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Resumo

O reconhecimento de gestos corresponde a uma interpretação matemática de um movi-
mento humano por parte de uma máquina. Este movimento envolve diferentes aspectos
e partes do corpo, tais como variações no posicionamento de mãos e braços, expressões
faciais e corporais, posicionamento da cabeça, postura do tronco, entre outros. Por
levar em consideração tanto a aparência (aparência das partes do corpo, por exemplo)
quanto o movimento, o reconhecimento de gestos mostra-se relacionado a abordagens
que contemplam a extração e uso de informação espaço-temporal em vídeos, tendo
destaque em diferentes áreas e aplicações. Devido a esta alta aplicabilidade, diversas
pesquisas têm se voltado para este tema, as quais variam em termos de características
e algoritmos de aprendizado utilizados para a tarefa.

No entanto, apesar da existência de uma grande gama de trabalhos relacionados
ao reconhecimento de gestos, nota-se uma lacuna no tocante a elaboração de abordagens
que levem em consideração aspectos como escalabilidade (em termos do número de
gestos), capacidade de incorporar novos gestos com baixo custo de tempo, além de
atuação em vídeos não-segmentados, ou seja, vídeos que contemplam múltiplos gestos e
não possuem informação sobre o começo e fim de cada gesto. Desta forma, este trabalho
visa apresentar estratégias que preenchem estas lacunas, dividindo-se em duas linhas:
(i) criação de modelos escaláveis para aplicação incremental em grandes bases de dados;
(ii) formulação de um modelo para realização concomitante da detecção temporal de
gestos em vídeos não-segmentados e seu respectivo reconhecimento.

Para uma eficiente atuação em vídeos que representam gestos, deve-se levar em
consideração a estrutura temporal bem definida destes, a qual defende a existência de
uma ordem de ocorrência de sub-eventos. Devido a isso, propõe-se a formulação de
modelos não somente capazes de extrair informação espaço-temporal, mas também de
atentar para esta estrutura temporal, ponderando a contribuição de entradas anteri-
ores (trechos anteriores dos vídeos), para avaliar o que se apresenta a seguir. Assim,
estes modelos correlacionam informação de diferentes partes dos vídeos, produzindo
representações mais ricas dos gestos, as quais são usadas para um reconhecimento mais
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acurado.
Por fim, de maneira a avaliar as abordagens propostas, os resultados da apli-

cação dos modelos descritos neste documento são apresentados. Estes foram obtidos
considerando bases de dados amplamente utilizadas por trabalhos da área, assim como
as métricas de avaliação empregadas para avaliar desempenho em cada uma destas
bases. No ChaLearn Isolated Gestures (ChaLearn IsoGD) and Sheffield Kinect Ges-
tures (SKIG), o método proposto neste documento alcançou valores de acurácia de
69,44% e 99,53%, respectivamente. Já no ChaLearn Looking at People Multimodal Ges-
ture Recognition (ChaLearn Montalbano) e ChaLearn Continuous Gestures (ChaLearn
ConGD), o método contemplado neste documento obteve 0,919 e 0,623 de Jaccard
Score, respectivamente. Comparações com abordagens da literatura evidenciam a boa
performance dos métodos propostos, os quais rivalizam com as pesquisas que são o
estado da arte em todas as bases de dados avaliadas.

Palavras-chave: Reconhecimento de Gestos, Redes Recorrentes, Informação espaço
Temporal, Gestos Isolados, Vídeos Não-segmentados.
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Abstract

The recognition of gestures corresponds to a mathematical interpretation of a human
motion by a machine. It involves different aspects and parts of human body, such
as variations in the positioning of hands and arms, facial and body expressions, head
positioning and trunk posture. Since gesture recognition takes into account both ap-
pearance (appearance of body parts, for example) and movement, it is related to the
extraction of spatiotemporal information in videos, leading to a wide range of applica-
tions. As a consequence, many approaches focus on this topic, presenting variations in
terms of employed features and learning algorithms used on the task.

However, despite the existence of a wide range of approaches related to the recog-
nition of gestures, gaps are noticed regarding aspects such as scalability (in terms of
the number of gestures), time to incorporate new gestures; and actuation over unseg-
mented videos, i.e., videos containing multiple gestures and no information about the
start and end of these gestures. Thus, this work aims at presenting strategies that
fill these gaps, addressed in two different lines: (i) creation of scalable models for in-
cremental application in large databases; (ii) formulation of a model to detect and
recognize gestures concomitantly, considering unsegmented videos.

For an efficient performance on gesture videos, it is important to take into ac-
count the well-defined temporal structure of gestures, which preaches for the existence
of ordered sub-events. To handle this order of sub-events, we propose models that are
capable of extracting spatio-temporal information and also weigh this temporal struc-
ture, contemplating the contribution of previous inputs (previous videos snippets) to
evaluate subsequent ones. Thereby, our models correlate information from different
video parts, producing richer representations of gestures that are used for a more ac-
curate recognition.

Finally, to evaluate the proposed approach, we present the results obtained from
the application of the models described in this document. These outcomes were ob-
tained from tests on widely used databases, considering the metrics employed to eval-
uate performance on each of them. On ChaLearn LAP Isolated Gestures (ChaLearn
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IsoGD) and Sheffield Kinect Gestures (SKIG), the method proposed in this docu-
ment achieved 69.44% and 99.53% of accuracy, respectively. On ChaLearn Multi-
modal Gesture Recognition (ChaLearn Montalbano) and ChaLearn Continuous Ges-
tures (ChaLearn ConGD), the method contemplated in this document obtained 0.919
and 0.623 as Jaccard Score, respectively. Comparisons with literature approaches ev-
idence the good performance of the proposed methods, rivaling to state-of-the-art re-
searches on all evaluated databases.

Palavras-chave: Gesture Recognition, Recurrent Neural Networks (RNNs), Spa-
tiotemporal Information, Isolated Gestures, Unsegmented Videos.
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Chapter 1

Introduction

Gestures play a relevant role on humans life, in which a non-verbal language is used on
the interaction between subjects [Zhu et al., 2016]. To recognize gestures, computers
need to represent and interpret human appearance and motion, involving hands, arms,
face, head and/or body, in a mathematical sense [Mitra and Acharya, 2007]. Each of
these parameters is important to the meaning of a gesture, being efficiently denoted
by temporal and spatial information.

Being able to recognize gestures allows a wide range of applications in different
contexts, such as navigation on virtual environments [Côté and Beaulieu, 2019], de-
velopment of aid systems for hearing impaired [Soni et al., 2016], sign language recog-
nition [Bastos et al., 2015], surveillance monitoring [Xu et al., 2018] and biometric
validation [Fong et al., 2013]. As a consequence, gesture recognition has been investi-
gated by several approaches, which vary in terms of features and learning algorithms
employed to perform the task [Bastos et al., 2015; Molchanov et al., 2016]. Figure 1.1
depicts different applications of gesture recognition methods.

(a) (b) (c)

Figure 1.1: Fields of application of gesture recognition approaches. (a) Virtual navi-
gation system based on gesture recognition [Côté and Beaulieu, 2019]. (b) Italian sign
language sample from Chalearn Montalbano [Escalera et al., 2014]. (c) Extraction of
metrics for biometric validation based on gesture recognition [Fong et al., 2013].
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2 Chapter 1. Introduction

Gestures are characterized by a structured time disposition, in which the order
of events (sub-actions) is significant to determine their labels [Molchanov et al., 2016].
This order indicates a dependency of previous information (i.e., sub-actions) to deter-
mine the label of the whole gesture. As a result, researchers direct their attention,
before related to handcrafted-based approaches [Zhou and Ruan, 2006; Bastos et al.,
2015], to deep recurrent methods, focusing on the modeling of this temporal depen-
dency on a time-arranged input.

Despite the achievement of major advances, developing an universal model to
recognize gestures is a difficult task due to problems such as illumination and acquisition
conditions, inconsistent behavior among users, cultural gesture specificities, and large
vocabularies [Zhang et al., 2017]. In addition, assembling gesture recognition datasets
is an expensive task and most of them do not comprise many gestures [Shahroudy et al.,
2016]. As a consequence, approaches usually do not invest on scalability and require
to be completely retrained to handle new gestures, leading to methods that are not
suitable, for instance, for sign language recognition, since these languages are extremely
changeable and adhere to cultural specificities from people and places where they are
employed [Souza et al., 2018]. Furthermore, most of gesture recognition approaches
are not suitable to handle unsegmented video streams, since they do not perform the
detection of a gesture (in a temporal sense) before its recognition, not exploring the
correlation that exists between these tasks. Thus, with our study, we aim at filling
these gaps on gesture recognition approaches.

1.1 Motivation

Gesture recognition approaches can be seen as computational modelings of video ges-
ture inputs, in which the appearance and movement of a human performer are used
to determine the label of the entire action. The high applicability of this topic in
several research fields, with emphasis on biology, medicine, robotics and computer sci-
ence [Sharma and Chawla, 2013; Mitra and Acharya, 2007], turns it attractive to be
studied. However, even being tackled by many approaches, gesture recognition re-
mains a challenging topic, mostly regarding two points: (i) scalability and (ii) ability
to handle continuous unsegmented video inputs.

Scalability: Most of gesture recognition approaches are designed to deal with a fixed
number of gesture classes [Molchanov et al., 2016; Zhang et al., 2017]. For some
applications, this limitation does not represent an issue. In a virtual environment,
it is expected a limited set of gestures to be used on the interaction between man



1.2. Challenges 3

and machine. The same behavior can be noticed on biometric validation sys-
tems, for which a set of pre-trained gestures is sufficient to identify/validate the
user. However, gestures also correspond to a non-verbal communication chan-
nel between subjects, clearly evidenced by sign languages. These languages are
region-specific and extremely mutable [Souza et al., 2018], adhering to local and
cultural specificities from people/places in which they are employed. Modeling
sign languages through a computational approach requires the ability to deal
with an increasing number of gestures, pointing to methods that concern about
this problem and do not require to be completely retrained/reformulated to in-
corporate these new entries.

Handling unsegmented video inputs: Most of gesture recognition databases are
composed of segmented video streams, i.e., each video contemplates a single ges-
ture. As a consequence, literature approaches usually do not concern about
segmenting videos before performing their classification [Molchanov et al., 2016;
Zhang et al., 2017; Nishida and Nakayama, 2016]. This issue compromises the ap-
plicability of a broad range of gesture recognition approaches in uncontrolled sce-
narios; where the inputs are not pre-segmented (gestures temporarily detected).
Tackling this issue allows the development of gesture recognition approaches able
to interpret, in a human-like way, messages from gesture-performer subjects.

1.2 Challenges

The methods described in this document aim at performing gesture recognition con-
sidering scenarios where a subject performs the gesture in front of a camera. These
gestures can be represented by parts or full body of the performer, as depicted in Fig-
ure 1.2. In addition, even not being designed to gather the nuances of sign languages,
which involve grammar and semantics, the approaches in this document can be used to
recognize the meaning of individual gestures (signs) from these languages or gestures
used for any other type of communication.

Considering the aforementioned scenarios, accurate results have been achieved
by gesture recognition approaches in the recent years. However, it still remains a
challenging task. In this section, we discuss points that gesture recognition approaches
have to handle to produce effective results.

Acquisition problems: They include factors such as occlusion, illumination, diver-
gent viewpoint, presence of shadows, camera movements and cluttered back-
grounds. All these points impact on the appearance and/or movement of the
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(a) (b) (c)

Figure 1.2: Scenarios for the gesture recognition methods presented in this document.
(a) Parts of body used to perform a gesture [Liu and Shao, 2013]. (b) Gesture per-
forming considering half-body [Wan et al., 2016]. (c) Full body recognition of gestures
associated to a sign language (Italian Sign Language) [Escalera et al., 2014].

gesture performer, leading to a different spatiotemporal representation. Effec-
tive gesture recognition approaches need to be, at least in a minimal way, robust
to these factors. It is common to include videos with these problems on ges-
ture datasets, in order to challenge researchers to produce models that generalize
better.

Inconsistent behavior of different performers: It is expected that different per-
formers execute a gesture with some variation. However, it is not rare to find
performers that are outliers, in the sense of movement and/or appearance. This
point is more evident on the sign language recognition field, since cultural speci-
ficities can impact on the execution of a gesture. Some examples of inconsistent
behavior are: divergent hand posture, hand/body movement, and facial expres-
sions.

Large and increasing vocabularies: Many gesture recognition approaches are re-
lated to large vocabularies. With that, class similarities tend to be enforced and
higher capacity/complexity models need to be employed. In addition, some ap-
plications are required to handle an increasing number of gestures. To accomplish
that, studies need a mechanism to incorporate these new entries without a high
time-cost to adjust the approach.

Class similarities: Different gesture classes are related to, at least, one different pa-
rameter response. Examples of these parameters are facial expressions, body
movements, hand/arm movements, hand postures and inflection points. Classi-
fying some gestures can become a challenging task due to similarities in many
different parameter responses. For example, Brazilian Sign Language (Libras)
gestures for letters i and j are identical in terms of appearance, body movement
and facial expression. The only divergence regards the hand movement.
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1.3 Hypothesis

Spatial and temporal components of videos provide important information for gesture
recognition, producing a representation of appearance and motion of gesture parame-
ters [Wu et al., 2016]. To efficiently extract spatiotemporal information from gesture
videos, approaches invest on the employment of shape/temporal descriptors and deep
models, mostly composed of stacked 3D convolutional layers.

The well-defined temporal structure of gestures also makes room for the applica-
tion of recurrent models, being employed in most of the state-of-the-art methods for
gesture recognition. Thus, a typical hypothesis found in the literature consists on the
combination of these two characteristics, employing reccurrence to correlate different
parts of gesture video inputs and explore the well-defined temporal order of events, be-
sides the use of 3D stacked convolutional layers to gather spatiotemporal information,
with both characteristics leading to efficient representations for gesture recognition.

Concerning that hypothesis, we propose approaches that combine strategies of
state-of-the-art gesture recognition methods in order to produce an effective model. In
addition, we tackle two main issues of these methods, regarding scalability and aptness
to deal with unsegmented gesture videos. For the former issue, we assume that it
is possible to produce effective models, composed of 3D convolutional and recurrent
layers, that can be scalable in terms of number of gestures. Our idea is to utilize
unsupervised recurrent autoencoders to represent each gesture class in an independent
way. To increase the number of gesture classes to be recognized by the approach, it is
only required to train new autoencoders to represent these new classes with no impact
on previously trained models. For the latter issue, we assume that temporal detection
and recognition of gestures are complementary tasks. With that, a single model could
perform both tasks simultaneously with improvements on their outcomes through the
employment of a multi-task strategy. In a formal way, the problem statement that this
dissertation deals with can be formulated as follows:

Given a gesture recognition dataset, how to produce effective models in order
to extract spatiotemporal information, exploit information from gesture temporal
structure and tackle the scalability issue of gesture recognition approaches? In
addition, is it possible to produce a gesture recognition model that exploits in-
formation from gesture temporal structure and handles the absence of temporal
segmentation?
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1.4 Contributions

The main contributions of this dissertation are threefold, being described on next
chapters of this document.

Multi-Output Recurrent Autoencoders (MORA): With MORA, we tackle is-
sues that are commonly observed on gesture recognition approaches such as scal-
ability, time/computational cost to insert a new gesture class and robustness to
class imbalance. Instead of employing a custom deep classifier, as most studies
do, we invest on unsupervised models that are trained to reconstruct each class.
On the test phase, samples are provided to all models and the one with lowest
reconstruction error indicates the gesture label.

