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Resumo

Com a facilidade de obtenção de dispositivos portáteis como câmeras e smartphones,

a gravação de vídeos em primeira pessoa vem se tornando um hábito comum. Esses

vídeos normalmente são muito longos e cansativos de assistir, sendo necessárias edições

manuais. Com isso, surgiram métodos de aceleração que buscam reduzir o tamanho

desses vídeos, maximizando a estabilidade visual sem perder as informações relevantes

e produzindo um vídeo acelerado agradável de assistir. Apesar do progresso recente

dos métodos de aceleração, esses métodos não consideram a inserção da música de

fundo nos vídeos. A inclusão da música de fundo pode tornar os vídeos acelerados

ainda mais agradáveis, pois o usuário poderá assistir o vídeo acelerado combinado com

sua música de interesse. Esta dissertação apresenta uma nova metodologia que cria

vídeos acelerados e insere automaticamente a música de fundo, combinando as emoções

induzidas pelas modalidades visuais e acústicas. Nosso método reconhece as emoções

induzidas pelo vídeo e pela música ao longo do tempo, usando redes neurais arti�ciais,

criando curvas de emoção para o vídeo e para a música, representadas no modelo de

Russell, um modelo de representação da emoção usado na área de psicologia. Nosso

método possui também um algoritmo de otimização que calcula as similaridades entre

os quadros do vídeo e segmentos da música, criando uma matriz custo dinâmico e

computando o caminho ótimo que alinha a curva de emoção do vídeo com a da música,

preservando também a estabilidade visual e continuidade temporal do vídeo acelerado.

Avaliamos o nosso método em um conjunto de vídeos e músicas com conteúdos e estilos

variados, comparando-o quantitativamente e qualitativamente com outros métodos de

aceleração de vídeo presentes na literatura. Os resultados mostram que nosso método

atinge o melhor desempenho em maximizar a similaridade das emoções, aumentando-a

signi�cativamente na maioria dos casos, enquanto também mantém a estabilidade

visual dos vídeos acelerados em comparação com os outros métodos da literatura.

Palavras-chave: Visão computacional, Reconhecimento de Emoção em Músicas,

Reconhecimento de Emoção em Imagens, Hyperlapse Semântico.
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Abstract

With the ease of obtaining portable devices such as cameras and smartphones, the

recording of �rst-person videos has become a common habit. These videos are usually

very long and tiring to watch, requiring manual edition. Thereby, fast-forward methods

emerged seeking to reduce the size of these videos, maximizing the visual quality

without losing the relevant information and producing an accelerated video that is

pleasant to watch. Despite the recent progress of fast-forward methods, these methods

do not consider inserting background music in the videos. Inserting background music

can make accelerated videos even more pleasant, as the user will be able to watch the

accelerated video combined with their music of interest. This thesis presents a new

methodology that creates accelerated videos and automatically inserts the background

music, combining the emotions induced by the visual and acoustic modalities. Our

method recognizes the emotions induced by video and music over time, using arti�cial

neural networks, creating emotion curves for video and music, represented in Russell's

model, an emotion representation model widely used in psychology. Our method also

has an optimization algorithm that calculates the similarities between video frames

and music segments, creating a dynamic cost matrix and computing the optimal path

that aligns the video's emotion curve with the music's emotion curve, preserving also

the visual quality and temporal continuity of the accelerated video. We evaluated our

method in a set of videos and songs with varied content and styles, comparing it quan-

titatively and qualitatively with other fast-forward methods present in the literature.

The results show that our method achieves the best performance in maximizing the

similarity of emotions, increasing it signi�cantly in most cases, while also maintaining

the visual quality of the accelerated videos compared to other methods in the literature.

Keywords: Computer Vision, Music Emotion Recognition, Image Emotion Recog-

nition, Semantic Hyperlapse.
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Chapter 1

Introduction

This thesis covers two research �elds: automatic emotion recognition from visual and

acoustic data and the fast-forwarding of egocentric videos. This chapter introduces

these two �elds, presenting a context and motivation for the work and then de�ning

the problem, objectives, and contributions.

1.1 Context and Motivation

In recent years, we have witness an increasing volume of audio-visual data on the In-

ternet due to the ease in people's access and usage of new digital technologies. The

cost of multimedia mobile devices such as wearable cameras and smartphones is con-

stantly decreasing while their storage capacity increases. As a result, many people

start recording videos in an egocentric perspective of their daily activities, referred

to as egocentric videos, resulting in long and untrimmed streams. Usually, egocentric

videos are tiring to watch since they contain redundant segments, and post-edition is

commonly disregarded. Consequently, there has been a great interest in the computer

vision community in reducing the videos' total length to speed up browsing and cre-

ating a pleasant watching experience. In the video acceleration process, many factors

must be considered, such as the smoothness of the transitions between frames, the

camera's stability, and the relevance of the content preserved in the accelerated video.

Therefore, just speeding up the video uniformly can result in unstable and unpleasant

videos to watch.

Over the past several years, many works have been proposed to create a shorter

accelerated version of egocentric videos using di�erent strategies and under various

restrictions to reduce the burden of watching the videos entirely, such as Kopf et al.

[2014] and Joshi et al. [2015]. The accelerated video is commonly called hyperlapse, in

1



1. Introduction 2

Figure 1.1. Video acceleration illustration. The video acceleration process
consists of removing a subset of frames from the original video, creating a shortest
video, seeking to maintain the visual video quality.

which the construction is a technique in time-lapse photography that allows creating

motion shots, where the goal is to optimize the output number of frames and the visual

smoothness [Silva et al., 2018a]. The video acceleration process consists of removing a

subset of frames from the original video, as illustrated in Figure 1.1, creating a shortest

video, seeking to maintain the visual video quality.

An important extension of the traditional hyperlapse is the semantic hyperlapse,

which includes the semantic relevance for each frame [Silva et al., 2021], making the

most important frames with lower acceleration rates than the other frames on the

output video. As presented by Ramos et al. [2016], the goal is to accelerate the video

based on the semantic extraction, generating a semantic curve that assigns scores

to the frames, according to its information importance. Later works, such as Silva

et al. [2018b], improved the results to solve other issues, such as the need to smooth

out and avoid sharp cuts and transitions in the output video without losing relevant

information. Furlan et al. [2018] gave importance also to the sound information in the

video, calculating the psychoacoustic annoyance and accelerating the video based on

psychoacoustic metrics.

Despite the advances, these works did not give attention to the background song

that the user wants to include in the video. Both visual and sound streams play a

signi�cant role in the video watching experience, generating videos that include the

current hyperlapse techniques usually overlook audio. Adding background music into

an accelerated video based on its content is non-trivial.

Since we are interested in combining music with video, the contents of both must

be associated in some way. However, to associate these contents, there are many

challenges. It is necessary to compare and try to match video and music content over
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Figure 1.2. Russel's valence-arousal plane. The x axis represents how good
is the emotion (valence), and the y axis represents how exciting is the emotion
(arousal). The center of the plane represents a neutral emotional state (extracted
from Yang et al. [2008]).

time. The video acceleration must allow matching these contents without harming

the visual quality of the video, concerning the transition smoothness and the camera

stability. One way to combine music and video content is considering di�erent emotions

induced by both to produce a �nal video that maintains the video and music's emotion

similarity. The emotions estimated from images and from music can be used to align

the scenes of the video with the excerpts of the music that arouse similar emotions in

whoever is going to see the video and listen to the music simultaneously.

Music plays an essential role in society, especially in our digital age. Since many

music �les are scattered across storage media, a need has arisen to classify them by dif-

ferent emotions. There are many works in music emotion recognition, such as Chowd-

hury et al. [2019] and Dong et al. [2019], which consist of estimating the induced

emotion by a speci�c piece of music. A classic representation of emotion is given by

Russell's model [Yang et al., 2008], showed in Figure 1.2, where songs are classi�ed



1. Introduction 4

Figure 1.3. An overview of our methodology. Our method computes the
emotion similarity between the video and the song after creating curves in the
valence-arousal plane. It accelerates the input video by removing frames according
to an optimization algorithm that seeks the best matches between the video and
the song.

with di�erent labels around two axes: the valence and the arousal. By using this rep-

resentation, it is possible to represent emotions such as angry, happy, calm, bored, etc.,

numerically. Since images also a�ect our a�ective states, we can apply the same model

to classify the emotions induced by images and use this audio-visual classi�cation to

synchronize an input video with background music when accelerating the video.

1.2 Problem De�nition

In this thesis, we introduce a novel problem called Musical Hyperlapse, where the goal

is to accelerate a video to the length of a song while matching the visual and audio

signals to trigger, continuously, the same emotions during the output video exhibition.

To tackle this problem, we propose a new multi-modal method to create hyperlapse
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videos based on synchronizing the feelings in the video scenes and background song

segments. Speci�cally, given the predicted continuous emotion curves for the video

and audio streams, our approach seeks the best set of frames to be discarded in the

video stream restricted to preserving the smoothness in the visual continuity and the

matching between the emotion induced by segments of video and audio. Our approach

assumes that the accelerated video will only have visual content from the original video

and a background song that the user wants to hear along with the accelerated video.

Figure 1.3 shows a simpli�ed overview of our proposed method.

1.3 Objectives

The objective of this thesis is, given a �rst-person recorded video and a background

song (selected by the user), accelerate the video to the length of the song seeking to

maximize the similarity of the emotions induced by both over time, also maximizing

the visual quality of the output video. Additionally, if there is a list of songs in the

input (selected by the user), choose the song that best matches with the video. We

can also de�ne the speci�c objectives, listed below:

� Generate continuous emotion curves for the input video and input song;

� Accelerate the video by combining the song and video's emotion curves, also

maximizing the video's visual quality;

� Evaluate the results by measuring the similarity of the produced curves, as tem-

poral series, and also measuring the visual quality of the video.

1.4 Contributions

The contributions of this work can be summarized as follows:

� New models for automatic music and image emotion recognition;

� A novel optimization algorithm to create hyperlapse videos whose function is to

reduce the video by matching its emotion curve to the music emotion curve;

� A new dataset comprising eigth �rst-person videos and �ve songs with di�erent

genres, sizes, and styles.
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Portions of this work have been published in the SIBGRAPI proceedings:

� Matos, D.; Ramos, W.; Romanhol, L.; Nascimento, E. R.. Musical Hyperlapse:

A Multimodal Approach to Accelerate First-Person Videos. In: Conference on

Graphics, Patterns and Images, 34. (SIBGRAPI), 2021, Gramado (Virtual),

Brazil.

1.5 Organization

We have organized this thesis into �ve chapters. Regardless of this introduction, the

remaining of this document is presented as follows:

� Chapter 2 - Related Work: discusses relevant work in the area of emotion

recognition and video acceleration;

� Chapter 3 - Methodology: presents details about our proposed method to

address the problem;

� Chapter 4 - Experiments: presents quantitative and qualitative experiments

performed to validate our method and shows several results;

� Chapter 5 - Conclusions: closes this thesis with our conclusions and directions

for future work.



Chapter 2

Related Work

In this chapter, we present the works most related with our approach. The chapter

is divided into four parts. The �rst part comprises the Hyperlapse, where we present

works in the context of accelerating videos. The second part comprises the Semantic

Hyperlapse, where we present works with recent methods to accelerate videos based

on semantic information. The third part comprises the Music Emotion Recognition,

where we present works that classify music by its induced emotions in humans. And

the fourth part comprises the Image Emotion Recognition, where we present works

about automatic recognition of emotions in images. We also present works in the �eld

of music recommendation for video.

2.1 Hyperlapse

Over the past decade, hyperlapse methods have been proposed to reduce the length of

long egocentric videos. The evolution of these works is focused on improving the quality

of the output video by keeping it as smooth and stable as possible, with the desired

short length, and without losing relevant information, which is usually the content of

interest de�ned by user.

