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Resumo

Métodos de clusterização profunda alcançaram recentemente um progresso
substancial, aproveitando o poder de representação de arquiteturas de aprendizagem
profunda para aprender representações que são ideais para análise de clusters. No
entanto, poucos esforços foram feitos para tentar combinar clusterização hierárquica,
uma abordagem clássica muito útil que não assume um número fixo de clusters,
com métodos profundos. Neste trabalho, propomos uma nova maneira de realizar
clusterização profunda de forma hierárquica top-down, onde cada divisão binária em
uma árvore de subdivisões é realizada por uma rede generativa antagônica de dois
geradores. Mostramos o quão bem nosso método se compara a outras técnicas de
clusterização profunda em bases de dados para clusterização, obtendo resultados
competitivos, bem como uma exploração da árvore de clusterização hierárquica, veri-
ficando como ela organiza com precisão os dados de treinamento em uma hierarquia
de características semanticamente coerentes, conforme esperado.

Palavras-chave: Aprendizagem Profunda. Clusterização. Redes Generativas An-
tagônicas.



Abstract

Deep clustering methods have recently achieved substantial progress by lever-
aging the representation power of deep architectures to learn embedding sub-spaces
that are optimal for cluster analysis. Nonetheless, very few effort has been done
in combining hierarchical clustering, a very useful classical approach that does not
assume a fixed number of clusters, with deep methods. In this work, we propose
a new way of performing deep clustering in a top-down hierarchical manner, such
that each binary split in a tree of subdivisions is performed by a two-generator
generative adversarial network. We show how well our method compares to other deep
clustering techniques on clustering datasets, obtaining competitive results, as well as
an exploration of the hierarchical clustering tree, verifying how it accurately organizes
the training data in a hierarchy of semantically coherent characteristics, as expected.

Keywords: Deep Learning. Clustering. Generative Adversarial Networks.
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Chapter 1

Introduction

Cluster analysis is a fundamental research field of unsupervised learn-
ing, with a wide range of applications, especially for computer vision re-
lated tasks [Shi and Malik, 2000, Achanta and Susstrunk, 2017, Joulin et al., 2010,
Liu et al., 2018]. Its goal is to assign similar points of the data space to the same
cluster, while ensuring that dissimilar points are placed in different clusters. One of
the main challenges within this approach is to quantify the similarity between objects.
For low-dimensional data spaces, similarity might be straightforwardly defined as min-
imizing some geometric distance (e.g. euclidean distance, squared euclidean distance,
Manhattan distance). On the other hand, choosing the distance metric becomes un-
feasible for high dimensional data distributions. Images are a clear example of this
problem, since any distance metric based on raw pixel spaces is subject to all sorts
of low-level noisy disturbances irrelevant for determining the similarity. This problem
motivates the need for some dimensionality reduction technique, in which the funda-
mental relationships between objects projected onto the resultant embedding space
become more consistent with geometrical distances.

In recent years, deep clustering techniques have spearheaded the dimensional-
ity reduction approach to clustering by employing the highly non-linear latent rep-
resentations learned by deep learning models [Krizhevsky et al., 2012]. Considering
the unsupervised nature of cluster analysis, the models that naturally arise as candi-
dates for deep clustering are unsupervised deep generative models, since these must
learn highly abstract representations of the data as a requirement for realistic and di-
verse generated samples. One of such models are the Generative Adversarial Networks
(GAN) [Goodfellow et al., 2014], whose extremely realistic results in image generation,
semantic interpolation and interpretability in the latent space, are evidence of their ca-
pacity of learning a powerful latent representation capable of capturing the essential
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components of the data distribution. In short, the basic formulation consists of a min-
imax game between two players: the discriminator and the generator, both modeled
by neural networks. The discriminator is trained to distinguish between a real data
distribution and a fake distribution, while the generator is trained to generate this fake
distribution in a sufficiently convincing manner, such that it fools the discriminator into
classifying a fake generated sample as belonging to the real distribution. This scenario
tends to result in a generated distribution increasingly closer to the real distribution,
which is the main objective of generative learning. Nonetheless, very feel works have
proposed GAN architectures designed for clustering. Some of the few works explor-
ing this possibility are [Mukherjee et al., 2019, Chen et al., 2016], where the authors
showed that by manipulating the Generator’s architecture in a specific way we could
control to which class of the training data a generated sample belongs, even if the class
labels aren’t available during the training.

Some recent works employed a GAN architecture with multiple generators
[Ghosh et al., 2018, Hoang et al., 2018, Zhang et al., 2018] in order to obtain a greater
diversity of image generation, as well as an alternative way of stabilizing the training.
In these works, a curious side effect phenomenon is observed, in which each generator
tends to specialize in generating examples belonging to a specific class of the dataset,
strongly suggesting the possibility of clustering. In this case, the clustering would be
made possible by employing a classifier in charge of distinguishing between the gener-
ators, and this classifier could later be applied to the real dataset in order to classify
real examples without the use of labels. However, this alternative was not explored in
the cited works. Additionally, the question of how to infer the number of generators to
be used to represent the classes of the training set is not clear in these works, which
could configure a problem in a real clustering task, where the number of clusters is
assumed to be unknown.

In this work, we intend to take advantage of the GAN architecture with multiple
generators, having exclusively the clustering task as a goal. The main motivation for
employing this model is that we believe that, by employing multiple generators with
each generator specializing in representing a particular cluster of the training distri-
bution, we might obtain an even stronger capacity of representation, and thus more
meaningful clusters, than it would be possible with a single generator covering all clus-
ters, such as in previous works that explored GANs for clustering. Additionally, we
design our method so that it not only performs the clustering of the training data,
but also does it in a hierarchical way, creating new generators as divisions of subse-
quent clusters become necessary, i.e., it permits the user to control different clustering
granularity levels according to the task at hand.
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The main objective of this work is to demonstrate, through the experimental
route, the potential of GANs with multiple generators for the unsupervised clustering
task, obtaining, with a new training algorithm, state-of-the-art results of clustering
accuracy in image datasets and a first deep learning based clustering alternative per-
formed hierarchically.
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Chapter 2

Background and Related Work

2.1 GANs

In a game theory context, a GAN is modeled by a game between two adversarial
components: a discriminator D and a generator G. Both usually are parameterized by
neural networks, with parameters θD e θG. The generator performs a mapping from the
latent space to the training data space, represented as G : Z −→ X . The discriminator,
on the other hand, performs a mapping from the training data space to a real number,
represented as D : X −→ R, where the real number measures the probability of the
input data being fake or authentic. The latent space Z is usually modeled by either
a Gaussian or a uniform distribution, with dimensionality much smaller than X . The
GAN minimax game under a loss function Ladv(G,D) is defined by

min
θG

max
θD
Ladv(G,D) = Ex∼Pdata [logD(x)] + Ez∼Pz [log(1−D(G(z)))], (2.1)

where x is a random variable sampled from the real data distribution, and z

is the random variable sampled from latent distribution, which is transformed into a
generated image by the functions modeled by the generator.

Equivalently, we might as well represent Equation (2.1) with a substitution of
the transformation G(z) by the variable x sampled from the distribution Pgen of the
generated images:

min
θG

max
θD
Ladv(G,D) = Ex∼Pdata [logD(x)] + Ex∼Pgen [log(1−D(x))]. (2.2)
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In Equation (2.2), the GAN simultaneously optimizes both G and D, so that at
the ending of the procedure, ideally, the distributions Pgen and Pdata become indis-
tinguishable from each other; ending up in a situation where, if we assume a perfect
generator, the optimum strategy for the discriminator becomes to assign 50% probabil-
ity to any given image being real or false. More precisely, in [Goodfellow et al., 2014]
it was shown that the minimization of the generator’s loss function, in the presence of
a perfect discriminator, would be equivalent to minimizing DJS (pdata(x)||pgen(x;θG)),
the Jensen-Shannon divergence between the generated distribution and the real dis-
tribution. which only reaches its minimum when both the distributions are the same.
This minimization is also equivalent to the process of maximizing the likelihood of the
generated distribution.

Despite these theoretical guarantees, in the minimax game of Equations 2.1 and
2.2, the generator suffers from the problem of having gradients too close to zero when
the discriminator correctly assigns a probability close to zero to the generated images.
This situation compromises the generator’s learning, especially at the initial stages
of the training, when it is easier to discriminate between real images and fake im-
ages. A heuristic alteration was proposed by [Goodfellow, 2016] in order to overcome
this problem: instead of minimizing the component Ex∼Pgen [log(1 − D(x))], the only
part dependent of θG in the minimax formulation, the generator is now optimized
to maximize a new loss function Ex∼Pgen [log(D(x))]. This change might be under-
stood as a way of making the generator maximize the probability of the discriminator
mistakenly classifying false positives, instead of minimizing the probability of the dis-
criminator correctly classifying true negatives, as in the minimax formulation. This
new loss function for the generator became known as non-saturating loss, once it was
conceived with an intention of facilitating the gradient flux for the generator. The loss
function for the discriminator remains unchanged.

In practice, training a GAN involves a series of difficulties, with the main ones
related to convergence problems during the minimax game. A common example is
called mode collapse, which is when the generator reaches a local minimum in its opti-
mization function and ends up generating samples with little diversity, whose quality
is very little improved during the rest of the training. In Figure 2.1 we can see an
example of this phenomenon. As the training progresses, the generated samples (in
blue) end up concentrating in only one of the modes of a distribution formed by a
mixture of 8 Gaussian components (red), and alternating between modes while doing
so, which demonstrates this architecture’s incapacity to represent all the modes of the
dataset at the same time.

Despite these difficulties, many training techniques and architecture variations
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Figure 2.1. Illustration of mode collapse occurring during the training of a GAN
trained with a mixture of 8 Gaussian distributions (red). Generated samples
(blue) are incapable of representing all the modes of the real distribution.

have been proposed recently aiming to make the training more stable, with one of the
first seminal works with this approach being [Radford et al., 2016], where the authors
proposed a GAN architecture parameterized by convolutional neural networks (CNN),
referred to as deep convolutional generative adversarial network (DCGAN), as well as
a series of practical guidelines that helped to stabilize the training. In Figure 2.2 we
reproduce the generator architecture used in the DCGAN work. Besides expressive
results in image generation that were obtained by the authors, notable properties of
interpolation in the generator’s latent space were also demonstrated, where it was
possible to perform arithmetic operations with the latent vectors of generated images,
whose result would be semantically coherent with such operations. This property
demonstrated the representation power of GANs, with the possibility of disentangling
high-level semantic characteristics present in the dataset.

The architecture we shall employ in this work is strongly influenced by the DC-
GAN architecture, the main difference being that it is generalized to multiple genera-
tors.

Figure 2.2. Generator used in the DCGAN architecture. Image reproduced
from [Radford et al., 2016]

Recently, many works employing GANs have obtained increasingly more expres-
sive results, especially in tasks related with computer vision, such as video and image
generation [Radford et al., 2016, Brock et al., 2019, Tulyakov et al., 2018], image in-
painting [Yu et al., 2018, Liu et al., 2019], semantic segmentation [Zhang et al., 2018],
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image-to-image translation [Isola et al., 2017], style transfer [Karras et al., 2019], im-
age synthesis from text [Reed et al., 2016].

