
cies, and web services. The most and least frequent categories are essentially the
same that developers create when relying on mocking frameworks.

5https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/
testing.html#mock-objects

6https://camel.apache.org/components/latest/mock-component.html



1. Introduction 3

• RQ2 (Design): How are mock classes designed? We assess the structural de-
tails of the mock classes. We find that mock classes often extend other classes
or implement interfaces; around 70% are public and can be reused, while 30%
have restrictive visibility; and mock and regular classes have the same number of
methods.

• RQ3 (Evolution): How do mock classes evolve over time? Overall, mock classes
and regular classes have equivalent number of changes. However, there may exist
exceptions.

• RQ4 (Usage): How are mock classes used by developers? In this analysis, we
focus on the client-side. With the support of the Boa platform [Dyer et al.,
2013], we assess millions of client projects and detect that mock classes are largely
consumed, particularly to emulate web services. However, the usage is very
concentrated on a few classes: 10 classes are consumed by 76% of the clients.

Second, to understand the motivations behind the usage of mock classes, we
conduct a survey with 39 developers who maintained this kind of class. We focus
on assessing why and when developers rely on mock classes. Thus, we propose two
research questions:

• RQ5 (Motivation): Why do developers rely on mock classes instead of mocking
frameworks? We find that that developers rely on mock classes over mocking
frameworks due to several reasons. They argue that mocking frameworks reduce
code quality, have limitations, and add dependencies. Also, developers mention
that mock classes improve code quality and are simple to set up in tests.

• RQ6 (Choice): When should the developer create mock classes and when is it
better to rely on mocking frameworks? According to the surveyed developers,
there are many reasons to create mock classes: for complex testing, to avoid
mocking framework limitations, to have better code quality, to support reuse, and
to keep project quality. On the other hand, developers should rely on mocking
frameworks mainly to create simple unit tests, but also to have better code quality
and to test external entities.

Based on our results, we provide insights and practical implications to researchers
and practitioners by discussing topics as (i) the novel empirical data on mock classes,
(ii) the reusability and lack of visibility of the mock classes, (iii) the widespread usage of
the mock classes, and (iv) the reasons for using mock classes and mocking frameworks.



1. Introduction 4

We reveal novel quantitative and qualitative empirical data about the creation of
mock classes, which can guide practitioners in charge of maintaining them. We shed
light on the over creation of private mock classes, which can be harmful to the overall
project maintainability. We present that the usage of mock classes is not restricted
to the target projects of this study, but it seems to be widespread, thus, they should
be maintained with care because client projects can be impacted. Lastly, we find that
the overall developers’ perception is that the usage of mock classes is preferable over
mocking frameworks, however, there are specific cases in which mocking frameworks
are perceived as a better choice.

1.3 Contributions and Publications

The contributions of this research are summarized as follows:

• We provide the first empirical study on mock classes, from both quantitative and
qualitative perspectives.

• We perform an empirical analysis of mock classes to better understand their
content, design, evolution, and usage.

• We perform a survey analysis with practitioners to understand their decision
process when deciding why and when they use mock classes and mocking frame-
works.

• We propose insights and practical implications to researchers and practitioners
working on and consuming mock classes.

The research reported in this dissertation has generated the following publication:

• Gustavo Pereira, Andre Hora. Assessing Mock Classes: An Empirical Study.
IEEE International Conference on Software Maintenance and Evolution (IC-
SME), pages 453-463, 2020 (https://doi.org/10.1109/ICSME46990.2020.
00050)

1.4 Dissertation Outline

The remaining of this dissertation is organized as follows:

• Chapter 2 presents the background for this research, describing mocks, test dou-
bles, mock classes, and related work.



1. Introduction 5

• Chapter 3 details the study design, presenting the adopted projects and how we
selected the mock classes.

• Chapter 4 describes the empirical results performed on mock classes.

• Chapter 5 presents the results of the conducted survey, to better understand the
reasons mock classes are adopted.

• Chapter 6 presents the results and conclusions of this work.



Chapter 2

Background and Related Work

In this chapter, we provide the background for the study in this dissertation. First, we
present an outline on software testing on Section 2.1. Then, we introduce test doubles
on Section 2.2. Next, we discuss mocking frameworks (Section 2.3) and mock classes
(Section 2.4). We also discuss the related work in Section 2.5. Finally, we conclude the
chapter in Section 2.6.

2.1 Software Testing

Software testing is the practice of ensuring that a software is behaving the way it was
intended to [Bertolino, 2007]. Myers et al. [2011] defines it as the process of executing
a program with the intention of finding errors. Within the context of software being
expected to be shipped constantly, agile development practices such as continuous
deployment arose, and so the necessity for software to work as expected grew [Freeman
and Pryce, 2009].

The literature considers a variety of test definitions, according to their goals and
techniques. One convenient definition for automated testing is the Test Pyramid [Cohn,
2009]. This model, as presented on Figure 2.1, represents automated tests in a lay-
ered fashion. Unit tests are at the base, meaning they should exist in a larger number.
End-to-End tests (E2E), known as well as User Interface (UI) tests, are at the top, rep-
resenting that they should exist in lower quantities. While introduced by Cohn [2009],
it was further improved and discussed by other authors [Vocke, 2018; Valente, 2020;
Winters et al., 2020; Khorikov, 2020]. Each layer represents a level of test automation,
and are defined as follows:

• Unit Tests are used to automatically verify small code units. Due to being created

6



2. Background and Related Work 7

Figure 2.1: The Test Pyramid.

to examine such small units, they should run quickly and be stable. Khorikov
[2020] defines them as automated tests that verify a small piece of code, do it
quickly, and in an isolated manner. Because of this, they are on the base of the
pyramid, being the most numerous tests.

• Integration Tests aim to check a functionality or transaction of a system in a
combined way. They verify whether the code works integrated with external
dependencies, being those other parts of the same system, other processes, or
even in other machines, via networks. Since they need to invoke or simulate such
dependencies, integration tests are more vulnerable to external change, and may
be slower to run. For this characteristic, they are above the unit tests’ layer on
the pyramid.

• E2E/UI simulate a system’s usage as closely as possible to the real, user-facing
way. As they are used to validate the whole system, E2E tests may be even
considered as a special case of integration tests, in a broader scope. As the UI is
more prone to be changed comparing to underlying code or APIs, they tend to
be more fragile. Being tests that validate possibly complex visual behavior and
need to wait for all the system’s levels to be ran in order to be tested, they are
also the slowest ones. Because of this, E2E tests are in the category with the
lowest number of tests.



2. Background and Related Work 8

The higher a level is located on the pyramid, the more brittle, slower and expen-
sive are the tests contained in it. The individual units referred in unit testing may be
classes, methods, or any compatible definition [Myers et al., 2011]. Such tests are often
seen as a way to keep software organized during the lifetime of a project, preventing re-
gressions and architectural degradation [Khorikov, 2020], and even as a precondition for
refactoring [Fowler, 2018]. This practice is widely supported in modern programming
languages, such as Java,1 C#,2 Python,3 and Go,4 to cite a few examples.

2.2 Test Doubles

Test double is the broadest term to describe any fake thing introduced in place of
a real thing for the purpose of writing an automated test.5 Test double replaces
a component on which the System Under Test (SUT) depends with a test-specific
equivalent [Meszaros, 2007]. Formally, a mock object is a particular type of test dou-
ble [Meszaros, 2007]. In addition to mock objects, other test doubles are dummies,
stubs, spies, and fake objects, each one with its nuances [Meszaros, 2007].

Despite the formal definitions, the state of the practice is to frequently use the
terms mock objects and test doubles interchangeably, for example:

• Robert Martin (author of Clean Code [Martin, 2009]): “The word “mock” is
sometimes used in an informal way to refer to the whole family of objects that
are used in tests.”6

• Martin Fowler (author of Refactoring [Fowler, 2018]): “The term Mock Objects
has become a popular one to describe special case objects that mimic real objects
for testing.”7

• Harry Percival (author of TDD with Python [Percival, 2014]): “I’m using the
generic term “mock”, but testing enthusiasts like to distinguish other types of a
general class of test tools called Test Doubles [...] The differences don’t really
matter for this book.”8

1https://junit.org/junit5/
2https://xunit.net/
3https://docs.pytest.org/en/6.2.x/
4https://golang.org/pkg/testing/
5https://github.com/testdouble/contributing-tests/wiki/Test-Double
6https://blog.cleancoder.com/uncle-bob/2014/05/14/TheLittleMocker.html
7https://martinfowler.com/articles/mocksArentStubs.html
8http://www.obeythetestinggoat.com/book/chapter_mocking.html



2. Background and Related Work 9

• Vladimir Khorikov (in Unit Testing: Principles, Practices and Pat-
terns [Khorikov, 2020]): “[The] main thing to remember is that mocks are a subset
of test doubles. People often use the terms test double and mock as synonyms,
but technically, they are not.”

• testdouble.js wiki about testing: “There are several sub-types of test doubles, but
most tools do a poor job either following a conventional nomenclature [...].” 9

The terminology around the kinds of test doubles is confusing and inconsistent,
hence different people use distinct terms to mean the same thing. As a result, this
leads to an endless discussion10 on such theme. Nevertheless, since literature on the
theme [Meszaros, 2007; Fowler, 2007] presents the aforementioned distinction on the
kinds of test doubles, it is fundamental to better describe it here:

• Dummy. Objects that are not properly used, rather just referenced. They are
commonly employed to fill in parameters for methods that may require them.
They may be as simple as null objects or instances of the Object class, for exam-
ple [Meszaros, 2007].

• Stub. Objects that provide pre-programmed answers for method calls. Usually
they are created for some specific tests, not being general-purpose testing ob-
jects [Meszaros, 2007].

• Spy. Considered a type of Stub, Spy objects are similar to those but with the
capability to monitor values in their interactions with the SUT, which may help
on debugging or some finer kind of assertion [Meszaros, 2007].

• Mock. The most known term of those, such objects are similar to Stubs in
the way that they are programmed to return some specific values, but they are
characterized by the emphasis on verifying indirect outputs, or behavior, of the
SUT [Meszaros, 2007].

• Fake. Objects that actually have working implementations but are far simpler
than the real dependency of the SUT. As they are specifically built for testing,
such objects are not production-ready [Meszaros, 2007].

Since the usage of the “mock” term for test double is already well established in
the literature, we will keep using it in this work.

9https://git.io/JRWeJ
10Example: https://bit.ly/3d1XumC



2. Background and Related Work 10

2.3 Mocking Frameworks

Framework is a designation for a partially complete software subsystem intended for
instantiation, defining an architecture for a family of subsystems by providing the basic
building blocks to create them, defining points on which adaptations can be attached
upon [Buschmann et al., 1996]. The definition from Johnson [1992] is that a framework
is a reusable design for solutions to problems in some particular problem domain. Since
reusability is a key point on software construction, frameworks perform a role on both
avoiding code repetition and embedding standard practices.

