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Resumo

Neste trabalho, foi proposto um novo pacote em linguaguem R (denominado KGsurv)

utilizando algoritmos implementados no software Stan, para modelar novos modelos

baseados na famı́lia de distribuições Kumaraswamy-G. Nós apresentamos os modelos de

regressão Kumaraswamy-G para as seguintes classes: riscos proporcionais, chances pro-

porcionais e tempo de vida acelerado considerando as distribuições Exponencial, Weibull,

Gamma, Log-loǵıstica, e Log-normal para modelar a distribuição de G. Neste trabalho,

a abordagem frequentista foi considerada para estimar os parâmetros dos modelos com

dados de sobrevivência censurados à direita sob o pressuposto de um mecanismo de cen-

sura não informativo. Por fim, foram apresentadas aplicações utilizando três conjuntos

de dados reais já utilizados na literatura de análise de sobrevivência para verificar os

resultados dos modelos implementados no pacote KGsurv.

Palavras-chave: Kumaraswamy-G, análise de sobrevivência, modelos de regressão, pacote

KGsurv.
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Abstract

In this work, a new package in language R (called KGsurv) was proposed using algorithms

implemented in Stan software, to model new models based on the Kumaraswamy-G fam-

ily of distributions. We present the Kumaraswamy-G regression models for the following

classes: proportional hazards, proportional odds, and accelerated failure time considering

Exponential, Weibull, Gamma, Log-logistics, and Log-normal distributions to model the

G distribution. In this work, the frequentist approach was considered to estimate the

parameters of the models with right-censored survival data under the assumption of a

non-informative censoring mechanism. Finally, applications were presented using three

real data sets widely used in the survival analysis literature to verify the results of the

models implemented in the KGsurv package.

Keywords: Kumaraswamy-G, survival analysis, regression models, KGsurv package.
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Chapter 1

Introduction

The analysis of survival and reliability data has gained much space in the literature

due to a range of new models that can be used in different areas of knowledge. Thus,

this is an important tool for statistical analysis. In survival and reliability analysis we

are generally interested in the time until the occurrence of the event of interest, such as

the time to death of patients diagnosed with a certain type of cancer, the time until the

failure of a lamp, or the time until customers close their bank accounts, among others.

The main characteristic of survival data is the presence of incomplete or partial ob-

servations. These observations, known as censoring, can occur for several reasons, such

as the patient’s death for a different cause from the one studied, loss of follow-up before

the end of the study, the patient’s moves to another city, among others (Colosimo and

Giolo, 2006).

The usual theory of survival analysis assumes that, if observed for a long period, all

individuals will fail at some point, that is, they are susceptible to the event of interest.

Also, in many studies, there are explanatory variables that are related to the time of

failure. Therefore, we must use regression models in the context of survival analysis. The

most famous regression model is the proportional hazards (PH) model defined by Cox

(1972). This model allows the incorporation of covariates through the hazard function.

However, it has the assumption of proportional hazards. Thus, in many situations, this

model cannot be used. The second alternative is the proportional odds (PO) model

defined in Bennett (1983). This model is not used frequently in the literature. However,
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this model presents an attractive interpretation of the parameters, using the odds ratio.

Besides, the PO model has the assumption that the odds functions must be proportional.

Finally, the accelerated failure time model (AFT) is widely used in the medical and

engineering literature. Furthermore, the AFT model does not have the assumption of

proportionality of hazard or odds. Then, this model is a good alternative. For more

details, see Lawless (2011).

For instance, in survival analysis, the main package is the so-called survival pro-

posed by (Therneau, 2014), this package uses as main techniques of survival analysis,

for example, Kaplan-Meier survival curves, Logrank test, and PH and AFT models. A

second package that can be used in survival analysis is flexsurv introduced in (Jack-

son, 2016), this package uses the AFT models considering several baseline distributions,

such as Exponential, Weibull, Log-normal, Log-logistics, among others. To use the PO

model on the R platform, you can use the timereg package (Scheike and Zhang, 2011).

However, the results obtained in the timereg package are quite limited, for example, this

package does not have functions for viewing the survival curves determined by the PO

model, that is, the verification of the adequacy of the model fit cannot be verified. It

is important to highlight that, there are other packages that use the PH, PO, or AFT

models, for instance, rms (Harrell Jr et al., 2016), SurvRegCensCov (Hubeaux and Ru-

fibach, 2014), and eha (Brostom, 2014) considers the accelerated failure time models, but

implemented differently the survival package. Also, the spsurv package presented by

Panaro (2020), uses the PH, PO, and AFT models with the Bernstein polynomials as a

baseline distribution, among others.

In the present work, a new package R was presented, using the software Stan Team

(2018), this package was called KGsurv. In R, the Stan software is implemented in rstan

package. The KGsurv package was created with the objective is to use the families of

regression models PH, PO, and AFT using easy routines to obtain the estimation of pa-

rameters of these models. The KGsurv package uses the frequentist approach considering

the censoring mechanism is non-informative, and right censoring. To model the baseline

distribution, the Kumaraswamy-G family of distributions (Kumaraswamy-G) presented

in Cordeiro et al. (2010) and Cordeiro and de Castro (2011) was considered. This distribu-
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tion is very flexible, that is, it has several forms of density, survival, and hazard functions.

Besides that, several distributions have been created based on the Kumaraswamy-G fam-

ily of distributions, such as the Kumaraswamy Generalized Gamma (De Pascoa et al.,

2011), the Kumaraswamy Birnbaum-Saunders (Saulo et al., 2012), the Kumaraswamy

generalized half-normal distribution (Cordeiro et al., 2012), the Kumaraswamy Burr XII

distribution (Paranáıba et al., 2013), the Kumaraswamy exponentiated Pareto distri-

bution (Elbatal, 2013), the Kumaraswamy half-Cauchy distribution (Ghosh, 2014), the

Kumaraswamy modified Weibull (Cordeiro et al., 2014), among others.

The Kumaraswamy-G family of distributions is widely used in the literature, so pre-

senting a package in the language R which uses this distribution with a friendly routine

and easy access makes the KGsurv package an attractive alternative to survival analysis

data with the right-censoring.

1.1 Objectives of the dissertation

The general objective of this work is to build a package in language R to fit the regres-

sions families PH, PO, and AFT considering the Kumaraswamy-G family of distributions

as the baseline distribution. Our specific objectives are:

• To introduce the Kumaraswamy-G family of distributions with the PH, PO, and

AFT models, considering the Exponential, Weibull, Gamma, Log-logistic, and Log-

normal distributions to model G distribution.

• To present an R package, called KGsurv, to model the Kumaraswamy-G family of

distributions for survival data with right-censored.

• To present three studies using real data sets to show that the new KGsurv package

provides similar results with models already presented in the literature.
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1.2 Organization of the chapters

This present work is organized as follows. In Chapter 2, we present the basic concepts

of survival analysis. In addition, we present the families of regression models PH, PO,

and AFT. In Chapter 3, we presented the Kumaraswamy-G family of distributions in the

context of the survival analysis and we define the Kumaraswamy-G family of distributions

considering the Exponential, Weibull, Gamma, Log-logistic, and Log-normal distribution

to model the G distribution. Next, we introduced the families of regression models PH,

PO, and AFT whose baseline function is the Kumaraswamy-G family of distributions.

Lastly, we present the inferential procedures, the model selection criteria, and one little

discussion of some functions in the KGsurv package. In Chapter 4, we showed three

applications using real data sets. Finally, in Chapter 5, we presented the conclusions of

the work and future applications.
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Chapter 2

Survival analysis

In this chapter, we revisit some basic concepts in survival analysis. After that, we

define the proportional hazard, proportional odds, and accelerated failure time regression

models.

2.1 Basic concepts

In survival analysis, the response variable is the time until the occurrence of an event

of interest usually referred to as failure time or lifetime. In clinical trials, some examples

of failure times include time to death, cure, or recurrence of disease in patients. In

engineering, studies are very common in which products, components, or systems are

tested to study their reliability (this area is known as Reliability). For the interested

reader, see Nelson (1990), Meeker and Escobar (2014). In financial data, we can study

the time until customers leave a bank Hoggart and Griffin (2001). In this way, survival

analysis can be applied in many areas of knowledge.

Survival data requires special treatment, because survival times are non-negative, and

usually are governed by skewed distributions. Another peculiarity of survival data regards

the presence of incomplete observations, known as censored times. Censored observations

may occur due to several causes, for example, limitation of time or resources available

for the study and loss of follow-up of a patient before the end of study (Colosimo and

Giolo, 2006).
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Survival data is said to be left-censored when the event of interest is known to have

occurred before a certain time t, but the exact time of the occurrence of the event of

interest is unknown. Interval-censored survival data arises when the event of interest is

only known to have occurred in a given time interval [u, l]. Finally, we say that survival

data is right-censored when there is a loss of follow-up or non-occurrence of the event of

interest during the observation period, or before the study ends. We can divide it into

three different types:

• Type I: occurs when the study is designed to end after a certain follow-up time. In

this case, the number of failures is random.

• Type II: occurs when the study is terminated after a certain preestablish number

of failures is reached. In this case, the follow-up time is random.

• Type III (random): occurs when an individual is withdrawn from the study without

the failure, or also, for example, if the individual dies for a different reason than

the one studied Colosimo and Giolo (2006).

For the interested reader, other practical examples along with a deeper discussion

regarding censoring in the context of survival are presented in Lawless (2011). The right

censoring scheme occurs more frequently in practice, for this reason, the models described

in this work are for right-censored data.

Let T and C be random variables representing the time to failure and censoring,

respectively. The right-censored survival data are characterized by

Yi = min{Ti, Ci} and δi =

1, If Ti ≤ Ci

0, If Ti > Ci,

where to each individual, i = 1, 2, . . . , n, we have the pair (Yi, δi), Yi is the observable

time and δi is the censoring indicator. It is worth mentioning that when T and C are

independent, we say that the censoring mechanism is non-informative, otherwise, we say

that the censoring mechanism is informative.
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Let T be a non-negative random variable denoting the time until an occurrence of

an event of interest. Define ζ as a vector of parameters, so the cumulative distribution

function (c.d.f.) is expressed by

P (T ≤ t) = F (t|ζ) =

∫ t

0

f(u|ζ)du, t > 0,

where f(·|ζ) is a probability density function (p.d.f.).

The survival function is defined to be the probability that the survival time is greater

than to t, and so

S(t|ζ) = P (T > t) = 1− F (t|ζ), t > 0.

The survival function has some important properties:

(i) S(t|ζ) it is an non-increasing function of t;

(ii) S(0) = 1;

(iii) lim
t→∞

S(t|ζ) = 0.

According to Colosimo and Giolo (2006) the failure (or hazard) rate function is more

informative than the survival function because different survival functions can have sim-

ilar shapes, while the failure rate functions can differ dramatically. This function is

expressed by

h(t|ζ) = lim
∆t→0

P (t < T ≤ t+ ∆t|T > t)

∆t
=
f(t|ζ)

S(t|ζ)
.

The cumulative hazard function is defined as

H(t|ζ) =

∫ t

0

h(u|ζ)du. (2.1)

The odds function can be expressed as

R(t|ζ) =
F (t|ζ)

S(t|ζ)
. (2.2)

The functions described above are mathematically related, therefore satisfy the fol-

lowing relationships:

f(t|ζ) = − d

dt
S(t|ζ) = −S ′(t|ζ),

8



h(t|ζ) =
−S ′(t|ζ)

S(t|ζ)
= − d

dt
[log(S(t|ζ))] , (2.3)

H(t|ζ) =

∫ t

0

h(u|ζ)du = − log [S(t|ζ)] . (2.4)

S(t|ζ) = exp [−H(t|ζ)] = exp

[
−
∫ t

0

h(u|ζ)du

]
. (2.5)

R(t|ζ) = exp [H(t|ζ)]− 1. (2.6)

To obtain inference about the vector of parameters ζ, we will assume that for right-

censored survival data, and under the assumption of a non-informative censoring mech-

anism, we can write the likelihood function as (Lawless, 2011, p. 55)

L(ζ|D) =
n∏
i=1

[f(yi|ζ)]δi [S(yi|ζ)]1−δi

=
n∏
i=1

[h(yi|ζ)]δi S(yi|ζ), (2.7)

where D = (yi, δi, i = 1, 2, . . . , n) is denotes the observed data.

From the frequentist point of view, to find the maximum likelihood (ML) estimators

to the model, we define l(ζ|D) = log(L(ζ|D)), where L(ζ|D) is given in (2.7), after that,

maximizes the function, that is, finds the resolution estimators or system of equations is

given by

U(ζ|D) =
∂l(ζ|D)

∂ζ
= 0,

where U(·) is called the Score function. In problems with high parameter dimensions,

these forms are closed to the equation (2.8) are not viable, that is, we should use numerical

methods to estimate the parameters, for example, the Newton-Rapson algorithm.