2.2 GANs with Multiple Generators

As a way of solving the problem of modal collapse in GANs and acceler-
ate the training convergence, several works [Ghosh et al., 2018, Zhang et al., 2018,
Hoang et al., 2018, Khayatkhoei et al., 2018] proposed architecture variations that em-
ploy multiple generators trained simultaneously with a discriminator, which we refer
to as MGANs.

The main motivation behind this approach is to facilitate the role of each gener-
ator in the adversarial game, since each generator is able to specialize in some specific
mode of the distribution and still fool the discriminator, as a result of the presence of
other generators specializing in other modes. This phenomenon is depicted in Figure
2.3, where, as in Figure 2.1, the training progression for a mixture of 8 Gaussian dis-
tributions is shown, but this time a MGAN with 8 generators is used. We can notice
how each of the 8 modes of the distribution is being much better represented, thus
eliminating problems related to convergence and modal collapse. This is a result of
each generator’s specialization in one of the 8 modes of the real distribution.

Figure 2.3. Illustration of the training progress of a MGAN with 8 genera-
tors trained with a mixture of 8 Gaussian distributions (red). Generated samples
(blue) are capable of representing all the modes of the real distribution, eliminat-
ing mode collapse.

We can observe in Figure 2.4 an example of this type of architecture. A number
of N generators are simultaneously trained, sharing the same latent distribution. The
loss function is similar to the loss of a GAN with 1 generator, however we sum the
expectations for each generated distribution obtained with each of the N generators
employed. Hence, we shall have an optimization within the minimax game performed
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with the parameters θG1 ,θG2 ...θGN ,θD:

min
θG1,...,GN

max
θD
Ladv(G1,2,..,N , D) = Ex∼Pdata [logD(x)] +

1

N

N∑
k=1

Ex∼PGk [log(1−D(x))].

(2.3)

In Figure 2.5 we show an example of application of this type of architecture
trained with the MNIST dataset, where each line corresponds to samples generated
by each generator in an architecture with 10 generators after the training is finished.
We can see how each of the generators manages at the end to specialize in one of the
classes of the dataset, i.e., one of the digits.

Figure 2.4. Example of an architecture with multiples generators. Image repro-
duced from [Hoang et al., 2018].

Figure 2.5. Example of result after training an architecture of 10 generators
with the MNIST dataset, with each line corresponding to generated samples of
one of the generators.
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Ghosh et al. [Ghosh et al., 2018] were the first to propose this type of archi-
tecture, empirically demonstrating its properties of facilitating both the training con-
vergence and the diversity of generation. Hoang et al. [Hoang et al., 2018] proposed
to introduce a classifier of generators that is independent of the discriminator, whose
classification loss function would also be minimized by the generators, encouraging
the diversity of generated images. Zhang et al. [Zhang et al., 2018] contributed with
various theoretical guarantees for a increase in convexity of the loss function as more
generators are introduced. It is important to emphasize that in none of these works
the possibility of using the architecture with multiple generators for clustering tasks
was conceived, which is precisely the focus of the present work.

2.3 Deep Clustering

A very important task in the field of unsupervised learning is cluster analysis or
clustering. The goal of cluster analysis is to group examples belonging to some data
distribution into clusters, keeping examples similar to each other in the same cluster,
and examples different from each other in different clusters.

Among the different classical approaches to cluster analysis, we can cite the k-
means algorithm [MacQueen, 1967] as one of the most well-known and widely employed
to an enormous range of tasks. The k-means algorithm is specially suited for clustering
data samples that are approximately spread around separated cluster centers, called
cluster centroids. Each centroid is defined by the mean of the elements assigned to
it. The algorithm is iterative, fixing a group of k centroids randomly spread at a first
step, while it determines the examples in the dataset that are closer to each of these
k centroids; for the next step, it fixes a new clustering, assigning examples to a new
cluster defined in regard to which centroid each example was closest to, and then it
estimates new means for the centroids defined by these new clusters, thus obtaining
a new set of k centroids. The process is then repeated, assigning a new clustering to
previously estimated centroids at a step, and re-estimating new centroids for the new
clusters at the next step. The algorithm is repeated until some sort of convergence or
until a predefined limit of iterations.

Regarding the use of GANs for clustering tasks, we can cite the architec-
ture named ClusterGAN [Mukherjee et al., 2019]. In the ClusterGAN work, the
authors were strongly influenced by another architecture, the well-known InfoGAN
[Chen et al., 2016], a type of GAN whose latent variable is formed by, besides the
usual multidimensional variable z, a set c of one-dimensional variables c1, c2...cN that
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are expected to unsupervisedly capture semantic information in a disentangled manner
(i.e., with each variable codifying isolated interpretable features of the real data). For
obtaining this, the authors of InfoGAN proposed an additional term in the generator’s
loss function that maximized I(c;G(z, c)), the mutual information between a generated
image and the latent variable that originated it. The variables c could be chosen to
represent both categorical and continuous features. The ClusterGAN work adapted
this architecture for the clustering task. For this architecture, the generator learns
to generate a certain class of the real distribution in correlation with a given one-hot
format for the latent variables c. To obtain this, they proposed to use an inference
encoder network capable of performing the mapping E : X −→ Z, which is the inverse
of the Generator’s mapping and similar to an encoder’s mapping for an autoencoder
architecture. This encoder network is trained jointly with the generator for classifying
a latent variable associated with each generated sample, such that after the training it
can be employed to classify real data samples accordingly to which latent variable is
mostly correlated with it, thus providing the clustering. One main difference in regard
to our work is our use of multiple generators instead of multiple discrete latent vari-
ables, which enables us to discover clusters with much more representation capacity.
Even more importantly, all the mentioned methods in this section assume a fixed and
known optimum number of clusters that describe the real distribution (horizontal clus-
tering), while for our approach we propose a hierarchical way of deep clustering with
GANs, which can be performed recursively, without assuming any optimum number of
clusters.

In [Kundu et al., 2019] the authors propose the GAN-Tree framework, which re-
sembles our approach superficially, since it also involves a hierarchical structure of
independent GAN nodes capable of generating samples related to different levels of
a similarity hierarchy. There are multiple relevant differences, however. The most
important one being that the main motivation for GAN-Tree was a framework capa-
ble of addressing the trade-off between quality and diversity when generating samples
from multi-modal data. The authors claimed that their approach could be readily
adapted for clustering tasks, but no definitive experiments with clustering benchmarks
were provided. Other important difference lies in their splitting procedure, which was
performed with a latent ẑ inferred by an encoder E for a sample image x, that is,
ẑ = E(x). For a node of the tree, they decompose their prior for Pz into a mixture of
two Gaussians with shifted means. They determine the prior component to which ẑ is
more likely related, and then train the encoder to maximize the likelihood to this prior.
For a clustering task, this approach would heavily rely on the assumption that the in-
ference made by E is of sufficient semantic relevance, as well as that the decomposed
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Gaussians in Z will also be sufficient to capture clustering patterns with sufficient se-
mantic relevance. The split in our approach, on the other hand, is directly embedded
into the GAN training, with each generator automatically learning to represent each
cluster. Therefore, in our work the clustering semantic quality is directly tied to the
GAN’s well known representation learning capacity, and, in particular, to the tendency
of different generators in MGANs to cover different areas of the training distribution
with high semantic discrepancy.
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Chapter 3

Methodology

3.1 Method Overview

In this section, we present a high-level overview of how our method operates.
All the components and important characteristics will be defined more precisely in the
next sections. Our method constructs a hierarchical clustering binary tree like the one
depicted in Figure 3.1. Adopting a soft clustering approach, each sk at the leaf nodes
refers to a vector of probabilities measuring how likely each example is to belong to a
certain cluster k, and we refer to sk as the membership vector of cluster k. Hence, the
number of clusters for a given tree construction is always equal to the number of leaf
nodes. The tree is iteratively grown, starting from top to bottom. The mechanism by
which the tree grows is encapsulated in each block referred to as split: a soft clustering
operation that takes as input a node sk, previously a leaf node at that iteration, and
divides its probabilities masses into two new leaf node probability vectors. Each of
these probability vectors is related to subspaces of cluster k and whose sum equals
sk. The term “split” does not imply some sort of hard assignment clustering, in which
individual examples are thoroughly separated. Rather, we refer to a “soft split” done
over each example’s probability mass given in sk. Since a split might be performed
at any leaf node at a given iteration, each level of the binary tree is not necessarily
even (i.e., complete). We decide which sk to split next based on the total probability
mass allocated to it. More precisely, we take the sk with the largest total mass, which
roughly measures how big each clustering is, since more mass means more examples
associated with it. Figure 3.2 presents a practical example with the result of our
method’s complete hierarchical clustering tree constructed with the MNIST dataset,
where the amount of probability mass per class in each sk is represented by the font
size of each class in parenthesis. Notice that at each split of the tree shown in Figure
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Figure 3.1. Simplified view of our method’s hierarchical clustering. Each cluster
k is associated with a membership vector sk, which contains the probabilities of
each i-th training example belonging to k. Each split block receives a sk as input
and creates two new membership vectors from it, each associated with a subcluster
of cluster k.

3.2 the classes mostly present at the parent sk are divided into two subdivisions. At
the leaf nodes (s6, s8, s9, s12, s13, s14, s15, s16, s17, s18), we have the final clusterization.
But some clusters might not be perfectly separated, like s18, for instance. Notice how
s18 is mostly associated with 9, but a big portion of the probability mass assigned to
9’s was lost during the 5-th split, when it ended up in s9. We still arrive, however, at a
clearly visible 1-to-1 association of each class with almost every other sk at a leaf node.

3.2 Basic Notation for Hierarchical Soft Clustering

In this section, we define the notation used in our work. Matrices or vector
random variables are denoted by either Greek or non-italicized Roman letters, in up-
percase, printed in a boldface font (e.g., ∆,D); vectors are denoted by either Greek
or non-italicized Roman letters, in lowercase, printed in a boldface font (e.g., δ,d);
sets are denoted by non-italicized Roman letters, in uppercase, printed in non-boldface
font (e.g., D); scalars and functions are denoted by either Greek or italicized Roman
letters, either in uppercase or lowercase, printed in non-boldface font (e.g., ∆, δ,D, d);
scalar random variables are denoted by italicized Roman letters, in uppercase, printed
in non-boldface font (e.g., D); because of conventions widely employed in similar works,
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Figure 3.2. Complete hierarchical tree constructed over the MNIST dataset.
Each vector sk is placed together with 25 real examples sampled from cluster k’s
probability distribution. This distribution is formed by sampling an example i
with weights given by the i-th probability in sk. To indicate the most prevalent
classes in each sk, we represent in parenthesis, scaled by font size, the sum of
the probability mass of all the examples belonging to the class inside a given
sk. To be more precise, the probability mass of a class A inside sk is given by∑N

i sk,i · 1(ci = A), where 1 is an indicator function and ci is the class of the
i-th example. The scale linearly ranges from font size 2 (closer to 0% mass, 0
mass) to font size 7 (closer to 100% of mass, or approximately 7000 of mass for
the approximately 7000 examples per class in MNIST).
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we adopt some exceptions to the aforementioned rules, which are L for loss functions,
E for expectation over a random variable, ∇ for gradients, R for the set of all real
numbers, P for probability distributions, 1 for a vector of ones.