A mocking framework provides functionality for making the creation of test dou-
bles simpler on a unit testing context. It allows the specification of interactions be-
tween objects, specifying test entities and a variety of other facilities. For Java, Mock-
ito [Mockito, 2021] is a well-known open-source framework that promises to create
clean and readable tests with a simple API and clear verification errors. To facilitate
the creation of mock objects, Mockito provides the following basic APIs:

• mock()/@Mock is used to create mocks, and the when() and given() methods
for specifying how a mock should behave.

• spy()/@Spy for partial mocking, with real methods for the mocked classes being
invoked but still being able to be verified and stubbed.

• @InjectMocks to automatically inject mocks or spies to placess annotated with
@Spy or @Mock.

• verify() to check whether methods were called with some given arguments.

In the Java community, other popular mocking frameworks are jMock [jMock,
2007] and EasyMock [EasyMock, 2021]. jMock itself dates back to the emerging of the
practice, being introduced by Freeman et al. [2004]. As for EasyMock, its authors are
nominally cited in Mockito’s page “for their ideas on beautiful and refactoring-friendly
mocking API. First hacks on Mockito were done on top of the EasyMock code”.

In Python, the standard test library unittest contains a mock module [Python
Software Foundation, 2020]. It is described as allowing developers to “replace parts
of your system under test with mock objects and make assertions about how they have
been used ”. As it is present on the language’s core libraries, it makes easier for users
to be pointed to its usage, without the need for looking to third-party packages.

In the JavaScript ecosystem, alternatives such as Jest [Facebook, 2021] and
Sinon.JS [Sinon.js, 2021] can be adopted to create mock objects. Jest is a testing frame-
work that contains a mocking component, called Mock Functions, described as allowing



2. Background and Related Work 11

to “test the links between code by erasing the actual implementation of a function, cap-
turing calls to the function (...) and allowing test-time configuration of return values”.
They also allow mocking functions to be used in test code or support writing manual
mocks to override module dependencies. Sinon.JS is a tool for standalone test spies,
stubs, and mocks, claimed to work with any unit testing framework for JavaScript. Its
API provides methods for mocking objects and verifying behavior. Since JavaScript
programming is heavily skewed to the usage of functions, it is interesting to notice the
focus on mocking functions in the languages’ frameworks.

In C#, Moq [moq, 2021] claims to be the most popular mocking library for
.NET. Its concept is similar to those of other languages, with a motivation to be used
by developers not previously using mocking libraries and were manually writing their
own mocks. Noticing the high barrier of entry of other mocking libraries, the authors
decided to build a lightweight approach, while taking advantage of some advanced
features of the .NET platform, such as LINQ.11

Figure 2.2 presents examples of mock objects created by Mockito in Java projects
Elasticsearch and Spring Boot. First, Figure 2.2a shows the method setupMocks(),
inside the class TransportFinalizeJobExecutionActionTests.12 This is a method
that prepares mocks to be used on other tests. The client attribute is being instanti-
ated with a mock of the Client class, via Mockito’s mock() method. Then, Mockito’s
doAnswer() method is called to stub an answer for when a method is called, with
the when() method being used to prepare the particular value it needs to answer.
Other uses of stubbing are being done in the method via when(). Figure 2.2b dis-
plays another example on the same class, with method createAction() instantiating
a TransportFinalizeJobExecutionAction with mocked instances of some of its pa-
rameters. Figure 2.2c represents method accessManagerVetoRequest() in the class
DispatcherTests from project Spring Boot.13 As the name of the class indicates, it is
used for tests of the Dispatcher entity. The method in question is a test of a forbidden
HTTP response (403), which happens after a configuration for the system to provide
such a response. Objects of the HandlerMapper and Handler classes are being created
via Mockito’s mock() API for further usage.

11https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/linq/
12https://git.io/JRCQL
13https://git.io/JRC5l



2. Background and Related Work 12

(a) setupMocks - Elasticsearch

(b) createAction - Elasticsearch

(c) accessManagerVetoRequest - Spring Boot

Figure 2.2: Examples of mocking frameworks usage.

2.4 Mock Classes

As briefly described in the introduction, mock objects can be either (1) dynamically
created with the support of mocking frameworks or (2) manually hand-coded in mock
classes [Meszaros, 2007]. For example, suppose a developer wants to simulate a depen-
dency on HttpRequest when performing web testing. In this case, the developer could
either use a mocking framework to dynamically create a mock object that simulates



2. Background and Related Work 13

HttpRequest, or create a mock class by hand (e.g., MockHttpRequest) to simulate
HttpRequest. Interestingly, writing the mock classes forces developers to give those
mocks names, so they can be reused in other tests; moreover, mock classes should be
somehow designed to be consumed by clients [Martin, 2014].

To avoid the inconsistency around mock objects and test doubles previously
stated, we rely on a lightweight solution to detect mock classes. We consider mock
classes the ones that are explicitly declared as mocks, that is, the classes with the term
“mock” in their names. For example, the class MockServerHttpRequest14 provided
by the Spring framework is a mock implementation of the real ServerHttpRequest.
Thus, due to the lack of consistency in the terminology, we recognize that we may
detect other test doubles and not only mock objects. Consequently, in this study, the
usage of the term mock resembles the widespread usage in the larger field of software
development, that is, mocking being adopted as a generic term to represent any test
double.

Figure 2.3 presents examples of real mock classes in projects Apache Camel and
Apache Dubbo. First, Figure 2.3a shows the mock class MockMaskingFormatter.15

It defines the attribute received and implements the method format() of the in-
terface MaskingFormatter, which sets the attribute. This mock class supports the
creation of tests in two test classes (LogMaskTest and LogEipMaskTest). Next, Fig-
ure 2.3b presents the mock class MockedExchangeHandler,16 which implements two
methods that only throw an exception. Notice that this mock class is private, thus,
it is only used internally in the same test file it was defined and cannot be reused
by other tests. Lastly, the mock class CloudWatchClientMock17 in Figure 2.3c imple-
ments three methods of the interface CloudWatchClient. This mock class is then used
to support the creation of several tests in project Apache Camel, for example, in class
CwComponentRegistryClientTest.18

Interestingly, mock classes have their own characteristics. For instance, they may
have distinct goals, visibility, number of methods, and usage of inheritance or interfaces,
to name a few. The study of these differences may lead to a deeper understanding on
how a substantial part of automated tests are written.

14https://bit.ly/3bQF9ZH
15https://git.io/JlTff
16https://git.io/JlTfL
17https://git.io/JlTfq
18https://git.io/JlTJJ



2. Background and Related Work 14

2.5 Related Work

Spadini et al. [2017] state that mock objects are common when testing software depen-
dencies and their use is supported by a variety of frameworks in several programming
languages. The authors present that, despite this practice being common, there is a
lack of empirical knowledge on how and why practitioners use mocks. To this aim, the
study detects classes that are mocked with the Mockito framework in Java projects and
categorize them. Moreover, the authors interview developers to understand the rea-
sons for mocking dependencies and the main challenges they face. The study finds that
the dependencies that are most mocked are those that make testing difficult and that
classes that are in complete control of the developers are least mocked; the challenges
are related to technical issues such as coupling between the mock and the production
code. The authors then extended their study with investigations about mocks intro-
duction and evolution and expanded code quality metrics evaluation [Spadini et al.,
2019]. The new research confirms the findings of their previous study [Spadini et al.,
2017] in the sense developers tend to mock dependencies that make tests more difficult,
and show that mocks usually evolve together with the test classes, being added at the
beginning of their history and changing accordingly. In our study, we focus on mock
classes instead of mock objects that are mocked via mocking frameworks like Mockito.
Therefore, the results presented in this paper complement previous ones with respect
to mocking frameworks.

Meszaros [2007] provides an introduction and discussion about test doubles, pre-
senting a taxonomy based on their purpose and usage. This taxonomy is further
explored and discussed by Fowler [2006, 2007]. The creation of manual mock classes
versus the automatic creation via frameworks is also discussed by Robert Martin, stat-
ing that developers write their own mocks to improve reuse, project design, and per-
formance due to not using reflection [Martin, 2014]. Interestingly, we also find reuse
among the reasons to adopt mock classes in RQ6. In contrast, some authors observe a
disadvantage in using mocks in general. Elliot discusses how mocks can be code smells
by relating them to tight coupling, a symptom of code smells itself, particularly in the
context of functional programming [Elliott, 2017]. The author states that the drive
for mocking in unit tests is to achieve complete test coverage but there is a flawed
decomposition strategy, which causes the need for mocks. Winters et al. [2020] state
that real implementations should be preferred while testing, and specifically over some
kinds of test doubles citing that their overuse make tests unclear and brittle.

There is a vast technical literature about test doubles [Meszaros, 2007; Feathers,
2004; Freeman and Pryce, 2009; Osherove, 2009; Percival, 2014]. Earlier uses of the



2. Background and Related Work 15

term “mocking” can be traced back to the XP community. For example, Mackinnon
et al. [2000] present that mock help writing tests in isolation for non-trivial code.
Freeman et al. [2004] improve this notion by taking the focus from isolating tests
to guiding the discovery of a coherent system of types within a code base, and also
introducing the mocking library jMock.19 The notion of having to test dependencies
that are not yet available is also explored by Thomas and Hunt [2002].

Bhagya et al. [2019] generate HTTP services mocks that can provide service
responses suitable for testing. Sivashanmugam and Palanisamy [2009] present an ap-
proach on testing SQL server integration with mock objects. Mostafa and Wang [2014]
study mocking frameworks in software testing, showing a wide usage in this discipline
and calling for more studies on the topic. Arcuri et al. [2017] assess the role of mock
objects in automatic unit test generation, stating that its use in the EvoSuite20 tool
helps increasing branch coverage and fault detection.

The literature emphasizes that testing code (as any other code) should be main-
tained as software evolve [Martin, 2009]. This way, issues related to code maintenance
as code smells [Fowler, 2018] are valid in tests as well, as test smells [Tufano et al.,
2016; Palomba and Zaidman, 2017; Spadini et al., 2018b; Bavota et al., 2015]. There-
fore, if one considers that mock classes are part of the tests themselves, maintaining
test suite implies maintaining the mock classes as well. In this context, there is a vast
literature on testing maintenance. For example, van Bladel and Demeyer [2020] study
the issue of duplicated test code by comparing the results of four different clone detec-
tion tools, observing between 23% and 29% test code duplication found by the them,
but noticing that most tools suffer from false negatives. Zaidman et al. [2011] exam-
ine the co-evolution of production and test code, noticing periods of intense testing in
development history and the fraction of test code increasing alongside test coverage.

Although few research studies assess mock objects, they focus on the perspective
of mocking frameworks. Our study assesses the mock classes created by hand to sup-
port testing, thus we complement the existing literature on mock objects. Moreover,
we provide several insights on the reasons developers rely on mock classes instead of
mocking frameworks.