In many experiments, it is interesting to evaluate the interval estimates of the pa-

rameters. Consider a ζ vector of parameters of interest of size q. Thus, using the ML

properties and under standard regularity conditions, see Cox and Hinkley (1979), we

have

ζ̂ ≈ Nk(ζ, I−1(ζ)),

9



where k = 1, 2, . . . , q, and I(ζ) = −E
[

∂2

∂ζζ>
l(ζ|D)

]
. However, calculating this Fisher

information in practice in many problems is impracticable, as it depends on the parameter

of interest. Therefore, we can use the observed Fisher information, which is given by the

following Equation

F(ζ̂) =

[
∂2

∂ζζ>
l(ζ|D)|ζ=ζ̂

]
.

For the construction of asymptotic confidence intervals for the components of the ζ

vector, we can calculate in a usual way, that is

IC[ζk;×100(1− α)%] = ζ̂k ± zα/2
√
Fkk(ζ̂),

where α is the level of significance.

Besides that, to the point and interval estimation, we considered the hypothesis tests,

namely: the Wald test (Wald, 1943). Usually, to test the hypothesis that the parameters

are significant. Under H0 : ζ = ζ0 and the test statistic used is given by

W = (ζ̂ − ζ0)>(−F(ζ0))(ζ̂ − ζ0).

Under H0 the statistic test has an approximate chi-square distribution with q degrees of

freedom.

In the next subsection, we present a brief overview of the proportional hazards, pro-

portional odds, and Accelerated failure time models, discussing its main functions and

interpretation of the parameters.

2.2 Regression models

In many studies, there are covariates or explanatory variables that can be related

to the lifetime of patients, equipment, individuals, etc. For instance, the time until the

death of cancer patients, some possible covariates are sex, age, etc. In engineering, the

time until the failure of the equipment, the covariates can be the year of manufacture,

the type of the material used, among others. In this section, we present three families of

regression models in survival analysis, namely PH, PO, and AFT regression models.

10



2.2.1 Proportional hazards model

One of the most famous regression models in survival analysis is the model proposed

by Cox (1972), called proportional hazards models. This model relates the hazard func-

tion in a multiplicative way to the effect of the explanatory variables. The hazard function

of the PH model can be expressed by

h(t|β,x) = h0(t)ex
>
i β, (2.8)

where h0(t) is called a baseline hazard function, because when x = 0 we have h(t|β,x) =

h0(t), x>i = (xi1, xi2, . . . , xip) is a vector of exploratory variables or covariates and β =

(β1, β2, . . . , βp)
> is a vector of the regression coefficients.

In Cox’s original formulation the hazard function in Equation (2.8), is composed

by a non parametric component, h0(t), and a parametric component, ex
>
i β, and the

estimation of the regression coefficients β is carried out through the partial likelihood

Colosimo and Giolo (2006). A fully parametric approach for the PH model can also be

obtained by specifying parametric baseline hazard functions, such as the Exponential,

Weibull, Gamma, Log-logistic, Log-normal distributions, among others.

From the Equation (2.5), the survival function associated with the PH model is given

by

S(t|β,x) = S0(t)e
x>i β

= exp{−H0(t)ex
>
i β}, (2.9)

where S0(t) and H0(t) are the baseline survival and cumulative hazard functions, respec-

tively.

The PH model allows an attractive interpretation in terms of its hazard ratio (HR),

given two individuals i and j their hazards ratio is express by

HR =
h0(t)ex

>
i β

h0(t)ex
>
j β

= exp{x>i β − x>j β}. (2.10)

Note that the Equation (2.10) does not depend on time. For this reason, the PH

model is known in the literature as the proportional hazards model.

The proportional hazards assumption plays a central role in the goodness of fit of

the PH model. According to Struthers and Kalbfleisch (1986), ignoring this assumption
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can lead to bias in the estimation of the model coefficients. To verify that the model

does not violate this assumption (Colosimo and Giolo, 2006) suggest the use of scaled

Schoenfeld residuals presented in Schoenfeld (1982). These residuals can be calculated

in R language using the survival::cox.zph or survminer::ggcoxzph functions.

In this work, we are concerned with a fully parametric specification of the PH model.

Then, for right-censored survival data and under the assumption of a non-informative

censoring mechanism, the likelihood function can be written from the Equation (2.7) as

follows

L(ζ,β|D) =
n∏
i=1

[h(yi|ζ,β,x)]δi S(yi|ζ,β,x)

=
n∏
i=1

[
h0(yi|ζ)ex

>
i β
]δi

exp{−H0(yi|ζ)ex
>
i β},

where ζ is the vector of parameters associated with the baseline distribution, and D =

(yi, δi,xi, i = 1, 2, . . . , n) denotes the observed data.

There are some alternatives available in the literature when the proportional hazards

assumption is not valid, such as the PO and AFT models, which will be discussed in the

next sections.

2.2.2 Proportional odds model

The PO model originally introduced by Bennett (1983) is a regression survival model.

According to Bennett (1983), the PO model is structurally similar to the proportional

hazards model of Cox and may be used in similar situations.

Although the PO model presents an attractive alternative to the PH model, according

to Collett (2015), there are two reasons why this model was not widely used in practice.

First, there are few routines available to fit the PO model, for instance, in language R,

there are the timereg, and spsurv packages. The second is that the model is likely to

give similar results to a Cox regression model that includes a time-dependent variable to

produce non-proportional hazards (Collett, 2015).

The odds function this model can be expressed by

R(t|β,x) = R0(t)ex
>
i β, (2.11)
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where R0(t) is the baseline odds functions. Given the Equations (2.3) e (2.11), we have

that the hazard function is given by

h(t|β,x) =
R′0(t)ex

>
i β

1 +R0(t)ex
>
i β
, (2.12)

where R′0(t) =
dR0(t)

dt
=

h0(t)

S0(t)
. From the Equation (2.2), we have that the survival

function is given by

S(t|β,x) =

[
1

1 +R0(t)ex
>
i β

]
. (2.13)

Similar to the PH model, the PO model allows an easy interpretation of the regression

coefficients in terms of the odds ratio (OR). Specifically, the odds ratio for two individuals

i and j is expressed by

OR =
R0(t) exp{x>i β}
R0(t) exp{x>j β}

= exp{x>i β − x>j β}.

This model is known as the proportional odds PO model because the odds ratio

associated with any elements is constant over time. Besides, the survival function is

the probability that the survival time is greater than t. Therefore, according to Panaro

(2020), if the OR is equal to 1, it indicates that the event understudy has the same

probability of occurring in both groups. On the other hand, if an OR is greater than 1,

it indicates that the event is less likely to occur in the reference group or baseline group.

Finally, an OR less than 1 indicates that it is more likely to occur in the reference group.

The assumption of a constant odds ratio plays an important role in the goodness

of fit of the PO model and should be checked in practice. Unfortunately, to the best

of our knowledge, there are no tests implemented in R that can be used to check such

assumptions.

In this work, the odds function R0(t) will be modeled parametrically. Therefore, from

(2.7), the likelihood function for the PO model can be expressed as

L(ζ,β|D) =
n∏
i=1

[h(yi|ζ,β,x)]δi S(yi|ζ,β,x)

=
n∏
i=1

[
R′0(yi|ζ)ex

>
i β

1 +R0(yi|ζ)ex
>
i β

]δi [
1

1 +R0(yi|ζ)ex
>
i β

]
. (2.14)
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Two models were presented, namely PH and PO. As previously mentioned, the PH

model is well known in survival analysis, however, it presents the proportional hazard

function assumption, so one solution is to use the PO model, but this model is little used

in the literature due to the few functions implemented in statistical software and also it

presents the proportional odds function assumption. A solution for these models is called

the AFT model. This model is widely used in the medical and engineering literature, due

to its flexibility using several parametric distributions to model the baseline distributions.

Next, the AFT model will be presented.

2.2.3 Accelerated failure time model

The PH model is the most popular regression model in survival analysis, but it can

only be used in situations in which the proportional hazards assumption holds. An

alternative to the PH model is the AFT model, which shall be discussed in this section.

The AFT model corresponds to a regression survival model, in which explanatory

variables measured on an individual are assumed to act multiplicatively on the time-

scale, and so affect the rate at which an individual proceeds along the time axis (Collett,

2015). The general model of accelerated failure time is defined by

Ti = exp{x>i β}νi, i = 1, 2, . . . , n, (2.15)

where Ti is the response variable and νi is stochastic component of the model, under

the assumption that ν1, ν2, . . . , νn are independent and identically distributed with the

baseline survival function S0(ν). It is important to highlight that, the model can be

used on the original scale presented in Equation (2.15), or considering the logarithm of

the function presented in Equation (2.15). Several distributions can be considered, for

instance, if we consider the Weibull, Log-normal, Gamma, and Log-logistic distributions

for T , we have the following distributions for ν Extreme value, Normal, Log-Gama, and

Logistic, respectively.
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The survival function for this model can be express by

S(t|β,xi) = P (Ti > t) = P
(
exp{x>i β}νi > t

)
= P

(
νi >

t

exp{x>i β}

)
= S0

(
t

exp{x>i β}

)
. (2.16)

The hazard function of this model, can be obtained from Equations (2.3) and (2.16)

as follows

h(t|β,xi) = − d

dt
logS(t|xi)

=
1

exp{x>i β}
h0

(
t

exp{x>i β}

)
.

The AFT model presents an easy interpretation of the regression coefficients in terms

of a ratio involving the median survival times (or any other percentile). To obtain the

time ratio (TR) between two individuals i and j it is necessary to obtain the survival

percentiles if p is such that

p = S(tp|β,xi) = S0

(
tp

exp{x>i β}

)
.

Then, we have

tp(β,xi) = S−1
0 (p) exp{x>i β}.

Thus, any percentile ratio shall satisfy

TR =
tp(β,xi)

tp(β,xj)
=
S−1

0 (p) exp{x>i β}
S−1

0 (p) exp{x>j β}
= exp{x>i β − x>j β}.

For the construction of the likelihood function of this model, a parametric model

was be assumed to the model of baseline distribution. Then, for right-censored survival

data, and under the assumption of non-informative censoring mechanism, the likelihood

function can be rewritten from the Equation (2.7) as follows

L(ζ,β|D) =
n∏
i=1

[h(yi|ζ,β,x)]δi S(yi|ζ,β,x)

=
n∏
i=1

[
1

exp{x>i β}
h0

(
yi

exp{x>i β}
|ζ
)]δi

S0

(
yi

exp{x>i β}
|ζ
)
. (2.17)
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The three families of regression models presented above involve a baseline distribution,

which can be modeled in a parametric or non-parametric way. Thus, many distributions

can be used to model the baseline distribution. In this work, we used the Kumaraswamy-

G family of distributions defined in Cordeiro et al. (2010) and Cordeiro and de Castro

(2011), the results will be presented in the next Chapter.
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Chapter 3

Kumaraswamy-G family of

distributions in survival analysis

In this chapter, we present the Kumaraswamy-G family of distributions. Next,

we present some particular cases for this family such as Kumaraswamy-Exponential,

Kumaraswamy-Weibull, Kumaraswamy-Gamma, Kumaraswamy-Log-Logistic, Kumaraswamy-

Log-normal distributions. Besides, we presented the proportional hazards regression

models with Kumaraswamy-G baseline distribution (Kum-G-PH), the proportional odds

regression models with Kumaraswamy-G baseline distribution (Kum-G-PO), and the

accelerated failure time regression models with Kumaraswamy-G baseline distribution

(Kum-G-AFT). Finally, we present the inferential procedures, the model selection crite-

ria, and one little discussion of some functions in the package KGsurv.

3.1 Kumaraswamy-G family of distributions

Kumaraswamy (1980) introduced a two-parameter continuous distribution with sup-

port on (0, 1), which is the so-called Kumaraswamy distribution. The author presents

some properties and applications of this model. Assunção (2018) used the Kumaraswamy

distribution in quantile spatial regression to predict the wind speed.

The cumulative distribution and probability density functions associated with the
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Kumaraswamy distribution are given by

F (t|a, b) = 1− (1− ta)b, t ∈ (0, 1), (3.1)

and

f(t|a, b) = abta−1(1− ta)b, t ∈ (0, 1), (3.2)

where a, b > 0. For the interested reader in the properties of the Kumaraswamy distribu-

tion, see Kumaraswamy (1980) and Jones (2009), for more details. Another distribution

defined in the interval (0,1) is the Beta distribution, its the p.d.f. is express by

f(t|a, b) =
1

B(a, b)
ta−1(1− t)b−1, t ∈ (0, 1), (3.3)

where a, b > 0 and B(·, ·) is the beta function. Note that, the Kumaraswamy density

function is simpler than the Beta density function (it does not depend on the beta

function). Besides that, according to Jones (2009), the Kumaraswamy distribution has

many advantages over the beta distribution. For instance, the quantile function, the

random variate generation, the moments, and the order statistics are available in simple

forms.

