.............
o® ERA %
0..Q&.§";?.“".l..'0'£#..

()

)
s/,
-.‘..04
.-';\
..

7
§s Wod
$=i st
=i i=3
e iS5
« % S e
o..) n..INCIPIT VITA NOV/:..o ‘{\..o
... }::.'0- l"..::’ \Q\...
.. ’ LT L) “ ..
.."t;’:’oBoRog"..

UNIVERSIDADE FEDERAL DE MINAS GERAIS

INSTITUTO DE CIENCIAS EXATAS
PROGRAMA DE POS-GRADUACAO EM ESTATISTICA

Structure Learning and Parameter
Estimation of Probabilistic Context
Neighborhoods

Débora de Freitas Magalhaes

Belo Horizonte, Brasil
2021



Débora de Freitas Magalhaes

Structure Learning and Parameter
Estimation of Probabilistic Context
Neighborhoods

Thesis presented to the Graduate Program of Statistics at
Universidade Federal de Minas Gerais (UFMG) in
partial fulfillment of the requirements for the degree of
Master in Statistics.

Advisor: Prof. Dr. Denise Duarte

Co-Advisor: Dr. Aline Piroutek

Belo Horizonte, Brasil

2021



© 2021, Débora de Freitas Magalhaes.
Todos os direitos reservados

Magalhaes, Débora de Freitas.

M189s Structure learning and parameter estimation of probabilistic
context neighborhoods [manuscrito] / Débora de Freitas
Magalhaes. — 2021.

60 f. il.

Orientadora: Denise Duarte Scarpa Magalhaes.

Coorientadora: Aline Martines Piroutek.

Dissertacao (mestrado) - Universidade Federal de Minas
Gerais, Instituto de Ciéncias Exatas, Departamento de Estatisitca

Referéncias: f.49-53.

1. Estatistica— Teses. 2. Markov, Campos aleatérios de —
Teses. 3. Algoritmo de contexto — Teses. 4, Arvores
probabilisticas de contexto — Teses. |. Magalhaes, Denise Duarte
Scarpa. Il. Piroutek, Aline Martines. Ill. Universidade Federal de
Minas Gerais, Instituto de Ciéncias Exatas, Departamento de
Estatisitca. IV.Titulo.

CDU 519.2(043)

Ficha catalogréfica elaborada pela bibliotecaria Belkiz Inez Rezende Costa
CRB 62 Regiao n° 1510




UNIVERSIDADE FEDERAL DE MINAS GERAIS

PROGRAMA DE POS-GRADUAGAO EM ESTATISTICA U F m G
=

ATA DA DEFESA DE DISSERTACAO DE MESTRADO DA ALUNA DEBORA DE
FREITAS MAGALHAES, MATRICULADO, SOB O N° 2019.663.680, NO PRO-
GRAMA DE POS-GRADUACAO EM ESTATISTICA, DO INSTITUTO DE CI-
ENCIAS EXATAS, DA UNIVERSIDADE FEDERAL DE MINAS GERAIS, REA-
LIZADA NO DIA 09 DE JULHO DE 2021.

Aos 09 dias do més de Julho de 2021, as 13h30, em reunido publica virtual 261 (conforme
orientagdes para a atividade de defesa de dissertagao durante a vigéncia da Portaria PRPG
n°® 1819) no Instituto de Ciéncias Exatas da UFMG, https://us02web.zoom.us/i/85351167306 re-
uniram-se os professores abaixo relacionados, formando a Comissdo Examinadora homo-
logada pelo Colegiado do Programa de Pés-Graduagéo em Estatistica, para julgar a defesa
de dissertagcao da aluna DEBORA DE FREITAS MAGALHAES, n° matricula 2019.663.680 ,
intitulada: “Structure Learning and Parameter Estimation of Probabilistic Context Neigh-
borhoods", requisito final para obten¢do do Grau de mestre em Estatistica. Abrindo a ses-
sdo, a Senhora Presidente da Comisséao, Profa. Denise Duarte Scarpa Magalhaes Alves,
passou a palavra a aluna para apresentacao de seu trabalho. Seguiu-se a arguigéo pelos
examinadores com a respectiva defesa da aluna. Apds a defesa, os membros da banca
examinadora reuniram-se reservadamente sem a presenga da aluna e do publico, para jul-
gamento e expedicdo do resultado final. Foi atribuida a seguinte indicacao:

Aprovada.
) Reprovada com resubmissado do textoem __ dias.
( ) Reprovada com resubmissao da texto e nova defesaem ____ dias.
( ) Reproyada._

&/L(‘ " //\ ﬁKﬂUﬁ{

enise Duarte Scatpa Magalhaes Profa. Aline Martines Piroutek — Co-
Alves — Orientadora (EST/UFMG) orientadora — (Doutora pela UFMG)

gl Podiiop lamherl:
Prof. Marcos Oliveira Prates (EST/UFMG) Prof. Rodrigo Lambrert (FAMAT/UFU),

by 2 v Odn

Caio Teodoro de Magalhaes Alves
(Alfred Renyi Institute of Mathematics - Budapeste).

Profa.

O resultado final foi comunicado publicamente a aluna pela Senhora Presidente da Comis-
sdo. Nada mais havendo a tratar, a Presidente encerrou a reunido e lavrou a presente Ata,
que sera assinada por todos os membros participantes da banca examinadora. Belo Hori-
zonte, 09 de julho de 2021.

Observagbes:

1. No caso de aprovagéo da tese, a banca pode solicitar modificagcdes a serem feitas na versao final do texto. Neste
caso, o texto final deve ser aprovado pelo orientador da tese. O pedido de expedigao do diploma do candidato fica con-
dicionado a submissao e aprovacgéo, pelo orientador, da verséo final do texto.

2. No caso de reprovagédo da tese com resubmissao do texto, o candidato deve submeter o novo texto dentro do prazo
estipulado pela banca, que deve ser de no maximo 6 (seis) meses. O novo texto deve ser avaliado por todos os mem-
bros da banca que entdo decidirdo pela aprovagao ou reprovagdo da tese.

3. No caso de reprovagéo da tese com resubmiss&o do texto e nova defesa, o candidato deve submeter o novo texto
com a antecedéncia a nova defesa que o orientador julgar adequada. A nova defesa, mediante todos os membros da
banca, deve ser realizada dentro do prazo estipulado pela banca, que deve ser de no maximo 6 (seis) meses. O novo
texto deve ser avaliado por todos os membros da banca. Baseada no novo texto e na nova defesa, a banca decidira
pela aprovacgao ou reprovagao da tese.



A ciéncia brasileira



Agradecimentos

Em primeiro lugar, agradeco a minha familia pelo apoio incondicional e por criarem
condicdes para que eu pudesse me dedicar aos meus estudos. Especialmente aos meus pais,
José Augusto e Graci, por investirem desde cedo na minha educacdo, e por me ensinarem o
valor do trabalho e da dedicacdo. As minhas irmas, Barbara e Vitoria, obrigada pelos conselhos
e por ouvirem meus desabafos. Ao Marco, agradeco o apoio a minha decisdo de retornar ao
Brasil para ficar perto da minha familia e voltar a universidade. Obrigada também Tia Valéria,
por todo carinho, paciéncia e oracdes.

Um agradecimento especial a minha orientadora Denise por sua calma, compreensao e con-
fianca ao longo dessa jornada. Sou muito grata pelas nossas conversas e por seu incrivel dom
de me tranquilizar e apontar a dire¢do a ser seguida. Agradeco também a minha co-orientadora
Aline, por se disponibilizar a me ajudar a entender o seu trabalho e expandi-lo.

Em uma época de tanta tristeza e perdas em decorréncia de uma pandemia global, ndo poderia
deixar de agradecer a minha satde fisica, mental e emocional, sem a qual seria impossivel a
conclusao desse trabalho. O meu “muito obrigada” ao SUS, aos pesquisadores, profissionais de
satde e pessoas da linha de frente no combate a COVID-19 por serem fontes de luz em tempos
de escuriddo.

Agradeco também aos meus colegas da Pés-Graduacdo em Estatistica da UFMG, por cri-
arem um ambiente positivo de companheirismo, onde colegas de trabalho se motivam, ajudam
e torcem para o sucesso uns dos outros. Esse elemento foi fundamental para o aprendizado e
conhecimento que adquiri nesse periodo.

Por fim, agradeco a CAPES pelo apoio financeiro concedido para realizacdo dessa pesquisa.



Resumo

As arvores probabilisticas de contexto oferecem uma representagdo mais eficiente para
a dependéncia de uma Cadeia de Markov, tanto do ponto de vista computacional como em
sua fécil interpretacdo. Essas vantagens permitiram que esses modelos fossem amplamente
utilizados e suas propriedades, estudadas. A presente dissertacdo busca estudar a extensao
desse modelo para reticulados em Z? introduzida por Piroutek (2013) e denominada modelo de
contexto de vizinhanca probabilistica, ou em inglés, probabilistic context neighborhood (PCN).
O modelo PCN prop&e uma representacdo em forma de arvore para a dependéncia espacial de
um campo aleatério de Markov bidimimensional, permitindo que cada site dependa de uma
vizinhanga de tamanho variavel, denominada contexto. Essa variagdo de campos aleatérios de
Markov permite uma reducdo significativa dos parametros livres a serem estimados. No PCN,
a estrutura de vizinhanca é fixada em frames, diferentemente do trabalho feito em Csiszar
e Talata (2006a), o que permite o calculo da cardinalidade dos diferentes contextos de uma
arvore e a proposta de um algoritmo que seleciona o melhor modelo baseado no critério PIC
(pseudo-Bayesian information criterion). Nosso trabalho procura também validar o algoritmo
PCN através de um estudo de simulagoes, além de exemplificar a aplicacdo do modelo para
dados reais. Os resultados confirmam a adequacdo do algoritmo e sugerem que a cota do
tamanho méaximo da arvore permitida pode ser melhorada. Além disso, os resultados empiricos
fornecem estimativas para as probabilidades de transicdo do processo.

Palavras-Chave: Campos aleatérios de Markov; Campos aleatérios de vizinhanga var-

iavel; Algoritmo Contexto; Arvores probabilisticas de contexto; Selecdo de modelos.



Abstract

Probabilistic context trees offer a more efficient representation of the dependency of a
Markov Chain, both in terms of the computational effort needed as well as its easy inter-
pretability. This model has been extensively utilized and its properties have been studied by
various authors. The present thesis aims to study an extension of the probabilistic context tree
model to lattices in Z?, called probabilistic context neighborhood (PCN) model, introduced by
Piroutek (2013). The PCN model proposes a tree representation for the spatial dependency
of a two-dimensional Markov random field. It allows the sites of a region to depend on a
variable neighborhood size, called context. This Markov random field variation is known in
the literature as variable-neighborhood random field and it drastically reduces the number of
free parameters to be estimated. In the PCN model, the neighborhood geometry is set to frames
which allows us to calculate the cardinality of contexts of a given tree. Therefore, unlike the
work of Csiszar and Talata (2006a), an algorithm is proposed to select the optimal model
based on the pseudo-Bayesian information criterion (PIC). Our work seeks to validate the PCN
algorithm through a simulation study. In addition, we exemplify the use of such methodology
through a real-world data application. The results presented here confirm the adequacy of
the algorithm, and suggest that the quota for the maximum depth of the tree could be further
improved. Furthermore, an empirical study of the estimated transition probabilities indicate
adequate estimates.

Keywords: Markov random fields; Variable-neighborhood random fields; Context algo-
rithm, Probabilistic context trees; pseudo-Bayesian information criterion; Model selection.