Skin-based Adversarial-Like MORA (SALMORA): SALMORA represents an
extension of MORA to incorporate discriminative behavior on autoencoders, en-
hancing the distance between representations of different classes. This approach
is composed of an unsupervised step, similar to MORA with the training of au-
toencoders for each class, and a supervised step, in which a classifier is used to
tune weights of these autoencoders, increasing the distance between their repre-
sentations and making the reconstruction error to incorporate discriminability.
In addition, SALMORA counts on an attention mechanism to prioritize the re-
construction of the gesture performer, with a lower focus on the background.
This approach was submitted to Journal of Neurocomputing (under review).

Multi-loss Recurrent Residual Network (MLRRN): MLRRN is an approach to
perform temporal detection and classification of gestures in a simultaneous way.
Since these tasks are complementary, the performance of each of them can be
improved by a multi-loss/multi-task model. The main point of this research is
to handle unsegmented gesture videos, what increases the aptness to deal with
real-life communication scenarios.

All methods described on this document have their performance compared with
literature approaches, with contributions in relation to state-of-the-art techniques.

1.5 Outline

The remainder of the text is organized as follows.
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This document is composed of seven chapters, following the steps that guided
the development of our approaches. Chapter 2 brings theoretical concepts for a bet-
ter understanding of the thesis. It introduces techniques employed on the present
research and on state-of-the-art methods. In Chapter 3, we present the literature re-
view performed during our study, with a detailed description of classical approaches for
gesture recognition, clarifying the issues that we noticed on state-of-the-art methods.
In turn, in Chapter 4, we introduce the gesture recognition approaches described in
this document: (i) recognition based on unsupervised models with focus on scalabil-
ity and its extension, Multi-Output Recurrent Autoencoders (MORA) and Skin-based
Adversarial-Like Multi-output Recurrent Autoencoders (SALMORA); (ii) simultane-
ous recognition and detection of gestures based on a multitask model, Multi-loss Re-
current Residual Network (MLRRN). In Chapter 5, we present benchmark datasets
utilized by the developed approaches, along with their characteristics and evaluation
protocols. In Chapter 6, we expose the obtained outcomes for MORA, SALMORA
and MLRRN approaches in comparison to state-of-the-art gesture recognition meth-
ods, with conclusions and future steps regarding these methods being presented in
Chapter 7.



Chapter 2

Background Concepts

Most video gesture recognition approaches, including the ones described in this doc-
ument, are related to image processing, computer vision and machine learning tech-
niques. In this sense, the goal of this chapter is to introduce techniques to help on the
understanding of the present approaches and state-of-the-art methods.

2.1 Recurrent Neural Networks

Recurrent neural networks (RNNs) have emerged as a powerful model for a broad
range of machine learning problems that involve sequential data [Yang et al., 2018].
On RNNs, every input depends on previous computations, simulating a memory that
captures information about what has been calculated so far [Molchanov et al., 2016;
Yang et al., 2018]. In a simple manner, these networks extend conventional feedforward
ones to handle variable-length sequences by accumulating the context of previous inputs
in their internal state to influence proceeding outputs [Yang et al., 2018]. Figure 2.1
depicts two representations of a recurrent layer, including an unrolled version, for which
multiple timesteps are presented at once.

Despite accurate outcomes regarding tasks, such as language modeling, machine
translation, speech recognition and even gesture recognition, the memory of RNN net-
works (also called vanilla RNNs) is limited as the gradients tend to vanish or ex-
plode [Yang et al., 2018] depending on factors such as the activation function and
number of timesteps. In addition, since a single set of weights is employed to model all
timesteps, vanilla RNNs show to be more effective to handle inputs that do not present
long-term dependency, considering multiple timesteps [Molchanov et al., 2016; Nishida
and Nakayama, 2016]. Moreover, these inputs need to present a well-structured time
disposition of events, what makes vanilla RNNs not recommended for tasks, such as

9



10 Chapter 2. Background Concepts

Figure 2.1: Representations of a recurrent layer. Input is represented by x, outputs by
y and recurrent representation (hidden state) by s. Timesteps are indexed from 1 to
T [Han et al., 2018].

activity recognition. In this context, gating mechanisms have been incorporated to
recurrent networks, leading to the formulation of models, such as Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU).

2.1.1 Long Short-Term Memory (LSTM)

Long Short-Term Memories (LSTM) are a subset of RNNs proposed by Hochreiter
and Schmidhuber [1997] to handle gradient problems. Instead of using simple nodes
ruled by activation functions, each LSTM unit is composed of a cell, an input gate, an
output gate and a forget gate, used to store information (memory state) over different
timesteps, as illustrated in Figure 2.2. These gates weigh the contribution of past data,
current data and current memory on the computation of next memory state [Hochreiter
and Schmidhuber, 1997; Luo et al., 2018]. Figure 2.2 depicts the structure of a LSTM
unit. One could notice the contribution of gates on information flow and memory,
represented by the cell.

LSTM units are widely employed to model information with long-term depen-
dencies. To efficiently actuate over these inputs, LSTMs are composed of the following
elements:

Cell: The core of LSTM is the cell or memory (or memory cell), represented by ct in
Figure 2.2. The memory cell contains the same inputs (ht-1 and xt) and outputs
(ht) as a normal recurrent network. However, the state of this cell is modified by
the current state of the cell, along the forget and input/modulation gates.

Input gate: Usually called save vector, the input and input modulation gates weigh
how much of input information impacts on the cell state. The difference between
these two gates is that the latter is submitted to an activation function. As
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Figure 2.2: Representation of a LSTM unit. x represents the input, h the state of
the unit and W represents the weights of each input regarding the gates. For each
timestep, the unit receives the current input and the previous state [Chen, 2016].

vanilla RNNs, the input of LSTM units are the previous hidden state of the unit
and the data for the current timestep.

Forget gate: Usually called remember vector, the forget gate ponders the information
that should be kept in the cell state, providing low weights to those that should
be forgotten.

Output gate: Usually called focus vector, the output gate determines what values
from the cell state are going to the hidden state output (ht).

Hidden state: Usually called working memory, this information is analogous to the
hidden state of RNNs and Hidden Markov Models (HMM). The hidden state cor-
responds to the information that is going to be considered on the next timestep.

Equations 2.1, 2.2, 2.3, 2.4 and 2.5 rule the LSTM operation, representing the
activations of forget, input and output gates, besides the update of cell and hidden
state. In these Equations, σ represents a sigmoidal activation function, ◦ represents
element-wise product and b represents the bias. Previous and current timesteps are
represented by t− 1 and t sub-indexes, respectively.

ft = σg(Wfxt + Ufht−1 + bf ) (2.1)

it = σg(Wixt + Uiht−1 + bi) (2.2)
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ot = σg(Woxt + Uoht−1 + bo) (2.3)

ct = ft ◦ ct−1 + it ◦ σc(Wcxt + Ucht−1 + bc) (2.4)

ht = ot ◦ σh(ct) (2.5)

2.1.2 Gated Recurrent Unit (GRU)

Gated Recurrent Units (GRUs) are a variation of LSTM proposed by Cho et al. [2014].
Similarly to LSTMs, GRU units are designed to deal with gradient problems and show
to be efficient on the modeling of sequential data. However, GRU units are simpler and
faster to train, presenting superior performance on small datasets [Cho et al., 2014; Le
et al., 2016]. Instead of input, forget and output gates, GRU cells contain two gates:
an update gate and a reset gate, as illustrated in Figure 2.3. Different from LSTM,
there is no persistent cell state.

Figure 2.3: Representation of a GRU unit. x represents the input, r represents the
reset gate and z the update gate [Le et al., 2016].

GRU units are composed of the following elements:

Update gate: This gate (zt) weighs the contribution of a new input (xt) to the hidden
state of the unit (ht).

Reset gate: This gate (rt) controls how much of previous state is forgotten, through
the combination of it (ht-1) and the current input (xt).
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Hidden representation: This representation (Ht) combines information from the
current input, previous hidden state and the response of reset gate, which is
submitted to an activation function and is used to compute the next hidden
state of the unit.

Hidden state: Analogous to the hidden state of LSTMs, the hidden state (ht) corre-
sponds to the information that is going to be considered on the next timestep. In
the case of GRU, it takes into account the previous hidden state and the response
of update gate.

Equations 2.6, 2.7, 2.8 and 2.9 rule the GRU operation, representing the activa-
tions of reset and update gates, besides the update of hidden state. In these Equations,
σ represents a sigmoidal activation function and b represents the bias. Previous and
current timesteps are represented by t− 1 and t sub-indexes, respectively.

rt = σg(Wrxt + Urht−1 + br) (2.6)

zt = σg(Wzxt + Uzht−1 + bz) (2.7)

Ht = tanh(Wxxt + UH(rtht−1)) (2.8)

ht = (1− zt)ht−1 + ztHt (2.9)

2.2 Autoencoders

Autoencoders are simple learning circuits which aim to transform inputs into out-
puts with the least possible amount of distortion [Baldi, 2011]. First introduced by
Rumelhart et al. [1986], autoencoders try to learn a function that is regulated by back-
propagation and minimizes the difference between input and output. This function
(L) is commonly represented by L(x, y) = min

∑
(x−hW,b(x))2, where x represents the

input, y the reconstructed output, hW, b the learning function of the autoencoder, W
the weight matrix and b the bias. Since the output tends to minimize the same data
provided as input with no need of labels, autoencoders are considered unsupervised
models.

An autoencoder is a network that implements two transformations - encoding:
Rn->Rd and decoding: Rd->Rn, where n corresponds to the original dimensionality of
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the data and d corresponds to the dimensionality of the encoded representation of the
data [Kuchaiev and Ginsburg, 2017]. Tipically employed for dimensionality reduction,
autoencoders employ a d that tends to be lower than n. Figure 2.4 depicts the structure
of an autoencoder. The model could be clearly divided into encoding and decoding
networks and, at the middle, an encoded (compressed) representation is produced.

Figure 2.4: Basic representation of an autoencoder. Encoding network is represented
by blue, while decoding is represented by red [Hadji and Wildes, 2018].

Besides the common employment in data compression (dimensionality reduction),
autoencoders present a wide applicability in tasks, such as clustering [Guo et al., 2017],
data denoising/restoration [Suganuma et al., 2018] and anomaly detection [Zhao et al.,
2017], with a huge investment, on recent years, on deep autoencoder models based on
convolutional operations. In addition, autoencoder variations have been formulated
with successful applications in different fields, including denoising [Gondara, 2016],
sparse [Dumas et al., 2016] and variational autoencoders [Inoue et al., 2018].

2.3 Multi-Task Learning

Multi-task corresponds to a paradigm in machine learning that aims at leveraging useful
information contained in multiple related tasks to help to improve the generalization
performance of all the tasks [Caruana, 1997; Zhang and Yang, 2017].

Since the last decade, several multi-task learning approaches have been devel-
oped with successful applications in different fields, such as natural language process-
ing [Deng et al., 2013], speech recognition [Collobert and Weston, 2008] and computer
vision [Girshick, 2015]. The employment of an auxiliary task introduces an inductive
bias, producing models that prefer hyphotesis that explain more than one task at once,
following the idea of a biological human learning process [Zhang and Yang, 2017]. All
of the tasks in a multi-task model, or at least a subset of them, are assumed to be
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related to each other. In this case, it is found that learning these tasks jointly can lead
to a performance improvement compared with learning them individually [Zhang and
Yang, 2017].

According to Caruana [1997], multi-task learning helps models to improve their
generalization accuracy, speed of learning and intelligibility through the inductive bias
of different tasks. In addition, since multi-task models need to solve different tasks
at once, their parameters are shared. As a consequence, these models are considered
less prone to problems such as overfitting [Zhang et al., 2017]. Figure 2.5 shows an
schematic of a multi-task model. One could notice the existence of several outputs. In
this case, each output represents a different task.

Figure 2.5: Schematic of a multi-task model for 4 different tasks [Caruana, 1997].

2.4 Hyperparameter optimization with Hyperband

The recent success of machine learning algorithms for a wide range of problems led to
more and more complex architectures, composed of a growing and difficult to adjust set
of hyperparameters [Li et al., 2016, 2017]. The quality of a predictive model critically
depends on its hyperparameter configuration, since they present a huge impact on how
the algorithm’s performance generalize to unseen data [Li et al., 2017].

Hyperband is an exploration method that addresses the allocation of resources
among randomly sampled hyperparameter configurations, relying on an early-stopping
strategy that prioritizes promising configurations and throws out the rest, what in-
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creases the performance of the method [Li et al., 2017]. The intuition behind Hyper-
band regards the fact that if a hyperparameter configuration is destined to be the best
after a large number of iterations, it tends to perform in the top half of configurations
after a small number of iterations. That is, even if the performance after a small num-
ber of iterations is very unrepresentative of the configurations absolute performance,
their relative performance, compared with many alternatives trained with the same
number of iterations, is roughly maintained [Li et al., 2016].

The Hyperband optimization relies on the employment of a search space, con-
taining the possible values that each hyperparameter can assume; and two major pa-
rameters: (i) maximum number of epochs per configuration (max − iter) and (ii)
downsampling rate (eta). Thereby, the configurations sampled from the defined search
space are trained by a maximum number of epochs. The best of them, indicated by the
amount specified on the downsampling rate, go to a next step. This process is repeated
until the best configuration(s) remain(s), evidencing the best hyperparameters for the
architecture.

2.5 Large-margin softmax loss

Large-margin softmax loss (L-Softmax) is an adaptation of a custom cross-entropy loss
associated with a softmax layer, with the aim of encouraging intra-class compactness
and inter-class separability [Liu et al., 2016]. The main point of this approach is to
enhance the generalization of softmax, producing potentially larger angular margins
between learned features.

L-Softmax is a special case of custom softmax, incorporating a pre-set constant
m, which is taken into account to produce angular classification margins for each class.
With larger margins between classes, L-Softmax presents advantages over softmax: (i)
it generates more discriminative features, (ii) it partially avoids overfitting by defining
a more difficult learning target, casting a different viewpoint to the overfitting problem
and (iii) L-Softmax benefits not only classification, but also verification problems where
ideally learned features should have the minimum inter-class distance being greater
than the maximum intraclass distance [Liu et al., 2016]. The formulation of L-softmax
follows the Equation 2.10, where Wyi represents the weights of the y-th column of
sotfmax layer weight matrix, associated with a sample i, with xi being inputs of this
layer. The activations of a softmax layer are the inner product between W and x,
being formulated by ||Wj|| × ||xi|| × cos(θj), for a sample i, considering the column
associated with class j and where θj corresponds to the angle between the vector Wj
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and xi. The consideration for the constant m is a stronger requirement to correctly
classify x, producing more rigorous decision boundaries. The higher the value of m,
the larger are the margins and the learning objective becomes harder to be achieved.

Li = −log(
e||Wyi || ||xi|| ψ(θyi )

e||Wyi || ||xi|| ψ(θyi ) +
∑

j 6=yi e
||Wyi || ||xi|| ψ(θyi )

), (2.10)

and

ψ(θ) =

{
cos(mθ), 0 ≤ θ ≤ π/m

D(θ), π/m<θ ≤ π
, (2.11)

where D(θ) is required to be a monotonically decreasing function, and D( π
m
) should

equal cos( π
m
). Figure 2.6 depicts CNN features learned with L-Softmax. One can notice

that, with an increasing m, features from different classes become more compact and
distant to each other.