3.2.1 Notation for soft clustering

Given a collection of N training examples XData = {x1,x2, . . . ,xN}, and a total
of C clusters, a soft clustering model parameterized by θ defines a membership matrix:
a matrix M ∈ RN×C , where each mi,k = p(Zi = k | xi,θ) measures the probability of
example i belonging to cluster k given xi and our model’s parameters θ. The hidden
random variable Zi is used to represent the association of the i-th example to each
cluster k. Consequently, we also have that

∑C
k=1mi,k = 1, i.e., the probabilities in

each row sum up to 1.

3.2.2 Expanding the notation for hierarchical soft clustering

Our method iteratively grows a hierarchical tree of clusters, from top to bottom,
with each leaf node representing a cluster, and each split operation over a leaf
node creating two new nodes, equivalently splitting a previous cluster into two subdi-
visions. This means that the matrix M must change, both in its dimensions and in its
values, at each new split performed on a leaf node of the associated tree. It must remain
a membership matrix, so the values, even though modified, must still be probabilities
that sum up to 1 along each row. We use M(j) to indicate the membership matrix after
j split operations were performed. We use m

(j)
:,k to refer to the column vector formed

by the k-th column of the matrix M(j), and also m(j)
i,k to refer to its scalar probability

at row i and column k. Additionally, we will employ 1N ∈ RN×1 as an all-ones column
vector with N rows.

3.2.3 Hierarchical clustering initial state: before the first split

We start the tree with M(0) ∈ RN×1, the initial 1-column membership matrix
describing a single trivial cluster to which each example in the dataset has probability
1 of belonging, i.e., m

(0)
:,1 = 1N , while the corresponding tree has a single node. Per-

forming the first split transforms the 1-column matrix M(0) into the 2-column matrix
M(1) ∈ RN×2 and connects 2 new leaf nodes to the previous 1-node tree, making the
number of leaf nodes equal to 2. The two new columns m

(1)
:,1 and m

(1)
:,2 are such that

m
(0)
:,1 = m

(1)
:,1 +m

(1)
:,2 . By following this condition, it is clear that m

(1)
:,1 +m

(1)
:,2 = m

(0)
:,1 = 1N .
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3.2.4 Generalization: after j splits

For the j-th split, we have M(j) ∈ RN×(j+1), and a tree consisting of 2j+ 1 nodes
(each split generates 2 new nodes) and j+1 leaf nodes (each split replaces the previous
leaf node by 2 new leaf nodes, adding 1 to the current count of leaf nodes). In order
to perform the (j + 1)-th split and obtain M(j+1) ∈ RN×j+2, we must choose a leaf
node of the tree associated with M(j), and hence, its corresponding column m

(j)
:,c . After

the choice is made, the (j + 1)-th split takes m
(j)
:,c as input and substitutes it by two

new columns m
(j+1)
:,c and m

(j+1)
:,c+1 in M(j+1), such that m

(j)
:,c = m

(j+1)
:,c + m

(j+1)
:,c+1 . Let us

formulate an induction hypothesis and assume that the sum along M(j)’s rows equals
1, i.e.,

∑j+1
k=1 m

(j)
:,k = 1N . We can verify that the same will hold for M(j+1), as is shown

by the following Equation 3.1:

j+2∑
k=1

m
(j+1)
:,k =

j+1∑
k=1

m
(j)
:,k −m(j)

:,c + m(j+1)
:,c + m

(j+1)
:,c+1

=

j+1∑
k=1

m
(j)
:,k −m(j)

:,c + m(j)
:,c

=

j+1∑
k=1

m
(j)
:,k

= 11,N .

(3.1)

Because the condition m
(1)
:,1 + m

(1)
:,2 = m

(0)
:,1 = 1N holds at the first split, we have

thus demonstrated with the induction hypothesis and Equation 3.1 that
∑j+1

k=1 m
(j)
:,k =

11,N will hold for any j.

3.2.5 Referring to membership vectors at the nodes of the tree

The membership matrix M(j) notation presented thus far was useful for precisely
describing the transitions between soft clustering states that occur for our hierarchical
tree model when a split is performed and new leaf nodes are added. However, it has a
shortcoming: a given M(j) is not enough for describing the entire tree, but only its leaf
nodes after j splits have been performed. In order to visualize the entire hierarchical
structure, we need a notation for referring to the membership vectors created at each
node of the tree, not only the membership vectors at the leaf nodes that are defining
the current soft clustering state. So we employ sk for referring to the membership
vector created at the k-th created node of the tree. For referring to the i-th example
probability in sk, we use sk,i. It must be clear that both m

(j)
:,k and sk refer to membership
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vectors, even though not necessarily to the same specific membership vector. While
m

(j)
:,k is used in reference to the columns of M(j), sk is used in reference to the nodes

of the trees. Since M(j) describes the membership vectors associated only with the
leaf nodes of the tree, for each column vector in M(j) we have an equivalent sk at the
tree, but there is at least one sk at a non-leaf node of the tree for which there is no
counterpart M(j). To be more precise: for each k column of M(j) there is a node k′ at
the tree such that sk′ = m

(j)
:,k ; but, for j > 0, there is at least 1 node k′ at the tree for

which there is no column k in M(j) such that sk′ = m
(j)
:,k .

3.2.6 Describing a tree with an example

In order to clarify the use of the notation even further, we refer back to Figure
3.2 depicting a real example of the tree constructed for with the MNIST dataset, and
describe the sequence of splits occurred during its growth:

• Before the first split, at j = 0, we have a single node and m
(0)
:,1 = s0 or, equiva-

lently, M(0) = s0 = 11,N .

• After the 1st split, j = 1, we have m
(1)
:,1 = s1, m

(1)
:,2 = s2, or, equivalently,

M(1) = [s1 s2], with s1 + s2 = s0 = 11,N , where [ ] denotes a concatenation of
column vectors.

• After the 2nd split, j = 2, we have m
(2)
:,1 = s3, m

(2)
:,2 = s4, m

(2)
:,3 = s2, or, equiva-

lently, M(2) = [s3 s4 s2], with s3 + s4 + s2 = s1 + s2 = 11,N .

• After the 3rd split, j = 3, we have m
(3)
:,1 = s3, m

(3)
:,2 = s4, m

(3)
:,4 = s6, or, equiva-

lently, M(3) = [s3 s4 s5 s6], with s3 + s4 + s5 + s6 = s3 + s4 + s2 = 11,N .

• And so on.

3.3 Performing the Split

In this section we detail the deep clustering components and procedures occurring
inside the split blocks, which were shown as nodes of the hierarchical clustering tree
in Figure 3.1 and were treated as black boxes in Sections 3.1 and 3.2. But firstly, we
describe a split block in terms of sub-blocks and what transformations they perform on
a sk membership vector in order to output the two subsequent membership vectors that
are soft subdivisions of the probabilities in sk. These sub-blocks inside a split block
are of two types: 1) raw split sub-block and 2) refinement sub-block. Figure 3.3
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shows how these sub-blocks are connected inside a split block. We might also refer
to the procedures occurring inside the raw split sub-block as the raw split phase and
to the chain of procedures encompassing the refinements sub-blocks as the refinement
phase. The following Subsections 3.3.1 and 3.3.2 will discuss in detail, respectively,
the raw split and the refinement phases, presenting how the GAN/MGAN components
inside each sub-block manage to perform the binary clustering operations.
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Figure 3.3. Raw split and refinement sub-blocks inside a split block. Each s
(t)
l

and s
(t)
m constitute membership vectors estimates that are gradually transformed

into the final estimates sl and sm.

We have already established in Section 3.2 that the split operation over cluster
k takes as input the membership vector sk and returns two new membership vectors
whose sum equals sk. Let us refer to these two vectors as sl and sm, with sl + sm = sk.
Referring to Figure 3.3, we can see how, inside a split block, before being transformed
into the final sl and sm, the vector sk firstly passes through a raw split sub-block, which
outputs two initial membership vectors s

(0)
l and s

(0)
m , that are subdivisions of sk (do not

confuse this superscript notation, which refers to sequences of refinements performed
on a membership vector inside a split block, with the superscript notation previously
used for the membership matrix in M(j), which referred to sequences of splits performed
on the hierarchical tree). Sometimes the true classes with most probability mass in sk

become well separated into soft clusters described by s
(0)
l and s

(0)
m , and we could even

use them as the final split block outputs sl and sm. But since s
(0)
l and s

(0)
m are usually

just rough estimates, we use the refinement sub-blocks to get them progressively closer
to what we expect the ideal soft clustering assignment to be. Referring back to Figure
3.3, we can see how s

(0)
l and s

(0)
m pass through a refinement sub-block, yielding two

new membership vectors s
(1)
l and s

(1)
m , which are also passed through a next refinement

sub-block. The process goes on for T refinement sub-blocks, until we achieve our final
result s

(T )
l and s

(T )
m that will be used for sl and sm. It must be noted that s

(t)
m +s

(t)
l = sk

for every t. This whole split procedure is also defined in Algorithm 3.1.
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Algorithm 3.1 Split
input: XData, sk

1 # RAW SPLIT PHASE
2 s

(0)
l , s

(0)
m ←− raw_split(XData, sk)

3 # REFINEMENT PHASE
4 s

(t)
l , s

(t)
m ←− s

(0)
l , s

(0)
m

5 for T iterations do
6 s

(t)
l , s

(t)
m ←− refinement(XData, s

(t)
l , s

(t)
m )

7 end
8 sl, sm ←− s

(t)
l , s

(t)
m

9 Return sl, sm

In order to visualize how the refinement sub-blocks progressively improve the
raw split results, we present an illustrative example with 25 MNIST samples in Figure
3.4. In the next subsections we will reuse this same example to explain how the
raw split and refinement sub-blocks perform their respective operations with it. The
samples are depicted inside the square grid under XData, and each of the probabilities
of each example of the sample for a given sk are depicted below XData. For this sk in
particular, 3’s and 5’s are the classes with most probability mass assigned to it. We
would expect the final split result to be two membership vectors with one receiving all
the 3’s probability mass while the other vector receives all the 5’s probability mass.
Firstly, we pass sk through the raw split block, and we can observe that the probability
mass of 3’s and 5’s are roughly divided between s

(0)
l (with more 3’s mass than 5’s) and

s
(0)
m (with more 5’s mass than 3’s), with some examples that are harder to identify not
receiving the expected probability in the membership vector mostly associated with
other examples of its class. After we pass s

(0)
l and s

(0)
m through the first refinement and

obtain s
(1)
l and s

(1)
m , we can observe more probability mass being assigned for 3’s in s

(1)
l

and more probability mass assigned for 5’s in s
(1)
m . After the second refinement, the

probability mass of 3’s and 5’s are almost completely separated in s
(2)
l and s

(2)
m .

In the next sections, we describe the raw split and refinement phases in detail.

3.3.1 Raw Split Phase

For the raw split phase, we use a MGAN architecture with two generators, which
we adapt for binary clustering by taking advantage of the fact that each of its two
generators learns to specialize in generating samples from one sub-region of the real
data distribution, with this sub-region tending to correlate with a specific set of classes
of the dataset.