List of Abbreviations

BIC Bayesian information criterion

LB lower bound

MCMC Markov chain Monte Carlo

MODIS Moderate Resolution Imaging Spectroradiometer
MPL maximum pseudo-likelihood

MRF Markov random field

PCN probabilistic context neighborhood
PIC pseudo-Bayesian information criterion
PST probabilistic suffix tree

SFTP Secure File Transfer Protocol

UB upper bound

UFMG  Universidade Federal de Minas Gerais
VLMC variable length Markov chain

VNRF  variable-neighborhood random field



Contents

1 Introduction

2 Background and Motivation
2.1 MarkovChains . . . .. . . . . ..
2.1.1 Variable Length Markov Chain (VLMC) . . ... ... ... .....
2.1.2  Probabilistic Context Tree (PCT) Model . . . . . ... ... ... ...
2.1.3 Model Selection for PCTs . . . . ... ... ... ... ........
2.2 Markov Random Fields (MRFs) . . ... ... ... ... ... ........
2.2.1 Variable-neighborhood Random Field (VNRF) . ... ... ... ...
2.2.2 Model Selectionfor MRFs . . . . . ... ... ... ....... ...

3 Probabilistic Context Neighborhood (PCN) Model
3.1 Definitions and Notations . . . . . . . . . . . . ...
3.2 Tlustratinga PCNT . . . . . . .
3.3 MainResults . . ... . e
3.4 PCNalgorithm . . ... .. .. . . .. e

4 Simulation Study
4.1 Generating samples . . . . . . ... L.
4.2 EstimatingaPCN 7y . . . . . . . o0
4.2.1 Simulation 1: First-order PCN 7y . . . . . . . . . . ... .. .. ...
4.2.2  Simulation 2: Variable-neighborhood PCN 7, with d(75) =2 . . . . .
4.2.3 Simulation 3: Second-order PCN 7y . . . . . . . . .. .. .. . ...

5 Spatial Dependency of Fires in the Pantanal Biome
51 MODISData . . .. ...
5.2 DataTreatment . . . . . . . . . . .. . i
53 Results. . . . . . . e e



6 Conclusion
Bibliography
APPENDIX A - Proof of Proposition 3.9

APPENDIX B - Simulation 3 Results

47

49

54

55



10

CHAPTER 1

Introduction

Markov random field (MRF) theory represents a broad class of models used to describe data
interaction behavior. In the MRF framework, the probability of a random variable is conditioned
on its neighbors, following the well-known Markovian property. Due to its generality, it has been
utilized in a large variety of applications to model time dependence, spatial dependence or even
space-time dependence.

One of the main applications of this methodology is in image analysis and remote sensing.
The knowledge of pixel interactions can be used to recover images (Geman and Geman, 1984),
to segment images (Kim and Yang, 1995), to correctly classify images (Subudhi et al., 2014;
Zhang et al., 2017), and to synthesize images (Wu et al., 2016). But MRF models are, by no
means, limited to computer vision and geostatistics applications.

In biology, MRF can be used to model the interaction of genes. In Wei and Li (2007),
for example, an MRF-based procedure has been used to identify subnetworks related to breast
metastasis or death from breast cancer. Lin et al. (2015), on the other hand, study brain devel-
opment using MRF to understand how brain regions are affected by neighboring brain regions,
as well as time.

In economics, MRF models can be used to study the interaction of individuals, households
and financial institutions as it was done in Onural et al. (2021). Fahrmeir and Lang (2001) take
a different approach and use MRF to study the spatial influence of districts in Germany in their
unemployment rates.

Another field where MRF has become increasingly popular is in social networks. This
methodology has been used to model person-to-person interactions taking into account senti-
ment analysis and the general social network structure in West et al. (2014). A more commercial
application uses an MRF method in recommendation systems. In Peng et al. (2016), neighboring
profiles are utilized to recommend new users or new items.

As it can be seen, the list of MRF applications is incredibly long. More details on this model
and its applications can be seen in Kindermann and Snell (1980), while a more modern overview
is given in Hernandez-Lemus (2021). For the specific case of Gaussian Markov random fields,
we direct the reader to Rue and Held (2005).

In our work, interest lies in studying the extent of spatial dependence of MRF processes
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in lattices in Z2. More specifically, we study the probabilistic context neighborhood (PCN)
model proposed by Piroutek (2013), which gives a consistent estimator for the tree dependency
structure of an MRF. As shown in Frank and Strauss (1986), assumptions about the dependency
structure of a graph can lead to various modeling strategies. However, unlike the graphs con-
sidered in their work, the graphs in Piroutek (2013) are not random. The PCN model evaluates
the interaction of lattices that have a fixed structure of nodes and edges. The randomness lies
on the tree dependency structure and its conditional probabilities.

The task of estimating parameters of an MRF is usually approached using potentials, but
that is not the case for the PCN model, or the models proposed by Locherbach and Orlandi
(2011) and Csiszar and Talata (2006a). Instead, the MRF specification is given in terms of the
probability of a site conditioned on its neighborhood configuration. The size of the neighborhood
that determines the conditional probability of a site, will be called context, and it may vary from
site to site (we will explain this definition in more detail later on).

In Locherbach and Orlandi (2011), the authors find a consistent estimator for the radius of
the smallest ball containing the context. Additionally, they yield the explicit upper bound for
the probability of wrong estimation, and provide an algorithm to calculate this estimator.

In Csiszar and Talata (2006a), a model selection criterion called pseudo-Bayesian informa-
tion criterion (PIC) is introduced. Using PIC, a consistent estimator is found for the minimal
region that determines the conditional probability of an MRF. But despite the theoretical results,
the authors leave open how to calculate the estimator in practice.

The PCN model accomplishes that exact task for lattices in Z?. Rather than directly estimat-
ing the minimal neighborhood, as it was done in L.ocherbach and Orlandi (2011) and Csiszar and
Talata (2006a), the PCN model gives a consistent estimator for the tree source of a sample. An
algorithm is proposed by cleverly combining PIC and a modification of a pruning procedure for
context trees in the one-dimensional case given in Csiszar and Talata (2006b). This algorithm
provides the means for easy and relatively fast implementation of the PCN model.

The goal of the present thesis is to further study the PCN model, paying special attention
to the application of the algorithm proposed. We conducted a simulation study, as well as a
real-world application study of the dependency structure of a process, assuming the existence
of an underlying MRF. The simulation results for black and white images confirm the adequacy
of the algorithm proposed in recovering the tree structure generating the process. An empirical
study of the estimated conditional probabilities also suggests that the PCN model can provide
reasonable estimates.

Our work is organized as follows. In Chapter 2, we briefly introduce important concepts
and results that laid the foundations for the PCN model presented in Chapter 3. A simulation
study and its results are provided in Chapter 4. In Chapter 5, we show the study of the spatial
dependency of fires in the Pantanal biome located in Brazil that occurred in September of 2020.

Finally, we conclude with our final remarks in Chapter 6.
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CHAPTER 2

Background and Motivation

We present in this chapter a few methodologies that address (at some capacity) the problem
of parameter estimation and model selection in the Markov framework. First, we consider the
simpler case of one-dimensional data and explore some results that have been utilized in the
literature for Markov chains. Then, we introduce the concept of a Markov random field and a
few existing results related to it. Our aim is to show what has been proposed, but also the gaps
left unresolved which the PCN model seeks to fill.

2.1 Markov Chains

Let us consider a stationary ergodic stochastic process {Y; : —oo < j < 400} with finite
alphabet E. The cardinality of the alphabet is denoted by |E/| < oco. We use the capital letters
Y to refer to the random variables, whereas the lowercase letters y for their fixed deterministic
values. A string s = YmYm+1.--Yn (Withy; € £, m < j < n) is also denoted by y;,,. The
string’s length is given by [(s) = n — m + 1 and the concatenation of strings v and v is denoted
by uv.

We say a process is a Markov chain of order £ if

P(Yo=1|YL=yL)=P(Yo=w|YF =y}

for all Yo, Y-1, Y—2,... .
Thus, a k-order Markov chain depends on the previous k variables of the past, instead of

the entire past history. Therefore, there are a total of | E|*(|E| — 1) free parameters (transition
probabilities) in a Markov chain of fixed order k. Clearly, as the order dependency % grows, the
number of model parameters increases exponentially fast in k.

2.1.1 Variable Length Markov Chain (VLMC)

From the estimation point of view, Markov chains of fixed order can be problematic. For
illustrative purposes, let us consider a sequence of nitrogenous bases in a string of RNA, £ =
{A, C, G, U} and |E| = 4. As shown in Table 2.1, the dimensions of the problem can become
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TABLE 2.1 Number of free parameters in a Markov chain of order k for |E| = 4.

Order k 1 2 3 4 5) . 10

Number of parameters 12 48 192 768 3072 --- 3145728

intractable as the order dependency increases. There is also a big jump in the number of param-
eters to be estimated from one order to another. A model called variable length Markov chain
(VLMC) coined by Biihlmann and Wyner (1999) and initially proposed by Rissanen (1983),
offers a more efficient representation of Markov dependency.

The VLMC model, as the name suggests, is a Markov chain that depends on a variable length
of lagged values. The relevant past that influences the next outcome is called context. A context
may be short or long depending on the length of the string needed to determine the conditional
probability of the next symbol. By only storing the minimal states, there is a reduction on
the number of parameters in a VLMC model compared to a full order Markov chain. Going
back to the RNA example in Table 2.1, a model with 57 parameters is not possible when using
a fixed order Markov chain. It is either a Markov chain of order 2 with 48 parameters, or a
Markov chain of order 3 with 192 parameters. The VLMC model framework allows a number
of parameters outside of this “all or nothing” approach. Processes belonging to the VLMC class
are still Markovian but with memory of variable length, producing a class of models that is
structurally larger and richer than Markov chains of fixed order. It can be easily seen that, if all
variables Y (—oo < j < +00) depend on k prior values (which is equivalent to saying that all

contexts have length k), we have the general case of a full Markov chain of order .

2.1.2 Probabilistic Context Tree (PCT) Model

The notion of a context was first introduced by Rissanen (1983) in information theory. In
his work, the set of all contexts (allowed to be of variable length) was represented as the set of
leaves of a rooted tree. This model will be addressed in this work as probabilistic context tree
(PCT) model, but it is referred to in the literature in many ways, such as probabilistic suffix tree
(PST), VLMC, finite memory sources, among other names.

Figure 2.1 exemplifies a PCT of order 3 in our RNA example where |E'| = 4. It also shows
that a tree representation offers easy interpretability of the dependency structure of a process.
Clearly, a full Markov chain would require more parameters to accommodate the longer mem-
ory needed in one “direction”. In this example, only 4 contexts have length 3 while 15 other
contexts have length 2, totaling 19 contexts. Completing the leaves for a full tree would result
in a tree with 64 contexts. Evidently, the PCT model is very beneficial from a data compression
standpoint, but other applications in biology (Bejerano and Yona, 2001; Busch et al., 2009) and
linguistics (Galves et al., 2012) have shown the value of this methodology to real-life applica-

tions.
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FIGURE 2.1 Tllustrative example of a probabilistic context tree model of order 3 for the dependency struc-
ture of nitrogenous bases in a string of RNA (| E| = 4).

Besides the novel concept of only considering the relevant past, perhaps the biggest con-
tributions of Rissanen’s work was the proposal of the algorithm context to estimate the true
context tree given a finite sample. The true PCT, denoted by 7, contains the minimal set of
strings needed in order to completely specify the probability of the next symbol. Several studies
have built on this idea either improving the results of the original paper (Bithimann and Wyner,
1999; Duarte et al., 2006; Garivier and Leonardi, 2011), or modifying the original algorithm
(Willems et al., 1995; Martin et al., 2004). Finding the true PCT through information criteria
was thought to be computationally infeasible by Bithlmann and Wyner (1999), because it would
require the comparison of a very large number of hypothetical trees. The work of Csiszar and
Talata (2006b) proves that it is indeed possible using the clever use of tree techniques.