2.6 Final Remarks

In this chapter, we presented base concepts that are used in this dissertation. We
started by presenting an overview of software testing, then proceeded by introducing

19http://jmock.org
20www.evosuite.org



2. Background and Related Work 16

test doubles. We showed the concept of mocking frameworks, and then displayed the
main theme of mock classes: test doubles that are manually implemented as classes in
object-oriented projects. We also explored the related literature on the theme. In the
next chapters, we will examine aspects of maintainability, evolution and usage of mock
classes with our empirical and survey studies.



2. Background and Related Work 17

(a) MockMaskingFormatter - Apache Camel

(b) MockedExchangeHandler - Apache Dubbo

(c) CloudWatchClientMock - Apache Camel

Figure 2.3: Examples of mock classes.



Chapter 3

Study Design

In this chapter, we present the study design for the dissertation. Section 3.1 presents
how the analyzed projects were found and chosen. Section 3.2 presents how the mock
classes were detected in the source code of the projects. In Section 3.3 we present the
applied methodology. Section 3.4 describes the research questions. Finally, Section 3.5
contains an ending discussion to the chapter.

3.1 Selecting the Software Projects

In this study, we aim to assess mock classes provided by real world and relevant soft-
ware projects. We then select the 10 most popular Java systems hosted on GitHub
based on the star metric [Borges et al., 2016; Silva and Valente, 2018], which is a
proxy for popularity. In addition, two other important projects were included: Apache
Lucene-Solr and Apache Camel. The 12 selected projects are presented in Table 3.1.
The most popular project of the sample is Elasticsearch (48.3k stars), while the least
popular one in it is Camel (3.2k stars). The selected projects cover distinct software
domains: web framework (Spring Boot and Spring Framework), search engine (Elastic-
search and Lucene-Solr), asynchronous/event library (RxJava and EventBus), HTTP
client (OkHttp and Retrofit), Java support library (Guava), RPC framework (Dubbo),
integration framework (Camel), and analytics engine (Spark).

Our dataset is publicly available online at: https://git.io/Jle3l.

18



3. Study Design 19

Table 3.1: Selected projects and detected mock classes.

Project Stars Classes Classes Mocked Mock
Using Mockito Classes

Elasticsearch 48.3k 16,097 524 138
Spring Boot 47.1k 7,845 367 33
RxJava 42.4k 2,766 21 0
Guava 36.8k 6,174 19 12
OkHttp 36.8k 210 0 1
Spring Fw. 36.5k 10,980 272 127
Retrofit 35.5k 303 0 4
Dubbo 32k 2,104 60 58
Spark 25.8k 1,850 23 0
EventBus 22.4k 163 0 0
Lucene-Solr 3.4k 11,583 35 132
Camel 3.2k 18,757 198 99

Total - 78,832 1,519 604

3.2 Detecting Mock Classes

The next step is to detect mock classes. First, for each project, we extract all classes in
the Java files, including nested ones. This result is presented in the column “Classes” in
Table 3.1. The largest project in number of classes is Camel (18,757 classes), while the
smallest is EventBus (163 classes); in total, those projects include over 78.8k classes.
We then perform two analyses to assess (1) mocks created with the support of frame-
works and (2) mock classes.

1. Mocks created with the support of mocking frameworks. Before presenting the mock
classes, for comparison purposes, we first present the mocks created with the support of
mocking frameworks. We verify the number of classes that are mocked using the most
popular mocking framework in Java, Mockito (column “Classes Mocked Using Mockito”
in Table 3.1).1 To this aim, we verify the classes being mocked with the Mockito API
Mockito.mock(), as done by the related literature [Spadini et al., 2017, 2019]. For
instance, Elasticsearch mocks 524 classes via Mockito, while Spring Boot mocks 367;
in total, we find 1,519 classes being mocked with this framework. Only three systems
(OkHttp, Retrofit, and EventBus) do not create any mock with Mockito. This shows
that the usage of mocking is widespread to support testing.

2. Mock classes. Lastly, in the column “Mock Classes” in Table 3.1, we present the
1We only verified Mockito because it is the de facto mocking framework in Java. For comparison,

Mockito has over 10,000 stars on GitHub, while EasyMock has 650 stars and JMock has only 119.



3. Study Design 20

target classes of this study, that is, the mock classes. We consider that a class is a
mock when:

• It is explicitly declared as a mock class, that is, its name includes the term “mock”,
but not “mockito" and

• It does not use the most popular mocking framework in Java (i.e., it does not
import any Mockito class) and

• It is not a test class, that is, its name does not end with the suffix “Test” nor
“Tests” (which is the guideline to create testing classes in Java [Spadini et al.,
2017, 2019]).

As discussed in Section 2.2, the most common term used for referring to test
doubles is “mock”. Thus, despite the possibility of other kinds of test doubles being
created, we only examine classes that contain this term. Therefore, we believe to
cover most usage without much loss of detail. Following this approach, we detect 604
mock classes. Six projects have over 30 mock classes: Elasticsearch (138), Camel (99),
Spring Framework (127), Lucene-Solr (132), Dubbo (58), and Spring Boot (33). Three
projects have 1, 4, and 12 mock classes, while three projects have none.

Table 3.2 presents some examples of mock classes. As we can observe, the
class names are very distinct and the dependencies they are simulating are diverse.
For example, based on their names, they are likely to be related to web services
(e.g., MockWebSession and MockMvc), network services (e.g., MockSocketChannel and
MockMockTelnetHandler), external dependencies (e.g., MockGitHub and AmazonECS-

ClientMock), to name a few.

Table 3.2: Examples of mock classes.

Project Examples

Elasticsearch MockSocketChannel, MockBlobStore, MockMessage
Spring Boot MockCachingProvider, MockFilter, MockServlet
Guava MockCallback, MockRunnable, MockExecutor
Spring Fw. MockConnection, MockWebSession, MockMvc
Retrofit MockGitHub, MockRetrofit, MockRetrofitIOException
Dubbo MockTelnetHandler, MockDirectory, MockThreadPool
Lucene-Solr MockTrigger, MockScorable, MockTimerSupplier
Camel AmazonECSClientMock, MockRest, MockEndpoint



3. Study Design 21

Table 3.3 presents the most frequent terms present on the names of the 604 mock
classes (after removing the term “Mock” from them), in order to display which kinds
of concerns such mock classes address.

Table 3.3: Mock-related terms.

Pos Term # Pos Term #

1 Client 55 6 Http 31
2 Filter 36 7 Script 27
3 Amazon 33 8 Mvc 27
4 Factory 33 9 Server 25
5 Request 33 10 Service 25

We notice the presence of some broader, generic terms such as Client, Filter, and
Service, that can refer to a variety of projects and contexts. These show that mock
classes are used in multiple roles. We also see some specific ones as Amazon, Http, and
Mvc, that are more specific relating to companies, protocols and architectural styles,
for example. The top present terms are Client (55 occurrences), Filter (36), Amazon
(33), Factory (33), and Request (33), that combine broader and more specific concerns.

3.3 Survey Study

To understand the motivations behind the usage of mock classes and mocking frame-
works, we conduct a survey with developers of open-source projects. Specifically, we
aim to assess why and when developers rely on mock classes instead of mocking frame-
works. To find candidates to answer to our survey, we mine developers who modified
Java files with mock classes and collect their email addresses publicly available on
GitHub. We propose a survey with three questions for the developers, as follows:



3. Study Design 22

Dear {author name},
I am a researcher working on software testing and mock objects. In my research, I
am studying the mock classes of project {project name}.
I found that you changed the following mock class on file {file name}:

• Class name: {class name}

• Commit date: {commit date}

• Commit link: {commit link}

Could you please answer the following questions:

1. What is the goal of this mock class?

2. Why has a mocking framework (e.g., Mockito) not been used instead?

3. Based on your experience, when should developers create mock classes and when
should they rely on mocking frameworks?

Please, provide any other comments or insights regarding the usage of mock classes
vs. mocking frameworks.

Question 1 asks for insights about the goal of the mock class. The aim of Question
2 is to put some light on the problem of deciding why to use a mock class in the place
of a mocking framework. Lastly, Question 3 seeks to understand the developers’ point
of view, based on their prior experience.

Initially, we select candidate developers from the studied 12 projects. Given the
low amount of candidate developers, we decide to include other popular open-source
software projects, based on the GitHub star metric [Borges et al., 2016; Silva and
Valente, 2018]. For this purpose, we select software projects until we collect 1,000
unique emails. This way, we add 63 novel projects to our dataset in addition to the
original 12 ones. After removing invalid emails and others that refer to the same
developer, 658 valid addresses remain. Finally, we are able to successively send 581
emails with our survey and receive 39 responses (7% of response rate).

Finally, as a solution to analyze the developers’ responses quantitatively, we rely
on thematic analysis [Cruzes and Dyba, 2011]. In this analysis, we aim to identify and
record themes in textual documents, using the following steps: (1) initial reading of
the responses, (2) generating a first code for each response, (3) searching for themes
among the proposed codes, (4) reviewing the themes to find opportunities for merging,



3. Study Design 23

and (5) defining and naming the final themes. The first three steps are performed by
the author, while steps 4 and 5 are done by the author and the advisor until consensus
is achieved.

3.4 Research Questions

3.4.1 RQ1 (Content)

Our first research question is intended to assess the content of the mock classes, that
is, what type of dependency they are simulating. We rely on the categories proposed
by a previous related study in the context of mocking frameworks [Spadini et al., 2017,
2019]. This has two advantages: (1) we keep consistency with previous research studies
and (2) we can directly compare our results with previous ones. Thus, we adopt the
categories proposed by Spadini et al. [2017, 2019]: domain object, database, native Java
libraries, web service, external dependency, and test support. Besides, after inspecting
our dataset, a new category is considered: network service. Those categories are defined
as follow:

• Domain object: classes that are mock to business rules of the system.

• Database: classes that are mock to SQL/NoSQL database libraries.

• Native Java libraries: classes that are mock to the Java native libraries.

• Web service: classes that are mock to some web action.

• External dependency: classes that are mock to external libraries.

• Test support: classes that support testing itself.

• Network service: classes that support network services.

To categorize the mock classes, we perform a qualitative analysis based on (1)
class names, (2) documentation analysis, and (3) source code inspection. Some mock
classes can be resolved based on the analysis of their names. For example, MockWeb-
Server, MockMvc, and MockRest are examples of the category web service, while Mock-
SocketChannel, MockTcpChannelFactory, MockTcpReadWriteHandler are examples
of network service. Other classes, such as MockTokenizer, MockTargetSource, and
MockAnalyzer are not straightforward and require either documentation analysis or
code inspection to detect their categories.