Figure 3.5 depicts the training of this MGAN, where the MGAN components
are the 2 generators Gαk, Gβk, the discriminator Dk and the classifier Ck. We again
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Figure 3.4. (Best viewed in color) Visualization with a MNIST example of a
sk, whose probabilities are mostly associated with 3’s and 5’s, passing through a
raw split sub-block and then 2 refinement sub-blocks. The probabilities of each
individual example in the sample is indicated by its intensity in gray scale, with
more white indicating close to 100 % probability. Like we did for Figure 3.2, we
once again use the font size scale, in parenthesis, alongside each block, to indicate
the amount of probability mass per class assigned to it. Note that at each t, the
probabilities sum up to sk, i.e., s(t)m + s

(t)
l = sk.

reuse the same MNIST sample and sk that was presented in Figure 3.4. We need
each generator to specialize in sub-regions of sk, so real data samples must reflect
the proportions of probability mass allocated inside sk. For the example shown in
the figure, we would need samples that are mostly 3’s and 5’s. We perform this by
sampling from a Psk distribution defined by drawing weighted random samples from real
examples in XData with probability proportional to their masses in sk. More precisely,
a xi in XData will be sampled with probability sk,i

sk,1+sk,2...+sk,N
. We then proceed to

train the MGAN with these real samples, with the usual adversarial game between
generators Gαk, Gβk and the discriminator Dk, while Ck is trained to distinguish
between the generated samples. After some epochs of training, we observe that one
generator is generating mostly 3’s while the other is generating mostly 5’s. A non-
essential but helpful implementation detail is that we also train the generators to help
in Ck’s classification loss, which increases the incentive for Gαk and Gβk to generate
samples from different sub-regions. This is non-essential because most of the times each
generator naturally specializes in one sub-region. The reason for this specialization is
that both generators tend to reach a local minimum in their adversarial game with
the discriminator, in which it is simply not necessary for a generator to learn the
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Figure 3.5. (Best viewed in color) Training the Raw Split Components. Two
generators Gαk, Gβk, one discriminatorDk and a classifier Ck. Psk draws samples
weighted by the amount of probability each example has in sk.

other generator’s sub-region, as long as the union of both generated sub-regions is
enough to cover the entire data distribution, thus creating a sufficiently challenging
situation for the discriminator (more precisely, in this situation the generators do not
receive strong gradients encouraging them to expand their generation into other sub-
regions). However, forcing the generators to also minimize the classifier’s loss increases
the incentive for both generated distributions staying distinct, which is helpful for
more complex data distributions, where the sub-regions aren’t so well defined, and it
is harder to separate them with the adversarial game alone. Another more specific
implementation detail is that we share some parameters between Dk and Ck, since
it is more desirable for Ck to perform its classification in a higher-level feature space
which is learned by Dk. This is a common practice in works involving MGANs, and
we provide further explanation in the implementation details in Section 4.4.

After training the MGAN for enough epochs, we are able to perform the cluster-
ing, as depicted by Figure 3.6. We use Ck to perform the clustering on the real data
according to the two generated distributions it learned to identify, and which we expect
to correlate with different classes of the dataset. In this example, the first generated
distribution resembled 3’s, while the other resembled 5’s. So we expect Ck to mostly
assign real 3’s probability mass to the first soft cluster and real 5’s probability class to
the second. As we can see in Figure 3.6, Ck manages, as expected, to roughly assign
the 3’s probability mass to the cluster related to Gαk’s distribution (which generated
mostly 3’s), and it also roughly assigns the 5’s probability mass to the cluster related
with Gβk’s samples (which generated mostly 5’s). Note that Ck has to perform its in-
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Figure 3.6. (Best viewed in color) Clustering the dataset with the raw split
classifier.

ference for all examples of every class in the dataset, regardless if they were present in
the generated distributions, with p(G = Gαk|x) + p(G = Gβk|x) = 1. We do not care
for the classifications of the examples with low probability in sk, since most of their
probability mass has already been assigned to other clusters. To enforce the already
established condition that the result of each example’s probabilities in the subsequent
membership vectors parting from sk’s node in the tree must sum up to their probability
in sk, we multiply the probabilities of each example predicted by Ck by its probability
in sk. The result is s

(0)
l and s

(0)
m , which had already been shown in Figure 3.4, we’ve

enforced that s
(0)
l + s

(0)
m = sk. Finally, by noting again that certain examples weren’t

well separated in s
(0)
l and s

(0)
m , we are able to conclude that the two generated distri-

butions weren’t sufficiently diverse and/or high quality to account for the entire set of
3’s and 5’s the MGAN had access to, and this reflected in the classifier not learning a
classification that was suited for identifying all 3’s and all 5’s with sufficient accuracy.

We now provide a more formal definition for the MGAN game occurring for the
raw split phase. We can define the objective function of the two-generator MGAN
game happening at a raw split of membership vector sk as an optimization of a sum
of two cost functions Ladv and Lcls, described by Equation 3.2. Ladv describes the cost
function for the adversarial minimax game between generators and discriminator, and
is given by Equation 3.3. Lcls describes the classification cost that is minimized by both
generators and classifier, and is described by Equation 3.4. Note that we multiply Lcls
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by a regularization parameter λ to weight its impact on the total cost.

min
θGαk ,θGβk ,θCk

max
θDk

L(Gαk, Gβk, Dk, Ck) = Ladv(Gαk, Gβk, Dk)

+ λLcls(Gαk, Gβk, Ck)
(3.2)

Ladv(Gαk, Gβk, Dk) = Ex∼Psk
[logDk(x)] + Ex∼PGαk [log(1−Dk(x))]

+ Ex∼PGβk [log(1−Dk(x))]
(3.3)

Lcls(Gαk, Gβk, Ck) = Ex∼PGαk [log(Ck(x))] + Ex∼PGβk [log(Ck(x))] (3.4)

The remainder of this subsection provides a detailed line-by-line description of
Algorithm 3.2 to train the MGAN components in the raw split phase. This part is very
specific, and the reader might skip it without hindering the overall comprehension of
the rest of the method.

Initialization: For a raw split over cluster k, a mini-batch with nS real examples
is sampled from a probability distribution Psk . Then, mini-batches with nG generated
samples are drawn from each of Gαk and Gβk (lines 5-6). Discriminator training:
The generated and real samples are used to compute the real and fake losses for Dk,
both computed with binary cross-entropy using labels 1 for real and labels 0 for fake,
having the gradients of their sum back-propagated to update Dk’s parameters θDk
(lines 7-9). Classifier training: Ck’s loss is computed with fake samples from Gαk

and Gβk, using cross-entropy with two classes and whatever labels we choose for differ-
entiating between Gαk samples and Gβk samples (we use the superscripts on C(α_out)

k

and C(β_out)
k as a notation for indexing the probability outputs for each class), having

its gradients back-propagated to update Ck’s parameters θCk (lines 10-11). Genera-
tors training: Gαk and Gβk are trained together to fool Dk with the same loss used
for Dk’s training, but with the labels flipped (line 12); Gαk and Gβk are also trained
with a regularization classification loss computed with the same loss and labels used for
Ck’s loss (line 13) to encourage the generation of samples that minimize it, which can
only be achieved if Gαk’s samples are distinguishable from Gβk’s and vice-versa (this
classification regularization is important to help each generator specialize in different
regions of the training set while trying to fool the discriminator, which is necessary
for a well separated binary clustering at the split phase); and finally, both losses are
summed, with a regularization λ multiplied to the classification loss to weight its im-
pact on the gradients, which are then computed and back-propagated to update the
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parameters of both generators, given by θGk (line 14). Split phase: After training the
MGAN components for sufficient iterations, we create two new membership vectors sl

and sm initialized with zeros (line 18), each to be associated with subdivisions l and
m of the cluster k with which sk was associated; we then iterate through each training
example of the entire training set XData and use Ck to perform inference on it, i.e.,
outputting two probabilities C(α_out)

k = p(α | xi) and C(β_out)
k = p(β | xi), where α and

β symbolize the event that a given example came from Gαk (closer to one sub-region
of cluster k) and Gβk (closer to another sub-region of cluster k), respectively (lines
22-23); since Ck outputs probabilities ranging from 0 to 1 for each example, i.e., the
sum of its outputs p(α | xi) and p(β | xi) is 1, so we must multiply them by i-th
example probability in sk, so that the condition for sl + sm = sk is satisfied (also at
lines 22-23); and the algorithm finally returns the newly created vectors sl and sm (line
25).

Algorithm 3.2 Raw Split
input: XData, sk

1 Creates Components Gαk, Gβk, Ck, Dk

2 #TRAINING PHASE
3 #trains components for a given number of iterations
4 for training_iterations do
5 xs ←− {xi ∼ Psk}

nS
i=1

6 xGα ←− {xi ∼ PGαk
}nG
i=1

7 xGβ ←− {xi ∼ PGβk
}nG
i=1

8 L(real)
Dk

←− − 1
nS

∑nS

i=1 log
(
Dk(x

(i)
s )
)

9 L(fake)
Dk

←− − 1
2nG

∑nG

i=1 log
(

1−Dk(x
(i)
Gα)
)
− 1

2nG

∑nG

i=1 log
(

1−Dk(x
(i)
Gβ)
)

10 Updates θDk
with Adam and ∇θDk

(L(real)
Dk

+ L(fake)
Dk

)

11 LCk
←− − 1

2nG

∑nG

i=1 log
(
C

(α_out)
k (x

(i)
Gα)
)
− 1

2nG

∑nG

i=1 log
(
C

(β_out)
k (x

(i)
Gβ)
)

12 Updates θCk
with Adam and ∇θCk

(LCk
)

13 L(disc)
Gk

←− − 1
2nG

∑nG

i=1 log
(
Dk(x

(i)
Gα)
)
− 1

2nG

∑nG

i=1 log
(
Dk(x

(i)
Gβ)
)

14 L(clasf)
Gk

←− − 1
2nG

∑nG

i=1 log
(
C

(α_out)
k (x

(i)
Gα)
)
− 1

2nG

∑nG

i=1 log
(
C

(β_out)
k (x

(i)
Gβ)
)

15 Updates θGk
with Adam and ∇θGk

(L(disc)
Gk

+ λL(clasf)
Gk

)

16 end
17 #CLUSTERING PHASE
18 #creates new vectors sl and sm initialized with zeros
19 sl = sm = [0, 0, . . . , 0]
20 #uses Ck to estimate the i− th example membership probability and update its value in sl and sm
21 #also multiplies the i-th example’s prob by its prob in sk to enforce that sl + sm = sk
22 for xi in XData do
23 sl,i = C

(α_out)
k (xi) · sk,i

24 sm,i = C
(β_out)
k (xi) · sk,i

25 end
26 Return sl, sm
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3.3.2 Refinement Phase

After we have performed the raw split over membership vector sk, its probability
mass was redistributed into two new membership vectors s

(0)
l and s

(0)
m , which shall now

pass through the first refinement sub-block and be transformed into new membership
vectors s

(1)
l and s

(1)
m with improvements in clustering quality, such as was described

by Figure 3.4. We proceed now to show how the refinement sub-block performs this
first transformation, whose results are easy to generalize for the subsequent refinement
sub-blocks.
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z 
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Figure 3.7. (Best viewed in color) Training the Refinement Components.