2.1.3 Model Selection for PCTs

The Bayesian Information Criterion (BIC) of Schwarz (1978), was proven to be a consistent
estimator for the order of a Markov chain in Csiszar and Shields (2000). Yet, it wasn’t until
Csiszar and Talata (2006b) that BIC was proven to provide a strongly consistent estimator for
To. Finiteness and completeness of the true PCT were not required. By strong consistency, we
mean that the estimated PCT denoted by Tsic equals 7 eventually almost surely as n — oc.

Model selection via information criteria, such as BIC, usually works by assigning scores to
the different model possibilities. Then, the optimal model is chosen by minimizing the score
(or maximizing, depending on the criterion formulation). As we have seen, the PCT class is
very large and it would not be possible to calculate BIC over all possible tree configurations.
In Csiszar and Talata (2006b), a consistent estimator was obtained by finding the tree that min-
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imizes the BIC score, given in Definition 2.1, over a set hypothetical PCTs allowed to grow

with sample size n as o(logn). They also state that replacing @ in Equation (2.1) by any
¢ > 0 does not affect the results. In addition to the providing the proof, the authors proposed an

algorithm that computes this estimator in linear time.

DEFINITION 2.1 Given a sample y7, the Bayesian information criterion (BIC) of a feasible tree
T is

El-1
(2= DI

BIC7(yt') = —log MLy (yi') + 5

n 2.1)

where M L is the maximum likelihood and (| £'| — 1)|7 | is the number of free parameters when

the tree 7 is complete. Logarithms are to the base e.

The findings in Csiszar and Talata (2006b) served as inspiration for the proposal of the PCN
model and algorithm for lattices in Z? by Piroutek (2013). However, since the BIC formula (2.1)
uses the maximum likelihood, BIC is considered inappropriate for high-dimensional problems
where the likelihood function cannot be explicitly calculated. An alternative criterion will be
introduced in the following section.

We refer the reader to Talata (2005) for a review of model selection using information cri-
teria. For the problem of model selection specifically for PCTs, an earlier work addressing this
issue was given by Biihlmann (2000). More recently, Garivier and Leonardi (2011) gave an
overview of context tree selection and the different modifications of the algorithm context that

were proposed in the literature.

2.2 Markov Random Fields (MRFs)

Let us now consider the general case of a d-dimensional lattice Z¢. The points i € Z< are
called sites. The cardinality of a set A C Z? is denoted as |A|. We denote by € and C the
inclusion and strict inclusion, respectively. Subsets of Z? will be denoted by uppercase Greek
letters. Thus, if A is a finite set of sites, then A € Z¢.

A random field is a family of random variables indexed by the site i of a lattice,
{X (i) : i € Z}, where each X (i) is a random variable that takes values in a finite alpha-
bet A. We denote the set of all configurations of the random field as 2 = A% For realizations
of X(A), we use the notation a(A) = {a(i) € A:i € A}

The joint distribution of X (7) is given by:

Q(a(4)) = P(X(A) = a(4)),

for A C Z%and a(A) € A2,
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And the conditional probability is defined by:

Q(a(A) |a(®)) = P(X(A) = a(A) | X (®) = a(2))

for all disjoint regions A and ¢ where Q(a(®)) > 0.
We say that the process is a Markov random field (MRF) if there exists a neighborhood I';,
satisfying for every i € Z¢

P(X(i) = ai) | X (Z"\i) = a(Z\i)) = P(X (i) = a(i) | X(T}) = a(T})),  (2:2)

where a neighborhood I'; (of the site i) means a finite, central-symmetric set of sites with i ¢ T';.

2.2.1 Variable-neighborhood Random Field (VNRF)

If estimation of a Markov chain can be challenging as the order dependency grows, the
problem of estimating parameters of a Markov random field is even more complicated. In an
attempt to minimize this issue, the variable-neighborhood random field (VNRF) model was
created in Locherbach and Orlandi (2011), generalizing the concept of a VLMC to random
fields in Z.

Like the VLMC model explained in Section 2.1.1, the VNRF model also works with the
idea of contexts. Here, a context is the minimal neighborhood needed to the determine the
probability a site. The depth of the neighborhood changes according to the values in them.
Hence, the VNRF model is defined by a family of conditional probabilities that do not depend
on a fixed neighborhood depth. In Lécherbach and Orlandi (2011) the focus was on estimating
the radius that contains the minimal neighborhood of a site. They do not address the problem
of estimating the geometrical structure of the context as they claim it would introduce too many
parameters. Similarly, Csiszar and Talata (2006a) offer a consistent estimator for the context
neighborhood of a site. Their paper, however, is mainly concerned with the proposal of a model

selection criterion for MRFs since penalized likelihood estimators cannot be used.

2.2.2 Model Selection for MRFs

Analogous to BIC, the pseudo-Bayesian information criterion (PIC) was proposed in Csiszar
and Talata (2006a) to address the problem of model selection in MRFs. The likelihood in BIC
was replaced by the pseudo-likelihood introduced by Besag (1975). Due to phase transition on
multidimensional lattices, a unique invariant measure is not assured so a likelihood approach is
not suitable. A similar criterion was proposed earlier by Ji and Seymour (1996) and recently,
Pensar et al. (2017) introduced a small sample analytical version of PIC. The evaluation of the
best model selection criteria for MRFs is beyond the scope of this work, we will only focus on
the definition and results related to PIC.
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DEFINITION 2.2 Given a sample z(A,,), the pseudo-Bayesian information criterion (PIC) of a
neighborhood I is:

PICr(2(Ay)) = —log MPLp(x(A,)) + [A]" log |A,| (2.3)

where M P Ly is the maximum pseudo-likelihood, A,, is the sample region, and n is the number
of sites in the sample.

Csiszar and Talata (2006a) proved that minimizing PIC over a family of hypothetical neigh-
borhoods resulted in a an estimate that equaled the true context neighborhood eventually almost
surely as n — oo. The radius of the possible neighborhoods were allowed to grow with the
sample size as o((log |A,,|)24). This result is unaffected by phase transition and non-stationarity
of the joint distribution. Also, the result remains valid if the penalty term A|"! in Equation (2.3)
is replaced by any ¢ > 0.

The problem, however, is that no algorithm was proposed to actually compute the PIC es-
timator [ prc. This happened for two reasons. First, no simple formula is available for \A['”
in Equation (2.3), because the candidate neighborhoods do not a have a specific geometry. The
only requirement is that the neighborhood of a site ¢, denoted by I';, is a finite central-symmetric
set of sites with i ¢ T';. The term |A|I"l replaced half the “number of free parameters” in BIC’s
Equation (2.1). The second reason is that, even if it could be calculated, the authors did not find
a way to compute the PIC score for all possible neighborhood configurations without calculating
them one by one. Consequently, they leave it open if the PIC estimator can be computed in a
“clever way”, as it was done in the one-dimensional case.

That is precisely what the PCN model proposed by Piroutek (2013) does for lattices in Z2.
By setting a fixed neighborhood geometry and representing the dependency structure as a tree,
the PCN model is a two-dimensional version of a PCT. Consequently, the PCN algorithm is a
modified version of the PCT algorithm in Csiszar and Talata (2006b), using PIC instead of BIC
to find the optimal tree.
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CHAPTER 3

Probabilistic Context Neighborhood
(PCN) Model

The probabilistic context neighborhood model proposed by Piroutek (2013) offers a tree
representation to an MRF process on lattices in Z?. The purpose of this model is to provide
insight on the dependency of sites on their neighbors, through learning the dependency structure,

as well as estimating the conditional probabilities that determine the value of a site.

3.1 Definitions and Notations

In this chapter, we will continue to use the notations and definitions introduced in Section 2.2
for Markov random fields in lattices in Z? for the specific case where d = 2. However, an
important aspect of the PCN model is that the neighborhood geometry I'; in Equation (2.2) is

set to a frame, denoted by 817 , as defined in Definition 3.1.

DEFINITION 3.1 A frame &/, with order j € N, is a particular type of neighborhood for a site
¢. It can be obtained by taking a square of side 2j + 1, and removing a smaller square of side

2j — 1 contained within it, both centered on .

Figure 3.1 provides an example of frames of order 1, 2 and 3. Larger orders can be under-
stood analogously. It can be easily seen that, for j = 1,2, ..., m, the frames 85 are nested sets.
i 8{ = () and Uity ag‘ is a square region of the lattice with side 2m + 1 and center on site 7.
Since the geometry of the neighborhood is fixed and to simplify the notation, we will write &7,

omitting the site ¢ whenever it is clear.

denoted as D?. The length of D7 is [(D?) = j and equals the order of the neighborhood D’ .
We say that a configuration a(d/) is a realization of the process on the subset d/. The con-

catenation of two configurations a(0'*) and a(9™ ") is a(9"), or a(D"), and is only

possible if m = k + 1. The cardinality of a neighborhood, denoted by |a(D™)|, indicates the
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FIGURE 3.1 Frame structure 8f for j = 1,2 and 3, respectively.

number of sites within a neighborhood of order n.

DEFINITION 3.2 A configuration a(D¥) is a suffix of a(D"), k < n, if a(D") is a concatenation

A set of neighborhood configurations can be represented as a neighborhood tree 7. It has
the root on top, characterizing the value of a site (identified as ()), and branches connected to it,
growing downwards. The first set of nodes stemming from the root is the first-order neighbor-
hood configurations d*. The children of those nodes are the second-order neighborhood frames
containing the parent neighborhood frame inside, that is 9% or simply D?. The third set of notes
are the children of the second order nodes, given by D3. The same logic is valid for higher-order
nodes. A neighborhood configuration a(D?) € T represents a leaf of the neighborhood tree.
The leaves correspond to the last nodes of each of the branches connected to the root. Therefore,
an internal node of 7 is a proper suffix of a leaf.

As stated in Section 2.2, all possible configurations of a random field { X (i), € Z?}, that
take values in a finite alphabet A, are given by Q) = A%, Therefore, the number of possible

'l The number of

neighborhood configurations of order 1 in the PCN model is given by A
possible configurations of a neighborhood of order 2 is A'”*l and so on. Hence, the formal

definition of a neighborhood tree 7 is given below.

DEFINITION 3.3 A subset 7 C U2, Al is called a neighborhood tree if no a(D*) € 7T is a
suffix of any other a(D") € T.
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The depth of a neighborhood tree 7 represents the maximum order of neighborhoods be-
longing to that tree and is denoted by d(7) = max;{ a(D’) € T }.

If not a single neighborhood a(D?) belonging to the neighborhood tree 7 can be replaced
by a proper suffix without violating the tree property, then the neighborhood tree is considered
irreducible. The set of irreducible neighborhood trees is denoted by 7.

Although the neighborhood geometry is fixed in a frame format, the order of the neighbor-
hood needed to determine the probability of a site can still vary. Thus, the PCN model utilizes
the VNRF framework and the notion of contexts as specified in Definition 3.4.

DEFINITION 3.4 A finite configuration a(D’) € AI™’l is a context neighborhood of a Markov
random field if Q(a(Dj)) > (0 and

P(X(i) = a(i) | X(Z2\i) = a(Z*\i)) = P(X(i) = al(i)| X(D’) = a(D"))
Q(a(i) | a(D?)) (3.1)

for every a(i) € A, and no proper suffix of a(D7) has this property.

Therefore, if a(D7?) is a context neighborhood of a site 7, then the probability distribution
of that site depends only on a(D7). There is no need to inspect the entire lattice to acquire
information about the value assumed by X (7). We say that j, which is the number of frames in
the configuration a(D?), is the order of the context neighborhood.