Kopf et al. [2014] present a classical work in creating hyperlapse from �rst-person

videos. The video is accelerated by using techniques based on image rendering, such

as projecting, stitching, and blending after the optimal trajectory of the camera poses

is computed. As a drawback, their method has a high computational cost and requires

camera motion and parallax to compute the 3D model of the scene. Figure 2.1 show

the main stages of Kopf et al. method for creating hyperlapses: (a) 3D camera and

point cloud recovery, followed by smooth path planning; (b) 3D per camera proxy

estimation; and (c) source frame selection and Poisson blending.

7
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Figure 2.1. Main stages of Kopf et al. [2014] method. Their system convert
�rst-person videos into hyperlapse summaries using a set of processing stages: (a)
3D camera and point cloud recovery, followed by smooth path planning; (b) 3D
per camera proxy estimation; (c) source frame selection and Poisson blending
(extracted from Kopf et al. [2014]).

The Instagram Hyperlapse App [Karpenko, 2014] is an approach that creates hy-

perlapse videos by combining video stabilization and the phone gyroscope. The method

have the limitation of needing inertial data, making it unfeasible when recording videos

using a standard camera. Poleg et al. [2015] present another method to create classical

hyperlapse videos using a graph to model the frame selection. In the graph, the nodes

represent the frames of the input video and the edge weights between pair of nodes

represent the cost of including the pair of frames sequentially in the accelerated video.

By this way, they create the accelerated video �nding the shortest path in the graph.

Joshi et al. [2015] presented a real-time hyperlapse creation algorithm. The al-

gorithm uses feature tracking to recover the camera motion and compute the optimal

path with an algorithm inspired by dynamic programming and Dynamic Time Warping

(DTW). Figure 2.2 shows the pipeline of their algorithm. The �rst step is the frame

matching: using sparse feature-based techniques, they estimate how well each frame

can be aligned to its temporal neighbors and store these costs as a sparse matrix. The

second step is the frame selection: a dynamic programming algorithm �nds an optimal

path of frames that balances matching a target rate and minimizes frame-to-frame mo-

tion. The third step is the path smoothing and rendering: given the selected frames,

smooth the camera path and render the �nal hyperlapse result.

Halperin et al. [2018] present an adaptive frame sampling to create stable fast-

forwarded videos. They formulate the adaptive frame sampling as an energy minimiza-

tion problem, which can �nd the optimal solution in polynomial time. They reduce the

perception of instability by enlarging each of the input frames with neighboring frames.

As shown in Figure 2.3, the authors' method looks into di�erent directions and collect

frames from the input video, creating mosaics around each frame. The mosaics are
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Figure 2.2. Main stages of Joshi et al. [2015] method. 1) Frame matching:
using sparse feature-based techniques, they estimate how well each frame can
be aligned to its temporal neighbors and store these costs as a sparse matrix.
2) Frame selection: a dynamic programming algorithm �nds an optimal path of
frames that balances matching a target rate and minimizes frame-to-frame motion.
3) Path smoothing and rendering: given the selected frames, smooth the camera
path and render the �nal hyperlapse result (extracted from Joshi et al. [2015]).

Figure 2.3. An output frame produced by the Halperin et al. [2018]
method. They look into di�erent directions and collect frames from the input
video, creating mosaics around each frame. The mosaics are sampled to meet
playback speed and video stabilization requirements. The di�erent original frames
are marked with white lines (extracted from Halperin et al. [2018])

sampled to meet playback speed and video stabilization requirements. Their method

can also generate a single hyperlapse video from multiple egocentric videos.

Our work shares similarities with the work of Joshi et al., since our optimal path

selection also draws inspiration from dynamic programming. However, di�erent from

Joshi et al., which considers only the visual modality during their optimization process,

we handle two modalities: the input visual stream and the output audio stream.
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Figure 2.4. Overview of the method proposed by Ramos et al. [2016].
(a) Input is a �rst-person recorded video (egocentric video). (b) A semantic
image content analysis is made to determine the relevance of each frame. (c)
An optimization function is generated, separated into semantic and non-semantic
types. (d) Di�erent speed-up is assigned to semantic and non-semantic parts.
(e) The frames are represented with graphs. (f) The shortest path algorithm is
used to select the optimal video subset of frames. (g) The output is a semantic
hyperlapse video (extracted from Ramos et al. [2016]).

2.2 Semantic Hyperlapse

Recent approaches in creation of fast-forwarded videos include visual semantics as part

of the process. These methods, referred to as semantic hyperlapse, aim to accelerate

the input video, optimizing camera stability, target speed-up rate, and semantics.

Okamoto and Yanai [2014] proposed a method to summarize egocentric moving

videos, generating a walking route guidance video. They analyze the video by detecting

pedestrian crosswalk and ego-motion classi�cation, estimating importance scores for

each video session, based on the detected contents. Their method control the video

speed dynamically, instead of generating a summarized video �le. They outperform a

single summarization method in their experiments.

Ramos et al. [2016] introduced a new adaptive frame sampling process that con-

siders the semantic information during the optimization. Their method is shown in

Figure 2.4. Their approach assigns a semantic score for each video frame and split

the video into temporal segments according to their relevance. The authors applied

di�erent playback rates such that more relevant segments are exhibited at a lower rate.

Their optimization balances the semantics and traditional hyperlapse objectives using

energy cost minimization in a graph representing the frames' transition. The work of
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Figure 2.5. The interface proposed by Higuchi et al. [2017].. Salient
parts of the video are emphasized by the elastic timeline. With this interface, the
users can input which of such cues are relevant to their events of interest. The red
arrow in the bottom right indicates a user's input. In this example, the interface
emphasizes hand-related events (extracted from Higuchi et al. [2017]).

Ramos et al. was later extended by Silva et al. [2016], where a homography-based

stabilization was included in the process.

Yao et al. [2016] focused on the discovery of major or special user interest (high-

lights) in the input video. They used deep learning techniques to learn the relationship

between highlight and non-highlight video parts. They associated low speed-ups for

highlighted parts and high speed-ups for non-highlighted parts to perform the video

summarization. Con�rming the relevance of considering the semantic information,

Higuchi et al. [2017] presented the EgoScanning, an interface to users �nd important

events in long egocentric videos, shown in Figure 2.5. The interface allows users to

input relevant cues to their events of interest. Using uniform sampling in the speed-up

selected by the user, the remainder of the video is played faster.

Ogawa et al. [2017] proposed a fast-forwarding method for 360◦ videos (omni-

directional videos). They used an adaptive subsampling scheme that selects optimal

frames by minimizing a cost function based on 3D camera positions. Their approach

sucessfully generate a subsampled and stable 360◦ video. Lai et al. [2017] presented a

system capable of converting a 360◦ video into a normal �eld-of-view hyperlapse. Fig-

ure 2.6 shows the pipeline of their algorithm. After determining the per-frame viewing

directions to the regions of interest, their approach produces a saliency-aware frame
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Figure 2.6. Pipeline of the algorithm proposed by Lai et al. [2017].
Given a 360◦ video, they �rst stabilize the video sequence. Then, estimate the
focus of expansion as prior information for the camera path planning. To extract
the regions of interest, they compute the spatial-temporal saliency and semantic
segmentation. The detected regions of interest are used to guide the camera path
planning. Finally, an adaptive 2D video stabilization is used to render a smooth
hyperlapse (extracted from Lai et al. [2017]).

selection that considers denser sampling at attractive regions and attending the target

speed-up rate.

Silva et al. [2018b] and Silva et al. [2021] modeled the adaptive frame sampling

as a weighted minimum sparse reconstruction problem. Similar to the work of Ramos

et al., Silva et al. split the video temporally using frame-wise levels of relevance. Then,

each segment is represented as a dictionary from which the output video frames are

sparsely selected, aiming to reduce abrupt camera motions.

Unlike previous works, which are mainly focused on visual information, Furlan

et al. [2018] proposed to use the input sound information. The main steps of their

methods are shown in Figure 2.7. Their approach uses psychoacoustic metrics ex-

tracted from the video soundtrack to set the frames' importance. The original video's

soundtrack is segmented, and for each segment, the Psychoacoustic Annoyance (PA)

[Zwicker and Fastl, 2013] is computed. The PA values guide the semantic hyperlapse

creation since they are used as semantic scores. Although using the source audio in the

optimization process, Furlan et al. ignored the audio in the output video, making their

problem fundamentally di�erent from ours. Our main goal is to create a hyperlapse

video with background music where both visual and acoustic signals induce similar

emotions during the exhibition.
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Figure 2.7. Main steps of the Furlan et al. [2018] methodology. After
segmenting the video soundtrack into slices, they compute the PA metric (green
curve), which is a semantic score assigned to each segment. The semantic score
is used to create a relevant pro�le of the video used in the video compositing step
to select the relevant frames (extracted from Furlan et al. [2018]).

2.3 Music Emotion Recognition

Signi�cant progress has been made by researchers in the �eld of music emotion recog-

nition. Some of these works aim to classify an entire song to a speci�c emotion, such as

happy, sad, and angry, [Yang et al., 2008; Panda et al., 2018; Chowdhury et al., 2019].

Others focus on the prediction of arousal and valence emotional values from segment-

wise continuous features extracted from the song [Lu et al., 2006; Thammasan et al.,

2016; Dong et al., 2019].

Lu et al. [2006] present a research about di�erent mood models and features.

According to the authors, music features such as rhythm, melody, harmony, pitch,

and timbre play an essential role in human physiological and psychological functions,

altering their mood. With these features, the music mood can be divided into di�erent

types of moods. Some of these features, precisely the intensity, timbre, pitch, and

rhythm, are acoustic features.

In music emotion recognition, a commonly used model is the Russell's model

[Alpher, 1980], that allows us to represent emotions in a 2D plane. The Russell's

valence-arousal emotion plane is showed in Figure 1.2, where the x axis is the valence,

which represents how pleasant is the feeling, and the y axis is the arousal, which

represents how exciting is the feeling.

An alternative emotion model is the EmojiGrid [Toet and van Erp, 2019], which

uses emojis on the edges of the plane to indicate emotions. Figure 2.8 shows the space
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Figure 2.8. Emojigrid emotion representaion. As in the Russell's model,
the x axis represents how good is the emotion (valence), and the y axis represents
how exciting is the emotion (arousal). The center of the plane represents a neutral
emotional state (extracted from Toet and van Erp [2019]).

representation considering valence and arousal as dimensions of emotions and extreme

locations are represented with emojis. As in Russell's model, the x axis represents how

pleasant the emotion is, and the y axis represents how exciting is the emotion. The

center of the plane represents a neutral emotional state.

Yang et al. [2008] formulated the musical emotion recognition as a regression

problem to predict the valence and arousal values of the music samples. For each

music sample, they extract features and use two regressors to predict the labels, one

for valence and one for arousal. Thus, each music sample results on a point in the

valence-arousal plane, and then the users can obtain the music sample by specifying

a desired point in the plane. They apply principal component analysis to reduce the

correlation between arousal and valence, reducing the processing time.

Panda et al. [2018] introduced another approach to generate audio features to

improve the classi�cation performance. They reviewed the existing audio features

obtained in the literature and their relationships with the musical concepts, which are
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Figure 2.9. Best features according to Panda et al. [2018]. The best 30
music features to discriminate each quadrant, organized by musical concept. The
Novel (O) group contains features that are extracted from the full original audio
signal. The Novel (V) group contains features that are extracted from the voice-
separated signal. Q1 to Q4 are the quadrants in the valence-arousal plane (Q1
- High valence, high arousal; Q2 - Low valence, high arousal; Q3 - Low valence,
low arousal; Q4 - High valence, low arousal) (extracted from Panda et al. [2018]).

characteristics of a sound that de�nes it as a piece of music. New musical concepts

were uncovered related to musical texture and expressive techniques. They rely on clues

like melodic lines, notes, intervals, and scores to access higher-level musical concepts

such as harmony, melody, articulation, or texture. They also gave importance to

the determination of musical notes, frequency, and intensity contours mechanisms to

capture the music information. Figure 2.9 shows the best features to discriminate each

quadrant in valence-arousal plane, according to Panda et al. [2018]. The Novel (O)

group contains features that are extracted from the full original audio signal. The

Novel (V) group contains features that are extracted from the voice-separated signal.

