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Abstract

The work is focused on the study of geometric structures on 3-dimensional manifolds. The main

objective is the description of the eight three-dimensional geometries given by the Thurston’s

theorem:

There are eight three-dimensional model geometries (G,X), as follows:

(a) If the point stabilizers are 3-dimensional, X is S3, R3, H3.

(b) If the point stabilizers are 1-dimensional, X fibers over one of the two dimensional model

geometries, in a way that is invariant under G. There is a G-invariant Riemannian metric

on X such that the connection orthogonal to the fibers has curvature 0 or 1.

(b1) If the curvature is zero, X is S2 × R or H2 × R.

(b2) If the curvature is 1, we have nilgeometry (wich fibers over R2) or the geometry of S̃L(2,R)

(c) The only geometry with 0-dimensional stabilizers is solvegeometry, which fibers over the

line.

Moreover, we will also give examples of compact 3-dimensional manifolds modeled on each

one of these geometries and we shall present some interesting examples of manifolds modeled

in H3, the 3-hyperbolic space.

Keywords:3-dimensional manifolds, model geometries, 3-hyperbolic space.
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Resumo

O trabalho é focado no estudo de estruturas geométricas sobre variedades de dimensão três. O

objetivo principal é a descrição das oito geometrias dadas pelo teorema de Thurston: Existem

oito geometrias modelo de dimensão três (G,X) como se segue:

(a) Se os estabilizadores ponto tiverem de dimensão três, X é S3, R3, H3.

(b) Se os estabilizadores ponto tiverem de dimensão um, X fibra sobre uma das geometrias

de dimensão dois, de uma forma que é invariável pela ação de G. Além disso, há uma

métrica Riemanniana invariante de G sobre X, de tal forma que a conexão ortogonal às

fibras tem curvatura 0 ou 1.

(b1) Se a curvatura é zero, X é S2 × R ou H2 × R.

(b2) Se a curvatura é 1, têmos a nilgeometria (que fibra sobre R2) ou a geometria de S̃L(2,R)

(c) A única geometria que tem estabilizadores ponto de dimensão zero é a geometria Sol, que

fibra sobre a linha.

Além disso, também daremos exemplos de variedades compactas de dimensão três mode-

ladas sobre cada uma daquelas geometrias e apresentaremos alguns exemplos interessantes de

variedades modeladas em H3 o 3-espaço hiperbólico.

Palavras-chave: Variedades de dimensão três, geometrias modelo, 3-espaço hiperbólico.
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Introduction

The theory of 3-manifolds was revolutionised by Thurston. He showed that the geometry

together with the topology have an important role in this theory. But, what does it mean the

term geometry for Thurston? In our context we shall use the approach given by Klein, is to say

simply that if X is a set and G is a group acting on X, then the geometry of the pair (G,X) is

the study of those properties of X left invariant by G.

We define a model geometry (G,X) to be a connected and simply connected manifold X

together with a maximal Lie group G of diffeomorphisms which acts transitively on X with

compact stabilizers. By logical purposes we shall define a (G,X)-manifold using this fact, the

manifold M is locally modeled on X, and the transition maps are given by elements of the

group G. In other words, a (G,X)-manifold is a manifold modeled with the model geometry

(G,X), sometimes, we call them just as geometries, without any distinction.

Thurston proved that there are eight three-dimensional model geometries (G,X). There are

three obvious geometries which correspond directly to the two-dimensional ones, the constant

curvature geometries R3, S3 and H3, but it is easy to find closed 3-manifolds which are not

modeled on any of these. For example S2 × S1 is modeled on S2 ×R wich is not homeomorphic

to S3 or R3. Its metric is the product of the standard metrics, but here the stabiliser of a point

is not O(3), as in the constant curvature case. In fact the isometry group of S2×R is the direct

product of the isometry group of S2 and of R, and so the stabiliser of a point is isomorphic to

O(2)× Z2.

In this context, in the first chapter, we will present the preliminaries to develop this work.

In the following chapters, we will sketch Thurston’s proof that there are only eight three-

dimensional geometries. Then we will describe the eight three-dimensional geometries, and

will give some examples of compact 3-manifolds modeled on each one of these geometries. To

construct manifolds modeled with these geometries, we use two ways: the first one is studying the

action of subgroups Γ of the isometry group of X, which acts freely and properly discontinuously.