3. Study Design 24

3.4.2 RQ2 (Design)

In this second research question, we aim to study how mock classes are designed. We
then assess some important structural aspects, as follows:

• Inheritance and Interface: mock classes can be created by extending classes or
implementing interfaces. We assess whether the mock classes are more likely to
implement interfaces, extend classes, or none of them. Our final goal is to better
understand whether mock classes are part of hierarchies or are standalone classes.

• Visibility : mock classes can have a public scope to be used all over the project (or
by external clients) or they can have private scope to be only locally used. Thus,
we explore the visibility of the mock classes to verify whether they are likely to
be reusable or not.

• Number of methods : we analyze the number of methods provided by the mock
classes. We also compare with the number of methods provided by regular classes,
which are randomly selected following the same distribution of mock classes per
system. We aim to understand whether mock classes are likely to be larger (which
may demand more effort to create and maintain) or smaller (which may demand
less effort).

3.4.3 RQ3 (Evolution)

In the third research question, we focus on understanding how mock classes change
over time. As mock classes emulate dependencies, they are likely to change whenever
the dependencies change [Spadini et al., 2017]. This happens because the mock class
should remain compatible with the original behavior. However, so far, it is not clear
to what extent mock classes are modified over time.

To better comprehend these factors, we assess the number of changes (i.e., com-
mits) on the mock classes. In addition to the number of changes, we also assess the
number of distinct developers who perform them in the mock classes. We compare
both the number of changes and developers that happen in mock classes with the same
measures extracted from regular classes (i.e., not mock classes).

We assess the statistical difference between mock and regular classes with the
Mann-Whitney U Test [Mann and Whitney, 1947] (α = 0.05). To assess the size of
the difference, we compute the effect-size with the Cliff’s Delta [Macbeth et al., 2011].
To assess code history and navigate on the commits, we rely on the PyDriller software
repository mining tool [Spadini et al., 2018a].



3. Study Design 25

3.4.4 RQ4 (Usage)

For the fourth research question, we focus on the client-side. We rely on the ultra-
large-scale dataset Boa [Dyer et al., 2013], which includes over 2 million Java systems,
to detect whether mock classes are used in the wild. In this case, our main goal is
to examine external reuse of the mock classes. Specifically, we perform a query on all
Java systems looking for import statements with the term “mock”. We then filter out
classes with the terms “Mockito”, “Mockery”, and “EasyMock” (i.e., classes related to
mocking frameworks), and also the ones that end with “Test” or “Tests” (i.e., testing
classes in Java). This way, we find 6,444 distinct classes that are imported 147,433
times. Table 3.4 summarizes the most frequent terms in these mock classes. As we can
see, the most frequent terms are Service, Factory, and Context. Lastly, to answer our
research question, we assess the frequency of our 604 mock classes in this dataset, as
well as the most recurrent categories.

Table 3.4: Mock-related terms in Boa.

Pos Term # Pos Term #

1 Service 411 6 Provider 161
2 Factory 299 7 Impl 148
3 Context 224 8 Request 145
4 Manager 202 9 Modules 138
5 Data 167 10 Test 136

3.4.5 RQ5 (Motivation) and RQ6 (Choice)

To answer RQ5 and RQ6, we rely on our survey with developers. In RQ5, we assess
why developers rely on mock classes instead of mocking frameworks. For this purpose,
we conduct a survey with developers who maintained mock classes. Specifically, after
detecting that a developer modified a mock class, we ask Why has a mocking framework
( e.g., Mockito) not been used instead? We aim to reveal possible usage cases and
advantages of using mock classes, as perceived by the maintainer developer.

Lastly, in RQ6, we aim to assess when developers should create mock classes and
mocking frameworks. To answer this research question, we assess the third question of
the survey: Based on your experience, when should developers create mock classes and
when should they rely on mocking frameworks? We aim to reveal whether developers
perceive the cases that mock classes should be adopted and when mocking frameworks
is a better solution.



3. Study Design 26

3.5 Final Remarks

In this chapter, we presented the study design for this dissertation. We explained
our strategy for selecting the software projects to be examined and our heuristic for
detecting mock classes based on their names and usage of mocking frameworks. We
also detailed our survey, providing its motivation and format. Finally, we presented
the research questions we aim to answer with this work.

In the next two chapters, we present our empirical and survey results. Chapter 4
answers RQ1 to RQ4, while Chapter 5 details RQ5 and RQ6.



Chapter 4

Empirical Results

In this chapter, we present the empirical results obtained from the repository mining
process. Section 4.1 presents what is the content of mock classes, by sorting them into
categories (RQ1). Section 4.2 assesses the structure of the mock classes in terms of
hierarchy and methods (RQ2). In Section 4.3, we present a study on class evolution
(RQ3), and, in Section 4.4, the usage of the mock classes is examined via analysis of
the Boa dataset (RQ4). Next, we present discussions and implications in Section 4.5,
and, in Section 4.6, the threats to validity. Finally, Section 4.7 concludes the chapter.

4.1 RQ1 (Content): What is the content of mock

classes?

Table 4.1 presents the categories of the mock classes detected after our manual classifi-
cation. As we can see, the most common category is domain object (35%), followed by
external dependency (23%) and web service (15%). Domain object (i.e., classes that
are mock to business rules) is present in 211 classes; examples mock classes in this cat-
egory include: MockAction (Elasticsearch) and MockCoreDescriptor (Lucene-Solr).
The second most frequent is external dependency (138 mock classes), which repre-
sents mock to external libraries; AmazonEC2Mock (Camel) and MockGitHub (Retrofit)
are examples in this category. The third most frequent is web service (93 mock
classes), that is, classes that are mock to web actions. Examples of web service in-
clude: MockClientHttpResponse (Spring Framework) and MockHttpResource (Elas-
ticsearch). Other categories are Test support (11%, 67 mock classes), Native Java
libraries (9%, 53 mock classes), and Network service (7%, 42 mock classes); notice that
we do not find any mock class to the database category.

27



4. Empirical Results 28

Table 4.1: Mock class categories.

Category # %

Domain object 211 35
External dependency 138 23
Web service 93 15
Test support 67 11
Native Java libraries 53 9
Network service 42 7
Database 0 0

Total 604 100

Previous studies report that domain objects, external dependencies, and web ser-
vices are also among the most mocked categories when using mocking frameworks [Spa-
dini et al., 2017, 2019] (e.g., domain object is the most frequent in both our research
and the mentioned studies). Another similarity with our results is regarding the least
frequent categories: test support and native Java libraries are rarer in both analyses.
Thus, our results complement the research literature by showing that, overall, devel-
opers tend to mock more and less frequently the same dependencies no matter they
are mocking with the support of mocking frameworks or mock classes.

However, there are also some differences with regard to the results found in the
mocking frameworks: we are not able to find mock classes in the database category,
while in mocking frameworks this category is recurrent [Spadini et al., 2017, 2019]. We
acknowledge that those differences regarding the database category may be because
distinct projects on different domains are analyzed. Moreover, we are more strict in
our definition of database category (i.e., classes that are mock to SQL/NoSQL database
library) to avoid subjectivity. Lastly, another difference is the network service category,
which is present in our study and not in the ones about mocking frameworks [Spadini
et al., 2017, 2019].

To complement this analysis, Table 4.2 presents the top-3 most frequent terms
on each category. As we can notice, categories as web service and network service
are dominated by terms that closely relate to their purposes. For instance, in the
case of web service, the term http refers to the web protocol, request is a part of how
the http protocol makes communication (request/response), and mvc is related to the
architectural pattern Model-View-Controller. Similarly, the network service category
includes terms as channel, transport, and connection, which are typical in the network
domain. The categories domain object, native Java libraries, external dependency
present somehow more generic related terms. This may be related to the fact that



4. Empirical Results 29

these categories are broader. Domain object is specific to each project, and those may
be as varied as there are classes within the project. The same happens to native Java
libraries and external dependencies, which are likely to be project-specific.

Summary RQ1: Mock classes are often created to emulate domain objects, exter-
nal dependencies, and web services. Those categories are essentially the same types
created by developers when using mocking frameworks [Spadini et al., 2017, 2019].

Table 4.2: Top-3 most frequent terms per mock class category.

Category Frequent Terms

Domain object Script, Filter, Factory
External dependency Client, Amazon, Service
Web service Http, Request, Mvc
Test support Factory, Test, Mvc
Native Java libraries Context, Config, Runnable
Network service Channel, Transport, Connection

4.2 RQ2 (Design): How are mock classes

designed?

We start by analyzing structural details of the mock classes, such as class extension
and interface implementation. We then analyze the visibility of the mock classes and
the number of methods in mock classes as compared to regular classes.

Class extension and interface implementation. Table 4.3 details the number of mock
classes that are derived from class extension and interface implementation. Our first
observation is that class extension is more frequent than interface implementation:
54.9% (332 out of 604) of the mock classes extend other classes, whereas 46.7% (282
out of 604) implement interfaces; only 7.5% (45 out of 604) do not extend classes nor
implement interfaces. Notice, however, that this rate may vary per system: in Lucene-
Solr, for instance, 82.6% of the mock classes are about extensions, while only 21.2%
are interface implementation. On the other hand, in Dubbo, interface implementation
is more common (82.8%) than class extension (17.2%).

Visibility. Table 4.4 summarizes the visibility of the studied mock classes. We can
observe that the majority of the mock classes (68.4%, 413 out of 604) are public,
thus, they are visible to all classes and can be reused. The protected visibility is the
least frequent, presented in only 7 classes (1.2%). Next, 13.1% (79 out of 604) of



4. Empirical Results 30

Table 4.3: Class extension and interface implementation in the mock classes.

Project Mock Class % Interface % None %Classes Extension Implementation

Elasticsearch 138 88 63.8 56 40.6 13 9.4
Spring Boot 33 8 25.0 18 54.5 8 24.2
Guava 12 4 33.3 8 66.7 0 0
OkHttp 1 0 0.0 1 100.0 0 0
Spring Fw. 127 50 39.4 74 58.3 14 11.0
Retrofit 4 1 25.0 1 25.0 2 50.0
Dubbo 58 10 17.2 48 82.8 1 1.7
Lucene-Solr 132 109 82.6 28 21.2 2 1.5
Apache Camel 99 62 62.6 48 48.5 5 5.1

Total 604 332 54.9 282 46.7 45 7.5

Table 4.4: Visibility in the mock classes.

Project Mock Public % Protected % Package % Private %Classes

Elasticsearch 138 84 60.1 5 3.7 17 12.3 32 23.2
Spring Boot 33 15 45.5 0 0 15 45.5 3 9.1
Guava 12 2 16.7 0 0 2 16.7 8 66.7
OkHttp 1 1 100.0 0 0 0 0 0 0
Spring Fw. 127 92 72.4 0 0 9 7.1 26 20.5
Retrofit 4 2 50.0 0 0 2 50.0 0 0
Dubbo 58 54 93.1 0 0 2 3.4 2 3.4
Lucene-Solr 132 77 58.3 2 1.5 24 18.2 29 21.9
Apache Camel 99 86 86.9 0 0 8 8.1 5 5.1

Total 604 413 68.4 7 1.2 79 13.1 105 17.4

the mock classes have the package visibility, that is, they are visible only within their
own packages. Finally, 17.4% (105) of the mock classes are private, therefore, they
are only accessed in their own classes. Interestingly, although reuse can be considered
an important advantage for creating mock classes [Martin, 2014], the most restrictive
controlling accesses (package and private) correspond to about 30% of the mock classes.