Q1 to Q4 are the quadrants in the valence-arousal plane (Q1 - High valence, high

arousal; Q2 - Low valence, high arousal; Q3 - Low valence, low arousal; Q4 - High

valence, low arousal).

Most recently, Chowdhury et al. [2019] aimed to create a model to give a musi-

cally meaningful and intuitive explanation for its predictions. They proposed a VGG-

style deep neural network to obtain emotional features from a music piece through
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Figure 2.10. Architecture presented by Chowdhury et al. [2019]. The
three di�erent architectures proposed by Chowdhury et al. [2019] for predicting
emotion from audio: A direct audio to emotion scheme (A2E), an audio to mid-
level and mid-level to emotion scheme (A2Mid2E), and an audio to emotion and
to mid-level jointly (A2Mid2E-Joint) scheme (extracted from Chowdhury et al.

[2019]).

human interpretable mid-level perceptual features, using the audio spectrogram as in-

put. These are features easily perceived and recognized by most listeners, without any

music-theoretical training, such as melodiousness, rhythmic stability, and dissonance.

Their approach is compared with another identical network but without considering

the mid-level features, observing that the average loss with mid-level features is sur-

prisingly low. Their system also allowed to visualize the e�ects of perceptual features

on individual emotion predictions, concluding that the slight loss is given by the gain in

the explainability of the projections. Figure 2.10 shows the three di�erent architectures

proposed by Chowdhury et al. [2019] for predicting emotion from audio: A direct audio

to emotion (A2E), an audio to mid-level and mid-leval to emotion scheme (A2Mid2E),

and an audio to emotion and to mid-level jointly (A2Mid2E-Joint) scheme.

Several researchers also seek to predict arousal and valence emotional values from

segment-wise continuous features extracted from the song. Thammasan et al. [2016]

proposed a continuous music emotion recognition approach based on brainwave signals

from the music listeners to obtain the audio features. Their experiment included self-

reporting and continuous emotion annotation in the valence-arousal space. They used

the Fractal Dimension [Li, 2002] and power spectral density [Rani, 2016] to extract
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Figure 2.11. Valence-arousal estimations by the Thammasan et al.

[2016] method. The valence and arousal annotations from a speci�c subject
and their estimation by the model constructed with SVM and FD values from
all instances. The horizontal axis represents the order of the selected songs by
the subject. Data are plotted in time order (extracted from Thammasan et al.

[2016]).

informative features from Electroencephalography (EEG) signals. They then applied

it to classi�cation algorithms to discriminate binary classes of emotion. However,

their approach only classi�es arousal and valence in two classes: high/low arousal and

high/low valence, as shown in Figure 2.11.

A relevant work on literature is presented by Dong et al. [2019], where the songs

are classi�ed continuously on the arousal-valences plane with segments of 0.5 seconds.

Figure 2.12 shows their network structure. They implemented a bidirectional convo-

lutional recurrent sparse network (BCRSN) for music emotion recognition, based on

convolutional neural networks (CNNs) applied to the audio spectrogram, and recurrent

neural networks (RNNs). Their model adaptively learns the sequential information in-

cluded a�ect salient features (SII-ASF) from the spectrogram of the song segments.

Thus, their model can achieve continuous emotion predictions of audio �les. Moreover,

they propose a weighted hybrid binary representation (WHBR) method that converts

the regression prediction process into a weighted combination of multiple binary clas-

si�cation problems, reducing the computational complexity. They also applied a PCA

on the spectrograms to reduce the computational load without losing important infor-

mation. Their model was evaluated with the DEAM dataset Solymani et al. [2018],

outperforming the state of the art.
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Figure 2.12. Network structure proposed by Dong et al. [2019]. The
input is a 2D spectrogram. The local connectivity and parameter sharing ar-
chitecture is used to replace the connection between the input and hidden (i.e.,
the forward and backward 1c layer) layers of the model at each frame ti. The
bidirectional recurrent is set at ti − ti+1 to transfer the sequential information.
The subsampling operation obtains more advanced features. The output layer is
fully connected with the neurons in the last frame t45 of the feature maps of the
forward 1c/s layer and t1 of the backward 1c/s layer. L+1 binary classi�ers with
di�erent weights are used for the �nal emotion prediction (extracted from Dong
et al. [2019]).

2.4 Image Emotion Recognition

In the A�ective Sciences, detection of emotion from scenes and from facial expres-

sions are some of the essential tasks [Toet and Erp, 2019]. Datasets relating images

to emotions such as GAPED [Dan-Glauser and Scherer, 2011] have been created for

research purposes both for attention and emotion. In image emotion recognition, the

problem consists of retrieving the emotional content automatically from a given im-

age. In general, the categorization of such images is made upon human annotation or

automatically by using learned representations that rely on both high and low-level

features.
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Figure 2.13. Examples of �gures with aesthetics scores. Pictures with
(a) high, (b) medium, and (c) low aesthetics scores from the Aesthetic Quality
Inference Engine (extracted from Joshi et al. [2011]).

Joshi et al. [2011] and Zhao et al. [2014] explored the use of psychology and art-

theory knowledge to determine which emotions may be evoked by a picture. However,

as shown by Jia et al. [2012], the use of high-level features like social network data when

analyzing images is much more e�ective than raw low-level features such as primary

colors in the image. Figure 2.13 shows examples of aesthetics scores, which are scores

assigned to images based on its artistic characteristics, used in the work of Joshi et al.

[2011]. Figure 2.14 shows examples of emotion prediction obtained by Zhao et al.

[2014], where the black plus signs and blue circles represent the ground truth and the

predicted values of image emotions, respectively.

Descriptive data also play a role in several solutions to recognizing the emotion

induced by the image. For instance, the work of Borth et al. [2013] uses pairs of

adjectives and nouns to classify each picture. Figure 2.15 shows an overview of the

framework proposed by Borth et al. [2013]. They use each of the 24 emotions de�ned

in Plutchik's theory [Plutchik, 1980] to derive search keywords and retrieve images and

videos from FLickr and Youtube. Tags associated with the retrieved images and videos
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Figure 2.14. Emotion prediction examples obtained by Zhao et al.

[2014]. Emotion prediction results of the Zhao et al. [2014] method. The black
plus signs and blue circles represent the ground truth and the predicted values of
image emotions, respectively (extracted from Zhao et al. [2014]).

are extracted, and then analyzed to assign sentiment values and to identify adjectives,

verbs, and nouns. Then, the adjectives and nouns with strong sentiment values are

used to form adjective-noun pairs (ANP). Individual detectors are trained using Flickr

images to detect the ANP of each image. They apply SentiBank and train classi�ers

to predict sentiment values of the images, based on the image ANP. Some examples of

adjective-noun pairs are shown in Figure 2.16.

Mittal et al. [2020] take a wider range of objects in the scene to later sort the most

important ones regarding the induced emotion. Examples of classi�cations obtained by

them are shown in Figure 2.17, each from the EMOTIC dataset (left) and GroupWalk

Dataset (right), respectively.

Despite the progress of both emotion induced by music and images, it is worth

noting that none of the works investigate the interplay between acoustic and visual

signals regarding the induced feeling. Conversely, in this thesis, we propose to apply

both visual and acoustic data to accelerate an input video by aligning video segments

with the emotion induced by the frames and music.
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Figure 2.15. Overview of the framework created by Borth et al. [2013].
An overview of the proposed framework for constructing the visual sentiment
ontology and SentiBank. They use each of the 24 emotions de�ned in Plutchik's
theory to derive search keywords and retrieve images and videos from Flickr and
Youtube. Tags associated with the retrieved images and videos are extracted,
and then analyzed to assign sentiment values and to identify adjectives, verbs,
and nouns. Then, the adjectives and nouns with strong sentiment values are
used to form adjective-noun pairs (ANP). Individual detectors are trained using
Flickr images to detect the ANP of each image. They apply SentiBank and train
classi�ers to predict sentiment values of the images, based on the image ANP
(extracted from Borth et al. [2013]).

Figure 2.16. Examples of adjective-noun pairs used by Borth et al.

[2013]. Left: Selected images for four sample adjective-noun pairs, (a),(c) re-
�ecting a positive sentiment, and (b), (d), a negative one. Right: top detected
images by SentiBank ANPs with high detection accuracy (top) and low accuracy
(bottom). Correct detections are surrounded by green and thick frames and in-
correct ones by red and dashed frames. Faces in the images are blurred (extracted
from Borth et al. [2013]).

2.5 Music Recommendation for Video

There are many works to recommend background music for videos automatically. In

general, these works aim to correlate the features of the songs with the features of the

videos, with di�erent approaches.

Kuo et al. [2013] proposed a framework to recommend background music for

videos based on the multi-modal latent analysis between video and music. They re-

lated audiovisual features extracted from the videos and audio features extracted from
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Figure 2.17. Classi�cation examples obtained by Mittal et al. [2020].
Classi�cation results on three examples, each from the EMOTIC dataset (left) and
GroupWalk Dataset (right), respectively (extracted from Mittal et al. [2020]).

Figure 2.18. Overview of the Sasaki et al. [2013] system. Their system
uses the valence-arousal plane to create a playlist of the recommended songs for
a speci�ed input image (extracted from Sasaki et al. [2013]).

the songs to select the background song. Based on the correlation of the features, a

ranked music list is derived from the model for a speci�c video. Also, they proposed

an algorithm to align the music beat with the video shot, generating the �nal recom-

mendation list as the combined result of the correlation and alignability. They did not

use music emotion recognition models.

Sasaki et al. [2013] proposed an one-directional video to music recommendation

using the arousal-valence plane, shown in Figure 2.18. Their system uses input images

without textual information and assumes a relationship between mood and images once

visual information a�ects the human mood when listening to music.
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Figure 2.19. Framework proposed by Hong et al. [2018]. Given a video
and its associated music as input, they extract video features with a CNN and
extract music features with low-level audio feature extractors. The features are
then aggregated and fed into a two-stream neural network followed by an embed-
ding layer. The whole embedding network is trained by two losses with di�erent
purposes: ranking loss for inter-modal relationship and our newly proposed loss
for soft intra-modal structure. Each dotted arrow indicates a �ow that can be
trainable, while the solid arrows indicate �ows that do not (extracted from Hong
et al. [2018]).

Most recently, Hong et al. [2018] proposed a cross-modal retrieval method for

video and music using deep neural networks, trained via inter-modal ranking loss such

that videos and songs with similar semantics get together in embedding space. They

proposed a soft intra-modal structure loss that uses the distances between intra-modal

samples before embedding. Figure 2.19 shows their proposed framework. Given a video

and its associated music as input, they extract video features with a CNN and extract

music features with low-level audio feature extractors. The features are then aggregated

and fed into a two-stream neural network followed by an embedding layer. The whole

embedding network is trained by two losses with di�erent purposes: ranking loss for

inter-modal relationship and our newly proposed loss for soft intra-modal structure.

Each dotted arrow indicates a �ow that can be trainable, while the solid arrows indicate

�ows that do not.

However, these works are focused on generic videos instead of accelerated videos.

Our project has as input an egocentric video that the length is much longer than the

average length of the background songs. Thus, we need to select a song and manipulate

the video acceleration step to match the video's semantic and song's emotional curves.

This task is more di�cult because just choosing the best song based on features is

not su�cient. We also need to create the hyperlapse, maintaining smoothness and

temporal continuity on the video, continuously matching the curves.
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Table 2.1. Works summary. Comparison of the areas covered by our work
and by the most relevant related works.