Figure 2.6: L-Softmax learned features for different classes of CIFAR-10
dataset [Krizhevsky, 2009]. The constant m is being increased, assuming values
m = 1, 2, 3, 4 from left to right. [Liu et al., 2016]. With m = 1, this loss behaves
as a custom softmax layer associated with a cross-entropy loss.
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Literature Review

Most gesture recognition approaches are based on the extraction/learning of spatiotem-
poral features from videos [Zhang et al., 2017]. This point is related to the importance
of two main factors for the recognition of gestures: (i) appearance, which brings infor-
mation about gesture parameters, such as hand configuration, body/facial expression
and inflection point [Wang et al., 2017a]; and (ii) motion, which represents the move-
ment executed by the performer [Pigou et al., 2017].

The applicability in several contexts led gesture recognition to be constantly
targeted by approaches since the last decades. These methods, initially based on the
employment of handcraft spatiotemporal feature descriptors [Wang et al., 2011; Song
et al., 2012; Bastos et al., 2015], tend to capture shape, appearance and motion clues,
mostly via image gradients and optical flow [Molchanov et al., 2016].

In the research proposed by Bastos et al. [2015], for example, it is explored the
discriminability associated with hand configuration (shape) on the classification of signs
of Brazilian Sign Language (Libras). On their research, Bastos et al. [2015] combined
the response from Histogram of Oriented Gradients and Zernike Invariant moments,
both related to image shape description. At the end, a two layer Perceptron Multilayer
classifier is employed to classify Libras signs, reaching an accuracy superior to 96%
in an own assembled dataset1. Figure 3.1 illustrates hand images from the dataset
proposed by Bastos et al. [2015] representing different Libras signs.

Song et al. [2012] proposed an approach to track hand and body parts to recog-
nize gestures. Their method is able to extract appearance information from hand/body
parts, which is associated with a Support Vector Machine classifier. An interesting
point of the research of Song et al. [2012] is their ability to handle unsegmented

1Libras hand recognition dataset is available: http://sites.ecomp.uefs.br/lasic/projetos/libras-
dataset
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Figure 3.1: Libras hand recognition dataset [Bastos et al., 2015].

streams by the combination of local and global predictors, which take into account
small portions of video inputs along with the entire videos. The approach is evaluated
on NATOPS dataset [Song et al., 2011], performing both gesture detection and gesture
recognition.

Still characterizing shapes, the research proposed by [Zhang and Tian, 2015]
presented a descriptor to encode depth maps into a 3D shape representation named
Histogram of 3D Facets. This descriptor represents both 3D shapes and structures
of various depth maps, encoding information from hand structures, such as bumps
and grooves. As a result, the approach achieved accuracy rates superior to 90% on
gesture and activity recognition datasets, such as MSR3D gesture [Wang et al., 2012]
and MSRAction3D [Li et al., 2010].

Despite accurate results of handcrafted gesture recognition methods, the advance
of GPUs allowed a growing trend toward the application of deep neural networks on the
task. These models are able to efficiently learn representations to characterize gestures
and classify them with high accuracies [Zhang et al., 2017; Molchanov et al., 2016;
Nishida and Nakayama, 2016]. Since the present study relies on the employment of
these networks for the gesture recognition task, a higher emphasis is given to approaches
based on deep models.

3.1 Deep Gesture Recognition Approaches

Recent studies have demonstrated that learning spatiotemporal features by deep models
is a crucial point for effective gesture recognition [Nishida and Nakayama, 2016; Zhang
et al., 2017]. Approaches based on deep models correspond to state-of-the-art methods
in most gesture recognition datasets. They vary in terms of capacity/complexity and
architecture, tackling different aspects of the task [Molchanov et al., 2016; Wang et al.,
2017a].

According to the strategy employed to recognize gestures with deep models, ap-
proaches can be characterized into different groups: (i) those that employ feedforward
deep classification models, with no explicit dependency between gesture timesteps [Tran
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et al., 2015; Duan et al., 2016], (ii) and those that explore the time structure of ges-
ture videos employing recurrent layers [Nishida and Nakayama, 2016; Molchanov et al.,
2016; Pigou et al., 2017; Wang et al., 2017a].

3.1.1 Feedforward Deep Approaches

Feedforward deep approaches regard the assembling of models to extract spatiotem-
poral information mostly through the application of convolutional operations, wherein
connections between nodes do not form any cycle. These models employ two basic
strategies to perform the gesture recognition task: (i) extraction of spatial and tempo-
ral information isolated; and (ii) extraction of these features at the same time by the
extension of convolutional operations into temporal domain.

Despite dissimilarities between activity and gesture recognition tasks, such as the
background clueing and lack of a temporal sequence of sub-events on activity videos, ac-
tivity recognition methods show some efficiency for the recognition of gestures, mostly
due to their spatiotemporal learning behavior. Approaches, such as the ones proposed
by Karpathy et al. [2014] and Simonyan and Zisserman [2014], are commonly employed
for gesture recognition. These methods rely on the extraction of spatial and temporal
information from inputs isolated. On the method proposed by Karpathy et al. [2014],
four temporal fusion strategies are explored, and it is proposed that slow fusion can
get more global information in both spatial and temporal dimensions. On the other
hand, Simonyan and Zisserman [2014] proposed a two-stream convolutional architec-
ture which incorporates spatial and temporal networks isolated, being fused together
at a latter stage.

The research designed by Duan et al. [2016] is based on the idea proposed by
Simonyan and Zisserman [2014]. Their method, named two-stream consensus voting
network (2SCVN), deals with RGB and optical flow modalities in a separate way.
In addition, a convolutional network is assembled to deal with saliency and depth
inputs. Each modality generates a voting representation (considering the classes of
the dataset). After that, these representations are fused to output the gesture class,
as depicted in Figure 3.2. Though not employing recurrent layers or spatiotemporal
operations, that research obtained recognition outcomes that rival with state-of-the-art
methods on ChaLearn IsoGD dataset [Wan et al., 2016].

Narayana et al. [2018] invested in an multi-modality architecture that takes into
account RGB, depth, optical flow and pose features as inputs. The main point of their
approach consists on the employment of a spatial attention mechanism to focus on the
hands. Besides the input modalities, Narayana et al. [2018] provide the coordinates
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Figure 3.2: Architecture proposed by Duan et al. [2016]. Different networks are em-
ployed to deal with each modality. At end, a fusion is performed considering the voting
response of each of them.

associated with each hand as inputs to their model. At the end, a sparse layer fusion is
used to combine the information from each modality. Their method, associated to the
pose estimation technique proposed by Cao et al. [2017] and hand detector proposed
by Liu et al. [2017], achieved state-of-the-art accuracy on ChaLearn LAP Isolated
Gestures [Wan et al., 2016] and NVIDIA Driving datasets [Molchanov et al., 2016].

Cardenas et al. [2019] proposed a method based on the extraction of information
from RGB-D inputs, aiming at gathering texture information and describing/detecting
hand movement. In addition, the hand configuration is obtained from a specific video
frame, determined through the application of rank-pooling. Two convolutional neural
architectures are tested on the approach, which is evaluated on LSA64 Ronchetti et al.
[2016] and the proposed LIBRAS-BSL datasets Cardenas et al. [2019].

Imran and Raman [2019] proposed a methodology to deal with gestures based on
a prior generation of three types of motion templates from the input videos: Motion
history image (MHI), Dynamic Image (DI) and RGB Motion Image (RGBMI). These
templates are computed over videos and provided to a network, based on MobileNET
architecture [Howard et al., 2017], to extract feature information. Afterwards, a Kernel-
based Extreme Learning Machine (KELM) classifier is used to compute the output for
each template, with a late fusion being performed at the end. Imran and Raman [2019]
evaluated their approach on SKIG and ChaLearn LAP Isolated Gestures datasets.

In the line of models that extract spatiotemporal information in a jointly way,
Tran et al. [2015] proposed the C3D network, a straight-forward architecture based on
stacked 3D convolutions, being widely used for video analysis and recognition tasks.
This model is also explored by gesture recognition methods, such as the one proposed
by Zhu et al. [2016], being evaluated on ChaLearn LAP Isolated Gestures [Wan et al.,
2016].
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The approach proposed by Zheng et al. [2019] presents a temporal segment net-
work, composed of stacked 3D convolutional layers to extract spatiotemporal informa-
tion from sampled frames of a video. Their approach considers RGB, Optical Flow and
Depth as input modalities, performing a late fusion of these representations to estimate
the gesture class of a video. The method achieved a competitive accuracy result, in
relation to state-of-the-art methods, on ChaLearn LAP Isolated Gestures dataset [Wan
et al., 2016].

3.1.2 Recurrent Approaches

Most of the recent studies employ recurrent models for the task of gesture recogni-
tion [Molchanov et al., 2016], achieving impressive state-of-the-art results for several
datasets. The argument for the employment of recurrent layers stems from their ability
to gather the dependency of previous events that exist on gesture videos, exploring the
well-structured time disposition of sub-events on the performing of a gesture.

The structure of gesture videos is explored by Wu et al. [2016]. Their study
highlights the importance of temporal information on gesture videos, pointing to the
employment of recurrent layers in order to learn dynamic temporal dependencies. Wu
et al. [2016] compare different approaches that handle gesture videos, ranging from
purely 3-D convolutional networks to recurrent networks with different cell architec-
tures, including vanilla RNN, GRU and LSTM. Figure 3.3 shows detection and recog-
nition results obtained by Wu et al. [2016] considering different model architectures.
The rectangular shapes on ground-truth (Targets) represent the occurrence of a ges-
ture during a certain amount of time (or frames), while the color indicates the class
this gesture belongs to. The outcomes of the different architectures try to approximate
the response exposed in Targets, which evidence accurate recognition and detection of
gestures. According to Figure 3.3, a better performance is achieved with a deep model
involving 3-D (temporal) convolutions and LSTM units.

On the approach designed by Nishida and Nakayama [2016], a multi-stream archi-
tecture is proposed considering different modalities as inputs. Each stream, composed
of 3D convolutional layers and a Long-Short Term Memory (LSTM) layer, receives
frame-level information at every timestep from corresponding modalities, which in-
clude RGB, depth and optical flow. At the end, with the aim of embedding the specific
modality representations in a single space, an additional LSTM layer is placed on the
top of these streams. Figure 3.4 depicts the architecture proposed by Nishida and
Nakayama [2016]. One could notice the existence of different streams and the appli-
cation of a recurrent layer on top of them. The idea of multiple modalities as inputs
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Figure 3.3: Wu et al. [2016] outcomes for a test video of ChaLearn LAP 2014 [Escalera
et al., 2014]. Different strategies are presented along with their responses. Dashed lines
represents no-class (silence) [Wu et al., 2016].

is explored by several gesture recognition approaches, including ours. However, differ-
ently from the method proposed by Nishida and Nakayama [2016], our methods fuse
multi-modality information before providing it to the recurrent layers, performing 3D
convolutional operations over multi-modality data and recurring a representation that
is derived from it.

Molchanov et al. [2016] presented an approach that exploits the split of gesture
streams into sub-videos (clips), taking into account modalities such RGB, depth, optical
flow and infrared (IR). From each clip, spatiotemporal features are extracted through
activations of C3D network [Tran et al., 2015]. After that, these features are used to
feed a recurrent network, being posterly driven to a layer with connectionist temporal
classification (CTC) cost function. With that, a single response can be produced for
inputs with different sizes (i.e., different number of clips). In our detection/recognition
approach, instead of employing CTC, we invested on a model that performs classifica-
tion of one frame of the input at each timestep, producing a response for these frames
with no need to split videos into clips. The architecture proposed by Molchanov et al.
[2016] is showed in Figure 3.5. On their study, the contribution of each modality is
evaluated for the gesture recognition task.

The accurate outcomes obtained with recurrent models led to the development
of even more complex approaches, these based on the employment of bidirectional
recurrent layers. Thereby, information from previous and future frames are taken into
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Figure 3.4: Nishida and Nakayama [2016] Multimodal Architecture. Each circle rep-
resents an input, denoted by x(A), x(B) and x(C). These inputs are associated to a
different modality stream, composed of 3D convolutional/pooling layers. Squares rep-
resent recurrent LSTM layers. Every stream is fused on the recurrent layer on the
top, represented by hidden states h(∗). Arrows on recurrent layers (squares) expose
the behavior on different timesteps, evidenced by the increasing indexes on inputs and
hidden states (x(A)1 , x(A)2 , ..., x(A)T ).

account on the classification process. On the method proposed by Zhang et al. [2017],
for instance, a 3D convolutional model is proposed and, on top of it, bidirectional
LSTM layers are placed. After gathering features from recurrent layers, a pooling
strategy is employed to produce a single representation from multiple timesteps. The
model proposed is illustrated in Figure 3.6(a). One could notice the application of a
2D convolutional network to act over the representation obtained with the recurrent
layer.

In a similar way to Zhang et al. [2017], Pigou et al. [2017] invested on bidirectional
models to detect and recognize gestures on videos. On their research, residual modules
are employed with the aim of conserving gradients; important point on the training of
deep networks. These modules present separate layers to perform spatial and temporal
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Figure 3.5: Architecture proposed by Molchanov et al. [2016]. Different timesteps of
recurrent network are represented by hts, while softmax responses are represented by
sts. One could notice the existence of a final layer employing CTC cost function.

operations. As a result, a lower number of parameters is employed by the network and,
at end, the same operations are executed. In addition, these modules present ELU
layers to incorporate a non-linear behavior. Figure 3.6(b) depicts the residual block
proposed by Pigou et al. [2017]. One could notice the existence of skip connections,
important factor for the gradient maintenance. These modules were incorporated by
the present research in order to develop our detection/recognition approach. In addi-
tion, our model to handle unsegmented streams also employs a bi-directional recurrent
layer to explore the structured order of sub-events of gesture videos. However, despite
similarities between our approach and the one proposed by Pigou et al. [2017], we
use different inputs and merge strategies, besides a different architecture to tackle the
problem; with a higher number of spatiotemporal convolutional layers and employment
of a dual-task policy, in which we gather information from the correlation that exists
between temporal detection and recognition of gestures.

Zhu et al. [2018] also invested on an approach to detect and recognize gestures
on unsegmented videos. However, instead of producing a single model to do both
tasks, Zhu et al. [2018] employed an isolated temporal recognition network based on
Res3D architecture [Tran et al., 2017], able to produce isolated videos through the
recognition of boundaries (transition frames). To balance the two classes employed in
this task (boundaries and non-boundaries), a balanced squared hinge loss function was
applied. In addition, temporal dilations are included on the convolutional layers of this



3.1. Deep Gesture Recognition Approaches 27

(a) (b)

Figure 3.6: (a) Architecture proposed by Zhang et al. [2017]. On this architecture, a
2DCNN is used to learn higher-level spatiotemporal features maps for the final gesture
classification. (b) Residual block proposed by Pigou et al. [2017]

network with the aim of enhancing the gathering of contextual information.

