
ASSESSING THE EVOLUTION OF COMPLEX

METHODS: A MULTI-LANGUAGE STUDY



MATEUS FELLIPE ALVES LOPES

ASSESSING THE EVOLUTION OF COMPLEX

METHODS: A MULTI-LANGUAGE STUDY

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
do Instituto de Ciências Exatas da Univer-
sidade Federal de Minas Gerais como req-
uisito parcial para a obtenção do grau de
Mestre em Ciência da Computação.

Orientador: Andre Cavalcante Hora

Belo Horizonte

Agosto de 2021



MATEUS FELLIPE ALVES LOPES

ASSESSING THE EVOLUTION OF COMPLEX

METHODS: A MULTI-LANGUAGE STUDY

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Andre Cavalcante Hora

Belo Horizonte

August 2021



© 2021, Mateus Fellipe Alves Lopes.

Todos os direitos reservados

Lopes, Mateus Fellipe Alves.

L864a Assessing the evolution of complex methods: a multi-l
language study [manuscrito] / Mateus Fellipe Alves Lopes. –
2021.

xiv, 76 f. il.

Orientador: Andre Cavalcante Hora.
Dissertação (mestrado) - Universidade Federal de Minas 

Gerais, Instituto de Ciências Exatas, Departamento de Ciência 
da Computação.

Referências: f.69-76
.
1. Computação – Teses. 2. Software – Codificação –Teses. 3.

Software – Manuteção – Teses. 4. Software – Desenvolvimento 
– Teses. I. Hora, Andre Cavalcante. II.Universidade Federal de 
Minas Gerais, Instituto de Ciências Exatas, Departamento de 
Ciência da Computação. III.Título.

CDU 519.6*32(043)

Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende Costa 
CRB 6ª Região nº 1510





Acknowledgments

Agradeço a todos que me ajudaram e contribuíram com minha jornada ao longo deste
mestrado. Este trabalho não teria sido possível sem o seu apoio, incentivo e orientação.
Em especial, gostaria de agradecer:

A Deus , por estar sempre guiando e protegendo a minha caminhada, tornando
possível esse momento vivido.

Aos meus pais, Benjamin e Cleonice, e a minha irmã, Raquel , que sem-
pre ofereceram apoio e motivação para que eu não me deixasse abater pelas dificuldades
e continuar em busca de meus objetivos.

Ao meu orientador Andre Hora , que contribuiu de forma significativa para
a realização desse trabalho, me guiando e fornecendo todo suporte necessário para meu
crescimento pessoal e profissional.

Aos meus colegas do ASERG, pelo acolhimento e pelas trocas de conheci-
mento durante o decorrer deste período.

Aos meus amigos , pela amizade, apoio e momentos felizes proporcionados.

Aos membros da banca , Prof. Eduardo Figueiredo e Prof. Marco Tulio Va-
lente, pela disponibilidade em participar deste trabalho.

Ao DCC/UFMG e a CAPES , pelo suporte financeiro, logístico e profissional.

vi



““Try to move the world — the first step will be to move yourself.””
(Plato)

vii



Resumo

Ao longo do tempo, os sistemas de software tendem a aumentar a complexidade e
se tornarem mais difíceis de manter. Apesar das desvantagens da complexidade em
código serem bem conhecidas, código complexo está presente na maioria dos proje-
tos de software reais. Portanto, surge uma questão importante: por que, com todos
os conselhos que existem contra essa prática, métodos complexos continuam a exis-
tir? Infelizmente, a complexidade de código é normalmente avaliada para uma única
linguagem de programação (geralmente Java), reduzindo a generalidade das descober-
tas. Assim, avaliar como e por qual razão códigos complexos evoluem em múltiplas
linguagens de programação é fundamental para entender as semelhanças e diferenças
entre as linguagens. Nesta dissertação, fornecemos um estudo empírico multilinguagem
para avaliar a evolução de métodos complexos e um estudo para entender melhor as
percepções dos desenvolvedores. Analisamos 1.000 métodos complexos de 50 projetos
populares escritos em JavaScript, Python, Java, C++ e C# e realizamos uma pesquisa
com mais de 70 desenvolvedores, incluindo desenvolvedores de grandes empresas, como
Google, Facebook e Apple. Descobrimos que a linguagem de programação desempenha
um papel importante no estudo da complexidade de código e que os métodos complexos
não são homogêneos nas operações que realizam. A percepção de complexidade dos
desenvolvedores é subjetiva e varia de acordo com a linguagem de programação. Além
disso, os desenvolvedores podem evitar deliberadamente a refatoração de código com-
plexo devido a vários motivos, incluindo estabilidade do código, falta de prioridade e
risco de refatoração. Finalmente, com base em nossas descobertas, discutimos ideias e
aplicações para pesquisadores e profissionais.

Palavras-chave: Complexidade de Código, Code Smells, Manutenção de Software,
Evolução de Software, Estudo Empírico.

viii



Abstract

Over time, software systems tend to increase complexity and become harder to main-
tain. Despite the drawbacks of code complexity are well-known, complex code is present
in most real software projects. Here, an important question arises: why, with all the
advice out there against it, do we continue to end up with complex methods? Unfortu-
nately, code complexity is typically assessed for single programming languages (often
Java), reducing the generality of findings. Thus, assessing how and why complex code
evolves in multiple programming languages is fundamental to better understand the
similarities and differences among the languages. In this dissertation, we provide a
multi-language empirical study to assess the evolution of complex methods and a sur-
vey study to better understand developers’ perceptions. We analyze 1,000 complex
methods of 50 popular projects written in JavaScript, Python, Java, C++, and C#
and we perform a survey with over 70 developers, including developers from large
companies, like Google, Facebook, and Apple. We find that programming language
plays an important role in the study of code complexity and that complex methods
are not homogeneous in the operations they perform. The developers’ perception of
complexity is subjective and varies per programming language. Moreover, developers
may deliberately avoid refactoring complex code due to several reasons, including code
stability, lack of priority, and refactoring risk. We conclude by discussing insights for
researchers and practitioners.

Palavras-chave: Code Complexity, Code Smells, Software Maintenance, Software
Evolution, Empirical Study.

ix



List of Figures

2.1 Example method from the CPython repository, written in Python. . . . . . 7
2.2 Example method from the Dubbo repository, written in Java. . . . . . . . 8
2.3 Data is more precise when a single entity is the target. Top: complexity at

system level over time. Bottom: complexity at method level over time. . . 10
2.4 Data is less likely to be impacted by external noise. Left: complexity at

system level over time. Right: complexity at method level over time. . . . 11

3.1 Distribution of the complexity of the selected methods. . . . . . . . . . . . 21
3.2 Distribution of the complexity per NLOC of the selected methods. . . . . . 22
3.3 Distribution of commits of the selected methods. . . . . . . . . . . . . . . 23
3.4 Word cloud of the developers’ responses. . . . . . . . . . . . . . . . . . . . 26

4.1 Distribution of complexity in the first, intermediate, and last versions. . . . 33
4.2 Trend analysis. (left): proportion trend categories. (right): distribution of

commits per trend category . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Examples of complex methods per category. (left): increasing complexity.

(center): decreasing complexity. (right): same complexity. . . . . . . . . . 34
4.4 Distribution of project size and code size. . . . . . . . . . . . . . . . . . . . 35
4.5 Collection method example (project ILSpy). . . . . . . . . . . . . . . . . . 43
4.6 Conversion method example (project Moment). . . . . . . . . . . . . . . . 44
4.7 Coordination method example (project ElasticSearch). . . . . . . . . . . . 45
4.8 Accessing method example (project Nancy). . . . . . . . . . . . . . . . . . 46

5.1 Developers who consider the methods as complex. . . . . . . . . . . . . . . 51
5.2 Developers who do not consider the methods as complex. . . . . . . . . . . 52
5.3 Proportion of answers per programming language. . . . . . . . . . . . . . . 53
5.4 Developers’ insights about how hard is to change complex methods. . . . . 54
5.5 Reasons why complex methods are not refactored. . . . . . . . . . . . . . . 56

6.1 Experience of the surveyed developers vs. perceptions of complexity. . . . . 61

x



6.2 Complexity of the analyzed methods. . . . . . . . . . . . . . . . . . . . . . 62
6.3 Distribution of (a) messages and (b) changed files in issues/PRs. . . . . . . 64

xi



List of Tables

2.1 Summary of studies by target language. . . . . . . . . . . . . . . . . . . . 15

3.1 Selected software systems (Size: number of source files). . . . . . . . . . . 18
3.2 Correlation between complexity and NLOC. . . . . . . . . . . . . . . . . . 22
3.3 Most complex methods per language. . . . . . . . . . . . . . . . . . . . . . 23
3.4 Overview of the respondent developers. . . . . . . . . . . . . . . . . . . . . 26

4.1 Code changes in complex methods. . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Code changes in complex methods per language (%). . . . . . . . . . . . . 36
4.3 Change classification in complex and not complex methods. . . . . . . . . 37
4.4 Change classification in complex methods by language. . . . . . . . . . . . 37
4.5 Residuals for bugs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Residuals for new features. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.7 Residuals for refactoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.8 Content categories of the complex methods. . . . . . . . . . . . . . . . . . 39
4.9 Concentration of complex methods per content category. Concentration col-

umn: Low: ratio < 1; Medium: 1 ≤ ratio < 2; High: ratio ≥ 2. *Frequency
of "All Methods" is based on [27]. . . . . . . . . . . . . . . . . . . . . . . . 40

4.10 Categories of the complex methods by language. . . . . . . . . . . . . . . . 40
4.11 Growth of complex methods per category. Growth column: Low: ratio <

1.2; Medium: 1.2 ≤ ratio < 1.4; High: 1.4 ≥ ratio. Commits, first, and last
are median values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Code and evolution of the complex methods (median values). . . . . . . . . 63
6.2 Maintenance problems found in issues and pull requests of complex methods. 65

xii



Contents

Acknowledgments vi

Resumo viii

Abstract ix

List of Figures x

List of Tables xii

1 Introduction 1
1.1 Motivation and Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Proposed Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Related Work 6
2.1 Cyclomatic Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Complexity at Method/Function Level . . . . . . . . . . . . . . . . . . 9

2.2.1 Benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Code Smells and Complexity . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Study Design 17
3.1 Selecting Software Systems . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Extracting Methods and Computing Complexity . . . . . . . . . . . . . 19
3.3 Exploring the Complex Methods . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Assessing Evolution of Complex Methods . . . . . . . . . . . . . . . . . 23

xiii



3.5 Survey Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.7 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Empirical Results: Evolution of Complex Methods 32
4.1 RQ1: How do complex methods evolve over time? . . . . . . . . . . . . 32
4.2 RQ2: What changes are performed on complex methods? . . . . . . . . 37
4.3 RQ3: What operations are implemented in complex methods? Which

ones are more likely to become more complex? . . . . . . . . . . . . . . 39
4.4 Discussion e Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Threats To Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.6 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Survey Results: Developers’ Perceptions on Complex Methods 50
5.1 RQ4: What are developers’ perceptions of method complexity? . . . . . 50
5.2 RQ5: Why complex methods are not eliminated from code? . . . . . . 56
5.3 Discussion and Implications . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Threats To Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6 Assessing Self-Admitted Complex Methods 60
6.1 RQ6: To what extent are self-admitted complex methods different from

other complex methods? . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.1.1 Developer Experience . . . . . . . . . . . . . . . . . . . . . . . . 61
6.1.2 Code and Evolution . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.1.3 Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Discussion e Implications . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.3 Threats To Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
6.4 Final Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Conclusion 67
7.1 Summary and Contributions . . . . . . . . . . . . . . . . . . . . . . . . 67
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 69

xiv



Chapter 1

Introduction

1.1 Motivation and Problem

During software evolution, new features are added, bugs are fixed, and code is adapted
due to the changing environment. Often, those changes are performed without the
proper care, that is, developers do not apply refactoring nor code cleaning, decreasing
software quality [22; 46]. Consequently, over time, software systems tend to increase
their complexity and become harder to maintain [38; 39; 40]. Indeed, developers recog-
nize that code smells related to complexity are the most harmful for maintenance [70].
Despite the drawbacks of code complexity are well-known, complex code is present
in most real software projects. Here, an important question arises: why, with all the
advice out there against it [22; 46], do we continue to end up with complex methods in
software systems?

Better understanding the evolution of complex code (and other smells [22]) is
fundamental to detect risk areas within a software system that need attention and to
drive future development activities [8; 9; 20; 22; 46; 51; 52; 53; 72; 73; 78]. Typically,
studies on code complexity (and code smells) are restricted to a single programming
language, mostly Java (e.g., [9; 15; 20; 34; 41; 49; 51; 52; 53; 54; 56; 65; 72; 73; 74;
77; 79]). Unfortunately, this Java-focus causes a lack of empirical analysis on other
popular programming languages, reducing the generality of their findings. For example,
languages like JavaScript and Python remain under-studied, and we are unsure whether
Java observations apply to those languages. Furthermore, distinct languages have
different programming styles, for example, JavaScript and Python programs are not
necessarily written with the OO paradigm.

In addition to the analysis of a single programming language, few studies assess
complexity at a fine level of granularity (e.g., [30; 41]), for example, observing methods

1



1. Introduction 2

instead of classes. Assessing data at this level of granularity has some benefits and
challenges. For example, analyzing a fine-grained entity, such as a method, can provide
fine and precise information on how that entity is affected. In contrast, system level
analysis can only provide an overall view. Another benefit we notice when assessing
fine-grained entities is that they are less affected by external changes. In contrast, at
the system level, code changes not necessarily related may bias the analysis [8; 9; 51].
Thus, there is a trade off between coarse and fine-grained analysis. The former produces
less data as the whole system or few large components can be assessed individually.
The latter generates more information to be analyzed as thousands of methods may
exist even in a small software project.

Thus, those aspects may impact the way developers perceive and handle code
complexity. Assessing complex code at the method level and its evolution in multiple
programming languages is fundamental (1) to increase the generality of findings, (2)
to better understand the similarities and differences among the languages, and (3) to
reason why complexity remains in code regardless of well-known best coding practices.

1.2 Proposed Work

In this dissertation, we conduct a multi-language empirical study to assess the evolution
of complex methods and a survey study to better understand developers’ perceptions on
complex methods. First, we analyze 1,000 complex methods provided by 50 popular
projects that are written in five programming languages (JavaScript, Python, Java,
C++, and C#) and analyze how those methods achieved such a state. We propose
research questions to assess their evolution, change type, and operation, as follows:

• RQ1: How do complex methods evolve over time? Complex methods tend to
become even more complex over time, while the effort to decrease it is minimum.
However, this varies per programming language: C++ and Python projects have
more methods that increase complexity, whereas Java and C# present more ef-
forts to reduce it.

• RQ2: What changes are performed on complex methods? Complex methods
are significantly over-represented on changes related to bugs, new features, and
refactoring. For example, complex methods undergo 2.2x more refactoring than
non-complex ones.

• RQ3: What operations are implemented in complex methods and which ones are
more likely to become more complex? Complex methods are over-represented on



1. Introduction 3

certain operations, namely processing, conversion, validation, and IO. However,
the growth in complexity largely varies according to the operations.

Overall, the results show that, independently of the programming language, com-
plex methods tend to become more complex over time. Thus, to explore the reasons
behind it, we perform a survey with over 70 developers who have maintained com-
plex methods in JavaScript, Python, Java, C++, and C#, including developers from
Google, Facebook, Apple, Microsoft, and Oracle. Specifically, we seek to understand
the impact of complexity on their maintenance tasks and the reasons for the existence
of complex methods. Thus, we propose the following research questions:

• RQ4: What are developers’ perceptions of method complexity? Half of the sur-
veyed developers do not consider complex methods (as measured by Cyclomatic
Complexity) as complex, while 40% of the participants recognize the problems
associated with method complexity.

• RQ5: Why complex methods are not eliminated from code? Developers provide
several reasons on why complex methods remain in code, including code is stable,
refactoring is not a priority, refactoring is risky, problem is inherently complex,
code is rarely changed, and code flow must be shown.

Lastly, based on the survey data, we perform a complementary study to explore
then notion of self-admitted complex methods, that is, methods that the developers
themselves classify as complex. Therefore, we propose the following research question:

• RQ6: To what extent are self-admitted complex methods different from other
complex methods? We find that the experience of the developers may play a role
in their perceptions of code complexity. However, we could not find any major
difference between self-admitted complex methods and other complex methods
in their code, evolution, and maintenance.

1.3 Contributions

The contributions of this research are fourfold:

• We provide a large multi-language empirical study to assess the evolution of
complex methods.



1. Introduction 4

• We provide a survey with developers from worldwide companies to assess their
perceptions on the methods considered complex.

• We provide a preliminary empirical study to assess the characteristics of self-
admitted complex methods.

• We provide a set of findings and insights to researchers and practitioners.

Our results provide insights to both researchers and practitioners. We present
that the studied programming languages have close but not equal issues regarding
method complexity, thus, researchers should not focus their analysis on single lan-
guages. We present that, independently of the programming language, complex meth-
ods are living entities that change frequently and grow in complexity over time. Our
survey results show that the perception of complexity is somehow subjective and varies
per programming language. For example, C++ and Python have the highest rate of
methods increasing complexity, while their developers have the lowest perception of
complexity. We also provide and discuss 10 reasons on why complex methods are de-
liberately not refactored over time. Finally, we provide results towards novel studies
to automatically identify self-admitted complex methods.

1.4 Outline of the Dissertation

The remaining of this dissertation is organized as follows:

• Chapter 2 provides an overview of the main concepts related to this dissertation,
covering topics as code complexity and code smells. We also discuss the related
work, comparing the major differences between the literature and our study.

• Chapter 3 describes the methodology. First, we present how we select the
studied software systems in multiple programming languages. Next, we describe
the method used to extract and monitor the target methods. Then, we show the
procedure used to create, apply, and analyze the survey. Finally, we present the
techniques and strategies used to evaluate self-admitted complex methods.

• Chapter 4 presents the results of the empirical study (RQ1, RQ2, and RQ3 ),
which involves the evolution of the complexity of the methods. For each ques-
tion, we summarize the major findings. We conclude by describing practical
implications and threats to validity.



1. Introduction 5

• Chapter 5 describes the survey results, answering RQ4 and RQ5. Through the
survey responses, it is possible to identify the real perception of the developers
of methods considered complex by the literature. At the end of the chapter, we
list implications and threats to validity of the survey.

• Chapter 6 presents the results of the final research question (i.e., RQ6 ). The
analysis presents some comparisons between the self-admitted complex and not
complex methods. We conclude by discussing implications and threats to validity.

• Chapter 7 presents the conclusion of this dissertation, including an overview of
the study and future work.



Chapter 2

Background and Related Work

In this chapter, we provide an overview to understand the study presented in this
dissertation. First, Section 2.1 discusses and exemplifies the Cyclomatic Complexity
metric. Section 2.2 presents the benefits and challenges of addressing complexity at the
method level. Next, we introduce a related concept, code smells, in Section 2.3. Then,
Section 2.4 presents the related work. Finally, we conclude the chapter in Section 2.5.