Clearly, the set of all context neighborhoods of a process can be rep-
resented as a context neighborhood tree and we will denote it by 7. Let
Qo = {Q(a(d)|a(D?)) : a(i) € A, a(D?) € Ty} be the family of transition probabili-
ties satisfying Equation (3.1). The pair (7, Q) is called probabilistic context neighborhood or
PCN.

The goal of the PCN model is, given a finite sample a(A,,) of a lattice in Z?, to estimate the
PCN (7o, Qo) that generated the sample. In order to do so, the PIC score of Csiszar and Talata
(20064a) is used to compare a set of hypothetical PCNs (7, Q) to reach the true PCN (7g, Qo)
that generated the sample under study.

From now on, for simplicity, we refer to the PCN (7, Q) only as 7.

3.2 lllustratinga PCN T

This section is dedicated to exemplifying the concepts and ideas defined in Section 3.1. We
focus on the space of binary states due to its simplicity and because it allows the interesting
study of black and white images. An extension to larger state spaces is straightforward.

Let A = {—1,1}, where X (i) = —1, if the value of site 7 is white, and X (i) = 1 if it is
black.

We consider two neighborhood configurations to be equivalent if each neighborhood con-
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FIGURE 3.2 All possible configurations of first and second-order frames for black and white images.
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FIGURE 3.3 Illustrative example of a PCN 7 for [A| = 2 and d(7) = 2.

tains the same number of black and white sites, independently of their position.

Figure 3.2 shows the possible neighborhood configurations for frames of order 1 and 2,
respectively. It can be seen that, a frame 9! is made of 8 sites, that is, |0*| = 8. Therefore, in the
case of black and white images, there are 9 total possible configurations of first-order frames.
The first frame can have zero black sites, all the way up to 8 black sites. In the case of frames
0?, there are 16 sites within it (|0?| = 16), which translates into 17 possible second-order frame
configurations (varying from zero black sites all the way up to 16 black sites). Generalizing, the
j™-order frame has a total of 8 sites within it and 85 + 1 possible configurations.

The frame neighborhood geometry proposed by Piroutek (2013) makes it possible to repre-
sent the contexts of a MRF process in a tree format, similar to the PCT model introduced and
exemplified in Section 2.1.2. A hypothetical PCN 7 for A = {—1, 1} is shown in Figure 3.3.

The PCN root drawn on top of the tree represents the value of the site i. The first generation

nodes (children) are drawn from the root down and represent the first-order neighborhoods. If
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the information contained within the first-order frame is insufficient to provide a conditional
probability for the site 7, then the second-order neighborhood is drawn adding a frame of order
2 to this first-order neighborhood. The new neighborhood drawn is connected to the parent
neighborhood. Each generation in the tree represents an added frame to the parent generation.
The PCN tree continues to grow until all the context neighborhoods are added.

In the example showed in Figure 3.3, the contexts of the PCN tree have variable neigh-
borhood length. There are 8 contexts of order 1 and 17 contexts of order 2. For each context
neighborhood, a conditional probability of the central site being black (or white) is assigned as
in Definition 3.4. All first-order frames are considered contexts, except for the first frame with
5 black sites in it. This means that, if we observe only one black site in the first-order neighbor-
hood (or 0, 2, 3, 4, 6, 7 and 8 black sites), it will be sufficient to determine the probability of the
site ¢ being black. However, if there are 5 black sites in the first frame, we must continue “down”
the PCN and look at the configurations of the second-order frame. All 17 child configurations
of the first-frame with 5 black sites are considered contexts. In summary, this hypothetical PCN
T has depth d(7") = 2, a total of 25 contexts neighborhoods (or leaves) and 1 internal node.

3.3 Main Results

We have explained and illustrated the neighborhood geometry and tree representation of an
MREF process in the PCN model. This section will be focused on the main theoretical results of
Piroutek’s work that led to the proposal of a consistent estimator for a PCN 7, from a a sample
a(A,,) containing the n sites under study.

As it was explained in Section 2.2.2, a likelihood approach is not suited for MRF problems.
Therefore, we use the pseudo-Bayesian information criterion of Csiszar and Talata (2006a) to
select the optimal PCN 7. This is achieved by replacing the likelihood by the pseudo-likelihood
introduced in Besag (1975) and defined below.

DEFINITION 3.5 Given a sample a(A,,), the pseudo-likelihood function associated with a PCN
(T, Q) is defined by:

)

PLr(a(An)) = 11 II Q(a(i)’a(pi))N’L(“(Dj’i))

a(DI)ET, Nn(a(DF))21 a(i)€A

where
No(a(D7,i)) = |{i € a(Ay) - a(D) C a(A,), a(D] Ui) = a(D, i)}

represents the number of times that the configuration a(D?) is observed in the sample when the

site 7 assumes the value a(7) and

Na(a(D?)) = |{i € a(An) : (D) € a(An)}]
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is the number of occurrences of the configuration (D7) in the sample a(A,,).

According to Csiszar and Talata (2006a), the maximum pseudo-likelihood is obtained for:

Ny (a(D, )

Q (ald)|a(P) = FT D)

Therefore, given a sample a(A,,), the maximum pseudo-likelihood (MPL) for a PCN 7T is:

a(Di i Ny (a(D7 1))
MPLT(a(An)): II II <W> (3.2)

a(DI)ET, Nn(a(DI))21 a(i)€A N (a(D7))

Since we are interested in estimating the PCN 7, instead of the neighborhood I, Piroutek
(2013) modified the PIC formula in Equation (2.3) to be closer to the BIC formula for PCTs in
Equation (2.1), replacing the maximum likelihood by the maximum pseudo-likelihood.

DEFINITION 3.6 Given a sample a(A,,), the pseudo-Bayesian information criterion (PIC) for a
PCN 7 is:

(A1 - DIT] |

PI1CT (a(An)) = —log MPLy (a(An)) + =——

g || (3.3)

An important difference between the definition above and Definition 2.2 is the term that
precedes log |A,,|. Because the neighborhood structure in Csiszéar and Talata (2006a) was not
fixed, it was unfeasible to compute the term | A| "I, In the PCN model, however, the fixed frame
geometry for the neighborhoods allows the computation of | 77|, which represents the number of
leaves of a PCN tree or simply the number of neighborhood contexts a(D?) € T.

In our work, we obtained a closed formula for | 7| considering full trees instead of VINRFs,

as given in Proposition 3.7.

PROPOSITION 3.7 If frames are considered equivalent by having the same combination of ele-

ments in A within a frame, then |T | is, at most,

0 (Sk +]A] - 1> (3.4

Pl Al —1
Conversely, if we consider that the position of each site within the frame matters, then |T | is, at

most,

8k(k+1)

AP = A" =, wherek = d(T).

Proof: See Appendix A. [
Consequently, the PCN model solves the first issued mentioned at the end of Section 2.2.2.

We are able to compute the PIC score for a given PCN 7 since we can calculate the penalizing
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term in Equation (3.3).

Given a sample a(A,,), a feasible PCN 7 is such that d(7) < D(n), where D(n) is an
appropriate function of the sample size. Also, for every a(D?) € T, N, (a(D?)) > 1. We say
that a(D*) is a suffix of some a(D’) € T if k < j and N,,(a(D¥)) > 1. The family of feasible
PCNs is denoted by F; (a(A,,), D(n)).

DEFINITION 3.8 We define the PIC estimator for a PCN 7 as

Trro (a(A)) = argmin  PICr(a(A,)), (3.5)
TeF1(a(An),D(n))NT
In other words, the PIC estimator for a PCN 7 is the PCN 7 that minimizes the PIC score
among all feasible PCNs allowed to grow with the sample size.

THEOREM 3.9 Let {X (i) : i € Z?} be a PCN with finite tree Ty such that Q(a(i)‘a(lﬂ)) is a
consistent estimator of () (a(i) ‘a(DO). Then

ﬁ]C(G(An)) = To

almost surely as n — oo.

The consistency of the estimator Tpic in Theorem 3.9 was proven in Piroutek et al. provided
that D(n) = (log|A,|)70. The mathematical proof is beyond the scope of this work. Instead,
we will focus on the application of the PCN algorithm introduced in Section 3.4.

Note that Csiszar and Talata (2006a) prove the consistency of the PIC estimator 'pic for any
unstructured neighborhood I'; of site 7 as long as the neighborhood is a finite central-symmetric
set of sites and it does not contain the site under evaluation. The authors also prove that the em-
pirical estimator ) (a(i) ’ a(lp Ic)) converges to the true conditional probability almost surely
as n — oo. In their work, the question of “how to find the PIC estimator without computing the

score for all possibilities?” was not answered.

3.4 PCN algorithm

Calculating PIC for all feasible PCNs 7" would be impractical and time consuming. Since
the PCN model represents the context neighborhoods of an MRF in a tree format, similar to the
PCT model, Piroutek (2013) proposes a PCN algorithm similar to the one initially proposed by
Csiszar and Talata (2006b) for the one-dimensional case. The pruning procedure in the PCN
algorithm makes it possible to obtain 7p;c.

We are interested in obtaining the PIC estimator for PCN 7, given that Theorem 3.9 proves
that Tprc converges to 7, almost surely as n — oo.

Given a sample a(A,,), all trees considered are denoted by F = F; (a(A,), D(n)) N Z and
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using Definitions 3.8 and 3.6, we have that:

’7;3]0 (a’(An)) = argmin PICt (a(An))
TeF

= argming —log M PLy (a(An))+Mlog|An|
TeF 2

= argmax { log MPL7 (a(Ay)) — A= DIT] logn }
TeF 2

_ (Al-DIT]
= argmax { log MPL7 (a(Ay)) +logn™ = }
TeF

= ar§£ax{log[ -t MPL7 (a(A, ))} }

= argmax{ — e MPL7 (a(A, ))}
TeF

We can factorize the maximum pseudo-likelihood function in Equation (3.2) as:

MPLr(a(Ay) = ] Prrprpi(a(An)),
a(DI)eT

where

]\WW)NW(DM)) i .
Pyprpi(a(A,)) = a%L( N, (a(D7)) , if Ny(a(D?)) 2 1

1 L i No(a(DP)) =0

Hence, the PIC estimator 7} 7c can be rewritten as:

N _UAI=D[T]
Tric (a(A,)) = argmax >
TeF

I Purcoila(r, ))}

a(DI)eT

= argmax { ~MPL,DJ’(CL(An)) }

Tex a(’DJ)eT

= argmax
TeF

a(An)) } ; (3.6)

a(DJ)GT

[A[=1 ~

where Pp; (a(A,)) =n~ 2 Pyprpila(A,)).

The steps of the PCN algorithm are as follows. First, we construct a tree using all neighbor-
hood configurations observed within a sample a(A,,), where the neighborhood length is at most
D = D(n). The set of nodes of this tree will be denoted by /. Then, Pp; (a(A,,)) is calculated
for each neighborhood a (D7) € Np. Using Pp; (a(A,,)), a value V2 (a(A,,)) is assigned to each
node. Subsequently, this value is utilized to create a binary indicator denoted by x5, (a(A,)).
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This assignment is recursive, starting from the leaves of the tree, moving to the parent nodes,
all the way “up” to the root. The indicators x5, (a(A,,)) will stipulate where to prune the tree to

arrive at the desired PIC estimator 7} IC-

DEFINITION 3.10 Given a sample a(A,,), each neighborhood a(D?) € N receives recursively,

from the leaves of the tree, the value

Ppi(a(A,,)) , if j=D

Volaha)) = {PD]- (a(A)) I1 Vi (a(An))} , if0<j<D

a(DIit1): Ny, (a(Dit1))>1

and the indicator

0, if j=D
b 0, if Ppi(a(Ay,)) > 11 Vi (a(A,)) and 0 < j < D
xpi(a(Ay,)) = a(Dit+1): Ny (a(Di+1))21
1, if Ppi(a(A,)) < I1 Vi (a(Ay)) and 0 < j < D
a(Dit1l): Np(a(Dit1))>1

where a(D’*1) represents the children of the parent neighborhood a(D7).