Work
Video

Fast-Forwarding

Music Emotion

Recognition

Image Emotion

Recognition

Music

Recommendation

for Video

Kopf et al. [2014] 3 7 7 7

Karpenko [2014] 3 7 7 7

Poleg et al. [2015] 3 7 7 7

Joshi et al. [2015] 3 7 7 7

Halperin et al. [2018] 3 7 7 7

Okamoto and Yanai [2014] 3 7 7 7

Ramos et al. [2016] 3 7 7 7

Silva et al. [2016] 3 7 7 7

Yao et al. [2016] 3 7 7 7

Higuchi et al. [2017] 3 7 7 7

Ogawa et al. [2017] 3 7 7 7

Lai et al. [2017] 3 7 7 7

Silva et al. [2018b] 3 7 7 7

Silva et al. [2021] 3 7 7 7

Furlan et al. [2018] 3 7 7 7

Lu et al. [2006] 7 3 7 7

Toet and van Erp [2019] 7 3 7 7

Yang et al. [2008] 7 3 7 7

Panda et al. [2018] 7 3 7 7

Chowdhury et al. [2019] 7 3 7 7

Thammasan et al. [2016] 7 3 7 7

Dong et al. [2019] 7 3 7 7

Solymani et al. [2018] 7 3 7 7

Dan-Glauser and Scherer [2011] 7 7 3 7

Joshi et al. [2011] 7 7 3 7

Jia et al. [2012] 7 7 3 7

Zhao et al. [2014] 7 7 3 7

Borth et al. [2013] 7 7 3 7

Mittal et al. [2020] 7 7 3 7

Kuo et al. [2013] 7 7 7 3

Sasaki et al. [2013] 7 3 3 3

Hong et al. [2018] 7 7 7 3

Ours 3 3 3 3

2.6 Summary

We presented, in this chapter, a lot of works related to our thesis. Table 2.1 shows

the areas covered by our work and by the most relevant related works. In the �rst

column we list the main related works, including our work in the last line. In the other

columns we show the areas covered by each work. A 3 indicates that the work covers

that area and a 7 indicates that the work does not cover that area. Our work covers

all four areas presented in the table.



Chapter 3

Methodology

In this chapter, we present our methodology. First, we present an overview of the

proposed methodology, and then we explain in more detail each part.

3.1 Overview

We model the problem of accelerating a video according to the emotions induced

by visual and acoustic information as a time-series matching problem. Formally,

given a long �rst-person video V = [v1, v2, . . . , vF ] with F frames and a target song

M = [m1,m2, . . . ,mS] with S segments (pieces of an audio track), we aim at creating a

shorter video V̂ = [v̂1, v̂2, . . . , v̂S] by maximizing the similarity between valence-arousal

emotion curves X ∈ RF×2 and Y ∈ RS×2 of the video and audio, respectively. The

input can also be a ML song set, from which the song M most similar to the video

V will be selected using an uniform comparison. Figure 3.1 shows an overview of our

methodology, which is divided into two main steps: i) Emotion Curves Creation and

ii) Optimal Path Selection.

25
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Figure 3.1. Our full methodology overview. In the �rst step, We extract
features from each video frame and each song segment and classify them to obtain
their induced emotion. With the classi�cation results, we create continuous two-
dimensional emotion curves in the valence-arousal plane. In the second step, we
calculate inter-frame and cross-modal cost matrices to create a three-dimensional
dynamic cost matrix to compute an optimal path that aligns the emotion induced
by a song with the emotion induced by the frames while preserving the visual and
temporal continuity.
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We also show an overview of our methodology in Algorithm 1, where the inputs

are the media streams V and M , and the output is the produced musical hyperlapse

VH . In the �rst loop, the video emotion curve X ′ is produced as a sequence of im-

age valence and arousal pairs, predicted by the functions predictVideoFrameValence(·)
and predictVideoFrameArousal(·). Then, the curve X ′ is smoothed using the func-

tion smoothTransitions(·). In the second loop, the song emotion curve Y ′ is pro-

duced as a sequence of audio valence and arousal pairs, predicted by the functions

predictAudioSegmentValence(·) and predictAudioSegmentArousal(·). Then, the curve
Y ′ is also smoothed using the function smoothTransitions(·). The optimal path X̂

is obtained by the function �ndOptimalPath(·, ·) and the accelerated video V is then

generated from X̂ by the function copySelectedFrames(·), that copies selected images

from the original video. Finally, the video V̂ and song M are concatenated by the

function concatenateVideoAudio(·, ·), generating the �nal hyperlapse video VH .

Algorithm 1: Full Methodology Overview

Input: A video stream V, and an audio stream M

Result: The �nal hyperlapse VH

X ′ ← ∅
for vi ∈ V do

valencei ← predictVideoFrameValence(vi)

arousali ← predictVideoFrameArousal(vi)

emotioni ← [valencei, arousali]

X ′.append(emotioni)

end

X ← smoothTransitions(X ′)

Y ′ ← ∅
for mi ∈M do

valencei ← predictAudioSegmentValence(mi)

arousali ← predictAudioSegmentArousal(mi)

emotioni ← [valencei, arousali]

Y ′.append(emotioni)

end

Y ← smoothTransitions(Y ′)

X̂ ← �ndOptimalPath(X, Y )

V̂ ← copySelectedFrames(X)

VH ← concatenateVideoAudio(V̂ ,M)

return VH



3. Methodology 28

Figure 3.2. Detailed block diagram of the video emotion curve cre-
ation. The frame extractor extracts the images from the input video. Then, the
features extractor, a Convolutional Neural Network (CNN), extracts the image
features for each image. These features are inserted in a classi�er (a multiple layer
perceptron), which generates the label for the respective video image. The labels
splicers join all generated labels in a vector, respecting the order of the original
video sequence, which is maintained through the indexer.

3.2 Emotion Curves Creation

Our method creates two emotion curves in the �rst step, one for the video stream and

another for the audio stream. The values in these curves re�ect the induced emotion

at each instant in time. Based on image and audio feature extraction, classi�ers are

used to estimate each emotion value, as illustrated in Figure 3.1. Next, we detail these

classi�ers and the estimation of these curves.

3.2.1 Video Emotion Curve

Figure 3.2 shows a detailed block diagram of the algorithm to create the music emotion

curve. In this subsection, we show details about this algorithm. The frame extractor

extracts the images from the input video. Then, the features extractor, a CNN, extracts

the image features for each image. These features are inserted in a classi�er (a multiple

layer perceptron), that generates the label for the respective video image. The labels

splicers join all generated labels in a vector, respecting the order of the original video

sequence, which is maintained through the indexer.

3.2.1.1 Image Classi�er

To create the video emotion curve, frames of the video stream V are used to feed

an image emotion classi�er as X ′ = φ(V ). The classi�er φ outputs the valence and
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Figure 3.3. Video emotion curve example. Each video frame, an image, is
classi�ed as a 2D point in the valence-arousal plane. The sequence of classi�ca-
tions compose the video emotion curve (in blue), which is a time series.

arousal values for each frame composing a discrete two-dimensional emotion curve

X ′ = [x′1, x
′
2, . . . , x

′
F ]

T ∈ {−1,+1}F×2, as illustrated in Figure 3.3. We decomposed

the curve into separated values of valence X ′v = [x′v1, x
′
v2, . . . , x

′
vF ]

T ∈ {−1,+1}F and

arousalX ′a = [x′a1, x
′
a2, . . . , x

′
aF ]

T ∈ {−1,+1}F . Thus, the video frame vi has the coordi-

nates x′vi and x
′
ai that represent it in the valence-arousal plane. We use a 2D-CNN, pre-

trained in object detection task, as a backbone network topped with a fully-connected

network to approximate the function φ.

3.2.1.2 Image Dataset

To train the network, we use a subset of the MVSO dataset [Dalmia et al., 2016]. The

entire MVSO dataset comprises about 7 million images and their respective contents

de�ned in the form of adjective-nouns pairs such as colorful-clouds, tiny-dog, old-books,

crying-baby, happy-people and others. Each of these adjective-noun pairs is associated

with a distribution over the 24 emotion categories from Plutchik's Wheel of Emotions
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[Plutchik, 1980], representing the emotion induced by the image content. We converted

these categories to the valence-arousal plane to create the �nal valence-arousal labels for

the images in the MVSO dataset. For each image, we took the predominant emotion

out of the 24 and use its quadrant in the Russel's model as label, as illustrated in

Figure 3.4. To �nd the correct quadrant for each one of the emotions from the Wheel

of Emotions, we rely on more detailed versions of the valence-arousal plane, presented

in the works of Ahn et al. [2010] and Scherer [2005], based on their similarity to the

original Russel's model and also on emotion synonyms.

A �ltering was done in which images whose predominant emotion was not well

de�ned were discarded. By this way, we selected only images in which the score for

the predominant emotion was higher than the second highest score plus a threshold

et, de�ned as et = 0.40. Images classi�ed as pensiveness were discarded, since this

emotion was not well de�ned in the valence-arousal plane. As result of this �ltering,

we are then using an MVSO subset with 4,736 images. Next, we list the quadrants and

the emotions positioned in each one after the conversion:

� Quadrant 0 (high valence, high arousal): Ecstasy, joy, amazement and

surprise;

� Quadrant 1 (low valence, high arousal): Terror, fear, loathing, rage, anger

and annoyance;

� Quadrant 2 (low valence, low arousal): Apprehension, grief, sadness, dis-

gust, boredom and vigilance;

� Quadrant 3 (high valence, low arousal): Serenity, admiration, trust, accep-

tance, distraction, anticipation and interest.

Finally, we randomly split the �nal set into training, validation, and test sets in

the proportion 70:15:15 and perform the training using the cross-entropy loss. During

the training, the feature extraction layers were kept frozen.

3.2.1.3 Video Curve Smoothing

In the inference stage, the discrete video emotion curve is converted to a continuous

emotion curve as X = f(X ′) ∈ RF×2, where f : {−1,+1} → R is a smoothing function

that applies a quadratic interpolation to the sequential values, separated for each label

(valence and arousal), as illustrated in Figure 3.5. Smoothing is intended to allow

the optimization algorithm to work with real numbers instead of integers and avoid

creating abrupt transitions in the curves.
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Figure 3.4. Illustration of conversion from Plutchik's Wheel to Emoji-
Grid. In the MVSO dataset, each image has scores associated with each emotion
in Plutchik's Wheel of Emotions. We took the predominant emotion for each
image and used its quadrant in the EmojiGrid as label.

Figure 3.5. Illustration of the video curves smoothing. In dark blue, the
discrete curve produced by the sequence of discrete classi�cations of the neural
network for one of the labels (valence or arousal). In light blue, the continuous
curve produced after smoothing the discrete curve. In this case, the label was
discretized into N = 2 di�erent levels.

3.2.2 Music Emotion Curve

Figure 3.6 shows a detailed block diagram of the algorithm to create the music emo-

tion curve. The spectrogram extractor and splitter extracts and divides the input song

spectrogram into 6-second samples at intervals of 0.5-second. Then, the features ex-
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Figure 3.6. Detailed block diagram of the music emotion curve cre-
ation. The spectrogram extractor and splitter extracts and divides the input
song into 6-second samples, at each 0.5-second of the song. Then, the features
extractor extracts feature dedicated to the song's melody, generating a vector
with 48 features. We use two separate extractors because the valence features
are di�erent from the arousal features. These features are inserted in a classi�er
(a multiple layer perceptron), which generates the label for the respective song
sample. Two separate classi�ers are also used, one for valence and one for arousal.
The labels splicers joins all generated labels in a vector, respecting the order of
the segments of the original song, which is maintained through the indexer.

tractor extracts feature dedicated to the song's melody, generating a vector with 48

features. We use two separate extractors, one for valence and other for arousal, treat-

ing these variables as being independent. These features are inserted in a classi�er

(a multiple layer perceptron), that generates the label for the respective song sample.