2.1 Cyclomatic Complexity

One of the most popular metrics involving source code complexity is Cyclomatic Com-
plexity, developed by Thomas J. McCabe in 1976 [48]. The author’s objective was
to compute the complexity of a source code statically, analyzing the program’s con-
trol flow. The value obtained through the Cyclomatic Complexity is equivalent to the
maximum number of linearly independent paths of the code. In this way, the higher
the value of the metric, the more possible paths there are. Consequently, increasing
the effort needed to read, understand, and test the functionality of a method, class, or
module in the software system [22; 37; 46].

Thus, the Cyclomatic Complexity metric can be calculated simply by the For-
mula 2.1, where number_decisions indicates the count of conditional statements, such
as commands: if, else if, case, for, while, and boolean operators (&& and ||).
The last one was not part of the original metric but added in a new calculus extension.

cyclomatic_complexity = number_decisions+ 1 (2.1)

To illustrate the computation of Cyclomatic Complexity in source code, we se-
lected two methods of real software systems that use distinct components that impact

6



2. Background and Related Work 7

their complexity. The first example, Figure 2.1, presents a method that identifies cer-
tain types of tags in HTML and assigns state values according to the tags. This code
is written in Python and belongs to the CPython repository. The method consists of
33 conditional statements (i.e., 10 if, 14 elif, 8 boolean operators, and one for),
resulting in a Cyclomatic Complexity of 34. Note that the flow caused by the else

command is computed by the sum of one unit of the Formula 2.1, not being calculated
individually like the other conditionals.

    def handle_starttag(self, tag, attrs): 
        "Handle starttags in help.html." 
        class_ = '' 
        for a, v in attrs: 
            if a == 'class': 
                class_ = v 
        s = '' 
        if tag == 'div' and class_ == 'section':
            self.show = True    # Start main content. 
        elif tag == 'div' and class_ == 'sphinxsidebar': 
            self.show = False   # End main content. 
        elif tag == 'p' and self.prevtag and not self.prevtag[0]: 
            # Begin a new block for <p> tags after a closed tag. 
            # Avoid extra lines, e.g. after <pre> tags. 
            lastline = self.text.get('end-1c linestart', 'end-1c') 
            s = '\n\n' if lastline and not lastline.isspace() else '\n' 
        elif tag == 'span' and class_ == 'pre': 
            self.chartags = 'pre' 
        elif tag == 'span' and class_ == 'versionmodified': 
            self.chartags = 'em' 
        elif tag == 'em': 
            self.chartags = 'em' 
        elif tag in ['ul', 'ol']: 
            if class_.find('simple') != -1: 
                s = '\n' 
                self.simplelist = True 
            else: 
                self.simplelist = False 
            self.indent() 
        elif tag == 'dl': 
            if self.level > 0: 
                self.nested_dl = True 
        elif tag == 'li': 
            s = '\n* ' if self.simplelist else '\n\n* ' 
        elif tag == 'dt': 
            s = '\n\n' if not self.nested_dl else '\n'  # Avoid extra line. 
            self.nested_dl = False 
        elif tag == 'dd': 
            self.indent() 
            s = '\n' 
        elif tag == 'pre': 
            self.pre = True 
            if self.show: 
                self.text.insert('end', '\n\n') 
            self.tags = 'preblock' 
        elif tag == 'a' and class_ == 'headerlink': 
            self.hdrlink = True 
        elif tag == 'h1': 
            self.tags = tag 
        elif tag in ['h2', 'h3']: 
            if self.show: 
                self.header = '' 
                self.text.insert('end', '\n\n') 
            self.tags = tag 
        if self.show: 
            self.text.insert('end', s, (self.tags, self.chartags)) 
        self.prevtag = (True, tag) 

Figure 2.1. Example method from the CPython repository, written in Python.



2. Background and Related Work 8

Figure 2.2 presents another example of a method with several elements that
increase its complexity. This one is written in Java, from the Dubbo repository. This
method has a Cyclomatic Complexity of 23, having the functionality to manipulate
method parameters sent by an object in its signature. In addition, the source code
contains several nested conditionals, such as a try-catch that is also taken into account
when calculating the complexity of the method.

public static void appendParameters(Map<String, String> parameters, Object config, String prefix) { 
        if (config == null) { 
            return; 
        } 
        Method[] methods = config.getClass().getMethods(); 
        for (Method method : methods) { 
            try { 
                String name = method.getName(); 
                if (MethodUtils.isGetter(method)) { 
                    Parameter parameter = method.getAnnotation(Parameter.class); 
                    if (method.getReturnType() == Object.class || parameter != null && parameter.excluded()) { 
                        continue;
                    } 
                    String key; 
                    if (parameter != null && parameter.key().length() > 0) { 
                        key = parameter.key(); 
                    } else { 
                        key = calculatePropertyFromGetter(name); 
                    } 
                    Object value = method.invoke(config); 
                    String str = String.valueOf(value).trim(); 
                    if (value != null && str.length() > 0) { 
                        if (parameter != null && parameter.escaped()) { 
                            str = URL.encode(str); 
                        } 
                        if (parameter != null && parameter.append()) { 
                            String pre = parameters.get(key); 
                            if (pre != null && pre.length() > 0) { 
                                str = pre + "," + str; 
                            } 
                        } 
                        if (prefix != null && prefix.length() > 0) {
                            key = prefix + "." + key; 
                        } 
                        parameters.put(key, str); 
                    } else if (parameter != null && parameter.required()) { 
                        throw new IllegalStateException(config.getClass().getSimpleName() + "." + key + " == null"); 
                    } 
                } else if (isParametersGetter(method)) { 
                    Map<String, String> map = (Map<String, String>) method.invoke(config, new Object[0]); 
                    parameters.putAll(convert(map, prefix)); 
                } 
            } catch (Exception e) { 
                throw new IllegalStateException(e.getMessage(), e); 
            } 
        } 
    } 
 

Figure 2.2. Example method from the Dubbo repository, written in Java.

The evaluation of Cyclomatic Complexity metric is subjective and may vary ac-
cording to context, just like any other quality metric in software engineering. However,



2. Background and Related Work 9

based on the analysis and examples of McCabe and Watson [47], the industry adopts
some limits to be observed and monitored to detect possible quality problems [6]. Thus,
the most accepted complexity thresholds are:

• 1 - 10: Simple method. Low risk;

• 11 - 20: Reasonably complex method. Moderate risk;

• 21 - 50: Very complex method. High risk;

• 51+: Very unstable method. Very high risk.

Indeed, mitigation of the excessive presence of conditionals in source code is so
important that Fowler has devoted an entire chapter of his book to simplifying con-
ditional expressions by performing refactoring operations [22] (e.g., Decompose Condi-
tional, Replace Conditional with Polymorphism, and Consolidate Duplicate Conditional
Fragments).

2.2 Complexity at Method/Function Level

Overall, complexity can be assessed at coarse-grained levels (e.g., system and class)
or fine-grained levels (e.g., method and function). Mining code complexity at the
method/function level provides some benefits and challenges. Next, we briefly discuss
those benefits in the light of concrete examples.

2.2.1 Benefits

Data is more precise when a single entity is a target. Assessing a fine-grained
entity, such as a method, can provide fine and precise information on how that entity
is affected. In contrast, system level analysis can only provide an overall view. For
instance, consider the examples presented in Figure 2.3, which shows the metric Cyclo-
matic Complexity at both system and method level over time (systems are presented
on the top charts and methods on the bottom ones). Notice that the overall system
complexity is increasing for the three projects presented on the top. Even in relative
terms, these trends would not provide detailed insights. However, at the method level,
the trends can be completely distinct, increasing, constant, or even decreasing com-
plexity over time (see the three charts on the bottom). That is, at the system level,
fine-grained changes that happen at the method level may not be noticeable [25].



2. Background and Related Work 10

0 1000 2000 3000 4000 5000
Commit number

0

25000

50000

75000

100000

125000

150000

Project: swift
Cyclomatic Complexity

0 100 200 300 400
Commit number

10000

20000

30000

40000

50000
Project: druid

Cyclomatic Complexity

0 50 100 150 200 250 300 350
Commit number

10000

15000

20000

25000

30000

Project: dubbo
Cyclomatic Complexity

0 50 100 150 200 250
Commit number

0

50

100

150

200

250
Project: swift

Cyclomatic Complexity

Method: writeSILInstruction

1 2 3 4 5 6 7
Commit number

74

76

78

80

Project: druid

Cyclomatic Complexity

Method: test_basicType

0 10 20 30 40 50
Commit number

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0
Project: dubbo

Cyclomatic Complexity

Method: parse

Figure 2.3. Data is more precise when a single entity is the target. Top: com-
plexity at system level over time. Bottom: complexity at method level over time.

Data is less likely to be impacted by external noise. Another benefit we notice
when assessing fine-grained entities is that they are less affected by external changes.
In contrast, at the system level, code changes not necessarily related may bias the
analysis [8; 9; 51]. Consider the examples presented in Figure 2.4: on the left side, we
observe that the sudden drop in the overall system complexity happens simply because
methods were removed. That is, the system complexity did not decay due to refactoring
nor code cleaning operations. On the other hand, at the method level (right side), the
drop in complexity is more likely to indicate a real refactoring or code cleaning since
the method itself remains while its code is changed. That is, at the method level,
a single entity and its content are tracked, thus, any change in its content is a real
one [28]. In contrast, at the system level, multiple entities and multiple contents are
tracked, thus, changes are harder to control, causing noise to the analysis.

2.2.2 Challenges

Data is more frequent. Clearly, there is a trade off between coarse and fine-grained
analysis. The former produces less data as the whole system or few large components
can be assessed individually. The latter generates more information to be analyzed as
thousands of methods may exist even in a small software project. Thus, to overcome
this issue, we may need to focus on analyzing some entities instead of all entities.



2. Background and Related Work 11

0 25 50 75 100 125 150
Commit number

6000

8000

10000

12000

14000

16000 Project: ShareX
Cyclomatic Complexity
Number of methods

0 5 10 15 20 25 30 35
Commit number

40

42

44

46

48

50

52
Project: ShareX

Cyclomatic Complexity

Method: StartRecording

Figure 2.4. Data is less likely to be impacted by external noise. Left: complexity
at system level over time. Right: complexity at method level over time.

Data is more likely to be impacted by internal noise. Another challenge we
may face when assessing fine-grained entities is the impact caused by internal changes,
such as entity renaming and lack of version history. For example, suppose we are
analyzing the complexity of a method over time, and, at some point, this method is
renamed. As expected, this can disturb the analysis: if the rename operation is not
resolved, it may be misdetected as a method removal, and its history is missed [28].
For instance, suppose a complex method foo() with a long history that was recently
renamed to bar(); in this case, one may misdetect that bar() is a brand new method
that was created as complex, and not as a method that became complex over time.
Indeed, detecting operations, such as renaming, is not a trivial task. Some refactoring
detection tools were recently proposed with good precision, however, they mostly target
Java systems [61; 62; 63; 71].

Due to the aforementioned benefits (i.e., data is more precise and frequent and data
less prone to be impacted by external noise), in this dissertation, we assess code
complexity at method/function level rather than class or system level. However, we
also pay special attention to handle the mentioned challenges.

2.3 Code Smells and Complexity

In Software Engineering, a code smell is any feature in the source code that possibly
indicates a deeper problem [22]. The name is intended to allude to a bad smell from the
real world, which bothers and indicates something damaged or problematic. The term
code smell (or bad smell) was introduced by Kent Beck and has become popular due
to Fowler’s book on refactoring [22]. In addition to listing 22 code smells, the author
listed the operations necessary to remove and mitigate each code smell. Fowler also



2. Background and Related Work 12

defined code smell as “A code smell is a surface indication that usually corresponds to
a deeper problem in the system”.1

Code smells can be classified according to their granularity to system com-
ponents: (1) application (e.g., Shotgun Surgery and Duplicated Code), (2) classes
(e.g., Large/God Class, Lazy Class, and Data Class), and (3) methods (e.g., Long
Parameter List, Long Method, and Switch Statements). Thus, developers can focus
their efforts on certain contexts according to the needs (code smell names may vary
by author, but the principles are the same). In general, the identification of a code
smell is subjective and change according to each context and experience of Software
Engineers. The main method for removing a code smell is refactoring [22].

We observe that some code smell definitions are closely related to code com-
plexity [22; 37], either by the direct calculation of the cyclomatic complexity for the
method/function or via the weighted method count metric (which evaluates the com-
plexity at the class level, considering the sum of the complexity of all the methods that
belong to that class [12]). Next, we briefly describe those code smells:

• Brain Method : methods that tend to centralize the functionality of a class with
excessive branching, many variables used, and many lines of code. Thus, the
method became difficult to understand, maintain, and increasingly complicated
to evolve. We can identify theses methods by combining the metrics: (1) Lines
of Code; (2) Cyclomatic Complexity ; (3) Number of Accessed Variables. Extract
Method, Introduce Parameter Object, and Decompose Conditional are possible
refactoring operations that can mitigate this code smell.

• God Class : when a class is trying to do too much, they are large and complex.
This harms the reusability and the understandability of that part of the system.
The metrics commonly used for its detection are: (1) Access To Foreign Data;
(2) Tight Class Cohesion; (3) Weighted Method Count. The two main refactoring
operations for removing this code smell are Extract Class and Extract Subclass.

• Data Class : classes that have fields, getting and setting methods for the fields,
and nothing else. They are “dumb” data holders without complex functionality.
These classes break the encapsulation and data hiding principle of object-oriented
programming, allowing other classes to manipulate their data. The metrics used
to identify this code smell are: (1) Number of Accessor Methods ; (2) Number
of Public Attributes ; (3) Weighted Method Count ; (4) Weight of a Class. Some

1Fowler’s blog: https://martinfowler.com/bliki/CodeSmell.html

https://martinfowler.com/bliki/CodeSmell.html


2. Background and Related Work 13

ways to reduce possible impacts of this code smell are via Encapsulate Field,
Encapsulate Collection, and Remove Setting Method.

• Refused Parent Bequest : when a child class refuses to use special bequest prepared
by its parent, becoming a large and complex child class. This code smell interferes
with one of the inheritance principles. The main metrics for identifying this
anti-pattern are: (1) Average Method Weight ; (2) Base Class Overriding Ratio;
(3) Base Class Usage Ratio; (4) Number of Methods ; (5) Number of Protected
Members ; (6) Weighted Method Count. Push Down Method and Push Down
Field are the two main refactorings used to correct class hierarchies.

In this dissertation, we focus on cyclomatic complexity as we work at the level of
methods and functions.

2.4 Related Work

Many studies have investigated the impact and evolution of code smells. Although
code complexity is not directly a code smell, it may be related to several ones, such as
long method, large class, duplicated code, etc. Tufano et al. [72] reported the results
of a large-scale empirical study conducted on the evolution history of 200 open source
projects of three software ecosystems written in Java. Five code smells are investigated
at the class level (i.e., Blob Class, Class Data Should be Private, Complex Class, Func-
tional Decomposition, and Spaghetti Code). Their findings indicate a contradiction to
common sense, stating that smells are introduced when the artifacts are created. In
a follow-up study [73], the authors detected that 80% of the smells continue in the
system over time. Olbrich et al. [51] investigated the evolution of code smells and their
impact on the changed behavior, at the class level. Two code smells, God Class and
Shotgun Surgery, are selected by analyzing two projects written in Java. The results
showed that it is possible to identify different phases in the evolution of code smells.
Palomba et al. [54] proposed an approach to detect five code smells, namely Divergent
Change, Shotgun Surgery, Parallel Inheritance, Blob, and Feature Envy, by exploring
class change history in eight Java systems.

Other studies have been proposed to identify code smells using machine learn-
ing [13; 15; 21; 34; 44], but Di Nucci [15] alerts that machine learning techniques have
critical limitations, which deserve further research.

Liu et al. [41] evaluated a preliminary study of how Cyclomatic Complexity
changes during successive software versions. The authors selected six open source



2. Background and Related Work 14

projects written in Java and analyzed the complexity at three levels (i.e., method,
class, and system level). The results showed that the complexity observed across
classes and methods varied less than the complexity assessed by the system as a whole.
Meanwhile, Jbara et al. [30] identified functions with a high Cyclomatic Complexity
in the Linux Kernel, written in C. The results showed that a high Cyclomatic Com-
plexity is not considered a problem in most functions in the Linux system. They also
noticed that the developers do not consider complex structures with long switch cases
and successive if statements.

Yamashita and Moonen [79] investigated interactions among twelve different code
smells. To this aim, professional developers were hired to implement requests on four
Java systems with known smells. The authors found that the interaction occurs be-
tween code smells distributed by “coupled smells”. Oizumi et al. [50] seek to relate code
smells agglomeration with system design problems. The authors analyzed more than
2,200 agglomerations in seven projects written in Java. In this way, they confirmed that
code anomalies often “flock together” to embody a design problem. Macia et al. [42]
also identified symptoms of architecture degradation directly related to code smells.
The work identified that more than 70% of the architectural problems were related to
code smells. They evaluated six projects written in Java, C++, and C#.

Khomh et al. [33] presented a study analyzing the relations between 29 code
smells and changes occurring to classes written in Java and C++ at the release level.
The authors detected that code smells have a negative impact on classes. Olbrich et
al. [52] evaluated three open source systems written in Java and find a similar behavior
on God and Brain Classes. However, when they normalized with respect to size, then
God and Brain Classes were less subject to change and defects. Sobrinho et al. [67]
conducted an extensive review of the literature on code smells. They found that some
code smells are more studied than others, in particular Duplicated Code, Large Class,
Feature Envy, and Long Method. Fernandes et al. [18] also carried out a review of the
literature on code smells, searching for the main tools that detect code smells. Thus,
they found 84 tools, of which most tools were written and analyze Java source codes.

Some studies focus on other programming languages than Java. Researchers
have analyzed distinct code smells in projects written in JavaScript [17; 31; 60]. For
example, Saboury et al. [60] and Johannes et al. [31] evaluated the negative presence of
bad smells in JavaScript files. In the Python language, Vavrová and Zaytsev [75] and
Chen et al. [10] investigated code smells and anti-patterns. The result showed that the
number of code smells tends to increase with several versions of the Python system.
Finally, Lanza [36] proposed an evolution matrix to visualize the class history written
in Smalltalk.



2. Background and Related Work 15

Other studies looked at the developers’ perception of code smells. Yamashita
and Moonen [78] conducted exploratory research to investigate the knowledge of code
smell; the result shows that a great number of professionals do not care about them
in a survey involving 85 professional software developers. Similarly, Peters and Zaid-
man [56] and Taibi et al. [70] demonstrate that developers do not treat code smells
with high priority. Meanwhile, Palomba et al. [53] demonstrated that the developer ex-
perience and knowledge about the system are important factors for identifying smells,
by analyzing answers from Master’s students and professional developers.