The Kumaraswamy-G (hereafter Kum-G) family of distributions were presented in

Cordeiro et al. (2010) and Cordeiro and de Castro (2011). According to Cordeiro and

de Castro (2011) the idea of creating the Kum-G distribution came from the results

presented in the class of generalized beta distributions Eugene et al. (2002) and Jones

(2009). Consider an arbitrary baseline c.d.f. G(t|ζ), so g(t|ζ) =
dG(t|ζ)

dt
is the (p.d.f.).

Define γ = (a, b, ζ), where ζ is the vector of baseline parameters. Then, the cumulative

distribution and probability density functions are expressed, respectively, by

F (t|γ) = 1− [1−G(t|ζ)a]b ,

and

f(t|γ) = abg(t|ζ)G(t|ζ)a−1 [1−G(t|ζ)a]b−1 .

The survival function is then given by

S(t|γ) = [1−G(t|ζ)a]b .
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Using the relationship between the hazard, density, and survival functions shown

in (2.1), we have that the hazard function associated with the Kum-G distribution is

expressed by

h(t|γ) =
abg(t|ζ)G(t|ζ)a−1

1−G(t|ζ)a
.

We can write the cumulative hazard function as

H(t|γ) = −b log{1−G(t|ζ)a}, (3.4)

and, using the Equations (2.6) and (3.4), the odds function is expressed as

R(t|γ) = exp [−b log{1−G(t|ζ)a}]− 1.

Many models can be built using (3.4). Cordeiro and de Castro (2011) presented

the following special cases of the Kum-G family of distributions: the Kum-normal,

Kum-Weibull, Kum-Gamma, Kum-Gumbel, and Kum-inverse Gaussian. In the next

subsection, we presented the Kum-Exponential, Kum-Weibull, Kum-Gamma, Kum-Log-

logistic, and Kum-Log-normal distributions used in this work to denoted the failure time.

3.1.1 Kumaraswamy-Exponential distribution

The Kumaraswamy-Exponential (Kum-Exp) distribution was presented in Cordeiro

et al. (2010), as a particular case of the Kumaraswamy-Weibull and Kumaraswamy-

Gamma distributions. Thus, when consider the cumulative distribution function of the

exponential distribution G(t|ζ) = 1 − exp (−tλ) we can be express the Kum-Exp. Let

T be a non-negative random variable denoting the time until an occurrence of an event

of interest. So, we can write T ∼ Kum-Exp(a, b, λ) where a, b are shape parameters and

λ is a scale parameter, and let γ = (a, b, ζ)>. Therefore, the cumulative distribution,

survival, hazard, cumulative hazard, and odds functions can be express by
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F (t|γ) = 1− [1− (1− exp (−tλ))a]
b
,

S(t|γ) = (1− {1− exp (−tλ)}a)b ,

h(t|γ) =
abλ exp (−tλ) (1− exp (−tλ))a−1

1− {1− exp (−tλ)}a
,

H(t|γ) = −b ln (1− {1− exp (−tλ)}a) ,

R(t|γ) = exp [−b ln (1− {1− exp (−tλ)}a)]− 1.

The Kumaraswamy-Exp distribution was used in several studies. For instance, Ade-

poju and Chukwu (2015) to fit survival models to three different data sets using the

maximum likelihood approach. In D’Andrea et al. (2018), this distribution was used to

model survival data with a cure fraction, and Chacko and Mohan (2017) applied this dis-

tribution to model survival data subjected to type II censoring. In Figure 3.1 we present

some shapes of the density, survival, and hazard function of the Kumaraswamy-Exp

distribution.
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Figure 3.1: The density, survival, and hazard functions of the Kumaraswamy-Exponential

distribution.
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3.1.2 Kumaraswamy-Weibull distribution

In this work, we used the c.d.f G(t|ζ) = 1−exp

[
−
(
t

λ

)c]
of the Weibull distribution

with ζ = (c, λ), shape parameter c > 0 and scale parameter λ > 0. The Kumaraswamy-

Weibull (Kum-W) distribution was presented in Cordeiro et al. (2010). The cumulative

distribution, survival, hazard, cumulative hazard, and odds functions are given by

F (t|γ) = 1−
[
1−

(
1− exp

[
−
(
t

λ

)c])a]b
,

S(t|γ) =

(
1−

{
1− exp

[
−
(
t

λ

)c]}a)b
,

h(t|γ) =
abc
λ

(
t
λ

)c−1
exp

[
−
(
t
λ

)c] (
1− exp

[
−
(
t
λ

)c])a−1

1−
{

1− exp
[
−
(
t
λ

)c]}a ,

H(t|γ) = −b ln

(
1−

{
1− exp

[
−
(
t

λ

)c]}a)
,

R(t|γ) = exp

[
−b ln

(
1−

{
1− exp

[
−
(
t

λ

)c]}a)]
− 1.

In this case we used the notation T ∼ Kum-W(a, b, c, λ), where a, b, c > 0 are shape

parameters, and λ > 0 is scale parameter.

As shown in Cordeiro et al. (2010) the Kum-W distribution includes in particular

cases some important distributions in the context of survival analysis, such as Kum-

exponential, Kum-Rayleigh, Exponentiated Weibull, Exponentiated Rayleigh, Exponen-

tiated exponential, Weibull, Rayleigh, Exponential. In Figure 3.2 was presented some

shapes of the density, survival, and hazard functions of the Kum-W distribution, we can

see that this distribution is widely flexible.
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Figure 3.2: The density, survival, and hazard functions of the Kumaraswamy-Weibull

distribution.
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3.1.3 Kumaraswamy-Gamma distribution

Another distribution considered in this work is the Kumaraswamy-Gamma (Kum-

GA) distribution, introduced in Cordeiro and de Castro (2011). Considering the cumu-

lative distribution function G(t|ζ) =
Γtd(α)

Γ(α)
of the gamma distribution, where Γ(·) is the

gamma function and Γz =

∫ z

0

t(α−1)e−tdt. The cumulative distribution, the survival, the

hazard, the cumulative hazard, and the odds functions the Kum-GA distribution can be

written by

F (t|γ) = 1−
[
1−

(
Γtd(α)

Γ(α)

)a]b
,

S(t|γ) =

[
1−

(
Γtd(α)

Γ(α)

)a]b
,

h(t|γ) =
ab
(
dαtα−1 exp{−dt}

Γ(α)

)(
Γtd(α)
Γ(α)

)a−1

1−
(

Γtd(α)
Γ(α)

)a ,

H(t|γ) = −b log

[
1−

(
Γtd(α)

Γ(α)

)a]
,

R(t|γ) = exp

(
−b log

[
1−

(
Γtd(α)

Γ(α)

)a])
− 1.

Thus, we can write T ∼ Kum-GA(a, b, α, d) where a, b, α > 0 are shape parameters

and d is a inverse scale parameter. It is important to mention, according to Cordeiro

et al. (2010), the Kum-GA distribution has the Kum-Exp and Exponential distributions

as a particular case.

Application using the Kumaraswamy-Gamma distribution can be found in De Pascoa

et al. (2011) where both the maximum likelihood and Bayesian approaches are adopted

for estimating the model parameters. In Figure 3.3 we presented the density, survival,

and hazard functions of the Kumaraswamy-Gamma distribution. Therefore, can be seen

that just like the Kum-Exp and Kum-W this distribution has many shapes, then this

distribution is very flexible.
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Figure 3.3: The density, survival, and hazard functions of the Kumaraswamy-Gamma

distribution.
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3.1.4 Kumaraswamy-Log-Logistic distribution

The Kumaraswamy-Log-logistic distribution (Kum-llogis) was presented in Santana

et al. (2012). This distribution is derived from the log-logistic distribution, from the

point of view of survival analysis, this distribution is very attractive, because according to

Collett (2015), this distribution belongs to the class of PO and AFT models, respectively.

The cumulative distribution, survival, hazard, cumulative hazard, and odds functions for

the Kum-llogis distribution can be written by

F (t|γ) = 1−

1−

 τ
(
t
ρ

)τ
t
[
1 +

(
t
ρ

)τ]2


a

b

,

S(t|γ) =

1−

 τ
(
t
ρ

)τ
t
[
1 +

(
t
ρ

)τ]2


a

b

,

h(t|γ) =

ab

(
1−

[(
t
ρ

)τ]−1
)(

τ( tρ)
τ

t[1+( tρ)
τ
]
2

)a−1

1−
(

τ( tρ)
τ

t[1+( tρ)
τ
]
2

)a ,

H(t|γ) = −b log

1−

 τ
(
t
ρ

)τ
t
[
1 +

(
t
ρ

)τ]2


a ,

R(t|γ) = exp

−b log

1−

 τ
(
t
ρ

)τ
t
[
1 +

(
t
ρ

)τ]2


a
− 1.

In this case, we use notation for T ∼ Kum-llogis(a, b, ρ, τ) when, a, b, ρ > 0 is the

scale parameter and τ > 0 is a shape parameter. Santana et al. (2012) discuss the

method of maximum likelihood to estimate the model parameters and two real data sets

was used in the Kum-llogis distribution. Lastly, in Figure 3.4, we can note that the

Kumaraswamy-Log-Logistic distribution is very flexible because has many shapes of the

density, survival, and hazard functions.
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Figure 3.4: The density, survival, and hazard functions of the Kumaraswamy-Log-Logistic

distribution.
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3.1.5 Kumaraswamy-Log-normal distribution

Finally, we present the Kumaraswamy-Log-normal distribution, which was intro-

duced in Nadarajah and Rocha (2016). For this distribution we assume G(t|ζ) =[
Φ

(
log(t)− ω

σ

)]
, where Φ(·) is the standard normal distribution. It is important to

highlight that, we consider the parameterization ω = log(µ). Therefore, the cumulative

distribution, survival, hazard, cumulative hazard, and odds functions of the Kum-lnorm

can be express by

F (t|γ) = 1−
[
1−

[
Φ

(
log(t)− ω

σ

)]a]b
,

S(t|γ) =

[
1−

[
Φ

(
log(t)− ω

σ

)]a]b
,

h(t|γ) =

ab

[
e
−
(

(log(t)−ω2

2σ2

)
1

tσ
√

2π

] [
Φ
(

log(t)−ω
σ

)]a−1

1−
[
Φ
(

log(t)−ω
σ

)]a ,

H(t|γ) = −b log

(
1−

[
Φ

(
log(t)− ω

σ

)]a)
,

R(t|γ) = exp

[
−b log{1−

[
Φ

(
log(t)− ω

σ

)]a
}
]
− 1.

Then, we can write T ∼ Kum-Lnorm(a, b, ω, σ) where a, b, ω are shape parameters

and σ is a scale parameter. Although this distribution does not have many applications

in the literature, we can see in Figure 3.5, that this distribution has many forms, making

this distribution very attractive to model the failure time.

Therefore, as these distributions are very flexible, that is, these distributions have

many forms of density, survival, and hazard functions, we decided to consider them in

the KGsurv package. It is important to note that many other distributions that are part

of the Kumaraswamy-G distribution family can be included in the new versions of the

KGsurv package.
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Figure 3.5: The density, survival, and hazard functions of the Kumaraswamy-Log-normal

distribution.
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3.2 Regression models with Kum-G baseline distri-

butions

In survival analysis, it is important to study the effects of covariates on the response

variable, for this reason, the Cox model is the most popular in survival analysis because it

is the first model that includes covariates through the hazard function. Then, we discuss

an approach to including covariates information for the models implemented in the R

package KGsurv.

To the best of our knowledge, the Kumaraswamy-G with PH, PO, and AFT families

of regression models have not been considered in the literature. In this fashion, below

we introduced these models.

3.2.1 Proportional hazards regression models with Kumaraswamy-

G baseline distribution.

Since the introduction of proportional hazards models, many parametric distributions

have been used to model the baseline hazard function, such as the Weibull, Log-normal,

Gamma, Log-logistic distributions, among others. The Kum-G family of distributions

arises as an attractive alternative to model the baseline hazard because it accommodates

hazard functions of various shapes, adding great flexibility in the modeling. In this

fashion, we can build a class of proportional hazards models based on this distribution

(called Kum-G-PH).

