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Abstract
In this work we extend the investigation of coupled discrete phase oscillators to circular
networks with non-global coupling, using analytic approximations and simulation. For
the later, the chosen method is an event-driven simulation. Its general implementation
allows for the investigation of arbitrary graphs, and is used to investigate small-world
networks. At the same time, a mean-field (MF) approximation for small-world networks
is introduced, which predicts the stability of travelling waves at positive coupling, where
usually the globally synchronized solution would be observed. In the zero disorder limit the
MF recovers the mean-field approximation proposed in previous works, but here travelling
waves are found to be stable even when the underlying graph has some disorder. The wave
solutions compete with global oscillations as well as with each other when there is more
than one stable wave number, leading to spontaneous transitions between wave numbers.
Finite systems will always be subject to these fluctuations, but larger systems are more
robust since noise becomes smaller relative to wave period and amplitude.

Preliminary simulations and scaling analyses indicated that wave solutions did not lose
stability if interaction range and system size are increased in the same proportion, a property
which is captured by the MF approximation. To further probe its validity, we tested other
predictions such as wave stability in the presence of disorder, the later introduced through
rewiring the base graph. Another finding is that the speed of propagation of such waves
should increase with increasing natural frequencies, which is verified in simulation.

Keywords: Dissertation, Doctoral thesis, Dynamical systems, Statistical physics, Couple
oscillators, Networks.



Resumo
Neste trabalho estendemos o estudo de sistemas de osciladores acoplados para redes
circulares de acoplamento não global utilizando modelagem matemática e simulações. O
método simulacional é do tipo “event driven”, e a sua implementação genérica permitiu a
investigação de grafos de conectividade arbitrários de modo que redes de mundo pequeno
também puderam ser investigadas. Também desenvolvemos uma teoria de campo médio
para descrever o comportamento coletivo dos osciladores acoplados nessas redes de mundo
pequeno, que prevê a estabilidade de ondas viajantes em regimes de acoplamento positivo.
Em geral nessas condições se observa uma sincronia global entre osciladores, mas o
alcance não global das interações permite a sobrevivência de tais estados. No entanto,
a descrição também prevê a estabilidade de ondas mesmo quando desordem de alcance
global é introduzida no sistema através de um algorítimo de reconexão do grafo subjacente.
Nesse regime a solução de ondas viajantes está constantemente competindo com outros
estados estáveis, como oscilações globais ou ondas viajantes com número de onda diferente
(quando há mais de um número de onda estável). Isso faz com que o sistema nunca atinga
propriedades macroscópicas estáveis, mesmo depois de longos tempos. Sistemas finitos
sempre estarão sujeitos a esse tipo de regime, com a criação e aniquilação espontânea
de números de onda, mas se tornam mais estáveis quando o tamanho do sistema cresce,
tornando a intensidade das flutuações nas frentes de onda pequenas em relação a amplitude
das ondas.

Inicialmente, as simulações indicaram que soluções de ondas viajantes permanecem estáveis
se o tamanho do sistema cresce proporcionalmente ao alcance das interações, uma proprie-
dade que foi capturada pela aproximação de campo médio. Para fortalecer a validade de
tal aproximação, algumas de suas previsões foram testadas, como a estabilidade de ondas
viajantes na presença de desordem introduzida pelo processo de reconexão. Outro resultado
é a modulação da velocidade de propagação das ondas através de vieses macroscópicos
introduzidos nas frequências naturais de oscilação das unidades microscópicas do sistema,
que também foi verificado em simulação.

Palavras-chave: Dissertação, Tese doutorado, Sistemas dinâmicos, Física estatística,
Osciladores acoplados, Redes. brazil
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Introduction

In 1951 the Belousov-Zhabotinsky class of chemical reactions were created for
the first time in a laboratory. This feat marked an upheaval in thermodynamics, which
had now been shown, experimentally, to be ruled by non-equilibrium dynamics even
for long mixing times. This generated for the first time interest in the field of coupled
oscillators by the broader scientific community. In the decades that followed, other areas
of research independently led to the same interests. In 1958, Norbet Weiner at MIT was
looking at power spectra from brain scans and decided that there must be some kind
of synchronization amongst coupled, periodically-firing, neurons. Also inspired by many
biological rhythms observed in nature, Arthur Winfree published in 1967 a paper on the
mathematical modelling of interacting oscillators. Winfree defined a phase oscillator as
an abstraction of any system that possesses periodicity. As such, a complicated periodic
process inside a living cell could be described by a single real number, between 0 and 2π,
and its rate of change. The major simplification comes from the fact that when two such
phase oscillators interact, each influences only the rate of change in phase of the other.
Their trajectories in phase space are assumed to remain closed loops, and thus the only
effective change can be modeled as a change in the speed at which they traverse it.

Seven years after Winfree’s 1967 paper, the young Japanese scientist Yoshiki
Kuramoto recognized what made Winfree’s model hard to solve. He proposed a modified
version of it, assuming a particular form for the coupling between oscillators. This led to an
arguably less realistic model, but one which Kuramoto was cunningly able to solve. This
modified version, together with its solution, would later be recognized as the Kuramoto
model, becoming one of the major founding stones in the field.

Since then, a plethora of novel coupled oscillator models have been put forward.
One class deals with discrete phase oscillators, in which the phase that describes a unit
is related to a finite set of possible values. Discrete-phase models are used to describe
systems which exhibit markedly distinct states. An example of such a system is interacting
neurons, where one can identify the three distinct phases of a neuron as firing, refractory
and ready-to-fire.

Another element present in some models is stochasticity in the dynamics, which is
deterministic in the Kuramoto model. The element of stochasticity may be included to
account for noise, such as in models of open systems that interact with a heat bath.

Here we consider discrete-phase models with three possible phase states, and
stochasticity plays a role in the rate of change of the phase state of each unit, being the
probability of “jumping” to the next state per unit time. This model was introduced by
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Kevin Wood, C. Van den Broeck, R. Kawai and Katja Lindenberg [1], with the main
motivation of finding the simplest possible dynamics between phase oscillators that still
led to a phase transition to synchrony. Initial investigations focused mainly on square
lattices and all-to-all connections, exposing the ubiquity of this type of self-organization.
Often times, networks of coupled oscillators observed in nature possess neither of these
two. Neurons, fireflies and cardiac cells are all examples of systems that do not operate on
lattices or complete-graph networks. One common type of interaction network observed
in real systems is a mix between local and global interactions. Various algorithms have
been proposed for the generation of such intermediate connectivity graphs, some of which
generate small-world networks, characterized by the presence of long-range interactions
while preserving strong local clustering.

A particular example for the generation of small-world networks is the Watts-
Strogatz algorithm, which randomly breaks connections on an existing graph and re-creates
them between random vertices. When applied to certain starting graphs with strong local
clustering, the result is a small-world network. Here we investigate how the dynamics of
the three-phase oscillator model unfolds on such networks, via simulation and a mean-field
analysis.
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1 Kuramoto Model

In this chapter we describe the Kuramoto model, its dynamics and self-consistency
arguments that allow for a synchronous phase to emerge at some critical coupling. To do
this, an order parameter is introduced together with a mean-field (MF) approximation.
The stability analysis of the solutions of the Kuramoto model took decades to develop
and led to some very anti intuitive findings, such as the fact that the disordered phase
for weak coupling is not stable, but neutrally stable, and is related to Landau damping
in plasma physics. Nonetheless, the two branches of solutions identified in Kuramoto’s
initial work don’t require solving the original set of equations, but rather rely on assuming
macroscopic behaviors for the system and tracing back what implications they have for
the microscopic dynamics. This feedback from macro to micro is central to Kuramoto’s
self-consistency arguments, which helped popularize his model by lowering the barrier
of entry to understanding synchronization in complex systems. Much of the discussion
developed in this section are reproductions from the notes of da Fonseca Abud [2].

1.1 Definition
The Kuramoto model consists of a collection of phase oscillators (“units”) which

are all coupled to each other. We start with a collection of N oscillators and then take the
continuous limit with N →∞. Each unit j at time t is described by its phase θj(t) and its
natural frequency ωj , which is its rate of change in phase in isolation, and is assumed to be
constant. The natural frequencies ω ≡ {ω1, . . . , ωN} are assumed to follow some frequency
distribution ω ∼ g(ω) which is symmetric about some frequency ω̄, and unimodal. While
the rate of change of an isolated unit is time independent, the coupling between oscillators
makes θ̇j a function of the entire phase configuration θ(t) ≡ {θ1(t), . . . , θN(t)}.

The biologically inspired Winfree model states that, at every instant, each oscillator
sends a signal of strength P (θ) and responds by adjusting its own phase proportionally to
Q(θ) when receiving signals from other units, which is captured in the equation:

θ̇j = ωj + 1
N

N∑
k

P (θk)Q(θj), j = 1, ..., N (1.1)

In the special case where the product P (θk)Q(θj) depends only on the phase
difference between oscillators j and k, the product inside the summation can be written
as a single function called the kernel F : P (∆θ)Q(∆θ) ≡ F (∆θ). If furthermore the kernel
is proportional to the sine function, then Winfree’s equation (1.1) becomes the Kuramoto
model:
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θ̇j = ωj + K

N

N∑
k

sin(θk − θj), j = 1, ..., N (1.2)

where K ≥ 0 is a real constant which describes the coupling strength between any pair of
oscillators.

1.2 Mean-field and order parameter
To determine if the microscopic collection of phases represents a synchronized

macro state, we introduce the Kuramoto order parameter R. It maps a phase configuration
θ to a magnitude by representing the phases as complex numbers on the unit circle and
performing a complex summation:

R(θ)eiφ(θ) ≡ 1
N

N∑
k

eiθk(t) (1.3)

where i =
√
−1 and φ(θ) ∈ [0, 2π) is the resulting polar angle of the summation. Thus

R(θ) ∈ [0, 1] determines the overall macroscopic alignment between phases. With this
definition the equations of motion can be re-written as:

θ̇j = ωj + K

N

N∑
k

sin(θk − θj)

= ωj +K Im
(

1
N

N∑
k

ei(θk−θj)
)

= ωj +KR(θ) Im
(
ei(φ(θ)−θj)

)

θ̇j = ωj +KR(θ) sin(φ(θ)− θj) (1.4)

We see that the equations of motion are now written in terms of the mean fields
R(θ) and φ(θ). In particular, if the fields are constant (Ṙ = φ̇ = 0) then the equations of
motion become decoupled and can be solved.

The collective oscillations observed in real systems tell us that the macroscopic
steady-state solution of stable synchronized oscillations should indeed have constant R > 0
while φ increases linearly with time (the system rotates synchronously with constant phase
speed). Thus, φ = Ωt and both R and Ω are constant. Even though φ itself is not constant,
it turns out that the rotational symmetry of equation (1.4) allows us to decouple the
equations by moving to a rotating frame of reference with the following substitution:
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∀j : θj(t) = ϕj(t) + Ωt
⇓

ϕ̇j = (ωj − Ω)−KR sin(ϕj) (1.5)

Another macroscopic behavior observed in nature is the more trivial one, with
no synchronization at all. In this state the phase configuration is evenly distributed over
all possible values, leading to constant R = 0, and is also described by equation (1.5).
Inspection of this equation shows that when |ωj − Ω| ≤ KR there is some phase value
for which ϕ̇j = 0, and thus oscillators become phase-locked when attaining this value.
When |ωj − Ω| > KR, the ϕj can never stop varying and will permanently drift. For a
synchronized solution we then expect two groups of oscillators:

• Phase-Locked |ωj −Ω| ≤ KR: A group of oscillators with natural frequencies close
enough to Ω will become phase locked and sync.

• Drifting |ωj − Ω| > KR: Remaining oscillators with frequencies too far from the
generated mean-field will remain drifting ahead or behind the synced group.

Since we postulate that R is time independent, self-consistency requires that the
phase distribution generated by the drifting oscillators must be stationary, otherwise R
would not be constant.

1.3 Continuous Limit
In the continuous limit N →∞, the distribution of oscillator phases can be written

as the joint probability density in phases ϕ and natural frequencies ω as:

P (ϕj, ωj, t)→ p(ϕ, ω, t) ϕ ∈ [−π, π) ω ∈ (−∞,∞)

For given values of ϕ and ω, the evolution follows

ϕ̇ = (ω − Ω)−KR sin(ϕ). (1.6)

The density of oscillators with phase ϕ is then given by the marginal distribution:

n(ϕ) =
∫ ∞
−∞

p(ϕ, ω, t)dω
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which by the definition of conditional probability gives:

n(ϕ) =
∫ ∞
−∞

p(ϕ|ω)g(ω)dω

where p(ϕ|ω) is the conditional probability density that an oscillator with given natural
frequency ω has phase ϕ ≡ ϕ(t) at time t.