Another topic related to the perception of developers and code smells is the self-
admitted technical debts, which have recently been extensively studied. Potdar and
Shihab [57] introduced this term by observing developers’ behavior in documenting
poor solutions through source code comments. In this way, they found that 3%-31%
of source code files contain self-admitted technical debt, and 26%-31% of them get
removed. Maldonado et al. [43] proposed a technique to identify self-admitted technical
debt, based on fixed keywords and phrases. The proposed technique achieved accuracy
for between 80%-90% of the cases. Recently, Xavier et al. [76] identified self-admitted
technical debt in GitHub issues, finding they take longer to close than other issues, with
a higher occurrence of technical debts related to code complexity and architecture.

Table 2.1 shows that most empirical studies about code smell and complexity
evolution analyze exclusively Java projects. Few studies evaluate other languages or
more than one language simultaneously. Our research complements the literature by
providing a multi-language empirical study about the evolution of complex methods,
which is the most diverse in the literature in terms of programming language.

Table 2.1. Summary of studies by target language.

Languages Studies

Java [8; 9; 13; 15; 20; 21; 34; 41; 49; 50; 51; 52; 54;
56; 72; 73; 79]

JavaScript [17; 31; 60]
C [30; 59]
Python [10; 75]
Java, C++, and C# [42]
Java and C++ [33]
Smalltalk [36]

Python, JavaScript, Java, C++, C# Ours



2. Background and Related Work 16

2.5 Final Remarks

In this chapter, we presented the central topics of this dissertation, with a focus on Cy-
clomatic Complexity. We also presented the main benefits and challenges of analyzing
complexity at the level of methods/functions as well as the relation between Cyclomatic
Complexity and code smells. Lastly, we concluded by discussing the related studies.

In the next chapters, we will rely on those concepts to analyze methods and
functions with high complexity, evaluating how they evolve and are modified, what
operations are performed, and what perceptions developers have about the complexity.



Chapter 3

Study Design

In this chapter, we describe the design of the studies conducted in this master dis-
sertation. Section 3.1 presents the real software systems covered in our study. Then,
Section 3.2 details the methodology used to extract and calculate the complexity of
all methods of the target projects. Section 3.3 presents characteristics of the extracted
complex methods, comparing them to the other methods. In Section 3.4, we describe
how we track the history of complex methods with Git code versioning. Then, in
Section 3.5, we present the procedures used to apply and analyze the survey results.
Section 3.6 describes the six research questions investigated and how we seek to answer
them. Finally, Section 3.7 closes this chapter.

3.1 Selecting Software Systems

In this research, we aim to study real-world and relevant software systems that are
written in multiple programming languages. We then select the languages: JavaScript,
Python, Java, C++, and C#; those languages are among the top-10 most popular in
both GitHub1 and TIOBE2 rankings. Next, for each language, we select the 10 most
popular software systems based on the GitHub star [5; 64], which is a metric largely
adopted in the software mining literature as a proxy of popularity. In this process, we
took special care to filter out:

• Non-software projects : we removed projects such as tutorials, examples, samples,
among others, as those are not real software projects.

1GitHub ranking: https://bit.ly/2XHn2PY
2TIOBE ranking: https://www.tiobe.com/tiobe-index

17

https://bit.ly/2XHn2PY
https://www.tiobe.com/tiobe-index


3. Study Design 18

Table 3.1. Selected software systems (Size: number of source files).

Language Systems Stars Size Commits

JavaScript angular/angular.js, apache/incubator--
echarts, FortAwesome/Font-Awesome,
lodash/lodash, moment/moment,
mrdoob/three.js, mui-org/material--
ui, nodejs/node, prettier/prettier,
zeit/next.js

56.3K 1.5K 7.4K

Python django/django, explosion/spaCy,
getsentry/sentry, pandas-dev/pandas,
pypa/pipenv, python/cpython, scikit-
learn/scikit-learn, ytdl-org/youtube-dl,
zulip/zulip, ansible/ansible

29.9K 1.1K 27.4K

Java apache/dubbo, bumptech/glide,
elastic/elasticsearch, google/guava,
ReactiveX/RxJava, spring-projects/-
spring-boot, spring-projects/spring--
framework, skylot/jadx, alibaba/-
fastjson, alibaba/druid

36.1K 3.0K 5.5K

C++ apple/swift, v8/v8, cocos2d/cocos2d-
x, emscripten-core/emscripten,
facebook/folly, facebook/rocksdb,
grpc/grpc, microsoft/terminal,
rethinkdb/rethinkdb, tesseract-ocr/-
tesseract

21.8K 1.7K 27.4K

C# NancyFx/Nancy, PowerShell/Power-
Shell, ShareX/ShareX, AutoMapper/-
AutoMapper, dotnet/efcore, dotnet/-
wpf, IdentityServer/IdentityServer4,
aspnetboilerplate/aspnetboilerplate,
dotnet/orleans, icsharpcode/ILSpy

8.1K 1.1K 5.8K

• Small projects : we removed projects with less than 500 source files to avoid small
and immature ones.

• Projects with a potential loss of code history : we also removed projects in which
the development did not start in GitHub or were not properly migrated to it.
That is, we inspected the very first commit of each candidate project and assessed
their source files. We were conservative: we filtered out the projects with more
than 10 source files in the very first commit. As we assess software evolution and



3. Study Design 19

perform code history analysis, this is an important threat to be addressed. Thus,
by doing so, we ensure we discard projects with a potential loss of code history
and keep only the ones that have their full history available.

The 50 selected software systems are presented in Table 3.1. Notice that they
include systems that are broadly adopted worldwide, such as Elasticsearch, SpringBoot,
Django, Node, Angular, and Swift, to name a few.

The most popular projects are written in JavaScript (median 56.3K stars), fol-
lowed by Java (median 36.1K stars) and Python (median 29.9K stars); the most popular
project is node-js/node with 72.9K stars. Their median size ranges from 1.1K source
files in Python to 3K source files in Java. We also verify their activity level: systems
written in C++ and Python have the most changes (median 27.4K commits), while
Java projects have fewer changes (median 5.5K commits).

Our dataset is publicly available at http://doi.org/10.5281/zenodo.4546360.

3.2 Extracting Methods and Computing

Complexity

Next, we extract methods from the selected systems and compute their complexity.
We use the metric Cyclomatic Complexity, which assesses code branches (e.g.,if, for,
while, catch, case, etc) to provide a proxy of complexity. When calculating complex-
ity, logical operators are also taken into consideration (e.g., && and ||). The rationale
is that the more branches a code has, the harder it is to understand and maintain the
code. We rely on the open-source tool Lizard3 to compute Cyclomatic Complexity for
multiple programming languages. This tool is also adopted in the software industry,
for example, SonarQube4 and fastlane5 have plugins for the Apple Swift language that
relies on Lizard.

We compute complexity for the methods (and functions) of the selected systems
in their latest version. Functions may be considered because programs written in
Python and JavaScript are not necessarily object-oriented (for simplicity, we refer to
the analyzed entities as methods). For each language, we rank the methods according
to their complexity and select the top-200 most complex considering the following
filtering criteria:

3Lizard project: http://www.lizard.ws and https://github.com/terryyin/lizard
4Popular code quality and security platform: https://www.sonarqube.org
5Popular tool to automate building and releasing in iOS and Android apps: https://fastlane.

tools and https://github.com/fastlane/fastlane

http://doi.org/10.5281/zenodo.4546360
http://www.lizard.ws
https://github.com/terryyin/lizard
https://www.sonarqube.org
https://fastlane.tools
https://fastlane.tools
https://github.com/fastlane/fastlane


3. Study Design 20

• Inactive methods: as we aim to study code evolution, we defined a minimum
number of changes (commits) for the method selection. This way, we discarded
methods with three or fewer changes over history. This ensures we assess complex
methods that change over time, while we avoid the less active ones.

• Auto-generated methods: we manually removed auto-generated files to ensure
that the studied methods are created and modified by developers themselves. A
file is classified as auto-generated if its source code has an explicit description or
comment stating it. Here, we identified and filtered out four auto-generated files.

• Methods with loss of history: we also took special care to filter out methods
that were renamed or moved, which could cause loss of their code history, bi-
asing our analysis. A possible solution to this problem is to rely on refactoring
tools [23; 61; 62; 63; 71] to detect refactoring operations, such as rename/move
method. However, this solution is not feasible as those tools mostly focus on the
Java language, whereas our work is multi-language. To overcome this threat, we
manually inspected the very first commit of each candidate complex method to
detect whether it was a commit creating the method or renaming/moving the
method. To support this analysis, we rely on the git diff tools. For example,
consider the complex method __call__() provided by project spaCy: its very
first commit6 is indeed creating the method, thus, this method is included in the
analysis. In contrast, the complex method getBuiltinValueDecl() provided by
project Swift is not included in the analysis because its very first commit7 is a
renaming. Finally, following the guidelines of prior research [59], in the case the
candidate method was renamed/moved, we excluded it from the analysis.

It is important to recall that the three aforementioned threats are typically not
addressed by related studies. That is, commonly, critical issues like auto-generation
and renaming are simply ignored. We understand, however, that those threats are
fundamental to be addressed to avoid bias in evolutionary analysis, this way, we strive
to detect and filter them. This way, after following those filtering criteria, we selected
1,000 complex methods (200 per language).

6Commit available at: https://bit.ly/2LFeFio
7Commit available at: https://bit.ly/2ZiYDTt

https://bit.ly/2LFeFio
https://bit.ly/2ZiYDTt


3. Study Design 21

3.3 Exploring the Complex Methods

Figure 3.1 presents the distribution of the complexity for the top-200 most complex
methods, per language. For comparison, we also show the complexity of 200 randomly
selected methods, per language. We observe that, independently of the language, the
top-200 methods are fairly more complex than the regular methods (all the differences
are statistically significant for the Mann-Whitney test, with moderate and large effects
for the Cohen effect size). The complexity of the top-200 methods ranges from 22
in JavaScript to 60 in C++, on the median. When considering all languages (last
boxplot), the 1,000 selected complex methods have median complexity of 31 (the 3rd
quartile is 47).

C# C++ Java JavaScript Python All languages
Language

101

102

Cy
clo

m
at

ic 
co

m
pl

ex
ity

 (l
og

 sc
al

e)

29

4

60

3

30

3

22

4

23

4

31

4

Top Complex
Random

Figure 3.1. Distribution of the complexity of the selected methods.

Method size is a factor that may impact complexity, that is, the longer the
method, the more complex it can be. To investigate it, we computed the correla-
tion between complexity and the number of lines of code (NLOC) for the selected
methods. Table 3.2 shows this correlation degree using Pearson’s Coefficient. Indeed,
we notice a moderate and high correlation degree between the two variables in all
languages. Therefore, to assess the weight of NLOC to complexity, we compute the
ratio between complexity and NLOC for the selected methods and the random ones.
Figure 3.2 shows the distribution of these values: even weighing by NLOC, the selected
methods continue to be more complex than the random ones per line of code. Again,
all the differences are statistically significant, with moderate and large effects.



3. Study Design 22

Table 3.2. Correlation between complexity and NLOC.

Language Coefficient Degree

C# 0.749 High
C++ 0.846 High
Java 0.623 Moderate
JavaScript 0.548 Moderate
Python 0.853 High

All 0.848 High

C# C++ Java JavaScript Python All languages
Language

0.0

0.2

0.4

0.6

0.8

Cy
clo

m
at

ic 
co

m
pl

ex
ity

 / 
NL

OC

0.25
0.21

0.32
0.27

0.3
0.25

0.37
0.31 0.33

0.28
0.31

0.25

Top Complex
Random

Figure 3.2. Distribution of the complexity per NLOC of the selected methods.

To gain more insights about into dataset, we compute the changeability of the se-
lected methods. Figure 3.3 presents the distribution of commits changing the complex
methods (for comparison, the same random methods are used). Indeed, independently
of the language, the complex methods have more changes over time. When consid-
ering all languages, we notice the frequency of changes 9 for complex methods and 5
for regular ones (all differences are statistically significant, with moderate and large
effects).

Finally, Table 3.3 presents the most complex methods for each language. Method
AssembleArchInstruction()8 provided by project v8 in C++ is the most complex
(627): it contains a long switch with several case statements and multiple nested
if-else; the method is responsible for producing machine code and allocating records.

8Method available at: https://bit.ly/34D27kK

https://bit.ly/34D27kK


3. Study Design 23

C# C++ Java JavaScript Python All languages
Language

101

Co
m

m
its

 (l
og

 sc
al

e)

9

5

14

6

8

5

6.5 6

9

5

9

5

Top Complex
Random

Figure 3.3. Distribution of commits of the selected methods.

The next two complex methods are provided by Elasticsearch in Java and ILSpy in
C#. The list is completed with methods of Ansible (Python) and three.js (JavaScript).

Table 3.3. Most complex methods per language.

Name Project Lang Complexity

AssembleArchInstruction() v8 C++ 627
getLegalCast() Elasticsearch Java 298
DecodeInstruction() ILSpy C# 220
get_virtual_facts() Ansible Python 108
parsePathNode() three.js JavaScript 80

3.4 Assessing Evolution of Complex Methods

After selecting the most complex methods, we assess their evolution. Specifically, for
each complex method, we analyze the commit history of the file including the method
with the git command git log –first parent, which allows evolutionary analysis
of a particular tracked file.9 Notice that we work at the method level (not at the file
level), thus, all analysis is actually performed at the method level with the support of
the PyDriller mining tool [68].

9https://git-scm.com/docs/git-log#Documentation/git-log.txt

https://git-scm.com/docs/git-log#Documentation/git-log.txt


3. Study Design 24

In this analysis, one threat may exist: the file containing the method may be
renamed/moved causing loss of its history. To keep track of file renaming/moving, we
use the git option –follow; as stated in the git documentation, this option: “Continue
listing the history of a file beyond renames (studies only for a single file)”. This way, we
have access to the code history of a file even when it is renamed/moved by developers.
This solution is typically adopted by software mining studies to keep track of files over
time (e.g., [2; 3]).

3.5 Survey Analysis

3.5.1 Data Collection

In addition to the empirical analysis, we also perform a survey study. At this stage, we
aim to study the developers’ perceptions of methods considered complex in multiple
programming languages. To be as real as possible, we only focus on developers who
have actually maintained complex methods in the selected projects.

To find the candidate developers, we start by collecting the latest modification
of all methods with 10 or more complexity. We then select the 1,000 most recent
modifications and collect the developer (name and email) who performed the modi-
fication. We select the most recent changes to ensure developers are more likely to
remember them. In this process, we remove methods that are changed by the same
developer, i.e., modifications with the same email. Thus, with the support of Git, we
collect data about 1,000 distinct developers and their corresponding modifications on
complex methods.

We elaborate three questions for those developers, considering (1) the impact of
complexity on maintenance tasks, (2) the difficulty to maintain complex methods, and
(3) the reasons for the existence of complex methods. We also include information
about the modified complex method, such as its name, its filename, and the commit
URL to GitHub. This information can help the developers identifying and remembering
the changes. Specifically, we sent the following email:



3. Study Design 25

Dear [developer],

I am a researcher working on software maintenance and code smells.
In my research, I am studying the complex methods of [project_name].

I found that you changed the following complex method in this project:

- Method: [method_name]
- File: [file_name]
- Commit link: [commit_url]

Could you please answer the following three questions about this commit:

1) Do you think this complex method is harmful for maintenance?

2) Was this change somehow harder to implement since it happened inside a complex
method? Why?

3) Why do you think developers have never refactored such a complex method before?

Please, provide any other comments or thoughts regarding the maintenance of com-
plex methods.

We sent 1,000 emails during one month, that is, 50 emails per weekday. For this
purpose, we rely on the GMass tool10, which automates the task of sending emails
by generating customizable emails. Considering the 1,000 sent emails, 63 did not find
the recipient (i.e., the domain or email are invalid). We received answers from 73
developers, thus, achieving a response rate of 7.8% (73/937). Table 3.4 presents the
number of developers who responded to the survey per language and project. The
language with the most answers is C++ (47%), while the one with the fewest answers
is C# (5%). Notice that responses come from developers who modified complex meth-
ods in highly relevant projects, including Apple Swift, Django, CPython, Angular.js,
and Guava. Furthermore, some of those developers come from large and worldwide
companies, such as Google, Facebook, Apple, Microsoft, and Oracle.

10https://www.gmass.co

https://www.gmass.co


3. Study Design 26

Table 3.4. Overview of the respondent developers.

Language Systems Devs %

C++
apple/swift, v8/v8, facebook/folly, facebook/-
rocksdb, grpc/grpc, microsoft/terminal,
rethinkdb/rethinkdb, tesseract-ocr/tesseract

34 47

Python
django/django, getsentry/sentry, python/-
cpython, scikit-learn/scikit-learn, ytdl-org/-
youtube-dl, zulip/zulip, ansible/ansible

20 27

JavaScript angular/angular.js, mui-org/material-ui, nodejs/-
node, prettier/prettier

08 11

Java ReactiveX/RxJava, google/guava, spring--
projects/spring-framework, elastic/elasticsearch

07 10

C# PowerShell/PowerShell, dotnet/wpf, dotnet/-
orleans

04 5

3.5.2 Data Analysis

Figure 3.4 presents an overview of the developers’ responses: it shows a word cloud of
the 50 most used words in their responses. Larger words mean they are more frequent,
while smaller words represent less frequent ones. The most frequent word is refactor,
followed by hard and test. Other words are also highlighted, including maintenance,
difficult, and easy. While the word cloud provides an overview of the responses, it does
not identify the context in which the words are used.

Figure 3.4. Word cloud of the developers’ responses.

As a way to analyze the developers’ responses quantitatively, we apply thematic
analysis [14] on each question, similar to previous studies [7; 70]. The analysis seeks to



3. Study Design 27

identify and record themes in textual documents, using the following steps: (1) initial
reading of the responses, (2) generating a first code for each response, (3) searching
for themes among the proposed codes, (4) reviewing the themes to find opportunities
for merging, and (5) defining and naming the final themes. The first three steps were
carried out by the first author of the dissertation, while steps 4 and 5 were developed
by the consensus of the two authors through several meetings and discussions. As the
responses are in open fields and not mandatory, there are cases in which the respondents
only answered one question, or answered all questions in a single paragraph. Thus,
manual analysis was needed in few cases to link questions and responses.

3.6 Research Questions

The first part of this study provides a quantitative analysis of the evolution of complex
methods (RQs1-3). To gain more insights, we provide a qualitative analysis of the
developers’ perceptions of complexity (RQs4-5). Next, we detail how we analyze each
research question.

RQ1: How do complex methods evolve over time?

In the first research question, we assess how changes performed by developers affect
the complexity of the selected methods. For each method, we compute its complexity
over time and assess whether it is more likely to increase or decrease complexity. This
classification is obtained by applying the Mann-Kendall trend test [32; 45]. For this
purpose, we compute the complexity of each method per week in a time series, so the
test can identify the trend of the data. In this analysis, we only consider methods with
10 or more weeks between the first and last changes to ensure a more precise result [80];
we only discarded 14 methods with less than 10 weeks.

Methods that tend to become even more complex during evolution are harmful
to maintenance and should be addressed with care. Likewise, efforts to decrease com-
plexity at method level can be detected and fomented by development teams. So far,
it is not clear the impact of the programming language on the evolution of complex
methods.