Based on the indicators x5, (a(A,)), a maximizing tree 72} (a(A,)) comprised of neighbor-
hoods a(D*) = a(D?) is assigned to each neighborhood a(D’) € Np. Lemma 3.13 will later
clarify why the term “maximizing” was used.

DEFINITION 3.11 Given a(D?) € Np, let T2 (a(A,)) equal to

0
1

a(D7) , if xps(a(An))
{a(D) € Np = XBu(a(An)) = 0, xBu(a(An)) = 1, forall j <v<u}, if xB,(a(An))

It follows that the maximizing neighborhood tree 7% (a(A,,)) is irreducible unless it equals
a(D?).
The following proposition and lemma were stated and proved in Piroutek et al..

PROPOSITION 3.12 The probabilistic context neighborhood tree estimator Tp;c(a(A,)) equals
the maximizing tree assigned to the root. That is,

Trie (a(An)) = T (a(An))
LEMMA 3.13 For any a(D’) € Np,

VA (a(A,)) = max Ppu (a(Ay)) = Ppu(a(A,
D ( ( )> T€f1(a(An)a(Dj))a(D1}€7- P ( ( )) a(D“)eg(a(An)) P ( ( ))
Di
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where Fi (a(A,,)|a(D?)) is defined as the family of all trees T of depth d(T) < D consisting of
configurations a(D") + a(D?) with N,, (a(D*)) > 1.

In other words, the maximizing tree assigned to the root 7;” (a(A,,)) is the tree, among all the
feasible trees, that maximizes the product [T, ps)er Pp; (a(A,,)) in Equation (3.6). Therefore,
TP (a(An)) = Trrc.

The maximizing tree assigned to the root (or equivalently, the PIC estimator for PCN 7;) can
be obtained by pruning the tree containing all configurations that belong to the sample a(A,,),
as determined by Definition 3.11. Unlike the assignment of values V) (a(A,,)) and indicators
x5, (a(A,)), the pruning procedure is done starting from the root of the tree and moving “down”
the branches. The indicator x5;(a(A,)) determines where to prune the tree. If an indicator
equals to zero, we keep that specific node and exclude the children configurations connected
to it. Alternatively, if the indicator of a node equals one, we continue “down” to the children
configurations until we observe an indicator equal to zero. That procedure is executed for all the
branches connected to the root. So, after the pruning procedure is finalized, the resulting tree
has internal nodes with indicator equal to one and all the leaves have indicator equal to zero.
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CHAPTER 4

Simulation Study

The purpose of this chapter is to validate the PCN algorithm explained in Section 3.4. To do
so, we conducted a simulation study for three different scenarios using the statistical software
R (R Core Team, 2020). We seek to compare the estimated trees obtained through the PCN
algorithm with the original trees which generated the sample.

Our simulations are based on a regular lattice with black and white sites. We borrow the
notation used in Section 3.2, considering A = {—1, 1} where a(i) = —1, if the observed value
of site ¢ is white, and a(i) = 1 if it is black. Since |A| = 2, we have complementary events and
determining the conditional probability of a site being black suffices to determine the conditional
probability of it being white. In addition, we also consider frames to be equivalent if they have

the same number of black sites within it, just as in the example provided in Section 3.2.

4.1 Generating samples

L L L | R e
Stk |- 1 [ - DRSS

10

FIGURE 4.1 Left: Probabilistic context neighborhood tree structure. Right: Lattice simulations generated
from the PCN structure on the left. For each black and white image shown on the right side, the tree
structure was the same, the only variation was in the conditional probabilities assigned to the leaves.

In order to generate samples with a predefined spatial dependency, we first determined the

PCN 7’s structure and the conditional probabilities associated with each leaf. The same PCN
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tree structure can create different images when the conditional probabilities of each context
neighborhood differ, as shown in Figure 4.1.

Sampling is done using a Markov chain Monte Carlo (MCMC) method. Starting from a
random configuration of black and white sites, we evaluate each site individually. A conditional
probability of being black is attributed to a site based on its neighbors, as dictated by the PCN
tree 7o. An acceptance step, similar to the Metropolis-Hastings algorithm (Metropolis et al.,
1953; Hastings, 1970), is then used to determine whether the site under evaluation is black or
white. Once this procedure is done for all sites, we have completed the first iteration. We
perform iterations until the image “stabilizes”. From that point on, we consider that the process
has converged to the target distribution.

In the simulations presented here the sites were inspected line by line, one column at a time.
We experimented inspecting sites randomly within the lattice and did not notice any differences
in computational time or time until convergence.

To evaluate the sites located on the boundaries, we mirrored the lattice first horizontally,
then vertically. This step was later proved to be highly time-consuming and could be further
improved. A better approach would be to generate a larger sample matrix and evaluate a smaller
sample contained within it, eliminating the border correction problem entirely. This option was
only considered after working with a real-world dataset in Chapter 5. Since the simulation study
presented in this chapter was performed first, the results shown here used the mirrored matrix
approach.

4.2 Estimating a PCN 7,

In this section, we present the estimated PCN trees obtained through the PCN algorithm
proposed by Piroutek (2013). For each of the three scenarios, a black and white image was

simulated from a given PCN 7 as described in the previous section.

4.2.1 Simulation 1: First-order PCN 7

The first simulation was based on a simple first-order PCN 7 as shown in the left side of
Figure 4.1. A 50 x 50 lattice was obtained after 50 iterations of the sampling algorithm and can
be seen in Figure 4.2a.

After the PCN algorithm was run, the estimated tree recovered exactly the same tree structure
used to generate the sample. The estimated PCN tree is given in Figure 4.2b.

Table 4.1 presents the comparison between the transition probabilities of the true PCN 7,
and the estimated PCN 7.

To better quantify the uncertainty associated with the estimated conditional probabilities, we
built an interval for these estimates. We are not aware of results for Markov random fields in

two dimensions which guarantee specific properties to such intervals.
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(a) Sample lattice from a first-order PCN  (b) Estimated PCN 7 after running the PCN algorithm.
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FIGURE 4.2 Simulation results for first-order PCN tree.

The estimated intervals were obtained from the following steps. First, we generated a sample
of 100 matrices from 7, created after 100 iterations of the sampling algorithm. Then, we ran
the PCN algorithm to select only the matrices that recovered the true tree structure. In this
case, all 100 matrices estimated a first-order PCN tree. Lastly, we used all of the simulated
matrices to calculate the 2.5" percentile, median and 97.5™ percentile of the sample’s conditional
probabilities.

In Hyndman and Fan (1996), different sample quantile formulations are analyzed based on
six distinct properties. The authors conclude by recommending that the median-unbiased esti-
mator is used. In our work, we follow their recommendation which is equivalent to selecting
the argument type = 8 in the quantile function in R.

Using the default argument in Simulation 1 did not appear to make a difference. However,
we noticed a few discrepancies in other studies presented henceforth. The differences were
observed for conditional probabilities of neighborhoods which appeared in few samples and the
frequency counts were very low (between 1 and 10) within the samples in which they did appear.

The results containing the estimated intervals for Simulation 1 are presented in Table 4.2.
The real conditional probabilities are contained in all 9 intervals provided. The median, as
expected, provides a better point estimate for the majority of context neighborhoods compared

to the single matrix estimate in Table 4.1.

4.2.2 Simulation 2: Variable-neighborhood PCN 7 with d(7;) = 2

Our second simulation is based on a variable-neighborhood PCN 7, with d(7;) = 2. The
source PCN 7 is shown in Figure 4.3. It has 6 first-order contexts and 51 second-order contexts
neighborhoods. Each internal node of this tree has 17 children, representing all possible second-
order frame configurations (that vary from 0 to 16 black sites within it). This PCN tree indicates

that, if there are 3 black sites in the first frame (or 4 and 5), it is necessary to look at the second-
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TABLE 4.1 Comparison between the true probability of the site being black given the context neighborhood
configuration and the point estimate for the conditional probability in Simulation 1.

Context True  Estimate

0.0392 0.0328

!

0.0832 0.0693

0.1680 0.1582

0.3100 0.2697

0.5000 0.5163

0.6900 0.7548

0.8320 0.8333

0.9168 0.8964

0.9608 0.9656

Ol 1 1

TABLE 4.2 Comparison between the true probability of the site being black given the context neighborhood
configuration and the estimated interval for each conditional probability in Simulation 1. The lower bound
(LB) corresponds to the 2.5™ percentile and the upper bound (UB) is the 97.5" percentile.

Interval Estimate
LB Median UB

Context True

0.0392 0.0000 0.0274 0.0722

0.0832 0.0184 0.0918 0.1381

8

0.1680 0.0852 0.1638 0.2457

0.3100 0.1858 0.3009 0.3900

0.5000 0.4053 0.4954 0.5985

0.6900 0.6069 0.6834 0.7514

0.8320 0.7922 0.8405 0.8868

0.9168 0.8896 0.9127 0.9391

0.9608 0.9527 0.9637 0.9746

Bl d 11
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FIGURE 4.3 Variable-neighborhood PCN 7y with depth d(7g) = 2.
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FIGURE 4.4 Grayscale representing the proportion of black sites in the second frame.

order frame configuration to determine the transition probability for the given site. Due to space
limitations, we choose not to draw the second-order configurations and draw a grayscale instead.
As indicated by Figure 4.4, the lighter the color, the less black sites exist in the second frame.
On the other hand, the darker the color, the more black sites.

A lattice with 150 x 150 sites was created after 50 iterations of the MCMC algorithm. The
resulting image is presented in Figure 4.5a. The estimated tree obtained from the pruning pro-
cedure in the PCN algorithm is given in Figure 4.5b.

The tree structure recovered is almost identical to the original tree 7, in Figure 4.3. The
estimated PCN 7 has 6 first-order contexts, like the original tree, and 48 second-order contexts,
compared to the 51 contexts in 7;. The 3 missing context neighborhoods in the second order
did not appear in the generated sample. This is believed to happen due to the relatively small
sample size.

Table 4.3 shows the comparison between the conditional probabilities of the original tree
and the estimated tree.

Using the same approach as in the previous simulation, we built intervals for the conditional



33

TABLE 4.3 Comparison between the true probability of a site being black given the context neighborhood
and the point estimate for the conditional probability in Simulation 2.

Context  True Estimate Context  True Estimate

0.3100 0.3844 0.5498 0.5342

il

0.3543 0.3567 0.5987  0.5623

0.4013 0.3736 0.6457 0.6034

Bl

0.1680  0.3000 0.6900 0.6302

0.1978 0.3103 0.7311  0.7216

I11]

0.2315  0.2965 0.7685  0.5946

0.2689  0.3205 0.8022  0.6000

0.3100 0.3462 0.8320  1.000

0.3543 0.3448 0.2315 0.1667

S (B (B

0.4013 0.3889 0.2689 0.1176

0.4502 0.4601 0.3100 0.2424

0.5000 0.4944 0.3543 0.4043

0.5498 0.5372 0.4013 0.4646

0.5987  0.5633 0.4502  0.4987
0.6457 0.5876 0.5000 0.5139
0.6900 0.6316 0.5498 0.5822

0.7311  0.6111 0.5987  0.5997

DALl i

0.7685 1.0000 0.6457  0.6460

(A
H

0.168  0.0000 0.6900 0.6774

TTT
|1

0.1978 0.3333 0.7311  0.6889

0.2315 0.2973 0.7685 0.7153

0.2689 0.2673 0.8022 0.6061

0.3100 0.3515 0.8320 0.6154

0.3543 0.3830 0.8581  1.0000

0.4013 0.3970 0.5987 0.6118
0.4502  0.4648 0.6457 0.6387

0.5000  0.4908

= | B8 [ oo (5RO E R R R

AT

0.6900  0.6952
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FIGURE 4.5 Simulation results for a variable-neighborhood PCN tree with d(7p) = 2.

probabilities of each context neighborhood. The 2.5" percentile, median and 97.5" percentile
were computed based on a sample of 81 matrices. Out of 100 matrices generated from 7 after
200 iterations of the MCMC algorithm, 81 of them recovered the original tree structure after
the pruning procedure, and were used to build these intervals. This fluctuation is expected since
there is an inherent variability within the tree structure as well as the conditional probabilities.