By using the subscripts L and D to indicate the phase-locked and drifting groups,
we get the expression for the total density:

n(ϕ) = nL(ϕ) + nD(ϕ)

n(ϕ) =
∫
|ω−Ω|≤KR

pL(ϕ|ω, t)g(ω)dω +
∫
|ω−Ω|>KR

pD(ϕ|ω, t)g(ω)dω (1.7)

The conditional probability for the phase-locked group can then be obtained by
solving the equation of motion (1.5), and for the drifting group it can be derived by the
self-consistency assumption that it must be a stationary distribution in order to have a
time-independent order parameter.

1.4 Phase distribution of phase-locked oscillators
For the phase locked group we know that for t→∞, ϕ̇ = 0 for some value of ϕ?

and ω. Thus, we solve equation (1.6) to obtain:

ϕ? = arcsin
(
ω − Ω
KR

)
, ϕ? ∈

[
−π2 ,

π

2

]

Therefore, the conditional distribution of ϕ given ω is a Dirac delta function
centered around ϕ?, since this is an attractor for all oscillators with natural frequency ω.

pL(ϕ|ω) = δ

[
ϕ− arcsin

(
ω − Ω
KR

)]
, ϕ ∈

[
−π2 ,

π

2

]
(1.8)

We now perform the left integral in equation (1.7) to find the density of phase
locked oscillators to obtain:

nL(ϕ) =
∫ Ω+KR

Ω−KR
δ [ϕ− ϕ?] g(ω)dω

but ω = Ω +KR sinϕ? and dω = KR cosϕ?dϕ? and thus
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nL(ϕ) =
∫ π

2

−π2
δ [ϕ− ϕ?] g(Ω +KR sinϕ?)KR cosϕ?dϕ?

nL(ϕ) =

g(Ω +KR sinϕ)KR cosϕ |ϕ| ≤ π
2

0 |ϕ| > π
2

(1.9)

Equation (1.9) shows us that the phase locked oscillators are distributed in the
half-moon around the order parameter, in accord with direct simulations of the equations
of motion. Since the ϕ values are phase-locked, the probability distribution of synchronized
oscillators nL is also time independent, in addition to n.

1.5 Phase distribution of drifting oscillators
In order to derive the distribution of phases for drifting oscillators, for which

|ω − Ω| > KR, consider an interval [ϕ, ϕ+ δϕ] in phase values. The fraction of oscillators
with natural frequency ω ∈ [ω′, ω′ + δω] inside this interval is given by:

[∫ ϕ+δϕ

ϕ
p(ϕ′|ω)dϕ′

]
δω (1.10)

The change per unit time in the fraction of oscillators inside this interval is then
given by the time derivative of (1.10), but since all intervals endpoints ω, δω and ϕ, δϕ
are fixed we have:

∂t

[∫ ϕ+δϕ

ϕ
p(ϕ′|ω)dϕ′

]
=
∫ ϕ+δϕ

ϕ
∂tp(ϕ′|ω)dϕ′ (1.11)

Conservation of probability inside the interval [ϕ, ϕ + δϕ] mandates the net change in
probability is equal to the difference between fluxes at the endpoints. The probability
current is written as j(ϕ, ω, t) = p(ϕ|ω)ϕ̇ and therefore

∫ ϕ+δϕ

ϕ
∂tp(ϕ′|ω)dϕ′ = p(ϕ+ δϕ|ω)ϕ̇(ϕ+ δϕ)− p(ϕ|ω)ϕ̇(ϕ) (1.12)

which can be written

∫ ϕ+δϕ

ϕ
∂tp(ϕ′|ω)dϕ′ = −

∫ ϕ+δϕ

ϕ

∂

∂ϕ
[p(ϕ|ω)ϕ̇(ϕ)] |ϕ′dϕ′ (1.13)
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Since this equality holds for all intervals [ϕ, ϕ+ δϕ], equating the integrands gives:

∂tp(ϕ′|ω) + ∂ϕ [p(ϕ|ω)ϕ̇(ϕ)] = 0 (1.14)

We have seen that requiring the total phase distribution n(ϕ) to be stationary
implies that the distribution of phase-locked oscillators nL(ϕ) is also stationary. But since
the distribution of drifting oscillators is given by nD(ϕ) = n(ϕ)− nL(ϕ), it must also be
stationary. Therefore ∂t[nD(ϕ)] = 0 which implies that

∫
|ω−Ω|>KR

∂t[pD(ϕ|ω)]g(ω)dω = 0 (1.15)

Even though some time-dependent forms for pD(ϕ|ω) might satisfy (1.15), the
assumption that it is indeed stationary ties up with the original assumption about the total
density n and the self consistency argument, a central point in Kuramoto’s original analysis.
The condition ∂t[pD(ϕ|ω)] = 0 for all ϕ, together with the continuity equation (1.14) allows
us to integrate ∂ϕ[pD(ϕ|ω)ϕ̇(ϕ)] to give:

pD(ϕ|ω)ϕ̇(ϕ) = C(ω)

which by (1.5) results in

pD(ϕ|ω) = C(ω)
(ω − Ω)−KR sinϕ (1.16)

In order to obtain the total density nD(ϕ) we must integrate the joint distribution
pD(ω|ω)g(ω) over ω. In order to do that, we need to find C(ω), which can be done by
using the normalization condition

∫ π
−π pD(ϕ|ω)dϕ = 1, which leads us to:

1
C(ω) =

∫ π

−π

1
ω − Ω−KR sinϕdϕ (1.17)

Using equation (2.551-3) from the integrals table [3] with the condition |ω − Ω| > KR we
get the solution:

let

a = (ω − Ω), b = KR and f(ϕ) = arctan
a tan ϕ

2 + b√
a2 − b2

then

∫ 1
±a− b sinϕdϕ = ± 2√

a2 − b2
f(ϕ) a2 > b2 (1.18)
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which is positive for ω > Ω +KR and negative for ω < Ω−KR. Substituting back into
equation (1.17) to obtain C gives:

C(ω) =


−
√

(ω−Ω)2−(KR)2

2π ω < Ω−KR
√

(ω−Ω)2−(KR)2

2π ω > Ω +KR

(1.19)

Now, we use the expression for C(ω) to perform the integration in ω as defined in
equation (1.7):

nD(ϕ) =
∫ Ω−KR

−∞

C(ω)
(ω − Ω)−KR sinϕg(ω)dω+

∫ ∞
Ω+KR

C(ω)
(ω − Ω)−KR sinϕg(ω)dω (1.20)

To perform this integration we make use of the assumptions that g is symmetric
and unimodal. In addition, we also assume that the frequency of global oscillations to
which the system converges to, Ω, is coincident with the point of symmetry of g, or Ω = ω̄.
With this assumption, g(Ω+x) = g(Ω−x) implying that g(ω) is identical in both integrals
of (1.20) and finally:

nD(ϕ) = 1
π

∫ ∞
KR

x
√
x2 − (KR)2

x2 − (KR sinϕ)2 g(x+ Ω)dx (1.21)

1.6 Order Parameter
In the rotating frame, the Kuramoto order parameter is given by the integral:

R =
∫ π

−π
eiϕnL(ϕ)dϕ+

∫ π

−π
eiϕnD(ϕ)dϕ (1.22)

From equation (1.21) we see that nD(ϕ−π) = nD(ϕ), but ei(ϕ−π) = −eiϕ, and thus
the second integral is zero. The first integral on the right hand side (RHS) can then be
written using equation (1.9) for the phase-locked oscillators.

R =KR
∫ π/2

−π/2
(cosϕ+ i sinϕ) cosϕg(Ω +KR sinϕ)dϕ (1.23)

but since g is symmetric around Ω we end up with

R = KR
∫ π/2

−π/2
g(Ω +KR sinϕ) cos2 ϕdϕ (1.24)
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Thus, we see that for a fixed value of the coupling strength K there is always at
least one solution for the order parameter R. The trivial (disordered) solution is given by
R = 0. If R is non-zero, then we can divide equation (1.24) by R to obtain the condition
for the existence of the solution for that particular K:

K
∫ π/2

−π/2
g(Ω +KR sinϕ) cos2 ϕdϕ = 1. (1.25)

The simpler case of identical oscillators can be obtained from equation (1.25) by
setting g(x) = δ(x− Ω) which results in Kc = 1 as the critical coupling strength for such
a network to attain synchronization.

For a general form of the natural frequency distribution g we can obtain the critical
coupling strength Kc by expanding its Taylor series around Ω and neglecting terms O(R)
and higher. This is because when K → K+

c , R→ 0+ and so:

1
K

=
∫ π/2

−π/2

[
g(Ω) + g′′(Ω)(KR sinϕ)2

2 +O(R3)
]

cos2 ϕdϕ,

which gives the limit

1
Kc

= lim
R→0+

∫ π/2

−π/2

[
g(Ω) + g′′(Ω)(KR sinϕ)2

2 +O(R3)
]

cos2 ϕdϕ

where g′(Ω) = 0 since g(Ω) is a maximum. Therefore the critical coupling is given by:

Kc = 2
πg(Ω) (1.26)

As the coupling approaches the critical value from above, the order parameter
scales as:

1
K

= 1
Kc

− K2
cR

2|g′′(Ω)|
16 +����:

0O(R3)

which rearranged leads to

R(K) = 4√
πK3

c |g′′(Ω)|

√
K −Kc

Kc

(1.27)

We see that the order parameter is sensitive to the curvature of g at its maximum,
growing ever more rapidly as g becomes narrower. In the limit of identical oscillators the
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order parameter becomes discontinuous at the transition. In terms of the reduced coupling
strength κ ≡ K−Kc

Kc
, the critical exponent β ≡ limκ→0

lnR(κ)
lnκ is found to be β = 1/2, in

accordance with a mean-field description or all-to-all coupling.



2 Stochastic discrete phase model

This chapter is a reproduction of the published result [4] for the first part of the
thesis. Here we define the discrete three state model for coupled oscillators and investigate
its behavior in circular ring graphs and give some preliminary results from simulations in
small-world networks.

2.1 Summary

A lattice of three-state stochastic phase-coupled oscillators exhibits a phase transi-
tion at a critical value of the coupling parameter a, leading to stable global oscillations
(GO). On a complete graph, upon further increase in a, the model exhibits an infinite-period
(IP) phase transition, at which collective oscillations cease and discrete rotational (C3)
symmetry is broken. The IP phase does not exist on finite-dimensional lattices. In the case
of large negative values of the coupling no synchronization is expected, but nonetheless it
was shown that travelling-wave steady states are stable, displaying local order. Here, we
verify the IP phase in systems with long-range coupling but of lower connectivity than a
complete graph and show that even for large positive coupling, the system sometimes
fails to reach global order. The ensuing travelling-wave state appears to be a metastable
configuration whose birth and decay (into the previously described phases) are associated
with the initial conditions and fluctuations.

2.2 Introduction

Systems of coupled oscillators exhibit diverse symmetry-breaking transitions to a
globally synchronized state. In the paradigmatic Kuramoto model, for instance, oscillators
with distinct intrinsic frequencies ωi coupled via their continuous phases θi can exhibit stable
collective oscillations, breaking time-translation invariance [5–9]. Amongst discrete-phase
models, the paper-scissors-stone game is an example of a system with three absorbing states
that can exhibit either global oscillations or spontaneous breaking of discrete rotational
(C3) symmetry [10–14]. More recently, Wood and coworkers proposed a family of models of
phase-coupled three-state stochastic oscillators that undergo a phase transition to a state
exhibiting global oscillations (GO) [1,15–17] for sufficiently strong coupling. We shall refer
to these as Wood’s cyclic model (WCM). Although the WCM also has C3 symmetry, it has
no absorbing state. In addition to their intrinsic interest in the context of non equilibrium
phase transitions, this family of models serve as a highly simplified description of collective
neuronal behavior.



2.3. Model 25

The first WCM [1] was found to undergo a second phase transition upon further
increase of the coupling [18], at which the period of oscillation becomes infinite, thereby
breaking C3 symmetry. In [18], this infinite-period (IP) transition was studied on a complete
graph (all-to-all coupling), and a novel order parameter, involving the mean rate of change
of the probability distribution, was proposed. On the basis of a nucleation scenario, the
authors of Ref. [18] argued against the existence of an IP transition on finite-dimensional
lattices with short-range interactions, but left open the question of its occurrence on
networks with nonlocal interactions. Here we study a WCM on (1) regular rings with
interactions up to 2K-neighbors, varying the interaction range K, and (2) small-world
networks. Using numerical simulations to study the order parameter and its variance, we
verify the existence of GO and IP phase transitions on these structures. For regular rings
of N nodes, the degree of connectivity is characterized by α ≡ K/N such that α ∈ (0, 0.5).
A key question is the minimum value of α necessary to observe the GO and IP phases as
N →∞. Our results suggest that any α > 0 is sufficient.