The hazard function for the Kumaraswamy-G family of distributions is given by

h(t|θ,x) =

[
abg(t|ζ)G(t|ζ)a−1

1−G(t|ζ)a

]
ex
>
i β,

with θ = (γ,β)>, where γ is a vector of the parameters of the Kumaraswamy-G family

of distributions and β is a vector of the regression coefficients. Then, using (2.9), the

survival function for the Kumaraswamy-G family of distributions is expressed as

S(t|θ,x) = exp{b log{1−G(t|ζ)a}ex>i β}.

The general likelihood function of the Kum-G-PH model assumes the form
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L(θ|D) =
n∏
i=1

[[
abg(yi|ζ)G(yi|ζ)a−1

1−G(yi|ζ)a

]
ex
>
i β

]δi
exp{b log{1−G(yi|ζ)a}ex>i β}. (3.5)

3.2.2 Proportional odds regression models with Kumaraswamy-

G baseline distributions.

Similarly to the PH model, the PO model can be build using the Kum-G family

of distributions (called Kum-G-PO) using the Equations (2.6) and (2.12) the hazard

function of this model can be expressed by

h(t|θ,x) =
exp [−b log{1−G(t|ζ)a}] abg(t|ζ)G(t|ζ)a−1(1−G(t|ζ)a)ex

>
i β

1 + (exp [−b log{1−G(t|ζ)a}]− 1) ex
>
i β

.

The survival function of this model can be written using the Equations (2.6) and

(2.13). Thus, its expression is given by

S(t|θ,x) =
[
1 + (exp{−b log(1−G(t|ζ)a)} − 1) ex

>
i β
]−1

.

From (2.7), the general likelihood function for this model can be expressed as

L(θ|D) =
n∏
i=1

[
exp [−b log{1−G(yi|ζ)a}] abg(t|ζ)G(yiζ)a−1(1−G(yi|ζ)a)ex

>
i β

1 + (exp [−b log{1−G(yi|ζ)a}]− 1) ex
>
i β

]δi
×[

1 + (exp{−b log(1−G(yi|ζ)a)} − 1) ex
>
i β
]−1

. (3.6)

3.2.3 Accelerated failure time regression models with Kumaraswamy-

G baseline distribution

Finally, we present the AFT regression model considering the Kum-G family of dis-

tributions, this model was named Kum-G-AFT.

The hazard function of the Kum-G-AFT model, can be expressed by

h(t|θ,x) =
1

exp{x>i β}

abg
(

t
exp{x>i β} |ζ

)
G
(

t
exp{x>i β} |ζ

)a−1

1−G
(

t
exp{x>i β} |ζ

)a .

The survival function of this model, it is given by

S(t|θ,x) =

[
1−G

(
t

exp{x>i β}
|ζ
)a]b−1

.
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Using the (2.17), the general likelihood function for the Kum-GAFT model is given

by

L(θ|D) =
n∏
i=1

 1

exp{x>i β}

abg
(

yi
exp{x>i β} |ζ

)
G
(

yi
exp{x>i β} |ζ

)a−1

1−G
(

yi
exp{x>i β} |ζ

)a

δi [

1−G
(

yi
exp{x>i β}

|ζ
)a]b−1

.

(3.7)

3.3 Inferential procedures

For the estimation of the parameters of the Kum-G-PH, Kum-G-PO, and Kum-G-

AFT models, consider the following penalized log-likelihood function of the models can

be expressed by

lp(θ) = log(L (θ|D)) + log (p(a, b)) , (3.8)

where p(a, b) = f(a|κ, κ)f(b|κ, κ), f(·|κ, κ) corresponds the joint distribution of two inde-

pendent random variables following gamma distributions with mean equal 1 and variance

equal 1/κ, and θ = (γ,β)> is a vector of baseline parameters and regression coefficients.

The inclusion of the penalty function in (3.8) is needed to circumvent identifiability

problems that might arise in the model fitting process.

The first derivatives of the log-likelihood function with respect to the θ are presented

in Appendix A. The maximum likelihood estimators and observed Fisher information

matrix for the Kum-G-PH, Kum-G-PO, and Kum-G-AFT models do not have closed

forms, and need to be obtained numerically, then we also used the rstan::optimizing

function. Besides, it is important to note that the derivatives presented in Appendix A

can be calculated numerically considering rstan::optimizing function available in R.

It is well known that, under mild regularity conditions, see Cox and Hinkley (1979),

the ML estimator θ̂ is consistent and follows a normal asymptotic joint distribution with

an asymptotic mean θ, and an asymptotic covariance matrix Σ(θ) that can be obtained

from the corresponding expected Fisher information matrix. So, we have n→∞

√
n
(
θ̂ − θ

)
→ Nm+p

(
0,Σ(θ̂)

)
,

where m is the size of the vector γ and 0 is a (m+ p)× 1 vector.
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The asymptotic confidence interval (1− α)100% for θi can be express by

IC[θi;×100(1− α)%] = θ̂i ± zα/2
√
F−1
ii (θ̂),

where i = 1, 2, . . . ,m+ p.

3.4 Model selection

In this work, we consider three statistics that are used to verify the fit of the mod-

els under the frequentist approach. The first statistic is called the Akaike information

criterion (AIC) (Akaike, 1998), this measure can be expressed as

AIC = −2l(ζ|D) + 2q,

where l(ζ|D) is the log-likelihood function and q is the number of parameters in model.

The second statistic considered is called Bayesian Information Criteria (BIC), there-

fore it is given by

BIC = −2l(ζ|D) + q log(n),

with n is the sample size.

The third statistic used in this work is the mean square error (MSE). This statistic

can be written as

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2,

where Yi is the vector of observed values of the variable being predicted, with Ŷi being the

predicted values. Thus, the models that have a lower value of AIC, BIC, and MSE are the

most adequate model for the data set used. In this work, the MSE is Residual standard

error calculated using the linear regression model, where Y represents the estimated

survival function calculated by the Cox-Snell residuals of the Kum-G regression models

and X represents the survival function calculated by the method of Kaplan-Meyer.

The search for the best fitted models, taking into account the criteria presented above,

can be carried out with the aid of the Pareto set of solutions. An optimal Pareto set is

a set of solutions that are not dominated by each other (Konak et al., 2006). A non-

dominated solution is defined for this problem as a solution that is never worse than the
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others in both objectives simultaneously. Figure 3.6 represents the bests solutions using

the Pareto set solutions. The red points in the graph are the optimal points of Pareto,

Although other criteria can be used, in this work we shall consider the AIC and the MSE

to obtain the set of Pareto solutions.

Figure 3.6: An example of a graph using the set of Pareto solutions.

Source: (Wang et al., 2015, p. 4).

3.5 R package KGsurv

In this dissertation, we propose a new package in R language, called KGsurv. This

package was created to fit the proportional hazards, proportional odds, and accelerated

failure time models considering different distributions belonging to the Kum-G family

of distributions. The help for used the KGsurv package was presented in Appendix

D. However, in this section, some theoretical concepts regarding the KGsurv::kgreg,

KGsurv::coxsnell, KGsurv::explore fits and KGsurv::best fits functions was pre-

sented.

The function KGsurv::kgreg enables one to fit the PH, the PO, and the AFT families

of survival regression models with baseline distributions modeled by the Kum-Exp, Kum-
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W, Kum-GA, Kum-llogis, and Kum-lnorm distributions using the inferential procedures

described in the previous sections, that is, under the maximum likelihood approach con-

sidering right-censored and under the assumption of a non-informative censoring mech-

anism. The score functions and observed Fisher information matrices, needed to carry

out inferences on the models parameters under the ML approach, are obtained calculated

numerically from the rstan::optimizing function.

Aiming to reduce problems of convergence of the algorithm, possibly related to iden-

tifiability issues that might arise in the Kum-G family of distributions, a penalty function

was added to the log-likelihood function, then the log-likelihood function can be express

(3.8). Specifically, the log-density of a gamma distribution with mean one and variance

1/κ, was considered for the shape parameters a and b of the Kum-G distribution. Such

a strategy has proven to reduce considerably the problems of convergence observed in

early versions of the proposed package.

Regarding the fits of the models presented in the KGsurv package, some graphic

methods can be used to check if the models are reasonable. For example, in (Colosimo

and Giolo, 2006, p. 124 and 166) the Cox-Snell residuals are presented. These residuals

are useful for examining the general fit of the PH, PO, and AFT models. The Cox-Snell

residuals were introduced in Cox and Snell (1968) and can be express by

êi = Ĥ(t|β,xi), (3.9)

where H(t|·) is the cumulative hazard function presented in (2.1). Then, using relation

(2.4) and Equations (2.9), (2.13), and (2.16) can be provide the residuals of the Cox-

Snell for the PH, PO, and AFT models. In this work, the KGsurv::coxsnell function

was presented to calculate the Cox-Snell residuals of the models presented in the KGsurv

package to assist in choosing the model with the best fit.

Another attractive function available in the KGsurv package is the KGsurv::explore fits

function. This function was developed with the aim to allow the user to fit/explore a

large number of models, taking into account different choices of regression structures

and baseline distributions, in combination with different values for the penalty param-

eter κ (by default, 1e-03, 1e-02, 1e-01, 0, 1e+00,1e+01, 1e+02, 1e+03). Therefore, the
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KGsurv::explore fit function allows one to explore up to 120 models considering all

combinations of regression models, failure time distributions, and penalties considered in

this work.

Finally, after saving the result of the KGsurv::explore fits function on an object,

the KGsurv::best fits function must be used. This function provides a graph similar

to that displayed in Figure 3.6, along with a table containing the best fitted models,

according to the Pareto solution presented in the previous section. It is important to

mention that, only the models to which the algorithms converged are chosen and the

order in which the models are placed is decreasing concerning the values of the MSE

statistic, that is, from the highest to the lowest. Additionally, the KGsurv::best fits

function also provides a graphic containing the plots of the Cox-Snell residuals associated

with the best fits, together with the penalty parameter, the AIC, and MSE values.

In the next chapter, we present three applications using the models implemented

in the KGsurv package considering three real data sets widely used in survival analysis

literature.
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Chapter 4

Applications

In this chapter, we use the models implemented in the R package KGsurv to reanalyze

three real data sets that have been previously addressed in the literature. Our goal here is

to compare the models fitted using the R package KGsurv with the Bernstein polynomial

models presented in Appendix B and Panaro (2020), and available in R package spsurv.

The three data sets involve right-censored survival data and the proportional hazards

assumption being valid for the first data set, and invalid for the other ones.

4.1 Laryngeal cancer data set

In this section, we present an application using the Kum-G-PH, Kum-G-PO, and

Kum-G-AFT models considering the five G distribution discussed in the previous sections

to analyze the data set from a study presented in Klein and Moeschberger (2006), and

available in the R package KMsurv. This study involved 90 male patients diagnosed with

larynx cancer between the years 1970 to 1978, with follow-up until 1983. The censorship

percentage of this data is approximately 44%. The response and covariates used in this

application are time until death (in the month), standardized age (between 0 or 1), and

stage (I, II, III, or IV). In this clinical trial, we consider Stage I as the reference group.

One of the aims of this study was to investigate whether the age and stage of cancer

are related to the death of patients with laryngeal cancer. In short, in this clinical trial,

the average is 79 age is 64.61 and the standard deviation is 10.79, 37% of patients are
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stage I, 19% stage II, 30% stage III, and 14% stage IV.

Figure C.2, shows the standardized Schoenfeld residuals along with the test of pro-

portional hazards assumption of the Cox model for each covariate included in the model.

Considering the significance level of 5% and based on Figure C.2, there is no evidence to

reject the proportional hazards hypothesis. Therefore, we expect the Kum-G-PH model

to provide a good fit, however, we use all models in this data set.

Table 4.1 presents the best five models provided by the KGsurv::explore fits and

KGsurv::best fits functions for all models considering the Laryngeal cancer data set.

In Table 4.1, we can see that the five models considered are Kum-lnorm-PH, Kum-llogis-

PO, and Kum-lnorm-PO with penalty parameters ranging from 1 to 1000 with code equal

0, that is, the algorithm converged for these models (code different of 0 indicate that the

algorithm no converged). Besides, the KGsurv::best fits show the plots of the Pareto

solution and Cox-Snell residuals, respectively. Then, in Figure 4.3, we present the five

models chosen from the 120 models fit by the KGsurv::explore fits function. Besides

in Figure 4.1, we can see that, the Kum-lnorm-PH, Kum-llogis-PO, and Kum-lnorm-PO

present a good fit for the data set. It can be noted that the Kum-lnorm-PH has the

smallest AIC and Kum-lnorm-PO has the smallest MSE, but the Cox-Snell residuals

shown in Figures 4.1 and 4.2, indicates that the Kum-llogis-PO model with a penalty

equal to 1000 has the best fit, considering that the points are closer to the red line.

Table 4.1: The best fits of the Kum-G-PH, Kum-G-PO, and Kum-G-AFT models for

laryngeal data set.