The components of the first refinement sub-block are depicted by Figure 3.7, with
the same s

(0)
l and s

(0)
m used as example in Figures 3.4 and 3.6. The components are

divided in two groups l (formed by a generatorGl, a discriminatorDl and a classifier Cl)
and m (formed by a generator Gm, a discriminator Dm and a classifier Cm), which we
might also refer to as refinement groups l and m. Group l takes s

(0)
l as input, and group

m takes s
(0)
m . Group l has its own independent GAN game occurring between Gl and

Dl, and group m has another separate game occurring between Gm and Dm (the role
of classifiers Cl and Cm will become clearer shortly). This scheme with two separated
GANs is designed to obtain a more focused generative representation of each sub-region
of sk, with each sub-region described by s

(0)
l and s

(0)
m , than we were able to obtain at the

raw split phase, with a single MGAN’s discriminator having to learn to discriminate
the entire region described sk. By providing a more focused view of one sub-region
to one discriminator, it encounters less variance among the real examples it receives,
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and thus its discriminative task becomes easier. We expect its adversarial generator’s
response to be a more diverse and convincing generation of examples associated with
that particular sub-region. Referring back to Figure 3.7, each GAN in groups l and
m has its real samples drawn from, respectively, distributions Psl and Psm , which are
formed like Psk was formed during the raw split, i.e, by weighted random sampling
of real examples from XData with weights given by each example’s probability mass
in s

(0)
l and s

(0)
m . As a result we can see how the minibatches that the GANs in each

group receive reflect the probability mass allocated to its group’s respective membership
vector, e.g., Psl draws mostly 3’s, since 3’s have more probability mass in s

(0)
l , but it

might eventually draw some 5’s as well, since there’s still some mass for 5’s in s
(0)
l .

The role of classifiers Cl and Cm in these two separated GAN games is similar to
the single classifier Ck used during the raw split phase: learn to differentiate between
generated samples from Gl and Gm, thus providing a way to clusterize the real data
afterwards. The reason for using two separated classifiers trained for the same task
(instead of a simpler formulation with a single classifier like during the raw split), is
that this permits each classifier to share its parameters with each discriminator, and
consequently, as mentioned during the raw split explanation, it forces the classification
to occur in a higher-level feature space, which is more desirable (once again, we provide
further explanations in Section 4.4). Another practical detail for using the classifiers
here, and slightly harder to visualize, is that we can also train Gl and Gm to minimize
the classifiers’ losses, which in turn increases the incentive for each generator generating
samples more characteristically associated with each sub-region (we did something
similar for the 2 generators in the MGAN of the raw split).

After alternatingly training the 2 separate refinement groups for enough epochs,
we are able to perform a clustering re-estimation, as depicted by Figure 3.8. This is
very similar to how Ck was used to clusterize the real data in the raw split procedure,
as previously described by Figure 3.6. Since we trained two classifiers, we take the
average between the probabilities that Cl and Cm estimate for the same example in the
dataset. Once again, each classifier was trained to distinguish between two generated
distributions, which we expect to correlate well with certain classes. Only this time
we expect an increase in the quality of the clustering, since these two generated dis-
tributions are now assumed to be more informative of each sub-region of the dataset
than the two generated distributions obtained during the raw split. In this example,
Gl’s distributions resembled 3’s, while Gm’s resembled 5’s, so we expect the classifiers
to assign more of the 3’s probability mass to the cluster inferred to Gl and more of
the 5’s to the cluster inferred to be Gm. The inferred probability results sum up to
1, i.e., p(G = Gl|x) + p(G = Gm|x) = 1. Thus, the same way we did during the raw



40

=
  

=
  

Refinement: Clustering Re-estimation 
  probs in 

probs in 

probs in 

probs in 

(1)(2)(3)(4)(5)(6)(7)(8)(9)

(1)(2)(3)(4)(5)(6)(7)(8)(9) (1)(2)(3)(4)(5)(6)(7)(8)(9)

(1)(2)(3)(4)(5)(6)(7)(8)(9) (1)(2)(3)(4)(5)(6)(7)(8)(9)
prob. mass 
per class

We refine the previous clusters by 
re-estimating the membership probabilities 
with the classifiers trained on the new 
higher quality generated distributions

  

  
  

(1)(2)(3)(4)(5)(6)(7)(8)(9)

Correct but 
not confident

Correct

Correct

Correct but 
not confident

Figure 3.8. (Best viewed in color) Clustering the dataset with the refinement
classifiers

split clusterization, we multiply the classification probabilities by the probabilities in
sk, enforcing the two new membership vectors s

(1)
l and s

(1)
m sum up to sk. sk can be

obtained by simply summing the membership vector that a refinement block receives
as input, i.e., sk = s

(0)
l + s

(0)
m = s

(t)
l + s

(t)
m for every t-th refinement. The new clustering

result yielding new membership vectors s
(1)
l and s

(1)
m is merely a reproduction of what

was previously shown in Figure 3.4, which was already verified to be an improvement
over s

(0)
l and s

(0)
m in regard to the reference classes.

For the consecutive refinement, we might expect that providing s
(1)
l and s

(1)
m to

train newly created refinement groups l and m might yield generated distributions
that constitute an even more defined representation of the sub-regions represented by
s
(1)
l and s

(1)
m , thus providing even more information for the classifiers to perform their

clustering and obtain improved membership vectors s
(2)
l and s

(2)
m , such as was previously

shown in Figure 3.4. Hence, by repeating the process for T refinements, we hope that
the generated distributions and subsequent clustering re-estimation tend to become
increasingly more characteristically associated with the initially obtained sub-regions.

We now provide a more formal definition for the two simultaneous GAN games
occurring for the training of the components of the refinement phase. From the per-
spective of refinement group l, the training can be defined as an optimization of a sum
of two cost functions Ladv and Lcls, described by Equation 3.5. Ladv describes the cost
function for the adversarial minimax game between generator Gl and discriminator Dl,
that only involves group l components, and is given by Equation 3.6. Lcls describes the
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classification cost that is minimized in respect to Gl’s parameters and Cl’s parameters,
but also involves Gm and Cm for computing the cost, and is described by Equation 3.7.
Note that we multiply Lcls by a regularization parameter λ to weight its impact on the
total cost. Equations 3.6 and 3.7 can also be analogously formulated for the training
from the point of view of refinement group m, which is simultaneously optimized, by
simply inverting m and l components.

min
θGl ,θCl

max
θDl

L(Gl, Dl, Cl) = Ladv(Gl, Dl) + λLcls(Gl, Cl) (3.5)

Ladv(Gl, Dl) = Ex∼Pdata [logDl(x)] + Ex∼PGl [log(1−Dl(x))] (3.6)

Lcls(Gl, Cl) = Ex∼PGl [logCl(x)] + Ex∼PGl [logCm(x)] + Ex∼PGm [logCl(x)] (3.7)

The remainder of this subsection provides a detailed line-by-line description of
Algorithm 3.3, which implements an external training loop responsible for coordinating
the alternating training of refinement groups l andm, and Algorithm 3.4, which is called
as function by Algorithm 3.3 and trains the components of a given refinement group
isolatedly with a single update iteration. This part is very specific and relatively dense,
and the reader might skip it without hindering the overall comprehension of the rest
of the work.

Initialization on Algorithm 3.3: For the refinement of groups l and m at
iteration t of the refinement procedure, each group receives membership vectors s

(t)
l and

s
(t)
m , as well as newly created generators, discriminators and classifiers for each group.
Firstly, we draw mini-batches with nS real examples xsl and xsm , each respectively
sampled from probability distributions Psl and Psm (lines 3-4 of Algorithm 3.3), with
Psl and Psm being created exactly like Psk was created for the raw split procedure:
sampling from the training set XData with weights given by the probabilities in sl and
sm. Then, mini-batches xGl and xGm with nG generated samples are drawn from
Gm and Gl (lines 5-6 of Algorithm 3.3). First refinement group training call on
Algorithm 3.3: To train the components of a refinement group, we call Algorithm 3.4,
which takes as arguments a set RGint for the internal components/data of the current
refinement group being trained at that given call, and a set RGext with some of the
external components/data of its neighbor’s refinement group that will also be needed
for this training; for the first group training call, we train group l’s components with
Cm and xGm as additional necessary components/data from refinement group m (line
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8 of Algorithm 3.3). Discriminator training on Algorithm 3.4: The generated
samples xGint = xGl and real samples xsint = xsl are used to compute the fake and
real losses for Dint = Dl, both computed with binary cross-entropy using labels 1 for
real and labels 0 for fake, having the gradients of their sum back-propagated to update
the parameters of Dint = Dl (lines 2 to 4 of Algorithm 3.4). Classifier training on
Algorithm 3.4: the loss of Cint = Cl is computed with fake samples xGint = xGl
and xGint = xGm (first use of external data), using cross-entropy with two classes and
whatever labels we choose for differentiating between internal and external samples
(we use the superscripts on C

(int_out)
int and C

(ext_out)
int as a notation for indexing the

probability outputs for each class), having its gradients back-propagated to update
the parameters of Cint = Cl (lines 5-6 of Algorithm 3.4). Generator training on
Algorithm 3.4: Gint = Gl is trained to fool Dint = Dl with the same loss used for the
training of Dint = Dl, but with the labels flipped (line 7 of Algorithm 3.4); like during
the raw split training, Gint = Gl is also trained with a regularization classification loss
(line 8 of Algorithm 3.4) computed with the same loss and labels used for the loss of
Cint = Cl, but now it is trained not only to aid in the classification of Cint = Cl, but
also in the classification of Cext = Cm (we do this because both classifiers are trained
with the generated samples from both groups, i.e., Cm will be trained with the fake
samples from Gl when we are training refinement group m); and finally, both losses
are summed, with a regularization λ multiplied to the classification loss to weight its
impact on the gradients, which are then computed and back-propagated to update the
parameters of Cint = Cl, given by θGint (line 9 of Algorithm 3.4). Second refinement
group training call on Algorithm 3.3: now that the components of l were updated
in the last training call, we draw new mini-batches with generated samples (lines 9
and 10 of Algorithm 3.3) xGl (since Gl has just been updated) and xGm (because Cl
has just been trained with the previous sample of xGm , and a new xGm sample will
help with better gradients for Gm minimizing Cl’s loss), and then proceed to train the
components of refinement group m by providing the data/components of m inside the
RGint set of arguments of Algorithm 3.4 and the needed data/components of l inside
the RGext set of arguments (line 12 of Algorithm 3.3); the entire refinement training
occurs for m just like it was described for refinement group l. Refinement phase on
Algorithm 3.3: After training refinement groups l and m components for sufficient
iterations, we create two new membership vectors s

(t+1)
l and s

(t+1)
m (line 16), each to

receive newly estimated and hopefully refined membership probabilities; similarly to
the raw split procedure, we iterate through each training example of entire training set
XData, but now we use the two classifiers Cl and Cm to perform inference on the real
data by taking the average of the estimated probabilities that both output for each
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training example. More precisely, the new membership probability s(t+1)
i,l for the i-th

example on vector s
(t+1)
l is the average between the probability that Cl predicts for it

being closer to Gl’s samples (indexed by C(l_out)
l ) and the correspondent prediction by

Cm (indexed by C(l_out)
m ), and we also do the analogous for s(t+1)

i,m (lines 19-20); because
this averaged result of two probabilities ranges between 0 and 1, if we multiply it by
sk,i = s

(t)
l,i + s

(t)
m,i, like we did for vectors sl and sm at the end of the raw split, the

condition for s(t+1)
l,i +s

(t+1)
m,i = sk,i s

(t+1)
l +s

(t+1)
m = sk is automatically satisfied (the total

probability mass after raw split on cluster k is preserved); and we finally update each
i-the example membership probabilities (lines 22-23).