We also provide evidence that for intermediate interaction ranges, global synchro-
nization depends sensitively on initial conditions: Some realizations with a random initial
configuration show no global synchronization. Such events persist even as the number of
neighbors grows in proportion to the system size. In this situation, the final state may
be a travelling wave, as observed by Escaff et al. [19] in the case of anti-crowding, i.e.,
interactions favoring anti-synchronization between neighbors.

The remainder of this paper is organized as follows. In section 2.3 we review the
WCM and the essentials of the transitions to the GO and IP phases. We report our results
on the GO and IP phase transitions on regular rings, and on small-world networks, in
sections 2.4 and 2.5, respectively. Our conclusions are discussed in section 2.6.

2.3 Model
In the WCM, the state sx at site x (x = 1, . . . , N) can take one of three values,

sx ∈ {0, 1, 2}, corresponding to a phase φx = 2πsx/3. The only allowed transitions are

0

1

2

g g

g

Figure 1 – Transition rates for an isolated unit.
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Figure 2 – (Color online) Panels (a) and (b) show the evolution of P1 for a = 1.6 and a = 3,
respectively. Points: simulations of a complete graph of N nodes; lines: MF
solution. (c) Dependence of r and ω on a, exhibiting the two phase transitions.
(d) χr versus a, showing peaks at the transitions [system sizes as in (c)].
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those from s to s + 1 (modulo 3) (see Fig. 1), which implies that detailed balance is
violated. If site x is in state sx = j, its transition rate to state j + 1 is:

γxj = g exp
a
(
nxj+1 − nxj

)
nx

 (2.1)

where g is a constant, a is the coupling parameter, nxj is the number of neighbors of site x
in state j, and nx is the number of neighbors for site x. Since these rates are invariant
under cyclic permutation of the state indices, the model is invariant under the group C3

of discrete rotations.

Let Nj be the total number of sites in state j, so that N0 +N1 +N2 = N , the total
number of sites. As discussed in [18], the MF approximation, obtained by replacing nxj /nx

in the argument of the exponential of Eq.(2.1) with the corresponding state fraction, nj =
Nj/N , yields three non equilibrium phases, separated by two continuous phase transitions.
For small coupling (a < ac = 1.5), the disordered phase, with n = (1/3, 1/3, 1/3) ≡ n1/3, is
the stable stationary solution of the MF equations. (n denotes the vector of state fractions.)
For a between ac and a higher value, ac ' 3.102 439 915 64, there is no stable stationary
solution and the MF equations admit an oscillatory solution (a limit cycle) in which states
0, 1 and 2 periodically assume the role of the majority. As a is increased above ac, the
frequency ω of oscillation decreases continuously, becoming zero at ac, signalling the IP
transition. For a > ac, three stationary solutions, nj appear, such that state j represents
the (permanent) majority. Thus C3 symmetry is broken for a > ac. (The three solutions
are, naturally, related via cyclic permutation of indices in state space.)

The WCM is characterized by a pair of order parameters. First, one has the familiar
Kuramoto synchronization parameter [1, 5, 7],

r ≡ 〈〈|v|〉t〉s , (2.2)

where

v ≡ 1
N

N∑
x=1

eiφ
x

. (2.3)

In Eq. (2.2), 〈〉t denotes a time average over a single realization (in the stationary state),
and 〈〉s an average over independent realizations. Note that r > 0 is consistent with, but
does not necessarily imply, globally synchronized oscillation. The latter is characterized by
a periodically varying phase of v [20–23].

In the MF analysis, the transition to the synchronized regime (the GO transition)
is associated with a supercritical Hopf bifurcation at a = ac = 1.5: the trivial fixed point
n1/3 loses stability at a = ac, and a limit cycle encircling this point appears. For a & ac,
sustained oscillations in nj characterize synchronization among the oscillators (Fig. 2a).
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Correspondingly, r grows continuously ∼ (a− ac)β at the transition (Fig. 2c), with a MF
exponent β = 1/2 [1]. The scaled variance

χr ≡ Ld
[〈
〈|v|〉2t

〉
s
− r2

]
, (2.4)

diverges with the system size at criticality, as shown in Fig. 2d for simulations on the
complete graph [18]. The GO transition is associated with breaking of the continuous time-
translation symmetry: the nk(t), are periodic for a & ac. Increasing a above ac enhances
synchronization among the oscillators, leading to increasing oscillation amplitudes, as
shown in Fig. 2b.

Wood et al. found that the increasing amplitude of oscillation is accompanied by a
decreasing angular frequency ω = 2π/〈τ〉, where 〈τ〉 is the mean time between peaks in nk
(Figs. 2a-c). This can be understood qualitatively from the exponential dependence of the
transition rates of Eq. (2.1) on the neighbor fractions: When a state is highly populated, the
rate at which oscillators leave it becomes very small. In the MF theory, when a reaches the
upper critical value ac, three symmetric saddle-node bifurcations occur simultaneously, and
the period of the collective oscillations diverges [18]. Above ac, there are three symmetric
attractors in the system, and 3-fold rotational (C3) symmetry is spontaneously broken. As
in condensation or a ferromagnetic phase transition [24], freezing of the majority state
does not imply that individual oscillators freeze as well. The transition rates of individual
oscillators do decrease with increasing a, but only vanish in the limit a→∞, when one of
the states is fully occupied.

It is convenient to define an order parameter ψ that is identically zero (in the
infinite-size limit) for a > ac. Assis et al. proposed [18],

|ψ| ≡ 1
N

∣∣∣∣∣
N∑
x=1

(
δ0,sx + e2πi/3δ1,sx + e−2πi/3δ2,sx

)
γx
∣∣∣∣∣ (2.5)

where δij is the Kronecker delta and γx ≡ γxsx is the transition rate at site x (see eq. 2.1).
Thus |ψ| involves not only the configuration, but the rate at which the latter evolves. On
the complete graph, γx is the same for all sites x in the same state j. Denoting this rate
by γj, the order parameter can be written (in MF analysis) as

|ψ|2 MF=
2∑
j=0

(njγj − nj−1γj−1)2 (2.6)

Both the disordered phase (a < ac) as well as the IP phase (a > ac) have stable, stationary
solutions, n∗. Since ṅj = 0 implies n∗jγj = n∗j−1γj−1, i.e., zero net change in the probability



2.3. Model 29

Figure 3 – (Color online) (From [18].) Order parameter 〈|ψ|〉 as a function of coupling a
in the MF theory and on the complete graph, for sizes as indicated.

of state j, we have |ψ| = 0 in eq. 2.6 for both cases [a similar line of reasoning can be
applied directly to Eq. (2.5)].

Figure 3 shows 〈|ψ|〉 versus a in MF theory, and on the complete graph (the latter
via numerically exact solution of the master equation), confirming that |ψ| functions as an
order parameter to detect both the GO and IP phase transitions. The MF critical behavior
is 〈|ψ|〉 ∼ (a−ac)1/2 for a↘ ac and 〈|ψ|〉 ∼ (ac−a)1/2 for a↗ ac. On the complete graph,
the order parameter decays with system size as 〈|ψ|〉 ∼ N−1/4 at a = ac and as N−0.4203(3)

at a = ac. The first result is typical of MF scaling with system size at a continuous phase
transition, as argued in [18].

The results for the IP transition in MF and on a complete graph are in sharp
contrast to what is found on finite-dimensional lattices. The absence of such a transition
was verified numerically on hyper cubic lattices in dimensions d ≤ 4 in [18]. This reference
also provides a quantitative argument showing that on finite-dimensional lattices, a j-state
majority cannot persist indefinitely: it is always susceptible to change via nucleation of a
cluster of state j + 1. The authors of [18] conjectured that the IP transition would occur
on structures in which a site interacts with a nonzero fraction of all other sites (as the
system size tends to infinity). In the following sections we test this conjecture on two
structures, regular rings with extended interactions, and small-world networks.
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2.4 The WCM on regular rings

A regular ring is constructed starting from a graph of N nodes arranged in circular
fashion. Considering one node at a time in a clockwise manner, we connect it to its K
nearest neighbors in the clockwise direction; an example of such a structure is shown in
Fig. 4. We define the connectivity of a regular ring graph by α ≡ K/N , such that α = 1/N
signifies a one-dimensional chain while α = 0.5 represents a complete graph. Thus, one
can interpolate from the one-dimensional to an infinite-dimensional hyper cubic lattice
(complete graph) varying α over the interval

(
0, 1

2

]
. It is known that the WCM on hyper

cubic lattices of dimensions 1 and 2 cannot sustain ordered phases [1, 18]. Since α = 0.5
represents the complete graph, there must be at least one threshold α = α∗ above which
one or both phase transitions (GO and IP) occur, varying a.

Different from hyper cubic lattices, in which coupling is local, for α > 0 the coupling
on ring graphs is nonlocal. The manner in which the interaction range scales as N →∞
can be chosen in different ways; the simplest, which we consider here, is to fix α so that
K ∝ N (More precisely, K = dαNe where dxe denotes the smallest integer larger than
x). It is reasonable to expect that phase transitions occur for any fixed α > 0, since the
interaction range K then tends to infinity with N .

2.4.1 Scaling behavior: phase boundary

The dynamics as N increases can be studied by defining the scaled variances of the
order parameters. These quantities are expected to diverge in the thermodynamic limit
when the system undergoes a continuous phase transition [25]. The scaled variances of

Figure 4 – A regular ring is an undirected graph with N nodes arranged in circular
fashion, with each connected to its K nearest neighbors in each direction. Here
we show an example with N = 12 and K = 2.
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Figure 5 – (Color online) Order parameters and their scaled variances for one-dimensional
rings (K = 1). Both the order parameters and their respective variances decrease
as the system size is increased, with r ≈ ψ ≈ 0 across a wide range of coupling
strengths. Points represent an average over 3000 independent realizations with
random initial configurations. For the 1D chain, the same behavior is observed
regardless of initial configuration.

order parameters r and ψ can be defined through equations 2.3 and 2.5 as:

χr = N
[〈
〈|v|〉2t

〉
s
− 〈〈|v|〉t〉

2
s

]
,

χψ = N
[〈
〈|ψ|〉2t

〉
s
− 〈〈|ψ|〉t〉

2
s

]
, (2.7)

where 〈〉t and 〈〉s are averages over time and over independent realizations, respectively.

In simulations, the system is allowed to relax to a steady state, starting from its
initial configuration. Once the steady state has been attained, the order parameters are
averaged over the remainder of the evolution. As we will see, the choice of initial condition
is important for some values of the interaction range K; we will focus on two different
setups: random initial configurations, in which the initial phase of each oscillator is chosen
uniformly and independently among the three possible values in {0, 2π/3, 4π/3}, and a
uniform initial condition, in which φi = 0, ∀i.

In the following we describe results for uniform initial conditions. In Fig. 5 we
plot the order parameters and their associated variances for K = 1 (i.e., α = 1/N). Both
quantities are shown to decrease with system size (for the 1D case in particular this
behavior is the same regardless of initial configuration), indicating the absence of phase
transitions. In Fig. 6, the same quantities are shown for regular rings with N = 1000 and
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Figure 6 – (Color online) Order parameters and scaled variances for regular rings of size
N = 1000 and various values of the connectivity α. Points represent an average
over 4000 independent realizations with uniform initial configurations.

various α values. As expected, the order parameters and their variances approach the
complete-graph limit as α nears the value 1/2. Denoting by α∗ the value associated with
a change from one to two maxima in χψ, we identify α∗ ≈ 0.06 for N = 1000 in Fig. 6.
Performing similar analyses for different system sizes we obtain α∗ as a function of N . To
infer the scaling behavior, we define λ ≡ N−1 and look at the α∗ versus

√
λ curve near

λ = 0. The resulting data, shown in Fig. 7, suggest that α∗ tends to zero as N →∞. This
supports the conjecture stated previously that in this limit, and for any fixed α > 0, the
WCM on a regular ring lattice exhibits both GO and IP phase transitions.

2.4.2 Scaling behavior: order parameter

To better understand the scaling behavior we look at the order parameters as
N →∞ with fixed α. If both r and ψ tend to zero, there is no global synchronization. Both
order parameters tending to positive values indicates the presence of global or intermittent
synchronization among large populations of oscillators, while ψ → 0 with r ∼ 1 defines an
infinite-period phase.