The results of the interval estimation for the conditional probabilities of Simulation 2 are
presented in Table 4.4.

There were only 4 instances, out of 57 estimated intervals, where the interval did not contain
the true value. In these cases, the estimated interval was at most, 0.0101 away from it. The range
of an interval varied depending on the number of times a context neighborhood was observed
within the samples analyzed, and how many samples had that specific configuration. Due to very
low frequencies for 8 context neighborhoods (appearing, less than 10 times within a matrix), the

resulting interval covered the entire parametric space.

4.2.3 Simulation 3: Second-order PCN 7,

The third and final simulation was created to analyze the performance of the PCN algorithm
applied to a sample of a complete second-order PCN tree 7,. As given by Equation (3.4), the
full second-order tree has 153 context neighborhoods. That is, each first-order node stemming
from the root has 17 children nodes and all of them are considered context neighborhoods.

Figure 4.6a presents the 200 x 200 matrix simulated after 100 iterations of the sampling
algorithm. Figure 4.6b shows the estimated PCN tree obtained through the PCN algorithm.

As before, the structure of the estimated tree T is quite similar to the true tree 7,. However,

the estimated tree contains a total of 141 context neighborhoods of second order, rather than
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TABLE 4.4 Comparison between the true probability of a site being black given the context neighbor-
hood and the estimated interval for each conditional probability in Simulation 2. The lower bound (LB)
corresponds to the 2.5™ percentile and the upper bound (UB) is the 97.5"" percentile.

Interval Estimate

Context  True B Median UB
T 03100 02524 03265 0.3968
E 0.3543 03305 0.3575 0.3822
@ 0.4013 03634 03797 0.4075
== 0.1419 0.0000 0.0000 1.0000
0.1680 0.0000 0.3000 0.5682
0.1978 0.1556 0.2826 0.4285
% 02315 02416 0.3089 0.3982
0.2689 0.2704 0.3297 0.3856
03100 03030 0.3496 0.4015
0.3543 0.3409 0.3808 0.4103
=1 04013 03736 04103 04512
0.4502 0.4054 0.4446 0.4845
0.5000 0.4327 0.4778 0.5202
0.5498 0.4690 0.5185 0.5858
0.5987 0.4727 0.5566 0.6253
0.6457 0.4737 0.5966 0.6984
0.6900 05076 0.6429 0.8028
0.7311 0.4210 0.6667 0.9756
0.7685 0.0000 0.7500  1.0000
0.8022 0.0000 1.0000 1.0000
EEE 0.168 0.0000 0.0000 1.0000
0.1978 0.0000 0.2000 0.5656
E@i 02315 0.1157 02857 0.4818
E 0.2689 02104 03220 0.4435
@ 0.3100 0.2987 03557 0.4310
03543 03220 03922 0.4363
0.4013 03975 0.4231 0.4748
0.4502 0.4206 0.4673 0.5071
0.5000 0.4648 0.5032 0.5389

Context

True

Interval Estimate

LB

Median

UB

= | B[R = o] B EE R R e R

0.5498
0.5987
0.6457
0.6900
0.7311
0.7685
0.8022
0.8320
0.1978
0.2315
0.2689
0.3100
0.3543
0.4013
0.4502
0.5000
0.5498
0.5987
0.6457
0.6900
0.7311
0.7685
0.8022
0.8320
0.8581
0.5987
0.6457
0.6900

0.5095
0.5351
0.5678
0.5778
0.5588
0.5059
0.3486
0.0000
0.0000
0.0000
0.0935
0.2140
0.3260
0.3615
0.4200
0.4795
0.5153
0.5576
0.5872
0.6063
0.6129
0.5985
0.5682
0.5000
0.0000
0.5973
0.6194
0.6030

0.5439
0.5764
0.6063
0.6407
0.6667
0.6757
0.6667
1.0000
0.0000
0.2679
0.3333
0.3542
0.4086
0.4417
0.4836
0.5188
0.5605
0.5906
0.6230
0.6481
0.6759
0.7086
0.7234
0.7143
0.7083
0.6162
0.6468
0.6839

0.5730
0.6207
0.6468
0.7078
0.7943
0.8505
1.0000
1.0000
1.0000
1.0000
0.5837
0.5371
0.4796
0.5020
0.5399
0.5613
0.5908
0.6179
0.6631
0.6977
0.7218
0.7663
0.8694
0.9771
1.0000
0.6414
0.6723
0.7427
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PCN 7.

FIGURE 4.6 Simulation results for a complete second-order PCN tree.

153. Like in Simulation 2, the 12 missing contexts did not appear in the sample under study and
therefore, did not show up in 7. To capture all possible second-order frame configurations, a
larger lattice would be necessary.

Due to the large number of leaves within this tree, we chose to omit the comparisons between
the true conditional probabilities of each context neighborhood and their estimated values. The
detailed results can be found in Appendix B under the “single matrix estimate” column.

We built an interval for the estimated conditional probabilities of this process, based on a
sample of 50 matrices. The matrices were generated after 400 iterations of the MCMC algorithm,
and selected after correctly recovering the PCN tree structure. We created 149 interval estimates
for the 153 total conditional probabilities of PCN 7,. Instead of intervals, we provided point
estimates for 2 context neighborhoods since those configurations were each observed once inside
one matrix. 2 neighborhoods did not appear in a single matrix, hence, no estimate was provided.
All estimated intervals contained the true conditional probability. In 20 of them, however, the
range covered the entire parametric space due to the extremely low counts for those particular
context neighborhoods. For the same reason stated previously, these results are included in
Appendix B.

The scenarios presented in this chapter were run using three distinct machines. We did not
increase the size of the matrices in Simulations 2 and 3, due to the computational burden of this
task and time constraints. Generating a single matrix in Simulation 2 and 3 took approximately
16 hours and 99 hours, respectively. Subsequently, the PCN algorithm was run in approximately
25 minutes for the matrix in Simulation 2 and 78 minutes for Simulation 3. These times were
recorded for a computer with an Intel i5 processor running at 1.6 GHz and using 4GB of RAM.
Creating a sample of matrices in Simulation 2 and applying the PCN algorithm to each matrix
took approximately 33 hours and 31 hours, respectively. This task was performed with a more
powerful machine available at UFMG’s Spatial Statistics Laboratory which has an Intel Xeon
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processor running at 3.7GHz and using 128GB of RAM. Lastly, generating the sample of ma-
trices in Simulation 3 took approximately 64 hours, while running the PCN algorithm took 53
hours. This was observed for a computer with an Intel i7 processor running at 1.3 GHz and
using 12GB of RAM.
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CHAPTER 5
Spatial Dependency of Fires in the

Pantanal Biome

The previous chapter showed the adequacy of the PCN model and algorithm through simu-
lation studies. Now we seek to demonstrate an application of this methodology to a real-world
dataset.

Motivated by the record number of fire foci in the Pantanal Biome in the Center-West Re-
gion of Brazil through September of 2020 (INPE, 2021b), we conducted a study on the spatial
dependency of fires in that region. Fires cause damage to local biodiversity, increase CO, emis-
sions and can severely affect people’s health. The PCN model can provide insight on the spatial
dependency structure of this phenomena, as well as quantify the conditional probabilities of
this unknown process. This type of information can be valuable to shape a more efficient fire
prevention plan.

5.1 MODIS Data

We chose to work with NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS)
Burned Area product due to its reliability and the fact that it a well documented data source.
The MCD64A1 Burned Area Product is a monthly and gridded 500-meter product containing
burned areas per pixel. Therefore, we can evaluate the pixels in the grid as we evaluated the
sites of a lattice in our simulation study in Chapter 4.

All the results presented in this chapter were obtained through the MCD64A1 GeoTIFF files.
These files are divided in 24 different windows as demonstrated by Figure 5.1. We selected
burned area product data for windows 5 and 6 regarding September of 2020. This was done by
downloading the GeoTIFF files from the fuoco SFTP server as directed by the MODIS Burned
Area Product User’s Guide (Giglio et al., 2020).

We will disregard the temporal component of this study and focus only on its spatial aspect.
The PCN model will be seen as a representation of a Markovian process for a given moment. We

are interested in investigating the spatial dependency of fires in Pantanal in an unprecedented
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FIGURE 5.1 Coverage of GeoTIFF files, from Giglio et al. (2020).

time in history. September of 2020 saw 8106 fires detected by the reference satellite, compared
to 2887 for the same month in the prior year. Before that, the maximum number of fire foci was
5993 recorded in August of 2005 (INPE, 2021b).

5.2 Data Treatment

The MODIS data, as it was, could not be used in the analysis. This section will describe the
steps needed before running the PCN algorithm.

First, we used the stars package (Pebesma, 2020) to read the GeoTIFF files into R. Then,
this same package was used to transform the data into a simple matrix class object that is easier to
manipulate. The values inside the matrix are classified in three distinct categories: fire, unburned
land and water. These values suffered slight modifications, compared to the original version,
that made them compatible with the PCN algorithm.

Figure 5.2 displays the MCD64A1 Burned Area Product for September of 2020 correspond-
ing to windows 5 and 6 after the above steps were performed. Each category is illustrated by a
different color pixel. Fires are red, unburned land is green, and water is blue.

Next, using the rgdal R package (Bivand et al., 2020) and a shapefile obtained from INPE
(2021a), we examined the boundaries of the Pantanal biome. Based on these geographic coor-
dinates, we selected the largest square matrix within Pantanal to analyze. Figure 5.3 shows the
location of Pantanal (in green) inside the map of Brazil. The brown square inside the Pantanal
boundary represents the sample under study.

The final sample is a 510 x 510 matrix as displayed in Figure 5.4. There are a total of 260,100
pixels from which 230,114 are unburned land, 7,881 are water, and 22,105 are fire. Although
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FIGURE 5.2 Matrix object corresponding to the MCD64A1 Burned Area Product for windows 5 and 6
regarding September of 2020. A green pixel represents unburned land, a blue pixel corresponds to water,
and a red pixel stands for fire.
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FIGURE 5.3 Map of Brazil divided by its states, created from a shapefile obtained from IBGE. The Pan-
tanal biome boundary is represented in green. The brown box inside the Pantanal region corresponds to
the sample selected for the analysis.
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FIGURE 5.4 Sample matrix of the Pantanal region, including the sites outside the border considered in the
PCN algorithm. The color scheme is the same as before: unburned land is green, water is blue, and fire
is red. The region inside the white box is the 510 x 510 matrix evaluated by the PCN model.
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there are three possible values for a site, when running the PCN algorithm, we consider a binary
alphabet in our formulas. This is due to the fact that we are studying the dependency structure
of fires. Water pixels will remain water pixels regardless of their neighborhood, therefore, it
does not make sense to study the conditional probability of those sites becoming fire. So, for
the purpose of the PCN model, there are only two possibilities for a site: fire and not fire. Since
water sites are not dependent on the context neighborhood, they are not evaluated or counted
in the PCN algorithm. They only influence this process when present in the neighborhood of a
“valid” site. Then, water pixels are counted as “not fire” along with unburned land pixels.