Family Distribution AIC MSE Penalty code

PH Log-normal 270.3176 0.0254 1000 0

PO Log-logistic 271.6043 0.0212 1000 0

PO Log-logistic 280.6618 0.0212 100 0

PO Log-logistic 289.1522 0.0210 10 0

PO Log-normal 296.3727 0.0166 1 0
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Figure 4.2: The plot of the Cox-Snell residuals for Kum-llogis-PO model for the laryngeal

data set.
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Figure 4.3: The plot of the Pareto set for the best fits of the Kum-G-PH, Kum-G-PO,

Kum-G-AFT models considering the KGsurv package for the laryngeal data set.

The Kum-llogis-PO and the proportional odds model considering the Bernstein poly-
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nomial (BPPO) models were considered to explain the relationship between the survival

time with the age of the patients and the stage of cancer (stage I was considered the

reference group) and to compare whether the results are similar. Table 4.2 shows the

results of the fit of the two models. As it can be observed, the Kum-llogis-PO model

presents similar results when compared with the BPPO model, and the Cox-Snell resid-

uals for Kum-llogis-PO model presented in Figure 4.2 indicate that this model presents

a good fit alternative to this data set.

Table 4.2: ML for the Kum-llogis-PO and Bernstein Polynomial based Proportional Odds

model for the laryngeal cancer data set.

Kum-llogis-PO model

CI

coef exp(coef) s.e(coef) 2.5% 97.5%

β1 : Age 0.2240 1.2511 0.2120 −0.1915 0.6395

β2 : Stage II 0.3657 1.4415 0.6021 −0.8145 1.5458

β3 : Stage III 1.3199 3.7430 0.5178 0.3051 2.3348

β4 : Stage IV 2.6598 14.2934 0.6268 1.4313 3.8883

AIC = 271.6043 BIC = 291.6028

Bernstein Polynomial based Proportional Odds model

CI

coef exp(coef) s.e(coef) 2.5% 97.5%

β1 : Age 0.2231 1.2501 0.2084 −0.0171 0.0585

β2 : Stage II 0.1892 1.2083 0.5895 −0.9662 1.3446

β3 : Stage III 1.1306 3.0976 0.5045 0.1419 2.1193

β4 : Stage IV 2.4615 11.7221 0.6294 1.2280 3.6950

AIC = 308.0402 BIC = 343.0375

It can also be observed that the Kum-llogis-PO model has the smallest value of AIC

and BIC concerning the BPPO model, suggesting that, the Kum-llogis-PO model has

the best fit for the laryngeal data set.

Regarding the interpretation of the Kum-llogis-PO model parameters, we have that

the effect of the patients’ age was not statistically significant. Also, the effects of patients

diagnosed in stages II were not statistically significant, that is, there is no significant
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difference between the effects of patients in stage II concerning the reference group.

However, when we consider the effect of patients diagnosed with stage III and IV disease,

there is a significant difference concerning the reference group. Therefore, the estimated

OR for the stage III patients is approximately 4, which means that the odds of death is

about 4 times higher for patients in stage III when compared to the same age patients in

stage I, whereas the estimated OR for the stage IV patients is approximately 14, which

means that the odds of death is about 14 times higher for patients in stage IV when

compared to the same age patients in the reference group.

In summary, the results provided by the Kum-llogis-PO model are similar to Bern-

stein’s semi-parametric model presented in Panaro (2020), and also the plot of the Cox-

Snell residuals displayed in Figure 4.2 indicates a reasonable fit for this data set.
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4.2 NCCTG lung cancer data set

This study was conducted by the North Central Cancer Treatment Group and pre-

sented in Loprinzi et al. (1994), the data set is available in the R package survival. This

clinical trial involved patients with advanced lung cancer, and the goal of the study was

to determine whether patients’ self-assessment could provide prognostic information com-

plementary to the physician’s assessment. The data set contains 228 patients, including

63 patients that were right-censored resulting in approximately 28% of censorship.

The response and covariates considered in clinical trial are: time until the death (in

month), ph.karno: performance score (0 - bad, 100 - good), and ph.ecog: performance

score as rated by the physician (0 = asymptomatic, 1 = symptomatic but completely

ambulatory, 2 = in bed < 50% of the day, 3 = in bed > 50% of the day but not bed-

bound, 4 = bed-bound). The performance score has an average of approximately 82 and

the standard deviation is approximately 12. Lastly, the performance score as rated by

the physician there are 27 % in classified in 0, 50% in 1, 21% in 2, and 1% in 4.

In Figure C.3, we can see that the assumption of proportional hazards has been

violated for a ph.karno covariate considering the significance level of 5 %. However, the

value is close to 0.05, also, considering higher levels of significance, this covariate accepts

the assumption of proportional hazards. Therefore, we considered the Kum-G-PH models

in the analysis to show the effectiveness of the KGsurv::best fits function in identifying

the models with the best fits for this data set.

Table 4.3 shows the best fits provided by the KGsurv::best fits function. In Table

4.3 and Figure 4.6, we can see that the models Kum-Exp-AFT, Kum-Exp-PH, Kum-

llogis-PO, and Kum-llogis-AFT were presented with different penalty values ranging

from 0.1 to 1000. Then, based on the Table 4.3 and Figure 4.4, the Kum-Exp-AFT

model presented the lowest AIC value and the Kum-llogis-PO presented the lowest MSE,

however, considering the Cox-Snell residuals in Figure 4.5 the Kum-Exp-AFT model with

the penalty parameter equal to 1000 presented the reasonable fits for this application.

In Table 4.4, we present the results of the Kum-Exp-AFT and the Bernstein polynomial-

based Accelerated Failure time (BPAFT) models for the lung data set. We can see that
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Table 4.3: The best fits of the Kum-G-PH, Kum-G-PO, and Kum-G-AFT models for

lung data set.

Family Distribution AIC MSE Penalty code

AFT Exponential 1143.960 0.0182 1000 0

PH Exponential 1144.821 0.0170 1000 0

PO Log-logistic 1156.859 0.0169 100 0

AFT Log-logistic 1172.348 0.0157 10 0

PO Log-logistic 1212.090 0.0140 0.1 0

the β1 for the models showed a difference and considering the significance level of 5 %

the β4 is not significant, whereas the BPAFT models are significant. However, the other

parameters had similar results. Besides, we can observe that the AIC and BIC of the

Kum-Exp-AFT model are inferior concerning the BPAFT model, then, for this data set

these criteria suggesting that the Kum-Exp-AFT model presents the best fit.

For the interpretation of the parameters was considered the Kum-Exp-AFT model.

It is important to mention that for this application, ph.ecog IV was considered as a

reference group. Thus, we can notice that the ph.karno variable was not statistically

significant. Besides, the ph.ecog I covariate was not statistically significant, that is,

there is no difference between patients with ph.ecog I compared to patients with ph.ecog

IV. The ph.ecog II covariate was statistically significant, that is, there is a difference

between patients with ph.ecog II compared to patients in the reference group. Therefore,

the estimated TR is 0.42, which means that the median time to death for patients

with ph.ecog II has a reduced 53% concerning compared with patients with ph.ecog

IV. Finally, the ph.ecog III covariate was not statistically significant, thus, there is no

difference between patients with ph.ecog III concerning patients in the reference group.

It is important to note that in the BPAFT model this effect is significant, then, the

median time to death for patients with ph.ecog III has a reduced 68% compared with

patients with ph.ecog IV.
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Figure 4.5: The plot of the Cox-Snell residuals for Kum-Exp-AFT model for lung data

set.
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Figure 4.6: The plot of the Pareto set for the lung data set.

Briefly, in this application, we use the Kum-Exp-AFT model, which presented similar

results with the results presented by the BPAFT model, except the ph.karno and ph.ecog
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III covariates. However, as the Kum-Exp-AFT model presented the lowest AIC and

BIC values and the Cox-Snell residuals 4.5 presented a reasonable fit, we can see that

considering the Kumaraswamy-G family of distribution as a baseline is an attractive

alternative for the set of lung cancer data.

Table 4.4: ML for the Kum-Exp-AFT and Bernstein Polynomial based Accelerated Fail-

ure time model for the lung data set.

Kum-Exp-AFT model

CI

coef exp(coef) s.e(coef) 2.5% 97.5%

β1 : ph.karno −0.0055 0.9945 0.0079 −0.0210 0.0101

β2 : ph.ecog I −0.3398 0.7119 0.1826 −0.6977 0.0182

β3 : ph.ecog II −0.8621 0.4223 0.2874 −1.4255 −0.2987

β4 : ph.ecog III −1.6448 0.1931 0.8713 −3.3525 0.0629

AIC = 1143.96 BIC = 1167.904

Bernstein Polynomial based Accelerated Failure time

CI

coef exp(coef) s.e(coef) 2.5% 97.5%

β1 : ph.karno 0.0029 1.0029 0.0032 −0.0034 0.0093

β2 : ph.ecog I −0.24062 0.7861 0.1436 −0.5222 0.0409

β3 : ph.ecog II −0.5673 0.5671 0.1387 −0.8392 −0.2954

β4 : ph.ecog III −1.1321 0.3224 0.4781 −2.0692 −0.1950

AIC = 1187.771 BIC = 1256.358
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4.3 Veterans administration data set

In this section, we use the models implemented in the proposed package to reanalyze

the data set described in Prentice (1973), available in R package survival. This data

set contains n = 137 patients who were followed up by the Veterans Administration Lung

cancer study group. The censorship percentage for this clinical study is approximately

6.5%. For this clinical trial, the response and exploratory variables are time until death

(in days), standardized PS: patients’ performance score (from 0 to 1), and cell type:

Histological type of tumor (squamous cell, small cell, adeno cell, large cell).

For the time until the death of patients, we divide the time by 30 days, so that the

results of the models do not present computational problems. The covariate PS has an

average of 58.57 and a standard error of 20.03. Concerning the covariate cell type, 27%

are squamous cells, 34% small cells, 20% adeno cells, and 20% large cells. The interest in

this application is to evaluate the effect of the PS and cell type covariates on the survival

time of patients with lung cancer. For this data set, we consider the squamous cells as a

reference group.

We checked whether the proportional hazards model can be applied to this data set.

In Figure C.4 it shows that the basic assumption of the Cox model was violated, like

the previous application, the Kum-G-PH models are not suitable for this data set, that

is, the Kum-G-PO and Kum-G-AFT models are suitable for this data set. However,

just like the previous application, we use KGsurv::explore fits to check if all models

present in the KGsurv::kgreg package fit for the veteran data set.

Table 4.5 and Figure 4.9 show the best models considering the Pareto set, and it can

be seen that only five models were considered, the Kum-llogis-PO and Kum-llogis-AFT

models considering different penalty values ranging from 1 to 1000. For this application

the model chosen was the Kum-llogis-AFT model with the penalty parameter equal to

1000, this choice was based on Figure 4.7 and Figure 4.8, which shows that despite the

model has not the lowest MSE and AIC value, however, the Cox-Snell residuals have a

better fit for the Kum-llogis-AFT model.

In Table 4.6, it can be seen that the estimates of the regression coefficients of the
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Table 4.5: The best fits of the Kum-G-PH, Kum-G-PO, and Kum-G-AFT models for

Veterans administration data set.

Family Distribution AIC MSE Penalty code

PO Log-logistic 539.6952 0.0174 1000 0

AFT Log-logistic 541.8205 0.0154 1000 0

AFT Log-logistic 550.8849 0.0154 100 0

AFT Log-logistic 559.4134 0.0152 10 0

AFT Log-logistic 568.5501 0.0142 1 0

Kum-llogis-AFT and BPAFT models are similar. However, the AIC and BIC of the

Kum-llogis-AFT model are inferior to those of the BPAFT model, that is, these results

suggest that the Kum-llogis-AFT model presents a better fit. Also, the graph of the

Cox-Snell residuals of this model presented in Figure 4.8 shows that the Kum-llogis-AFT

has a reasonable fit for the Veterans data set. Therefore, for the analysis of the results

for the Veterans data set, we consider the fit of the Kum-llogis-AFT model.

The covariate PS was statistically significant, then, if we increase a unit in the PS,

we have that the median time to death has increased by 2 times. Besides, the small cell

and adeno cell types were also statistically significant, that is, the median time to death

of these cells is different compared to the reference cell. For the small cell, we have that

the estimated TR is 0.47, this implies that the median time to death has a reduction of

53% concerning patients with squamous cells. For the adeno cell, we have an estimated

TR of 0.46, which means that the median time to death has a 54% reduction concerning

patients in the reference group. Finally, the large cell was not statistically significant,

this implies that the median time to death does not differ from patients with a large cell

compared to the squamous cell.
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Figure 4.8: The plot of the Cox-Snell residuals for Kum-llogis-AFT model for the Veterans

data set.
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Figure 4.9: The plot of the Pareto set for the best fits of the Kum-G-PH, Kum-G-PO,

Kum-G-AFT models considering the KGsurv package for the Veterans data set.