In this context it is useful to plot the order parameter versus λ ≡ 1/N . An upward
(downward) curvature as λ→ 0 signals a nonzero (zero) value of the order parameter. In
Fig. 8, such plots are shown for selected values of α 1 and system sizes up to N = 104. In
panel b) we see evidence of the GO transition for the value α = 0.0017 in the form of an
1 See full animations of Fig. 8: GO transition, IP transition

https://youtu.be/pPQbc0eiv_4
https://youtu.be/_qfNzoBpRO4
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Figure 7 – Plot of α∗ versus
√
λ. Starting from uniform initial configurations, α > α∗

means χψ and χr exhibit two maxima, whereas for α < α∗ only a single broad
maximum is observed. Full circles represent data obtained from simulations
and solid curve is a linear fit with equation y = −0.01837 + 2.1271x. The band
around the fitted curve represent the uncertainty associated with the linear
intercept.

inversion in curvatures for lines of constant coupling strength, which happens at ac ≈ 2.
The inset in this same panel shows that for large α there is a clear split near the complete
graph value ac = 1.5. In the case of the IP transition we observe that there is no upward
curvature at any point, but rather a sharp increase in density of the lines of constant a for
higher values of α, as seen in the bottom inset of Fig. 8 where the lines a = 3.375 and
a = 3.306 have collapsed to the same point near the origin.

Inspecting individual realizations of the dynamics in the small-α regime (Fig. 9)
we see that the system never shows global synchronization. It instead exhibits wave-like
patterns that propagate in both directions, similar to what is observed for large negative
coupling [19], but here for a positive . The amplitude and period of the wave increase
with a and with system size (for fixed α), which suggests there is an IP phase in the limit
N →∞.

2.4.3 Initial configuration dependence

Up to this point, all the results discussed were obtained using uniform initial
configurations (ICs). In Fig. 10 shows χr and χψ for random ICs. The striking difference,
compared to the results for uniform ICs, is the presence of a middle peak between the
two identified previously. The scaling behaviors (panels b and d) suggest that the effect
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Figure 8 – (Color online) Order parameter ψ versus inverse system size λ for various
values of α, and coupling strengths a in the vicinity of the GO and IP phase
transitions. The insets in b and f show the behavior for α = 0.3, approaching
the complete graph, with GO and IP transitions near ac = 1.5 and ac ≈ 3.1
respectively. Each point represents an average over 400 independent realizations.
The oscillatory behavior seen in some panels is due to the reduction in average
path lengths caused by the introduction of new neighbors as the system size
increases at fixed α, and the fact that K must be an integer (see Appendix A).
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Figure 9 – Space-time plots, populations Ni, ψ and r order parameters. In all panels
N = 104, K = 10 and α = 10−3. The images on the left and center-right
columns show space-time plots with position on the horizontal axis and time
increasing upward. Adjacent and to the right of each space-time plot, three
graphs show the corresponding populations, ψ, and r as functions of time.
Here we see that for a large system with low connectivity there are no regular
oscillations. Instead, there are wave fronts that propagate and interfere and
whose periods and amplitudes grow with a.

persists for large system sizes if α is held constant. High values of χ result from multiple
realizations of the dynamics that produce net averages of the order parameter that differ
from one to another. At the (continuous) GO and IP phase transitions, the values of
the order parameter fluctuate strongly, giving rise to the peaks at a = 1.5 and a ≈ 3.1.
Another situation which may lead to high χ values is a bi-stability between configurations
that have large values of the order parameter and others having a small one, even when
fluctuations associated with each configuration are small. This suggests a discontinuous
phase transition where for some values of α the system can relax to multiple steady states.

Space-time plots of the dynamics with coupling a ≈ 2.5 and α = 0.14 reveal that
this is indeed the case (Fig. 11). Three examples are shown in Fig. 11: on the left is the
familiar globally synchronized state, while the middle panel shows a travelling-wave state
similar to those observed in [19], (but here, for large, positive coupling). The existence of
a steady state with zero order parameter but a > ac is surprising since Fig. 10 suggests
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that wave-like solutions persist even in the limit N →∞ (with fixed α), where interaction
ranges become infinite.

The rightmost panel in Fig. 11 shows a fluctuation-induced change from a travelling
wave to global synchrony. Such transitions allow the average order parameter to attain
values between those associated with a wave state and a globally synchronized one, being
closer to one or the other depending on what fraction of time it spent at that particular
configuration. Starting from random ICs, about 1.6% of realizations exhibit travelling
waves, but since ψ ≈ 0 for the waves and ψ ∼ O(1) for the globally synchronized case, the
variances χr and χψ are sensitive even to small rates of occurrence. Due to fluctuations,
waves do not persist in smaller systems; sizes N ≥ 700 are required. Smaller systems exhibit
either disordered phases with domains that increase in size and duration as the coupling
grows, or global synchrony if the interaction range K is large enough. In all cases, waves
with exactly one spatial period over the system are observed, while for negative coupling,
multiple stable wave numbers are found depending on the coupling magnitude [19].

The existence of travelling waves can be understood by noting that, for α < 0.5, the
system consists of G = N/2K domains. G represents the average path length for regular
rings. (See Appendix A.) When G is a multiple of three, the system is capable of containing
a full wavelength without oscillators in the center of the domains. The wavefronts are
then able to propagate as nucleation fronts [18] giving rise to travelling waves. In our
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Figure 10 – (Color online) Scaled variances χr and χψ for random initial conditions. Left
column: fixed system size N = 1000 with increasing α. Right column: fixed
α = 0.14 and increasing system sizes. Points represent an average over 4000
independent realizations with random initial configurations.
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Figure 11 – Single realizations with random initial configurations. Left: Global oscillations.
Middle: travelling wave. Right: fluctuation-induced change from a travelling
wave to global oscillations. The fraction of realizations that converge to
travelling waves is approximately 1.6%. In all panels N = 4000, K = 560,
a = 2.55.

simulations, with N ≤ 104, we find only one stable wave-number (a wave with period N).
This is in contrast with the wave patterns observed in [19], where multiple wave-numbers
were identified as stable depending on the magnitude of the coupling strength.

Although travelling waves are rare starting from random ICs, initializing with solid
blocks of 0s, 1s and 2s, each occupying one third of the system, the ensuing evolution
consists of a stable travelling wave in nearly all cases. Thus the rarity for random ICs
simply reflects the low probability of provoking a wave, and does not reflect an intrinsic
instability of the travelling-wave state. ICs with smaller blocks, such that the system
contains two or more waves, invariably yield, following a transient, a travelling wave whose
wavelength equals the system size.

With the known phase transition points for α = 0.5 and the data from Figs. 10
and 8 (for N ≤ 104) we are able to sketch the phase diagram (Fig. 12). While the phase
boundaries are rather insensitive to changes in the connectivity for relatively large α values,
they veer to larger couplings for small α.

2.5 The WCM on small-world networks

Regular rings can be used as the starting point for constructing small-world
networks, which are characterized by a small degree of separation between nodes while
maintaining local regions tightly clustered. A well known algorithm for generating this type
of network from regular rings was introduced by Watts and Strogatz [26]. Starting from a
regular ring, for each edge in the graph, the clockwise node of that edge is swapped with
probability p for another randomly selected node, forbidding self-connections or repeated
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edges. Some care may be taken to avoid disconnected graphs as a result of this process,
but this is unlikely for most parameter triplets (N , K, p) considered here [26]. An example
of such a rewired ring is shown in Fig. 13.

To characterize a network as small-world, we define two quantities:

• Mean path length L: For nodes i and j in network G, let Lij be the number of edges
in the shortest path connecting these nodes. Then the average path length of G is
L = 〈Lij〉, where the average is over all pairs (i, j) with i < j.

• Clustering coefficient C: If node i has ni neighbors, then the maximum possible
number of connections among its neighbors is mi = ni(ni−1)

2 . Let m∗i be the number
of connections among the neighbors of node i in network G. Then the clustering
coefficient of G is C =

〈
m∗i
mi

〉
, where the average is over all nodes i.

Evidently, the maximum possible value for C is C = 1 and the minimum possible
value for L is L = 1. For networks generated by rewiring a regular ring graph, C and L
are functions of the ring-graph parameters N and K, as well as the rewiring probability p:
L ≡ L(N,K, p), C ≡ C(N,K, p). As shown in the Appendix, for regular rings (i.e., p = 0),
we have:

C(N,K, 0) =



0, if K < 2
3K−3
4K−2 , if 2 ≤ K ≤ N−1

3
12K2+6K−6KN+N2−3N+2

4K2−2K , if N−1
3 < K < N

2

1, otherwise

(2.8)

L(N,K, 0) =


KG(G−1)+rG

N−1 , if K ≤ N
2

1, otherwise,
(2.9)

where G is the largest integer smaller than N−1
2K or, using the floor operator,

G =
⌊
N − 1

2K

⌋
.

For nonzero values of p we generate graphs and take the averages for C and L,
as shown in Fig. 14. For rewiring probabilities p ∈ (0.001, 0.1), rewiring preserves the
clustering property while greatly reducing the average path length, thus characterizing
small-world networks.

Since rewiring creates long-range interactions that reduce path lengths globally, we
expect it to facilitate synchronization. This is shown to be the case in Fig. 15, where p
is gradually increased: realizations starting from random initial conditions are shown to
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readily synchronize for very small values of p, leading to the usual three phases identified
for the complete graph. This means that the introduction of very few global connections is
sufficient to destabilize travelling waves; they are virtually absent for p ≈ 0.01. In Fig. 16 a
histogram of the average order parameter per realization, 〈ψ〉t, shows that the fraction of
time spent in wave configurations is drastically reduced by the introduction of the rewiring
procedure. When p ≥ 0.01 and ac < a < ac, the system quickly converges to the GO phase
even if it initially acquired a wave-like solution (see Fig. 17). Moreover, if system size is
increased at constant α, smaller values of p are sufficient to cause the same effect, which is
consistent with the fact that the number of long range connections is proportional to NK.

Following the same procedure as before, we plot in Fig. 18 the order parameters
versus inverse system size λ. Here we fix α at a low value (α = 0.0052) and vary p. 2

Comparing these results with panels d) and h) of Fig. 8 we see that the mean absolute value
of ψ is much greater when p lies in the small-world region, indicating greater synchrony
among oscillators. Space-time plots for values of p > 0 show that indeed travelling waves
become unstable, so that the system exhibits only the three phases observed on the
complete graph, namely, disordered, GO and IP phases. The phase diagram remains
similar to the case of regular rings, displaying low sensibility to α except for very small
values where the discreteness of finite systems becomes apparent. The main difference is
that for any positive p wave-like steady states are absent and thus the phase diagram
contains only three macroscopically distinct phases.

2 See full animations of figure 18: GO transition, IP transition

https://youtu.be/3iHXrDUwbqs
https://youtu.be/J9OHw3DycAQ
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Figure 12 – Regular rings: Preliminary phase diagram in the a-α plane. Points are simula-
tion results and (for α = 0.5) exact values. Lines are guides to the eye. Dashed
lines represent our conjectures for how the phase boundaries continue. Phases:
disordered (D); global oscillation (GO); travelling-wave (TW); infinite- period
(IP).

Figure 13 – Example of a
rewired regu-
lar ring with
N = 12, K = 2
and p = 0.1.

Figure 14 – (Color online) Clustering coefficient C and
mean path length L versus rewiring prob-
ability p for networks of N = 5000 nodes.
K = 250, 50, 25 for red, blue, green curves
respectively. The data represent averages
over 400 independently generated networks.
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Figure 15 – (Color online) Small-world networks: Scaled variances, χr and χψ, for increas-
ing rewiring probabilities. N = 1000, K = 129, α = 0.129 with random initial
conditions. For p ≈ 0.01 the curves follow their complete graph counterparts,
even though the number of connections is half as many, and travelling waves
become unstable.
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Figure 16 – (Color online) Networks with N = 1000, K = 129 and coupling a = 2.5.
Histograms of 〈ψ〉t for 9000 realizations without rewiring (yellow), and 9000
realizations with rewiring probability p = 0.01 (black). The reduced frequency
of small order-parameter values for p = 0.01 compared with p = 0 is evidence
that rewiring destabilizes travelling waves, which are characterized by small
values of ψ.
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Figure 17 – Wave states for N = 1000, K = 129, p = 0.01 and a = 2.53. Only 0.04% of
realizations (measured from 9000 realizations) with random initial configu-
rations display traveling waves, which are also much more short-lived when
compared to the p = 0 equivalent system.
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Figure 18 – (Color online) Order parameter ψ versus inverse system size λ for α = 0.00524
and various values of rewiring probability p and couplings around the GO and
IP transitions. Insets show the behavior for p = 0.15, the highest rewiring
probability used.
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2.6 Conclusions
We study the WCM model, a discrete-phase oscillator model exhibiting global

synchronization and an infinite-period phase, on regular ring lattices and small-world net-
works. Each oscillator is coupled to a nonzero fraction α of the others, but the connectivity
is in generally much smaller than for a complete graph. Our results support the conjecture
that all three phases - disordered, globally synchronized, and infinite-period - appear for
any nonzero connectivity α.