5.3 Results

The PCN algorithm used in the simulation study had to be modified to produce results for
the real-world data analysis. For the reason specified earlier, we had to make adjustments to
skip the neighborhood evaluation of water pixels inside the sample. This way, water sites and
their neighborhood configurations were not counted as part of this unknown process.

Another modification made had to do with the treatment of the border of the sample inside
our algorithm. In Chapter 4, the sample matrix was mirrored to allow the evaluation of sites near
the border. Here, the boundaries were arbitrarily imposed by us and information regarding the
region outside those boundaries was available (as shown in Figure 5.2). Therefore, we simply
used the real values outside the selected sample. We discovered that removing the step respon-
sible for mirroring the matrix made the PCN algorithm much more computationally efficient.

The most time-consuming stage of the algorithm, builds a tree from the sample under study
containing all the site counts as well as their neighborhood counts. In the simulation study,
building this tree for a 200 x 200 matrix took approximately 32 minutes. In the real-world
application study, the same step was performed in 4 minutes for a 510 x 510 matrix, despite
the depth of the tree growing with the sample size. It is worth noting that the other stages
of the PCN algorithm, responsible for calculating Pp; (a(A,)), the value V.2 (a(A,)) and the
indicator x5, (a(A,,)), as well as pruning the tree, only took a few seconds to run in both studies.
The recorded times were observed on a computer with an Intel i7 processor running at 1.3 GHz
and using 12GB of RAM.

5.3.1 PCN7T

The resulting PCN tree and the estimated conditional probabilities of this process are given
by Figure 5.5. Sites inside the sample are either fire (black) or “not fire” (white). As demon-
strated by the root, this PCN tree represents the spatial dependency structure and probabilities
of a site being fire conditioned on the context neighborhood.

Figure 5.5 indicates that there are 23 total context neighborhoods. Every first-order neigh-

borhood configuration is a context for this process, except for the neighborhood with 8 white
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FIGURE 5.5 PCN 7 recovered from the PCN algorithm applied to the Pantanal matrix. The point estimate
for the conditional probability of each context (or leaf) is given underneath the neighborhood configu-
ration. Red boxes refer to first-order contexts whereas green boxes refer to second-order contexts. This
tree represents the probability of a site being fire given the neighborhood.

sites in the first frame. In other words, if no fires were observed in the first-order neighborhood,
we need to inspect the second-order neighborhood to determine the conditional probability of the
site under study. In addition, there are 15 second-order context neighborhoods out of 17 possible
second-order configurations. First-order frames with 0 black sites combined with second-order
frames with 15 and 16 black sites did not occur in the sample analyzed, therefore, did not appear
in the estimated tree. Also, contexts with 8 to 14 black sites in the second frame appeared less
than 30 times in the sample and resulted in an estimated conditional probability equal to zero.

In general, having sites of fire in the neighborhood, increases the probability of the center
site being fire. Also, the conditional probability of the fires in Pantanal is mostly dependent
on the immediate neighbors experiencing fires. In the cases where that does not happen, the
conditional probabilities are determined based on a larger neighborhood scope, the second-order
neighborhood.

5.3.2 Building Interval Estimates via Bootstrap

Like in the simulation study, we wanted to create interval estimates for the conditional proba-
bilities of this unknown process. In Chapter 4, however, we had the true PCN 7, and the intervals
were created based on it. In this chapter, we used the bootstrap method for this task, resampling
from the estimated PCN 7 given in Figure 5.5.

The resampling process was similar to the one described in Section 4.1, with a few adjust-
ments. The initial configuration was not random. Instead, we used the real matrix displayed in
Figure 5.4 as the starting point. Water sites did not suffer any changes throughout the iterations
since they do not belong to the process we are trying to estimate. Also, the sampling algorithm
could not run without a value for the conditional probabilities of the 2 “missing” second-order
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FIGURE 5.6 Iterations & = 0, 100, 200, 300, 400 of the MCMC algorithm.

contexts. So, in the acceptance step, we used the empirical probability of a site being black
conditioned on 8 white sites in the first frame. However, we believe any constant between 0 and
1 would suffice.

A total of 100 matrices with 510 x 510 sites were created and stored after 400 iterations of
this modified sampling algorithm. This task was performed in approximately 9 hours using a
machine from UFMG’s Mathematics Department which has an Intel Xeon processor running at
3.8GHz and using 64GB of RAM.

The progression of these matrices throughout the iterations is shown in Figure 5.6. It seems
that the limiting distribution of this process tends to have the whole matrix become fire (except
for water pixels). The PCN model is simply a snapshot of the process in the short-term. Luckily,
in the real-world, other factors come in place to interrupt this process.

Our interest lies in recovering the PCN tree representing this phenomena, not recovering the
image itself. We observed the difference in the frequencies of certain configurations from one
iteration to the other to help decide when the matrices “stabilized”. Figure 5.7 presents these
results. The blue line represents a difference of 10~2 while the red line is 10~*. We consider
the matrices to have met the stabilization criterion when the difference between iterations falls
underneath the blue line. Therefore, the matrices appear to settle within just a few iterations.

The estimated intervals were built based on the 2.5™ percentile, median, and 97.5" percentile
of the resample’s conditional probabilities. Once again, we followed Hyndman and Fan’s rec-
ommendation to use the median unbiased sample quantile estimator.

Table 5.1 shows the results. In summary, the estimated intervals contain the conditional
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TABLE 5.1 Comparison between the probability of the site being fire given the context in the PCN 7 and
the estimated interval obtained from the bootstrap method. The lower bound (LB) corresponds to the
2.5 percentile and the upper bound (UB) is the 97.5™ percentile.

Interval Estimate

Context PCN 72
LB Median UB

!

0.0431 0.0278 0.0386 0.0467

0.1230 0.0907 0.1111 0.1307

0.2620 0.2375 0.2586 0.2814
0.5260 0.4793 0.5097 0.5322
0.8046 0.7396 0.7627 0.7851
0.8904 0.8821 0.8965 0.9109
0.9634 0.9616 0.9665 0.9712

0.9960 0.9952 0.9957 0.9962

Bl d 11

| 00002 00001 0.0002 0.0002
IEﬁ:

QFI; 0.0075 0.0024 0.0056 0.0103
iﬂT‘: 0.0078 0.0014 0.0075 0.0154

0.0112 0.0019 0.0098 0.0224

| | LTT1

0.0094 0.0032 0.0098 0.0225

0.0162 0.0000 0.0111 0.0356
0.0000 0.0000 0.0108 0.0395
0.0000 0.0000 0.0000 0.0645
0.0000 0.0000 0.0000 0.0909
0.0000 0.0000 0.0000 0.2129
0.0000 0.0000 0.0000 0.1833
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
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FIGURE 5.7 Difference between the frequency of certain configurations within a matrix from one iteration
to another, up to 400 iterations. The blue line represents a difference of 10~3 and the red one is 10™%.

probability seen in 7T for all contexts, except for the one with 5 sites of fire in the first-order
neighborhood. In that case, the upper bound falls short by 0.0194. All intervals have a relatively
small range of values, increasing the range as the frequency of the configurations decreases
within the resample (and within the matrices belonging to the resample). The intervals whose
lower bound, median and upper bound all equaled zero appeared, at most, 3 times within the
matrices that contained those neighborhoods. Additionally, the neighborhood containing 15
fires in the second order, appeared in one matrix a single time. This is the reason why there is
no upper bound or lower bound associated with it. This specific configuration was not observed

in the Pantanal original matrix.
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CHAPTER 6

Conclusion

The probabilistic context neighborhood (PCN) model proposed by Piroutek (2013) offers
a modeling alternative to studying the dependency structure of a Markov process in a two-
dimensional lattice, similar to the probabilistic context tree (PCT) model in the one-dimensional
case (Csiszar and Talata, 2006b). This tree representation provides an easy interpretation of the
dependency of sites on their neighbors, which facilitates the understanding of data interaction
behavior as demonstrated by Chapter 5.

The generalization to the multi-dimensional case was possible due to the replacement of
the likelihood by the pseudo-likelihood, and the Bayesian information criterion (BIC) by the
pseudo-Bayesian information criterion (PIC). In Csiszar and Talata (2006a), the consistency of
the PIC estimator for the candidate neighborhood was proven, but an algorithm for the selection
of the given estimator was not provided. The authors considered this task to be elusive. Since the
PCN model sets a fixed frame neighborhood geometry, the cardinality of possible contexts can
be calculated as given in Proposition 3.7. The main advantage of the PCN model is the proposal
of an algorithm that selects the optimal PCN tree without the burden of having to calculate the
PIC score for all possibilities. The consistency of the PIC estimator for the PCN tree is stated
in Theorem 3.9.

Our simulation study in Chapter 4 showed the adequacy of this methodology and algorithm
in practice. In all three scenarios, the algorithm correctly recovered the PCN 7, that generated
the sample. Although the results of Theorem 3.9 were proved for trees with depth given by
D(n) = (log|A,|)7, the simulation results demonstrated that this bound could be increased.
Additionally, an empirical study suggests the suitability of the estimated transition probabilities.

Furthermore, there was a slight modification on the scale of n utilized. The outcome was
not expected to be affected by this change, and this was confirmed by the results given. The
BIC consistency result in the PCT case is valid when replacing % by any ¢ > 0. Likewise,
the consistency of the PIC estimator for candidate neighborhoods in Csiszar and Talata (2006a)

is still valid when replacing | A|"! for any ¢ > 0. In the PCN model, using /7 is equivalent to

(A=D)
4

Possible areas worth exploring in further studies include: the generalization of the model

considering as the PIC penalty term in Definition 3.6, which is also greater than zero.

results to lattices in Z9, an extension of this methodology to a more general graph structure
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(outside of a lattice), studying the occurrence of “missing” branches in a PCN tree, and the
proposal of a goodness-of-fit test for the estimated conditional probabilities of a VNRF using
the pseudo-likelihood approach.
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APPENDIX A

Proof of Proposition 3.9

First, let us consider the case where frames are considered identical if the same elements in
the alphabet appear the same number of times, regardless of their position. Since the k-th frame
has 8% sites and each site can assume | A| possible values. In this scenario, the number of possible
configurations of a frame of order k is obtained by solving the number of possible ways 8k sites
can be distributed among | A| distinct groups. That is simply a problem of combination with
repetition. So, the k-th frame has C'(8k+|A|—1, |A|—1) possible configurations. Consequently,
the number of leaves of a full PCN 7 of depth d(7) is given by:

T = dﬁ <8k+ A] - 1)
piet |A| -1 '
The second scenario considers the position of sites within a frame to be important. The proof,
in this case, follows from the definition of frames. Definition 3.1 states that the k-th frame is
obtained by taking a square of side 2k + 1 and removing a smaller square of side 2k — 1, both
centered on site 7. Therefore, a neighborhood D*, which is the concatenation of frames of order
1 through k, is given by the number of sites within a square of side 2k + 1 minus the center site:
8k(k+1
D= (2k+1)(2k + 1) — 1 = 4k + 4k = (;)
Therefore, the number of leaves of a PCN 7 of depth d(7) = k is the number of possible

arrangements of | D*| sites, where each site can assume | A| possible values.