And the second one is through the Poincaré’s polyhedron theorem (2.2.2). Finally, in the last

chapter, we shall give some examples of 3-hyperbolic manifolds, that is one of the most difficult

geometries. It is important to say that this dissertation is based on the William Thurston’s

work, summarised on his book Three-Dimensional Geometry and Topology [Thu97] and the

article The Geometries of 3-manifolds by Scott, P. [Sco83].
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Index of notations

R, C
Rn

Cn

GL(V )

g

TxM

TM

T 1M

LM

OM

La, Ra

ω

Ω

Isom(X)

X̃

The real and complex number fields, respectively.

Vector space of n-tuples of real numbers (x1, · · · , xn).

Vector space of n-tuples of complex numbers (z1, · · · , zn).

General linear group acting on a vector space V .

Given a Lie group, denotes its Lie algebra.

Tangent space of M at x.

Tangent bundle of M .

Unit tangent bundle of M .

Bundle of linear frames of M .

Bundle of orthonormal linear frames of M .

Left and right translation by a ∈ G. (G Lie group).

Connection form.

Curvature form.

Isometry group of X.

Universal cover of X.
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Chapter 1

Preliminaries

The foundations of manifolds, Lie groups and Riemannian geometry that were used to develop

this dissertation are found at [KN63],[War94], [Thu97] and [DC92]. Therefore, we shall only

show the most important theorems that will be used through all the work. Another books and

articles that could complement the study are in the bibliography .

1.1 Pseudogroup

Definition 1.1.1. A pseudogroup on a topological space X is a set G of homeomorphisms

between open sets of X satisfying the following conditions:

(a) The domains of the elements g ∈ G cover X.

(b) The restriction of an element g ∈ G to any open set contained in its domain is also in G.

(c) The composition g1 ◦ g2 of two elements of G, when defined, is in G.

(d) The inverse of an element of G is in G

(e) If g : U → V is an homeomorphism between open sets of X and U is covered by open sets

Uα such that each restriction g|Uα is in G, then g ∈ G.

Example 1.1.2. Let X be a non-empty topological space . The trivial pseudogroup is defined

as G = {iX}, where iX is the identity map of X.

Example 1.1.3. (G-manifold) Let G be a pseudogroup on Rn. An n-dimensional G-manifold is

a topological space M with a G-atlas on it. A G-atlas is a collection of G-compatible coordinate

charts whose domains cover M . A coordinate chart, or local coordinate system, is a pair (Ui, φi),

where Ui is open in M and φi : Ui → Rn is a homeomorphism onto its image. Compatibility

means that whenever two charts (Ui, φi) and (Uj, φj) intersect, the transition map

φij = φi ◦ φ−1j : φj(Ui ∩ Uj)→ φi(Ui ∩ Uj)

is in G.

3
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Example 1.1.4. (Differentiable manifolds). If Cr , for r ≥ 1, is the pseudogroup of Cr diffeo-

morphisms between open sets of Rn a Cr-manifold is called a differentiable manifold (of class

Cr). C∞ manifolds are also called smooth manifolds.

Convention. Manifolds are Hausdorff and have countable basis.

Example 1.1.5. Let Cω be the pseudogroup of real analytic diffeomorphisms between open

subsets of Rn. A Cω-manifold is called a real analytic manifold.

Example 1.1.6. (foliations). Write Rn as the product Rn−k×Rk and let G be the pseudogroup

generated by diffeomorphisms φ(between open subsets of Rn), that have the form

φ(x, y) = (φ1(x, y), φ2(x, y)),

for x ∈ Rn−k and y ∈ Rk. The pseudogroup G consists of all diffeomorphisms between open sets

of Rn whose Jacobian at every point is a n×n matrix such that the lower left (n− k)× k block

is 0. A G-atlas maximal is called a foliation of codimension k (or dimension n− k).

One dimensional foliations exist on a great many manifolds: any nowhere vanishing vector

field has an associated foliation, obtained by following the flow lines.

Example 1.1.7. When n is even, Rn can be identified with Cn/2. Let Hol be the pseudogroup

of biholomorphic maps between open subsets of Cn/2. A Hol-manifold is called a complex

manifold of dimension n/2, and also a Riemann surface when n = 2.

Definition 1.1.8. A manifold with-boundary is a space locally modeled on Rn
+ = {(x1, · · · , xn) ∈

Rn : xn ≥ 0}. A manifold (without boundary) that is compact is called a closed manifold.

Example 1.1.9. Let B2 ⊂ R2 denote the open unit disk. Its manifold boundary is empty but

its topological boundary over R2 is S1. So, B2 is a manifold without boundary. At the other side

if M = B2, then M is a manifold with boundary where its topological and manifold boundary

coincides.