Surprisingly, travelling waves also appear in the small-α regime on regular ring
lattices; such waves may represent a long-lived metastable state. (A previous study identified
waves in the anti-coupling case [19].) In our studies travelling waves constitute only about
1.6% of the steady states reached from starting from random initial configurations, and are
prone to decay into global oscillations due to fluctuations when system size is small. The
introduction of long-range interactions through rewiring (i.e., using the Watts-Strogatz
algorithm) can lead to synchronization without increasing the total number of connections.
Rewiring also suppresses travelling waves by introducing long range interactions.

The fact that regular rings are capable of sustaining travelling waves for a > ac

is surprising, showing that networks of oscillators might fail to synchronize even in the
presence of nonlocal interactions and strong coupling, conditions which are sufficient for
the synchronization on hypercubic lattices of dimensions greater than 2 as well as on the
complete graph. This raises the possibility that WMCs admit wave-like steady states on
cubic lattices, similar to oscillations observed in the two-dimensional Belousov–Zhabotinsky
reaction.

Several other questions remain open for future study, for example, whether travelling
waves represent a stable phase for some range of parameters, or are always metastable, and
whether waves of wavelength smaller than the system size N are possible. We have sketched
a phase diagram for ring lattices, but detailed information for the small-connectivity regime
is lacking. Since the model exhibits a pair of continuous phase transitions, it is of interest
to develop a full scaling picture, including the effect of ordering fields conjugate to the
order parameters. Finally the question of what simple external perturbations are capable
of destroying synchronization or the symmetry-broken phase may be of some practical
interest.
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3 Mean-field theory for small-world networks

In this chapter we develop a mean field (MF) theory for the coupled oscillator
dynamics with three discrete phase states in a system of N oscillators coupled in small-
world networks as described by the Watts-Strogatz algorithm in section 2.5. We start by
re-stating the dynamic rules, and then proceed to define the mean field and the continuous
limit.

Table 1 – Definitions

N Integer system size
K Integer interaction range
a Real coupling strength, a ≥ 0
α Interaction range as a fraction of system size α ≡ K/N

p Rewiring probability
γxj (t)|γj(x, t) Transition rate out of state j at position x and time t
P x
j (t)|Pj(x, t) Probability that an oscillator at x is in state j at time t

An oscillator is described by its discrete phase, which can be imagined as a clock
hand which abruptly jumps from noon to 4pm, then to 8pm and back to noon. Note that,
as in a clock, the phase can only move forward, looping back on itself after three jumps.
These jumps occur randomly, but with a well defined transition rate. When two oscillators
interact, the rate of transition may change depending on the relative phase between the
two units.

To describe the phase and interactions, we adopt a convention: oscillators are
arranged in a circle and numbered from 1 to N (see figure 19). The superscripts then refer
to the oscillator position while the subscripts denote a phase state from 1 to 3. Given a
graph in which nodes represent phase oscillators labeled by x, the unit at position x is
described by its phase

φx = 2π(j − 1)/3 (3.1)
j ∈ {1, 2, 3}

where j ∈ {1, 2, 3} is the state of unit x. Since transitions can only occur in one direction,
the stochastic rate of transition from j to j + 1 is written just as γxj , and its behavior is
chosen to be of an exponential form:
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γxj (t) = ωx exp
[
a
nxj+1(t)− nxj (t)

nx

]
x = 1, . . . , N (3.2)

where ωx is its natural (uncoupled) frequency, nxj (t) is the count of how many of its
neighbors are in state j, and nx is its total number of neighbors.

Let the probability of finding the unit at position x in state j at time t be P x
j (t).

Since there are only three possible states we have the constraints P x
1 (t) +P x

2 (t) +P x
3 (t) = 1

for all x and t. The rate of change of the probabilities can be written in terms of the
transition rates γxj (t), giving us 2N equations of motion:

ṗx1(t) = γx3 (t)(1− P x
1 (t)− P x

2 (t))− γx1 (t)P x
1 (t)

ṗx2(t) = γx1 (t)P x
1 (t)− γx2 (t)P x

2 (t) x = 1, . . . , N (3.3)

The first terms in the RHS of (3.3) represent the fluxes of probability from oscillators in
the preceding state, which can advance one phase state and increase the populations of
oscillators in states 1 and 2 respectively. The second (negative) terms represent the fluxes
generated by the oscillator leaving the considered state, and thus reducing its population.
The dynamics can take place on any arbitrary network that defines the coupling between
oscillators. Previous work has explored hyper-cubic lattices and complete graphs as well
as regular ring graphs [1, 18,19].

Here we start by focusing on ring lattices, which will be the starting point for
generating small-world networks. Ring lattices are constructed by arranging N oscillators
in a circle, and then for each unit, adding K clock-wise connections to the next K units
in the circle, resulting in a circular shape with NK total connections. The result of this
process for N = 12 and K = 2 is shown in figure 4 of chapter 2, as well as for N = 16,
K = 2 in figure 19 right.

To generate a small-world network from a ring graph we perform a rewiring
procedure. It visits each existing connection exactly once, and with a probability p

exchanges the clockwise vertex of this connection for a randomly selected node in the
network, avoiding duplicate connections or self connections. This will be described in detail
when deriving the MF approximation for small-world networks.

3.1 The local average field in the discrete case
To define the local average field, we introduce a local order parameter ν identified

by the fractions in the exponent of equation (3.2) at a fixed time t. It is a measure of the
synchrony between oscillators which are coupled to the oscillator at position x.
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νxj (t) ≡
nxj (t)
nx

, (3.4)

the transition rates are now written as,

γxj (t) = ωx exp
[
a(νxj+1(t)− νxj (t))

]
. (3.5)

The quantity νxj describes the fraction of oscillators connected to x that are in
state j, and thus also satisfies the constraint νx1 + νx2 + νx3 = 1.

In the large-N limit, we approximate νxj in equation (3.5) by its time-dependent
average over realizations,

〈
νxj (t)

〉
. When the rewiring probability p = 0, it was shown that

for the chosen form of the coupling, the variance Var[νxj ] is proportional to 1/N [19]. In
the case of small-world networks (0 < p ≤ 1) it is unfeasible to explicitly calculate the
variance of the local order parameter, but in section 3.1.3 we develop arguments that
support the validity of this mean-field approximation by performing partial calculations,
and in chapter 4 we also perform numerical simulations for finite systems.

If fluctuations are small compared to the deterministic drift described by the MF
approach the assumptions become better, but a quantitative description may suffer from
imprecision when compared to simulation results. With this in mind, the MF transition
rates become:

γxj,MF = ωx exp
[
a
(〈
νxj+1(t)

〉
−
〈
νxj (t)

〉)]
(3.6)

For regular rings, the total number of neighbors of every site is fixed, nx = 2K, but
when dealing with rewired networks nx becomes a random variable which may assume
different values in different realizations, making

〈
νxj (t)

〉
trickier to calculate.

The equations of motion in the MF approximation are obtained by replacing the
instantaneous transition rates in equation (3.3) by their mean-field values.

Ṗ x
1 (t) = γx3,MF (1− P x

1 (t)− P x
1 (t))− γx1,MFP

x
1 (t)

Ṗ x
2 (t) = γx1,MFP

x
1 (t)− γx2,MFP

x
2 (t) (3.7)

We are left with the task of calculating
〈
νxj (t)

〉
in terms of the probabilities P x

j (t)
such that 3.7 is an autonomous system. For that we define the indicator variable Dxx′ ,
indicating the presence (or absence) of coupling between nodes x and x′ in a graph.
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3.1.1 Mean field value of the local order parameter

The expressions for νxj (t) in the discrete case can be written in terms of the indicator
variables Dxx′ :

• Let Dxx′ be defined as

Dxx′ =

1 if the connection x,x′ exists

0 otherwise
(3.8)

• Let x denote some position in the lattice for which we wish to know the local
order-parameter value.

• Let j denote the state for which we wish to measure νxj .

Then:

nxj (t) =
N∑
x′=1

Dxx′δ(j, j′(t))

nx =
N∑
x′=1

Dxx′ (3.9)

where j′ is the state of the oscillator at position x′ at time t and δ(j, j′(t)) is the usual
Kronecker delta defined by δ(j, j′) = 1 if j = j′ and 0 otherwise. The average over
realizations then become

〈
νxj (t)

〉
=
∑
x′

〈
Dxx′δ(j, j′(t))∑

x′′ Dxx′′

〉
,

or,

〈
νxj (t)

〉
=
∑
x′

〈
Dxx′∑
x′′ Dxx′′

〉
〈δ(j, j′(t))〉 . (3.10)

Equation (3.10) introduces the principal MF approximation, treating δ(j, j′(t)) as in-
dependent of Dxx′ , implying the dynamics is described by the “average connectivity”
between oscillators on the graph. This approximation becomes more accurate when the
probability of rewiring p approaches zero, which is true for a large number of networks in
the small-world regime, as seen in figure 14 of chapter 2. When p = 0 we can restrict the
summation over connected sites, from (x−K) to (x+K), recovering the MF proposed by
Escaff et al. [19] for regular rings.
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Figure 19 – Left: Definition of distance dxx′ between sites x and x′. The distance dxx′ is
considered on the one dimensional chain and does not take into account the
connections that determine the coupling.
Right: Example of the initial ring lattice before any rewiring is performed,
where the lines represent the coupling between units.
The dynamics takes place on a periodic one-dimensional system with interac-
tion range K.

The average 〈δ(j, j′(t))〉 is identified with the probability of finding site x′ in state j
at time t: 〈δ(j, j′(t))〉 ≡ P x′

j (t), and we are left with the task of calculating
〈
Dxx′/

∑
Dxx′

〉
.

In order to unpack this expression we need a detailed description of the rewiring algorithm,
which ultimately dictates the connectivity of the final graph.

3.1.2 Rewiring algorithm

Here we give a detailed description of the rewiring algorithm in order to justify
our expressions for the probability of connections in the final graph, which dictate the
dynamics. It considers each connection in the starting graph exactly once, and with
probability p it tries to swap one of its vertices for another randomly selected node in the
network, avoiding double connections or self-connections. Detailed instructions on how it
is implemented are written in the following pseudo-code.
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Given a r ing l a t t i c e with N nodes and range K do :
f o r z from 1 to K:

f o r x from 1 to N:
with p r obab i l i t y p do :

sample a uniform in t e g e r r from 1 to N
i f ( r == x ) or ( connect ion (x , r ) a l r eady e x i s t s ) :

do nothing
e l s e :

remove the connect ion (x , x+z )
add the connect ion (x , r )

To determine the probability that the connection (x, x′) exists in the rewired graph,
we introduce the notion of distance between nodes x and x′. Let this be denoted by dxx′ ,
and the distance defined in the one-dimensional chain as illustrated in figure 19. Due to
the periodic condition x 7→ x+N on the boundaries, no distance can be greater than N/2,
and thus dxx′ is formally defined as:

dxx′ =

|x− x
′| if |x− x′| ≤ N/2

N − |x− x′| if |x− x′| > N/2
(3.11)

To calculate the average values
〈
Dxx′

〉
we consider two cases: dxx′ ≤ K, the close

case, and dxx′ > K, the far case. The reasoning is that:

• If the initial distance between two nodes is less than or equal to K, then by construc-
tion of the ring graph they start out connected. The condition that this connection
exists in the final graph is that it was never removed in the first place, or it could
have been removed and then subsequently reformed.

• On the other hand, sites with dxx′ > K start out disconnected, and thus a connection
(x, x′) can only result from one of its vertices being rewired that way.

With a little thought regarding the rewiring procedure, one will agree that if it
produces any connection, it is guaranteed to be present in the result. Conversely, if it
fails to break an initial connection, that connection is also guaranteed to exist in the final
graph.

Far case

Here we derive the probability of existence of a connection between x and x′ when
dxx′ > K. Since the algorithm tries to swap (with probability p) the clockwise node of an
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Figure 20 – The presence of the connection (x, x′), in blue, in a small-world network
generated from the Watts-Strogatz algorithm can only be the result of the
rewiring of a red connection. On the left side, the far case, 2K connections
may contribute to the formation of (x, x′). On the near case (right side),
the original connection may either be left untouched or, in case it is initially
broken, it might be wired again by any of the remaining 2(K − dxx′) + 1 solid
red connections.

initial connection, the only connections that could possibly have broken to form (x, x′) are
the K clockwise neighbors of x, and the K clockwise neighbors of x′, as illustrated in the
left panel of figure 20. If any of these 2K events take place, (x, x′) is guaranteed to exist.
Thus, P (Dxx′ = 1) is the probability that at least one forming event took place, which is
just the complement of the probability that no such event took place.