Two separate classi�ers are also used, one for valence and one for arousal. The labels

splicers joins all generated labels in a vector, respecting the order of the segments of

the original song, which is maintained through the indexer.

3.2.2.1 Music Classi�er

To create the music emotion curve for an audio stream M , we use a

pair of music emotion classi�ers Y ′ = ψ(M) that provides the valence and

arousal one-dimensional discrete curves Y ′v = [y′v1, y
′
v2, . . . , y

′
vS′ ]T ∈ {c1, c2, . . . , cN}S

′

and Y ′a = [y′a1, y
′
a2, . . . , y

′
aS′ ]T ∈ {c1, c2, . . . , cN}S

′
, where N is the number of discrete

values, that is, categories, in which a song segment can be classi�ed in the valence-

arousal plane, and S ′ is the number of song segments at the sampling rate used in

the classi�er. Combining the valence and arousal values of these two curves, we ob-
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tain a two-dimensional emotion curve Y ′ = [y′1, y
′
2, . . . , y

′
S′ ]T ∈ {c1, c2, . . . , cN}S

′×2 in

the valence-arousal plane. Thus, for a song segment mk, k ∈ {1, . . . , S ′}, (y′vk, y′ak) is
represented as being one of the N ×N points of a grid in the valence-arousal plane,

where higher y′vk values indicate a more positive valence and higher y′ak values indicate

a higher arousal.

Our music emotion classi�er ψ comprises a feature extractor topped with two

fully connected networks, one for each dimension (valence and arousal). We create a

window of size α = 6 seconds and slide it over the audio stream with a stride of δ = 0.5

seconds to extract the features for each song segment from the audio spectrogram, as

illustrated in Figure 3.7. Then, we extract from each spectrogram a d-dimensional

feature vector m̂k ∈ Rd dedicated to the melody of the song. The selection of the audio

features is based on the research of Panda et al. [2020]. Finally, we feed each feature

vector m̂k to the classi�ers to obtain the discrete curves Y ′v and Y ′a.

3.2.2.2 Music Dataset

We use the DEAM dataset [Solymani et al., 2018] to train the music emotion classi�er.

The DEAM dataset comprises about 1,802 songs of various styles, such as rock, classic,

country, and others, with durations between 45 seconds and 7 minutes. For each song,

some raters (10 in most cases) annotated its valence and arousal values in a range of

[−1,+1] at each step of 0.5 seconds, starting from the 15th second of the song. There

are approximately 126,000 annotated song segments in the entire dataset. Figure 3.8

shows the interface used to rotulate the DEAM dataset [Aljanaki et al., 2017].

To de�ne the song segment label, we averaged the rater's annotated valence and

arousal values after �ltering all values distant by 0.5 standard deviations from the mean.

After this �ltering, the dataset had 26,457 annotated segments for valence and 26,481

annotated segments for arousal. Then, to create the pairs of segments and labels used

in our training procedure, we discretize the valence and arousal annotations provided in

the DEAM dataset into N classes. Similar to our image emotion recognition classi�er,

we train the music emotion recognition classi�ers using training, validation, and test

splits in the same proportion.

3.2.2.3 Music Curve Smoothing

We also perform a smoothing in the music emotion curves, similarly to the video

emotion curves, as illustrated in Figure 3.9. Note that, by using a stride of δ = 0.5

seconds, during inference, we only obtain 2 samples per second, while the video stream

operates at a higher rate, usually 30 frames per second. Therefore, to match the video's
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Figure 3.7. Illustration of the audio classi�cation step. We create a
window of size α = 6 seconds and slide it over the audio stream with a stride of
δ = 0.5 seconds to extract the audio features for each song segment from the audio
spectrogram. For both valence and arousal, each feature vector is classi�ed as a
value between −1 and +1, resulting in one curve for valence and one for arousal.
These curves together form the emotion curve in the valence-arousal plane.

sampling rate, we perform a upsampling in the curves before applying a smoothing

function that creates the �nal continuous curve Y = g(Y ′) ∈ RS×2. Thus, S is the

number of song segments at the same sampling rate of the video. Again, smoothing is

intended to allow working with real numbers and avoid creating abrupt transitions.
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Figure 3.8. Annotation interface of the DEAM dataset for arousal
label. For each segment of each song in the dataset, a set of users listen to the
segment and sets the arousal value in a range of -10 to +10, through this labeling
interface. The user can also assign an overall arousal for the entire song and a
con�dence level to his annotation. A similar interface is used to label the valence.
(Extracted from Aljanaki et al. [2017]).

Figure 3.9. Illustration of the song curves smoothing. In dark green, the
discrete curve produced by the sequence of discrete classi�cations of the neural
network for one of the labels (valence or arousal). In light green, the continuous
curve produced after smoothing the discrete curve. In this case, the label was
discretized into N = 8 di�erent levels.
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3.3 Optimal Path Selection

After creating the emotion pro�le of the video and audio streams, we aim to �nd

the optimal path that matches the emotion induced by the video and the song. The

optimal path selection procedure is shown in Algorithm 2. The inputs of the algorithm

are the video emotion curve X, and the song emotion curve Y . The output is the

accelerated video V̂ , after dropping the frames to maximize the emotion similarity

and visual video quality. The functions and variables presented in this algorithm are

described in the next subsections.

Algorithm 2: Optimal Path Selection

Input: The video V , the song M , and the emotion curves X and Y

Result: The accelerated video V̂

F ← length(X)

S ← length(Y )

Ci, Cs, Ce ← create2DCostMatrices(V,M, F, S)

D,T ← create3DCostMatrices(F, S, Ci, Cs, Ce)

V̂ ← createOptimalPath(F, S,D, T )

return V̂

3.3.1 2D Cost Matrices Construction

When shrinking the video size, besides aligning the emotions in both modalities, we

also need to produce a visually continuous video that presents a smooth motion during

the exhibition. To attend to both objectives, we draw inspiration from the optimization

process proposed in the work of Joshi et al. [2015], which creates a hyperlapse video

with smooth transitions between frames using dynamic programming and DTW-based

algorithm. However, unlike Joshi et al., which optimizes the output video path regard-

ing only inter-frame transitions and on visual modality, in our work, we must consider

not only the inter-frame transitions but also the audio-visual relation regarding the in-

duced emotion. Therefore, our algorithm creates cross-modal, inter-frame and speedup

cost matrices to perform the optimization.
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3.3.1.1 Inter-Frame Similarity Cost Matrix

To keep the video with a continuous visual motion, we create an Inter-frame Similarity

Cost Matrix, Ci ∈ RF×F , with each element computed as

Ci(i, j) = 1− SSIM(vi, vj), (3.1)

where i, j ∈ {1, 2, . . . , F} are the frames indices in the input video and SSIM(·, ·) is
the structural similarity index measure [Zhou Wang et al., 2004]. Higher SSIM values

indicate that the input frames are more similar to each other.

3.3.1.2 Speedup Cost Matrix

The algorithm also uses a cost matrix to avoid skips that are too distant from the

target speed-up rate. Speci�cally, let Sp? = F/S be the target speed-up rate, where

F is the number of video frames and S is the number of song segments, respectively.

Each element in the Speed-up Cost Matrix, Cs ∈ RF×F , is given by

Cs(i, j) = min(((j − i)− bSp?c)2, cmin), (3.2)

where cmin is a threshold, empirically set to 200.

3.3.1.3 Emotion Similarity Cost Matrix

Finally, we create a cross-modal matrix to determine the cost of skipping relevant

frames regarding the video and audio stream emotion similarity. The Emotion Simi-

larity Cost Matrix, Ce ∈ RF×S, is computed as

Ce(i, k) =

√
(xvi − yvk)2 + (xai − yak)2

d0
, (3.3)

where k ∈ {1, 2, . . . , S} is the song segment index, xvi and xai are coordinates that

represent the video frame in the valence-arousal plane, and yvk and yak are coordinates

representing the song segment. The constant d0, a normalization factor, is the distance

between the points (+1,+1) and (−1,−1) in the valence-arousal plane (d0 =
√
8).

The cost matrices Ci, Cs, and Ce are normalized into a range of [0, 1]. We show

the detailed procedure to create the normalized cost matrices in Algorithm 3. First

the matrices Ci and Cs are built and then normalized to [0, 1]. Finally, the matrix Ce

is also built, already normalized.
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Algorithm 3: 2D Cost Matrices Creation

Input: The video V , the song M , and F and S numbers, respectively

Result: The cost matrices Ci, Cs and Ce

for i=0 to F do

for j=0 to F do
Ci[i, j]← 1− SSIM(vi, vj)

Cs[i, j]← min(((j − i)− bF/Sc)2, cmin)

end

end

maxci ← max(Ci)

maxcs ← max(Cs)

for i=0 to F do

for j=0 to F do
Ci[i, j]← Ci[i, j]/maxci

Cs[i, j]← Cs[i, j]/maxcs
end

end

for i=0 to F do

for k=0 to S do

Ce[i, k]←
√

(xvi−yvk)2+(xai−yak)2
d0

end

end

return Ci, Cs, Ce

3.3.2 3D Dynamic Cost Matrix Construction

The normalized cost matrices Ci, Cs, and Ce are further used to create a 3D Dynamic

Cost Matrix D ∈ RF×F×S. Each entry D(i, j, k) represents the minimal cost of the

path that ends at the frame vj and song segment k. We also create a traceback matrix

T ∈ RF×F×S that stores in T (i, j, k) the index of the frame that precedes vj in the

path, given the song segment k. Next, we populate D and T by setting the �rst song

segment slice as D(i, j, 0) = Cs(i, j) and the following slices recursively as

D(i, j, k) = λiCi(i, j) + λsCs(i, j) + λeCe(j, k)

+
w

min
h=1

(D(i− h, i, k − 1)),
(3.4)
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Figure 3.10. Illustration of the 3D dynamic cost matrices. Each position
of the matrix D stores the cost of jumping from video frame i to j, associating
video frame j with song frame k. Each position of the T array stores the index
of the frame before the i frame whose cost is minimal. The path of the selected
frames is shown in red, which is a sequence of frames, one of each slice of T .

where λi, λs and λe are the weights associated with each cost term and w is the

maximum skip between adjacent frames in the path. More speci�cally, the cost

weights were empirically set to λi = 1.00, λs = 0.01, λe = 0.01, and we set the max-

imum allowed skip to w = 2Sp? whose value is bounded to the interval [4, 16].

When populating D, we concurrently populate the traceback matrix by computing

T (i, j, k) = argminwh=1(D(i− h, i, k − 1)). Figure 3.10 illustrates the matrices D and

T , and the optimal path.

We show the detailed procedure to construct matrices D and T in Algorithm 4.

First, we initialize the cost weights and the maximum allowed skip. We also use a

constant g = 2, which determines how many frames can be skipped at the beginning

and at the end of the video. Then, we �ll each slice of the matrices D and T according

to the equations de�ned above.
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Algorithm 4: 3D Dynamic Cost Matrix Creation

Input: The F and S numbers, and the cost matrices Ci, Cs and Ce

Result: The 3D dynamic cost matrices D and T

[λe, λi, λs]← [1.00, 0.01, 0.01]

w ← min(16,max(4, int(2 ∗ F/S)))
g ← 2

for k=0 to S do

for i=g to min(k ∗ w + 1, F ) do

for j=i+1 to min(i+ 1 + w,F ) do
c← λiCi[i, j] + λsCs[i, j] + λeCe[j, k]

D[i, j, k]← c+minh=w
h=1 (D[i− h, i, k − 1])

T [i, j, k]← argminh=w
h=1 (D[i− h, i, k − 1])

end

end

end

return D, T

3.3.3 Optimal Path Traceback

With matrices T andD �lled, we traceback the optimal path, starting from the position

k = F , and selecting, at each step, the index stored in T (i, j, k− 1) while k >= 0. The

reversed order of the frames selected during this step is the �nal set that composes

the hyperlapse video. Note that exact S frames are selected in this step. Therefore,

the video length is reduced to the song length. We add the input audio stream to the

composed hyperlapse video to generate the musical hyperlapse video.