Number of methods. Table 4.5 presents some statistics about the number of methods
in mock classes; for comparison, we also present the number of methods in randomly
selected regular classes.1 Although we find some variation among the investigated

1We randomly selected 604 classes from the target projects following the same distribution of the



4. Empirical Results 31

Table 4.5: Number of methods in the mock and regular classes.

Project Mock Classes Regular Classes p-value �=mean med σ mean med σ

Elasticsearch 4.6 2 5.1 5.5 4 6.3 0.07 -
Spring Boot 2.8 2 2.6 3.2 2 3.9 0.39 -
Guava 8 5.5 7.4 2.8 2 2.4 0.05 -
Spring Fw. 12.4 6 20.0 5.1 2 8.3 <0.05 medium
Dubbo 6.1 2.5 8.1 7.4 4.5 9.5 0.23 -
Lucene-Solr 3.7 2 5.6 5.3 3 5.4 <0.05 small
Apache Camel 10.9 4 21.0 4.9 3 6.8 0.06 -

All 7.2 3 13.8 5.3 3 6.9 0.07 -

projects, overall, both mock and regular classes have 3 methods on the median. Fig-
ure 4.1 contrasts the distribution of the number of methods in both groups. We can
see in the figure that some mock classes are outliers, displaying a huge number of
methods. Such a class is AmazonIAMClientMock,2 from project Apache Camel, with
149 methods. About 90% of them only throw an exception informing that the opera-
tion is unsupported, which is trivial. By applying the Mann–Whitney test, we confirm
both distributions of the number of methods is equivalent for all mock and regular
classes (the difference is not statistically significant, with a p-value=0.07 compared to
an α of 0.05). Project-wise, only two projects (Spring Framework and Lucene-Solr)
had p-values ≤ 0.05. For these, effect size was computed via Cliff’s Delta, with the
interpretation of medium and small respectively.
Summary RQ2: Mock classes often extend other classes or implement interfaces.
Around 70% of the mock classes are public and can be reused, while 30% have re-
strictive visibility (i.e., private or package). Overall, mock and regular classes have
the same number of methods, suggesting that mock classes are no simpler than regular
classes in terms of structure and maintainability.

mock classes.
2https://git.io/JuCMl



4. Empirical Results 32

3 3
0

50

100

150

Mock Classes Regular Classes

Classes

N
u

m
b

e
r 

o
f 
m

e
th

o
d

s

Methods in Mock and Regular Classes

Figure 4.1: Distribution of the number of methods in mock and regular classes.

4.3 RQ3 (Evolution): How do mock classes evolve

over time?

Table 4.6 summarizes the evolution of the mock classes in terms of the number of
changes over time. For comparison purposes, we select a sample with the same number
of regular classes. Overall, both mock and regular classes have 2 changes, on the
median. By applying the Mann-Whitney U-test, we can see that both distributions
are statistically equivalent (p-value = 0.43). When analyzing the changes per project,
the distributions are mostly equivalent, with p-value ≥ 0.05 and negligible/small effect-
size, meaning that the mock and regular classes have similar number of changes.

The sole exception is the Guava project: the mock classes have 1 change on
the median, while the regular classes have 3.5 changes. In this case, the difference
is statistically significant, with a large effect-size. This shows that the mock classes
are stable in Guava and less likely to change than regular classes. We have inspected
the mock classes provided by Guava and detected that they all happen inside test
directories. This may suggest that those mock classes are intended to be used only
within the project itself, and not by external clients. Notice, however, that the number
of analyzed mock classes in Guava is smaller (only 12), as compared to the other
systems.

In contrast, in the Spring Framework, the mock classes are likely to change,



4. Empirical Results 33

with 6 changes on the median. This is not very different from regular classes, which
have 4 changes. However, it is worth to notice that the Spring Framework provides
several mock classes as APIs.3 In this case, the mock classes are intended to be used
by external developers to facilitate web testing. Thus, one explanation is that mock
classes in Spring Framework need to evolve as any other regular class to accommodate
new features, fix-bugs, etc.

Table 4.6: Evolution of the classes - Changes.

Project
Mock classes Regular classes

# mean med σ mean med σ p-value �=
Elasticsearch 132 5.67 2.00 9.90 4.48 2.00 7.02 0.03 neg.
Spring Boot 31 2.00 2.00 1.26 2.81 1.00 3.23 0.28 -
Guava 12 1.75 1.00 1.29 6.42 3.50 6.91 0.01 lrg.
Spring Fw. 129 8.50 6.00 9.82 6.05 4.00 6.97 0.00 sml.
Dubbo 52 2.67 1.00 3.58 2.31 1.00 2.75 0.35 -
Lucene-Solr 132 4.89 2.50 9.62 6.28 3.00 8.15 0.04 neg.
Camel 98 2.15 2.00 1.75 4.56 2.00 7.98 0.03 sml.

All 586 4.99 2.00 8.42 5.00 2.00 7.13 0.43 -

Finally, to complement the prior analysis, overall, Table 4.7 shows that there is
no significant difference between the number of unique developers that changed the
mock classes and the same-sized sample of regular classes. Again, the sole difference
happens in Guava.

Summary RQ3: Overall, mock classes and regular classes have equivalent number
of changes and distinct developers. However, there may exist exceptions. For ex-
ample, mock classes in Guava are more stable than regular classes, while in Spring
Framework, which provide mock APIs, mock classes are likely to change, possibly to
accommodate new features and bug-fixes.

4.4 RQ4 (Usage): How are mock classes used by

developers?

In this research question, we focus on the client-side of the mock classes. For this
purpose, we analyze the Boa dataset [Dyer et al., 2013] to assess mock classes. After

3https://docs.spring.io/spring-framework/docs/current/spring-framework-reference/
testing.html#mock-objects



4. Empirical Results 34

Table 4.7: Evolution of the classes - Developers.

Project
Mock classes Regular classes

# mean med σ mean med σ p-value �=
Elasticsearch 132 2.96 2.00 3.18 2.44 1.00 2.11 0.11 -
Spring Boot 31 1.58 1.00 0.81 1.81 1.00 1.35 0.36 -
Guava 12 1.08 1.00 0.29 3.75 2.50 2.77 0.00 lrg.
Spring Fw. 129 4.80 4.00 3.24 3.64 3.00 2.56 0.00 sml.
Dubbo 52 1.69 1.00 1.65 1.71 1.00 1.47 0.33 -
Lucene-Solr 132 2.66 2.00 1.98 3.61 2.00 3.44 0.04 neg.
Apache Camel 98 1.72 1.50 0.96 2.81 2.00 3.03 0.01 sml.

All 586 2.87 2.00 2.68 2.96 2.00 2.74 0.38 -

filtering out possible false positives, we detect 6,444 mock classes that are used 147,433
times (see Section 3.2). This suggests that the adoption of mock classes is a common
practice.

We now assess the 604 mock classes analyzed in this study to better understand
how they are used in this large dataset by external clients. As presented in Table 4.8,
we find that 128 out of the 604 mock classes are used 52,079 times. Web service is the
most consumed category, being used by 24,022 clients (46%). Next, the second and
third most consumed categories are domain object and external dependency, adopted
by 11,879 (23%) and 7,624 (15%) clients, respectively. The least consumed categories
are native Java library, test support, and network service.

Table 4.8: Most frequent mock categories in the Boa dataset.

Category #Classes #Clients %

Web service 35 24,022 46
Domain object 39 11,879 23
External dependency 14 7,624 15
Native Java libraries 18 5,339 10
Test support 7 1,899 4
Network service 15 1,316 2

Total 128 52,079 100

Figure 4.2 details the distribution of the usage per category. For example, on the
median, the web service mock classes are used by 66 clients, while the domain object
ones are used by 26 clients. The highest usage happens in native Java libraries (75
clients) and the lowest one happens in the category test support (10 clients). Interest-



4. Empirical Results 35

ingly, although only 18 mock classes to native Java libraries are used in this dataset,
they are highly consumed.

66

26

54.5
75

10
17

10

1000

Web
service

Domain
object

External
dependency

Native Java
libraries

Test
support

Network
service

Categories

N
u

m
b

e
r 

o
f 

c
lie

n
ts

 (
lo

g
 s

c
a

le
)

Usage by Mock Category

Figure 4.2: Usage of mock classes according to their categories.

Table 4.9 presents the top-10 most consumed mock classes. Classes MockHttp-

ServletRequest and MockHttpServletResponse are the most used ones; they are
both provided by Spring to facilitate web testing. The third one is MockEndpoint,
which is provided by Apache Camel for testing routes and mediation rules using mocks.
Half of the top-10 most consumed classes are about web services. Together, the top-
10 mock classes are used by 39,693 out of 52,079 clients (76%), while the top-50 are
responsible for almost all client usage (97%).

Summary RQ4: Mock classes are largely consumed by client projects to support
testing; web services are the most emulated dependencies. The usage is very concen-
trated on a few classes: 10 classes are used by 76% of the clients, while 50 classes are
consumed by 97%.

4.5 Discussion and Implications

4.5.1 Novel empirical data on mock classes

Mock objects are often used to support software testing [Feathers, 2004; Meszaros, 2007;
Freeman and Pryce, 2009; Osherove, 2009; Percival, 2014], however, there is a surprising



4. Empirical Results 36

Table 4.9: Most frequent mock classes in the Boa dataset.

Mock Class Mock Category #

MockHttpServletRequest Web service 8,846
MockHttpServletResponse Web service 6,104
MockEndpoint External dependency 5,821
MockAnalyzer Domain object 5,628
MockTokenizer Domain object 4,288
MockServletContext Native Java libraries 2,675
MockMvc Web service 1,822
MockContext Test support 1,699
MockResponse Web service 1,575
MockWebServer Web service 1,235

Top-10 - 39,693
Top-50 - 50,709

lack of research studies on that topic. Although mock classes are typically provided
by large and popular projects (as the ones assessed in this research, e.g., Elasticsearch,
Spring Framework, and Lucene-Solr), actual mock studies are limited to the context
of mocking frameworks [Mostafa and Wang, 2014; Arcuri et al., 2017; Spadini et al.,
2017, 2019]. Therefore, we contribute to the software testing literature with a novel
study about mock classes and their usage in order to complement existing research in
the context of mocking frameworks.