P (Dxx′ = 1) = 1−
(

1− p

N

)2K
for dxx′ > K (3.12)

In equation (3.12), the probability that a connection rewires to (x, x′) is the
probability that it breaks times the probability of selecting the other vertex, which is
just p/N . Therefore, the probability that a connection does not rewire to (x, x′) is the
complement 1− p/N . The probability that none of the 2K connections generate (x, x′) is
then (1− p/N)2K , and the probability that at least one of them does generate it is the
complement again.

Near case

The near case is given by dxx′ ≤ K. When considering the probability of existence
for such shorter range connections, things get more complicated because the exact solutions
depend on the choice of the starting point of the rewiring procedure. Consider the case
shown in figure 21 for interaction range K = 1.

If the rewiring process starts at point A, then rewiring of connection C2 contributes
to the probability that C1 is present in the final graph. On the other hand, if the rewiring
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Figure 21 – Rewiring of connection C2 may or may not contribute to the probability of
existence of connection C1. If the rewiring process starts at A, then C2 may
be rewired into C1 if it was initially broken. On the other hand, if the starting
point is B, connection C2 can never be rewired to C1 because the later will
always be present at the time of rewiring C2.

starts at point B, then C2 does not contribute to the probability of existence of C1.
Therefore C1 has a higher probability of existing for a rewiring that started at A as
opposed to one that started at B. Luckily for our purposes the order dependence only
happens for the first connection of length dxx′ (dashed red line on right of figure 20), since
for subsequent connections (solid red lines on same figure) the pair (x, x′) will already
have been considered by the algorithm, and any forming event from that point guarantees
the existence of the connection (x, x′).

To avoid order dependence, we will assume the problematic event contributes
the same amount as subsequent events to the probability of existence of the considered
connection. Thus, all 2K − 2dxx′ + 1 events contribute equally to P (Dxx′ = 1), which is
written as:

P (Dxx′ = 1) = 1− p
(

1− 2K
N

)(
1− p

N

)2K−2dxx′+1
for dxx′ ≤ K (3.13)

As before, the expression is obtained by taking the complement of the probability that no
event forms the connection (x, x′): the probability that the original connection is broken
is p(1− 2K/N) (p times the probability of selecting a site which does not already have
a connection with x). This is another approximation since the number of connections
involving site x may change during the rewiring procedure, but because the later conserves
the total number of connections it is at least justifiable for now (we later confirm it
numerically). The term (1− p/N)2K−2dxx′+1 accounts for the probabilities that no forming
event occurs with the potential connections marked in red on the right side of figure 20.
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3.1.3 The discrete average field

To check that the probabilities P (Dxx′) are valid, we performed Monte Carlo
sampling of the small-world networks and plotted the relative frequencies obtained against
the probabilities given by equations (3.12) and (3.13). The results are shown for various
values of p and α ≡ K/N in figure 22, where good agreement is observed for all values of
p and interaction range K with fixed N = 1000.

Note that since Dxx′ are binary variables with values 1 and 0 the probabilities
P (Dxx′ = 1) are given by the average

〈
Dxx′

〉
, resulting in

〈
Dxx′

〉
=

1−
(
1− p

N

)2αN
if dxx′ > K

1− p (1− 2α)
(
1− p

N

)2(α−α′)N+1
if dxx′ ≤ K

(3.14)

where we have used the definitions α ≡ K/N and α′ ≡ dxx
′
/N , which are assumed to be

constant as N scales with proportional K and dxx′ . When N is large, we use the property

lim
N→∞

(
1− p

N

)2αN+C
= e−2αp

to simplify the expression to

〈
Dxx′

〉
=

1− e−2αp if dxx′ > K

1− p (1− 2α) e−2(α−α′)p if dxx′ ≤ K
(3.15)

Going back to equation (3.10), we wish to calculate the quantity
〈

Dxx
′∑

Dxx′

〉
. To do

this, we argue that Var
[∑

Dxx′
]
is small, and thus ∑Dxx′ '

〈∑
Dxx′

〉
which is a constant,

allowing us to replace the average of the quotient by the quotient of the averages, leading
to

〈
Dxx′∑
x′ Dxx′

〉
'

〈
Dxx′

〉
∑
x′ 〈Dxx′〉

(3.16)

For small-world networks, the parameter p tends to be small [4], as seen from figure 14.
Thus, we take equation (3.15) and expand the exponential terms in powers of p around
p = 0. Keeping up to first order in p results in:

N∑
x′=1

〈
Dxx′

〉
=

∑
dxx′>K

2αp

+
∑

dxx′≤K
(1− p+ 2αp) , (3.17)
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Figure 22 – Comparison between expressions for the probability of existence of connections
as functions of rewiring probability p. Dots are obtained from Monte Carlo
sampling of small-world networks produced by the Watts-Strogatz algorithm,
solid red lines are equations (3.12) (top) and (3.13) (bottom).
System size N = 1000 with 50 realizations each. Note that when p → 0
initially disconnected oscillators remain uncoupled while oscillators at distances
dxx

′ ≤ K remain coupled. The last two graphs depict the percentage deviation
between sampling and predicted values, which is under 6% for connections
longer than K and under 0.2% for shorter range connections.
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Since the terms are now independent of x′, and noting that there are 2K = 2αN
terms with distance dxx′ ≤ K and N − 2K = N(1 − 2α) terms with distance dxx′ > K,
we obtain:

N∑
x′=1

〈
Dxx′

〉
' N(1− 2α)2αp+ 2αN (1− p+ 2αp)

which cancels out as

= ����2αNp −XXXX4α2Np + 2αN −����2αNp +XXXX4α2Np

giving,
N∑
x′=1

〈
Dxx′

〉
' 2K (3.18)

This result is consistent with the previous statement that the average number of
neighbors remains unchanged after the rewiring procedure, and also recovers previous
results [19] for the case p = 0.

We now focus briefly on calculating Var
[∑

Dxx′
]
. The numerical analysis depicted in

figure 22 shows that regarding the presence of connections in the final graph as independent
events is a very good approximation. Thus, we can distribute the variance function inside
the summation and ignore the covariance term, leading to:

Var
[∑
x′
Dxx′

]
=
∑
x′

Var
[
Dxx′

]
(3.19)

where Var
[
Dxx′

]
=
〈(
Dxx′

)2
〉
−
〈
Dxx′

〉2
, but since Dxx′ are indicator variables with

outcomes 0 or 1, we have that
〈(
Dxx′

)2
〉

=
〈
Dxx′

〉
and therefore:

Var
[
Dxx′

]
=
〈
Dxx′

〉
−
〈
Dxx′

〉2
(3.20)

By making use of equation (3.15) and once more and expanding the exponentials
around p = 0 gives:

Var
[
Dxx′

]
=

2αp+O(p2) if dxx′ > K

(1− 2α) p+O(p2) if dxx′ ≤ K
(3.21)

which finally gives us the result

N∑
x′=1

Var
[
Dxx′

]
'

∑
dxx′>K

2αp+
∑

dxx′≤K

(1− 2α) p
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or,

Var
[∑
x′
Dxx′

]
= (1− 2α) 4αpN +O(p2)N (3.22)

The resulting variance is proportional to Np, and thus for large N it grows without
bound. Nonetheless, it may be regarded as sufficiently small when compared to other
system properties which are independent of p and, with these last considerations, we
proceed to write the expression for the average of the local order parameter as:

〈
νxj (t)

〉
= 1

2K
∑
x′

〈
Dxx′

〉
P x′

j (t) (3.23)

where P x′
j (t) ≡ 〈δ(j, j′(t))〉 is the probability that the state j′ of the oscillator at position

x′ is equal to j at time t. Using equation (3.15) and substituting into (3.23) results in the
MF expression:

〈
υxj (t)

〉
= p

N

N∑
x′=1

P x′

j (t)︸ ︷︷ ︸
Global

+ 1− p
2K

x+K∑
x′=x−K

P x′

j (t)
︸ ︷︷ ︸

Local

(3.24)

where we have completed the global sum by adding and subtracting the missing gap x′−K
and x′ +K.

We see that the effect of the rewiring process is to induce a global coupling
component, while the coupling inside the initial range 2K is reduced by a factor (1− p). In
the limit of p→ 0, equation (3.24) recovers the MF previously derived by Escaff et al. for
regular ring lattices [19]. We also note that the limit p→ 1 yields an intuitive result, even
if only qualitatively so: when the network is fully random (p = 1), the local term vanishes,
resulting exclusively in a global term. This is expected from our early assumption that
the dynamics are governed by the average connectivity, since for random networks every
connection has the same average connectivity value.

3.2 Continuous limit

In the previous section the discrete MF was derived by taking the limit N →∞
while keeping the ratio α ≡ K/N fixed. We now proceed to take the continuous limit
of (3.24) by mapping the oscillators indices from 1 to N to the semi-open interval [0, 1)
in the reals. The indexes x, x′ ∈ {1, ..., N} become position coordinates x, x′ ∈ [0, 1)
and therefore νxj (t) → νj(x, t) where j still represents the state of the unit at x with
j ∈ {1, 2, 3}. Analogously, the expression for the probability of finding the oscillator at x
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in state j is now the density Pj(x, t). The periodic conditions for any function of position
x becomes f(x) = f(x+ 1). As for the sums we now have

1
N

N∑
x′=1
→
∫ 1

0
dx′

1
2K

K∑
x′=−K

→ 1
2α

∫ α

−α
dx′ (3.25)

which leads us to the continuous expression for νj(x, t):

νj(x, t) = p
∫ 1

0
Pj(x′, t)dx′ +

1− p
2α

∫ x+α

x−α
Pj(x′, t)dx′. (3.26)

The transition rate from state j to j + 1 for an oscillator at position x in the continuous
MF limit is then given by rewriting equation (3.5) with the notation γxj (t)→ γj(x, t) and
using (3.26) in place of νxj :

γj(x, t) = ω(x) exp {a [νj+1(x, t)− νj(x, t)]} (3.27)

where ω(x) is the uncoupled frequency of the oscillator at x, sampled from some unimodal
symmetric distribution g.

The set of 2N master equations (3.3) that describe the time evolution of probabilities
reduce to just 2 equations for the now spatially distributed probability Pj(x, t). Again we
have the condition P1(x, t) + P2(x, t) + P3(x, t) = 1 so that we only need two equations to
describe the probabilities of all three states. The equation of motion for state j is then
written as

Ṗj(x, t) = γj−1(x, t)Pj−1(x, t)− γj(x, t)Pj(x, t) x ∈ [0, 1) (3.28)

The solutions of equations (3.28) thus describe the predicted behaviors of sufficiently
large populations of oscillators, and can be compared to simulation.

3.3 Solutions of the continuous mean-field equations
Equations (3.27) and (3.28) represent the MF approximation for rewired ring

lattices. One solution to this system is P1(x, t) = P2(x, t) = 1/3, called the quiescent
solution. To see this, note that from equation (3.26) we have ν1(x, t) = ν2(x, t) when
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the probabilities are the same, and therefore γ1(x, t) = γ2(x, t) = γ3(x, t) = ω(x) from
equation (3.27). The quiescent solution is stable when the coupling strength a is below some
critical value ac that depends on the couplings and whose lowest value is attained for the
complete graph, with ac = 1.5. The threshold ac marks a Hopf bifurcation1type transition
for graphs that support global oscillations [1] [4] [15] [17]. When the coupling a is larger
than the critical value ac the quiescent solution becomes unstable and self-organization
takes place, usually in the form of global synchronization, but does not necessarily mean
they are stable in the mathematical sense.