Algorithm 3.3 Refinement
input: XData, s

(t)
l s

(t)
m

1 Creates Components Gl, Dl, Cl for group l and Gm, Dm, Cm for group m
2 #TRAINING PHASE
3 for iterations do
4 xsl ←− {xi ∼ Ps

(t)
l

}nS
i=1

5 xsm ←− {xi ∼ Ps
(t)
m
}nS
i=1

6 xGl
←− {xi ∼ PGl

}nG
i=1

7 xGm
←− {xi ∼ PGm

}nG
i=1

8 #trains group l with some necessary external data/components from group m
9 TrainRefinementGroup(RGint = {Gl, Dl, Cl,xsl ,xGl

},RGext = {Cm,xGm})
10 xGl

←− {xi ∼ PGl
}nG
i=1

11 xGm
←− {xi ∼ PGm

}nG
i=1

12 # trains group m with some necessary external data/components from group l
13 TrainRefinementGroup(RGint = {Gm, Dm, Cm,xsm ,xGm

},RGext = {Cl,xGl
})

14 end
15 #CLUSTERING RE-ESTIMATION PHASE
16 #creates new vectors s(t+1)

l and s
(t+1)
m initialized with zeros

17 s
(t+1)
l = s

(t+1)
m = [0, 0, . . . , 0]

18 #averages Cl and Cm predictions to estimate the i− th example prob for s(t+1)
l and s

(t+1)
l

19 #also multiplies this prob by the i− th prob in sk to enforce that s(t+1)
l + s

(t+1)
m = sk

20 #then, updates i− th prob in s
(t+1)
l and s

(t+1)
m

21 for xi in XData do
22 si,k = s

(t)
i,l + s

(t)
i,m

23 s
(t+1)
i,l = 1

2 ·
(
C

(l_out)
l (xi) + C

(l_out)
m (xi)

)
· si,k

24 s
(t+1)
i,m = 1

2 ·
(
C

(m_out)
l (xi) + C

(m_out)
m (xi)

)
· si,k

25 end
26 Return s

(t+1)
l , s(t+1)

m
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Algorithm 3.4 TrainRefinementGroup
input: RGint = {Gint, Dint, Cint,xsint

,xGint
},RGext = {Cext,xGext

}
1 #RGint receives internal data/components from the current refinement group being trained, RGext

receives external data/components from the neighbor’s refinement group that are needed to train
the current group

2 L(real)
Dint

←− − 1
nS

∑nS

i=1 log
(
Dint(x

(i)
sint)

)
3 L(fake)

Dint
←− − 1

nG

∑nG

i=1 log
(

1−Dint(x
(i)
Gint

)
)

4 Updates θDint with Adam and ∇θDint
(L(real)

Dint
+ L(fake)

Dint
)

5 LCint
←− − 1

2nG

∑nG

i=1 log
(
C

(int_out)
int (x

(i)
Gint

)
)
− 1

2nG

∑nG

i=1 log
(
C

(ext_out)
int (x

(i)
Gext

)
)

6 Updates θCint with Adam and ∇θCint
(LCint)

7 L(disc)
Gint

←− − 1
nG

∑nG

i=1 log
(
Dint(x

(i)
Gint

)
)

8 L(clasf)
Gint

←− − 1
2nG

∑nG

i=1 log
(
C

(int_out)
int (x

(i)
Gint

)
)
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Chapter 4

Experiments

4.1 Datasets

We performed the experiments with 3 datasets: MNIST, Fashion MNIST and
CIFAR-10. For all of these datasets, we use images from both the training set and
the test set to perform our clustering method (this is a common practice in other deep
clustering works).

4.1.1 MNIST

This dataset consists of black-and-white images of hand-written digits with 28x28
resolution. The classes are equivalent to the digit written in each image, ranging from
0 to 9. There are approximately 6000 images for each class in the training set and
approximately 1000 images for each class in the test set. In Figure 4.1 we show some
samples from this dataset.

Figure 4.1. Random samples from the MNIST dataset.

This is a basic dataset in deep learning tasks related with images. Because of
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its simplicity and clearly distinct classes of images, modern image recognition methods
usually obtain accuracy close to 99% in this dataset. It is also not a very challenging
dataset for unsupervised clustering tasks, with modern deep clustering methods usually
scoring above 90% in clustering accuracy.

4.1.2 Fashion MNIST (FMNIST)

This dataset consists of black-and-white pictures of clothing-related objects with
28x28 resolution. The classes of this dataset are: t-shirt, pants, coat, pullover, sandals,
sneakers, ankle boot, bag, shirt, dress. There are 6000 images for each class in the
training set and 1000 images for each class in the test set. In Figure 4.2 we show some
samples from this dataset.

In this dataset, one of the relevant characteristics for unsupervised clustering
task is the difficulty of differentiating, even for a human, between certain examples
of certain classes, like coats and pullovers, for instance. This becomes even more
challenging without the information provided by the labels.

Figure 4.2. Random samples from the Fashion MNIST dataset.

4.1.3 CIFAR-10

This dataset consists of colored images of varied objects and animals with 32x32
resolution. The classes of this dataset are: plane, car, bird, cat, deer, dog, frog, horse,
ship and truck. There are 5000 images of each class for the training set, and 1000
images for each class in the test set. In Figure 4.3 we show some samples from this
dataset.

This dataset is even more challenging than the Fashion MNIST for deep learning
tasks, especially for unsupervised image generation and clusterization. This difficulty is
caused by the excessive variance occurring among examples from the same class. This
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Figure 4.3. Random samples from the CIFAR-10.

dataset is very interesting for clustering because of the huge room for performance im-
provement that it provides, considering the latest clustering benchmarks that perform
experiments with it.

4.2 Evaluation Metrics

We have used two of the most common clustering metrics for evaluating our
method’s clustering performance on each dataset: clustering accuracy and normalized
mutual information.

Clustering accuracy (ACC) is described as

ACC% = max
M

∑N
i=1 1 (yi = M (ci))

N
× 100%, (4.1)

where 1 represents an indicator function, yi refers to the cluster assigned to the i-th
element, ci refers to the i-th element reference class, and M represents any possible 1-
to-1 mapping between the set of reference classes and the set of clusters. The optimum
mapping M can be computed by the well known Hungarian Algorithm [Kuhn, 1955].
Since we employ a soft clusterization method, we choose the cluster yi based on which
cluster the i-th example has the highest probability of belonging to, i.e., for the final
membership matrix M(j) (this notation was presented in Section 3.2), obtained after
j splits in the hierarchical tree, and hence with j + 1 columns (clusters), we select a
column k such that mi,k ≥ mi,l for every l in 1 . . . j + 1.

Normalized Mutual Information (NMI) is described as

NMI =
I(C; Y)

max{H(Y), H(C)}
, (4.2)

where I(C; Y) corresponds to the mutual information between the set of reference
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classes C and the obtained set of clusters Y, and H(.) refers to the entropy of each set
(the entropy for both sets can be straightforwardly computed with the probabilities of
a randomly selected example in the training set belonging to one of the 10 reference
classes or one of the 10 obtained clusters). The normalization is limited to the interval
0 and 1, with 0 meaning no correlation between C and Y, and 1 meaning perfect
correspondence in a 1-to-1 mapping. For defining the set of clusters Y, we choose yi
the same way it was described for computing the ACC.

4.3 Main Results

4.3.1 Baselines and state-of-the-art methods

We now present the baselines and state-of-the-art methods to which we
shall compare our results. Results are reproduced from [Zhao et al., 2020]. We
use some baselines not based on deep learning: K-means [MacQueen, 1967],
SC [Zelnik-Manor and Perona, 2004], AC [Gowda and Krishna, 1978], NMF
[Cai et al., 2009]. Deep learning based methods are DEC [Xie et al., 2016], JULE
[Yang et al., 2016],VaDE [Jiang et al., 2017], DEPICT [Ghasedi Dizaji et al., 2017],
SpectralNET [Shaham et al., 2018], ClusterGAN [Mukherjee et al., 2019], DLS-
Clustering [Ding and Luo, 2019], DualAE [Yang et al., 2019], RTM [Nina et al., 2019],
NCSC [Zhang et al., 2019], IIC [Ji et al., 2019], DCCM [Wu et al., 2019] and DCCS
[Zhao et al., 2020].

4.3.2 Method Comparison

The main results are present in Table 4.1, where we compare the performance of
our method with state-of-the-art deep clustering methods and some baseline classical
non-deep learning based methods. All of the deep clustering methods we were able to
find used horizontal clustering, i.e., assuming a known number of clusters. The clusters
are assumed to be equivalent to the classes in each dataset. There are 10 classes for
each dataset, and thus 10 clusters are used for each. In order to compare our method’s
ACC and NMI results with the other benchmarks, we need to obtain a clustering tree
with 10 clusters (leaf nodes), and we do that by simply stopping the tree growth when
it reaches the 10-th cluster.

MNIST. Our method performances on MNIST stays behind most other deep
methods in terms of ACC. The results are better for NMI, since it surpasses some deep
learning based methods like NCSC, ClusterGAN and VaDE. It is worth mentioning
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Method Deep? MNIST Fashion MNIST CIFAR-10
ACC NMI ACC NMI ACC NMI

K-means 7 0.572 0.500 0.474 0.512 0.229 0.087
SC 7 0.696 0.663 0.508 0.575 0.247 0.103
AC 7 0.695 0.609 0.500 0.564 0.228 0.105
NMF 7 0.545 0.608 0.434 0.425 0.190 0.081
DEC 3 0.843 0.772 0.590 0.601 0.301 0.257
JULE 3 0.964 0.913 0.563 0.608 0.272 0.192
VaDE 3 0.945 0.876 0.578 0.630 - -

DEPICT 3 0.965 0.917 0.392 0.392 - -
SpectralNet 3 0.971 0.924 0.533 0.552 - -
ClusterGAN 3 0.950 0.890 0.630 0.640 - -

DLS-Clustering 3 0.975 0.936 0.693 0.669 - -
DualAE 3 0.978 0.941 0.662 0.645 - -
RTM 3 0.968 0.933 0.710 0.685 - -
NCSC 3 0.941 0.861 0.721 0.686 - -
IIC∗ 3 0.992∗ 0.978∗ 0.657∗ 0.637∗ 0.617∗ 0.513∗

DCCM∗ 3 - - 0.657∗ 0.637∗ 0.623∗ 0.496∗
DCCS∗ 3 0.989∗ 0.970∗ 0.756∗ 0.704∗ 0.656∗ 0.569∗

Our Method 3 0.930 0.892 0.721 0.691 0.387 0.289

Table 4.1. Main results: Clustering performance of different algorithms on 3
datasets based on ACC and NMI. The column “Deep?” indicates if the respective
algorithm is based on deep learning or not. *: Algorithms and results that made
use of data augmentation techniques aimed for clustering.

that we did not explore many architecture and hyperparameter tuning possibilities
for obtaining a better result for MNIST, with this result being among the first at-
tempts obtained by simply employing the same architecture and very similar set of
hyperparameters we used for obtaining a good result with Fashion MNIST. The model
employed for MNIST might be operating with excessive capacity, which might under-
mine the MGAN generators ability to divide the generated dataset into two regions (a
crucial step for our clustering to work) since it becomes trivial for each generator to
represent the entire training that the MGAN has access to.