RQ2: What changes are performed on complex methods?

We now focus on the reasons that lead the complex method to be changed. We then
inspect the commit messages of all methods (complex and non-complex) and search for
keywords describing the change goal. Particularly, we classify the commits into three



3. Study Design 28

change types: bug, new feature, and refactoring. These three categories summarize
the major activities in software development, such as fixing bugs, adding new features,
and refactoring code, and is largely adopted in the literature as a proxy to classify
commit changes [1; 4; 19; 24; 35; 58; 69; 81]. For bug, we search for commit messages
with the keywords bug, fix, or patch [1; 24; 35; 81]. For new feature, we consider the
keywords new feature and add [4]. Lastly, for refactoring, we consider the keywords
refactor and code clean [4; 58; 69]. Notice that a commit can also be classified into two
or three categories since it can contain two or more keywords of distinct change types;
this may happen, for example, when unrelated code changes are committed together
(e.g., bug-fix and refactoring), creating the so-called tangled commits [16].

To validate this classification, we perform a manual evaluation. We randomly
select 384 commits (i.e., 95% confidence level and 5% confidence interval) and manually
inspect them. We then carefully verified whether the automated classification was
correct by manually reading the commit messages as well as the code changes made in
the commit. This assessment leads to a fair precision of 81%, meaning the automated
classification was able to correctly flag the change type in over 4 out of 5 commits.

Finally, the extracted data includes two types of methods (complex and non-
complex) and three types of changes (bug, new feature, and refactoring). We then assess
whether these two variables (method and change type) are related or independent. For
this purpose, we rely on the Chi-Squared test, which is adopted when there are two
categorical variables, each with two or more possible values. After applying this test,
we assess the Pearson residuals to measure the difference between the observed and
expected frequencies. When the absolute value of the residual is greater than two, we
consider that the observed frequency is significantly higher than the expected [11; 26].
Thus, we can verify whether complex methods have a higher/lower concentration of
bugs, new features, and refactoring as compared to not-complex methods.

We aim to assess whether changes in complex methods are any different from
regular methods and whether programming languages play a role in this analysis. We
also aim to explore which changes are more and less common. Identifying what changes
are more likely to happen in complex methods and what languages are more harmful
is important to bring to light data to better support maintenance efforts.

RQ3: What operations are implemented in complex methods and which ones
are more likely to become more complex over time?

In this research question, we explore the content of the complex methods. As a solu-
tion to automate this analysis, we focus on the method prefixes, which are very often



3. Study Design 29

verbs, and indicate the kind of operations they perform [27; 29; 46]. For instance,
methods prefixed with create, builder, and generate may indicate creation methods,
while methods prefixed with convert, format, and to may indicate conversion methods.
We initially rely on a previous list of prefixes and their corresponding categories to
infer the operations of the complex methods [27]. Prefixes not present in this previous
list were manually classified by the authors of this dissertation.

We aim to assess whether complex methods are over/under concentrated on cer-
tain operations. Also, we can better understand which operations are more/less likely
to be problematic by assessing their complexity over time. This can provide the basis
for the creation of more focused tools to spot complex methods and prioritize mainte-
nance efforts, not only according to complexity but also according to their operations.

RQ4: What are developers’ perceptions of method complexity?

In this qualitative analysis, we seek to understand the impact of complexity on devel-
opers’ maintenance tasks. For this purpose, we assess whether complex methods are
harmful to software maintenance. We also analyze, based on the developers’ percep-
tions, whether changes are somehow harder to be implemented when they happen in
complex methods. To answer this research question, we analyze Questions 1 and 2 of
the proposed survey with the support of thematic analysis.

RQ5: Why complex methods are not eliminated from code?

Despite the drawbacks of code complexity are well-known [22; 46; 70], complex code is
present in most real software projects. We, therefore, aim to understand the reasons
for the existence of complex methods. For this purpose, we assess why developers
continue to create complex methods over and over again and why there is no large
effort to handle complex methods. To answer this RQ, we assess Question 3 of the
proposed survey with the support of thematic analysis.

RQ6: To what extent are self-admitted complex methods different from other
complex methods?

We now seek to better understand what are the main differences between self-admitted
complex and self-admitted not complex methods according to the perception of the
developers in the survey. For this, we analyzed three distinct aspects of the self-
admitted methods:



3. Study Design 30

• Developer Experience. To assess this characteristic, we need to verify the
developers’ experience. In this context, as a proxy of experience, we compute the
number of commits (NOC) of the developer in the project. Specifically, for each
project, we compute the distribution of the number of commits of its developers.
Then, we rely on the values of the first and third quartiles to classify the level
of commits of the surveyed developers as compared to the other developers in
the same project. We classify the surveyed developers in three categories of
experience:

– Low experience: NOC < first quartile

– Medium experience: first quartile ≤ NOC ≤ third quartile

– High experience: NOC > third quartile

• Code and Evolution. We aim to explore the code and evolutionary differences
between the two groups of complex methods. For this, we extract and compare
some software quality metrics, namely: (1) Cyclomatic Complexity; (2) Lines of
Code; (3) Tokens (i.e., number of words and operators); (4) Number of Param-
eters; (5) Commits (i.e., number of commits that changed the target method);
(6) Growth Rate (i.e., the current complexity of the method divided by the com-
plexity of its very first version). The first four metrics evaluate aspects of the
source code, while the last two verify its evolution over time.

• Maintenance. We seek to understand how both groups of complex methods
affect software maintenance. As a proxy of maintainability, we analyze the issues
and pull requests (PRs) related to each complex method. First, based on that
data, we extract two metrics: (a) number of messages in issues and pull requests
and (b) number of changed files in pull requests. The rationale is that the higher
those numbers, the more discussion and effort are dedicated to the proposed
changes. Then, to further explore possible maintainability issues in the target
methods, we assess the most common maintenance problems on their issues and
pull requests. For this purpose, we apply another thematic analysis, such as the
survey, to identify and record themes.

Prior studies report that there exists a gap between theory and practice in soft-
ware development: what is believed to be a problem is not always a real problem for
developers [53]. For example, some code smells [53] and test smells [55] are gener-
ally not perceived by developers as design problems. Thus, it is important to assess



3. Study Design 31

self-admitted complex methods because those methods represent the perception of the
maintainer developer rather than any code metric.

3.7 Final Remarks

This chapter presented the design of the experiments reported in this master disser-
tation. First, we described the selection of analyzes software systems. We selected
50 projects according to the number of stars in the GitHub of the five programming
language covered: C#, C++, Java, JavaScript, and Python. Then, we searched and
extracted the 1,000 most complex methods from these projects, comparing them with
the other methods. We also presented how we build and applied the survey with real
developers to understand the developer’s perception of complex methods. We received
more than 70 responses and relied on thematic analysis to extract the main themes
mentioned. Finally, we described how we assess the six research questions.

The next three chapters present and discuss the results of all our research ques-
tions, analyzing the implications of each finding and the threats to validity of each
chapter. Chapter 4 answers RQ1 to RQ3, while Chapter 5 details RQ4 and RQ5.
Lastly, we expose the results of RQ6 in Chapter 6.



Chapter 4

Empirical Results: Evolution of
Complex Methods

This chapter provides the empirical results of the first three research questions (RQs1-
3), which involve the evolution of complex methods over time. Section 4.1 presents
how complex method evolve (RQ1). In Section 4.2, we assess the modifications in the
complex methods (RQ2). Section 4.3 presents the results of RQ3, evaluating the main
operations implemented in the complex methods. In Section 4.4, we detail findings
and implications. Finally, we conclude the chapter by presenting Threats to Validity
in Section 4.5 and Final Remarks in Section 4.6.

4.1 RQ1: How do complex methods evolve over

time?

In this research question, we assess the evolution of complex methods. Figure 4.1
compares the complexity of the selected methods in their first, intermediate, and last
versions. Overall, their complexity tends to increase over time: on the median, from
23 in the first version to 31 in the last one, representing a global gain of about 35% in
complexity. The difference between the first and last versions is statistically significant
for the Mann-Whitney test, with a moderate effect for the Cohen effect size.

32



4. Empirical Results: Evolution of Complex Methods 33

First Middle 1 Middle 2 Last
Commit

0

20

40

60

80

Cy
clo

m
at

ic 
co

m
pl

ex
ity

23 26 29 31

Figure 4.1. Distribution of complexity in the first, intermediate, and last ver-
sions.

Trend analysis. We detail in the pie chart of Figure 4.2 the ratio of complex methods
that increased and decreased in complexity over time according to the Mann-Kendall
trend test. The majority of the target methods increased complexity (red color), in-
dependently of the programming language. The proportion of methods that increased
complexity ranges from 46.5% in C# to 75.3% in C++. In contrast, only a minority
of the methods decreased complexity (green color); in this case, the proportion ranges
from 7.6% in C++ and JavaScript to 17.2% in Java. In addition, there are methods
in which complexity showed no trend (orange color).

Figure 4.2 also presents on the right side the distribution of commits on each trend
category. Methods that increase complexity have 10 commits on the median (the first
quartile is 7 and the third quartile is 21), while methods that decrease it have 9 commits
(the first quartile is 6 and the third quartile is 12.25). This difference is statistically
significant for the Mann-Whitney test, with a moderate effect for the Cohen effect
size. Interestingly, the methods with more changes are the ones that tend to become
more complex over time. In contrast, the methods with fewer changes tend to have
less degradation. Figure 4.3 presents examples for each category. On the left, we see
a method increasing complexity: method AssembleArchInstruction() provided by
project V8 has changed close to 300 times and increased its complexity to over 400. In
the center, we present an example of decreasing complexity: method createProxy()

of Apache Dubbo has close to 50 commits and its complexity has drastically decayed.



4. Empirical Results: Evolution of Complex Methods 34

12.1%

41.4%

46.5%

C#
7.6%

17.2%

75.3%

C++

17.2%

22.7% 60.1%

Java

7.6%

29.8%

62.6%

JavaScript
8.2%

18.0%

73.7%

Python
10.5%

25.9%
63.6%

All languages

Decreased No trend Increased Increased Decreased No trend
Methods

101

Co
m

m
its

 (l
og

 sc
al

e)

10
9

6

Figure 4.2. Trend analysis. (left): proportion trend categories. (right): distri-
bution of commits per trend category

Finally, on the right, we present an example that does not change complexity over time:
method splitToN() of ElasticSearch remained with complexity 27 after 9 commits.

0 50 100 150 200 250 300
Commit number

100

200

300

400

Project: v8
Cyclomatic Complexity

Method: AssembleArchInstruction

0 10 20 30 40 50
Commit number

22

24

26

28

30

32

34

Project: dubbo
Cyclomatic Complexity

Method: createProxy

2 4 6 8
Commit number

26.0

26.5

27.0

27.5

28.0

Project: elasticsearch
Cyclomatic Complexity

Method: splitToN

Figure 4.3. Examples of complex methods per category. (left): increasing
complexity. (center): decreasing complexity. (right): same complexity.

Assessment of project and code size. We have seen so far that the five studied
languages have distinct trends regarding complex methods. For example, C++ tends
to have more methods that increase complexity over time, while Java has more methods
that decrease complexity. To better understand possible reasons behind that, we now
assess two properties of the target projects: project size and code size.

Figure 4.4(a) summarizes the project size by presenting the distribution of the
number of source files per project. We see that Java projects have significantly more
source files (3,065, on the median) than other programming languages. This larger
number of source files in Java may suggest a better distribution of responsibilities. In-
terestingly, Java is the language with the most complex methods decreasing complexity
over time (17.2%) and only the 4th one with methods increasing complexity (60.1%).



4. Empirical Results: Evolution of Complex Methods 35

If one considers that having more source files implies having focused responsibilities,
this may explain why Java has more effort to reduce complexity than other languages.
Figure 4.4(b) presents the distribution of the number of lines code per source file. We
observe that C++ projects have the largest source files, with a median of 127 lines of
code. This shows that having large source files is somehow common practice in this
language. In the trend analysis, we have seen that most C++ complex methods tend
to increase complexity over time (75.3%), and only 7.6% actually decreased complexity.
Thus, the naturally larger size of the source files in C++ may explain why they are
more prone to have complex methods and less effort reduce their complexity.

Java C++ JavaScript C# Python
Language

1000

2000

3000

4000

5000

6000

7000

Nu
m

be
r o

f s
ou

rc
e 

fil
es

3065.0

1746.0 1509.5
1197.5 1113.0

Source files

C++ Python Java C# JavaScript
Language

0

100

200

300

400

500

600

700

LO
C

127
87 82 77

26

Size files

Figure 4.4. Distribution of project size and code size.

Manual inspection of code changes. To better understand the content of those
changes, we manually inspected the code changes of methods on each trend cate-
gory. Specifically, for each category, we randomly selected 10 methods (2 per language,
with at least 10 commits), totaling 30 methods. We then manually assessed their 520
commits and inspected their code changes, paying special attention to modification,
addition, and removal of the following code elements: method invocation, variable
declaration/usage, conditional, loop, and formatting.

Table 4.1 presents the values for this analysis (note that the sum of the percent-
ages may exceed 100% because a commit can involve several code changes, e.g., change
code formatting and add a conditional. Overall, changes in conditional structures are
more frequent than changes in loop structures, for example, in the increased category
53% of the analyzed commits changed the conditionals, while only 13.3% changed loops.
As expected, the complex methods classified as increased and decreased changed more
conditional and loop structures than the no trend, since the complexity is measured
by the number of these structures. In contrast, the no trend category showed fairly



4. Empirical Results: Evolution of Complex Methods 36

more modifications involving code formatting (e.g., line breaks, comments, indenta-
tion, etc), which can explain why these methods have changed and yet do not have
their complexity increased nor decreased.

Table 4.1. Code changes in complex methods.

Categories Invocation Variable Conditional Loop Formatting
# % # % # % # % # %

Increased 144 71.3 130 51 107 53 27 13.3 28 14
Decreased 99 58.2 64 37.6 73 43 12 7 16 9.4
No trend 77 52.0 51 34.4 45 30.4 10 6.7 37 25

Table 4.2 breaks this data per language and presents the most frequent changes.
Notice that changes in conditionals are more frequent than changes in loops in all
languages. Moreover, changes in conditionals and loops are more frequent in C++
than in other programming languages, which may explain why C++ is the language
with the highest proportion of methods that increased complexity over time. On the
other side, C# has the largest number of changes related to formatting. Indeed, this
can explain the highest proportion of methods classified as no trend (41.4%) in that
language.

Table 4.2. Code changes in complex methods per language (%).

# C++ Python Java C# JavaScript

1º Cond. 32.96 Invoc. 40.99 Invoc. 36.49 Invoc. 34.23 Invoc. 36.70
2º Invoc. 32.96 Var. 29.19 Cond. 27.00 Cond. 27.02 Var. 34.17
3º Var. 25.55 Cond. 19.87 Var. 24.08 Format. 22.52 Cond. 23.41
4º Loop 07.41 Format. 08.69 Format. 11.67 Var. 13.51 Format. 13.92
5º Format. 01.11 Loop 04.96 Loop 00.72 Loop 02.70 Loop 09.49

Summary of RQ1: Overall, complex methods tend to become even more complex
over time, while the effort to decrease their complexity is minimum. However, this
varies per programming language: C++ projects have more methods that increase
complexity, whereas Java ones present more effort to reduce complexity. The addition
of conditional structures (rather than loops) is the major contributor to increase
complexity over time.



4. Empirical Results: Evolution of Complex Methods 37

4.2 RQ2: What changes are performed on complex

methods?

Overall analysis. We now assess the motivation behind the changes in the complex
methods by inspecting the commit messages. For comparison, we also compute the
same data for non-complex methods. Table 4.3 summarizes our categorization for the
two types of methods (complex and not complex) and the three types of changes (bug,
new feature, and refactoring). Overall, the most common type of change is related to
bugs, followed by new features and refactoring. Interestingly, the complex methods
have proportionally more changes related to bugs (32.65% vs. 30.36%), new features
(15.72% vs. 11.83%), and refactoring (3.69% vs. 1.64%) than the non-complex ones.

Table 4.3. Change classification in complex and not complex methods.

Categories Bug New Feature Refactoring
# % # % # %

Complex 3,400 32.65 1,635 15.72 384 3.69
Not Complex 348,773 30.36 135,953 11.83 18,887 1.64

Table 4.4 details this analysis per programming language when considering only
the complex methods. Notice that C++ and Python have the highest proportion of
changes related to bugs and new features, while refactoring is less common. On the
other hand, changes related to refactoring are proportionally more common in Java
(5.57%) than in other languages. These results complement the findings of RQ1. First,
we have seen that C++ and Python complex methods tend to become more complex
over time. This may happen due to the addition of new features and bug-fixing, without
proper refactoring activities. Second, Java has more methods that decrease complexity,
and one explanation is that refactoring is more prone to happen in this language (for
example, to keep responsibilities more focused, as presented in RQ1).

Table 4.4. Change classification in complex methods by language.

Cat. C++ Python Java C# JavaScript
# % # % # % # % # %

Bug 2,230 29.16 547 19.34 251 10.52 163 07.72 209 11.84
New Feat. 877 11.47 349 12.34 147 06.16 150 07.10 114 06.45
Refactoring 188 01.54 45 01.59 133 05.57 42 01.98 66 03.73

Observed and expected frequencies. To better understand this data, we apply the
Chi-Squared test and compute the Pearson residuals to measure the difference between



4. Empirical Results: Evolution of Complex Methods 38

the observed and expected frequencies. We recall that when the absolute value of the
residual is greater than two, the observed frequency is considered significantly higher
than expected, while values close to 0 indicate that there is no significant difference
between them [11; 26]. Table 4.5 shows the residuals for bugs: the condition complex
and with bug is over-represented (> 2), while the condition complex and without bug is
under-represented (< 2). This reinforces the idea that complex methods significantly
undergo more changes related to bug fixes than less complex methods.

Table 4.5. Residuals for bugs.

with bug without bug

Complex 4.20 -2.78
Not Complex -0.40 0.26

Table 4.6 and 4.7 present the residuals for the new feature and refactoring changes.
We see that both conditions complex and with new feature as well as complex and with
refactoring are also over-represented (> 2). Thus, complex methods significantly have
more changes related to new features and refactoring than less complex ones. Finally,
it is worth noticing that refactoring changes are the ones most over-represented in
complex methods (16.03), followed by new features (11.41) and bugs (4.20).

Table 4.6. Residuals for new features.

with new feature without new feature

Complex 11.41 -4.19
Not Complex -1.09 0.40

Table 4.7. Residuals for refactoring.

with refactoring without refactoring

Complex 16.03 -2.08
Not Complex -1.53 0.20

Summary of RQ2: Complex methods are significantly over-represented on changes
related to bugs, new features, and refactoring as compared to non-complex methods.
Overall, refactoring presents the highest observed frequency: complex methods un-
dergo 2.2x more refactoring than not complex ones (i.e., 3.69% against 1.64%). There
is some distinction per language: C++ and Python complex methods contain more
changes related to bugs and new features, while Java has more changes related to
refactoring.