In chapter 4 we explore simulations on small-world networks with strong coupling
that do not always lead to global oscillations. Depending on initial conditions and the
intrinsic noise, the system may exhibit a travelling wave, displaying only local synchroniza-
tion. Following a similar analysis by Escaff et al. [19], we investigate such a wave solution
by perturbing the quiescent state with a waveform and then checking what happens to
the time evolution of the amplitude of said perturbation, which we modulate by some
arbitrary parameter εj:

Pj(x, t) = 1/3 + εje
ikx+λt (3.29)

where i =
√
−1, k ∈ R and λ ∈ C. The periodic condition Pj(0, t) = Pj(1, t) implies that

k = 2mπ for an integer m. Assuming (3.29) at t = 0 to be the initial configuration of the
system, the goal is to identify whether there are any conditions on the model parameters
that allow for the wave amplitude to grow, which happens when Re[λ] > 0. Thus, for wave
solutions we have

Ṗj(x, t) = λεje
ikx+λt (3.30)

and for νj(x, t) (equation (3.26)) the global component vanishes, due to the periodic
condition k = 2πm, and we get:

νj(x, t) = p

3 + pεje
λt

��
��

��*
0∫ 1

0
eikx

′
dx′ + 1− p

3 + 1− p
2α εje

λt
∫ x+α

x−α
eikx

′
dx′

νj(x, t) = 1
3 + (1− p)sin kα

kα
εje

ikx+λt (3.31)

equation (3.31) can now be substituted in (3.27) to obtain the transition rate for the wave
solution:
1 A Hopf bifurcation occurs when a periodic solution arises around an equilibrium point as some

parameter varies. Here, the oscillations arise around the quiescent solution as a increases beyond ac.
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γj(x, t) = ω(x) exp
[
a(1− p)sin kα

kα
(εj+1 − εj)eikx+λt

]
(3.32)

Substituting equations (3.29),(3.30) and (3.32) into equations (3.28) yields the
conditions under which the wave solution may exist. We introduce here the notations
W ≡ ikx+ λt and â ≡ a(1− p) sin kα

kα
for brevity:

λεje
W = ω(x)eâ(εj−εj−1)eW

(
1/3 + εj−1e

W
)
− ω(x)eâ(εj+1−εj)eW

(
1/3 + εje

W
)

This can be reduced by using the approximation ex ≈ 1 + x, x ≈ 0 in the small-εj regime.
Neglecting all the remaining terms in εj, of order 2 or higher, yields:

λεj��e
W = ω(x)

(
1 + â(εj − εj−1)eW

) (
1/3 + εj−1e

W
)
− ω(x)

(
1 + â(εj+1 − εj)eW

) (
1/3 + εje

W
)

= ω(x)
(
εj−1 − εj + â

3 (2εj − εj−1 − εj+1)
)
�
�eW

but the condition Pj−1(x, t) + Pj(x, t) + Pj+1(x, t) = 1 implies εj−1 = −εj − εj+1 and thus:

λ = ω(x)
(
â− 2− εj+1

εj

)
(3.33)

Finally, setting j = 1 and then j = 2 gives us two independent equations which
can be used to eliminate the ratio ε1/ε2 from equation (3.33) and solve for λ:

λ = ω(x)
(
â− 2− ε2

ε1

)
,

and

λ = ω(x)
(
â− 2 + 1 + ε1

ε2

)
,

⇓

λ = ω(x)
(
â− 3

2 ±
1
2i
√

3
)
. (3.34)

Equation (3.34) expresses the dispersion relation λ(k, x), and thus the frequency
of the travelling wave depends on position. If the natural frequencies were to form some
macroscopic pattern throughout x, this analysis would predict local changes to the wave
frequency as it travels around the system. But because ω ∼ g for some symmetrical
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unimodal distribution g, in the continuous limit the speed-ups and slow-downs cancel out
and the result is dominated by the average value of g denoted by ḡ. This can be seen from
the fact that, for any positive value δx we have:

∫ x+δx

x
ω(x′)dx′ = ḡ

⇓∫ x+δx

x
λ(k, x′)dx′ = ḡ

(
â− 3

2 ±
1
2i
√

3
)

(3.35)

And therefore, the local value of λ for an arbitrarily small neighborhood around x,
for any x, is given by the average value ḡ. The perturbed solutions for sufficiently small
values of εj are then written as

Pj(x, t) = 1
3 + εje

(â− 3
2)ḡtei

(
kx+

√
3

2 ḡt

)
(3.36)

where we have factored out Re(λ) to explicitly show the time dependence of the amplitude
of the waveform. If this quantity is positive the wave amplitude grows without bound until
higher-order terms start dominating, possibly leading to saturation and stable waves. If
Re(λ) is negative then the perturbation will die out and the quiescent steady state will be
reached. The fact that the dynamics only allows for one directional transitions (namely
from j to j+ 1 cycling back to 1 when j = 3) means ḡ > 0 always, and therefore Re(λ) > 0
implies â > 3/2 which is:

a(1− p)sin(2πmα)
2πmα >

3
2 . (3.37)

where m is an integer and α is the interaction range expressed as a fraction of system size.
The derivation of equation (3.31) assumes m 6= 0 in order for the left integral to vanish, and
thus the globally synchronized steady state (m = 0) is not described by equation (3.37).
For a given value of α and some wave number m, the critical value for the coupling is
given by setting an equality in equation (3.37):

ac = 3
2

1
(1− p)

(2πmα)
sin(2πmα) (3.38)

Thus, the critical value is a function of p, α, and the wave number m. If we fix
p and α, which are continuous quantities, we can get a sequence of critical values by
varying the wave number m. Table 2 shows a few such sequences for different choices of the
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α\m 8 7 6 5 4 3 2 1
0.05 6.41 4.08 2.97 2.36 1.98 1.75 1.60 1.52

α\m 5 4 3 2 1 7 8 6
0.10 ∞ 6.41 2.97 1.98 1.60 -6.94 -7.93 -9.62

α\m 7 6 2 1 4 3 8 5
0.20 22.45 11.89 6.41 1.98 -7.93 -9.62 -25.66 -∞

Table 2 – Critical values as a function of interaction range α (rows) and wave number m
(columns). Rows are sorted by the value of the critical coupling. As interaction
range increases, the destabilization of the wave numbers may change order
when starting from no coupling (a = 0) and increasing/decreasing the coupling
strength.

Figure 23 – Critical values for the coupling as the wave number increases for a fixed
interaction range of α = 0.1. The effect of increasing p is seen as a steeper
slope for both positive and negative critical sequences.

connectivity range α and a rewiring probability of p = 0. Each row is sorted by decreasing
critical values.

We see that if the coupling strength is decreased (increased) from 0 to more negative
(positive) values, wave numbers become stable one by one. For example, if α = 0.2 in
table 2 and we decrease the coupling starting from 0, the first stable wave number is
m = 4 at the critical value of ac = −7.93. These are the results derived in the work of
Escaff et al. [19] for the case of p = 0. In our extension to small-world networks, the
effect of increasing p is to make the critical sequence increase or decrease more sharply, as
illustrated in figure 23. A noteworthy aspect of these sequences of critical values is that,
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for negative coupling, the system spontaneously self-organizes to a wave solution when the
first negative critical value is reached. For positive coupling, the first stable solution is the
globally synchronized one, with m = 0 and critical value of ac = 1.5 [1,4,15,18]. Therefore,
no wave solution will spontaneously form even when increasing the coupling to arbitrarily
large values, since global synchrony is vastly more probable when starting the system
from the quiescent initial state [4]. For real systems with finite size, we might expect that
fluctuations can induce transitions between different wave numbers for positive values of
the coupling parameter, which is indeed verified in simulations in chapter 4.

3.4 Conclusions
In this chapter we have derived a MF approximation for discrete coupled oscillators

with natural frequency distribution ω ∼ g on small-world networks generated by introducing
coupling disorder into the regular ring networks. To obtain analytical results, and derive
analogous expressions to previous work, we have restricted these to the regime of small
disorder (p). It is also implicitly assumed that the behavior of a sufficiently large network
will be approximated by the average behavior over different networks, since the building
process for the small-world networks considered here is stochastic. For real finite systems,
it is possible that some realizations of a small-world network will not produce these
macroscopic behaviors, since fluctuations become more dominant as system size is decreased.
Nonetheless, the theory predicts some properties that can be tested through simulation,
such as the failure to achieve global synchrony even for large positive couplings depending
on initial conditions and fluctuations, and the change in speed with which these waves
travel if there are macroscopic patterns in the spatial distribution of the natural frequencies
of the constituent phase oscillators.
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4 Simulation: algorithm and results

In this chapter we present simulations performed with the objective of both gaining
insight into the behavior of discrete-phase oscillators governed by the dynamics of (3.2)
and (3.3), and to test predictions given by the MF description derived in chapter 3.
Computations were carried out at the Statistics and Computation Service (SCS) cluster
at the University of Michigan as well as local office and personal computers at UMICH
and the Federal University of Minas Gerais. The source code is publicly available as a git
repository1 for viewing or recreating the data shown in this chapter. We start by defining
the method chosen and discussing its implementation in detail, and then present the
results.

4.1 Event-driven simulation

The system of discrete oscillators is a dynamical system in which each oscillator
has three possible phases which can advance to the next state. The rates at which they
transition depend on the relative states between each unit and its neighbors through
equation (3.2), leading to the set of equations of motion (3.3). We seek to define an update
rule for such a system that corresponds to solving these sets of equations.

The model structure over which the dynamics acts is the graph that defines the
coupling between oscillators in which nodes represent oscillators and edges represent their
coupling strength. Each node is labeled with a coordinate x and the value associated with
it is its phase, encoded by the numbers 0, 1 and 2. The value associated with the edges is
the coupling strength a, which is the same for every edge. The next step is giving every
oscillator an initial phase, making the system well defined for the dynamical rules to act
on it.

The implementation of choice for applying the dynamical rules is the event driven
method, in which every update in the simulation is guaranteed to contain exactly one
event, which in this case constitutes an oscillator advancing to the next phase. This method
is adequate here because the overall transition rate of the system, given by the sum of
all individual transition rates, can vary by several orders of magnitude depending on the
configuration. Therefore, when there are few transitions happening in the system, the
simulation doesn’t slow down as would be the case in a simulation with fixed time step.
Rather, it implicitly increases the time step such that there is always one event on every
iteration. The converse is true for very active configurations, and the result is an algorithm

1 https://github.com/KiloLiuton/event-driven-cpp-minimalist

https://github.com/KiloLiuton/event-driven-cpp-minimalist
https://github.com/KiloLiuton/event-driven-cpp-minimalist
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that is faithful to the differential equations being modeled.

Calculating the simulation time step

Each oscillator has a transition rate γx, such that the expected time elapsed until
its next transition is (γx)−1. Since there are N such units in the system, the average
waiting time τ for any such event to occur is given by τ = Γ−1 where Γ ≡ ∑

x γ
x and

therefore.

τ(t) = 1
N∑
x=1

γx(t)
(4.1)

where we have explicitly written the time dependence of the transition rates to show
that the time step in the simulation is also time dependent, increasing when the overall
transition is small and slowing down when activity rises.

Algorithm

Now that we know how to obtain the time step τ , the average time elapsed until
some oscillator transitions, we need to determine which one actually undergoes phase
change. This is accomplished by sampling the transition rate distribution r given by

r(x, ti) = γx(ti)
Γ(ti)

(4.2)

at the current simulation time ti. After sampling, the selected position x is the label of
the oscillator in the graph that will be updated to its next phase value. Once the state is
updated, we also need to update the transition rate γx as well as γx′ where x′ is a neighbor
of x, allowing us to calculate the next time step τ(ti+1) and the new distribution r(x, ti+1).
With these definitions, the core loop procedure can be written as:

1. Sample the distribution r(x, ti) to obtain the transitioning oscillators label x

2. Update the phase φx(ti)→ φx(ti+1) and rate γx(ti)→ γx(ti+1)

3. For all neighbors of x, update their respective rate values γx′(ti)→ γx
′(ti+1)

4. Increment the simulation time by τ(ti) such that ti+1 = ti + τ(ti)

5. If ti is larger than the desired simulation time, stop, otherwise, repeat from 1.

Note that there is exactly one transition per iteration of the core loop, regardless
of the value of τ(ti).
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Because calculating γ(ti+1) requires comparing the new state φ(ti+1) to all of its
neighbors, and because for each of them only the state of x has changed, there is some
minor computational gain in combining steps 2 and 3, requiring a single loop through the
neighbors of x.

4.2 Wave stability
Travelling waves are not the only stable solution on ring lattices. In the mean field

description, the only way a system may reach this state is through a favorable initial
condition. In real finite systems or in simulations this state may be reached spontaneously
through fluctuations, even if the system is already at some other stable configuration.
Nonetheless, in order to facilitate the stability study of wave solutions, we give the system
an initial configuration that is already a wave. The MF description suggests that some
combinations of interaction range α and rewiring probability p favors wave solutions
through the equation for the critical coupling ac for waves with wave number m:

ac = 3
2

1
(1− p)

(2πmα)
sin(2πmα) (4.3)

In chapter 2 we saw that the critical coupling value for transitions to global
synchrony does not change with α (figure 6 for example). In the case of wave configurations
the critical value changes with connectivity as well as wave number m. In addition, the
introduction of disorder through the rewiring probability p also affects the stability of
wave solutions according to equation (4.3) (at least for small p), but this effect is minor
when compared to the effect it has on the onset of global synchrony or the infinite period
transition, as seen from figure 15, where a very small amount of disorder causes wave
solutions to quickly destabilize, giving way to global oscillations and infinite period steady
states.