Even though the temporal segmentation being the main point of their re-
search, Zhu et al. [2018] also proposed a network to perform the classification of ges-
tures. This network, composed of 3D convolutional layers and convolutional LSTMs,
follows a similar structure of the one proposed by Zhang et al. [2017], with the dif-
ference of using a pre-developed architecture, MobileNET [Howard et al., 2017], as a
final classifier of the approach. Despite using MobileNET, the approach is end-to-end
and MobileNET weights are trained along the entire network. Figure 3.7 depicts both
networks used on the approach of Zhu et al. [2018]. One could notice that multiple
modalities are used as inputs, such as depth, RGB and optical flow. At the end, a
multimodal fusion is used to produce the recognition response.

Since gesture recognition encompasses different fields of application, approaches
such as the ones proposed by Cao et al. [2018] and Camgoz et al. [2018] have been de-
veloped with expressive outcomes. The first presents an end-to-end Egocentric Gesture
Recognition approach. On their research, Cao et al. [2018] elaborated a model based on
the application of different spatiotemporal blocks that compensate undesired motions
and estimate homography parameters to deal with warp caused by head movements.
Besides that, an LSTM layer models the temporal dependencies that exist between
video timesteps. Cao et al. [2018] evaluated their approach on a proposed dataset
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Figure 3.7: Architectures proposed by Zhu et al. [2018] for detection and recognition
of gestures.

named EgoGesture, for which their method outperforms state-of-the-art approaches
considering metrics such as temporal Jaccard.

Camgoz et al. [2018] presented an approach to perform sign language recognition.
Despite being a field of gesture recognition, dealing with sign language recognition is a
more complex task, since these approaches need to handle with linguistic aspects of the
language, such as the abscence of a one-to-one mapping of signs to spoken words [Bastos
et al., 2015; Camgoz et al., 2018]. Thus, to incorporate the sign language behavior into
the translation process, Camgoz et al. [2018] invested on a sequence-to-sequence model
(seq2seq), similar to neural machine translation approaches. On that, frames are fed
to a network responsible for extracting spatial information, which is projected into
dense space by a fully-connected layer. A tokenization layer is employed to produce
tokens from multiple inputs (several frames can be associated with a single word,
for example), feeding recurrent layers. With this process, an encoded representation
of an input is produced. After that, the decoding must be performed. Thus, the
encoded representation is driven to an attention layer, which focuses on most important
information inside it. This attention layer mitigates the problems generated by using
fixed-size representation for the inputs. At the end, information is driven to a fully
connected layer that outputs the sentence word by word. On their research, Camgoz
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et al. [2018] performed tests considering GRU and LSTM layers. The sequence-to-
sequence architecture employed in their research is illustrated in Figure 3.8.

Figure 3.8: Camgoz sequence-to-sequence architecture. One could notice the existence
of encoding and decoding steps. Words are outputed one-by-one.

Even presenting accurate outcomes for the gesture recognition task, we could no-
tice gaps on literature researches, mainly regarding the lack of scalability and existence
of few approaches to deal with unsegmented videos, with none of them using detection
and recognition tasks with the aim of improving each other. In this sense, we pro-
pose methods to deal with these points named Multi-Output Recurrent Autoencoders
(MORA) and its extension, Skin-based Adversarial Like Multi-Output Recurrent Au-
toencoders (SALMORA); and Multi-Loss Recurrent Residual Network (MLRRN).

Table 3.1 summarizes characteristics of the approaches encompassed in this lit-
erature review.
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Chapter 4

Proposed Approaches

Gesture recognition methods invest on the collection of information from spatiotempo-
ral nuances of gestures, gathered from relations of different parts of video clips. Despite
the accurate results, most gesture recognition approaches are based on the employment
of discriminative models and are adjusted to handle gesture datasets in the literature,
leading to two main issues: (i) lack of scalability in terms of number of gestures; (ii)
inability to handle unsegmented videos.

In this chapter, we introduce our proposed approaches to deal with the two main
issues that were noticed in the gesture recognition literature. These approaches, named
Multi-output Recurrent Autoencoders (MORA) and its extension, Skin-based Adversar-
ial Like Multi-output Recurrent Autoencoders (SALMORA), and Multi-Loss Recurrent
Residual Network (MLRRN), are presented in next sections.

4.1 Dealing with scalability issues - MORA

MORA is a novel strategy to recognize gestures based on the employment of multiple
autoencoder models. For each class (gesture), a different model is assembled and
trained. The main point that supports the employment of these multiple models is
related to scalability, in the sense that the recognition of a novel gesture only requires
the training of one new autoencoder model for the novel gesture, without the need of
retraining for all instances of the training set, as commonly performed.

On MORA, each autoencoder model presents three inputs as well as three outputs
to be reconstructed. These inputs are (i) the RGB gesture video, (ii) the Farneback
optical flow [Farneback, 2003] response and (iii) the depth representation of the video,
as illustrated in Figure 4.1. With these inputs, MORA contemplates factors that
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play a relevant role on the recognition process, such as motion, appearance and depth
(inflection point).

(a) (b) (c)

Figure 4.1: MORA inputs: a) RGB video. b) Farneback Optical Flow. c) Depth.

On the test phase, gesture videos are provided to all MORA trained models, each
representing a different class. At the end, the one that presents the lowest reconstruc-
tion error indicates the class (the index of the model represents the class). This error is
computed by the sum of differences between each input and its reconstructed output.
The MORA recognition process is illustrated in Figure 4.2.

Figure 4.2: MORA test phase. Index of model with lowest error represents the class.

Since MORA is unable to deal with varied-length videos, we performed pre-
processing steps before training/testing our approach. Each dataset video is resized to
112 × 112 × 3 (rows, columns and channels). To standardize the length of videos and
avoid redundant information, a uniform subsampling is performed, producing 32-frame
videos.
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As aforementioned, gestures comprise a well-defined time structure that must be
properly captured for accurate recognition. With this goal in mind, we assemble our
models with a Gated Recurrent Unit (GRU) layer to propagate information through
different timesteps (shown in Figure 4.3). Afterwards, we adjust the input of our
models accordingly to process 8-frame clips each time, resulting in four timesteps for
each video, as they are sampled with 32 frames. The disposition of video inputs in
different timesteps is related to the employment of a recurrent layer on MORA, which
is able to correlate information from these different timesteps and model dependencies
that exist on the data. The choice for four timesteps was empirically determined by
tests on the validation splits of the evaluated datasets.

The autoencoder model for each gesture class learns spatiotemporal information
from the three inputs, i.e., RGB, optical flow and depth, reconstructing them at the end.
This reconstruction minimizes a multi-output loss function, which is based on the sum
of the mean squared error between each input and their reconstructed counterpart, as
showed in Equation 4.1, where pRGB, pOF and pDepth represent MORA reconstructed
outputs, while RGB, OF and Depth represent the inputs. It is important to emphasize
that both the state and the output of the GRU layer are used to produce a combined
representation for each timestep, resulting in a vector with 784 dimensions.

MSELoss =
1

n

i=n∑
i=1

(RGBi−pRGBi)
2+

1

n

i=n∑
i=1

(OFi−pOFi)2+
1

n

i=n∑
i=1

(Depthi−pDepthi)2

(4.1)

Figure 4.3: Proposed autoencoder model. Layers employ ReLU (blue) and Sigmoid
(purple) activations.

As depicted in Figure 4.3, MORA inputs for each timestep are clips composed of
8 × 112 × 112 × 3 dimensions, representing the number of frames, width, height and
channels, respectively. These inputs are merged, resulting in a 24-dimension input (8
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frames for each input type at once) for each timestep. One can notice in Figure 4.3 that
the Depth input is presented as a 3-channel input. To achieve this channel dimension-
ality, we replicated the monochromatic depth information in 3 channels for two main
reasons: (i) to facilitate operations that actuate over data dimensions, such as pooling
and convolutions and (ii) to keep a balance on the reconstruction loss at the end, since
the model needs to reconstruct the 3 channels, similarly to the RGB input. A similar
adjustment was performed for the optical flow input, since the Farneback optical flow
response is a 2-channel output. To adequate the optical flow for our model, we created
an empty channel (all pixels are black) and composed a 3-channel input. Without this
3-channel disposition, a higher weight would be given to the RGB input, leading to a
dominance of RGB reconstruction over depth and optical flow.

After creating this 24-dimension input, the data is driven to consecutive 3D-
convolutional and pooling layers, producing encoded information that goes to the GRU
layer. In turn, this layer produces a recurrent representation, which is concatenated to
the encoded information for each timestep, as depicted in Figure 4.3. The idea behind
this merge lies on the fact that it would not be possible to minimize the value of the
multi-output reconstruction loss function with only the low-dimensional representation
obtained from the GRU layer. Besides that, increasing the size of this recurrent layer
would greatly increase the number of parameters and the time to train the models,
requiring more training data as a consequence. It is important to notice that the
models consider a 4-timestep tensor as input and, after that, the state of the GRU
layer is reset.

Besides scalability, the employment of a specific model for each class on MORA
method leads to the other positive aspects, listed as follows.

Lower complexity: Since intra-class variation tends to be lower than inter-class
variation, it is possible to generate autoencoder models with less parameters, resulting
in models with faster training, easier convergence, less prone to overfitting and with a
lower training data requirement.

Specificity: Classes with a higher complexity requirement can be associated with
higher capacity models without requiring any retraining of previous models. In addi-
tion, since MORA employs a multi-output loss function, it is possible to assign specific
loss weights to each class, considering the most relevant aspects for each of them.

Open-set applicability: Since models tend to minimize the reconstruction error of
trained instances, it is expected to obtain a high error for an instance of an unknown
class. Therefore, it is possible to associate high error values with non-trained classes,
allowing the employment of MORA in open-set applications. Furthermore, MORA
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presents high similarity with incremental learning methods and could be easily adapted
to consider new data without requiring any change on previously trained models.

Robustness to unbalanced classes: Each model of MORA aims to minimize the
reconstruction error for a specific gesture class. Therefore, the only impact MORA
suffers from unbalanced datasets is that classes with more samples tend to require
models with higher capacity.

4.2 Extending MORA - SALMORA

The trained autoencoders of MORA method are specific for each gesture class, aiming
at reconstructing the inputs at the end. With this strategy, it is expected that models,
trained for a particular class, present lower reconstruction error for video instances of
this class. However, since MORA models are independent unsupervised autoencoders,
these networks are not trained to enhance the distance/discriminability between dif-
ferent classes, what could lead to models, associated with different classes, containing
weights tuned with certain level of similarity. Consequently, the reconstruction error
becomes a less accurate metric and misclassifications can be obtained. Thus, to insert
discriminability on the training process of MORA models, we enhanced our approach to
encompass new elements: (i) a skin detection task and (ii) an adversarial-like behavior,
contemplating interleaved steps of unsupervised autoencoders and a discriminator net-
work. These improvements led to Skin-based Adversarial-Like Multi-Output Recurrent
Autoencoders, or SALMORA.

4.2.1 Skin Detection as a new task

MORA reconstruction takes into account the input frames in an uniform way, at-
tributing the same weight to regions related to the subject performing the gesture and
the scene background. Consequently, gestures with similar backgrounds can present
akin representations, leading the approach to misclassifications, even if the motion
and appearance, mostly denoted by the performer, present huge differences. Thus, we
incorporated a new task to MORA: Skin detection.

On the architecture depicted in Figure 4.3, a new branch is created with a new
output, as showed in Figure 4.4, composed of extra convolutional layers, responsible for
the skin map of the corresponding input. Before predicting the skin map, we create a
feature representation with the same spatial dimensionality of the remaining outputs of
the model, i.e., RGB, optical flow and depth. This feature representation results from
a layer that employs logistic sigmoidal activation. In addition, this layer is adjacent to



36 Chapter 4. Proposed Approaches

the new skin output of the model, leading the representation to be imbued with skin
information. As a result, the values that compose each frame of the representation
can be associated with the other outputs, containing a probability score of each pixel
to contain a skin zone. At the end, we perform an element-wise multiplication of this
skin feature map by every channel of the remaining outputs of the model, resembling
an attention mechanism. Equations 4.2, 4.3 and 4.4 represent this element-wise mul-
tiplication for the RGB, Optical Flow and Depth outputs, respectively. Every channel
of an output for a sample s is multiplied by the skin feature map (SFM(s)).

Figure 4.4: MORA autoencoder model with a skin branch (skin MORA model). A
feature map is created and acts as an attention mechanism for the remaining outputs.

RGB(s) = [RGBr(s)� SFM(s), RGBg(s)� SFM(s), RGBb(s)� SFM(s)] (4.2)

OF (s) = [OFx(s)� SFM(s), OFy(s)� SFM(s)] (4.3)

Depth(s) = [Depth(s)� SFM(s)] (4.4)

4.2.2 MORA with Adversarial-Like Behavior

As a final step to enhance MORA results, we developed a strategy to increase the dis-
tance between the error response of the models representing each class. To accomplish
that, we incorporate a discriminative step into the MORA pipeline.
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The starting point of this adversarial approach is the training of unsupervised
skin MORA models for each gesture class, as described in Section 4.2.1. After that, we
freeze the weights of the autoencoders, except for the Convolutional layer 10, shown
in Figure 4.3. The outputs of this layer are connected to the discriminator network
depicted in Figure 4.5. This discriminator employs the binary Large-Margin Softmax
Loss (L-Softmax) [Liu et al., 2016], which separates the class associated with the model
from the remaining gesture classes with the highest possible margin, following a one-
against-all strategy [Wu et al., 2019]. For example, if we consider a 5-class dataset, for
an autoencoder representing the gesture class 1, the binary classifier to be attached to
this autoencoder aims at separating class 1 from classes 2, 3, 4 and 5.

The large-margin softmax loss, showed in Equation 2.10, is designed to encourage
intraclass compactness and interclass separability, tuning the weights of the Convolu-
tional layer 10 to incorporate a discriminative behavior with emphasis on the maximum
separation between classes. As a final step of SALMORA, the discriminator network
is removed from the pipeline, the weights of Convolutional layer 10 are frozen and the
remaining weights of each autoencoder model are unfrozen, being tuned again, in an
unsupervised manner, to minimize the reconstruction error for the associated class. As
a result, the autoencoder models intend to minimize the reconstruction error consid-
ering the discriminative weights of Convolutional layer 10, making the representations
produced by the layers of the models to be more distant to each other. The full pipeline
is depicted in Figure 4.6.

Figure 4.5: Classification model employed to enhance autoencoders with discriminative
behavior. Layers employ ReLU (blue) and Sigmoid (purple) activations.
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Figure 4.6: SALMORA pipeline with interleaved unsupervised (left and right) and
supervised (middle) steps.

4.3 Dealing with unsegmented videos - MLRRN

Most gesture recognition approaches are designed to handle segmented videos, i.e.,
a single gesture is contemplated on the entire set of frames that compose the video.
Despite the existence of accurate methods applied to segmented gesture recognition
datasets, such as SKIG [Liu and Shao, 2013] and ChaLearn IsoGD [Wan et al., 2016],
they are not suitable to perform gesture recognition on real-life situations, in which
there exists a fluid conversation that is less and less dependent on any control over
the communication scenario [Song et al., 2012]. In this sense, to handle unsegmented
gesture videos, a different task shows to be relevant: the gesture detection.