In short, the Kum-Exp, Kum-Weibull, Kum-Gamma, Kum-lnorm, and Kum-llogis
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models were used as baseline distributions for the regression models PH, PO, and AFT

to analyze the Veterans data set. Based on Tables 4.5 and 4.6 and Figures 4.7, 4.8, and

4.9, we can see that the Kum-llogis model presented is one possibility for fit to this data

set.

Table 4.6: ML for the Kum-llogis-AFT and Bernstein Polynomial based Accelerated

Failure time model for the Veteran data set.

Kum-llogis-AFT model

CI

coef exp(coef) s.e(coef) 2.5% 97.5%

β1 : PS 0.7006 2.0150 0.0823 0.5393 0.8618

β2 : Small cell −0.7455 0.4745 0.2346 −1.2053 -0.2857

β3 : Adeno cell −0.7579 0.4686 0.2562 −1.2601 -0.2556

β4 : Large cell −0.0921 0.9120 0.2556 −0.5931 0.4089

AIC = 541.8205 BIC = 565.1803

Bernstein Polynomial based Accelerated Failure time model

CI

coef exp(coef) s.e(coef) 2.5% 97.5%

β1 : PS 0.6849 1.9836 0.0753 0.5374 0.8324

β2 : Small cell −0.6926 0.5003 0.2448 −1.1723 -0.2129

β3 : Adeno cell −0.8694 0.4192 0.2487 −1.3568 -0.3819

β4 : Large cell −0.1252 0.8823 0.2634 −0.6415 0.3911

AIC = 580.5850 BIC = 627.3047
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Chapter 5

Conclusions

In this dissertation, we developed an R package called KGsurv, based on the Stan

software, that allows one to fit the PH, PO, and AFT survival regression models, consid-

ering the Kumaraswamy-G family of distributions as the baseline distribution with the

following choices for G: Exponential, Weibull, Gamma, Log-logistics, and Log-normal

distributions. Inferences are carried out via the maximum likelihood approach, under

the assumption of right-censored survival data subjected to non-informative censoring.

Regarding the results of the PH, PO, and AFT models considering the Kumaraswamy-

G family of distributions as a baseline distribution, it is important to mention that

some algorithms for the models presented convergence problems, possibly related to the

question of the identifiability of the models. One way to get around these possible

problems is to use a penalty in the likelihood function. Then, in this work, we use

a penalty in the likelihood function of the model considering the Gamma distribution

using the penalty parameter ranging from (1e-03, 1e-02, 1e-01, 0, 1e + 00,1e+ 01, 1e +

02, 1e + 03).

The usefulness of the KGsurv package is illustrated through the analysis of three real

data sets that have been previously addressed in the literature. For comparison purposes,

the models implemented in the proposed package are compared with the semi-parametric

regression models with baseline modeled by Bernstein polynomials introduced by Panaro

(2020), and available in the R package spsurv. For the applications considering the

laryngeal and Veterans data sets, the fits of the Kum-G model are similar compared to
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Bernstein’s Polynomial model. However, for the lung data set the covariates ph.karno

and ph.ecog III presented different fits for the Kum-G and the Bernstein Polynomial

models, whereas that the other covariates are similar in the two models. The model

selection criteria suggest that the models presented in the KGsurv package have the best

fits compared to the models presented in the spsurv package. Therefore, considering the

results presented in the three applications, we hope that the KGsurv package presents an

attractive alternative to survival data with the right-censoring.

The next step is to carry out a simulation study to compare the fits of the Bernstein

Polynomial models and the Kum-G models and to verify the possible convergence problem

of the models presented in the KGsurv package. Also, another possible extension is to

include a Bayesian inference approach in the KGsurv package and consider left-censored

and interval-censored considering the informative censoring mechanism. Other examples

of possible extensions are to use the cure fraction, frailty, and crossing survival curves

models.
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Appendix A: The Kum-G-PH, Kum-G-PO, and Kum-

G-AFT

In this chapter, the log-likelihood functions and the Score functions of the Kum-G-PH,

Kum-G-PO, and Kum-G-AFT models are presented. It is important to highlight that

the results are described in a generic way, in such a way that any choice of distribution

of G can be used. Thus, using the Equation (3.5) the log-likelihood of the Kum-GPH

models can be express by

The Kum-G-PH model:

l(θ|D) =
n∑
i=1

δi[log(a) + log(b) + log[g(yi|ζ)] + (a− 1) log[G(yi|ζ)] + x>i β

− log (1−G(yi|ζ)a)] + b log{1−G(yi|ζ)a}ex>i β + 2(κ log(κ)− log(Γ(κ))

+ (κ− 1)(log(b) + log(a))− κ(b+ a).

The elements of the score vector of the Kum-G-PH models is given by

∂l(θ|D)

∂a
=

n∑
i=1

δi
a

+δi log[G(yi|ζ)]+
δiG(yi|ζ)a log[G(yi|ζ)]

1−G(yi|ζ)a
−be

x>i βG(yi|ζ)a log[G(yi|ζ)]

1−G(yi|ζ)a
+
κ− 1

a
−κ.

∂l(θ|D)

∂b
=

n∑
i=1

δi
b

+ b log{1−G(yi|ζ)a}ex>i β +
κ− 1

b
− κ.

∂l(θ|D)

∂ζk
=

n∑
i=1

δi
1

g(yi|ζ)

∂g(yi|ζ)

∂ζk
+ δi

1

G(yi|ζ)

∂G(yi|ζ)

∂ζk
+ δi

aG(yi|ζ)a−1

1−G(yi|ζ)a
∂G(yi|ζ)

∂ζk

+ bex
>
i β aG(yi|ζ)a−1

1−G(yi|ζ)a
∂G(yi|ζ)

∂ζk
, k = 1, . . . , q.

∂l(θ|D)

∂βj
=

n∑
i=1

δixij + b log{1−G(yi|ζ)a}ex>i βxij, where j = 1, . . . , p.
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The Kum-G-PO model:

Using the Equation (3.6), the general log-likelihood function of the Kum-G-PO models

can be express

l(θ|D) =
n∑
i=1

δi[−b log{1−G(yi|ζ)a}+ log(a) + log(b) + log[g(yi|ζ)] + (a− 1) log[G(yi|ζ)]

+ log{1−G(yi|ζ)a}+ x>i β − log
[
1 + (exp{−b log{1−G(yi|ζ)a}} − 1) ex

>
i β
]

+ log
[
1 + (exp{−b log{1−G(yi|ζ)a}} − 1) ex

>
i β
]−1

+ 2(κ log(κ)− log(Γ(κ))

+ (κ− 1)(log(b) + log(a))− κ(b+ a).

The elements of the score vector of the Kum-G-PO models is given by

∂l(θ|D)

∂a
=

n∑
i=1

δi
a

+
δibG(yi|ζ)a log[G(yi|ζ)]

1−G(yi|ζ)a
+ δi log[G(yi|ζ)]− G(yi|ζ)a log[G(yi|ζ)]

1−G(yi|ζ)a

+
δie

x>i β exp [−b log{1−G(yi|ζ)a}] bG(yi|ζ)a log[G(yi|ζ)]

1 + (exp{−b log{1−G(yi|ζ)a}} − 1) ex
>
i β [1−G(yi|ζ)a]

− exp [−b log{1−G(yi|ζ)a}] b log[G(yi|ζ)]

1 + (exp{−b log{1−G(yi|ζ)a}} − 1) ex
>
i β [1−G(yi|ζ)a] e2x>i β

× 1

[1 + (exp{−b log{1−G(yi|ζ)a}} − 1)]2
+
κ− 1

a
− κ.

∂l(θ|D)

∂ζk
=

n∑
i=1

δib
aG(yi|ζ)a−1

1−G(yi|ζ)a
∂G(yi|ζ)

∂ζk
+ δi

1

g(yi|ζ)

∂g(yi|ζ)

∂ζk
+ δi(a− 1)

1

G(yi|ζ)

∂G(yi|ζ)

∂ζk

+ δi
1

1−G(yi|ζ)a
aG(yi|ζ)a−1∂G(yi|ζ)

∂ζk
− δi

ex
>
i β exp{−b log{1−G(yi|ζ)a}}

1 + (exp{−b log{1−G(yi|ζ)a}} − 1) ex
>
i β

× baG(yi|ζ)a−1

1−G(yi|ζ)a
∂G(yi|ζ)

∂ζk
+

ex
>
i β exp{−b log{1−G(yi|ζ)a}}baG(yi|ζ)a−1

(1−G(yi|ζ)a)
(
1 + (exp{−b log{1−G(yi|ζ)a}} − 1) ex

>
i β
)

× 1

log
[
1 + (exp{−b log{1−G(yi|ζ)a}} − 1) ex

>
i β
] ∂G(yi|ζ)

∂ζk
.

∂l(θ|D)

∂βj
=

n∑
i=1

δixij −
δixij [exp{−b log(1−G(yi|ζ)a)} − 1]

1 + (exp{−b log{1−G(yi|ζ)a}} − 1) ex
>
i β

− xij

log
[
1 + (exp{−b log{1−G(yi|ζ)a}} − 1) ex

>
i β
]2 .
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The Kum-G-AFT model:

The log-likelihood function of the Kum-G-AFT models can be express using the

Equation (3.7). So we can written by

l(θ|D) =
n∑
i=1

δi log(a) + log(b) + δi log

[
g

(
yi

exp{x>i β}
|ζ
)]

+ δi(a− 1) log

[
G

(
yi

exp{x>i β}
|ζ
)]

+ δix
>
i β

− δi log

(
1−G

(
yi

exp{x>i β}
|ζ
)a)

+ b log

[
1−G

(
yi

exp{x>i β}
|ζ
)a]

ex
>
i β + 2(κ log(κ)− log(Γ(κ))

+ (κ− 1)(log(b) + log(a))− κ(b+ a).

The elements of the score vector of the Kum-G-AFT models can be express by

∂l(θ|D)

∂a
=

n∑
i=1

δi
a

+ δi

[
G

(
yi

exp{x>i β}
|ζ
)]

+
δiG

(
yi

exp{x>i β} |ζ
)a

log
[
G
(

yi
exp{x>i β} |ζ

)]
1−G

(
yi

exp{x>i β} |ζ
)a

−
bex

>
i βG

(
yi

exp{x>i β} |ζ
)a

log
[
G
(

yi
exp{x>i β} |ζ

)]
1−G

(
yi

exp{x>i β} |ζ
)a +

κ− 1

a
− κ.

∂l(θ|D)

∂b
=

n∑
i=1

δi
b

+ b log

[
1−G

(
yi

exp{x>i β}
|ζ
)a]

ex
>
i β +

κ− 1

b
− κ.

∂l(θ|D)

∂ζk
=

n∑
i=1

δi
1[

g
(

yi
exp{x>i β} |ζ

)] ∂
[
g
(

yi
exp{x>i β} |ζ

)]
∂ζk

+ δi(a− 1)
1[

G
(

yi
exp{x>i β} |ζ

)] ∂
[
G
(

yi
exp{x>i β} |ζ

)]
∂ζk

+ δi
a
[
G
(

yi
exp{x>i β} |ζ

)]a−1

1−
[
G
(

yi
exp{x>i β} |ζ

)]a ∂
[
G
(

yi
exp{x>i β} |ζ

)]
∂ζk

+ bex
>
i β
a
[
G
(

yi
exp{x>i β} |ζ

)]a−1

1−
[
G
(

yi
exp{x>i β} |ζ

)]a ∂
[
G
(

yi
exp{x>i β} |ζ

)]
∂ζk

.

∂l(θ|D)

∂βj
=

n∑
i=1

−
δig
′
(

yi
exp{x>i β} |ζ

)(
yixij

exp{x>i β}

)
g
(

yi
exp{x>i β} |ζ

) −
(a− 1)δiG

′
(

yi
exp{x>i β} |ζ

)(
yixij

exp{x>i β}

)
G
(

yi
exp{x>i β} |ζ

)
+
δiaG

(
yi

exp{x>i β} |ζ
)a−1 (

yixij
exp{x>i β}

)
1−G

(
yi

exp{x>i β} |ζ
)a −

δi(b− 1)aG
(

yi
exp{x>i β} |ζ

)a−1 (
yixij

exp{x>i β}

)
1−G

(
yi

exp{x>i β} |ζ
)a .
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Appendix B: The Bernstein Polynomial (BP) Model

The Bernstein Polynomials (BP) were originally proposed by Bernstein (1913) as a

proof for the Weierstrass Approximation Theorem (WAT) in the unit interval Lorentz

(1986). Following p. 148 of Bartle and Sherbert (2011), the WAT states [Weierstrass

Approximation Theorem] Let I = [a, b] and let v : I 7→ R continuous over I. If ε > 0

is given, then there exists a polynomial function pε such that |v(x) − pε(x)| < ε for all

x ∈ I.