4. Empirical Results: Evolution of Complex Methods 39

4.3 RQ3: What operations are implemented in

complex methods? Which ones are more likely

to become more complex?

In this research question, we explore the content of the complex methods. To automate
content discovery, we use the method prefixes to infer the operations they perform [27;
29; 46]. As explained in Chapter 3, we rely on a previous list of prefixes and their
corresponding categories to infer the content of the complex methods [27]; when a
prefix is not present in this list, we perform a manual classification. Table 4.8 presents
the 13 content categories as well as examples of prefixes and methods on each category.
For instance, the category processing include methods prefixed with process, extract,
calculate, among others.

Table 4.8. Content categories of the complex methods.

Categories Prefix examples Method example

Accessing get, set, value getLegalCast()
Collection collect, visit, next nextToken()
Condition is, has, can HasChildItems()
Conversion convert, format, to convertBuiltinType()
Coordination schedule, update, wait update_groups()
Creation create, builder, new buildTable()
IO read, write, save read_setup_file()
Processing process, extract, calculate ProcessRecord()
Release release, clear, shutdown clearBuffer()
Setup setup, configure, init loadSchema()
Test test, assert, mock testRandomDecision()
Validation verify, check, validate verifyFile()
Undefined - yylex()

Content analysis. Table 4.9 presents the results of this classification. The first
column shows the number of complex methods in each category in absolute and relative
terms. For example, we find 335 complex methods (33.5%) in category processing.
Column “All Methods” presents the overall presence of each category as measured by
hundreds of Java systems [27]; for example, processing is present on 4.87% methods
when considering all methods. Lastly, column “Proportion” shows whether the category
is more represented in the complex methods (ratio > 1) or in all methods (ratio < 1).

Considering the category processing, we notice a ratio of 6.88 (i.e., 33.5/4.87),
meaning that this category is proportionally much more concentrated in the complex



4. Empirical Results: Evolution of Complex Methods 40

Table 4.9. Concentration of complex methods per content category. Concentra-
tion column: Low: ratio < 1; Medium: 1 ≤ ratio < 2; High: ratio ≥ 2. *Frequency
of "All Methods" is based on [27].

Categories Complex Mtds All Mtds* Proportion (Complex/All)
# % % Ratio Concent.

Processing 335 33.5 4.87 6.88 High
Conversion 68 6.8 2.68 2.53 High
Validation 32 3.2 1.28 2.50 High
IO 78 7.8 3.89 2.01 High
Setup 35 3.5 1.81 1.93 Medium
Creation 62 6.2 4.50 1.38 Medium
Collection 62 6.2 4.57 1.36 Medium
Coordination 48 4.8 3.94 1.22 Medium
Condition 49 4.9 5.53 0.89 Low
Release 7 0.7 1.38 0.51 Low
Accessing 115 11.5 22.87 0.50 Low
Test 40 4.0 8.22 0.49 Low

methods than in all methods. In addition to processing, the complex methods are over-
concentrated on conversion, validation, and IO. On the opposite side, some categories
are under-represented in the complex methods (i.e., ratio < 1). For instance, although
accessing methods are the most common category in all methods (22.87%), it is present
only in 11.5% of the complex methods, having a ratio of 0.50. In addition, the categories
condition, release, and test are also under-represented in the complex methods.

Table 4.10 details the top-3 most frequent categories per language. Independently
of the programming language, the most adopted method category is processing, with
a higher concentration in Python. The other categories slightly vary per language,
however, they mostly concur with the overall analysis presented in Table 4.9.

Table 4.10. Categories of the complex methods by language.

# C++ Python Java C# JavaScript

1º Proc. 06.67 Proc. 09.34 Proc. 06.57 Proc. 05.85 Proc. 06.57
2º Crea. 02.44 Valid. 02.34 IO 01.92 Setup 03.03 Conv. 04.85
3º Conv. 02.05 Coord. 02.03 Collec. 01.64 IO 02.44 Valid. 03.51

Content evolution. Next, we assess how each category changes over time (Ta-
ble 4.11). For each category, we present the number of commits as well as the com-
plexity in the first and last versions (median values). We also present the growth of
complexity as measured by the ratio last/first. For instance, collection methods have 9



4. Empirical Results: Evolution of Complex Methods 41

commits and a complexity of 21.5 in the first version, growing to 36.5 in the last version
(+70%). In addition to collection methods, two categories have growth higher than
40%: conversion (+47%) and coordination (+44%). Observe that these three fastest-
growing categories represent together only 17.8% of the methods (see Table 4.9). That
is, although collection, conversion, and coordination methods are not very prevalent
in our dataset, they are among those that become more complex over time. Notice
that other categories have low growth in complexity, particularly, setup and release.
Interestingly, despite being the most changed with 18 commits, release methods have
the lowest growth in complexity (+7%), from 15 to 16.

Table 4.11. Growth of complex methods per category. Growth column: Low:
ratio < 1.2; Medium: 1.2 ≤ ratio < 1.4; High: 1.4 ≥ ratio. Commits, first, and
last are median values.

Categories Commits Complexity Proportion (Last/First)
First Last Ratio Growth

Collection 9.0 21.5 36.5 1.70 High
Conversion 7.0 23.5 34.5 1.47 High
Coordination 8.5 21.5 31.0 1.44 High
Accessing 10.0 25.0 34.0 1.36 Medium
IO 7.0 23.5 31.5 1.34 Medium
Processing 8.0 22.0 29.0 1.32 Medium
Condition 9.0 25.0 32.0 1.28 Medium
Test 7.0 20.5 26.0 1.27 Medium
Creation 10.5 31.0 38.0 1.23 Medium
Validation 8.0 21.5 26.0 1.21 Medium
Setup 9.0 19.0 22.0 1.16 Low
Release 18.0 15.0 16.0 1.07 Low

To illustrate how complex methods evolve, we provide a detailed analysis for the
categories with the highest growth in complexity (i.e., collection, conversion, coordina-
tion, and accessing). For each category, we present and discuss a method in its first and
last commit. To facilitate code reading and understanding, we annotate the examples
as follows:

• Green arrows represent code elements presented in the last version but not in the
first version.

• Red arrows represent code elements presented in both the first and the last ver-
sions.

• Three dots represent omitted code with no impact on the complexity.



4. Empirical Results: Evolution of Complex Methods 42

Collection. This category has the highest growth in complexity when comparing the
first and last method versions (+70%). Methods in this category are responsible for
managing or iterating in collections of objects. They contain prefixes like collect, visit,
add, and next, for example, AddTraceListenersToSources(), SelectProductName-
ForDirectory(), and VisitMethodCall(). Figure 4.5 presents the method Visit-

InvocationExpression() of project ILSpy (C#), which is part a Visitor design pat-
tern implementation. This method was initially less complex, but became significantly
more complex: over time, its complexity has increased from 10 to 20 in 9 commits.
Most of the new conditionals are type checks, possibly to fix bugs and handle new
behavior. For this purpose, the is operator1 is largely adopted in the new version.
Notice that the over-usage of type checking is considered a symptom of poor code [22].

Conversion. This category includes methods that have the role of converting data
types. Conversion includes methods with prefixes like convert, format, from, and to.
Examples of methods in this category include: convertBuiltinType(), Convert-

Symbol(), and transformOracleToPostgresql(). As an example, Figure 4.6 presents
the method dayOfYearFromWeekInfo() of project Moment (JavaScript), which is re-
sponsible for date conversion. In the first version, we see a smaller and less complex
method, with only four if statements. However, over time, several checks were added
to verify the limits of the manipulated variables (i.e., week and weekday) and handle
possible input errors, thus, its complexity increased from 7 to 15. These novel checks
are all mixed with the old code, generating a code that is harder to follow due to the
excessive number of branches.

Coordination. This is the third category with the highest growth in complexity
and it is related to task coordination, such as sending data and event notifications.
Methods in this category have prefixes like schedule, update, try, and start, for example,
update_groups(), StartRecording(), and TrySetBreakpoint(). Figure 4.7 presents
the method handle() of ElasticSearch (Java), which handles requests. This method
has tripled its complexity over 5 commits, increasing its complexity from 7 to 22.
Several conditional statements were added over time to handle user authentication and
provide security to the users. Those novel checks are mixed with the old code but also
stacked on the bottom of the method to cover each new case.

Accessing. Methods in this category have prefixes like get and set, for example,
get_attrs() and SetItem(). They have the role of accessing private object infor-
mation, assisting encapsulation in object-oriented programming. It is important to
notice that, those methods should ideally be simple and small because their sole goal

1https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/is

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/is


4. Empirical Results: Evolution of Complex Methods 43

 

{...} Hidden code      XX    Elements that impact cyclomatic complexity     XX   New elements that impact cyclomatic complexity 

FIRST LAST 

public  override  void VisitInvocationExpression (InvocationExpression 

invocationExpression ) 

{ 

   base.VisitInvocationExpression (invocationExpression ); 

   var mre = invocationExpression .Target  as MemberReferenceExpression ; 

   var method  = invocationExpression .GetSymbol () as IMethod ; 

   if (method  == null || ! method .IsExtensionMethod  || mre == null 

       || !( mre.Target  is TypeReferenceExpression ) || 

!invocationExpression .Arguments .Any()) 

       return ; 

   var firstArgument  = invocationExpression .Arguments .First(); 

   var target  = firstArgument .GetResolveResult (); 

   var args = invocationExpression .Arguments .Skip(1).Select (a => 

a.GetResolveResult ()).ToArray (); 

   var rr = resolver .ResolveMemberAccess (target , method .Name, 

method .TypeArguments , 

       NameLookupMode .InvocationTarget ) as MethodGroupResolveResult ; 

   if (rr == null) 

       return ; 

   var or = rr.PerformOverloadResolution (resolveContext .Compilation , 

args, allowExtensionMethods : true); 

   if (or == null || or.IsAmbiguous ) 

       return ; 

   if (firstArgument  is NullReferenceExpression ) 

       firstArgument  = firstArgument .ReplaceWith (expr => new 

CastExpression (context 

 

.TypeSystemAstBuilder .ConvertType (method .Parameters [0].Type), 

expr.Detach ())); 

   else 

       mre.Target  = firstArgument .Detach (); 

} 

 

public  override  void VisitInvocationExpression (InvocationExpression 

invocationExpression ) 

{ 

   base.VisitInvocationExpression (invocationExpression ); 

   var method  = invocationExpression .GetSymbol () as IMethod ; 

   if (method  == null || !method .IsExtensionMethod  || 

!invocationExpression .Arguments .Any()) 

       return ; 

   IReadOnlyList <IType> typeArguments ; 

   MemberReferenceExpression  memberRefExpr ; 

   switch  (invocationExpression .Target ) { 

       case MemberReferenceExpression  mre: 

           typeArguments  = mre.TypeArguments .Any() ? 

method .TypeArguments  : EmptyList <IType>.Instance ; 

           memberRefExpr  = mre; 

           break ; 

       case IdentifierExpression  ide: 

           typeArguments  = ide.TypeArguments .Any() ? 

method .TypeArguments  : EmptyList <IType>.Instance ; 

           memberRefExpr  = null; 

           break ; 

       default : return ; 

   } 

   

   var firstArgument  = invocationExpression .Arguments .First (); 

   if (firstArgument  is NamedArgumentExpression ) 

       return ; 

   var target  = firstArgument .GetResolveResult (); 

   if (target  is ConstantResolveResult  crr && crr.ConstantValue  == 

null) { 

       target  = new ConversionResolveResult (method .Parameters [0].Type, 

crr, Conversion .NullLiteralConversion ); 

   } 

   {...} 
   foreach  (var arg in invocationExpression .Arguments .Skip(1)) { 

       if (arg is NamedArgumentExpression  nae) { 

           if (argNames  == null) { 

               argNames  = new string [args.Length ]; 

           } 

           argNames [pos] = nae.Name; 

           args[pos] = nae.Expression .GetResolveResult (); 

       } else { 

           args[pos] = arg.GetResolveResult (); 

       } 

       pos++; 

   } 

   if (!CanTransformToExtensionMethodCall (resolver , method , 

typeArguments , target , args, argNames )) 

       return ; 

   if (firstArgument  is DirectionExpression  dirExpr ) { 

       if (!context .Settings .RefExtensionMethods  || 

dirExpr .FieldDirection  == FieldDirection .Out) 

           return ; 

       {...} 
   } else if (firstArgument  is NullReferenceExpression ) { 

       {...} 
   } 

   if (invocationExpression .Target  is IdentifierExpression 

identifierExpression ) { 

       {...} 
   } else { 

       memberRefExpr .Target  = firstArgument .Detach (); 

   } 

   if (invocationExpression .GetResolveResult () is 

CSharpInvocationResolveResult  irr) { 

       {...} 
   } 

} 

 

Figure 4.5. Collection method example (project ILSpy).

is accessing certain data. However, our analysis reveals that accessing methods are
the fourth category with the highest growth in complexity (+36%). Figure 4.8 shows



4. Empirical Results: Evolution of Complex Methods 44

 

 XX    Elements that impact cyclomatic complexity     XX   New elements that impact cyclomatic complexity 

FIRST LAST 

function  dayOfYearFromWeekInfo(config) { 

   var w, weekYear, week, weekday, dow, doy, temp; 

 

   w = config._w; 

   if (w.GG != null || w.W != null || w.E != null) { 

       dow = 1; 

       doy = 4; 

 

       // TODO: We need to take the current isoWeekYear, but that 

depends on 

       // how we interpret now (local, utc, fixed offset). So create 

       // a now version of current config (take local/utc/offset 

flags, and 

       // create now). 

       weekYear = defaults(w.GG, config._a[YEAR], 

weekOfYear(createLocal(), 1, 4).year); 

       week = defaults(w.W, 1); 

       weekday = defaults(w.E, 1); 

   } else { 

       dow = config._locale._week.dow; 

       doy = config._locale._week.doy; 

 

       weekYear = defaults(w.gg, config._a[YEAR], 

weekOfYear(createLocal(), dow, doy).year); 

       week = defaults(w.w, 1); 

 

       if (w.d != null) { 

           // weekday -- low day numbers are considered next week 

           weekday = w.d; 

           if (weekday < dow) { 

               ++week; 

           } 

       } else if (w.e != null) { 

           // local weekday -- counting starts from begining of week 

           weekday = w.e + dow; 

       } else { 

           // default to begining of week 

           weekday = dow; 

       } 

   } 

   temp = dayOfYearFromWeeks(weekYear, week, weekday, doy, dow); 

 

   config._a[YEAR] = temp.year; 

   config._dayOfYear = temp.dayOfYear; 

} 

 

function  dayOfYearFromWeekInfo(config) { 

   var w, weekYear, week, weekday, dow, doy, temp, weekdayOverflow, 

curWeek; 

 

   w = config._w; 

   if (w.GG != null || w.W != null || w.E != null) { 

       dow = 1; 

       doy = 4; 

 

       // TODO: We need to take the current isoWeekYear, but that 

depends on 

       // how we interpret now (local, utc, fixed offset). So create 

       // a now version of current config (take local/utc/offset 

flags, and 

       // create now). 

       weekYear = defaults( 

           w.GG, 

           config._a[YEAR], 

           weekOfYear(createLocal(), 1, 4).year 

       ); 

       week = defaults(w.W, 1); 

       weekday = defaults(w.E, 1); 

       if (weekday < 1 || weekday > 7) { 

           weekdayOverflow = true; 

       } 

   } else { 

       dow = config._locale._week.dow; 

       doy = config._locale._week.doy; 

 

       curWeek = weekOfYear(createLocal(), dow, doy); 

 

       weekYear = defaults(w.gg, config._a[YEAR], curWeek.year); 

 

       // Default to current week. 

       week = defaults(w.w, curWeek.week); 

 

       if (w.d != null) { 

           // weekday -- low day numbers are considered next week 

           weekday = w.d; 

           if (weekday < 0 || weekday > 6) { 

               weekdayOverflow = true; 

           } 

       } else if (w.e != null) { 

           // local weekday -- counting starts from beginning of week 

           weekday = w.e + dow; 

           if (w.e < 0 || w.e > 6) { 

               weekdayOverflow = true; 

           } 

       } else { 

           // default to beginning of week 

           weekday = dow; 

       } 

   } 

   if (week < 1 || week > weeksInYear(weekYear, dow, doy)) { 

       getParsingFlags(config)._overflowWeeks = true; 

   } else if (weekdayOverflow != null) { 

       getParsingFlags(config)._overflowWeekday = true; 

   } else { 

       temp = dayOfYearFromWeeks(weekYear, week, weekday, dow, doy); 

       config._a[YEAR] = temp.year; 

       config._dayOfYear = temp.dayOfYear; 

   } 

} 

 

 

Figure 4.6. Conversion method example (project Moment).

the method GetWeightedValues of project Nancy (C#). This method has completely
changed over time due to the addition of lazy initialization, therefore, its complexity
skyrocket, from 3 to 25. As result, the method is no more a simple getter, but it also
handles cache and initialization details.



4. Empirical Results: Evolution of Complex Methods 45

 

 {...} Hidden code      XX    Elements that impact cyclomatic complexity     XX   New elements that impact cyclomatic complexity 

FIRST LAST 

protected  Response  handle( final Request  request) throws IOException { 

   if ("/".equals(request.getPath()) && 

("POST" .equals(request.getMethod()))) { 

       final  String  userAgent = request.getHeader( "User-Agent" ); 

       if (userAgent != null && userAgent.startsWith( "aws-sdk-java" )) 

{ 

           // Simulate an EC2 DescribeInstancesResponse 

           byte[] responseBody = EMPTY_BYTE; 

           for (NameValuePair  parse : URLEncodedUtils.parse( new 

String(request.getBody(), UTF_8), UTF_8)) { 

               if ("Action" .equals(parse.getName())) { 

                   responseBody = generateDescribeInstancesResponse(); 

                   break ; 

               } 

           } 

           return  new Response(RestStatus.OK.getStatus(), 

                               contentType( "text/xml; charset=UTF-8" ), 

                               responseBody); 

       } 

   } 

   return  null; 

} 

 

protected  Response  handle( final  Request  request) throws IOException { 

   if ("/".equals(request.getPath()) && 

(HttpPost.METHOD_NAME.equals(request.getMethod()))) { 

       final  String  userAgent = request.getHeader( "User-Agent" ); 

       if (userAgent != null && userAgent.startsWith( "aws-sdk-java" )) 

{ 

           final  String  auth = request.getHeader( "Authorization" ); 

           if (auth == null || 

auth.contains( "ec2_integration_test_access_key" ) == false ) { 

               throw new IllegalArgumentException( "wrong access key: " 

+ auth); 

           } 

           // Simulate an EC2 DescribeInstancesResponse 

           byte[] responseBody = EMPTY_BYTE; 

           for (NameValuePair  parse : URLEncodedUtils.parse( new 

String(request.getBody(), UTF_8), UTF_8)) { 

               if ("Action" .equals(parse.getName())) { 

                   responseBody = generateDescribeInstancesResponse(); 

                   break ; 

               } 

           } 

           return  new Response(RestStatus.OK.getStatus(), 

                               contentType( "text/xml; charset=UTF-8" ), 

                               responseBody); 

       } 

   } 

   if ("/latest/meta-data/local-ipv4" .equals(request.getPath()) && 

      (HttpGet.METHOD_NAME.equals(request.getMethod()))) { 

       return  new Response(RestStatus.OK.getStatus(), 

                           TEXT_PLAIN_CONTENT_TYPE, 

                           "127.0.0.1" .getBytes(UTF_8)); 

   } 

 

   if (instanceProfile && 

"/latest/meta-data/iam/security-credentials/" .equals(request.getPath()

) && HttpGet.METHOD_NAME.equals(request.getMethod())) { 

       final  Map<String , String > headers = new 

HashMap <>(contentType( "text/plain" )); 

       return  new Response(RestStatus.OK.getStatus(), headers, 

"my_iam_profile" .getBytes(UTF_8)); 

   } 

 

   if (instanceProfile && 

"/latest/api/token" .equals(request.getPath()) 

       && HttpPut.METHOD_NAME.equals(request.getMethod())) { 

       {...} 
   } 

 

   if ((containerCredentials && 

       "/ecs_credentials_endpoint" .equals(request.getPath()) && 

       HttpGet.METHOD_NAME.equals(request.getMethod())) || 

 

("/latest/meta-data/iam/security-credentials/my_iam_profile" .equals(re

quest.getPath()) && 

       HttpGet.METHOD_NAME.equals(request.getMethod()))) { 

       {...} 
} 

 

Figure 4.7. Coordination method example (project ElasticSearch).