Fashion MNIST. Only 2 methods (DCCS, RTM) are able to surpass our
method’s ACC performance. Only DCCS surpasses our method in NMI, and by a
very thin margin.

CIFAR-10. Our method is able to outperform the non-deep baselines, as well as
the deep learning methods DEC and JULE, in the NMI and ACC metrics. However,
it performs poorly in comparison with other 3 recent deep learning state-of-the-art
methods: IIC, DCCM, DCCS.
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It is important to mention that IIC, DCCM, DCCS made use of data augmen-
tation techniques, which for these datasets, especially CIFAR-10, were shown to be
extremely effective in boosting clustering accuracy performance. The authors of DCCS
reported that their method without the aid of data augmentation achieved 0.692 accu-
racy on Fashion MNIST and 0.225 accuracy on CIFAR-10, as compared, respectively,
to 0.756 and 0.656 with augmentation. Their approach, however, employed an archi-
tecture similar to an Autoencoder, while ours is based on GANs, and it is not clear
how to configure the training of a GAN with data augmentation, especially a data
augmentation specifically adapted for clustering purposes, such as the one the authors
of DCCS used. We made some attempts to adapt DCCS’s approach to data augmen-
tation to our method and, even though we did obtain some improvements in isolated
parts of the clustering tree, we failed to obtain a sustained global improvement, since
these attempts increased the GANs’ instability during the refinements of certain nodes.
We will explain these attempts in further detail in Chapter 5. It should be noted that
certain types of data augmentation, even though not counting as a type of supervision,
might eliminate such an amount of information that is useless for clustering, by elim-
inating intra-class variation and thus forcing the model to concentrate on inter-class
features for performing the cluster, that they are almost as helpful to the model as if it
was being supervised by labels. And, in the same way that the class labels might not be
known in practice, the specific types of data augmentation which would yield a better
clustering result might also not be known in practice. Because of that, we argue that
our method might present a more advantageous solution for some practical scenarios,
since we are able to achieve a very close performance by making no assumptions about
the suitability of some type of data augmentation.

4.3.3 Qualitative Analysis

Figure 4.4 shows the top 10 real MNIST samples most associated with each
obtained cluster k at the leaf nodes, i.e., the top 10 images with most probability in
each sk at a leaf node. Each of the 10 rows is relative to one of the 10 sk at the leaf
nodes. This image presents a near perfect 1-to-1 association of each class with each
cluster.

Figure 4.5 does the same for the Fashion MNIST dataset. We can clearly identify
class patterns along each row, with the 1st cluster associated with boots, the 2nd with
bags, the 3rd with sneakers, the 4th with sandals, the 5th with pants, the 6th with
dresses. For the clusters related to rows 7, 8, 9 and 10, the classes are not so well
defined, with both rows 7 and 8 containing t-shirts and shirts, while both rows 9 and
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10 contain pullovers and coats.
Figure 4.6 does the same for the CIFAR-10 dataset. We can can identify some

classes mostly associated with each rows, like cats with row 1, dogs with row 2, frogs
with row 3, horses with row 4. Some rows have a clear association with two classes,
like row 6 with deer and birds, and row 7 with airplanes and also birds. Row 10 does
not present a clear association with a specific set of classes of the dataset, instead, it is
associated with images with a white background, which is undesirable for a comparison
with the reference classes.

Figure 4.4. Top 10 real MNIST images most associated with each leaf (cluster)
of the clustering tree. Each row refers to a cluster.

Figure 4.5. Top 10 real Fashion MNIST images most associated with each leaf
(cluster) of the clustering tree. Each row refers to a cluster.
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Figure 4.6. Top 10 real CIFAR-10 images most associated with each leaf (clus-
ter) of the clustering tree. Each row refers to a cluster.

We have already presented a visualization for the entire hierarchical clustering
tree with the MNIST in Figure 3.2. We provide the same type of visualization with
for the clustering tree of the Fashion MNIST dataset in Figure 4.7. We again plotted,
for each k-th node of the tree, 25 real examples sampled with weights given by the
probabilities in each membership vector sk. The most prevalent classes in each sk

are described in parenthesis and scaled by font size according to how much prevalent
they are. By prevalence we mean the sum of the probability mass of all the examples
belonging to the class inside a given sk. To be more precise, the probability mass of
a class A inside sk is given by

∑N
i sk,i · 1(ci = A), where 1 is an indicator function

and ci is the class of the i-th example. The scale of font sizes for each class label in
Figure 4.7 varies through 10 font size, with the sizes linearly representing a range from
the minimum possible mass a class can have inside sk, which is 0, to the maximum
possible mass, which for Fashion MNIST is 7000, since there are 7000 examples of
each class. Looking at the tree of Figure 4.7, we can notice how the 1st split occurred
with almost perfect precision, with examples of the same class having their probability
mass nearly entirely allocated to either s1 or s2. We begin to notice some imprecision
occurring at the 2nd split (with a small portion of probability mass of the coat and
t-shirt classes being sent to s3 while the largest portion went to s4) and 3rd split (with
a small portion of sneakers mass being sent to s5 and the largest portion going for s6).
The most imprecise splits occurred during the 4th, 7th and 9th splits, and we can note
that the classes involved in these 3 splits (t-shirt, pullover, coat and shit) are the most
visually similar present in the dataset, thus being the hardest to accurately separate
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Figure 4.7. Complete hierarchical tree constructed over the Fashion MNIST
dataset. Each vector sk is placed together with a square grid containing 25 real
examples sampled from cluster k’s probability distribution (a distribution formed
by sampling a real example i with weights given by the i-th probability in sk).
The leaf nodes samples are indicated with a segmented red line for the borders of
the square grid. Along with each square grid, in parenthesis, we indicate the name
of the classes in varying font sizes, with each font size proportional to the amount
of probability mass the class has in sk, using 10 font sizes, linearly representing
10 intervals, ranging from closer to 0% of total mass (or 0 mass) to closer to 100%
of total mass, (or 7000 of mass).

into clusters. The other classes were relatively well separated.

There is a property of this clustering worth noticing that might explain why it
had a result more competitive in the benchmarks with NMI than with ACC: notice
how even the classes that had a bad accuracy result tended to have its probability mass
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sent to no more than two different clusters. For instance, by observing the leaf nodes
s13 and s14 we can see that the class coat had one of the worst separation accuracy
results, but its probability mass was mostly spread between s13 and s14 instead of
being spread among many other different leaf nodes. Something similar occurs for
shirt (mostly spread between s18 and s14), t-shirt (mostly spread between s18 and s17)
and pullover (mostly spread between s13 and s14). For the ACC metric, there would
be no difference if a class A had a given amount of its probability mass wrongfully sent
to many different clusters or to only one cluster other than the expected cluster where
most of A’s probability mass is located. For the NMI metric, on the other hand, the
situation where this same amount of A’s probability mass gets wrongfully sent to only
one other cluster provides a better mutual information between clusters and classes
than the situation where A’s probability mass gets wrongfully sent to many different
clusters.

We now present the same kind of visualization for the hierarchical clustering tree
with the CIFAR-10 dataset in Figure 4.8. The number of samples per grid, for each k-th
node of the tree, are varied now, aiming to optimize the number of samples as well as the
size of images in order to better visualize the clustering of CIFAR-10, whose images are
considerably more complex and diverse than the images of MNIST and Fashion MNIST.
We can observe that the first split was able to separate the classes according to a cluster
related with animals and another cluster related with means of transportation, with
considerable accuracy. With the 3rd split, the means of transportation were further
divided with good accuracy into clusters of similar objects, with one cluster formed with
plane/ship and another with car/truck. The animal cluster, on the other hand, was not
as accurately divided after the 2nd split, but roughly it became a cluster with classes
dog/frog/cat and another cluster with the classes bird/deer/horse. The following splits
were conduced with considerably less accuracy in regard to the reference classes, which
might be explained by the intra-class visual differences becoming more dominant than
the inter-class differences. An example of this situation is in the separation performed
by the 8th split, creating nodes s15 and s16. By visual inspection, we can conclude
that s16 ended up with breeds (mostly dogs) with white fur or feathers, while s15

ended up with general animal breeds with more varied colors. This problem is very
hard to overcome without the labels or some data augmentation choice informing the
model that the color information should not be adequate in this case for separating
the examples. The most well defined associations with classes in the leaf nodes were s9

with frogs and s16 with dogs. The other clusters ended up associated with more than 1
class, and s17, in particular, ended up with almost no probability mass, which greatly
hinders the final accuracy result, since we must choose one class to be represented by
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Figure 4.8. Complete hierarchical tree constructed over the CIFAR-10 dataset.
Each vector sk is placed together with a grid containing varying numbers of real
examples sampled from cluster k’s probability distribution (a distribution formed
by sampling a real example i with weights given by the i-th probability in sk).
The leaf nodes samples are indicated with a segmented red line for the borders
of the grid. Along with each grid, in parenthesis, we indicate the name of the
classes in varying font sizes, with each font size proportional to the amount of
probability mass the class has in sk, using 10 font sizes, linearly representing 10
intervals, ranging from closer to 0% of total mass (or 0 mass) to closer to 100%
of total mass, (or 6000 of mass).

it because of the 1-to-1 mapping from clusters to reference classes.
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4.4 Implementation Details

This section describes our experiment settings as well as configurations necessary
to reproduce our results.

4.4.1 Deep learning framework and hardware

We have used PyTorch, a well known framework for developing deep learning
models. PyTorch provides a high-level interface in Python programming language for
the efficient training of neural networks on graphical processing units (GPUs), whose
strong capacity for parallel processing accelerates the training speed considerably.

The computer used for this work is owned by the main author. Its hardware
settings of relevance for this work are the following: Nvidia RTX 2070 GPU, Intel Core
i5-7600K CPU.