The stability of the lowest spatial frequency wave can be tested by settingm = 1 and
performing simulations with parameters above and below the plane defined by equation (4.3)
in the phase space defined by the coordinates (a, p, α), as seen in figure 24. In chapter 2
figure 12 we see that waves are superseded by global oscillations (GO) or the infinite period
(IP) phases for sufficiently large α, and therefore not all points above the critical plane for
waves in the phase space necessarily produce stable waves. The lack of expressions for the
critical surfaces of the IP phase allows us to only sketch this surface based on the results
of simulations, which show the onset of the IP phase to remain around its complete graph
(α = 0.5) value of a ≈ 3.1 (see figure 15). In figures 25 and 26 we see some examples of
the unfolding of the dynamics for six different points in parameter space. When p = 0 the
phase separations are very clean and are in accordance with predictions. In the second
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Figure 24 – Phase diagram in parameter space with coordinates (a, p, α), and surface
defined by equation (4.3). In both graphs the blue plane has height of a = 1.5,
representing the onset of globally synchronized solutions as coupling increases.
On the left, points above the curved surface are expected to produce stable
waves with wave number m = 1. Below this curve but above the plane, only
globally synchronized oscillatory solutions are stable. On the right we have
the same surfaces but with an additional plane representing a “sketch” of
the critical surface with height a ≈ 3.1 for the IP phase based on simulation
results.

case, p = 0.025, a fairly large value, the separation becomes less abrupt, and there is a
region where wave fronts may be created or annihilated spontaneously. To avoid such noisy
phases one would need to simulate a larger system, as the previous scaling analysis (2.4)
suggests, but any finite system will be subject to such fluctuations, due to competition
between different wave numbers. In this scenario, the globally synchronized state can be
thought of as a wave solution with wave number m = 0, which effectively removes the
spatial component of the travelling wave, leaving only oscillations in time.

Spontaneous creation and annihilation of wave numbers

To illustrate how a system may fail to ever reach a steady state due to noise, we
look at a simulation with parameters (p = 0.005, α = 0.12, a = 2.7) where the initial
condition is a wave with wave number m = 6. Equation (4.3) tells us that the only stable
wave numbers for these parameters are m = 1 and m = 2, in addition to global oscillations,
m = 0. Figure 27 shows that indeed the wave number quickly drops, but after reaching
m = 0 it starts oscillating around it. The value of m = −1 just means the wave is actually
travelling to the opposite direction compared to m = 1, which is expected due to symmetry.
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Figure 25 – Dynamic results from three different points in the phase space for p = 0. Below
the critical curve but above the a = 1.5 line we observe global synchronized
oscillations. Above the critical value for the wavenumber m = 1 we observe
the stability of the corresponding travelling wave while for large coupling
we see the onset of the infinite period transition where the period of global
oscillations diverges.

4.3 Wave speed modulation

Finally, we show that the speed of the travelling wave may be modulated by
introducing biases to the natural frequencies of the oscillators. In all previous simulations
each natural frequency was sampled from a unimodal distribution with mean frequency
around ω̄. In this section we introduce a spatial bias to the natural frequencies, such that
faster oscillators are near x = 0.5 and the slower ones are located towards x = 0 and x = 1.
In the regime of stable waves with m = 1, the time evolution for the phase configuration
follows figure 28 for a = 3.2, N = 8000, α = 0.038 and p = 0.0128. The inset on the top
right shows the value of the derivative of the wavefronts dt/dx. Since the wave can travel
to the left or right, we take the inverse relation and take the absolute value to get the
magnitude of the wave speed, displaying a clear peak at the central region.
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Figure 26 – Dynamic results from three different points in the phase space for p = 0.025.
Below the critical curve but above the a = 1.5 line we observe some global
synchrony. Above the critical value for the wavenumber m = 1 we observe
intermittent stability of the corresponding wave, where the wave front is
spontaneously created/annihilated while for large coupling we again see the
onset of the infinite period transition.

4.4 Conclusion

Simulations show that finite systems are subject to the decay of wave solutions into
global synchrony or the infinite period state, where the overall phase of the system remains
fixed. Nonetheless, larger systems may display travelling waves pattern for arbitrarily
long times. In addition, simulations also corroborate the MF result that wave solutions
can persist even after the introduction of disorder through the rewiring process. Wave
speed modulation by the natural frequencies is another result which was verified. Here,
the natural frequencies of oscillators form a spatial pattern which speeds up the wave in
the central region, causing the distortions observed in figure 28.

Another property of finite systems is that in regions of parameter space where
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Figure 27 –

Figure 28 – Wave propagation in a system of size N = 16000 with α = 0.038 and
p = 0.0128 initialized in a wave configuration with m = 1. The wave speed
is modulated by giving oscillators near x = 0.5 larger natural frequencies,
following a curve of the form ω(x) = 1 + 2 sin8 πx as opposed to ω(x) being
a sample of some unimodal distribution g. In the central panel we see the
result of a vertical edge detection whose results were used to calculate the
derivatives. For each value of x in the right panels, the final derivative value
is an average over all wave-fronts of the central panel.
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there are more than one stable solution, the system may spontaneously transition between
them, as is seen if figures 27 and 26. The transitions between wave numbers appear as
semi-plane defects on the t vs x graphs and they can happen in any direction. In this
scenario global oscillations are just the special case where the wave number m = 0, and
the system may transition out of it spontaneously.



71

5 Conclusions and perspectives

Starting from the Wood Cyclic Models, we have extended the investigations to
circular networks with non-global coupling by performing extensive simulations. The
general algorithm implemented in this step allowed for the investigation of arbitrary
graphs, and thus it was used to investigate small-world graphs, which were generated
from these same circular graphs. At the same time, a mean-field approximation for small-
world networks was introduced, which predicts the stability of travelling waves at positive
coupling regimes, where usually the globally synchronized solution would be observed.
The limit of rewiring probability p = 0 recovers the mean field approximation proposed in
previous works, but travelling waves were predicted to be stable even when the underlying
graph has some disorder. These wave solutions compete with global oscillations as well as
with each other when there is more than one stable wave number, leading to spontaneous
creation and annihilation of wave numbers m. Finite systems will always be subject to
these fluctuations in wave number, but larger systems are more robust since noise becomes
smaller relative to system size at the wave boundaries. For example in figure 28 we see
stable waves for N = 16000 even though p = 0.0128 consists of a relatively large amount
of disorder.

Initial simulations and scaling analyses indicated that wave solutions did not lose
stability if the interaction range and system size increase proportionally to each other,
a property captured by the MF approximation. To further probe the validity of such
an approximation, we tested other predictions, such as the stability of wave solutions
even with disorder due to rewiring with probability p, and also verified that the speed of
propagation should increase with increasing natural frequencies.

With ongoing studies in mind, there are threads that could still be unwound. An
interesting simulation that hasn’t been performed yet would investigate how travelling
waves behave when reaching a discontinuous step in the natural frequencies, perhaps
creating a reflected wave or a series of defects as each region oscillates with a different
synchronized frequency.

A more theoretical and perhaps more profound ramification is the possible connec-
tion between non-equilibrium coupled oscillators and topological phase transitions of the
Kosterlitz-Thouless type, which were hinted at on initial works by Wood et al. [1] and
other independent researchers with whom I’ve had the opportunity to discuss this work.
This speculation is based on the spatial clustering exhibited by such systems, not only on
circular graphs, where we have seen such spatial clustering and also defect structures, but
also on the 2d square lattice in early studies of the cyclic models.
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APPENDIX A – Path length and clustering
for regular ring lattices

A.1 Average Path Length

The distance Lij between two nodes i and j is the minimum number of edges that
must be traversed to connect them. The average path length is defined as the average
distance between every possible pair of nodes in the network. For a network with N nodes
this is:

L = 2
N2 −N

∑
i<j

Lij (A.1)

Consider the lowest node in a ring graph with N nodes and 2K neighbors per
node. Going counterclockwise (CCW), there are K nodes at distance 1, then K nodes at
distance 2 and so on until we reach some region near the top. In total, there will be G
groups of nodes, each with K nodes, at distances 1, 2, 3..., G from our starting point at the
bottom. G is given by the largest integer smaller than (N − 1)/(2K). This can be written
with the floor operation:

G =
⌊
N − 1

2K

⌋
(A.2)

This same procedure can be performed from the clockwise (CW) direction. Thus,
there are 2K nodes at distance 1 and so on up to distance G. The last group of nodes at
the top is therefore at a distance G + 1, but it contains less than 2K nodes. Indeed, it
contains a number R of nodes equal to the remainder of the integer division of N − 1 by
2K:

R = N − 1− 2KG (A.3)

This reasoning can be visualized in Fig. 29.

Since there are N − 1 pairs between the bottom node and all other nodes in the
lattice, the average distance L0 between the bottom node and all other nodes is then given
by:
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Figure 29 – Counting the number of nodes at distances visually. Here G = 4 groups at
distances 1, 2, 3, 4 from the bottom node.

L0 = 1
N − 1

[
2K

G∑
i=1

i+R(G+ 1)
]

= 1
N − 1 [KG(G+ 1) +R(G+ 1)]

L0 = (G+ 1)
(

1− KG

N − 1

)
(A.4)

where we used equation A.3 to substitute in for R. Because we started with an arbitrary
node at the bottom, this result is true for any given node in a regular ring, and thus we
conclude that the average path length for the whole network is just L0.

L(N,K) = (G+ 1)
(

1− KG

N − 1

)

with G =
⌊
N − 1

2K

⌋
(A.5)

A.2 Average Clustering
The clustering coefficient for a node i in the graph is defined as: let ni be the

number of neighbors of some node i. Then, there are at most (n2
i − ni)/2 connections

between any two of its neighbors. Let mi be the number of actual connections that are
present in a particular graph. Then, the clustering coefficient Ci of node i is given by:

Ci = 2mi

n2
i − ni

(A.6)
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Figure 30 – (Color online) Counting m for k = 1, 2, 3. We note three contributions to m:
a fully connected group of K CW neighbors (left), a fully connected group of
K CCW neighbors (right) and connections that go “over" the center node.

If there are N nodes in the graph, the average clustering coefficient is thus given by:

C = 1
N

N∑
i=1

Ci (A.7)

First, consider a “close-up" of a section of a regular ring where N � K. Consider a
node i with K CW neighbors and K CCW neighbors. Let m be the number of connections
between neighbors of node i. We can manually count m for some values of K:

m = 0 if K ≤ 1
m = 3 if K = 2
m = 9 if K = 3

The general case for N � K can be counted by summing the contributions of the
three groups as shown in figure 30. Two fully connected groups of K nodes each contributes
with (K2 − K) connections. The connections that bypass node i also contribute with
(K2 −K)/2 connections and thus we have.

m = 3
2(K2 −K) (A.8)

Now we divide equation A.8 by the total number of connections between the 2K neighbors
of node i to get its clustering coefficient Ci:

Ci(N,K) = 3K − 3
4K − 2 (A.9)

When N is not so large compared to K, additional connections between the CCW and
CW neighbors may appear by looping around the opposite side of node i, as depicted in
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Figure 31 – Connections that contribute to the clustering coefficient of node i. The red
regions represent the CW and CCW groups of neighbors of node i, and they
are fully connected each within itself. Additional connections are made going
“over" node i, but when N ≤ 3K there are additional connections that loop
around the opposite side of the lattice.

figure 31. These additional connections will be present whenever the remaining nodes that
are neither in the CW or CCW group are fewer than K. The number of such nodes is
just N − 2K − 1, which gives us the condition N ≤ 3K for additional connections to be
present.

The number of “loop around" connections that will be present will depend on how
many nodes there are in the remaining group after removing node i and its immediate
neighbors. Let this number be denoted by D = N−2K−1. Then, the number of additional
connections will be given by

(K −D) + (K −D − 1) + ...+ 2 + 1 = (K −D + 1)(K −D)
2 (A.10)

Adding equation A.10 to A.8 we get

m = 3
2(K2 −K) + 1

2(3K −N + 1)(3K −N + 2) (A.11)

And thus the clustering now becomes:

Ci(N,K) = 3K − 3
4K − 2 + (3K −N + 1)(3K −N + 2)

4K2 − 2K (A.12)

This formula holds up to the point when D = 0 or N = 2K + 1. For all values
D ≤ 0 the regular ring is in fact a complete graph, where every node connects to every
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other. In these cases the clustering coefficient is always equal to one. Formulas A.9 and
A.12 together offer a complete expression for the clustering of node i. Since Ci = Cj ∀i, j,
this is just the average clustering of the whole network and we finally get:

C(N,K) =



3K−3
4K−2 if N > 3K

3K−3
4K−2 + (3K−N+1)(3K−N+2)

4K2−2K if 3K ≥ N > 2K + 1

1 else

(A.13)