Gesture detection or gesture temporal detection [Molchanov et al., 2016] is related
to the limiting of the start and the end of a gesture in an unsegmented video, i.e.,
videos contemplating multiple gestures. This task corresponds to the marking of the
frame interval comprised by this gesture. Despite simulating a real-life scenario (i.e.,
unsegmented stream of data), few approaches tackle temporal detection due to its
high complexity. The assignment of the label gesture or no-gesture to each frame
is a difficult task since the positive class (i.e., gesture) tends to present a very high
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intraclass variation and the negative class (i.e., no-gesture) tends to suffer from the lack
of standard postures, producing inconsistent behavior among users and even similarities
with the gesture class [Molchanov et al., 2016; Pigou et al., 2017]. In addition, it is
important to take into account the existence of three temporal phases on the gestures:
preparation, nucleus and retraction. The nucleus, the central part of the gesture,
is associated with motion and postures executed by the performer that characterize
each gesture. In turn, preparation and retraction are transition phases that involve
assuming a posture to start the gesture or going to relax postures, respectively. While
the nucleus is the discriminative phase [Gavrila, 1999], the other two phases can be
quite similar for different gesture classes and hence less useful or even detrimental
to accurate classification, just representing transitions between no-gesture frames to
gesture frames and vice-versa.

4.3.1 Proposed Model

To deal with unsegmented videos, we propose a model, named Multi-Loss Recurrent
Residual Network (MLRRN), which performs gesture detection and recognition at once.
This model presents three main characteristics:

Recurrent layers: As aforementioned, gestures present a well-structured time dispo-
sition of events, making room for an efficient application of recurrent models. Since
state-of-the-art results are mostly achieved by these models and we intend to handle
unsegmented videos, recurrent layers are extremely suitable for this task. With re-
current layers, our model is able to extract long-term dependencies and to establish
relations between different frames of the input.
Frame-level input: MLRRN model was developed with a frame-level input, i.e., the
input corresponds to one frame of the video per timestep. However, to provide local
temporal information, for each frame we present to the model, we also provide the
previous and the next four frames, producing a 9-frame tensor.
Multi-task (Detection and Recognition): Our model outputs labels for each frame
of a video, performing both detection and recognition tasks at once. These tasks present
a complementary behavior and when considered in a jointly way, they enhance the
outcomes of the other. The detection task, for instance, gives a negative response for
no-gesture frames, evidencing that these frames can not be associated with any class of
recognition task. In turn, the recognition task emphasizes transition frames, revealing
margins of gestures and no-gesture intervals. Thus, we developed a multi-task model
to perform both tasks at once. Figure 4.7 illustrates the pipeline of MLRRN, with
steps ranging from the video input providing to the network, to the class and detection
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predictions. Sections 4.3.1.1 and 4.3.1.2 discuss the steps of the method.

Figure 4.7: MLRRN pipeline.

4.3.1.1 Input

The main input of the MLRRN consists of individual frames of a video sequence.
For each time offset (timestep), a next frame from the sequence is fed to the model.
However, instead of using the raw RGB frame, we extract activations from the fully
connected layer 7 (fc7 ) of VGG-16 trained on the ImageNet, with the aim of producing
a spatial description of every frame. This feature contains 4, 096 dimensions and was
reshaped to a 64x64 representation before feeding our model (model spatial input).
With this network, we achieved better outcomes than with the adding of spatial layers
to the model, leading to a reduction on the number of parameters and a model that is
less prone to overfitting, with lower training data requirement and easier convergence.
As showed in Figure 4.7, we consider a secondary input (model joint input). This input
corresponds to human body joints computed with the OpenPose technique [Cao et al.,
2017], which provides coordinates of several joints of the human body. This information
is used to produce a pose signature of individuals that are performing gestures on the
video. Although human joints are provided by some gesture datasets, such as ChaLearn
Montalbano [Escalera et al., 2014], we incorporated a pose estimation technique into
our method, with the aim of making MLRRN applicable in different scenarios and
datasets, even in those that do not provide joint coordinates.
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4.3.1.2 MLRRN Model

The Multi-Loss Recurrent Residual Networks (MLRRN) is a multi-task architecture
that performs two different tasks: gesture temporal detection and gesture classification.
Since the inputs of the architecture are frames of a video, detection and classification
labels are generated for each frame, considering both losses of the model, as depicted
in Figure 4.7.

The first aspect to notice on MLRRN model is the Spatial Input. This input
receives the spatial representation of VGG-16 network from every frame. However,
instead of only using one frame at once, MLRRN takes into account the previous and
subsequent frames, empirically determined as a 9-frame input for every frame of the
video. For each new timestep, a 1-frame offset is performed and the current frame is
updated, followed by the gathering of four previous and next frames in relation to this
new current frame, as illustrated in Figure 4.8. According to this strategy, the first
and last four frames of a video are never considered as the main input, but are used as
auxiliar inputs for adjacent frames.

Figure 4.8: Input of MLRRN for different timesteps.

The second block of MLRRN model is called Multi-scale Spatial Convolutions.
This block is represented by many spatial convolutional layers that consider different
filter dimensions. As a consequence, information from different scales is gathered. In
addition, this multi-scale block intends to mitigate the fact that MLRRN performs
convolutions over fully-connected activations (reshaped to 64x64) from VGG-16. We
enforce a spatial relation that is spread over the fully-connected representation and,
with these convolutions considering different scales, we tend to better capture infor-
mation from that. At last, it is important to mention that these convolutions are
performed over each frame information (activations from current and auxiliary frames)
isolated. The goal is to increase the capacity of the model at this point, produc-
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ing richer representations from each frame separately, which contributes to provide
wealthier information about frame appearance differences along the input frames for
each timestep.

The next block is the Tensor Assembling. On this block, feature maps obtained
from convolutional layers of individual frame responses are concatenated in different
ways. Consequently, a tensor is produced by each combination of these maps, allowing
the performing of spatiotemporal convolutions, since the maps from different frames
represent a time variation on the input. Figure 4.9 illustrates the combinations that are
performed and tensors produced from MLRRN inputs. One could notice that feature
maps are produced from convolutions performed over activation responses of VGG-16.
After that, 3-depth and 9-depth tensors are created, from which spatiotemporal (3D)
convolutions are performed. At the end, responses of convolutions over all tensors are
concatenated and propagated through the network.

Figure 4.9: Assembling of tensors on the MLRRN architecture.

After creating the tensors and performing spatiotemporal convolutions, residual
blocks are employed in MLRRN. These blocks, adapted from the research proposed
by Pigou et al. [2017] and depicted in Figure 3.6(b), are important to maintain the
gradient in a deep network, such as MLRNN. In addition, they allow the employment
of operations, mostly convolutions, over representations with lower and higher degree
of semantics.

The bi-recurrent layer is the next one on MLRRN model. This layer is crucial to
explore the well-defined temporal behavior of gestures. In addition, with this layer, it
is possible to obtain a response for each frame taking into account the high dependency
that exists in relation to other frames. In the case of MLRRN, a bi-recurrent layer is
employed, what leads to the gathering of information from previous and future frames.
According to our tests, showed in Section 6.2.2, bi-LSTM layers presented better results
than vanilla RNNs or GRUs, which is expected due to the long-term dependency that
exists between a frame and its previous and future instances. Finally, the secondary
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input of the model (human joints) is concatenated to the representation obtained from
residual blocks, being both fed to this recurrent layer.

At the end, the MLRRN model presents a stack of fully-connected layers that
act over the recurrent representation. These layers result in two output layers, one
responsible for the class prediction (output is the label of a frame considering gesture
classes) and the other responsible for the temporal detection (determines if a frame
is part of a gesture or not). The complete MLRRN model is showed in Figure 4.10.
One can notice that the outputs of the model are a binary and a (n+1)-class softmax
layers, which apply binary and categorical cross entropy loss functions, respectively.
The binary output corresponds to temporal detection, classifying frames as gesture
and no-gesture. The other output has its dimensionality associated with the number
of gesture classes of the dataset added by one. This addition of an extra class regards
the existence of the no-gesture class also for this output. However, this class receives
no-weight on the training of the model.
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Chapter 5

Challenges and Benchmarks
Addressed

Different benchmark datasets are used on gesture recognition and provide, along with
data and their corresponding labels, evaluation protocols that aid to standardize out-
comes of researches on this field.

This chapter introduces the datasets we used in this dissertation, including in-
formation such as number of classes, amount of training and testing videos and the
challenges provided by each of them.

5.1 SKIG dataset

The Sheffield Kinect Gesture (SKIG) dataset [Liu and Shao, 2013] is a public video
dataset commonly used by gesture recognition approaches. SKIG is composed of ten
different gesture classes disposed in 2, 160 videos, of which 1, 080 are RGB and the
1, 080 remaining are their corresponding depth sequences, all captured with Kinect
sensors. The gesture classes are: circle (clockwise), triangle (anti-clockwise), up-down,
right-left, wave, Z, cross, come here, turn-around, and pat, as depicted in Figure 5.1.

SKIG videos present a spatial resolution of 720x480 pixels. The dataset classes
are balanced, with each one comprising 216 samples (108 RGB and 108 depth videos).
To incorporate diversity, videos are recorded with six different subjects, under two
illumination conditions (poor and strong light) and with three different backgrounds
(wooden board, white plain paper and paper with characters). Since the authors did
not establish a protocol on this dataset, gesture recognition approaches usually employ
a 3-fold cross validation, as described by Zhang et al. [2017].

45
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Figure 5.1: Different gesture classes of the SKIG dataset. RGB and corresponding
depth videos are provided [Liu and Shao, 2013].

Although simple, SKIG includes challenges regarding the variations in terms of
gesture execution of different performers, illumination variation and background clut-
tering. As a result, this dataset is employed by gesture recognition approaches, being
widely used to estimate model hyperparameters.

5.2 ChaLearn Looking at People IsoGD dataset

ChaLearn Looking at People Isolated Gestures (ChaLearn LAP IsoGD) [Wan et al.,
2016] is a public dataset composed of 47, 933 RGB and the same amount of correspond-
ing depth videos. Each video is related to a single human gesture, belonging to 249

different classes. ChaLearn videos present a varied spatial resolution and length, with
long (about 100 frames) and short (about 12 frames) videos. To incorporate diversity,
ChaLearn videos are performed by 21 different subjects, under different light conditions
and with different backgrounds. Figure 5.2 presents frames from ChaLearn videos and
their depth correspondences.

Due to the huge number of videos, classes and high variability, ChaLearn LAP
IsoGD is a challenging dataset. In addition, the dataset classes are not balanced and
recognition methods need to be robust to this issue to efficiently handle the dataset.

ChaLern IsoGD presents a standard evaluation protocol, with three mutually
exclusive subsets, used for training, validating and testing models. The number of
videos for each subset is showed in Table 5.1.
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Figure 5.2: Frames from ChaLearn LAP IsoGD videos and their depth correspon-
dences [Wan et al., 2016].

Table 5.1: Number of videos on Training, Validation and Test subsets of ChaLearn
LAP IsoGD.

Labels Gestures RGB videos Depth videos Performers

Training 249 35,878 35,878 35,878 17

Validation 249 5,784 5,784 5,784 2

Testing 249 6,271 6,271 6,271 2

5.3 ChaLearn Montalbano Multimodal Gesture

Recognition

ChaLearn Montalbano Multimodal Gesture Recognition (ChaLearn Montalbano) [Es-
calera et al., 2014] is a public dataset composed of 940 RGB, depth and user-segmented
videos. Differently from ChaLearn LAP IsoGD, this dataset simulates a continuous
recognition scenario, with each video containing multiple gestures, resulting in more
than 14, 000 gestures from 20 Italian sign gesture categories. Figure 5.3 depicts a frame
from a video of the ChaLearn Montalbano dataset, along with its depth correspondence,
user-segmentation and skeleton annotation1.

Despite not encompassing many gesture classes, ChaLearn Montalbano is a chal-
lenging dataset, since approaches need to temporally detect gestures before performing
their recognition, i.e., they need to determine the frame interval in which a gesture
occurs before assigning its class label. Consequently, ChaLearn Montalbano is used as
an initial dataset for gesture detection/recognition approaches, for which the temporal

1Despite stating that skeleton annotations are provided, one could notice that many annotations
are missing and present wrongly annotated coordinates.
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Figure 5.3: Frames from ChaLearn Multimodal Gesture Recognition videos and their
depth, user segmentation and skeleton correspondences.

Jaccard is used as main evaluation metric besides the recognition accuracy. The am-
plitude of Temporal Jaccard is computed by Amplitude(Js,n) =

As,n∩Bs,n

As,n∪Bs,n
, where As,n is

the ground truth of gesture n at sequence s and Bs,n is the prediction of such gesture
at sequence n.

On ChaLearn Montalbano, gestures are separated by intervals of frames in which
the performers relax, being associated with none of the 20 classes of the dataset (no-
class frames). In terms of evaluation, it designates a similar protocol to ChaLearn
LAP IsoGD [Wan et al., 2016], with mutually exclusive training, validation and testing
subsets. Table 5.2 shows the number of videos on each subset.

Table 5.2: Number of videos on Training, Validation and Testing subsets of ChaLearn
Montalbano Multimodal Gesture Recognition.

Labels RGB videos Depth videos Performers

Training 20 470 470 20

Validation 20 230 230 20

Testing 20 240 240 20

5.4 ChaLearn Looking at People ConGD dataset

ChaLearn Looking at People Continuous Gestures (ChaLearn LAP ConGD) [Wan
et al., 2016] is a public dataset that is analagous to the previously mentioned ChaLearn
IsoGD. The main difference between these datasets is that ChaLearn ConGD videos
contain multiple gestures, leading approaches to perform temporal detection before
recognition.

ChaLearn CongGD regards 249 different classes, distributed in 22, 535 videos.
Similarly to IsoGD, this dataset presents a standard evaluation protocol with mutually
exclusive training, validation and testing splits, with the amount of videos in each split
showed in Table 5.3, along some dataset characteristics.
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Table 5.3: Number of videos on Training, Validation and Testing subsets of ChaLearn
LAP ConGD.

Labels Gestures RGB videos Depth videos Performers

Training 249 30442 14314 14314 17

Validation 249 8889 4179 4179 2

Testing 249 8602 4042 4042 2

ChaLearn ConGD presents all challenges of its isolated version, with the addition
of the necessity of temporal detection of gestures. This dataset is considered one of the
most important benchmarks for continuous gesture recognition, presenting videos with
high variability. Differently from ChaLearn Montalbano, ChaLearn ConGD dataset
is annotated with no intervals (no-class frames) between gestures, with a 1-frame dif-
ference between gesture annotations. Figure 5.4 shows frames of ChaLearn ConGD
videos.

Figure 5.4: Frames from ChaLearn ConGD videos. Different subjects are performing
the gestures, under different illumination conditions and viewpoints.



Chapter 6

Experimental Results

In this chapter, we present the experimental results obtained with our proposed ap-
proaches: MORA, SALMORA and MLRRN. All approaches are evaluated in widely
employed gesture recognition datasets. In the case of MORA and SALMORA,
SKIG [Liu and Shao, 2013] and ChaLearn IsoGD [Wan et al., 2016] are used as bench-
marks. MLRRN, however, is evaluated in ChaLearn Montalbano [Escalera et al., 2014]
and ChaLearn ConGD [Wan et al., 2016], both considered challenging datasets for the
gesture detection and recognition tasks.

The results will be presented in the following order: First, MORA and SALMORA
outcomes will be presented along with their corresponding discussions, followed by ML-
RRN results. To place our approaches in literature, we carefully followed the proto-
cols determined by each dataset guidelines, making our outcomes comparable to other
methods.