We show the detailed procedure to create the optimal path in Algorithm 5. We

use the variables w and g with the same values used in Algorithm 4. We select in the

last slice of the matrix T , the position corresponding to the lowest cost of the last slice

of the matrix D. Then, we initialize V̂ as an empty list, and go inserting the next

frame stored in the selected position in T , until we reach the �rst slice of T . After

doing this, we have the sequence of frames of the accelerated video V̂ .
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Algorithm 5: Optimal Path Traceback

Input: The F and S numbers, and the 3D matrices D and T

Result: The accelerated video V̂

w ← min(16,max(4, int(2 ∗ F/S)))
g ← 2

k ← S

s← argmini=F,j=i+w
i=F−g,j=i+1(D[i, j,M ])

d← mini=F,j=i+w
i=F−g,j=i+1(D[i, j,M ])

V̂ ← ∅
V̂ .append(d)

while s > g and k > 1 do

V̂ .prepend(s)

b← T (s, d, k − 1)

d← s

s← b

k ← k − 1
end

return V̂

3.4 Song Selection

To improve the quality of the emotion curves matching, we also include an algorithm

to choose the best Mi song to be inserted in the video V . If the user only de�nes a

song M as input of the algorithm, the optimization is done only with it. However, the

user can also de�ne a directory with several songs as input ML = [M1,M2, . . . ,MNm ],

allowing the algorithm to choose the best song for the video, among the Nm songs

present in this directory.

The procedure to make the song selection is detailed in Algorithm 6. First, given

an input video V and a list of input songs ML, for each song Mi ∈ML, we reduce the

size of the video V to the size of the song Mi, by uniformly removing frames from

V , creating the reduced video V ′. Then, we use the function getEmotionCurve(·) to
create the smoothed emotion curves X and Y , as previously described, for the video

V ′ and the song Mi, respectively. Then, we calculate the similarity of the emotion

curves X and Y for each song Mi, and select the song with the highest average

emotion similarity as the best song Mb. We use the function getEmotionSimilarity(·, ·)
to get the similarity of a pair (xi, yi), given by psim = 1−

√
(xvk−yvk)2+(xak−yak)2

d0
, where

xvk and xak are the image valence and arousal values, respectively; yvk and yak are
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the audio valence and arousal, respectively; and d0 is the normalization factor. After

running this algorithm, our optimization method can then be performed with the best

song Mb and the input video V .

Algorithm 6: Song Selection

Input: A video stream V , and a list of audio streams ML

Result: The reduced emotion curve X̂

[Mb, Sb]← [∅,−inf ]
for Mi ∈ML do

M ←Mi

[F, S]← [length(V ), length(M)]

w ← F/S

[V ′,M ′]← [∅, ∅]
[is, iv]← [0, 0]

while is < S and iv < F do
M ′.append(M [int(is)])

V ′.append(V [int(iv)])

is ← is + 1

iv ← iv + w

end

X ← getEmotionCurve(M ′)

Y ← getEmotionCurve(V ′)

Slist ← ∅
Sb ← 0

for xk, yk ∈ X, Y do
sk ← getEmotionSimilarity(xk, yk)

Slist.append(sk)

end

Sk ← mean(Slist)

if Sk > Sb then
Sb ← Sk

Mb ←Mi

end

end

M ′ ←Mb

return M ′, V ′



Chapter 4

Experiments

In this chapter, we present our experiments to provide both quantitative and qualitative

evaluation.

4.1 Implementation Details

Our method was fully implemented in Python. In this section, we describe details

about the implementation.

4.1.1 Emotion Curves Creation

For the image emotion recognition, we used the ResNet50 [He et al., 2016] as the back-

bone network topped with a fully connected network with four layers of 1,000 neurons.

We also tested other networks, such as AlexNet, VGG19, DenseNet, Inception, and

SqueezeNet. ResNet50 had the best training and testing accuracies. We also tried

other numbers of neurons for the fully connected layers, such as 200, 500, and 2,000,

but these numbers had no signi�cant in�uence on the results. The classi�cation layer

in the image emotion classi�er comprises N = 4 neurons that represent each of the

valence-arousal quadrants. We also tested values greater than four for the number of

quadrants N , but the network could not get test accuracies above 50% for these values.

For the music emotion recognition, we also used a fully connected network with

four layers of 1,000 neurons. We also tested other numbers of neurons for the fully

connected layers, such as 200, 500, and 2,000, but these numbers had no signi�cant in-

�uence on the results. The classi�cation layer in the music emotion classi�er comprises

N = 8 neurons that represent each of the discretization levels separately for valence

and arousal, totalizing 64 levels in the valence-arousal plane. We also tested greater

43
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discretization levels, but the best results were obtained with 64 levels. We used the

essentia Python library to extract the d = 48 music features used in the classi�cation

process.

To train the classi�ers, we used a batch size of 200 for image classi�er and 10000

for music classi�ers, and the Adam optimizer with a learning rate of 1 × 10−5 and

weight decay of 1 × 10−3 to train both classi�ers. We used early stopping in both

image and music classi�ers, limiting the maximum number of epochs to 100 for the

image classi�er, and 10000 for the music classi�ers. The image classi�er training took

approximately 24 hours, while for audio classi�ers, the training took approximately 12

hours.

4.1.2 Optimal Path Algorithm

For the optimal path selection algorithm, the cost weights were empirically set to

λi = 1.00, λs = 0.01, λe = 0.01. We used a large weight on the similarity of emotions,

as this is the main objective of our method. For our method, we set the maximum

allowed skip to w = 2Sp? whose value is bounded to the interval [4, 16]. For the D and

T matrices, we used sparse representations to avoid high memory consumption issues.

We run the optimal path selection algorithm using parallel processing to reduce the

computational cost of processing time. First, we split the video and music into Np

parts, where Np is the number of machine processors. We then run the optimization

algorithm separately for each part, producing multiple accelerated chunks of the video.

Finally, we concatenate all the accelerated parts forming the full accelerated video.

4.2 Experimental Setup

This section presents details about the experimental setup, such as the videos, songs,

and metrics used in the evaluation.

4.2.1 Dataset

To compare our method with other existing methods, we organized a dataset composed

of eight videos presenting di�erent contents such as scenes of nature, cities, parks,

buildings, cars, people, animals, and others; and �ve �xed songs with varied styles

and emotion induction. Table 4.1 shows the list of videos and songs used in part of

the experiments. We collected the videos from various sources, including the YouTube

platform, other works in the literature, and self-acquisition. The speci�c source of
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Table 4.1. Audio-visual dataset. List of videos and songs used for comparison
with baselines.

Video Name Duration

Berkeley1 (Self-acquisition) 17:41
Berkeley2 (Self-acquisition) 13:40
Bike3 [Kopf et al., 2014] 13:10
CityWalk1 (YouTube) 10:00
MontOldCity1 (YouTube) 10:01
NatureWalk1 (YouTube) 09:50
StockHolm1 (YouTube) 24:59
Walking4 [Ramos et al., 2016] 08:43

Song Name Duration

Last To Know (Three Days Grace) 03:28
Onward to Freedom (Trailerhead) 02:58
My Immortal (Evanescence) 04:32
Little Talks (Of Monsters And Men) 04:23
In The End (Linkin Park) 03:38

the video and the song authors are indicated right after the video and song names,

respectively. In order to standardize the size of images during data processing, we

re-sampled all videos to the exact resolution of 640× 480 pixels, but the algorithm can

also be run with videos in other resolutions.

4.2.2 Evaluation Metrics

To assess the hyperlapse methods, we need to quantify the emotion induced by the

video and audio streams, whether the target speed-up rate was achieved, and the

visual continuity and stability of the �nal video.

4.2.2.1 Emotion Similarity

We quantify the emotion in the output video using the Emotion Similarity metric

de�ned as

Esim =
1

S

S∑
k=1

(
1−

√
(x̂′vk − yvk)2 + (x̂′ak − yak)2

d0

)
, (4.1)

where x̂′vk and x̂′ak are the discrete valence and arousal values of the reduced video V̂ .
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4.2.2.2 Speedup Ratio

Given a target speed-up rate Sp?, to verify whether the target speed-up rate was

achieved or not, we use the Speed-up Ratio metric, which is calculated as

Spr =
max(Sp?, Ŝp)

min(Sp?, Ŝp)
, (4.2)

where Ŝp = F̂ /S is the speed-up rate achieved by the hyperlapse method. The purpose

of this metric is to show the magnitude of the di�erence between the two speedups,

in terms of percentage. The optimal value is 1, the greater the value, the greater the

percentage of error between the desired and the obtained speedups.

4.2.2.3 FID-Score

We also measure if the output visual content is similar to the input and if it is stable.

To calculate the similarity, we use the Fréchet Inception Distance (FID), proposed by

Mathiasen and Hvilshøj [2020], which gives the similarity between two sets of images.

This metric is commonly used to assess the quality of synthetic images created by

generative adversarial networks. We apply this metric to determine the similarity

between the original and accelerated videos regarding visual content.

4.2.2.4 Shaking Ratio

To compute the stability of the output frame transitions, we use the Shaking Ratio

[Ramos et al., 2020]. The Shaking Ratio uses homography transformations to calculate

the average motion of the central pixel between pairs of frame transitions. We calculate

it as the average motion of the midpoint between the frame transitions through the

video, which is given by

Skr =
1

|V̂ | − 1

|V̂ |−1∑
n=1

H(v̂n, v̂n+1)

d(vn)
, (4.3)

where v̂n is the nth frame in the output video, H computes the transition of the central

point of v̂n when applying the estimated homography between v̂n and v̂n+1, d(.) is the

half of the frame diagonal and |V̂ | is the size of set V̂ .



4. Experiments 47

Figure 4.1. Confusion matrix for the image classi�er. A normalized
confusion matrix for the image classi�er, showing the percentage of times that
each label li (rows) was predicted as each label lj (columns).

4.3 Quantitative Evaluation

This section presents the quantitative evaluation and results, �rst separated for the

emotion classi�cation and optimal path selection, and then for the entire methodology.

We compare the optimal path method with other methods present in the literature.

And we also compare our full methodology, to create the musical hyperlapse with other

existing hyperlapse creation methods.

4.3.1 Emotion Classi�cation

This section presents the obtained accuracy for the emotion classi�cation, both for

video and audio modalities
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Figure 4.2. Confusion matrix for the music valence classi�er. A normal-
ized confusion matrix for the music valence classi�er, showing the percentage of
times that each label li (rows) was predicted as each label lj (columns).

Figure 4.3. Confusion matrix for the music arousal classi�er. A normal-
ized confusion matrix for the music arousal classi�er, showing the percentage of
times that each label li (rows) was predicted as each label lj (columns).
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4.3.1.1 Image Classi�er

For the classi�cation of image emotions, using the presented MVSO subset, the ac-

curacy obtained by the neural network in the test set was 71%, with N = 4 classes

(quadrants) for the emotion curve. We show in Figure 4.1 the confusion matrix for the

image classi�er in the test set. The confusion matrix shows the percentage of times a

label li (rows of the table) was predicted as a label lj (columns of the table). Thus,

higher values on the diagonal indicate a higher accuracy.

4.3.1.2 Music Classi�er

For the classi�cation of music emotions, using the DEAM dataset, the accuracy ob-

tained by the neural network in the test set is 92% for valence and 91% for arousal,

each label discretized at N = 8 levels, totaling N2 = 64 classes for the emotion curve.

We show in Figures 4.2 and 4.3 the confusion matrix for the image classi�er in the test

set, for valence and arousal labels, respectively.

4.3.2 Optimal Path Selection

We evaluate the use of our and other two simple optimal path selection approaches for

performing the curve matching. The �rst is a greedy optimization method, and the

second is the dynamic time warping (DTW) approach, both presented below.