8k(k+1)

IT]= AP = |45,
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APPENDIX B

Simulation 3 Results

TABLE B: Comparison between the true probability of a site being black given the context neigh-
borhood and the estimated conditional probabilities of Simulation 3. Both the initial single
matrix estimation results, as well as the interval estimates obtained later from a sample of ma-
trices, are included in the table. The lower bound (LB) corresponds to the 2.5" percentile and
the upper bound (UB) is the 97.5" percentile.

Number of black Number of black True Single matrix Interval Estimate

sites in 9! sites in 9? estimate LB Median UB

0 0 0.0832 0.0752 0.0256 0.0605 0.1156
0 1 0.0998 0.0916 0.0651 0.0915 0.1290
0 2 0.1192 0.1107 0.0814 0.1114 0.1334
0 3 0.1419 0.1225 0.0923 0.1303 0.1839
0 4 0.1680 0.1784 0.1364 0.1639 0.2189
0 5 0.1978 0.2096 0.1550 0.1939 0.2616
0 6 0.2315 0.2135 0.1638 0.2264 0.3057
0 7 0.2689 0.3564 0.1571 0.2704 0.3948
0 8 0.3100 0.2973 0.1564 0.3027 0.4011
0 9 0.3543 0.3200 0.1956 0.3880 0.5794
0 10 0.4013 0.1000 0.0493 0.4365 0.9014
0 11 0.4502 0.5000 0.0000 0.5000 1.0000
0 12 0.5000 0.5000 0.0000 0.5000 1.0000
0 13 0.5498 1.0000 0.0000 0.5000 1.0000
0 14 0.5987 - 0.0000 1.0000 1.0000



Number of black Number of black

Single matrix

Interval Estimate

sites in O* sites in 92 frue estimate LB Median UB

0 15 0.6457 - - - -

0 16 0.6900 - - - -

1 0 0.0998 0.0797 0.0601 0.1056 0.1812
1 1 0.1192 0.1183 0.0913 0.1227 0.1579
1 2 0.1419 0.1442 0.1125 0.1449 0.1753
1 3 0.1680 0.1872 0.1384 0.1705 0.1957
1 4 0.1978 0.2143 0.1661 0.2015 0.2437
1 5 0.2315 0.2600 0.1919 0.2295 0.2668
1 6 0.2689 0.2802 0.2338 0.2656 0.3137
1 7 0.3100 0.3521 0.2662 0.3087 0.3661
1 8 0.3543 0.3681 0.2811 0.3569 0.4198
1 9 0.4013 0.3737 0.2662 0.3879 0.4990
1 10 0.4502 0.4576 0.2815 0.4565 0.5901
1 1 0.5000 0.4500 0.2774 0.4737 0.6675
1 12 0.5498 0.6000 0.2796 0.5833 0.8750
1 13 0.5987 0.7500 0.0000 0.6000 1.0000
1 14 0.6457 - 0.0000 0.6667 1.0000
1 15 0.6900 - 0.0000 1.0000 1.0000
1 16 0.7311 - 0.0000 0.0000 1.0000
2 0 0.1192 0.1758 0.0456 0.1231 0.2078
2 1 0.1419 0.1047 0.0924 0.1388 0.2012
2 2 0.1680 0.1701 0.1368 0.1739 0.2093
2 3 0.1978 0.1869 0.1699 0.1988 0.2314
2 4 0.2315 0.2200 0.1994 0.2308 0.2694
2 5 0.2689 0.2394 0.2348 0.2674 0.3027
2 6 0.3100 0.3156 0.2756 0.3168 0.3517
2 7 0.3543 0.3327 0.2992 0.3515 0.4057
2 8 0.4013 0.3853 0.3502 0.4034 0.4567
2 9 0.4502 0.4120 0.3771 0.4510 0.4978



Number of black Number of black

Single matrix

Interval Estimate

sites in 9! sites in 9? frue estimate LB Median UB

2 10 0.5000 0.5115 0.4244 0.4981 0.6030
2 11 0.5498 0.4444 0.4518 0.5548 0.6638
2 12 0.5987 0.5610 0.4554 0.5871 0.7523
2 13 0.6457 0.5714 0.4070 0.6667 0.8414
2 14 0.6900 0.8000 0.3388 0.7071 1.0000
2 15 0.7311 0.5000 0.0000 0.7500 1.0000
2 16 0.7685 - 0.0000 1.0000 1.0000
3 0 0.1419 0.2500 0.0000 0.1501 0.3057
3 1 0.1680 0.1250 0.0700 0.1712 0.2481
3 2 0.1978 0.2017 0.1436 0.2037 0.2718
3 3 0.2315 0.2056 0.1992 0.2284 0.2813
3 4 0.2689 0.2437 0.2275 0.2595 0.3022
3 5 0.3100 0.3019 0.2702 0.3089 0.3470
3 6 0.3543 0.3617 0.3186 0.3561 0.3949
3 7 0.4013 0.3699 0.3577 0.4004 0.4334
3 8 0.4502 0.4428 0.3914 0.4528 0.4884
3 9 0.5000 0.5330 0.4419 0.5024 0.5404
3 10 0.5498 0.5020 0.4865 0.5476 0.6039
3 11 0.5987 0.6480 0.5192 0.5955 0.6510
3 12 0.6457 0.5636 0.5506 0.6420 0.7605
3 13 0.6900 0.6957 0.5772 0.6886 0.8272
3 14 0.7311 0.6970 0.5414 0.7276 0.8977
3 15 0.7685 0.4444 0.6176 0.8000 0.9652
3 16 0.8022 1.0000 0.2458 1.0000 1.0000
4 0 0.1680 0.0667 0.0000 0.1667 0.5292
4 1 0.1978 0.1395 0.0355 0.2162 0.3655
4 2 0.2315 0.2124 0.1597 0.2353 0.3272
4 3 0.2689 0.2889 0.1984 0.2739 0.3499
4 4 0.3100 0.3019 0.2558 0.3057 0.3698



Number of black Number of black

Single matrix

Interval Estimate

sites in 9! sites in 9? frue estimate LB Median UB

4 5 0.3543 0.3237 0.3014 0.3570 0.4189
4 6 0.4013 0.3854 0.3559 0.3991 0.4657
4 7 0.4502 0.4481 0.4047 0.4470 0.5016
4 8 0.5000 0.5108 0.4539 0.5039 0.5364
4 9 0.5498 0.5709 0.5049 0.5511 0.5872
4 10 0.5987 0.5996 0.5559 0.5994 0.6364
4 11 0.6457 0.6732 0.5968 0.6411 0.7062
4 12 0.6900 0.6979 0.6324 0.6885 0.7354
4 13 0.7311 0.7110 0.6603 0.7353 0.7906
4 14 0.7685 0.7468 0.6884 0.7617 0.8511
4 15 0.8022 0.7097 0.5847 0.8157 0.9099
4 16 0.8320 0.8750 0.5329 0.8571 1.0000
5 0 0.1978 0.0000 0.0000 0.0000 0.8528
5 1 0.2315 0.1429 0.0000 0.2183 0.5408
5 2 0.2689 0.2000 0.1620 0.2941 0.4623
5 3 0.3100 0.2927 0.1928 0.3131 0.4464
5 4 0.3543 0.2992 0.2731 0.3730 0.4503
5 5 0.4013 0.4311 0.3346 0.4016 0.4758
5 6 0.4502 0.4649 0.3683 0.4482 0.5085
5 7 0.5000 0.5013 0.4350 0.5053 0.5531
5 8 0.5498 0.5375 0.4983 0.5506 0.6006
5 9 0.5987 0.6057 0.5599 0.5899 0.6455
5 10 0.6457 0.6277 0.6068 0.6446 0.6837
5 11 0.6900 0.6604 0.6381 0.6857 0.7427
5 12 0.7311 0.7285 0.6930 0.7292 0.7592
5 13 0.7685 0.7959 0.7347 0.7718 0.8047
5 14 0.8022 0.7890 0.7519 0.7912 0.8399
5 15 0.8320 0.8583 0.7499 0.8364 0.8794
5 16 0.8581 0.7778 0.6772 0.8404 0.9709



Number of black Number of black

Single matrix

Interval Estimate

sites in 9! sites in 9? frue estimate LB Median UB

6 0 0.2315 - 0.0000 0.0000 1.0000
6 1 0.2689 0.0000 0.0000 0.1250 1.0000
6 2 0.3100 0.3750 0.0000 0.3333 0.9014
6 3 0.3543 0.5385 0.1659 0.4000 0.6803
6 4 0.4013 0.4151 0.2366 0.4000 0.5678
6 5 0.4502 0.4458 0.2939 0.4757 0.5463
6 6 0.5000 0.5935 0.4243 0.4964 0.5667
6 7 0.5498 0.5815 0.4725 0.5508 0.6424
6 8 0.5987 0.5980 0.5443 0.6083 0.6735
6 9 0.6457 0.6557 0.6078 0.6452 0.6767
6 10 0.6900 0.7263 0.6478 0.6886 0.7162
6 11 0.7311 0.7391 0.6929 0.7341 0.7600
6 12 0.7685 0.7651 0.7468 0.7729 0.7994
6 13 0.8022 0.7769 0.7719 0.8034 0.8288
6 14 0.8320 0.8009 0.7914 0.8362 0.8629
6 15 0.8581 0.8701 0.8079 0.8611 0.8989
6 16 0.8808 0.9367 0.8317 0.8795 0.9466
7 0 0.2689 - 0.0000 0.5000 1.0000
7 1 0.3100 - 0.0000 0.0000 1.0000
7 2 0.3543 0.5000 0.0000 0.1000 1.0000
7 3 0.4013 0.6000 0.0000 0.5000 1.0000
7 4 0.4502 0.4545 0.1569 0.4444 0.9408
7 5 0.5000 0.3600 0.3326 0.5314 0.7113
7 6 0.5498 0.6429 0.4632 0.5687 0.7000
7 7 0.5987 0.6143 0.4727 0.6165 0.6969
7 8 0.6457 0.6768 0.5846 0.6464 0.7315
7 9 0.6900 0.7378 0.6430 0.6909 0.7520
7 10 0.7311 0.7740 0.6749 0.7292 0.7781
7 11 0.7685 0.7726 0.7394 0.7657 0.8000



Number of black Number of black

Single matrix

Interval Estimate

sites in 9! sites in 9? frue estimate LB Median UB

7 12 0.8022 0.7934 0.7806 0.8036 0.8276
7 13 0.8320 0.8106 0.8145 0.8339 0.8564
7 14 0.8581 0.8727 0.8366 0.8598 0.8811
7 15 0.8808 0.8762 0.8497 0.8817 0.9136
7 16 0.9002 0.9384 0.8334 0.8961 0.9378
8 0 0.3100 - - 1.0000 -

8 1 0.3543 - - 0.0000 -

8 2 0.4013 0.0000 0.0000 1.0000 1.0000
8 3 0.4502 0.0000 0.0000 0.5000 1.0000
8 4 0.5000 0.5000 0.0000 0.5000 1.0000
8 5 0.5498 0.7500 0.0000 0.6667 1.0000
8 6 0.5987 0.8462 0.2063 0.6307 0.9408
8 7 0.6457 0.5909 0.3912 0.6364 0.8431
8 8 0.6900 0.5833 0.5607 0.6865 0.8167
8 9 0.7311 0.7391 0.6418 0.7353 0.8395
8 10 0.7685 0.7961 0.6995 0.7648 0.8229
8 11 0.8022 0.8370 0.7569 0.7984 0.8584
8 12 0.8320 0.8416 0.8042 0.8345 0.8631
8 13 0.8581 0.8540 0.8248 0.8662 0.8851
8 14 0.8808 0.8911 0.8619 0.8849 0.9105
8 15 0.9002 0.9307 0.8561 0.9050 0.9254
8 16 0.9168 0.8977 0.8769 0.9283 0.9653