6.1 MORA and SALMORA Evaluation

In this section, we describe the experimental results obtained with MORA and
SALMORA for the gesture recognition problem, comparing their results to literature
approaches.

6.1.1 Experimental Setup

The SKIG dataset [Liu and Shao, 2013] was used as an initial benchmark for MORA.
We followed the protocol proposed by Zhang et al. [2017], consisting in a 3-fold cross
validation, with specific parts for training, validating and testing the approach. SKIG
validation subsets served as the basis for the setting of the initial hyperparameters of

51



52 Chapter 6. Experimental Results

MORA. The starting configuration of each layer, depicted in Figure 4.3, was determined
through tests on these subsets.

MORA models are autoencoders used to reconstruct the input data. Conse-
quently, some care had to be taken on the assembling of this initial architecture. It
was important, for example, not to stack layers with a large difference in number of
parameters [Szegedy et al., 2015] (number of feature maps, for instance). Besides, pro-
ducing very low-dimensional representations could lead to high reconstruction errors,
hindering the minimization of the loss function. In MORA, GRU layers are preferred
in relation to LSTM. This choice is justified by the fact that this type of recurrent layer
is able to extract relevant information from data that presents a well-defined temporal
structure. LSTMs are also capable of such extraction, however, they have a larger
number of parameters to be adjusted and tend not to behave well when a small set
of input data is available [Greff et al., 2015]. This assertion was confirmed by tests
considering the validation subsets of SKIG, for which the employment of a GRU layer
provided better outcomes than LSTM.

As a final step, to improve the performance of the method, hyperband algo-
rithm [Li et al., 2016, 2017] was used to adjust the hyperparameters associated with
each of the 10 models trained on the dataset. For each MORA autoencoder, a set of
hyperparameters was adjusted with the aim of enhancing the results. The architecture
depicted in Figure 4.3 was used as a starting point, from which we executed hyperband
(max− iter = 18 and eta = 3) to adjust the hyperparameters. The hyperband search
space is shown in Table 6.1, for which v1, v2 and v3 represent the possible values a
hyperparameter can assume.

Table 6.1: Hyperband search space for MORA approach. (Enc.), (Dec.), and (Rec.)
Layer Factor represents an increase on the number of feature maps for layers on En-
coding, Decoding and Recurrent layer of the autoencoders, respectively. Layer Growth
stands for an addition or removal of a convolutional layer on encoding and decoding
parts of the models.

v1 v2 v3
Weight Initializer normal uniform glorot normal

Optimizer RMSProp Adam Adagrad
Enc. Factor 0.75 1.00 1.50
Dec. Factor 0.75 1.00 1.50
Batch Size 4 9 16

Rec. Layer Factor 0.75 1.00 1.50
Layer Growth Removal Addition Preserve

Loss mean absolute error mean squared error -

In terms of SALMORA, the extension of MORA, a skin detection task was incor-



6.1. MORA and SALMORA Evaluation 53

porated to the models by a new branch created over the autoencoders, as illustrated in
Figure 4.4. The hyperparameters of these models followed the arrangement obtained
with the execution of hyperband for MORA models, with the addition of the layers
to detect skin. To train the skin output of this new architecture, it was necessary to
perform the skin rotulation of the employed datasets, SKIG and ChaLearn IsoGD. To
accomplish that, we assembled the skin detection model, represented in Figure 6.1 and
trained on the Pratheepan dataset [Tan et al., 2012], which provides images and their
corresponding skin maps, as shown in Figure 6.2. To detect skin, the model receives
an image in RGB, HSV and YCbCr color models, and outputs a skin map with skin
probability for each image pixel.

Figure 6.1: Model for skin detection in images. Layers employ ReLU (blue) and
Sigmoid (purple) activations. On the bottom part of the Figure, the structure of
Encoding Layers block is illustrated.

On the discriminative step of SALMORA, described in Section 4.2.2, a binary
classifier was incorporated to the models using the Large-margin softmax loss [Liu and
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Figure 6.2: Images and their corresponding skin maps from Pratheepan dataset [Tan
et al., 2012].

Liu, 2016]. To compensate the class-imbalance for this classifier, since it separates
instances from a single gesture class (SKIG contains 10 gesture classes, for example)
from the remaining samples (and classes) of the dataset, a balance coefficient is com-
puted. This coefficient is based on the occurrence of this gesture class in comparison
to the remaining classes of the dataset, equalizing the contribution of the two classes
considered by this binary classifier.

To train MORA and SALMORA models, the learning rate was experimentally
set to 0.001. All convolutional layers of the presented architectures employ ReLU
activation, except for the last ones shown in Figures 4.3 and 4.4, which employ sigmoid
activation. The GRU layer uses a sigmoid activation for the output and a hard sigmoid
for the recurrence.

6.1.2 Evaluating on the SKIG Dataset

The first dataset to evaluate MORA and SALMORA was the SKIG dataset. The initial
step was the adjustment of SKIG videos to our models. As aforementioned, MORA
and SALMORA models present a recurrent layer to deal with four different timesteps.
For each timestep, 8-frame clips (RGB frames, Farneback Optical Flow and Depth) are
used as inputs. In the case of SKIG, videos were uniformly sub-sampled to contain 32
frames and, consequently, four timesteps.

Since SKIG comprises ten gesture classes, it is necessary to train ten MORA
autoencoder models, each one representing a class of the dataset and trained to mini-
mize the reconstruction error for inputs of its respective class. On test, the model that
presents the lowest reconstruction error, considering the multiple inputs and outputs,
indicates the class. The first test conducted on SKIG was based on the employment
of the original MORA models depicted in Figure 4.3, without hyperparameter adjust-
ment with Hyperband. With this configuration, MORA obtained an average accuracy
of 93.61%. After adjusting the hyperparameters and retraining the models, MORA
obtained 93.80% as average accuracy. The small difference between these results can
be associated with the fact that the original MORA models, depicted in Figure 4.3,
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had their architecture assembled through experiments on validation subsets of SKIG
and, consequently, it was expected that these configurations would achieve accurate
performances on the dataset.

Table 6.2 shows the selected values from the search space used to determine hy-
perparameters for the SKIG dataset. Since MORA employs a different model for each
class, hyperband had to be executed for each model, turning the setting of hyperparam-
eters into a time-costly operation. This issue emphasizes the importance of a starting
architecture, responsible for limiting the search space and reducing the time spent at
this stage of the approach.

Table 6.2: Hyperband determined parameters for each model of SKIG dataset. *De-
spite the hyperband indication for MAE as the loss function for model 5, MSE was used
to not create any discrepancy between the error computation for the reconstruction of
this model and the remaining ones.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model 10
normal uniform normal uniform uniform uniform normal uniform uniform uniform

RMSProp Adagrad RMSProp Adam Adagrad RMSProp RMSProp RMSProp Adam RMSProp
1.0 1.5 1.0 1.5 1.5 0.75 1.0 1.0 1.5 1.0
1.0 1.0 1.0 1.5 1.0 1.5 1.5 1.0 1.0 0.75
16 16 9 16 4 16 16 9 4 9
1.0 1.5 1.5 1.0 1.0 1.0 1.0 1.5 1.0 1.0

Addition Addition Addition Preserve Removal Addition Preserve Addition Addition Addition
MSE MSE MSE MSE MAE* MSE MSE MSE MSE MSE

In a consecutive experiment, activations of the convolutional layer 10 (shown
in Figure 4.3) were associated with a 15 hidden neurons multilayer perceptron clas-
sifier. The application of this classifier tends to enforce discriminative characteristics
of learned representations. Since the autoencoder models are not discriminative, it
is expected that outcomes from a classification model would surpass the ones purely
obtained with reconstruction error. It is worth mentioning that this experiment claims
for the application of a very simple and cheap-to-train classifier, with almost no impact
on scalability. Differently from a deep classification model that aims at learning dis-
criminative features over the input data, this simple classifier intends to separate data
considering features already learned by autoencoder models, a much faster process.
Thus, to correctly produce feature vectors representing videos without any bias, the
activations of all ten models were concatenated to compose the vector for each video.
Since the chosen layer employs a ReLU activation and models are trained to generate
a response only for the class they are trained, the obtained vector is extremely descrip-
tive and sparse. Then, the use of a simple classifier was enough to achieve an accuracy
of 97.20% for original MORA models and 97.31% for models with hyperparameter
adjustment.

Regarding SALMORA, the first conducted experiment considered the incorpora-
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tion of the skin task to MORA models, leading to a performance improvement, with
the approach achieving an average accuracy of 97.87%. This result can be justified by
the higher focus given on the reconstruction of the subject performing the gesture, to
the detriment of the background reconstruction. Since this background is common to
several gestures, its reconstruction is not useful to properly characterize the dataset
classes. Figure 6.3(a) shows a frame of a video of SKIG dataset, with MORA recon-
struction without (b) and with (c) the skin task. Both models were trained for 25

epochs. A better reconstruction of the subject’s arm is noticeable after incorporating
the skin task.

(a) (b) (c)

Figure 6.3: (a) Frame of a video of SKIG dataset. (b) MORA reconstruction without
skin task. (c) MORA reconstruction with skin task.

At last, to complete SALMORA pipeline, weights are frozen and the binary clas-
sifier, showed in Figure 4.5, is attached to convolutional layer 10 of the models. The
employment of this discriminator reduces the scalability of the approach, since it is
trained with all gesture instances of the dataset for each MORA model. To reduce this
negative impact on scalability, we trained this composition MORA + discriminator for
only ten iterations. After that, the discriminator was removed, weights were unfrozen
(except for convolutional layer 10) and the models were trained once again to minimize
reconstruction error for their respective classes. As a result, the approach obtained
99.25% as average accuracy and, after training with the Large-margin Softmax loss
(m = 2) [Liu and Liu, 2016], it reached 99.53%. This experiment suggests that per-
forming this discriminative step on MORA’s pipeline increases the distance between
the representation of autoencoder models, which helps to recognize gestures using the
reconstruction error as criterion. In addition, tuning the weights of a single layer (a
middle layer of the model) for few iterations is enough to enhance the outcomes of
the approach. Tests associating more than one layer with the discriminator produced
less accurate results, mostly due to the significant increment of the reconstruction er-
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Table 6.3: Accuracies of different approaches applied to the SKIG dataset.

Approach Acc (%)

Results

RGGP+RGB-D [Liu and Shao, 2013] 88.70
4DCOV [Cirujeda and Binefa, 2014] 93.80
Depth Context [Liu and Liu, 2016] 95.37
Tung and Ngoc. [Tung and Ngoc, 2014] 96.70
D3D-LWDM. [Azad et al., 2019] 97.31
MRNN [Nishida and Nakayama, 2016] 97.80
3DCNN+RNN+CTC [Molchanov et al., 2016] 98.60
Li et al. [Li et al., 2018b] 99.05
Zhang et al. [Zhang et al., 2017] 99.53
Imran and Raman. [Imran and Raman, 2019] 98.24
Li et al. [Li et al., 2019] 100.00

Our Results MORA reconstruction 93.61
Hyperband MORA reconstruction 93.80
MORA activations + 15N MLP 97.20
Hyperband MORA activations + 15N MLP 97.31
MORA reconstruction + skin 97.87
SALMORA (custom loss) 99.25
SALMORA (large-margin) 99.53

ror for all models. Figure 6.4 depicts the disposition of MORA representations for
samples of different classes of SKIG dataset, considering a model trained for class 1.
These representations were obtained through the application of PCA (2 components)
on activations of the last convolutional layer before the outputs of the models showed
in Figures 4.3 and 4.4. A very similar behavior was noticed on models representing
the remaining classes. In Figure 6.4, the representations for some samples of different
classes were close to each other and even intersecting for MORA without the discrim-
inative step (a). With this step, the representations are spread and intersection zones
were reduced (b). At last, with the employment of a large-margin loss, no intersection
can be perceived (c).

Table 6.3 shows the results achieved by several methods on the SKIG dataset.
MORA reaches high accuracies, being comparable to state-of-the-art methods, with
SALMORA matching the approach of Zhang et al. [2017], the second best reported on
the database. It is important to mention that all results presented on Table 6.3 are
based on the same evaluation protocol, making their outcomes fairly comparable.

Several approaches reach accuracies next to 99% on SKIG, evidencing the satu-
ration of the database. However, it is important to evaluate MORA and SALMORA
on this dataset to check some points. First, since SKIG is a 10-class balanced dataset,
the advantages of MORA are not that evident. It would be interesting to check the
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(a) (b)

(c)

Figure 6.4: (a) Disposition of features from MORA models. (b) Disposition of features
from MORA models after using a discriminator with custom binary-crossentropy loss.
(c) Disposition of features from MORA models after using a discriminator with Large-
margin softmax loss (m=2).

results obtained by the method in an unfavorable scenario. However, despite being
surpassed by other approaches, when the complexity of models is considered besides
the consequences of training a huge number of parameters, MORA shows to be valu-
able even when considering the outcomes obtained with only the reconstruction of



6.1. MORA and SALMORA Evaluation 59

inputs. In addition, MORA is scalable in terms of number of classes, an advantage in
this context. The approaches that surpassed MORA in terms of accuracy present a
much higher complexity/capacity and sophisticated fusion techniques to obtain these
outcomes. Second, incorporating an attention mechanism based on skin led to a huge
improvement on MORA results, with its accuracy being superior to the activations
associated to a MLP classifier. Third, enhancing a discriminative behavior in a sin-
gle layer promoted a huge impact on the recognition of the approach, boosted by
the employment of a large-margin loss. Even deteriorating the scalability aspect of
the approach, a huge improvement was obtained with few extra training iterations.
Fourth, furthermore, since the employed protocol for SKIG dataset does not demand
the computation of dispersion metrics and/or significance tests, it is difficult to as-
sert the superiority of the state-of-the-art method, proposed by Li et al. [2019], over
SALMORA.

6.1.3 Evaluating on ChaLearn IsoGD

To evaluate MORA on ChaLearn IsoGD [Wan et al., 2016], it was necessary to adjust
the dataset videos to be suitable to the models. Similarly to SKIG, ChaLearn IsoGD
videos were sub-sampled and divided into four timesteps. Since ChaLearn videos are
very short when compared to SKIG ones (some videos present only 13 frames), the
sub-sampling produced 12-frame videos and each timestep is related to a 3-frame clip.

The experiments on ChaLearn IsoGD dataset intend to evaluate MORA’s be-
havior on a large class-unbalanced scenario. Thus, it is possible to analyze whether
the reconstruction error of recurrent non-discriminative models provides enough in-
formation to separate a large number of classes, besides the robustness of MORA to
class imbalance. In addition, we could analyze the improvement of accuracy resultant
from the application of discriminative steps on MORA pipeline, with the employment
of a classifier associated with activations of the autoencoders; and with SALMORA
discriminative stage.

The first experiment conducted on ChaLearn IsoGD is related to the training and
testing of 249 autoencoders, one for each dataset class. In this experiment, a 56.37%

average accuracy was obtained. After that, hyperband was used to compute the best
set of hyperparameters considering the search space showed in Table 6.1. Executing
Hyperband is a time-costly operation and, performing it for all 249 classes of ChaLearn
IsoGD would be very expensive in terms of time and machine processing. Instead of
performing Hyperband for every model of the dataset, we randomly selected 20 models
(classes) and computed the most voted set of hyperparameters, applying this set to all
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models of the dataset. The most voted set of hyperparameters is showed in Table 6.4.
The accuracy of MORA was increased to 57.01%.