4.4.2 Architecture

Table 4.2 describes the architecture settings used by each component. G, D and
C respectively refer to each generator, discriminator and classifier created, either for a
raw split sub-block or for a refinement sub-block. LN is short for Layer Normalization
[Ba et al., 2016], a well known deep learning normalization technique that is also used
for stabilizing GAN training [Kurach et al., 2019]. Another important implementation
detail to notice is that the convolution layers for D and C share the same weights,
i.e., the same xfeature = conv3(conv2(conv1(x))) will be received as input by the non-
shared Fully Connected layers of D and C. These convolution weights are shared in
order to force the classifier to differentiate between examples in a higher-level feature
space, which will be learned by D in its adversarial game with G. Learning to perform
the classification in a higher-level feature space is more desirable than doing it in
the plain data space (for images, the pixel space), since it is less likely to lead to
a overfitted classification that uses low-level information to distinguish between the
generated samples, which in turn could impair the quality of the clustering created
by the classifiers inference on the training data afterwards. A more specific detail
regarding these shared convolutions is that only the gradients of the discriminator’s
loss are used to update the weights for these layers, with the classifier’s gradients
not being necessary for this update. This is because we empirically verified that the
discriminator’s learning was enough to obtain a sufficiently separable feature space for
C’s fully connected layer to perform its classification with high accuracy.
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Operation Kernel Strides Feature Maps LN? Activation
Generator: G(z) : z ∼ Uniform[0, 1] 100

Fully Connected img_dim2

42 × 128 No ReLU
Transposed Convolution 4× 4 2× 2 64 No ReLU
Transposed Convolution 4× 4 2× 2 no. of color channels No Tanh

Discriminator: D(x)
Convolution (Shared with C) 5× 5 2× 2 128 Yes Leaky ReLU
Convolution (Shared with C) 5× 5 2× 2 256 Yes Leaky ReLU
Convolution (Shared with C) 5× 5 2× 2 512 Yes Leaky ReLU

Fully Connected 1 No Sigmoid
Classifier: C(x)

Convolution (Shared with D) 5× 5 2× 2 128 Yes Leaky ReLU
Convolution (Shared with D) 5× 5 2× 2 256 Yes Leaky ReLU
Convolution (Shared with D) 5× 5 2× 2 512 Yes Leaky ReLU

Fully Connected 2 No Softmax

Table 4.2. Architecture settings.

4.4.3 Hyperparameters

Table 4.3 describes the main hyperparameters used for the clustering of each
dataset. Most of these settings are well known configurations in deep learning tasks,
and they were all chosen based on similar GAN architectures employed for other tasks
on these datasets, with some slight fine-tuning modifications that provided a better
stabilization for each GAN training along with each classifier. Unusual configurations
worth explaining are: the increase in epochs for each refinement, the diversity parame-
ter γ and the initial noise variance. Increasing training epochs at each iteration
of a refinement sub-block: The reason for this is our empirical verification that
in order to obtain improvements over the last refinement result, a GAN created for
a refinement t needed to learn a better representation of its observed real data dis-
tribution than the GAN created at refinement t − 1, and this better representation
could be more easily achieved with more training time. Diversity parameter γ:
regularization parameter used on the generator for weighting the contribution of the
classification loss vs the contribution of the adversarial loss, which is explained in de-
tail by the descriptions of Algorithms 3.2 and 3.4. Initial noise variance: Adding
Gaussian noise (with variance that linearly decays during the training epochs) to both
generated and real images is a known stabilization practice for GAN training, as ex-
plained in [Jenni and Favaro, 2019].
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Parameters Settings MNIST Fashion MNIST CIFAR10
Batch size for real data 100 100 100

Batch size for each generator 100 100 100
Number of epochs (raw split) 80 80 150

Number of epochs (t-th refinement) 80 + (10 * t) 80 + (10 * t) 150 + (10 * t)
Slope of Leaky ReLU 0.2 0.2 0.2

Learning rate for generator 0.0002 0.0002 0.0002
Learning rate for discriminator 0.0001 0.0001 0.0002

Learning rate for classifier 0.00002 0.00002 0.00002
Adam Optimizer β1 = 0.5, β2 = 0.999 β1 = 0.5, β2 = 0.999 β1 = 0.5, β2 = 0.999

Diversity parameter γ 1.0 1.0 1.0
Initial noise variance 1.5 1.5 1.5

Table 4.3. Specific hyperparameter settings used for each dataset.
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Chapter 5

Future Works

In this section, we discuss the results in more detail pointing to aspects that may
lead to further improvements.

5.1 Training Time

The main drawback of our model consists in the complexity of sequentially train-
ing multiple different GAN/MGAN modules, especially in regard to running time.
Each split in the tree creates one MGAN module for the raw split, and two new GAN
modules for each refinement iteration. We performed 12 refinement iterations for our
experiments, meaning that 24 GANs are trained for the refinements happening in each
split. For creating a tree that reaches 10 leaf nodes, which was the case for our exper-
iments, we need 9 splits. So, in total, 9× 1 MGAN modules and 24× 9 GAN modules
were created for each experiment, each one being trained to learn to represent from
scratch its input distribution given by sk. It should be noted nonetheless that we set
the number of minibatch samples for each epoch to

∑N
i sk,i, for a GAN or MGAN

receiving its real image samples according to sk, and because the probability mass in
sk decreases at each newly created node, the number of minibatches will also decrease
and hence the training time per epoch will also decrease for a GAN/MGAN at each
new node. Even then, training so many GANs/MGANs still takes an unreasonable
amount of time, taking multiple days to complete an entire tree with a single GPU.

We have tried to overcome the running time issue with the following method: for
a refinement iteration of a certain sk, instead of creating new GANs at each iteration t
and training the components from scratch, we preserve the weights learned by the GAN
at the last iteration t. The reasoning behind this is that the GAN at refinement t can
be trained for less epochs, since it already starts its training with a previously learned
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representation of the data, having only to improve on it based on the newly estimated
s
(t)
k . This worked well for some nodes of the tree, yielding the same clustering result
we achieved before, but with considerably less training epochs per refinement. But for
some other nodes, after a certain number of refinements, the Generators’ loss started
to increase excessively, creating instability that compromised the image generation
and thus worsened the clustering result. We still do not fully understand why this
happens, but we believe that this method might work better with some other type of
architecture design, especially one that employs a loss function with better robustness
and convergence guarantees, such as the Wasserstein loss, instead of the common non-
saturating loss used in our work.

5.2 Hyperparameter and Architecture Choices

The excessive time required to train so many GAN/MGAN modules discussed
in the last section constitutes in itself a limitation for the search of a set of unique
hyperparameters and architectures that work well for each GAN/MGAN. But other
than that, each GAN/MGAN is trained with different data distributions for each node
of the tree, with each distribution becoming increasingly more homogeneous and thus
simpler as nodes are created further away from the root. This difference in distribution
complexity between different nodes means that the same set of hyperparameters might
not be ideal to train all GANs/MGANs. It would be desirable that the hyperparameter
tuning for each GAN/MGAN reflected the complexity of its respective distribution,
e.g., for a simpler and more uniform data distribution, we could decrease the capacity of
the GAN/MGAN architecture receiving it, or perhaps increase the diversity parameter
γ to encourage the 2 generated distributions at each split to become more distinct from
each other.

5.3 Data Augmentation

As already mentioned in Subsection 4.3.2, we intended to improve our model’s
performance by adapting it to benefit from data augmentation in a similar fashion as the
works of [Ji et al., 2019], [Wu et al., 2019] and [Zhao et al., 2020]. More specifically, we
tried to adapt the data augmentation approach employed in [Zhao et al., 2020], named
DCCS, where the authors developed an Autoencoder architecture for clustering, capa-
ble of decomposing its learned representation into a stylistic component zs (encoding
features common to every class) and a categorical component zc (encoding the class
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Figure 5.1. Raw split sub-block adapted for data augmentation

information, and being used to form the clusters afterwards). The data augmenta-
tion was used in conjunction with a loss enforcing that an example and its augmented
version had the same representation in zc. To be more precise, for an augmentation
function T , zc and z′c encoded from xi and T (xi) should be as similar as possible,
while the stylistic changes due to the augmentation should be encoded by zs and z′s. T
performs stylistic transformations that do not alter the category of an example (e.g.,
for images it would be cropping, resizing, variations in brightness and contrast).

At first glance, it is not obvious how our model could be adapted to do something
similar to DCCS, since it is not based on Autoencoders and thus lacks an explicit en-
coder map from xi to zc. Because zc is a categorical vector that forms the clusterization
for DCCS, we suspect that the key to attaining an equivalent result lies in enforcing
that our component responsible for the clustering becomes insensitive to the style vari-
ations caused by the augmentation. In our method, this component is the classifier C
(both in the raw split and refinement phases), since it ends up implicitly learning a
clusterization ( i.e., a categorical encoding) for the real data distribution based on the
2 generated distributions.

Having this in mind, we propose the following: for a generated image xG and an
augmentation function T , C must still perform its learning as usual, trying to guess
from which generator xG came from, but receiving as input T (xG) instead of xG. If
C is able to guess correctly, then this means that the component responsible for the
clustering has become insensitive to the style variation caused by the augmentation
function T . In Figure 5.1, we depict how this alteration would occur for a raw split
sub-block on the k-th node, reproducing the raw split scheme previously shown in
Figure 3.5, but with a T block before the input to the classifier, representing the
augmentation function T (it would be basically the same alteration for a refinement
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sub-block, with a T block before the input of each classifier). Note that we should
apply the augmentation with T only for the input of C, while D still performs its
learning receiving as input xG without augmentation. This is because we do not need
to have the generators learning the augmented version of the real dataset. This is in
accordance with the work of DCCS, since the augmented images were used solely to
control the categorical component zc, while their style component zs didn’t make any
difference for their algorithm and was not used for any kind of learning.

The first experiments we performed with this alteration yielded improvements for
some nodes of the tree constructed with the Fashion MNIST dataset relative to the
same experiment but without using augmentation. But for other nodes, performing
the augmentation made it too hard for the classifier to distinguish between the 2
generated distributions with good accuracy, which is necessary for a good clustering
result afterwards on the real dataset. We believe that adding more capacity to the
classifier network might fix this problem.
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Chapter 6

Conclusion

In this work, we proposed a method for hierarchical clustering that takes advan-
tage of the deep representation capacity obtained by GANs and MGANs. It constructs
a tree of clusters from top to bottom, with each leaf node associated with a cluster.
Each cluster is divided in binary splits, with each split occurring in two phases: a raw
split and a refinement phase.

The raw split in itself constitutes a new clustering method employing MGANs,
taking advantage of the fact that each generator naturally specializes in sub-regions
of the dataset to train a classifier to learn clusters for the real dataset based on the
generated data. Since we use two generators for the MGAN, each cluster correlates
more strongly with one of the two generated distributions. The refinement phase creates
two separated regular GANs, each one trained to specialize in one of the previous
clusters even further. Similarly to the raw split, new classifiers are also trained to
differentiate between the generated data from each GAN, and then are used to re-
estimate the clustering results with the real dataset, tending to obtain a new cluster
that correlates more with the classes of the dataset than the previous cluster. This
refinement procedure is repeated in a loop for some iterations so that it can slightly
enhance the previous result.

We have shown how well our method compares to other deep clustering tech-
niques on clustering datasets, obtaining competitive results, especially with respect to
the NMI metric. Moreover, our method is, to the best of our knowledge, the only deep
clustering method able to construct a hierarchy of clusters. We have explored in detail
the clustering tree, verifying that it accurately organizes the examples in a hierarchy of
semantically coherent characteristics as expected. We have addressed some shortcom-
ings of the method and proposed some ways to overcome them, especially in regard
to the fact that it does not employ data augmentation like other state-of-the-art deep



64

clustering methods.
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