Summary of RQ3: Complex methods are not equally distributed among different
operations. On the contrary, complex methods are clearly over-represented on cer-
tain operations, namely processing, conversion, validation, and IO. The growth in
complexity varies according to the operations: collection, conversion, and coordina-
tion methods are more critical because they present a faster growth in complexity,
whereas setup and release methods have a slower growth.



4. Empirical Results: Evolution of Complex Methods 46

 

{...} Hidden code      XX    Elements that impact cyclomatic complexity     XX   New elements that impact cyclomatic complexity 

FIRST LAST 

private  IEnumerable <Tuple <string , decimal >> GetWeightedValues( string 

headerName) 

{ 

   var values = this.GetSplitValues(headerName); 

   var parsed = values.Select(x => { 

       var q = x.Split( new[] {";q="}, 

StringSplitOptions.RemoveEmptyEntries); 

       var quality = 1m; 

       if (q.Length > 1){ 

           if(!decimal.TryParse(q[ 1], NumberStyles.Float, 

CultureInfo.InvariantCulture, out quality)){ 

               return  null; 

           } 

       } 

       return  new Tuple<string , decimal >(q[0].Trim(), quality); 

   }); 

 

   return  parsed 

       .Where(x => x != null) 

       .OrderByDescending(x => x.Item2); 

} 

 

 

private  IEnumerable <Tuple <string , decimal >> GetWeightedValues( string 

headerName) 

{ 

   return  this.cache.GetOrAdd(headerName, r => 

   { 

       var values = this.GetValue(r); 

       var result = new List<Tuple<string , decimal >>(); 

       foreach  (var header in values){ 

           {...} 
           for (var index = 0; index < header.Length; index++){ 

               var character = header[index]; 

               if (character.Equals( ' ') && (index != header.Length - 

1) && !isInQuotedSection){ 

                   continue ; 

               } 

               if (character.Equals( '"')){ 

                   isInQuotedSection = !isInQuotedSection; 

               } 

               if (isInQuotedSection){ 

                   buffer += character; 

                   if (index != header.Length - 1){ 

                       continue ; ; 

                   } 

               } 

               if (character.Equals( ';') || character.Equals( ',') || 

(index == header.Length - 1)){ 

                   if (!(character.Equals( ';') || 

character.Equals( ','))){ 

                       buffer += character; 

                   } 

                   if (isReadingQuality){ 

                       quality = buffer; 

                   } 

                   else{ 

                       if (name.Length > 0){ 

                           name += ';'; 

                       } 

                       name += buffer; 

                   } 

                   {...} 
               } 

               if (character.Equals( ';')){ 

                   continue ; 

               } 

               if ((character.Equals( 'q') || character.Equals( 'Q')) && 

(index != header.Length - 1)){ 

                   if (header[index + 1].Equals( '=')){ 

                       isReadingQuality = true; 

                       continue ; 

                   } 

               } 

               if (isReadingQuality && character.Equals( '=')){ 

                   continue ; 

               } 

               if (character.Equals( ',') || (index == header.Length - 

1)){ 

                   var actualQuality = 1m; 

                   decimal  temp; 

                   if (decimal.TryParse(quality, NumberStyles.Number, 

CultureInfo.InvariantCulture, out temp)){ 

                       actualQuality = temp; 

                   } 

                   {...} 
               } 

               buffer += character; 

           } 

       } 

       return  result.OrderByDescending(x => x.Item2); 

   }); 

} 

 

Figure 4.8. Accessing method example (project Nancy).



4. Empirical Results: Evolution of Complex Methods 47

4.4 Discussion e Implications

XProgramming language plays an important role in the study of code com-
plexity. The evolution of complex methods is not necessarily equal among program-
ming languages. For example, despite the majority of the complex methods increase
complexity during evolution, C++ and Python ones present a higher proportion than
other languages. In contrast, C# and Java ones present more effort to decrease com-
plexity. This way, to better understand code complexity evolution, researchers should
not only focus their analysis on single programming languages. On the contrary: this
study provides empirical evidence that each language has its distinction, thus, multi-
language studies should be fomented.

XComplex methods are not homogeneous in the operations they perform.
In addition to the variation of per language, we also find that complex methods vary
according to the operation they perform (RQ3). That is, the complex methods them-
selves may have distinct goals and complexity trends, thus, being very heterogeneous.
Researchers should be aware of those distinctions among complex methods and strive
to not treat them homogeneously to avoid loss of information and have more precise
analysis.

XPrioritize complex methods to be addressed during code cleaning. We find
that complex methods are over-concentrated on certain operations (e.g., processing
and conversion) and under-concentrated on other operations (e.g., accessing and test).
However, those operations are not equally problematic: collection, conversion, and
coordination methods tend to become even more complex, whereas operations as setup
and release barely increase complexity. Those distinctions can be used to prioritize
the complex methods to be addressed in code cleaning activities [46]. For example, in
software systems with dozens of complex methods, which ones should be handled firstly
by developers? In practice, this kind of prioritization could be integrated into smell
detection tools ( e.g., [17; 49; 54; 75]) so that developers can focus on the most critical
operations beforehand.

4.5 Threats To Validity

Method and file renaming. To ensure that we analyze the entire history of the complex
methods, we manually examined the first commit of each method: when a method
renaming was identified (either by name or by a change in its parameters) or moved
from another file, it was discarded and a new method was evaluated (see Chapter 3).



4. Empirical Results: Evolution of Complex Methods 48

That is, renamed/moved methods are not part of our dataset; in total, we discarded
735 methods. Another strategy to avoid loss of data is to ensure the full history
of the file containing the method. Thus, we rely on the command git –follow to
track files regardless of file renaming, ensuring that the entire file history is properly
analyzed [2; 3]. Another solution we considered to identify the entire history is relying
on the git -L command. However, we discarded this solution because it did not
adequately identify the move method operations.

Wrongly migrated projects to Git/GitHub. In our study, the analysis of the entire
project history is fundamental, thus, we ignored projects that for some reason do
not make their full history available since the beginning (e.g., they migrated from
another platform to GitHub, are spin-off from another project, etc). To identify such
repositories, we analyzed the very first commit of each candidate system and discarded
the ones with more than 10 source files (see Chapter 3).

Minified JavaScript files and packages. JavaScript projects usually have copies of large
files in minified formats [66]. This procedure is used to improve performance, decrease
the size of source files, and promote more security in some scripts. However, the analysis
of changes to these files would not be adequate because they have many instructions
and functions in a few lines, making it impossible to identify which class or function
was actually changed over time. Thus, we ignored files with these characteristics in
JavaScript projects.

Classifying change types. In RQ2, we assessed the change types looking for keywords
in commit messages. Thus, a set of keywords were used to identify bugs, new fea-
tures, and refactoring changes [4; 35]. To validate this classification, we performed a
manual evaluation of 384 randomly selected commits (i.e., 95% confidence level and
5% confidence interval). This manual assessment of the classification using keywords
led to a reasonable precision of 81%. Thus, the risk of wrong classifications in RQ2 is
minimized.

Computing cyclomatic complexity. The computation of Cyclomatic Complexity was
performed exclusively by the Lizard tool, which also provides data as NLOC and
method location in the file (which is important to identify changes within the method).
Thus, we are susceptible to possible internal tool errors during the analysis of over one
million methods. Notice, however, that this tool is often adopted in the software in-
dustry, as mentioned in Chapter 3, which improves its reliability.

Generalization of the results. We analyzed 1,000 complex methods provided by 50
popular systems and written in five programming languages, making this study possibly



4. Empirical Results: Evolution of Complex Methods 49

the most diverse in the literature so far. We recall that such type of study is often
single language [9; 15; 20; 34; 41; 49; 51; 52; 53; 54; 56; 65; 72; 73; 74; 77; 79]. Moreover,
our findings—as usual in empirical studies—may not be directly generalized to other
systems, as commercial ones with closed source and implemented in other programming
languages.

4.6 Final Remarks

In this chapter, we provided a quantitative study of the main characteristics of complex
methods. We investigated three aspects of complex methods: (i) evolution over time;
(ii) types of changes; and (iii) operations performed by the methods. The main findings
for each question in this chapter are: (a) programming languages play an important
role in monitoring method complexity; (b) complex methods are significantly over-
represented on changes related to bugs, new features, and refactoring as compared
to non-complex methods; and (c) complex methods implement different categories of
operations, the largest concentration is Processing, Conversion, Validation, and IO.

The next chapter complements the quantitative analysis of this chapter, with a
qualitative study. We answer RQ4 and RQ5, which seek to understand the developer’s
perception of complex methods.



Chapter 5

Survey Results: Developers’
Perceptions on Complex Methods

In this chapter, we report the results of our survey with 73 developers, who have re-
cently maintained complex methods in popular software systems. Our goal is to better
understand the developers’ perceptions of methods considered complex in multiple pro-
gramming languages. Section 5.1 presents the result for RQ4, analyzing the first two
survey questions. Then, Section 5.2 describes the main reasons for developers not to
refactor complex methods, responding to RQ5. Section 5.3 describes the implications
of the results. Lastly, we present the Threats to Validity in Section 5.4 and Final
Remarks in Section 5.5.

5.1 RQ4: What are developers’ perceptions of

method complexity?

Question 1: Do you think this complex method is harmful for maintenance?

First of all, we identify whether the surveyed developers agree that the target
method is complex or not. We find that that 49% of the developers (36 out of 73) do
not consider the studied methods as complex, while 40% (29 out of 73) state that they
are indeed complex. Also, the answer is not clear in 8 cases (11%). After identifying the
developer’s perceptions, we classify the rationales used in favor and against complexity,
as follows.

Method is complex. Figure 5.1 presents the common reasons of the developers
who classify the analyzed method as complex. Most of the developers agree that
the target complex method compromises maintenance (53%, 18 answers). For

50



5. Survey Results: Developers’ Perceptions on Complex Methods 51

example, Developer #65 states: “Yes, it’s absolutely harmful for maintenance. Fixing
existing bugs, implementing new features, addressing new requirements are all made
much harder because of the complexity of this method”. Similarly, Developer #43 says:
“Yes, actually the commit is to fix a bug which is somehow related to the complexity of
this method, there are a few properties that need to be processed and it’s very easy to
cause a mistake like missing one property or typo from a copy-paste.”. Three developers
(10%) state that the complex method discourages new contributors . For example,
Developer #34 mentions: “As a new contributor, it took some effort to understand the
working of the code and the data structures in play. This definitely raises the barrier of
entry of contributors by quite a bit.”. Both categories agree that the complex methods
are harmful to maintenance.

0 2 4 6 8 10 12 14 16
Answers

Compromises maintenance

Discourages new contributors

Method is not harmful

Method is well structured

Method has a single responsibility

53%

10%

23%

10%

3%

Method is complex

Harmful
Not Harmful

Figure 5.1. Developers who consider the methods as complex.

On the other hand, some developers considered the methods as complex, but
stated that they are not necessarily harmful to maintenance (23%), they are well-
written (10%), or they have single responsibility (3%). For example, Developer #39
writes: “The original code mentioned in my PR is difficult to understand semantically.
But I think it is not harmful (may by very very little ?) for maintenance.”. Similarly,
Developer #46 mentions that the complex method is well-written and commented:
“Complex method can be harmful if what it does from a macro perspective isn’t obvious
and/or if it isn’t rightfully commented. From the function name and the comment I
understand what it does. No need to reverse engineer the code”. Lastly, Developer #14
mentions the complex method is cohesive: “Method has a single responsibility”, thus,
it is not hard to maintain.



5. Survey Results: Developers’ Perceptions on Complex Methods 52

Method is not complex. Figure 5.2 presents the common reasons of developers who
do not consider the analyzed method as complex. The most commonly used arguments
are cyclomatic complexity is a weak metric and method is well written (21%
each). In this case, some developers criticized static metric analysis metrics, such
as cyclomatic complexity. For example, Developer #13 states: “I haven’t ever found
cyclomatic complexity to be a good measure for actual complexity in my career”. It
is interesting to note that we have not stated the metric we adopted, however, the
developers seem to be aware that this metric is not always ideal. Other developers
presented that the code was well written, thus, it would not have maintenance problems.
For instance, Developer #25 mentions: “The code here is actually well written and not
complex in nature”.

0 2 4 6 8 10 12
Answers

Cyclomatic complexity is a weak metric

Method is well written

Method is only long

Method has simple functionality

Without justification

21%

21%

15%

13%

31%

Method is not complex

Figure 5.2. Developers who do not consider the methods as complex.

Next, we note that the categories method is only long (15%) and method has
simple functionality (13%) are the other rationales against its complexity. In this
context, Developer #06 states: “This method is long, but not necessarily complex. It is a
giant switch statement, and within each case, the logic is simple.”. Similarly, Developer
#08 says: “All it’s really doing is extracting fields from a protobuf, validating their
values, and storing them in a struct. I do not believe that this causes any maintenance
burden.”. Lastly, other developers (31%) do not present clear rationales, for example,
Developer #60 simply states: “I don’t think it’s particularly complex”.

Figure 5.3 summarizes the answers per programming language. Note that Java
and C# have a higher proportion of developers who agreed that the target method
is complex, with 71% and 67%, respectively. In contrast, in C++ and Python, only
37% and 35% of developers agree that the target method is complex, respectively. The



5. Survey Results: Developers’ Perceptions on Complex Methods 53

results support the results of our quantitative analysis, in the sense that there are
differences between languages and that it is fundamental to approach each ecosystem
differently.

Answers

C++

C#

Java

JavaScript

Python

0% 25% 50% 75% 100%

Method is complex Method is not complex

Perception of complexity by language

Figure 5.3. Proportion of answers per programming language.

Question 2: Was this change somehow harder to implement since it happened inside
a complex method? Why?

We summarize this analysis in two groups: developers who consider the change is
hard (Figure 5.4a) and developers who consider the change is not hard (Figure 5.4b).
Change the complex method is harder. The most used argument against modi-
fying the target complex method is that its behavior is hard to understand , with
six responses (43%). Developer #65 states: “Implementing the change in the commit I
link above was much harder because of the complexity of the method in question. The
change listed above took several weeks to implement, mostly because of needing to care-
fully understand the tangle of code.”. Similarly, Developer #40 mentions: “yes, it was
hard to track all the variables and what needed to altered during the refactor.”.

The second reason against problem/solution is hard to find (36%). In this
case, the developers revealed problems to find bugs and propose solutions. Developer
#33 states: “Finding the exact cause and location of the bug was extremely difficult...
And the size and complexity of the whole system, really not just this method, was an
issue. In terms of localizing the bug, I was stepping through the debugger across multiple



5. Survey Results: Developers’ Perceptions on Complex Methods 54

0 1 2 3 4 5 6
Answers

Behavior is hard to understand

Problem/Solution is hard to find

Code is discouraging to work

Potential change impact

43%

36%

14%

7%

Change in complex method is harder

(a) Developers who consider the change is hard.

0 2 5 8 10 12 15 18 20
Answers

Change is trivial/easy

Code is well-known

Method is well-structured

Others

Without justification

37.7%

13.2%

11.3%

9.4%

28.3%

Change in complex method is not harder

(b) Developers who not consider the change is not hard.

Figure 5.4. Developers’ insights about how hard is to change complex methods.

functions, I didn’t know at the outset that it was this function.”. Likewise, Developer
#19 mentions: “The change itself is not hard to implement, but it’s hard to find the
problem.”.

Two developers revealed that the complex code is discouraging to work . Fi-
nally, a single developer stated he had a problem with the modification due to potential
change impact . Developer #46 says: “It was harder because of the pressure, the po-
tential impact of a bug in such a core function. I force myself to write “perfect” code,
because I absolutely didn’t want to create new bug and also because I knew I would have
to sell this changes to core maintainers.”



5. Survey Results: Developers’ Perceptions on Complex Methods 55

Change the complex method is not harder. In this group of answers, summarized
in Figure 5.4(b), the main reason is change is trivial/easy (38%). Some developers
explain that the change was easy because they do not need to understand or modify the
method’s logic. For example, Developer #24 says: “No, because it was very specific and
I don’t care about the surrounding logic.”. Likewise, Developer #47 states: “No, this
changes was quite a primitive one, I’ve just used auxiliary method to prevent allocations
when they are not necessary. The same change could be done automatically by static
analysis tools.”.

In 13% of the cases, the developers stated they had no difficulty because the code
is well-known . In this context, Developer #02 says: “No, possibly because I have
worked with the codebase for some time now.”. In 11% (six answers), the developers
said that the method is well-structured , so this helped performing the change. For
example, Developer #55 says: “I found the rest of the method as well structured and
easy to read. The code there is linear and every feature is separated”.

Finally, the others category (9%) groups less frequent responses, such as method
has automated tests (2 answers) and method was recently created (1 answer). Lastly,
15 developers (28%) just stated the change was not difficult, without any clear jus-
tification. Note that this category is different from change is trivial/easy, in which
the developer explicitly claimed to have had great ease in implementing the changes.
As an example, we cite the vague responses of Developers #20 and #60, respectively:
“This part of the change was not difficult to implement” and “The change wasn’t hard
to implement”.

Summary of RQ4: We find no consensus regarding the developers’ perceptions of
method complexity. Methods with high cyclomatic complexity are considered complex
by 40% of the developers and not complex by 50%:

• Developers in favor mostly say that the target complex method compromises
maintenance and discourages new contributors. In contrast, developers against
it state that cyclomatic complexity is a weak metric and that the target method
is well-written or only long.

• Changing the target complex method is not necessarily harder because the
change can be very specific and the developer does not need to know the
surrounding logic. On the other hand, developers also state that the target
complex method may have behavior that is hard to understand and that the
problem/solution is hard to find.