Moreover, our study reveals new data about mock classes. In RQ1, we find that
mock classes are concentrated on the categories domain object, external dependency,
and web service (which is similar to the mocks created by frameworks). We also
present several structural information about the mock classes (RQ2). For example, they
mostly rely on inheritance and interface implementation (that is, mock classes are rarely
standalone) and they are typically public and can be reused but private mock classes
are not rare. Furthermore, mock classes and regular classes have equivalent number of
changes, meaning that both classes demand similar effort to maintain (RQ3). Thus,
we reveal novel quantitative and qualitative empirical data about the creation of mock
classes, which can guide practitioners in charge of maintaining them. We show that
mock classes are over-concentrated on certain tasks, are often part of a hierarchy, and
are mostly public. Also, mock classes are not different from regular classes regarding
number of methods and number of changes.



4. Empirical Results 37

4.5.2 Reuse and lack of visibility of the mock classes

One of the benefits of creating mock classes by hand is their reuse power [Martin,
2014]. For example, a single mock class provided by system X can be used to support
the creation of test cases in X itself and in the clients of X. Indeed, as we presented in
RQ2, mock classes may have thousands of clients. However, we find that about 30%
of the analyzed mock classes have package or private visibility. That is, their reuse is
very limited: they are visible only within their own packages or classes. Thus, the lack
of reusability on almost one-third of the mock classes is a surprising result. As those
private mock classes are not intended to be reused, they are straightforward candidates
to be mocked with frameworks; in this case, the maintenance effort would be smaller
as less mock classes would be available. Thus, we shed light on the over creation of
private mock classes, which may be harmful to the overall project maintainability. This
can drive future research agenda on techniques to detect superfluous mock classes that
can be created with mocking frameworks.

4.5.3 Widespread usage of the mock classes

We also find that mock classes are used to a larger extent (RQ4). When analyzing
the Boa dataset [Dyer et al., 2013], we detected that mock classes are consumed by
thousands of open-source software projects. That is, the usage of mock classes is not
restricted to the target projects of this study, but it seems to be widespread. Thus,
practitioners who maintain mock classes (as the ones assessed in this research) should
be aware of the importance of these classes to their ecosystems. During maintenance,
mock classes should be changed with care because a large number of client projects can
be impacted.

4.6 Threats to validity

4.6.1 Focus on libraries instead of end-user products

The projects we selected in this study are libraries or frameworks that are typically
used as dependencies by end-user software. For example, Spring Boot is a framework
used to build web applications, and not a final application itself. Indeed, libraries and
frameworks are really important to support software development nowadays, providing
feature reuse, improving productivity, and decreasing costs [Moser and Nierstrasz, 1996;
Konstantopoulos et al., 2009; Raemaekers et al., 2012; Menezes et al., 2019; Lima and
Hora, 2020]. However, we recognize they do not comprehend the reality of those end-



4. Empirical Results 38

user products when using mock classes, so this needs to be taken into account when
interpreting our categories of mock classes. Notice that end-user software products are
better represented in the results presented in RQ3, in which we assessed millions of
Java projects with the support of the Boa platform [Dyer et al., 2013]. In this case,
web services were the most common mocked dependencies.

4.6.2 Manual classification

Mock classes in our study were manually classified by the author, who is a software
engineer with 8 years of experience in embedded, desktop, and web development. Many
of them were classified based on strong terms present in their names (e.g., Mvc, Http,
Rest, TCP, GitHub, etc.). In cases the names were not clear (or in cases of doubts), the
author relied on additional artifacts, and carefully analyzed documentation or inspected
the mock source code to infer the category (see Chapter 3 for more details). Thus, like
any other manual classification, it is subjected to error and bias. However, an evidence
that may minimize this threat is that the frequency of mock categories detected in
this study is similar to those found by earlier studies on mocking frameworks [Spadini
et al., 2017, 2019], that is, domain objects, web services, and external dependencies are
frequent on both research studies, while test support and native Java libraries are less
common.

4.6.3 Lack of mock classes categorized as Database

In a previous study about mock objects and mocking frameworks in Java [Spadini et al.,
2017, 2019], a database mock is defined as one “that interact with an external database.
These classes can be either an external library [...] or a class that depends on such
external libraries [...] ”. In our study, we were more strict in the definition of database:
we only stated a mock class to be in the database category when it was directly linked
to a SQL/NoSQL database library. We were more strict due to two reasons. First, we
found the original definition a bit subjective and flexible. Second, one of the projects
in our study, Elasticsearch, is itself a NoSQL database, thus, to some extent, all mock
classes in this system could be classified in the database category, and, of course, this
would not be desirable. Therefore, according to our criteria, we found no mock classes
for databases.



4. Empirical Results 39

4.6.4 Identifying mock classes

Our selection criterion for identifying mock classes is that they should contain the
string “mock” in the class name. While our findings show that there is plenty of mock
classes that follow this guideline, there is the possibility we lose track of classes that
are used as mocks but do not follow it.

4.6.5 Generalization

We analyzed 604 mock classes provided by several popular and real-world Java software
systems. For instance, the projects Elasticsearch, Spring Boot, and RxJava have over
40k stars, thus, they are among the most popular in the Java ecosystem, as measured
by Github. Moreover, in our third research question, we searched for the usage of
mocks in millions of projects with the Boa platform [Dyer et al., 2013]. Despite these
observations, our findings — as usual in empirical software engineering — may not
be directly generalized to other systems, as commercial ones with closed source and
implemented in other programming languages.

4.7 Final Remarks

In this chapter, we detailed the empirical results of this dissertation. By using them to
answer the first four research questions, we shed light on mock classes usage. In RQ1,
we showed that mock classes are often created to emulate domain objects, external
dependencies, and web services. In RQ2, we presented that mock classes often extend
other classes or implement interfaces, and overall have the same number of methods of
the regular classes. RQ3 presented that mock classes usually have a number of changes
and distinct developers equivalent to regular classes, but exceptions exist. Finally,
the answer to RQ4 was that mock classes are largely consumed by client projects to
support testing, with usage being concentrated on a few classes.

The next chapter complements the quantitative study of this chapter, with a
qualitative assessment conducted in a survey with expert developers.



Chapter 5

Survey Results

In this chapter, we present our survey results. Before we look at the research
questions, answered by examining Questions 2 and 3 of the survey, we check the
survey’s Question 1 to understand what was the goal of the discovered mock classes as
stated by those who have worked with them. Section 5.1 assesses why mock classes are
used by developers and Section 5.2 focus on when mock classes should be adopted. We
present a discussion of the findings (Section 5.3) and threats to validity (Section 5.4).
Lastly, Section 5.5 presents the final remarks.

Q1. What is the goal of this mock class?
Table 5.1 summarizes the goal of the investigated mock classes, as reported by

the developers. Simulate entity is the most common goal for the mock classes (49%).
For example, Developer #11 says: “The class is used to mock a TableSource to test
the Table Schema and properties of the table source.”. Developer #8 mentions: “This
is a mock ‘SourceReader’/‘Source’ implementation to be used in tests. For example if
another component that we want to test requires ‘SourceReader’ as a dependency (...).”.
Likewise, Developer #7 states that the class in question helps on “Allowing to test the
interaction between the code under test and some service/other component.”.

The second most frequent goal is mock external service (17%). This category
relates to the simulation of any external service, such as database, application servers,
and APIs. In this context, Developer #21 comments that the class is used “[t]o provide
a mock of an Rpc interface for testing”.

Next, we have the category interface implementation (11%). In this case,
developers wanted to use the interface implementation in a test, so they created a
mock class for the purpose of implementing that interface. For example, Developer
#26 states plainly that they want “[t]o implement the HDFSWriter interface for our

40



5. Survey Results 41

Table 5.1: Categories for Question 1: What is the goal of this mock class?

Category # of answers % of answers

Simulate entity 17 49
Mock external service 6 17
Interface implementation 4 11
Mock environment 2 6
Others 6 17

Total 35 100

test”. Note that Mockito provides a functionality for instantiating an object that
respects an interface, without the need for creating a class that implements it.1

Another category is mock environment (6%). In this case, developers aimed
to simulate environmental conditions, such as system time and memory handling. De-
veloper #28 mentions the need for “(allowing) you to implement inmemory metadata
for testing”. Finally, the category others is composed of answers for very specific
needs, like tracing requests: “I created this class to just trace the received http requests”
(Developer #9).
Summary Q1: Mock classes are mainly created to simulate entities. This goal is not
different from developers who rely on mocking frameworks.

5.1 RQ5 (Motivation): Why do developers rely on

mock classes instead of mocking frameworks?

Next, we study why mocking frameworks have not been adopted instead of mock
classes. For this, we look into the answers of the question 2 on the survey, Why has
a mocking framework not been used instead? Table 5.2 summarizes this analysis: the
answers are divided in two groups according to the position of the developers on the
mocking practice. Against represents answers in which developers are negative about
the usage of mocking frameworks, while in favor presents answers in which they are
positive about the usage of mock classes.

1The Mockito mock API “creates mock object of given class or interface” (https://javadoc.io/
doc/org.mockito/mockito-core/latest/org/mockito/Mockito.html).



5. Survey Results 42

Table 5.2: Categories for Question 2: Why has a mocking framework not been used
instead?

Type Category # of answers % of answers

Against

Mocking frameworks reduce code quality 7 41
Mocking frameworks have limitations 6 35
Mocking frameworks add dependencies 4 24

Total 17 100

In favor
Mock classes improve code quality 4 36
Usage of local mocking framework 4 36
Mock classes are simple to set up 3 28

Total 11 100

Others 6 43
Does not know 5 36
Mocking framework is unavailable 3 21

Total 14 100

5.1.1 Against Mocking Frameworks

We find three categories against mocking frameworks. The most frequent is mock-
ing frameworks reduce code quality (41%), in which developers present concerns
regarding code maintenance, testability, and understandability. Developer #7 states:
“sing a mock library too extensively makes maintenance harder because one has to touch
many places if the mocked class changes”. Likewise, Developer #21 mentions: “Mock-
ing frameworks (...) make it hard to ascertain if the configuration of classes under
test behave well under the regular rules of the language [and] removes the force towards
better designs normally caused by requiring testability”. Developer #28 says: “(...) the
mocks generated by a mocking framework are hard to maintain and understand ”.

Developers also mention mocking frameworks have limitations as a reason
against their usage (35%). For example, Developer #33 states: “A simple single-class
mock does not suffice here [mocking the networking layer of the system] ”. Another
problem related by developers is mocking frameworks add dependencies (24%).
Developer #32 mentions: “(...) adding a bunch of new dependencies with your commit
does not make the reviewers happier. Deciding which mocking framework to use, and
when, is a team decision”.