4.3.2.1 Baselines

Greedy Optimization Method. This method greedily selects the next video frame

with the maximum similarity for every song segment until it reaches the last segment.

Speci�cally, given the emotion curves X and Y , for each yk, k ∈ {1, 2, . . . , S} the

method seeks the next frame, vl, to store in the path by computing l = argminl+w
i=l xi,

where l stores the frame index of the last selected frame, initially set to l = 1, and w

is the maximum frame skipping.

Dinamic Time Warping (DTW). This is an algorithm for measuring and aligning

similarity between two temporal sequences, which may vary in speed [Müller, 2007].

To maximize the similarity of the input curves, the original DTW version may repeat

video frames. It occurs because during the tracing of the optimal path, the algorithm

had vertical transitions in similarity the matrix, which would mean repeating the same

frame of the video in some transitions, implying that the video is stopping at certain

times. Since this is not allowed in a hyperlapse, we adapted the method to our problem



4. Experiments 50

Table 4.2. Optimal path selection evaluation. Comparison between the
di�erent optimization methods for frame sampling (best in bold).

Video

Emotion Score ↑ Speedup Ratio ↓ FID-Score ↓

G
re
ed
y

D
T
W

O
u
rs

G
re
ed
y

D
T
W

O
u
rs

G
re
ed
y

D
T
W

O
u
rs

Berkeley1 0.74 0.74 0.77 1.23 1.03 1.00 22.06 22.14 3.30

Berkeley2 0.72 0.73 0.77 1.17 1.02 1.00 26.75 27.86 5.40

Bike3 0.72 0.72 0.76 1.16 1.02 1.00 16.75 18.10 5.04

CityWalk1 0.70 0.70 0.71 1.09 1.02 1.00 12.64 13.01 1.75

MontOldCity1 0.74 0.75 0.77 1.08 1.04 1.00 15.47 15.58 3.10

NatureWalk1 0.71 0.71 0.73 1.08 1.03 1.00 15.57 15.55 2.73

StockHolm1 0.71 0.71 0.73 1.36 1.01 1.00 37.58 36.07 4.21

Walking4 0.73 0.73 0.76 1.08 1.02 1.00 14.40 15.32 2.74

Mean 0.72 0.72 0.75 1.16 1.02 1.00 20.15 20.45 3.53

by adding a constraint that forces the algorithm to never repeat frames, by avoiding

vertical transitions in the optimal path tracing. This adaptation slightly reduces the

quality of the results of the DTW but ensures that the generated video is a valid

hyperlapse. We feed the algorithm with the X and Y curves, and it returns two new

X̂ and Ŷ curves with similar sizes and maximized similarity.

4.3.2.2 Results

Table 4.2 shows the quantitative results obtained by our method and the two previously

listed baselines (Greedy and DTW). We show the scores for three metrics: Emotion

Similarity, Speedup Ratio and FID-Score, by running each method for the eight videos,

each one with the �ve songs, both presented in Table 4.1. In Table 4.2, each column

shows the average score of the �ve songs obtained when running the respective method

for the videos presented in each line. For each video, with each song, the emotion sim-

ilarity is calculated by Equation 4.1. In the same way, the Speedup Ratio is calculated

by Equation 4.2. For the FID-Score metric, we used a python implementation, which

measures the similarity between the original video and the accelerated video. These

results are not using the song selection algorithm.
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Figure 4.4. Selected frames distribution example. Selected frames for a
part of the video "Bike3" with the song "In The End", in blue. The result of each
method is shown on each line.

We can see that our method, when using the optimal path selection algorithm,

achieved the best results across all metrics. The greedy approach maximizes the emo-

tion similarities locally, leading to a signi�cant error in the achieved speed-up, which

might remove a big number of frames in the end of the video, also resulting in a

high FID. The DTW, in its turn, seeks to �nd the best alignment globally, which

creates many gaps between segments reducing the representability of the accelerated

video regarding the original one, also resulting on a high FID. Although DTW tries to

match the curves, the need to prevent it from repeating frames makes it obtain emo-

tion similarities close to those obtained by the greedy approach. Our method manages

to maximize the emotion similarities without repeating frames, reaching the optimal

speed-up ratio by taking the exact amount of frames required by the song, also main-

taining a balance between frame transitions by using the speed-up and inter-frame

similarity cost matrices, guaranteeing a lower FID.

We show in Figure 4.4 an example of how the selected frames are distributed over

time for the three optimal path selection methods. We show a part of the accelerated

video "Bike3" for the song "In The End". The selected frames are in blue, and the

result of each method is shown on each line. Note that the greedy method leaves a

large gap at the end of the frameset, and the DTW method creates some gaps over

time. Our method, in turn, has a more uniform selection of frames, avoiding gaps.
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4.3.3 Comparison with Hyperlapse Creation Methods

We compare our methods against two hyperlapse baselines present in the literature:

the Microsoft Hyperlapse (MSH) [Joshi et al., 2015], and the extended version of the

Sparse Adaptive Sampling (SASv2) [Silva et al., 2021]. We used the desktop version of

the MSH. For the SASv2, we set the hyperparameters as recommended by the authors.

For our method and both baselines, the target speed-ups were de�ned as Sp? = dF/Se,
where F is the number of video frames and S is the number of song segments. For

both our method and baselines, no additional stabilization algorithm was performed.

Table 4.3 presents the results for the comparison with the baselines, also without

using the song selection algorithm. The columns show the Emotion Similarity, Speed-

up Ratio, FID-Score, and Shaking Ratio values for each video in the dataset averaged

over the �ve songs in Table 4.1. These metrics were calculated in the same way as

was done for Table 4.2. Unlike the results of the previous section, in this one we are

evaluating our entire hyperlapse creation methodology from start to �nish, comparing

it to other hyperlapse creation methods. In the previous section, we only assessed

the optimal path selection algorithm to align emotion curves by comparing it to other

curve alignment methods.

Our approach presents the best Emotion Similarity and Speed-up Ratio values

while it is on par with the other methods in the Shaking Ratio. We accredit these

results to our optimization algorithm that seeks to create a path that is visually sta-

ble, temporally continuous, and with high-quality emotion matching. Our approach

samples exact S frames from the input video, it also presents the best Speed-up Ratio

values in all cases. MSH, on the �ip side, shows the worst values. The reason is that

it favors optimizing the stability of frame transitions over achieving target speed-up.

We also observed that the SASv2 method obtained the best FID-Score in almost

all cases. This is because this method is very focused on maintaining the temporal

continuity between the story presented in the original video and in the accelerated

video, which consequently makes the accelerated video more similar to the original,

minimizing the FID-Score. However, our method also had low values for this metric.

Although, in general, the MSH presents the best Shaking Ratio values. Since the

MSH algorithm neglects the video content and only optimizes the frame transition,

their FID-Score values are worse than the other approaches by a signi�cant margin.

Moreover, the MSH algorithm includes image warping in its path smoothing and ren-

dering step. This step may crop the image borders; therefore, increasing the FID-Score.

In comparison to the MSH, our method presents FID-Score values closer to the SASv2

method, which is, by design, a content-based approach.
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Table 4.3. Comparison with baselines. Comparison of our method and two
other hyperlapse creation methods.

Video

Emotion Score ↑ Speedup Ratio ↓ FID-Score ↓ Shaking Ratio ↓

MSH SASv2 Ours MSH SASv2 Ours MSH SASv2 Ours MSH SASv2 Ours

Berkeley1 0.73 0.72 0.79 1.19 1.01 1.00 28.90 4.30 6.82 0.02 0.02 0.02

Berkeley2 0.72 0.71 0.77 1.25 1.01 1.00 34.03 3.74 7.44 0.02 0.02 0.02

Bike3 0.71 0.71 0.77 1.02 1.01 1.00 28.31 3.02 6.21 0.03 0.05 0.05

CityWalk1 0.72 0.70 0.72 1.57 1.00 1.00 32.52 1.09 2.55 0.02 0.02 0.03

MontOldCity1 0.74 0.73 0.77 1.31 1.02 1.00 41.09 2.09 4.46 0.01 0.01 0.01

NatureWalk1 0.72 0.71 0.74 1.47 1.03 1.00 48.43 7.28 3.63 0.01 0.01 0.01

StockHolm1 0.71 0.70 0.74 1.13 1.16 1.00 23.99 7.66 5.13 0.02 0.01 0.02

Walking4 0.73 0.73 0.77 1.12 1.00 1.00 37.62 1.40 3.34 0.02 0.03 0.03

Mean 0.72 0.71 0.76 1.26 1.03 1.00 34.36 3.82 4.95 0.02 0.02 0.02

4.4 Qualitative Evaluation

In this section, we present several qualitative results obtained by our method. First,

we show examples of emotion classi�cations obtained by the video classi�er. Then, we

show examples focused on the emotion curves matching, comparing our method with

the other hyperlapse creation methods presented in Table 4.3, without the use of the

song selection algorithm. Then, we show results using the song selection algorithm,

which improves the emotion similarity in the �nal hyperlapses.

4.4.1 Emotion Classi�cation Examples

Figures 4.5 to 4.8 show examples of the video emotion predictions for the videos used

in the experiments. The selection of songs to be shown was random but trying to show

all songs at least once. In each �gure, we show the continuous video emotion curves

with each axis scaled to a range of −1.0 to +1.0. We also show some video frames

pointing to the predicted coordinate in the valence-arousal plane. In general, as can be

seen in the �gures, we observed that scenes with cars and smiling people are classi�ed

as high valence and high arousal. Nature scenes are classi�ed with high valence and

low arousal. Scenes of enclosed places and animals are classi�ed as low valence and

high arousal. The cases with low valence and low arousal are sporadic, but they are

usually also scenes of closed places and walls.
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Figure 4.5. Emotion classi�cation example 1. Emotion classi�cation ex-
ample for video Berkeley1.

Figure 4.6. Emotion classi�cation example 2. Emotion classi�cation ex-
ample for video Berkeley2.
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Figure 4.7. Emotion classi�cation example 3. Emotion classi�cation ex-
ample for video CityWalk1.

Figure 4.8. Emotion classi�cation example 4. Emotion classi�cation ex-
ample for video StockHolm1.
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4.4.2 Comparison with Hyperlapse Creation Methods

Figures 4.9 to 4.16 show examples of qualitative comparisons with the baselines pre-

sented in Table 4.3, one �gure for each video. In each �gure, we show the valence and

arousal curves of the music and the accelerated video and the emotion similarity curves.

At the top, we show the continuous music emotion curve in red, with greater intensity

in the regions where there was a greater similarity with the continuous emotion curve

of the video (the more red, the higher the similarity). At the bottom, we show the

valence and arousal curves separately, the music curves in green, the video curves in

blue, and the similarity curves in red. We also show the average emotion similarity of

the entire curve. The results of each method are displayed in each column, respectively.

We can see that our method presents a distribution with higher intensities in the

valence-arousal plane, indicating a higher matching in the induced emotions. MSH and

SASv2, on the other hand, have a lower concentration of correct matching. Looking

only at the valence and arousal curves, it is not possible to notice much di�erence since

it is small, but we can see that the average similarity is more signi�cant in our method

in all cases. Also, note that on the valence-arousal plane, our approach, in most cases,

resulted in more red dots, indicating that the emotion induced by the music was more

similar to the video in our method than in the other methods.

Speci�cally, the results with more signi�cant di�erences can be seen in Figures

4.9, 4.10, 4.11, 4.14, 4.15, and 4.16. Our method tends to widen or narrow some regions

of the video curve in some cases or move some regions in other cases to make it more

similar to the music curve, which doesn't happen in baselines, which have uniform

frame sampling. This is achieved by just removing frames from the video without

touching the music. Note that the music curves are always the same in all methods.