5. Survey Results: Developers’ Perceptions on Complex Methods 56

5.2 RQ5: Why complex methods are not

eliminated from code?

So far, it is clear that some developers may not consider the target methods as complex,
as presented in RQ4. However, 40% of the respondent developers agree that the target
methods are in fact complex. Thus, for these cases, one questions remain unanswered:
why those complex methods were not refactored given they are known to be complex
and, possibly, harmful for maintenance? This way, we proposed the following question
in our survey:
Question 3: Why do you think developers have never refactored such a complex method
before?

We find 10 reasons why the complex methods are not refactored, as summarized
in Figure 5.5.

0 2 5 8 10 12 15 18
Answers

Code is stable
Refactoring is not a priority

Refactoring is risky
Problem is inherently complex

Code is rarely changed
Code flow must be shown

Benefits are not clear
Code has no owner

Code is easy to understand
Language restriction

Others

20%
20%

18%
7%

6%
6%

4%
4%

3%
3%

8%

Why the code is not refactored

Figure 5.5. Reasons why complex methods are not refactored.

The two most frequent reasons to avoid refactoring are code is stable and refac-
toring is not a priority (20% each). For the first category, Developer #64 states:
“there wasn’t a need as the function works fine, it has unit tests and there aren’t new
features requested”. Similarly, Developer #08 says: “The method has never been refac-
tored because it’s not necessary. The logic is perfectly understandable as-is.”, while
Developer #20 mentions: “My answer is that it is already well-structured to solve the
problem. [...]”. For the second category (refactoring is not a priority), other code mod-



5. Survey Results: Developers’ Perceptions on Complex Methods 57

ifications, such as feature addition bug-fixes, have a higher priority than refactoring.
For example, Developer #43 states: “I guess they have a lot of other tasks that have
higher priority like bug fixing or supporting enterprise customers.”. Developer #04
states: “Maybe because nobody cared and developers had other priorities? The former
maintainers (HP, Google) abandoned the project, and there are only few volunteers
now who do the work.”. Similarly, Developer #34 answers: “When we are developing
a feature, we sometimes focus on getting it work first and then make it work right.
Sometimes, some refactorings might missed, or maybe not worth the effort”.

Refactoring is risky is another frequent reason (18%). In this case, the devel-
opers state that code modification may add bugs and break other parts of the system.
For example, Developer #21 mentions: “From my experience the most common reasons
I have seen are: 1. Bad risk/reward ratio. Refactoring code is a risky job. 2. Implicit
dependencies on the implementation. Risk of breaking app compatibility. [...]”. Sim-
ilarly, Developer #63 says: “Refactoring this particular code structure would require
refactoring ALL of the affected modules, which in an open source project of that scale
becomes far more complex and dangerous than leaving it as is.”. Indeed, to avoid this
scenario, refactoring should always be performed with tests, ensuring that the behavior
of the code is not changed [22].

Next, we have the category problem is inherently complex (7%). This states
that complexity can not be avoided due to the complex nature of the addressed prob-
lem. Developer #01 mentions: “There is a base complexity in the functionality that this
method provides. This base complexity cannot be avoided. [...]”. Developer #13 com-
ments: “It was refactored many times, but there’s no good way to implement something
beautifully that’s inherently ugly”.

Code flow must be shown is reported by 6% of the developers. In this case,
they claim that it is necessary to visualize the code flow in a single method or screen,
for example, without browsing the code. Developer #42 mentions: “I think it was
not refactored because there is always a point where you should expose complexity.
This method does so in a quite clean way. [...]”. Developer #26 says: “Sometimes
splitting something into multiple functions is better, but sometimes it isn’t. Functions
which perform a long sequence of operations which cannot easily be shared with other
functions are often easier to understand as single functions than they would be with
extra abstraction”. Likewise, Developer #58 states: “The only thing you can do is to
split off reading the file itself to a separate function. That may make testing some thing
easier. On the other hand, it may be harder to follow the complete flow of the data.”

The category code is rarely changed has 6% of the responses. Developer #05
mentions: “It’s isolated, rarely touched [...]”. Similarly, Developer #33 says: “[...] it



5. Survey Results: Developers’ Perceptions on Complex Methods 58

also is not a heavily modified section of the code relatively speaking, I think.”. There
are also less frequent categories: benefits are not clear , code has no owner , code
is easy to understand , and language restriction , with 4, 4, 3, and 3 answers,
respectively. Finally, we grouped some less adopted reasons in the others category,
including issues related to performance, optimization, and code duplication.
Summary of RQ5: Complex methods are not refactored mainly due to three rea-
sons: (1) developers consider the methods stable in their current state way; (2) refac-
toring is not considered a high-priority task, like bug-fixing; and (3) refactoring is
considered risky, possibly, due to lack of tests. Other reasons include: the problem is
inherently complex, code is rarely changed, and code flow must be shown.

5.3 Discussion and Implications

XThe developers’ perception of complexity is subjective and varies pro-
gramming language. In our survey, we find no consensus regarding the developers’
perceptions of method complexity. Methods with high cyclomatic complexity are con-
sidered complex by 40% of the developers and not complex by 50% (RQ4). Moreover,
it is interesting to note that the programming languages with the lowest perception of
complexity are the ones with the highest trends in increasing complexity (RQ1), and
vice-versa. For example, by contrasting Figures 4.2 and 5.3, we observe that C++ and
Python have the highest rate of methods increasing complexity over time, while they
have the lowest perception of complexity. On the other hand, Java and C# have the
highest rate of methods decreasing complexity over time, while they have the highest
perception of complexity. Thus, the perception of complexity on each programming
language may play a role in the way methods are developed and efforts are allocated to
reduce complexity. Further research should be performed per language to deep under-
stand this issue.

XDevelopers may deliberately avoid refactoring complex code. We find that
developers do not refactor complex methods due to several reasons (RQ5), including
code is stable, problem is inherently complex, and code flow must be shown, to name
a few. That is, sometimes, developers are satisfied with complexity or even want to
expose it. Moreover, 3 out of the 10 reasons reported by developers directly blame
the refactoring activity itself: refactoring is not a priority, refactoring is risky, and
benefits are not clear. We thus shed light on the contrast between theory and practice:
despite the clear benefits of refactoring to improve maintainability [22; 46], in practice,
developers may deliberately avoid refactoring complex code due to distinct reasons.



5. Survey Results: Developers’ Perceptions on Complex Methods 59

5.4 Threats To Validity

Survey study. The survey analysis has been performed with special attention by the
two authors via thematic analysis to minimize subjectivity. The reliability of responses
can also be considered a threat to the survey study. Thus, to reduce this risk, we
assessed the most recent commits to finding recent changes that were likely to be
fresher in the memory of the developers. Moreover, most respondent developers come
from large software companies or work in worldwide projects hosted in GitHub. Finally,
we assessed the level of commits of the respondent developers as compared with average
ones, and we find that most respondents (64%) have high activity levels (see Chapter 3).

Generalization of the results. We focused our survey on developers who recently mod-
ified complex methods in popular GitHub repositories, involving five programming
languages (i.e., C#, C++, Python, Java, and JavaScript). Then, we interpreted and
categorized responses from 73 developers to the three questions addressed. Therefore,
as mentioned in threats in Chapter 4 and empirical software engineering, our findings
are restricted to the study’s subject and cannot be generalized to other scenarios.

5.5 Final Remarks

In this chapter, we presented the second study of this dissertation: a survey with con-
tributors of popular GitHub projects. We investigated three questions to understand
developers’ perceptions of source code complexity. Specifically, we performed a qual-
itative study to investigate: (i) the impact of complexity on maintenance tasks; (ii)
the difficulty to maintain complex methods; and (iii) the reasons for the existence of
complex methods. As result, we identified that there is no consensus on the developers’
perception of complexity. As such, certain contributors have indicated that complexity
compromises maintenance and discourages new contributors. In contrast, others have
stated that cyclomatic complexity is a weak metric for this type of analysis. Simi-
lar behavior is noted when evaluating changes applied by developers. Finally, as the
main reasons for not refactoring complex methods, we can mention: Code is stable,
Refactoring is not a priority, and Refactoring is risky.

In the next chapter, due to the lack of consensus on complexity, we deepen our
analysis of complex methods, looking for evidence that differentiates the methods con-
sidered complex and not complex by the developers.



Chapter 6

Assessing Self-Admitted Complex
Methods

This chapter presents the third and final study of the dissertation. This analysis an-
swers the last research question (RQ6) and assesses self-admitted complex methods, that
is, methods that the developers themselves classify as complex. Section 6.1 explores the
three studied aspects: Developer Experience, Code and Evolution, and Maintenance.
Next, in Section 6.2, we present and discuss the findings and implications. Finally,
Sections 6.3 and 6.4 present the Threats to Validity and Final Remarks, respectively.

6.1 RQ6: To what extent are self-admitted

complex methods different from other complex

methods?

In this analysis, we considered 65 of the 73 survey developers’ answers, ignoring eight
responses due to the impossibility of identifying the developer’s real perception of the
method’s complexity. Thus, we removed four developers from the C++ programming
language (i.e., two from project rocksdb, one from folly, and one from v8), three Python
developers (i.e., two from cpython and one from ansible), and one JavaScript developer
from the angular.js repository.

As mentioned at the beginning of Section 5.1, considering now only 65 developers,
we find that 55% (36) of the developers denied that the target method was complex;
we call those methods self-admitted not complex methods. On the other hand, 45% (29)
agree that the method was complex; those methods are called self-admitted complex

60



6. Assessing Self-Admitted Complex Methods 61

methods. Below we discuss the answers to the three aspects addressed in this research
question.

6.1.1 Developer Experience

According to the NOC (i.e., number of commits), Figure 6.1 summarizes this first anal-
ysis: it breaks the experience of the surveyed developers according to their perceptions
of complexity. We first notice that most of the surveyed developers have high experi-
ence (red bar) as compared to the other developers in the same project. Interestingly,
the most experienced developers are more likely to classify the target methods as not
complex (69%) than as complex (55%). On the other hand, developers with less expe-
rience (blue bar) are more likely to classify the target methods as complex (24%) than
as not complex (8%).

Self-Admitted

0%

20%

40%

60%

80%

Complex Not Complex

Low Medium High

Developer Experience

Figure 6.1. Experience of the surveyed developers vs. perceptions of complexity.

Summary of RQ6a: The majority of the surveyed developers have a high level of
experience in the analyzed projects. The experience of the developers may play a role
in their perceptions of code complexity. That is, the most experienced developers are
more likely to classify the target methods as not complex, while the least experienced
developers are more likely to classify the target methods as complex.



6. Assessing Self-Admitted Complex Methods 62

6.1.2 Code and Evolution

Next, we aim to explore the code and evolutionary differences between the two groups of
complex methods. As presented in Figure 6.2, on the median, both groups of methods
have a complexity of 15 (the difference is not statistically significant for the Mann-
Whitney test, p-value=0.25). In other words, both self-admitted complex and not
complex methods are equally complex.

Not Complex Complex
Self-admitted

10

15

20

25

30

35

Cy
clo

m
at

ic 
Co

m
pl

ex
ity

15 15

Figure 6.2. Complexity of the analyzed methods.

Table 6.1 explores other five metrics: lines of code, tokens (i.e., number of words
and operators), number of parameters, number of commits that changed the target
method, and growth rate (i.e., the current complexity of the method divided by the
complexity of its very first version). On the median, the self-admitted complex meth-
ods (“SA C”) have 78 lines of code, while self-admitted not complex methods (“SA NC”)
have 74. Both groups also have an equivalent number of parameters (i.e., 2 parameters,
on the median) and commits that changed the target method (around 6 changing com-
mits, on the median). Column p-value presents the results of the comparison between
the groups for the Mann-Whitney test. As we notice, none of the comparisons is sta-
tistically significant (i.e., all p-values ≥ 0.05), meaning that the groups are equivalent
regarding the analyzed metrics.
Summary of RQ6b: Self-admitted complex methods are equivalent to other com-
plex methods in terms of complexity, lines of code, tokens, parameters, commits, and
growth rate. In other words, those factors cannot explain their differences.



6. Assessing Self-Admitted Complex Methods 63

Table 6.1. Code and evolution of the complex methods (median values).

Dimension Metric SA NC SA C p-value

Code Lines of code 74 78 0.48
Tokens 425.5 332 0.35
Parameters 2 2 0.36

Evolution Commits 6.5 6 0.27
Growth rate 131% 105% 0.43

6.1.3 Maintenance

Lastly, we seek to understand how both groups of complex methods affect software
maintenance. As a proxy of maintainability, we analyze the issues and pull requests
(PRs) related to each complex method. We find 32 issues and pull requests referencing
the self-admitted complex methods and 38 issues and pull requests about the other
complex methods. For comparison purposes, we randomly select 70 ordinary issues and
pull requests, following the proportion of programming languages of the interviewed
developers. Based on that data, we extract two metrics: (a) number of messages in
issues and pull requests and (b) number of changed files in pull requests. The rationale
is that the higher those numbers, the more discussion and effort are dedicated to the
proposed changes.

Figure 6.3a shows that issues and pull requests of the self-admitted complex
methods have 10 messages, while the other complex methods have 6.5 messages (for
comparison, ordinary issues/pull requests have only 3 messages). Notice that their pull
requests have 3 and 2.5 changed files, respectively (Figure 6.3b). Despite the apparent
distinction, we find no statistically significant difference between both groups of com-
plex methods (i.e., all p-values ≥ 0.05), meaning they are equivalent. However, when
comparing the self-admitted complex methods with the ordinary ones, the difference
is significant (with moderate and very large effect for the Cohen effect size).

To further explore possible maintainability issues in the target methods, we assess
the most common maintenance problems on their issues and pull requests. For this
purpose, we rely on thematic analysis [14] to identify and record themes. Specifically,
we perform the following steps: (1) initial reading of the issues/PRs, (2) generating a
first code for each issues/PRs, (3) searching for themes among the proposed codes, (4)
reviewing the themes to find opportunities for merging, and (5) defining and naming
the final themes.

As summarized in Table 6.2, we find seven major maintenance problems in the
investigated methods: lack of tests, hard maintenance, presence of bugs, low perfor-



6. Assessing Self-Admitted Complex Methods 64

SA Complex SA Not Complex Random
Issues and Pull Requests

0

5

10

15

20

25

30

35

40

Nu
m

be
r o

f M
es

sa
ge

s

3
6.5

10

(a) Messages in Issues and Pull Requests

SA Complex SA Not Complex Random
Pull Requests

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ch
an

ge
d 

fil
es

22.53

(b) Files changed in Pull Requests

Figure 6.3. Distribution of (a) messages and (b) changed files in issues/PRs.

mance, lack of documentation, bad nomenclature, and code duplication. The columns
“SA NC” (self-admitted not complex methods) and “SA C” (self-admitted complex
methods) detail the frequency of each maintenance problem.

Overall, we could not find any major difference between the two groups of complex
methods, despite the self-admitted complex methods have slightly more maintenance
problems than the other complex methods (26 vs. 21). Thus, we can roughly state that
both groups of complex methods suffer from the same types of maintenance problems.
Also, we recognize that this dataset is small and should be expanded by further studies
for more robust analysis.

Summary of RQ6c: We did not find significant differences when we evaluated the
issues and pull requests of the target methods. In contrast, we identified the following
similarities according to issues and pull requests:

• Self-admitted complex methods and other complex methods have an equivalent
number of messages and changed files, suggesting the same level of discussion
and effort.

• Self-admitted complex methods and other complex methods have similar main-
tenance problems, such as lack of tests, presence of bugs, and low performance.



6. Assessing Self-Admitted Complex Methods 65

Table 6.2. Maintenance problems found in issues and pull requests of complex
methods.

Problem Example #SA NC #SA C

Lack of Tests “Could you add a test case to ver-
ify that assigning unsaved objects
to OneToOneField and GenericFor-
eignKey aren’t also affected by this
issue?”

8 4

Hard Maintenance “random is the major outlier here, as
it has a not-quite-trivial implemen-
tation for Windows, and a pretty
complex implementation for non-
Apple, non-Windows targets”

6 10

Presence of Bugs “Fixing those two things leads to
crashes elsewhere from the little that
I tested, so there’s probably a third
problem somewhere”

3 3

Low Performance “I myself have experienced the slow
cursor movement... It is called
many times during screen redraw-
ing. All those vector initializing and
copying consumes lots of CPU cy-
cles”

2 1

Lack of Docs. “Just reading this docsrting it’s un-
clear what function it could be”

1 3

Bad Nomenclature “Their names are also changed to
add "_swift" to the front to match
our naming conventions”

1 2

Code Duplication “We could try to reduce the dupli-
cated logic by factoring it out into an
InsertExplicitCall::attempt method”

0 3

All - 21 26

6.2 Discussion e Implications

XThe experience of the developers may affect their perceptions of complex-
ity. In our analysis, we find that the developer’s experience impacted the perceived
complexity of the methods. About three times more developers with low experience
found the methods complex. Concomitantly, more developers with more experience
considered the methods as non-complex (RQ6a). In this way, complexity can be a prob-
lem for novice developers, as we also report in the RQ4 responses ( i.e., Discourages
new contributors). Thus, we must consider the developer’s experience when analyzing



6. Assessing Self-Admitted Complex Methods 66

complexity in source code.

XDifferentiating self-admitted complex methods from other complex meth-
ods is not a trivial task. Our main objective in this RQ6 was to seek characteris-
tics that differentiate self-admitted complex methods from self-admitted not complex
methods, but our findings demonstrated that these two groups are more similar than
distinct. Thus, the methods are considered similar both in terms of code and evolu-
tion (RQ6b) and in the problems identified in the issues and pull requests related to
the target methods (RQ6c). Since current code metrics are not sufficient to assess
code complexity as perceived by developers, researchers should be aware of the need for
further studies to automatically identify self-admitted complex methods.

6.3 Threats To Validity

Manual classification of the issues and pull requests. The classification of the cate-
gories in RQ3 was performed manually by the authors of the paper. To reduce the
subjectiveness of this analysis, we rely on thematic analysis [14].

Generalization. We analyzed dozens of complex methods provided by popular open-
source systems, which are written in five programming languages (JavaScript, Python,
Java, C++, and C#). Despite these observations, our findings—as usual in empirical
studies—may not be directly generalized to closed-source systems and other program-
ming languages.

6.4 Final Remarks

In this chapter, we presented the final study of this master dissertation. We inves-
tigated self-admitted complex methods according to the developers’ perceptions. By
evaluating 65 target methods in three aspects (i.e., Developer Experience, Code and
Evolution, and Maintenance), we obtained the following results: (i) the experience of
the developers may play a role in their perceptions of code complexity; (ii) self-admitted
complex methods are similar to other methods in terms of code and evolution; and (iii)
self-admitted complex methods have the same characteristics and problems in the dis-
cussion of issues and pull requests as other methods.

In the next chapter, we present our conclusions, summarizing the results of our
analysis and discussing the main contributions of this dissertation. In addition, we
propose future research directions.