To understand the BP approximation, first consider an event A such as P(A) = x,

where P is a probability measure. Then, suppose that an experiment with m trials

will be performed in such a way that, if the event A occurs k times, 0 6 k 6 m, a

monetary amount equal to v(k/m) will be paid to a hypothetical gambler. Thereby, a

random variable K defined as the number of successes (the event A has happened) in

m trials has a binomial distribution: K ∼ Bin(x,m), where x ∈ [0, 1]. Therefore, the

probability of k occurrences for the event A and the expected value for a random variable

Q = v(K/m) representing the amount received by the gambler are given respectively by

P(K = k) =

(
m

k

)
xk(1− x)m−k,

Em(Q) = B(m)(x) =
m∑
k=0

v

(
k

m

)(
m

k

)
xk(1− x)m−k, x ∈ [0, 1].

From the relations in (5) and (5), combined with the Theorem 5, Bernstein proved

that, given ε > 0, |v(x)− Em(Q)| < ε. In other words

v(x) = lim
m→∞

Em(Q) = lim
m→∞

m∑
k=0

v

(
k

m

)(
m

k

)
xk(1− x)m−k = lim

m→∞
B(m)(x).

Thus, the Bernstein Polynomial of degreem that approximates v(x) is given byBm(x),

where

b(k,m)(x) =

(
m

k

)
xk(1− x)m−k

is the Bernstein basis. Note that each basis can be seen as a weight since, given the

degree m, b(k,m)(x) ∈ (0, 1) for all k and

m∑
k=0

b(k,m)(x) =
m∑
k=0

(
m

k

)
xk(1− x)m−k = 1.
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To accommodate functions restricted to any compact interval [a, b], a < b ∈ R, the

result in (5) can be extended as (Farouki and Rajan (1987), p. 191)

B(m)(x) =
m∑
k=0

v

[
a+

k

m
(b− a)

]
b(k,m)

(
x− a
b− a

)
, x ∈ [a, b].

According to Carnicer and Peña (1993), the BP approximation has optimal shape-

preserving property when compared to other polynomial approximations. The Section 5

of Farouki (2012) review paper lists many properties and algorithms associated with the

Bernstein bases (a total of 18 topics), but four are of major concern for the construction

of a BP survival model:

1. Symmetry: b(k,m−k)(x) = b(k,m)(1− x);

2. Recursion: b(k,m+1)(x) = xb(k−1,m)(x) + (1− x)b(k−1,m)(x);

3. Non-negativity: b(k,m)(x) > 0, ∀ x ∈ [0, 1], if 0 6 k 6 m;

4. Basis Derivative:
d

dx
b(k,m)(x) = m

[
b(k−1,m−1)(x)− b(k−1,m)(x)

]
.

Following Panaro (2020), the properties above allow the construction of an approxi-

mation for the derivative of B(k,m) in (5) with respect to x, which provides

d

dx
B(m)(x; v) =

m∑
k=0

v

(
k

m

)(
m

k

){
kxk−1(1− x)m−k − (m− k)xk(1− x)m−k−1

}
= m

m∑
k=0

v

(
k

m

)[(
m− 1

k − 1

)
xk−1(1− x)m−k −

(
m− 1

k

)
xk(1− x)m−k−1

]
= m

m∑
k=0

v

(
k

m

)
b(k−1,m−1)(x)−m

m∑
k=0

v

(
k

m

)
b(k,m−1)(x)

= m
m−1∑
i=−1

v

(
i+ 1

m

)
b(i,m−1)(x)−m

m∑
k=0

v

(
k

m

)
b(k,m−1)(x), (B.1)

where i = k − 1. By definition (Farouki, 2012), consider b−1,m−1(x) = bm,m−1(x) = 0.

Then, (B.1) can be rewritten as

d

dx
B(m)(x; v) = m

m−1∑
i=0

{
v

(
i+ 1

m

)
− v

(
i

m

)}
b(i,m−1)(x) = m

m−1∑
i=0

∆v
(1)
i b(i,m−1)(x),
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where ∆v
(1)
i = v[(i+ 1)/m]− v[i/m] is the first-order difference of v(x) at x = i/m.

Chang et al. (2005) noted that the finite BP approximation could be used to estimate

both hazard and cumulative hazard functions of a survival model, since this last is positive

and bounded. Assuming t ∈ [0, τ ], where τ = inf{t : S(t) = 0} < ∞, let H(t) be the

target function for the BP approximation. Thereby, rewriting (B.1) with a = 0 and

b = τ , the BP approximation for the cumulative hazard function is expressed as

B(m)(t;H) =
m∑
k=0

H

(
k

m
τ

)
b(k,m)

(
t

τ

)
, t ∈ [0, τ ],

and its first derivative with respect to the time t (approximating the hazard function),

using (B.1), as

d

dt
B(m)(t;H) =

m

τ

m−1∑
i=0

{
H

(
i+ 1

m
τ

)
−H

(
i

m
τ

)}
b(i,m−1)

(
t

τ

)
=
m

τ

m∑
k=1

{
H

(
k

m
τ

)
−H

(
k − 1

m
τ

)}(
m− 1

k − 1

)
b(k−1,m−1)

(
t

τ

)

=
m

τ

m∑
k=1

{
H

(
k

m
τ

)
−H

(
k − 1

m
τ

)}(
m− 1

k − 1

)(
t

τ

)k−1(
1− t

τ

)(m−1)−(k−1)

=
1

τ

m∑
k=1

{
H

(
k

m
τ

)
−H

(
k − 1

m
τ

)}
Γ(m+ 1)

Γ(m− k + 1)Γ(k)

(
t

τ

)k−1(
1− t

τ

)m−k
=

m∑
k=1

{
H

(
k

m
τ

)
−H

(
k − 1

m
τ

)}(
1

τ

)
fB

(
t

τ
; k,m− k + 1

)
, (B.2)

where B denotes the Beta distribution with parameters α = k and β = m − k + 1. For

simplicity, the cumulative hazards differences between braces and the Bernstein bases in

(B.2) will be rewritten, respectively, as

γk =

{
H

(
k

m
τ

)
−H

(
k − 1

m
τ

)}
, g(k,m)(t) =

(
1

τ

)
fB

(
t

τ
; k,m− k + 1

)
.

Note that γk > 0, k ∈ {1, . . . ,m}, since H(·) is monotone increasing. As the coef-

ficients γk do not depend on t, no information is given on the true cumulative hazard

function and they should be estimated, compounding a vector κ = γ = (γ1, . . . , γm)′

of BP parameters. Given a time t, its Bernstein bases can also be defined on a vector
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gm(t) = (g(1,m)(t), . . . , g(m,m)(t))
′ of fixed non-negative quantities. Then, the hazard and

cumulative functions are modeled as (Osman and Ghosh (2012), p. 561)

h(t|γ) = γ ′gm(t),

H(t|γ) =

∫ t

0

h(u,γ)du = γ ′Gm(t),

where Gm(t) = (G(1,m)(t), . . . , G(m,m)(t))
′, with

G(k,m)(t) =

∫ t

0

g(k,m)(u)du =

∫ t

0

fB

(u
τ

; k,m− k + 1
)
d
(u
τ

)
> 0, k ∈ {1, . . . ,m}.
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Appendix C: The proportional hazards assumption in

applications I, II, and III

In this section, we present the standardized Schoenfeld residuals along with the test

of proportional hazards assumption of the Cox model for each covariate included in the

model. This residuals was calculated using the survminer::ggcoxzph package. Thus,

based on Figure C.2, we can see that all covariates do not reject the null hypothesis of the

test of the proportional hazards. Thus, for the laryngeal cancer data set, the proportional

hazards models can be used to analyze the effect of the covariates age and stage of the

disease on the survival time of patients until death.

In Figure Figure C.3, it can be seen that only the covariate ph.karno presented ev-

idence to reject the assumption of proportional hazards. Therefore, the proportional

hazards models are not suitable for this data set, that is, it is expected that these models

present inadequate adjustments to the lung cancer data set.

Finally, based on Figure C.4, it can be seen that there is evidence of rejection of the

assumption of proportional hazards for all covariates considered in the veteran data set,

in other words, the proportional hazards models present an inadequate fit for this veteran

data set.
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Figure C.2: The Standardized Schoenfeld residuals from the application I - larynx data

set considering the test p-value for each covariate.
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Figure C.3: The Standardized Schoenfeld residuals from the application II - lung data

set considering the test p-value for each covariate.
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Figure C.4: The Standardized Schoenfeld residuals from the application III - veteran

data set considering the test p-value for each covariate.
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Appendix D: KGsurv package for survival data

In this section, we introduce the KGsurv package. The goal is to present an R package

that has an easy routine and has all the support to avoid mistakes when using it. In

this sense, this section was created to show the results presented by the KGsurv package.

It is important to note that this package was created using Stan Team (2018). This

package has several advantages of computational implementation, for example, obtain

the results with fast computational speed, this speed occurs because the rstan package

uses the C language. For these reasons, KGsurv package was built to have less intensive

computational use so that users can get results with computers with few cores.

To install the KGsurv package, access https://github.com/CaioBalieiro/KGsurv

and the following commands in R:

install.packages("devtools")

devtools :: install_github("CaioBalieiro/KGsurv")

C.1 - Description of the kgreg function

kgreg(formula, data = NULL, hessian = TRUE, distG = c("exponential", "weibull",

"gamma", "loglogistic", "lognormal"), regFamily = c("ph", "po", "aft"), penalty

= 1, init = "random", ...)

Mandatory arguments:

• formula: an object of class ”formula” (or one that can be coerced to that class):

a symbolic description of the model to be fitted, for example.

formula = Surv(time, status) ∼ gender

• data: an optional data frame, list or environment (or object coercible by as.data.frame

to a data frame) containing the variables in the model. If not found in data, the

variables are taken from environment(formula), typically the environment from

which kgreg is called.

• hessian: logical; If TRUE (default), the hessian matrix is returned.
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• distG: the G distribution used to derive the KG distribution, for instance: ”expo-

nential”, weibull”, ”gamma”, ”loglogistic”, ”lognormal”.

• regFamily: the three regression models ”ph”, ”po”, ”aft”.

• init: initial values specification; default value is random.

• penalty: non-negative value passed to the penalty function; default value is 1.

• ... : arguments passed to other methods.

The package was created to generalize its use, that is, any user can include his data

sets, choose which model and distribution he/she wants to use. In this sense, the package

was created using the rstantools package, that is, using the results of the Stan software,

so it can be used in the R language in version ≥ 3.4.0. It is important to mention that

it can be installed on Ubuntu, Mac, and Windows 64 bits. In the blocks below, some

results will be presented using the KGsurv::kgreg function, considering its formulation

and its respective output.

library(tidyverse)

library(KGsurv)

data(larynx , package = "KMsurv")

glimpse(larynx)

larynx <- larynx %>%

mutate(

stage = as.factor(stage),

age = as.numeric(scale(age))

)

glimpse(larynx)
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mle <- kgreg(Surv(time , delta) ~ age + stage ,

data = larynx ,

distG = "loglogistic",

regFamily = "ph",

init = 0, penalty = 1)

summary(mle)

Survival regression model with Kumaraswamy -G baseline

distributions

Call:

kgreg(formula = Surv(time , delta) ~ age + stage , data = larynx ,

regFamily = "ph", distG = "loglogistic", penalty = 1, init =

0)

n = 90 number of events =

coef exp(coef) se(coef) z Pr(>|z|)

age 0.2155 1.2405 0.1553 1.3876 0.1653

stage2 0.2108 1.2347 0.4621 0.4562 0.6482

stage3 0.6866 1.9869 0.3557 1.9303 0.0536 .

stage4 1.8525 6.3757 0.4241 4.3681 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .

0.1 1

loglik = -141.4619 AIC = 298.9237 BIC = 318.9222

mle <- kgreg(Surv(time , delta) ~ age + stage ,

data = larynx ,

distG = "loglogistic",

regFamily = "po",
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init = 0, penalty = 1)

summary(mle)

Survival regression model with Kumaraswamy -G baseline

distributions

Call:

kgreg(formula = Surv(time , delta) ~ age + stage , data = larynx ,

regFamily = "po", distG = "loglogistic", penalty = 1, init =

0)

n = 90 number of events =

coef exp(coef) se(coef) z Pr(>|z|)

age 0.2233 1.2502 0.2095 1.0659 0.2865

stage2 0.2684 1.3079 0.5906 0.4545 0.6495

stage3 1.2236 3.3994 0.5062 2.4172 0.0156 *

stage4 2.5701 13.0671 0.6242 4.1174 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .

0.1 1

loglik = -141.0224 AIC = 298.0448 BIC = 318.0433

mle <- kgreg(Surv(time , delta) ~ age + stage ,

data = larynx ,

distG = "loglogistic",

regFamily = "aft",

init = 0, penalty = 1)

summary(mle)

Survival regression model with Kumaraswamy -G baseline

distributions
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Call:

kgreg(formula = Surv(time , delta) ~ age + stage , data = larynx ,

regFamily = "aft", distG = "loglogistic", penalty = 1, init =

0)

n = 90 number of events =

coef exp(coef) se(coef) z Pr(>|z|)

age -0.1317 0.8766 0.1755 -0.7504 0.4530

stage2 -0.0942 0.9101 0.3940 -0.2391 0.8110

stage3 -0.8177 0.4414 0.5413 -1.5106 0.1309

stage4 -1.7749 0.1695 0.4843 -3.6649 0.0002 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 .

0.1 1

loglik = -142.1073 AIC = 300.2145 BIC = 320.213

In the box green, the results are of three options using the KGsurv::kgreg function.

In the first case, we show the results of the Kum-llogis-PH model, in the second case

Kum-llogis-PO, and Kum-llogis-AFT considering the penalty equal 1 for the laryngeal

data set discussed in Chapter 4. Regarding the results presented, we have that, coef

corresponds to the estimation of the parameters of the models, exp (coef) denotes the

(HR), se(coef) corresponds to the standard error of the parameters considered by the

model, z represents the Wald statistic, Pr(> |z|) denotes the p-value associated with the

Wald test.

It is important to highlight that, the results can be used for other distributions, for

instance, Exponential, Gamma, Weibull, and Log-normal. As described in Chapter 3, it

is observed that in many data sets, some models belonging to this family do not converge,

one solution is to use penalty > 0, that is, we include a penalty in the log-likelihood of

the models presented in KGsurv package. Also, when we use init = r, where r is the real

number we define a more accurate initial guess for the search for all parameter estimates,
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for instance, in data sets considered in this work, we use r = 0. Therefore, the choice

of r value is a great alternative to avoid the error of the models (by default init equal

”random”).

In addition KGsurv package presents some functions that are widely used in models

already implemented in the R package such as: AIC, BIC, coef, confint, vcov, and

coxsnell. To exemplify the Kum-llogis-PH model using the larynx data set.

mle <- kgreg(Surv(time , delta) ~ age + stage ,

data = larynx ,

distG = "loglogistic",

regFamily = "ph",

init = 0, penalty = 1)

AIC(mle)

298.9237

BIC(mle)

318.9222

coef(mle)

age stage2 stage3 stage4

0.2154815 0.2107623 0.6865571 1.8524926

attr(,"class")

[1] "coef.kgreg"

confint(mle)

2.5% 97.5%

beta [1] -0.08888047 0.5198436

beta [2] -0.69496779 1.1164923

beta [3] -0.01064710 1.3837613

beta [4] 1.02132559 2.6836596

attr(,"class")

[1] "confint.kgreg"

coxsnell(mle)

[1] 0.02622532 0.02919584 0.04529199 0.04760660 0.04890565
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0.05493653 0.06412331 0.09068648 0.10437034 0.11702129

0.13782344

[12] 0.13883381 0.14115558 0.14533852 0.14650799 0.15114282

0.15603189 0.16413696 0.18858155 0.18874863 0.19611580

0.19663893

[23] 0.20932093 0.21031305 0.21644710 0.21878110 0.21906490

0.22081925 0.23758758 0.24805974 0.27079471 0.27089143

0.27503449

[34] 0.27554660 0.28056817 0.32262494 0.33595413 0.34191765

0.34624138 0.35415044 0.35584259 0.38032486 0.39752455

0.41820052

[45] 0.41843713 0.47788379 0.48288190 0.48355561 0.48634863

0.50493166 0.52888436 0.55427088 0.57179223 0.57198294

0.57975199

[56] 0.60119906 0.61041763 0.61656659 0.62023584 0.63778120

0.64005662 0.65957901 0.66187050 0.67611309 0.67671232

0.68366063

[67] 0.69383479 0.69558895 0.70699595 0.72677756 0.76111015

0.76858816 0.79245789 0.84860793 0.86564422 0.87981462

0.89107103

[78] 1.00002836 1.06903051 1.09197987 1.09556733 1.15597870

1.42711148 1.45278705 1.47370571 1.48184185 1.80129211

1.87003944

[89] 1.88796100 2.49836275

vcov(mle)

beta [1] beta [2] beta [3] beta [4]

gamma [1] gamma [2] gamma [3] gamma [4]

beta [1] 0.024114858 0.008780830 0.004056729 -0.005049290

-0.001388730 -0.001546975 0.004010302 0.001698628

beta [2] 0.008780830 0.213550880 0.068418492 0.068474080

-0.004975975 -0.060781916 0.007326488 0.008095626

beta [3] 0.004056729 0.068418492 0.126538832 0.066785400
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0.008917128 -0.058294769 0.004017449 -0.004450726

beta [4] -0.005049290 0.068474080 0.066785400 0.179837558

-0.037868314 -0.084807123 -0.005739606 0.047090388

gamma [1] -0.001388730 -0.004975975 0.008917128 -0.037868314

0.455624817 0.273044356 0.060520516 -0.338603719

gamma [2] -0.001546975 -0.060781916 -0.058294769 -0.084807123

0.273044356 0.696948517 0.395528088 -0.159796256

gamma [3] 0.004010302 0.007326488 0.004017449 -0.005739606

0.060520516 0.395528088 0.286124461 -0.014963409

gamma [4] 0.001698628 0.008095626 -0.004450726 0.047090388

-0.338603719 -0.159796256 -0.014963409 0.275072886

attr(,"class")

[1] "vcov.kgreg"

In the table above, some functions were presented that are widely used in regression

models, with AIC(mle) being the result of the AIC statistics, BIC(mle) being the result

of the BIC measurement, coef(mle) are the maximum likelihood estimates of the re-

gression coefficients, confint(mle) presents a matrix with the 95% confidence interval

estimated for the regression coefficients, coxsnell(mle) calculates the Cox-Snell residuals

and presents a plot of the residuals, and vcov(mle) presents a matrix with the estimated

variance and covariance for the regression coefficients.
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C.2 - Description of the explore fits function

The KGsurv package, present the KGsurv::explore fits function. This function

presents a table containing the measures of regression family, distribution, penalty, fit,

AIC, MSE, Code, and plot to 2 until 120 models implemented considered the penalty

values (1e-03, 1e-02, 1e-01, 0, 1e+00,1e+01, 1e+02, 1e+03), the five models of the failure

time (Kum-Exp, Kum-W, Kum-GA, Kum-llogis, and Kum-lnorm) and three regression

families (PH, PO, e AFT).

explore fits(formula, data, distG, regFamily, penalty, plot = FALSE, init

= "random", ...)

Mandatory arguments:

• distG: the G distribution used to derive the KG distribution, for instance: ”expo-

nential”, ”weibull”, ”gamma”, ”loglogistic”, ”lognormal”.

• regFamily: The three regression models ”ph”, ”po”, ”aft”.

• formula: an object of class ”formula” (or one that can be coerced to that class):

a symbolic description of the model to be fitted, for example;

formula = Surv(time, status) ∼ age

• data: an optional data frame, list or environment (or object coercible by as.data.frame

to a data frame) containing the variables in the model. If not found in data, the

variables are taken from environment(formula), typically the environment from

which kgreg is called.

• plot: logical (default = TRUE); if TRUE, than the plot of the Cox-Snell residuals

is displayed.

• init: Initial values specification.

• penalty: non-negative value passed to the penalty function; default value is (1e-03,

1e-02, 1e-01, 0, 1e+00,1e+01, 1e+02, 1e+03).

• ... :Arguments passed to other methods.
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all <- explore_fits(formula = Surv(time , delta) ~ age + stage ,

data = larynx ,

distG = c("exponential", "weibull", "gamma",

"lognormal","loglogistic"),

regFamily = c("ph", "po", "aft"),

init = 0)

all

# A tibble: 120 x 8

regFamily distG penalty fit AIC MSE code plot

<chr > <chr > <dbl > <list > <dbl > <dbl > <int > <list

>

1 ph lognormal 1000 <kgreg > 270. 0.0254 0 <gg>

2 po loglogistic 1000 <kgreg > 272. 0.0212 0 <gg>

3 ph loglogistic 1000 <kgreg > 273. 0.0265 0 <gg>

4 aft loglogistic 1000 <kgreg > 277. 0.0255 0 <gg>

5 ph lognormal 100 <kgreg > 279. 0.0254 0 <gg>

6 po loglogistic 100 <kgreg > 281. 0.0212 0 <gg>

7 ph loglogistic 100 <kgreg > 282. 0.0265 0 <gg>

8 aft loglogistic 100 <kgreg > 286. 0.0246 0 <gg>

9 ph lognormal 10 <kgreg > 288. 0.0251 0 <gg>

10 po loglogistic 10 <kgreg > 289. 0.0210 0 <gg >

# with 110 more rows

The green boxes above show examples using the KGsurv::explore fit functions for

the larynx data set. In them we can see that the output object has the tibble class, this

class belongs to the tidyverse package. This class is more interesting than the list of

classes in R, as it allows plot objects to be saved. It is important to remember that the

functions have the argument plot = True as a default, so when using these functions a

graph is generated, if you do not want to visualize just use plot = False.
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C.3 - Description of the best fits function

The KGsurv::best fits function presents a table containing AIC, MSE, Code for

the best model fits using the Pareto solution set. Besides, the KGsurv::best fits shows

a graph using the Pareto set and presents a plot of the Cox-Snell residuals for the best

models containing the penalty, AIC, and MSE values. In the Pareto solution set graph,

all the fitted models are in the form of points on an AIC vs MSE graph. The models

that have the points in bold are the models that have the smallest fit measures (AIC and

MSE) for the data set of the study.

best fits(fits, plotPareto = TRUE, plotResiduals = TRUE)

Mandatory arguments:

• fits: the tibble class; output of the explore fits function.

• plotPareto: logical (default = TRUE); if TRUE, than the plot of the Pareto set

solution is displayed.

• plotResiduals: logical (default = TRUE); if TRUE, than the plot of the Cox-Snell

residuals is displayed

all <- explore_fits(formula = Surv(time , delta) ~ age + stage ,

data = larynx ,

distG = c("exponential", "weibull", "gamma",

"lognormal","loglogistic"),

regFamily = c("ph", "po", "aft"),

init = 0)

best_fits(all)

$models

# A tibble: 5 x 10

id model regFamily distG penalty fit

AIC MSE code plot

<int > <chr > <chr > <chr > <dbl > <list > <dbl

> <dbl > <int > <list >
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1 1 lognormal -ph ph lognormal 1000 <kgreg >

270. 0.0254 0 <gg >

2 2 loglogistic -po po loglogistic 1000 <kgreg >

272. 0.0212 0 <gg >

3 3 loglogistic -po po loglogistic 100 <kgreg >

281. 0.0212 0 <gg >

4 4 loglogistic -po po loglogistic 10 <kgreg >

289. 0.0210 0 <gg >

5 5 lognormal -po po lognormal 1 <kgreg >

296. 0.0166 0 <gg >

$pareto

$coxsnell

TableGrob (3 x 2) "arrange": 5 grobs

z cells name grob

1 1 (1-1,1-1) arrange gtable[layout]

2 2 (1-1,2-2) arrange gtable[layout]

3 3 (2-2,1-1) arrange gtable[layout]

4 4 (2-2,2-2) arrange gtable[layout]

5 5 (3-3,1-1) arrange gtable[layout]

attr(,"class")

[1] "kgreg.bestfits"

In the green box above, an example of the KGsurv::best fit function using the lar-

ynx data set was presented. In it, we can notice that just like the KGsurv::best fits

function, a table is presented in the tibble class. The models presented in this table are

the models that presented the best fits considering the Pareto solution set. In this disser-

tation, we present a package in R using regression models PH, PO, and AFT using the

Kumaraswamy-G family of distributions. The package was called KGsurv, this package

presents an easy and efficient application for several real data sets. It is important to
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highlight that, the functions presented here are widely used in data science, the objective

is to make these tools more accessible to users, as they make the statistical analysis more

robust, summarizing the information of the models presented in the KGsurv package. We

hope that this package presents an attractive solution for survival data considering data

with the right-censored.
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