5. Survey Results 43

5.1.2 In Favor of Mock Classes

On the other hand, there are developers in favor of the usage of mock classes (rather
than against mocking frameworks). They argue that mock classes improve code
quality . For example, Developer #29 answers: “It’s clearer and more readable to
contain the mock dependencies in a well defined regular class, so you have an imple-
mentation to turn to”. Usage of local mocking framework represents cases that
the project itself provides a mocking framework that can be used by developers. For
example, Developer #39 mentions: “[the project] has its own built-in mocking frame-
work ”. Developers also mention that mock classes are simple to set up. In this
context, Developer #24 states: “[The mock class] is better than using Mockito in this
case because it is used for large tests that have lots of interactions with Curator ”.

Summary RQ5: Developers rely on mock classes over mocking frameworks due to
several reasons. They argue that mocking frameworks reduce code quality, have lim-
itations, and add dependencies. Also, developers mention that mock classes improve
code quality and are simple to set up in tests.

5.2 RQ6 (Choice): When should developers create

mock classes and when is it better to rely on

mocking frameworks?

The last survey question (When should developers create mock classes and when should
they rely on mocking frameworks? ) assess when developers should create mock classes
and when a mocking framework is a better choice. As summarized in Table 5.3, we
group the answers for the mocking frameworks and for the mock classes.

5.2.1 When developers should create mock classes

First, we assess when developers should create mock classes. The most frequent expla-
nation is for complex testing . In this case, they are stating that mock classes are a
better way to deal with tests that are larger or more complex. For example, Developer
#33 states: “when mocking a multitude of classes which constitute a large, integral part
of the system, it’s better to do it manually”. Developer #35 states that mock classes
could be used on “cases where you want to simulate a complex system”, but pointing
out that possibly “there are testing frameworks dedicated to these complex systems”. In



5. Survey Results 44

Table 5.3: Categories for Question 3: When should developers create mock classes and
when should they rely on mocking frameworks?

Type Category # of answers % of answers

Mock
classes

For complex testing 5 24
To avoid mocking framework limitations 4 19
To have better code quality 4 19
To support reuse 4 19
To keep project quality 4 19

Total 21 100

Mocking
frameworks

For simple unit tests 6 60
To test external services 3 30
To test code with minimal change 1 10

Total 10 100

Generally, use mocking frameworks 10 53
Avoid using mocks 6 31
Avoid using mocking frameworks 3 16

Total 19 100

this context, Developer #37 specifically declares that it is preferable to use “custom
mocks if the class being mocked needs complex behavior or needs to keep state”.

All the following categories had the same number of answers (i.e., 4). In the
first one, developers state about that they should use mock classes when they want to
avoid mocking framework limitations . For example, Developer #1 answers: “The
java mock frameworks are usually pretty badly behaved, (...) need too many security
permissions”. More directly, Developer #39 mentions: “a home-brew mock class is
helpful if using [a mocking framework] does not provide the features needed ”.

Another explanation is to have better code quality , exemplified by Developer
#28: “(...) I’m not a fan of mocking frameworks. I prefer to better design the ap-
plication, so the testing process doesn’t require tricky mocks that can be achieved only
by applying a mocking framework ”. Likewise, Developer #39 answers:“using [mocking
frameworks] would result in contrived and difficult to read and maintain code”. Another
scenario happens to support reuse . Developer #4 answers that it is useful when “you
want to provide other developers or other teams with a better way of testing more code
with less efforts that are specific to [your product] ”. On a similar line, Developer #43
says: “reason for preferring mock classes is to document usage of an API, simulating
what a user has to do”.



5. Survey Results 45

A last category for when mock classes are preferable is to keep project quality .
These answers are different from those that focus specifically on code-quality aspects
by being concerned with the quality of the project as a whole. Developer #3 mentions:
“When this is a single use in a project that has hundreds of modules and dependencies,
adding a new dependency might be an overkill ”. Developer #25 is concerned with the
project performance: “reason not to use a framework is performance (...) [We had] a
case where a very simple mock from a framework degraded performance by a factor of
1000 ”.

5.2.2 When developers should rely on mocking frameworks

We now assess when developers should rely on mocking frameworks. The category
with most answers is for simple unit tests.. Developer #24 states that they “prefer
mocking frameworks for (small) unit testing, and mock classes for everything else”.
Likewise, Developer #33 mentions: “use mocking tools in our unit tests when mocking a
small, isolated class”. Interestingly, this category contrasts with the first one presented
for the mock classes, which is for complex testing. According to the surveyed developers,
while mock classes seem to be used for complex tests, mocking frameworks is adopted
for simple ones.

The next category is to test external services . Developer #18 mentions: “I
would use Mockito when there is an external service, or there is need to start a server
in the framework, Mockito can help to write UTs instead of ITs”.2

The last category on when developers should rely on mocking frameworks is to
test code with minimal change . In this regard, developer #26 says: “Mockito has
the advantage that it can test code with minimal change. For a legacy system where
refactoring is too expensive it is a good tool ”.

Finally, some answers are more generic and do not fit in any category. Some
developers just say that in general they would simply use mocking frameworks. For
example, Developer #4 mentions: “sticking to popular frameworks will be more produc-
tive”, while Developer #16 goes even further by stating that they “would normally use
a mocking framework, usually Mockito, when writing a library myself. I don’t know of
a concrete example of when a mocking class is preferred ”. Other developers are against
mock practices in general and advise to avoid them. For example, Developer #10
states: “The only suggestion I have regarding mocks is: please don’t use them”. Some
developers are against mocking frameworks in particular. Developer #7 answers: “We

2UTs: Unit Tests, ITs: Integration Tests



5. Survey Results 46

try not [to] use Mockito wherever possible”, while Developer #19 states: “We generally
avoid using Mockito in [project] ”.

Summary RQ6: According to the surveyed developers, there are many reasons to
create mock classes: for complex testing, to avoid mocking framework limitations, to
have better code quality, to support reuse, and to keep project quality. On the other
hand, developers should rely on mocking frameworks mainly to create simple unit
tests, but also to test external entities and to test code with minimal change.

5.3 Discussion and Implications

5.3.1 Reasons for Using Mock Classes and Mocking

Frameworks

Overall, the frequency of mock categories detected in this study is similar to those
found by earlier studies on mocking frameworks [Spadini et al., 2017, 2019]. For ex-
ample, domain objects, web services, and external dependencies are common in both
studies, while test support and native Java libraries are rarer (RQ1). This suggests
that independently of the way developers are mocking dependencies (i.e., either via
mock classes or mocking frameworks), the overall goal is the same. Indeed, as pre-
sented in Table 3.1, most of the analyzed projects in this study use both solutions to
mock dependencies. Thus, one question arises: why and when do developers rely on
mock classes instead of mocking frameworks? We aimed to address this question in
our survey analysis (RQ5 and RQ6) and we shed some light on that direction:

• Why. Developers state that mock classes improve code quality and are simple to
set up in tests. In contrast, developers mention that mocking frameworks reduce
code quality, have limitations, and add dependencies.

• When. Developers state several reasons to create mock classes: for complex
testing, to avoid mocking framework limitations, to have better code quality, to
support reuse, and to keep project quality. In contrast, developers should rely on
mocking frameworks mainly to create simple unit tests, but also to test external
entities and to test code with minimal change.

Developers are pragmatic when selecting between mock classes and mocking
frameworks. The overall perception is that the usage of mock classes is preferable over



5. Survey Results 47

mocking frameworks, however, there are specific cases in which mocking frameworks are
a better choice. We thus shed light on the benefits of mock classes instead of mocking
frameworks (and vice-versa). This information can guide practitioners when choosing
the ideal solution to emulate dependencies in tests.

5.3.2 Mock and test double terminology

One of the challenges that happened during the survey study was related to what
developers consider to be a mock. In Chapter 2, we presented that the state of the
practice is to frequently use the terms mocks and test doubles interchangeably. While
a minority of the surveyed developers used terms related to Meszaros’ taxonomy on
test doubles [Meszaros, 2007; Fowler, 2007] such as stub or spy, the majority were
comfortable with the plain use of “mock”. Another point commented by the surveyed
developers was that custom mock classes may be perceived as (local) mocking frame-
works. For example, Developer #4 mentions: “The mock class is a part of mocking
framework mock-mvc 3 that lies within spring-test library. (...) So using this particular
library allows one to test bigger chunks of infrastructure (e.g json de-/serialization)
while also providing a nice language that is specific to HTTP requests and responses,
comparing to what popular mocking frameworks provide - a language designed to create
mocks”. Since those classes are not dedicated tools, but a collection of mock classes
to facilitate the creation of tests, we did not consider them as mocking frameworks.
Nevertheless, it is interesting to note that developers may consider a collection of mock
classes as a kind of mocking framework. In this study, we shed some light on the mock
terminologies. We reinforce “mock” as a well-known term adopted for test doubles, con-
firming the widespread usage in practice. Moreover, a collection of custom mock classes
may be perceived as (local) mocking frameworks. We thus recommend that studies on
custom mock classes and mocking frameworks make clear the differences.

5.4 Threats to Validity

5.4.1 Survey answers and assessment

Initially, we looked for the developers of changes in the mock classes in the original 12
projects. This approach, however, generated a low number of candidate developers and
answers. To find more candidate developers, we looked for mock classes in other 63 pop-
ular Java projects. To minimize subjectivity, the survey analysis has been performed

3https://git.io/JR1m8



5. Survey Results 48

with special attention by the author and the advisor via thematic analysis [Cruzes and
Dyba, 2011].

5.4.2 Terminology and context

The usage of the “mock” terminology may not be equally interpreted among respondent
developers. For example, some developers demonstrated confusion on this terminology,
mixing local mocking frameworks and mock classes. Moreover, different project con-
texts could have affected developers’ perceptions on mock usage and necessity, e.g.,
when a project was old enough so it was developed prior to mocking frameworks
widespread usage and lacked the interest for moving to mocking frameworks.

5.5 Final Remarks

In this chapter, we presented the data analysis of the survey responses. We used this
analysis to answer to our last two research questions: what are the reasons for using
mock classes instead of mocking frameworks, and when should developers create mock
classes or rely on mocking frameworks. We found that developers have these preferences
due to several reasons. They argue that mocking frameworks reduce code quality, have
limitations, and add dependencies. On the other hand, they mention that mock classes
improve code quality and are simple to use in tests. Developers mention that mock
classes can be created for complex testing and to avoid the aforementioned mocking
frameworks limitations. Developers also cite code quality concerns when describing
reasons to create mock classes. They prefer to rely on mocking frameworks to create
simple unit tests, test external entities, and to test code with minimal change.



Chapter 6

Conclusion

6.1 Summary and Contributions

During testing activities, developers frequently rely on dependencies that make the test
harder to be implemented. In this case, developers can use mock objects to emulate
the dependencies’ behavior, which contributes to make the test fast and isolated. The
emulated dependency can be dynamically created with the support of mocking frame-
works or manually hand-coded in mock classes [Meszaros, 2007]. Past research showed
that mocking frameworks are largely adopted by software projects [Mostafa and Wang,
2014] and that they may indeed support the creation of unit tests [Marri et al., 2009;
Arcuri et al., 2017; Spadini et al., 2017, 2019]. However, those researches are restricted
to the context of mocking frameworks.