Table 6.4: Most voted set of hyperparameters with Hyperband for ChaLearn IsoGD.

Most voted
Weight Initializer uniform

Optimizer RMSProp
Enc. Factor 1.0
Dec. Factor 1.0
Batch Size 16

Rec. Layer Factor 1.5
Layer Growth Addition

Loss MSE

Following the experiments conducted on SKIG, we associated the activations of
convolutional layer 10 with a cheap 50-neurons Multilayer Perceptron classifier. In
addition, we performed the steps of SALMORA, with the incorporation of skin task
and employment of a classifier to tune weights of the model. Table 6.5 shows MORA
outcomes and reference methods on the dataset. MORA accuracies are comparable
to state-of-the-art methods, with SALMORA being surpassed only by the FOANet
method proposed by Narayana et al. [2018]. It is important to mention that FOANet
employs a different set of inputs, providing to their model information from RGB,
optical flow and depth, besides the pose estimation, computed with OpenPose [Cao
et al., 2017], and coordinates of the hands of the subject performing the gesture.

The SALMORA results showed in Table 6.5 are based on the employment of a
different classifier to tune the weights of each of the 249 autoencoder models trained
for ChaLearn IsoGD. Despite the accurate outcomes, this operation is expensive, since
every classifier needs to handle the whole dataset to separate each class from the
remaining ones on ChaLearn IsoGD. Consequently, even considering few iterations
(ten) for this classifier, the time-to-train scalability appeal of MORA is crumbled.

To reduce the impact on scalability, we conducted additional experiments consid-
ering the training of the classifier with less classes of the dataset. On this experiment,
the most confused classes on the validation subset of ChaLearn IsoGD were selected
and a classifier was associated only with the models related to these classes. Two train-
ing modalities of this classifier were employed: (i) differentiating the selected classes to
increase only the distance between them, i.e., if ten classes are selected, the classifier
intends to discriminate between these ten classes (intra modality); and (ii) the classi-
fier intends to separate selected classes from all remaining ones of the dataset (inter
modality). After training the classifier and tuning the weights of selected models, all
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Table 6.5: Accuracies on the test subset of the ChaLearn IsoGD dataset.

Approach Acc (%)

Results Pyramidal C3D. [Zhu et al., 2016] 50.93
MMFTSN [Zheng et al., 2019] 60.02
Zhang et al. [Zhang et al., 2017] 62.14
GL-PAM. [Li et al., 2018a] 67.02
2SCVN-3DDSN. [Duan et al., 2016] 67.26
C3D+Spt. Attention. [Li et al., 2019] 68.14
FOANet [Narayana et al., 2018] 82.07

Our Results MORA reconstruction 56.37
Hyperband MORA reconstruction 57.01
MORA reconstruction + skin 57.12
MORA activations + 50N MLP 66.16
Hyperband MORA activations + 50N MLP 66.28
SALMORA (custom loss) 68.96
SALMORA (large-margin) 69.44

Table 6.6: SALMORA recognition accuracy considering a variable amount of selected
classes associated to the classifier. These experiments considered the Large-Margin
Softmax Loss [Liu and Liu, 2016] and inter and intra modalities.

Classifier Epochs 10 30 50 Classifier Epochs 10 30 50
10 Classes (inter) 68.89 68.71 68.90 10 Classes (intra) 68.68 68.96 68.83
30 Classes (inter) 69.14 69.14 69.18 30 Classes (intra) 68.84 68.93 69.12
60 Classes (inter) 69.29 69.30 69.34 60 Classes (intra) 69.14 69.16 69.21
120 Classes (inter) 69.38 69.38 69.36 120 Classes (intra) 69.27 69.30 69.31
180 Classes (inter) 69.38 69.42 69.41 180 Classes (intra) 69.30 69.30 69.28
249 Classes (inter) 69.44 69.36 69.44 249 Classes (intra) 69.44 69.36 69.44

249 the models were trained again to minimize the reconstruction error. Table 6.6
shows the outcomes of this experiment and also presents the recognition accuracy for a
higher number of iterations on the training of the classifiers. The impact of the number
of iterations and even of the number of selected classes is not that relevant, making it
possible to use a low number of selected classes, obtain accurate outcomes and preserve
most of the time-to-train scalability of the approach.

6.1.4 Evaluating Time-to-Train Scalability on ChaLearn IsoGD

Finally, we performed an experiment to evaluate MORA’s time-to-train scalability as
a function of the number of gestures. This experiment consists in the application of
MORA (original architecture depicted in Figure 4.3) on 50 randomly selected classes
from the ChaLearn IsoGD dataset. The validation subset of ChaLearn was consid-
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ered and an increasing number of gestures was employed, with their accuracies being
shown on Figure 6.5. In addition, the accuracy of a widely employed gesture/activity
recognition classification model (C3D [Tran et al., 2015]) is also shown.

Figure 6.5: Accuracy on 50 classes of Chalearn.

According to the results, the accuracy drop obtained with MORA outcomes shows
a soft behavior. In contrast, the C3D model shows a high accuracy for the first test
(ten gestures), but much lower values on the subsequent ones. This behavior can be
associated with the following aspects: (i) C3D model is a classification (discrimina-
tive) network and it is highly impacted by class imbalance, which is more evident
when a higher number of classes is considered; (ii) differently from MORA, C3D is a
fixed-capacity model. Thus, the same architecture was employed for all tests, with no
variation on the number of parameters, while MORA’s capacity scales according to the
number of classes. It is important to notice that MORA with activations employs a
custom Multilayer Perceptron classifier, which is susceptible to class imbalance. How-
ever, since the features used by this classifier were learned in an unsupervised way, the
impact of class imbalance is reduced.

Table 6.7 lists a set of parameters from MORA and C3D models, obtained with
tests on a NVIDIA GeForce GTX 1060M. According to the table, MORA employs
a variable number of parameters depending on the task and presents a low time re-
quirement regarding the addition of a new class (i.e., new gesture). In addition, even
presenting higher accuracy outcomes than C3D, MORA is, for most cases, a much
less complex model and presents a lower time per iteration for training. Even though
MORA’s complexity is similar to C3D for the classification of 50 gestures, the advan-
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Table 6.7: Comparison between MORA and a discriminative model (C3D) for tests on
ChaLearn IsoGD.

MORA C3D
Number of Parameters 2.7M per model 111M1

Average Time per Epoch (minutes) 4.892 7.83
Average Time to insert new class (minutes) 75 12633

Time to Train
Custom Classifier (minutes)

8 (10 gestures) Not required
13 (20 gestures)
15 (30 gestures)
20 (40 gestures)
24 (50 gestures)

tage of the present approach relies on incremental growth on number of parameters,
which improves the capacity of MORA depending on the number of classes. Finally,
the cost of inserting a discriminative classifier is also presented, evidencing the low
impact on MORA’s scalability, since the cost to train this network is very low.

6.2 MLRRN evaluation

To evaluate MLRRN, experiments are conducted on ChaLearn Montalbano [Escalera
et al., 2014] and on ChaLearn CongGD [Wang et al., 2016] datasets. For both, detection
and recognition of gestures are performed following the standard evaluation protocols.

6.2.1 Experimental Setup

Most parameters of the MLRRN architecture (illustrated in Figure 4.10), such as the
choice for a bidirectional LSTM layer, the employment of residual modules and activa-
tion function of layers, were determined by tests on the validation set of the ChaLearn
Montalbano [Escalera et al., 2014]. However, since ChaLearn ConGD [Wan et al., 2016]
is a more complex dataset, containing more videos and gesture classes than SKIG, the
architecture depicted in Figure 4.10 was adjusted before conducting experiments on it,
with the insertion of one extra residual block and the increment of the number of fea-
ture maps in some layers. In addition, the output of the softmax layer, responsible for
the gesture recognition, had its size adjusted to contemplate the classes of ChaLearn
ConGD and the no-gesture class.

1This value is adjusted to receive ChaLearn videos as inputs.
2This average value represents the time to train 50 MORA models.
3Even with a similar time per epoch, C3D requires more iterations since it contains much more

parameters to be trained.
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MLRRN also had its hyperparameters adjusted by hyperband algorithm [Li
et al., 2016, 2017]. The initial architecture, manually assembled and depicted in
Figure 4.10(a), was used as a starting point, from which we executed hyperband
(max− iter = 18 and eta = 3) to adjust the hyperparameters. The hyperband search
space is shown in Table 6.8, with v1, v2 and v3 representing the possible values a
hyperparameter can assume.

Table 6.8: Hyperband search space for MLRRN approach. Conv. Factor represents an
adjustment on the number of filters on convolutional layers, while Rec. Layer Factor
stands for an adjustment of units on recurrent layer. ELU layer factor represents an
adjustment on the number of units on ELU layers.

v1 v2 v3
Weight Initializer normal uniform glorot normal

Optimizer SGD Adam Adagrad
Batch Size 32 50 64

Conv. Factor 0.75 1.00 1.50
Rec. Layer Factor 0.75 1.00 1.50
ELU Layer Factor 0.75 1.00 1.50

To train the model, the learning rate was experimentally set to 0.0001, considering
the validation subset of ChaLearn Montalbano. All convolutional layers of the model
depicted in Figure 4.3 employ ReLU activation (shown in blue), except for some on
residual blocks (shown in green), which employ ELU. LSTM and fully-connected layers
employ sigmoid activation (shown in purple). The initial model evaluated on ChaLearn
Montalbano contains 53.1Mi parameters while the one evaluated on ChaLearn ConGD
contains 60.2Mi parameters, both trained on a NVIDIA GeForce 1080Ti.

As aforementioned, the evaluation of MLRRN considered the average temporal
Jaccard metric, which takes into account both the accuracy of the network responses
and the overlap between the responses and ground-truth annotations.

6.2.2 Ablation Study of MLRRN

Since MLRRN is composed of several components, an ablation study shows to be valu-
able. Table 6.9 presents results obtained with the ablation evaluation of MLRRN on
ChaLearn Montalbano for recognition and detection tasks. The results obtained with
this study justified our choices on the assembling of the final architecture, evidencing
the contribution of the different modules incorporated in MLRRN. From this study,
some points need to be highlighted, as: (i) the huge impact of recurrent layers, indi-
cating the importance of temporal information and disposition of events for gesture
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recognition, (ii) the complementarity of appearance and skeleton (joints) inputs and
(iii) detection and recognition losses, with improvements obtained from the combi-
nation of them. Detection outcomes do not correspond to the final response of the
approach. Presenting them intends to highlight the improvement, even for this com-
plementary task, obtained with our multi-task strategy. A deeper evaluation of the
method is presented in the following sections.

Table 6.9: Ablation study performed on ChaLearn Montalbano dataset.

Approach variation Jaccard Score (recognition)

Results

Only appearance input 0.830
Only skeleton input 0.659
No residual blocks (skip-connections removed) 0.881
No recurrent layers 0.547
Single-directional recurrent layers 0.861
Only recognition task (no detection) 0.806
Full model 0.919
Approach variation Jaccard Score (detection)

Results Only detection task (no recognition) 0.949
Full model 0.982

6.2.3 Evaluating on ChaLearn Montalbano

MLRRN is an approach that relies on frame-level inputs. Consequently, it is not nec-
essary to perform any subsampling. For each frame, an RGB input tensor is assembled
along with the joint response of the technique of Cao et al. [2017]. In addition, once
MLRRN presents a bidirectional recurrent layer, it takes into account previous and
future frames to produce a response for every frame of the input. An important point
on this approach is the batch size, since it must be large enough to provide information
that reflects long-term dependency that exists between frames. However, the larger
this batch size, the higher must be the number of parameters of this recurrent layer,
leading to problems such as higher time to train and training data requirement, pro-
clivity to overfitting and struggling convergence. On ChaLearn Montalbano, a batch
size of 50 was initially used.

Since ChaLearn Montalbano comprises 20 gesture classes and one no-gesture
class, it was necessary to train a 21-class classification model for the recognition task.
For detection, this model acts as a binary classifier, outputting labels that indicate
whether a frame is part of a gesture or not. Based on that, we evaluated our approach
on the test subset of ChaLearn Montalbano, which provided frame-level recognition
accuracy of 96.87%. This accurate result led to a high average temporal Jaccard re-
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sponse, with the approach achieving a value of 0.914 in terms of the output of the
recognition task of the model. With the application of hyperband regarding the pa-
rameters showed in Table 6.10, the approach presented a lower recognition accuracy
and a lower average temporal Jaccard, with 96.12% and 0.896, respectively.

Table 6.10: Selected search parameters obtained with Hyperband for ChaLearn Mon-
talbano.

Selected Parameter
Weight Initializer uniform

Optimizer Adagrad
Batch Size 50

Conv. Factor 0.75
Rec. Layer Factor 1.00
ELU Layer Factor 1.00

Besides the results shown, we also executed a post-processing on MLRRN recogni-
tion output, obtained with the original model (no hyperband) illustrated in Figure 4.10.
On that, we performed a majority voting around each frame response, using masks with
different sizes (encompassing different number of frames) and making the label of each
frame to be the most common response of the own frame and its neighbors. The em-
ployment of this post-processing stems from the frame-level output of MLRRN, which
makes the approach sensible to wrongly recognized frames, as depicted in Figure 6.6,
where colors indicate class label of a frame. One could notice incorrect responses (dark
blue) among the frames of a gesture (represented in orange).

Figure 6.6: Post processing on MLRRN response. Colors indicate the label of the
frame. The orange box indicates the duration, in terms of frames, of a gesture related
to a specific class (orange). The dark blue lines indicate the existence of wrongly
recognized frames during the recognition of the orange class.

Table 6.11 shows the results of the proposed MLRRN and state-of-the-art ap-
proaches on ChaLearn Montalbano [Escalera et al., 2014], considering the conventional
and post-processed outputs with different mask sizes. According to the results, it is
possible to see that larger masks tend to degrade the Jaccard response of the model,
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Table 6.11: Average temporal Jaccard score on ChaLearn Montalbano dataset.

Approach Jaccard Score

Results MRF, KK, PCA, HOG [Chang, 2015] 0.827
AdaBoost, HOG [Monnier et al., 2015] 0.834
Multi-scale DNN [Neverova et al., 2016] 0.870
TempConv + LSTM [Pigou et al., 2017] 0.906
PM-EGD [Gupta et al., 2019] 0.910
3DCNN + ConvLSTM [Zhu et al., 2018] 0.915

Our Results Hyperband MLRNN 0.896
MLRNN 0.914
MLRRN + 3-size mask 0.916
MLRRN + 5-size mask 0.919
MLRRN + 7-size mask 0.912
MLRRN + 9-size mask 0.908

since transition zones (between different gestures and gesture to non-gesture frames)
become corrupted. With a 5-frame mask, we achieved state-of-the-art results, sur-
passing the method proposed by Zhu et al. [2018]. It is important to mention that
the research proposed by Molchanov et al. [2016] obtained a higher average Jaccard
score on this dataset. However, since this approach uses ground-truth annotations to
perform gesture detection, their outcomes cannot be compared to ours.

To better understand the performance of MLRRN, we evaluated the recognition
outcome of the approach considering different Jaccard values, as showed in Figure 6.7.
For Jaccard values below 0.65, MLRRN executes a perfect recognition on ChaLearn
Montalbano. In addition, even for high values such as 0.90, the approach presents
accurate results.