We can notice that our method does not increase the similarity of the curves so

much in some cases because in these cases the music curve is very di�erent from the

video curve. This way, the algorithm can almost �nd a set of frames that maximize

the similarity of the curves. We emphasize that as there are several restrictions during

the video acceleration process, it is di�cult to maximize the similarity of the emotion,

which makes the average similarities very close to those of the baselines in some cases.

We also emphasize that the purpose of the method is not only to match the curves,

but also to guarantee the visual quality of the video.

Speci�cally, the results with lower di�erences can be seen in Figures 4.12, and

4.13. In these cases, the mean emotion similarity was very similar in both methods, and

the intensities in the valence-arousal plane had no notable di�erence in our method. It

is also complicated to notice a di�erence in the valence and arousal curves.
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Figure 4.9. Qualitative comparison example 1. Emotion curves and simi-
larities for video Berkeley1 with song Little Talks.

Figure 4.10. Qualitative comparison example 2. Emotion curves and
similarities for video Berkeley2 with song Onward To Freedom.
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Figure 4.11. Qualitative comparison example 3. Emotion curves and
similarities for video Bike3 with song In The End.

Figure 4.12. Qualitative comparison example 4. Emotion curves and
similarities for video CityWalk1 with song My Immortal.
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Figure 4.13. Qualitative comparison example 5. Emotion curves and
similarities for video MontOldCity1 with song Last To Know.

Figure 4.14. Qualitative comparison example 6. Emotion curves and
similarities for video NatureWalk1 with song Little Talks.
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Figure 4.15. Qualitative comparison example 7. Emotion curves and
similarities for video StockHolm1 with song My Immortal.

Figure 4.16. Qualitative comparison example 8. Emotion curves and
similarities for video Walking4 with song In The End.
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Table 4.4. Results with song selection. Comparison of emotion similarities
using and not using the song selection algorithm.

Video

Emotion Similarity ↑

Mean of 5 Songs Best of 5 Songs Best of 1000 Songs

Berkeley1 0.79 0.82 0.90

Berkeley2 0.77 0.81 0.89

Bike3 0.77 0.81 0.91

CityWalk1 0.72 0.74 0.84

MontOldCity1 0.77 0.78 0.86

NatureWalk1 0.74 0.79 0.89

StockHolm1 0.74 0.76 0.89

Walking4 0.77 0.79 0.84

Mean 0.76 0.79 0.88

4.4.3 Results Using Song Selection

In this subsection, we show results using the song selection algorithm. To perform the

selection, we run the algorithm using as input a set of 1000 songs of varied styles, such

as Rock, Country, Folk, Classic, and others.

Table 4.4 shows the comparison of our method using and not using the song

selection algorithm with 1,000 songs. In �rst column we show the mean emotion

similarity using the �ve songs presented in Table 4.1. In second column we show the

best emotion of these �ve songs. And in third column we show the emotion similarity

using the song selection algorithm with 1,000 songs. We can observe that with the use

of the algorithm, our method is able to achieve similarities above 0.9, proving that it

is possible to �nd songs that match the video very well, allowing the algorithm to also

be used for recommending music for video.

Figures 4.17 to 4.24 show qualitative results using the song selection algorithm.

In each �gure, we show the valence and arousal curves of the music and the accelerated

video and the emotion similarity curves. At the left, we show the continuous music

emotion curves in the valence-arousal plane, blue for video and green for audio. At the

right, we show the valence and arousal curves separately, the music curves in green,

the video curves in blue, and the similarity curves in red. We also show the average
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emotion similarity of the entire curve.

In several cases, we get similarities higher or very close to 0.90, such as in Figures

4.17, 4.18, 4.19, 4.22, and 4.23. The high similarity can be noted just by looking at the

curves. It is observed that in the valence-arousal plane, both curves tend to remain in

the same quadrants. It is also noted that the separate valence and arousal curves are

much more similar than in the results presented in the previous section, without the

song selection.

In some cases, as in Figures 4.17, 4.19, and 4.22, the valence or arousal curve of

the most similar song has few variations, remaining most of the time at one extreme,

that is because the curve of the original video also tended to be more concentrated

at that extreme. As a result, by speeding up the video for this song, the video curve

becomes more constant since the algorithm is trying to make it look similar to the

music curve, which has slight variation.

There are also cases in which parts of the valence and arousal curves seem to

be complementary, one being the inverse of the other, as in Figure 4.20 and 4.21 from

frame 1,200. However, this is just a coincidence that occurs when valence is the opposite

of arousal, which is expected because there are only two discretization levels for each

label.

The smallest similarities occur in Figures 4.20 and 4.24, where the average similar-

ity is close to 0.84, but still higher than all results obtained without the song selection.

In these cases, the curves are more visually di�erent, but you can still notice that they

tend to stay in the same quadrants in general.

In general, comparing these results with those of the previous section, we can

observe that our method, when having a large set of songs as input, manages to improve

even more the emotion curves matching, being able to recommend a good song for the

video, besides making acceleration.
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Figure 4.17. Song selection result example 1. Emotion curves for video
Berkeley1 using song selection.

Figure 4.18. Song selection result example 2. Emotion curves for video
Berkeley2 using song selection.
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Figure 4.19. Song selection result example 3. Emotion curves for video
Bike3 using song selection.

Figure 4.20. Song selection result example 4. Emotion curves for video
CityWalk1 using song selection.
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Figure 4.21. Song selection result example 5. Emotion curves for video
MontOldCity1 using song selection.

Figure 4.22. Song selection result example 6. Emotion curves for video
NatureWalk1 using song selection.
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Figure 4.23. Song selection result example 7. Emotion curves for video
StockHolm1 using song selection.

Figure 4.24. Song selection result example 8. Emotion curves for video
Walking4 using song selection.
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In this chapter, we presented several experiments performed to evaluate our

method, comparing it with other methods present in the literature and the results

obtained for each experiment. With the implemented models for the classi�cation of

emotions in images and music, we managed to create continuous emotion curves for

the input video and the input song. And with the implemented optimal path selection

algorithm, we were able to speed up the video by matching the emotion curves of the

music with that of the video and maximizing the visual quality of the video.

The quantitative results showed that our method is able to maximize the similar-

ity of emotion curves more than the baselines without losing visual quality. In addition,

we quantitatively prove the e�ectiveness of the trained neural networks through the

presented confusion matrices. We also con�rmed that with the use of the song selec-

tion algorithm, the similarity of the curves can become even more signi�cant in the

accelerated video. Through the qualitative results, it was possible to visually verify

that our method succeeds in making the emotion curves more similar for all videos and

songs, allowing the video to be accelerated to combine well the emotions induced by

the video and music throughout the time.

In summary, we argue that the proposed methodology achieved the objectives

presented in the introduction once the e�ectiveness of our method was proven through

the performed experiments.
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Conclusion and Future Works

5.1 Conclusion

The development of this work was motivated by the need to speed up egocentric videos,

which are usually long and tiring to watch, considering not only the visual information

in the videos but also the acoustic information in the music that the user wants to insert

into the accelerated video, making it more enjoyable to watch. Based on recent work

on recognizing emotion in music and images, we decided to use emotion representation

models to combine the video content with the music content. Thus, we introduced in

this work the new task of accelerating �rst person videos including the alignment of

emotions induced by visual and acoustic signals.

To solve the problem of speeding up the video, including background music, we

developed a new method to create continuous emotion curves for music and video

over time. We also developed an optimization algorithm to select the best subset of

video frames, which maximizes the emotion similarity while also maintaining the visual

quality of the accelerated video.

We extracted features from the music segments and video frames to create the

emotion curves and use arti�cial neural networks to classify the emotions induced

from these features. We represented emotions in a plane where the x-axis represents

valence, and the y-axis represents arousal, both for music and video, which allowed

us to calculate the similarity of data from di�erent nature by measuring only the

Euclidean distance between two points in the emotion plane. However, to classify the

emotions, it was necessary to create discrete representations of the valence and arousal

values labeled in the audio and image datasets, in order to transform the regression

problem into a classi�cation problem. The dataset used to train the audio classi�er

allowed a more detailed discretization, totaling 64 possible points in the valence-arousal
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plane, for each music segment. The dataset used to train the image classi�er, on the

other hand, required a conversion to the valence-arousal plane, allowing the data to be

distributed in only four classes, corresponding to the four quadrants of the plane. It

reduced the quality of the continuous curve generated for the video, when compared

to the continuous curve generated for music.

The proposed optimization algorithm selects the best subset of frames in the video

based on the similarity of the generated emotion curves and similarities between video

frames, seeking to guarantee the matching of the curves without losing visual quality.

We observed that the proposed optimization method performed better than the greedy

method and the DTW to accelerate the video and match the emotion curves. One

di�culty in implementing the optimization method was that the dynamic cost matrix

takes up many memory spaces, bringing the need to use sparse representations, in

addition to limiting the size of videos in experiments. Another problem was that the

algorithm took a long time to process the videos, which the solution was the reduction

of the maximum frame skipping in selecting the frames to be removed. Increasing the

size of the maximum frame skipping could improve the quality of the results, but it

would signi�cantly increase the processing time. However, we did not consider the

processing time in the evaluation of the proposed method.

From the quantitative results, we observed that the developed method manages

to increase the similarity of the video and music emotion curves for most videos and

obtains adequate values for the temporal continuity and video stabilization while also

reducing the video to the exact size of the song. From the qualitative results, we

observed that despite maximizing the average similarity of the emotion curves, it still

have a lot of di�erence. This is because there are many restrictions in the optimization

process, such as the size of the maximum frame skipping and the target length of the

accelerated video. With the inclusion of the best song selection algorithm, it is possible

to produce results in which the emotion curves are more similar, achieving similarities

close to 0.9 from a set with 1,000 songs.

In general, the experiments show that the proposed method achieved superior per-

formance in terms of video representability, required speed-up and emotional alignment

for di�erent videos and songs without losing the visual quality of the hyperlapse, com-

pared to previous methods. The results show that it is possible to create a hyperlapse

combining media of distinct nature according to their respective a�ective semantic.
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5.2 Future Works

For future works, once we presented a new problem of creating a musical hyperlapse,

there are many improvements that can be done to improve the quality of the results.

An important improvement that we can make is increasing the number of dis-

cretization levels in the video emotion classi�cations and performing the training of the

neural networks again, using for example, 64 classes for both audio and video emotion

representations in the valence-arousal plane. This will certainly require further study

in the dataset used to train the image classi�er, as well as improvements in the train-

ing of the used convolutional neural network. In another hand, instead of discretizing

and then smoothing the curves, regressions could be made, seeking to maximize the

accuracy of the emotion representation. This task would be a little more complex, but

it would be possible to classify the music segments and video frames to continuous

values, directly generating the continuous emotion curves.

Another way to compare the similarities between music and video, instead of

using Russell's emotion model, is to create an embedding space where each video frame

and music segment would be positioned as a point in a n-dimensional space, and the

distance from each pair of points would de�ne the similarity between them, the closer

the more similar. This approach would also eliminate the need to convert the discrete

curves into continuous ones since the similarities would be obtained directly from the

input video and input music.

The optimization algorithm implementation can also be improved, with the main

objective of reducing the consumption of space and time. To do that, a more detailed

study on the optimization algorithm would be necessary, as well as on the way the

data is pre-processed and stored. New experiments must be performed evaluating the

memory consumption and time spent by the algorithm with di�erent videos and in

other contexts. This improvement is signi�cant when we want to use the algorithm in

longer videos, for example, with over one hour.

We can also consider another approach for inserting a song into the accelerated

video, that is the usage of machine learning methods capable of automatically gen-

erating the music for the video. There are already many works on automatic music

generation in the literature. These works combined with results on fast-forwarding

videos can also be a way to solve the problem of creating the musical hyperlapse.

Another idea is to also consider the acoustic content recorded in the original

video, and calculate the emotion induced by it as well. That way we could include the

music in the accelerated video without removing the audio from the original video.
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