In this dissertation, we presented an empirical and survey study to assess mock
classes. We analyzed 12 popular Java projects and detected 604 mock classes. We
summarize our empirical findings as follows: mock classes are often created to emu-
late domain objects, external dependencies, and web services (RQ1); mock classes are
often part of a hierarchy, are mostly public, and are not different from regular classes
regarding number of methods (RQ2); mock classes and regular classes have equivalent
number of changes (RQ3); and mock classes are largely consumed by client projects to
support testing, particularly to emulate web services (RQ4).

Our survey study with 39 developers reveals the the following findings. Mock
classes improve code quality and are simple to set up in tests. In contrast, develop-
ers mention that mocking frameworks reduce code quality, have limitations, and add
dependencies (RQ5). Mock classes should be created for complex testing, to avoid
mocking framework limitations, to have better code quality, to support reuse, and
to keep project quality. In contrast, developers should rely on mocking frameworks

49



6. Conclusion 50

mainly to create simple unit tests, but also to test external entities and to test code
with minimal change (RQ6).

Based on our results, we provided insights and practical implications for re-
searchers and practitioners by discussing topics as (i) the novel empirical data on
mock classes, (ii) the reusability and lack of visibility of the mock classes, (iii) the
widespread usage of the mock classes, and (iv) the reasons for using mock classes and
mocking frameworks.

6.2 Future Work

As future work, we plan to take a deeper look at the semantics of the mock classes to
refine their classification and provide insights on how they mock dependencies. We plan
to look for mock classes in other programming languages (e.g., Python and JavaScript)
to assess the concerns of other software ecosystems. We also plan to study the imple-
mentation techniques used for developing the mocking frameworks. This would help
on understanding the problems and limitations pointed by developers in the survey
regarding the usage of such frameworks. In the present work, we examined external
reuse of the mock classes. We did not examine, however, the internal reuse of mock
class. Thus, this study would help to better examine questions such as visibility and
class hierarchy. Code duplication as a bad practice related to reuse is also an interest-
ing possibility for further investigations. The systems we studied are large open-source
projects, and may not represent the experience of most developers that work on smaller
closed-source software projects. Therefore, assessing proprietary systems would be use-
ful to understand topics such as the mocking of database systems, for example, and
the overall use of mock classes vs. mocking frameworks in such contexts. Finally,
another interesting research direction is to automatically suggest mocking framework
usage based on the mock classes that already exist, as recently proposed by Wang et al.
[2021].



Bibliography

Arcuri, A., Fraser, G., and Just, R. (2017). Private API access and functional mocking
in automated unit test generation. In International Conference on Software Testing,
Verification and Validation, pages 126--137.

Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., and Binkley, D. (2015). Are test smells
really harmful? an empirical study. Empirical Software Engineering, 20(4):1052--
1094.

Bertolino, A. (2007). Software testing research: Achievements, challenges, dreams. In
Future of Software Engineering (FOSE’07), pages 85--103. IEEE.

Bhagya, T., Dietrich, J., and Guesgen, H. (2019). Generating mock skeletons for
lightweight web-service testing. In 2019 26th Asia-Pacific Software Engineering Con-
ference (APSEC), pages 181--188. IEEE.

Borges, H., Hora, A., and Valente, M. T. (2016). Understanding the factors that im-
pact the popularity of GitHub repositories. In International Conference on Software
Maintenance and Evolution, pages 334--344.

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M. (1996).
Pattern-oriented software architecture volume 1: A system of patterns.

Cohn, M. (2009). Succeeding with Agile: Software Development Using Scrum. Addison-
Wesley Professional.

Cruzes, D. S. and Dyba, T. (2011). Recommended steps for thematic synthesis in
software engineering. In 2011 International Symposium on Empirical Software En-
gineering and Measurement, pages 275–284.

Dyer, R., Nguyen, H. A., Rajan, H., and Nguyen, T. N. (2013). Boa: A language and
infrastructure for analyzing ultra-large-scale software repositories. In International
Conference on Software Engineering, pages 422--431.

51



Bibliography 52

EasyMock (2021). Easymock: Easy mocking. better testing. https://easymock.org/.

Elliott, E. (2017). Mocking is a code smell. https://medium.com/javascript-
scene/mocking-is-a-code-smell-944a70c90a6a. Library Catalog: medium.com.

Facebook (2021). Jest testing framework. https://jestjs.io/.

Feathers, M. (2004). Working Effectively with Legacy Code. Prentice Hall Professional.

Fowler, M. (2006). bliki: TestDouble. https://martinfowler.com/bliki/TestDouble.html.

Fowler, M. (2007). Mocks aren’t stubs. https://martinfowler.com/articles/mocksArentStubs.html.

Fowler, M. (2018). Refactoring: improving the design of existing code. Addison-Wesley
Professional.

Freeman, S., Mackinnon, T., Pryce, N., and Walnes, J. (2004). Mock roles, not objects.
In Companion to the 19th annual ACM SIGPLAN conference on Object-oriented
programming systems, languages, and applications, pages 236--246.

Freeman, S. and Pryce, N. (2009). Growing object-oriented software, guided by tests.
Pearson Education.

jMock (2007). jmock. http://jmock.org/.

Johnson, R. E. (1992). Documenting frameworks using patterns. In conference pro-
ceedings on Object-oriented programming systems, languages, and applications, pages
63--76.

Khorikov, V. (2020). Unit Testing Principles, Practices, and Patterns. Manning Pub-
lications.

Konstantopoulos, D., Marien, J., Pinkerton, M., and Braude, E. (2009). Best prin-
ciples in the design of shared software. In International Computer Software and
Applications Conference, pages 287–292.

Lima, C. and Hora, A. (2020). What are the characteristics of popular apis? a large
scale study on java, android, and 165 libraries. In Software Quality Journal, vol-
ume 28, page 425–458.

Macbeth, G., Razumiejczyk, E., and Ledesma, R. D. (2011). Cliff’s delta calculator:
A non-parametric effect size program for two groups of observations. Universitas
Psychologica, 10(2):545--555.



Bibliography 53

Mackinnon, T., Freeman, S., and Craig, P. (2000). Endo-testing: unit testing with
mock objects. Extreme programming examined, pages 287--301.

Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random vari-
ables is stochastically larger than the other. The annals of mathematical statistics,
pages 50--60.

Marri, M. R., Xie, T., Tillmann, N., De Halleux, J., and Schulte, W. (2009). An
empirical study of testing file-system-dependent software with mock objects. In
Workshop on Automation of Software Test, pages 149--153. IEEE.

Martin, R. (2014). When to mock - the clean code blog.
https://blog.cleancoder.com/uncle-bob/2014/05/10/WhenToMock.html.

Martin, R. C. (2009). Clean code: a handbook of agile software craftsmanship. Pearson
Education.

Menezes, G., Cafeo, B., and Hora, A. (2019). Framework code samples: How are they
maintained and used by developers? In 13th International Symposium on Empirical
Software Engineering and Measurement, pages 1--11.

Meszaros, G. (2007). xUnit test patterns: Refactoring test code. Pearson Education.

Mockito (2021). Mockito: Tasty mocking framework for unit tests in java.
https://site.mockito.org/.

moq (2021). moq - the most popular and friendly mocking library for .net.
https://github.com/moq/moq4.

Moser, S. and Nierstrasz, O. (1996). The effect of object-oriented frameworks on
developer productivity. Computer, 29(9).

Mostafa, S. and Wang, X. (2014). An empirical study on the usage of mocking frame-
works in software testing. In International Conference on Quality Software, pages
127--132.

Myers, G. J., Sandler, C., and Badgett, T. (2011). The art of software testing. John
Wiley & Sons.

Osherove, R. (2009). The Art of Unit Testing: With Examples in. Net. Manning
Publications Co.



Bibliography 54

Palomba, F. and Zaidman, A. (2017). Does refactoring of test smells induce fixing
flaky tests? In International Conference on Software Maintenance and Evolution,
pages 1--12.

Percival, H. (2014). Test-driven development with Python: obey the testing goat: using
Django, Selenium, and JavaScript. O’Reilly Media, Inc.

Python Software Foundation (2020). unittest.mock — mock object library — python
3.8.2 documentation. https://docs.python.org/3/library/unittest.mock.html.

Raemaekers, S., van Deursen, A., and Visser, J. (2012). Measuring software library
stability through historical version analysis. In International Conference on Software
Maintenance, pages 378–387.

Silva, H. and Valente, M. T. (2018). What’s in a GitHub star? understanding repository
starring practices in a social coding platform. Journal of Systems and Software,
146:112--129.

Sinon.js (2021). Sinon.js. https://sinonjs.org.

Sivashanmugam, K. and Palanisamy, S. (2009). Testing sql server integration services
runtime engine using model and mock objects. In 2009 Sixth International Confer-
ence on Information Technology: New Generations, pages 790--795. IEEE.

Spadini, D., Aniche, M., and Bacchelli, A. (2018a). Pydriller: Python framework for
mining software repositories. In Proceedings of the 2018 26th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pages 908--911.

Spadini, D., Aniche, M., Bruntink, M., and Bacchelli, A. (2017). To mock or not to
mock? an empirical study on mocking practices. In International Conference on
Mining Software Repositories, pages 402--412.

Spadini, D., Aniche, M., Bruntink, M., and Bacchelli, A. (2019). Mock objects for
testing java systems. Empirical Software Engineering, 24:1461--1498.

Spadini, D., Palomba, F., Zaidman, A., Bruntink, M., and Bacchelli, A. (2018b). On
the relation of test smells to software code quality. In International Conference on
Software Maintenance and Evolution, pages 1--12.

Thomas, D. and Hunt, A. (2002). Mock objects. IEEE Software, 19(3):22--24.



Bibliography 55

Tufano, M., Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia, A., and
Poshyvanyk, D. (2016). An empirical investigation into the nature of test smells. In
International Conference on Automated Software Engineering, pages 4--15.

Valente, M. T. (2020). Engenharia de software moderna (livro digital).

van Bladel, B. and Demeyer, S. (2020). Clone detection in test code: An empiri-
cal evaluation. In 2020 IEEE 27th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 492–500.

Vocke, H. (2018). The practical test pyramid.
https://martinfowler.com/articles/practical-test-pyramid.html.

Wang, X., Xiao, L., Yu, T., Woepse, A., and Wong, S. (2021). An automatic refac-
toring framework for replacing test-production inheritance by mocking mechanism.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 540-
-552.

Winters, T., Manshreck, T., and Wright, H. (2020). Software engineering at google:
Lessons learned from programming over time. O’Reilly Media.

Zaidman, A., Van Rompaey, B., van Deursen, A., and Demeyer, S. (2011). Studying
the co-evolution of production and test code in open source and industrial developer
test processes through repository mining. Empirical Software Engineering, 16(3):325-
-364.