6.2.4 Evaluating on ChaLearn ConGD

The evaluation of MLRRN on ChaLearn ConGD presented few changes in comparison
to ChaLearn Montalbano. Most of these changes are related to the increment of the
model capacity to be able to handle a more complex dataset and the increase on the
number of classes for classification, which goes to 250. In addition, since ChaLearn
ConGD is composed of shorter videos when compared to SKIG, the batch size was
experimentally set to 40. Finally, hyperband was executed to estimate hyperparameters
of the model for this dataset, resulting in the selected search space parameters showed
in Table 6.12.

Since ChaLearn ConGD presents a 1-frame distance between different gestures,
the impact of the detection task was extremely mitigated due to the absence of no-



68 Chapter 6. Experimental Results

Figure 6.7: MLRRN recognition outcomes considering different Jaccard scores.

Table 6.12: Selected search parameters obtained with Hyperband for ChaLearn
ConGD.

Selected Parameter
Weight Initializer uniform

Optimizer Adagrad
Batch Size 32

Conv. Factor 1.00
Rec. Layer Factor 1.00
ELU Layer Factor 1.50

gesture frames. As a result, on ChaLearn ConGD, the approach obtained a frame-level
recognition accuracy of 73.23% and a temporal Jaccard score of 0.5627. With the
hyperparameter adjustment, MLRRN performance was boosted, obtaining frame-level
recognition accuracy of 76.06% and temporal Jaccard score of 0.5692. Table 6.13 shows
MLRRN results along with state-of-the-art approaches on the dataset. It is important
to notice that we performed an additional evaluation on this dataset to enhance the
outcomes of MLRRN, in which we assigned different labels for classes on the detection
task, creating groups on the dataset. In a first test, for example, five groups were
created. Thus, gestures from classes 0-49 are assigned to label 1, classes 50-99 to
label 2, and so on. This strategy aimed to improve outcomes from the detection
task, as it could now determine intervals related to gestures from different groups,
gathering some information about their length and transitions that exist between them.
As a consequence, a significant improvement on temporal Jaccard score was noticed,
evidencing the impact of detection task for the proper recognition of gestures.
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Table 6.13: Average temporal Jaccard score on ChaLearn ConGD dataset.

Approach Jaccard Score

Results

Two-Stream ConvNets + Ensemble learning [Wang et al., 2017b] 0.5307
Faster-RCNN + Heterogeneous networks [Wang et al., 2017a] 0.5950
3D Finger-Joints [Hoang et al., 2019] 0.5523
Faster RCNN+ C3D [Liu et al., 2017] 0.6103
TS1-Res3D + Multiply Fusion [Zhu et al., 2018] 0.6435
TS1-Res3D + Average Fusion Fusion [Zhu et al., 2018] 0.7163
STF [Narayana et al., 2019] 0.7740

Our Results

MLRNN 0.5627
Hyperband MLRNN 0.5692
MLRRN + 5-detection classes 0.6204
MLRRN + 5-detection classes + 5-mask 0.6231
Hyperband MLRRN + 5-detection classes + 5-mask 0.6287
MLRRN + 10-detection classes + 5-mask 0.6217
MLRRN + 20-detection classes + 5-mask 0.6083

On the ChaLearn ConGD, there are similar problems to the ones found on
ChaLearn Montalbano, such as the existence of some noise between frame outputs
of a class. Besides that, since the annotation of this dataset does not include no-
gesture frames, the performance of MLRRN is deteriorated, with our model acting
in a similar way to a standard classifier, getting few contribution from the detection
task. However, with the assignment of class groups for detection, the impact of this
multi-task was greatly enhanced, even with this separation being performed with a
very simple criterion.

As for ChaLearn Montalbano, we evaluated the recognition outcome of the ap-
proach on ChaLearn ConGD considering different Jaccard values, as showed in Fig-
ure 6.8. The performance presented in Figure 6.8 regards the outcome obtained with
5-detection classes and a 5-mask for majority voting.

6.2.5 Qualitative Evaluation of MLRRN Tasks

Results on ChaLearn Montalbano and ChaLearn ConGD evidenced the high perfor-
mance of MLRRN and the positive impact of the employment of correlated tasks. The
superiority of the approach on ChaLearn Montalbano, for which we achieved state-of-
the-art performance, is greatly related to the gesture disposition of this dataset and
their annotations, which provide no-gesture frame intervals between the gesture in-
stances. On ChaLearn ConGD, the performance of MLRRN is mitigated mostly due
to annotations. On ChaLearn ConGD, frames associated with relaxing postures of
performers that should be annotated as non-gesture frames, are still annotated as part
of gesture intervals.
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Figure 6.8: MLRRN recognition outcomes considering different Jaccard scores on
ChaLearn ConGD.

In addition to the quantitative results showed, it is interesting to notice, in a
qualitative way, how the method performed for both tasks. Figure 6.9 depicts the
response of the temporal detection task for a video of ChaLearn Montalbano compared
to the ground-truth response. In this figure, low-responses (next to 0) indicate the
absence of gesture and high-responses (next to 1) indicate the presence of a gesture.
One could notice the existence of some noise on the detection, which is filtered by the
employment of an empirical threshold (0.5) used to approximate the responses to 0 or
1. The abrupt transition between non-gesture and gesture frames is well-detected by
the model in most cases in this dataset.

The detection and recognition tasks produced accurate outcomes for most videos
in the datasets. However, the last frames of some gestures were predicted as no-
class frames, what produced a shortening effect on recognition. This issue can be
associated with the similarity, in terms of appearance and motion, between frames
of retraction phase (final part of a gesture) and relaxing phase (post gesture), with
the latter corresponding to no-class frames. In addition, the lack of no-class standard
postures and inconsistent behavior of performers could have contributed to this result,
illustrated in Figure 6.10.

On the evaluation of the proposed MLRRN, even on ChaLearn Montalbano for
which the approach presented very accurate results, some frames belonging to all classes
of the dataset are recognized as class-0 (i.e., no-gesture class). This result is mostly
perceived on the retraction frames of each gesture, since these frames are similar, in
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Figure 6.9: Detection responses of MLRRN. Dashed red line represents the threshold
used to approximate responses.

Figure 6.10: Shortening effect on the recognition of gestures by MLRRN.

terms of appearance and even motion, to the relaxing postures that are common on
post-gesture frames. Figure 6.11 depicts the frame-level confusion matrix of MLRRN
responses on ChaLearn Montalbano, for which the approach presented more than 96%
frame-level accuracy. It is possible to see that for almost all classes, some frames are
predicted as non-gesture (class 0).

Finally, we performed a cross-dataset test, in which we used a model trained
on ChaLearn Montalbano to act over videos of ChaLearn ConGD. Since the class-
recognition labels are not useful in this scenario, we only qualitatively verified whether
the detection task was able to produce reasonable results. Figure 6.12 depicts the
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Figure 6.11: Frame-level confusion matrix of MLRRN on ChaLearn Montalbano. In-
dexes represent different dataset classes. Class-0 represents non-gesture class.

detection task on videos of ChaLearn ConGD. In this test, we manually annotated
the preparation, nucleus and relaxing phases of gestures. According to the results,
the model presents high responses for the nucleus part of the gestures, with oscillating
responses on preparation and retraction and low responses on the relaxing postures,
annotated on ChaLearn Montalbano as the non-gesture class. Even though not com-
pletely accurate, the results suggest that the trained model is able to indicate the
separation between gestures in a different dataset, which is promising once that exper-
iment emulates conditions similar to real-life scenarios.

Since the model trained on ChaLearn ConGD presents no impact on the detection
task due to the lack of annotations associated with the no-gesture frames, the evaluation
of detection task is not reasonable on the ChaLearn Montalbano dataset.
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Figure 6.12: Detection responses of MLRRN on ChaLearn ConGD.



Chapter 7

Conclusions

In this chapter, we present conclusions related to the present work. Specifically, we
discuss MORA, SALMORA and MLRRN approaches, presenting final considerations
about the methods regarding their advantages and drawbacks (Section 7.1). In addi-
tion, we discuss some future work that have potential to enhance the outcomes obtained
with the proposed methods (Section 7.2).

7.1 Final considerations

In this dissertation, we address the gesture recognition task aiming at filling gaps no-
ticed on literature approaches, such as scalability (in terms of the number of gestures),
time cost to incorporate new gestures; and actuation over unsegmented videos. To
accomplish that, we proposed two approaches that tackle the problems. The first
(MORA) employs a set of unsupervised models to represent each gesture class in an
independent way, using reconstruction error as classification metric, focusing on scal-
ability as a function of number of gestures and minimizing the time-to-train require-
ment of the approach to consider a new gesture. The second approach (MLRRN) focus
on real-life communication scenarios, performing gesture recognition on a continuous
stream of data. To properly recognize gestures, MLRRN also performs gesture tempo-
ral detection, exploring the correlation that exists between both tasks to enhance the
results.

MORA evaluation led to accurate gesture recognition results, with this strat-
egy scaling according to the number of classes of the dataset. Besides the scalability,
our approach presents advantages in relation to literature methods, mainly regarding
robustness to class imbalance, lower complexity, open-set applicability and class speci-
ficity. In addition to these advantages, the evaluation of MORA indicated a recognition
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performance that could be compared to state-of-the-art methods. On SALMORA, the
discriminative behavior of autoencoders was enhanced, in addition to the employment
of a skin-attention mechanism, leading to a remarkable accuracy improvement. Even
tuning a single layer of the autoencoders for few iterations, a great accuracy improve-
ment was noticed on experiments. At the end, the contribution of the Large-Margin
Softmax Loss [Liu et al., 2016] must be highlighted, leading SALMORA to rank 2th
on both evaluated datasets.

MORA and SALMORA share disadvantages when compared to custom classifica-
tion methods that employ a single network to perform gesture recognition. MORA and
SALMORA are based on a set of different models that need to have their hyperparam-
eters selected and validated through experiments. Employing hyperparameter search
mechanisms, such hyperband, requires the execution of these techniques several times,
what increases the time/computational cost of this stage. Disadvantages in terms of
computational cost are more evident on SALMORA, which also requires insertion of
an external classifier to separate weights of each model in relation to the remaining
ones trained for a given dataset. Furthermore, MORA and SALMORA are dependent
on stages that are external from the autoencoders, such as skin detection and classifier
training. In addition, in terms of skin detection, the performance of the approach is
hugely mitigated if the arms of the subject performing the gesture are not exposed. Al-
though showing efficiency for gesture recognition task, MORA and SALMORA need to
have their methodologies and architectures adjusted to be applied in the sign-language
recognition field, in order to extract different input parameters (i.e., facial/body ex-
pression, inflection point) and traits of the language, such as dependency of previous
terms and sentences and structure of phrases.

Our multi-task method MLRRN presented an accurate performance for detection
and recognition of gestures on unsegmented videos. The evaluation of the method
evidenced the capability to properly separate transition zones between different gesture
classes (and non-gesture class), even in a cross-dataset scenario. Moreover, performing
both tasks concomitantly showed a notorious improvement on their results, indicating
the correlation that exists between them. The evaluation of MLRRN showed a good
performance for both tasks, with state-of-the-art temporal Jaccard score on ChaLearn
Montalbano dataset.

Despite the accurate outcomes for the evaluated datasets, MLRRN results demon-
strated some inefficiency to detect and recognize the last frames regarding the gesture
classes, commonly associated by MLRRN with the non-gesture class (relaxing frames).
Moreover, a strong dependency of the approach in relation to the existence of frames
separating gesture instances is noticed. Tests on ChaLearn ConGD showed an accu-
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racy drop due to the absence of these frames (the annotation of these frames is not
adequate), mitigating the contribution of the detection task and decreasing the final
temporal Jaccard score of the method. The high dependency of recognition in relation
to detection is also evidenced by this experiment and the grouping strategy employed
to enhance the outcomes. Besides improving the results of the approach, the gain of
this grouping mechanism relies on a consistent and hard to select clustering criterion.

7.2 Future Work

The purpose of this section is to analyze the open questions raised in this dissertation
as future work.

7.2.1 Extend SALMORA’s hyperparameter optimization

To enhance the outcomes of SALMORA on ChaLearn ConGD [Wan et al., 2016], we
intend to execute hyperband for every class of the dataset. Due to the high cost
of performing hyperband [Li et al., 2017] for all autoencoder models on ChaLearn
ConGD [Wan et al., 2016], we randomly selected 20 classes and employed hyperband on
these models. The most common hyperparameters were used to train all autoencoder
models. Even presenting results that rival the state-of-the-art methods, the outcomes
reported for SALMORA could be improved with the application of hyperband for all
classes and employment of autoencoders with specific architectures for each class of
the dataset.

7.2.2 Improvement and better evaluation of MLRRN

MLRRN presented accurate results for ChaLearn Montalbano and ChaLearn ConGD
datasets. As a future step, we intend to better evaluate MLRRN, replacing VGG-
16 activations by a more complex network, applicating more sophisticated strategies
to group gestures and applying this technique on different datasets. In addition, we
intend to evaluate the architecture in similar domains, such as activity recognition and
sign-language recognition.

7.2.3 Libras dataset

During this research, we could notice the existence of few gesture datasets that target
unsegmented videos. In addition, these datasets tend not to tackle sign languages, pre-
senting only gestures used for limited communication. This point becomes alarming
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when we bring this situation to Brazilian scenario. On that, we could not find any un-
segmented video dataset related to Brazilian Sign Language (Libras) that encompasses
multiple parameters, such as facial expressions, gesture configurations and inflection
point. Thus, we intend to assemble a Libras dataset containing unsegmented videos
and approaching different parameters of the language.

7.2.4 Alternatives for recurrent models

Despite the accurate results and the dominance of models based on recurrent layers
for the gesture recognition task, we intend to evaluate alternative architectures to per-
form the task, such as the ones based on Transformers [Vaswani et al., 2017], widely
employed on the natural language processing field [Vaswani et al., 2017; Devlin et al.,
2019]. From Transformers, more complex architectures have been produced, such as
BERT [Devlin et al., 2019], which are able to gather long-term temporal information
during the operation of a model, besides imbuing a self-attention mechanism, respon-
sible to weigh the contribution of different parts of input for the recognition process.

7.2.5 Adjustments on Proposed Architectures

Despite the employment of Hyperband to adjust the set of hyperparameters of most
approaches presented in this document, we still intend to evaluate/validate architec-
tural changes on the proposed models. A first point to be evaluated regards the inputs
of MORA and SALMORA models, which are disposed into 3-channels for each input
modality (i.e., RGB, Optical Flow and Depth). To achieve this 3-channel distribution,
information had to be replicated. We intend to compose a different input distribu-
tion, with no channel replication, to evaluate the performance of the models. For the
MLRRN approach, we intend to evaluate a different layer disposition for the residual
blocks, which were assembled according to the research of Wu et al. [2016]. A point to
be evaluated on these modules is the application of different activation functions for
the ELU-based layers, depicted in Figure 4.10.

7.2.6 Grouping strategy to increase scalability

With the aim of increasing the scalability on test phase of MORA and SALMORA ap-
proaches, we intend to perform a grouping of the trained gestures classes. The criterion
to group the different classes can be associated to the distance between spatiotempo-
ral features of different classes, extracted from a mid-level layer of autoencoders. On
test phase, video samples would be provided only to the group(s) which presents the
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average feature activations with the lowest distance a test sample. This process would
minimize the cost to recognize a gesture video.
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