Chapter 7

Conclusion

7.1 Summary and Contributions

In this dissertation, we provided a multi-language empirical study to assess the evolu-
tion of complex methods, a survey study to better understand developers’ perceptions,
and a comparative study on self-admitted complex methods and other methods. We
analyzed 1,000 complex methods of 50 popular projects written by five programming
languages (JavaScript, Python, Java, C++, and C#) and we perform a survey with
over 70 developers. Overall, we found that programming language plays an important
role in the study of code complexity and that complex methods are not homogeneous
in the operations they perform. The developers’ perception of complexity is subjec-
tive and varies per programming language. Furthermore, developers may deliberately
avoid refactoring complex code due to several reasons, including code stability, lack of
refactoring priority, and refactoring risk. Finally, according to the metrics covered, we
verified that self-admitted complex methods are not easily distinguishable from other
complex methods. In contrast, we found that the developer’s experience may have
influenced their perception of complexity.

Based on our results, we provided insights to both researchers and practitioners.
We presented that the studied programming languages have close but not equal issues
regarding method complexity, thus, researchers should not focus their analysis on sin-
gle languages. Indeed, we showed that, independently of the programming language,
complex methods are living entities that tend to change frequently and grow in com-
plexity. Our survey results presented that the perception of complexity is subjective
and varies per programming language. Then, we discussed the reasons why complex
methods are deliberately not refactored over time. Finally, in our last and preliminary
study, we could not find any major difference between self-admitted complex methods

67



7. Conclusion 68

and other complex methods, analyzing aspects of code, evolution, and maintenance.

7.2 Future Work

We consider that our work can be complemented with the following future work:

Evaluate tests of complex methods. As future work, we would like to analyze
whether complex methods are covered by tests and what are the characteristics of
these tests. In this way, it would be possible to identify the types of tests. Whether
unitary, integrating, or functional. Also, we would compare the complexity of tests
that evaluate complex methods with other tests, aiming to identify whether complex
methods generate “complex tests”.

Investigate the evolution of other code smells. We plan to investigate other code
smells and anti-patterns available in the literature, such as code duplication and long
parameter lists. In this way, we can identify the evolution of these elements over time,
comparing the evolution of the complexity of the methods.

Improve complexity metrics. Since cyclomatic complexity is not a very precise
metric to identify complex methods, there is a need to improve it so that more practi-
tioners and researchers can adopt it. For best results, other metrics involving method
naming, depth, and code duplication can be incorporated or grouped at cyclomatic
complexity.

Explore other characteristics of self-admitted complex methods. In our study,
we shed light on common factors between the two groups of complex methods. This
opens room for novel researches to explore other factors to capture the developers’
perception of complexity, for example, security, comprehensibility, and readability, to
name a few.



Bibliography

[1] M. Aniche, G. Bavota, C. Treude, M. A. Gerosa, and A. van Deursen. Code
smells for Model-View-Controller architectures. Empirical Software Engineering,
23:2121–2147, 2018.

[2] G. Avelino, L. Passos, A. Hora, and M. T. Valente. A novel approach for estimat-
ing truck factors. In 24th International Conference on Program Comprehension
(ICPC), pages 1–10, 2016.

[3] G. Avelino, L. Passos, A. Hora, and M. T. Valente. Measuring and analyzing code
authorship in 1+118 open source projects. Science of Computer Programming,
176(1):14–32, 2019.

[4] Y. Ayalew and K. Mguniin. An assessment of changeability of open source soft-
ware. Computer and Information Science, 6(3):68–79, 2013.

[5] H. Borges, A. Hora, and M. T. Valente. Understanding the factors that impact
the popularity of GitHub repositories. In International Conference on Software
Maintenance and Evolution (ICSME), pages 334–344, 2016.

[6] M. W. Bray, K. Brune, D. Fisher, J. Foreman, and M. Gerken. C4 software
technology reference guide - a prototype. 1997.

[7] A. Brito, M. T. Valente, L. Xavier, and A. Hora. You broke my code: understand-
ing the motivations for breaking changes in apis. Empirical Software Engineering,
25:1458 – 1492, 2020.

[8] A. Chatzigeorgiou and A. Manakos. Investigating the evolution of bad smells in
object-oriented code. In International Conference on the Quality of Information
and Communications Technology, pages 106–115. IEEE, 2010.

[9] A. Chatzigeorgiou and A. Manakos. Investigating the evolution of code smells
in object-oriented systems. Innovations in Systems and Software Engineering,
10(1):3–18, 2014.

69



Bibliography 70

[10] Z. Chen, L. Chen, W. Ma, and B. Xu. Detecting code smells in python programs.
In International Conference on Software Analysis, Testing and Evolution (SATE),
pages 18–23, 2016.

[11] Chi-Square - College of Education - NIU, October, 2020.

[12] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Transactions on software engineering, 20(6):476–493, 1994.

[13] D. Cruz, A. Santana, and E. Figueiredo. Detecting bad smells with machine
learning algorithms: An empirical study. In International Conference on Technical
Debt, page 31–40, 2020.

[14] D. S. Cruzes and T. Dyba. Recommended steps for thematic synthesis in software
engineering. In 2011 International Symposium on Empirical Software Engineering
and Measurement (ESEM), pages 275–284, 2011.

[15] D. Di Nucci, F. Palomba, D. A. Tamburri, A. Serebrenik, and A. De Lucia. Detect-
ing code smells using machine learning techniques: Are we there yet? In Interna-
tional Conference on Software Analysis, Evolution and Reengineering (SANER),
pages 612–621, 2018.

[16] M. Dias, A. Bacchelli, G. Gousios, D. Cassou, and S. Ducasse. Untangling fine-
grained code changes. In International Conference on Software Analysis, Evolu-
tion, and Reengineering (SANER), pages 341–350, 2015.

[17] A. M. Fard and A. Mesbah. JSNOSE: Detecting JavaScript Code Smells. In Inter-
national Working Conference on Source Code Analysis and Manipulation (SCAM),
pages 116–125, 2013.

[18] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and E. Figueiredo. A review-based
comparative study of bad smell detection tools. In International Conference on
Evaluation and Assessment in Software Engineering (EASE), pages 1–12, 2016.

[19] M. Fischer, M. Pinzger, and H. Gall. Populating a release history database from
version control and bug tracking systems. In International Conference on Software
Maintenance (ICSM), pages 23–32, 2003.

[20] F. A. Fontana, P. Braione, and M. Zanoni. Automatic detection of bad smells in
code: An experimental assessment. Journal of Object Technology, 11(2):5–1, 2012.



Bibliography 71

[21] F. A. Fontana, M. V. Mäntylä, M. Zanoni, and A. Marino. Comparing and experi-
menting machine learning techniques for code smell detection. Empirical Software
Engineering, 21:1143–1191, 2016.

[22] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, 2018.

[23] F. Grund, S. A. Chowdhury, N. Bradley, B. Hall, and R. Holmes. Codeshovel:
Constructing method-level source code histories. 2021.

[24] K. Herzig, S. Just, and A. Zeller. It’s not a bug, it’s a feature: How misclassification
impacts bug prediction. In International Conference on Software Engineering
(ICSE), pages 392–401, 2013.

[25] M. Hilton, J. Bell, and D. Marinov. A large-scale study of test coverage evolu-
tion. In ACM/IEEE International Conference on Automated Software Engineer-
ing, pages 53–63, 2018.

[26] A. Hora, N. Anquetil, S. Ducasse, and S. Allier. Domain specific warnings: Are
they any better? In 2012 28th IEEE International Conference on Software Main-
tenance (ICSM), pages 441–450, 2012.

[27] A. Hora and R. Robbes. Characteristics of method extractions in java: A large
scale empirical study. Empirical Software Engineering, 25:1798–1833, 2020.

[28] A. Hora, D. Silva, R. Robbes, and M. T. Valente. Assessing the Threat of Un-
tracked Changes in Software Evolution. In International Conference on Software
Engineering (ICSE), pages 1102–1113, 2018.

[29] E. W. Host and B. M. Ostvold. The programmer’s lexicon, volume i: The verbs.
In International Working Conference on Source Code Analysis and Manipulation,
pages 193–202, 2007.

[30] A. Jbara, A. Matan, and D. G. Feitelson. High-mcc functions in the linux kernel.
Empirical Software Engineering, 19:1261–1298, 2014.

[31] D. Johannes, F. Khomh, and G. Antoniol. A large-scale empirical study of code
smells in JavaScript projects. Software Quality, 27:1271–1314, 2019.

[32] M. G. Kendall. Rank correlation methods. Griffin, 1948.



Bibliography 72

[33] F. Khomh, M. Di Penta, and Y. Gueheneuc. An exploratory study of the impact
of code smells on software change-proneness. In Working Conference on Reverse
Engineering, pages 75–84, 2009.

[34] F. Khomh, S. Vaucher, Y. Guéhéneuc, and H. Sahraoui. A bayesian approach for
the detection of code and design smells. In International Conference on Quality
Software, pages 305–314, 2009.

[35] S. Kim, E. J. Whitehead,, and Y. Zhang. Classifying software changes: Clean or
buggy? IEEE Transactions on Software Engineering, 34(2):181–196, 2008.

[36] M. Lanza. The evolution matrix: Recovering software evolution using software
visualization techniques. International Workshop on Principles of Software Evo-
lution (IWPSE), 09 2001.

[37] M. Lanza and R. Marinescu. Object-oriented metrics in practice: using software
metrics to characterize, evaluate, and improve the design of object-oriented sys-
tems. Springer Science & Business Media, 2007.

[38] M. M. Lehman. Programs, life cycles, and laws of software evolution. Proceedings
of the IEEE, 68(9):1060–1076, 1980.

[39] M. M. Lehman. Laws of software evolution revisited. In European Workshop on
Software Process Technology, pages 108–124. Springer, 1996.

[40] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and W. M. Turski. Metrics
and laws of software evolution-the nineties view. In International Software Metrics
Symposium, pages 20–32. IEEE, 1997.

[41] H. Liu, X. Gong, L. Liao, and B. Li. Evaluate how cyclomatic complexity changes
in the context of software evolution. In Annual Computer Software and Applica-
tions Conference (COMPSAC), volume 02, pages 756–761, 2018.

[42] I. Macia, R. Arcoverde, A. Garcia, C. Chavez, and A. von Staa. On the relevance
of code anomalies for identifying architecture degradation symptoms. In European
Conference on Software Maintenance and Reengineering, pages 277–286, 2012.

[43] E. d. S. Maldonado, E. Shihab, and N. Tsantalis. Using natural language process-
ing to automatically detect self-admitted technical debt. IEEE Transactions on
Software Engineering, 43(11):1044–1062, 2017.



Bibliography 73

[44] N. Maneerat and P. Muenchaisri. Bad-smell prediction from software design model
using machine learning techniques. In International Joint Conference on Computer
Science and Software Engineering (JCSSE), pages 331–336, 2011.

[45] H. B. Mann. Nonparametric tests against trend. Econometrica, 13(3):245–259,
1945.

[46] R. C. Martin. Clean code: a handbook of agile software craftsmanship. Pearson
Education, 2009.

[47] T. McCabe and A. Watson. Software complexity. Crosstalk: The Journal of
Defense Software Engineering, 7(12):5–9, December, 1994.

[48] T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineer-
ing, SE-2(4):308–320, 1976.

[49] N. Moha, Y. Gueheneuc, L. Duchien, and A. Le Meur. Decor: A method for
the specification and detection of code and design smells. IEEE Transactions on
Software Engineering, 36(1):20–36, 2010.

[50] W. Oizumi, A. Garcia, L. Da Silva Sousa, B. Cafeo, and Y. Zhao. Code anoma-
lies flock together: Exploring code anomaly agglomerations for locating design
problems. In International Conference on Software Engineering (ICSE), pages
440–451, 2016.

[51] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka. The evolution and impact of
code smells: A case study of two open source systems. In International Symposium
on Empirical Software Engineering and Measurement, pages 390–400. IEEE, 2009.

[52] S. M. Olbrich, D. S. Cruzes, and D. I. Sjøberg. Are all code smells harmful? a
study of god classes and brain classes in the evolution of three open source systems.
In International Conference on Software Maintenance, pages 1–10. IEEE, 2010.

[53] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, and A. De Lucia. Do they really
smell bad? a study on developers’ perception of bad code smells. In International
Conference on Software Maintenance and Evolution, pages 101–110. IEEE, 2014.

[54] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De Lucia, and D. Poshyvanyk.
Detecting bad smells in source code using change history information. In Inter-
national Conference on Automated Software Engineering (ASE), pages 268–278,
2013.



Bibliography 74

[55] F. Pecorelli, F. Palomba, and A. De Lucia. The relation of test-related factors to
software quality: A case study on apache systems. Empirical Software Engineering,
26(2):1–42, 2021.

[56] R. Peters and A. Zaidman. Evaluating the lifespan of code smells using soft-
ware repository mining. In European Conference on Software Maintenance and
Reengineering, pages 411–416, 2012.

[57] A. Potdar and E. Shihab. An exploratory study on self-admitted technical debt.
In International Conference on Software Maintenance and Evolution (ICSME),
pages 91–100, 2014.

[58] J. Ratzinger, T. Sigmund, and H. C. Gall. On the relation of refactorings and
software defect prediction. In Proceedings of the 2008 International Working Con-
ference on Mining Software Repositories, page 35–38, 2008.

[59] G. Robles, I. Herraiz, D. M. German, and D. Izquierdo-Cortazar. Modification
and developer metrics at the function level: Metrics for the study of the evolution
of a software project. In International Workshop on Emerging Trends in Software
Metrics (WETSoM), pages 49–55, 2012.

[60] A. Saboury, P. Musavi, F. Khomh, and G. Antoniol. An empirical study of code
smells in JavaScript projects. In International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 294–305, 2017.

[61] D. Silva, J. P. da Silva, G. Santos, R. Terra, and M. T. Valente. Refdiff 2.0: A
multi-language refactoring detection tool. IEEE Transactions on Software Engi-
neering, 1(1):1–17, 2020.

[62] D. Silva, N. Tsantalis, and M. T. Valente. Why we refactor? confessions of
GitHub contributors. In International Symposium on the Foundations of Software
Engineering, pages 858–870, 2016.

[63] D. Silva and M. T. Valente. RefDiff: detecting refactorings in version histories. In
International Conference on Mining Software Repositories, pages 269–279, 2017.

[64] H. Silva and M. T. Valente. What’s in a GitHub star? understanding repository
starring practices in a social coding platform. Journal of Systems and Software,
146:112–129, 2018.



Bibliography 75

[65] D. I. K. Sjøberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T. Dybå. Quan-
tifying the effect of code smells on maintenance effort. IEEE Transactions on
Software Engineering, 39(8):1144–1156, 2013.

[66] P. Skolka, C.-A. Staicu, and M. Pradel. Anything to Hide? Studying Minified
and Obfuscated Code in the Web. In The World Wide Web Conference, page
1735–1746, 2019.

[67] E. V. Sobrinho, A. De Lucia, and M. Maia. A systematic literature review on bad
smells–5 w’s: Which, when, what, who, where. IEEE Transactions on Software
Engineering, 47(1):17–66, 2021.

[68] D. Spadini, M. Aniche, and A. Bacchelli. Pydriller: Python framework for mining
software repositories. In Joint Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software Engineering, pages 908–911,
2018.

[69] K. Stroggylos and D. Spinellis. Refactoring–does it improve software quality? In
International Workshop on Software Quality (WoSQ’07: ICSE Workshops 2007),
pages 10–10, 2007.

[70] D. Taibi, A. Janes, and V. Lenarduzzi. How developers perceive smells in source
code: A replicated study. Information and Software Technology, 92:223 – 235,
2017.

[71] N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, and D. Dig. Accurate
and efficient refactoring detection in commit history. In International Conference
on Software Engineering, pages 483–494, 2018.

[72] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, and
D. Poshyvanyk. When and why your code starts to smell bad. In International
Conference on Software Engineering, volume 1, pages 403–414. IEEE, 2015.

[73] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. Di Penta, A. De Lucia, and
D. Poshyvanyk. When and why your code starts to smell bad (and whether the
smells go away). IEEE Transactions on Software Engineering, 43(11):1063–1088,
2017.

[74] E. van Emden and L. Moonen. Java quality assurance by detecting code smells.
In Working Conference on Reverse Engineering, 2002. Proceedings., pages 97–106,
2002.



Bibliography 76

[75] N. Vavrová and V. Zaytsev. Does Python Smell Like Java? Tool Support for De-
sign Defect Discovery in Python. Computing Research Repository, abs/1703.10882,
2017.

[76] L. Xavier, F. Ferreira, R. Brito, and M. T. Valente. Beyond the code: Mining
self-admitted technical debt in issue tracker systems. In International Conference
on Mining Software Repositories, page 137–146, 2020.

[77] A. Yamashita and L. Moonen. Do code smells reflect important maintainability
aspects? In International Conference on Software Maintenance (ICSM), pages
306–315, 2012.

[78] A. Yamashita and L. Moonen. Do developers care about code smells? an ex-
ploratory survey. In Working Conference on Reverse Engineering (WCRE), pages
242–251. IEEE, 2013.

[79] A. Yamashita and L. Moonen. Exploring the impact of inter-smell relations on
software maintainability: An empirical study. In International Conference on
Software Engineering (ICSE), pages 682–691, 2013.

[80] S. Yue, P. Pilon, and G. Cavadias. Power of the mann–kendall and spearman’s rho
tests for detecting monotonic trends in hydrological series. Journal of Hydrology,
259(1):254 – 271, 2002.

[81] T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects for eclipse. In Inter-
national Workshop on Predictor Models in Software Engineering (PROMISE’07:
ICSE Workshops 2007), pages 9–9, 2007.


	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation and Problem
	Proposed Work
	Contributions
	Outline of the Dissertation

	Background and Related Work
	Cyclomatic Complexity
	Complexity at Method/Function Level
	Benefits
	Challenges

	Code Smells and Complexity
	Related Work
	Final Remarks

	Study Design
	Selecting Software Systems
	Extracting Methods and Computing Complexity
	Exploring the Complex Methods
	Assessing Evolution of Complex Methods
	Survey Analysis
	Data Collection
	Data Analysis

	Research Questions
	Final Remarks

	Empirical Results: Evolution of Complex Methods
	RQ1: How do complex methods evolve over time?
	RQ2: What changes are performed on complex methods?
	RQ3: What operations are implemented in complex methods? Which ones are more likely to become more complex?
	Discussion e Implications
	Threats To Validity
	Final Remarks

	Survey Results: Developers' Perceptions on Complex Methods
	RQ4: What are developers' perceptions of method complexity?
	RQ5: Why complex methods are not eliminated from code?
	Discussion and Implications
	Threats To Validity
	Final Remarks

	Assessing Self-Admitted Complex Methods
	RQ6: To what extent are self-admitted complex methods different from other complex methods?
	Developer Experience
	Code and Evolution
	Maintenance

	Discussion e Implications
	Threats To Validity
	Final Remarks

	Conclusion
	Summary and Contributions
	Future Work

	Bibliography