Definition 1.1.10. According to the example 1.1.3, it’ll be allowed G to be a pseudogroup on

any connected manifold X. These manifolds are also called G-manifolds.

Definition 1.1.11. Let X be a manifold and G be a Lie group acting on X via diffeomorphisms,

then a manifold M is called a (G,X) manifold if satisfies the following properties:

(a) There is an open cover {Uα} of M and a family {φα : Uα → Vα} of diffeomorphisms onto

open sets Vα ⊂ X, and

(b) If Uα ∩Uβ 6= ∅, then there exists a g ∈ G, such that gx = φα ◦φ−1β (x), for all x ∈ Uα ∩Uβ,

in other words, each transition map is given by a restriction of an element of the group G.

Proposition 1.1.12. Let G0 be a set of homeomorphisms between open subsets of X. Then

there is a unique minimal pseudogroup G that contains G0. It is said that G is generated by G0.
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Proof. LetM = {G : G is a pseudogroup on X that contains G0} and set 〈G0〉 =
⋂
G∈M G. We

have to prove that 〈G0〉 satisfies the conditions (a), (b), (c) and (d) of the definition 1.1.

Since the elements of 〈G0〉 belongs to G for all G ∈ M then its domains cover X. Given

f ∈ 〈G0〉, f ∈ G for all G ∈ M, that is, the restriction f |U to any open set contained in its

domains is also in G, for all G ∈ M. Also, f−1 ∈ G for all G ∈ M, so f ∈ 〈G0〉. If U =
⋃
α∈A Uα

where Uα is an open set for all α ∈ A and g : U → V is a homeomorphism between open

sets of X, g|Uα ∈ G for all G ∈ M, that is, g ∈ 〈G0〉. Finally, given f1 : U → V ∈ 〈G0〉 and

f2 : U ′ → V ′ ∈ 〈G0〉, such that U ∩ V ′ is non-empty, then f1 ◦ f2 ∈ G for all G ∈ M. Hence

f1 ◦ f2 ∈ 〈G0〉. Therefore, 〈G0〉 is by definition the minimal pseudogroup that contains G0.

Observation. A (G,X)-manifold is a G-manifold, where G is the pseudogroup generated

by restrictions of elements of G whenever G is a given group acting on a manifold X.

Example 1.1.13. (Euclidean manifolds). If G is the group of isometries of Euclidean space

En, a (G,En)-manifold is called a Euclidean or flat, manifold.

Example 1.1.14. Consider En as an n-dimensional vector space and let e1, · · · , en be any

basis of En. Let G be the group generated by e1, · · · , en: G = {
∑
mie

i| mi are integers}. The

n-torus T n = En/G has a flat structure.

Example 1.1.15. If G is the orthogonal group O(n + 1) acting on the sphere Sn, a (G,Sn)-

manifold is called spherical or elliptic.

Example 1.1.16. If G is the group of isometries of hyperbolic space Hn, a (G,Hn)-manifold is

a hyperbolic manifold.

1.2 Discrete Groups

Definition 1.2.1. Let Γ be a group acting on a topological space X by homeomorphisms.

Normally is considered that the action is effective; this means that if gx = x for all x ∈ X then

g = e. Other properties that the action might have:

(i) The action is free if gx = x for some x ∈ X implies that g = e.

(ii) The actions is discrete if Γ is a discrete subset of the group of homeomorphisms of X, with

the compact-open topology.( In the compact-open topology on a set C(X, Y ) = {f : X →
Y ; f continuous}, a neighborhood basis of f ∈ C(X, Y ) is given by finite intersections of

sets of the form {f ′ ∈ C(X, Y ) : f ′K ⊂ U}, for all K ⊂ X compact and U ⊂ Y open such

that fK ⊂ U).

(iii) The action has discrete orbits if every x ∈ X has a neighborhood U such that the set of

g ∈ Γ mapping x inside U is finite.

(iv) The action is wandering if every x ∈ X has a neighborhood U such that the set of g ∈ Γ

for wich gU ∩ U 6= ∅ is finite.
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(v) Assume X is locally compact. The actions of Γ is properly discontinuous if for every

compact subset K of X the set {g ∈ Γ; gK ∩K 6= ∅} is finite.

Example 1.2.2. GL(n,R) acts on Rn as usual yj =
∑
i

Aijxi, for i, j = 1, · · · , n. The action

is effective, neither transitive nor free, because for any A ∈ GL(n,R) A(0) = 0. If consider

Rn − {0} the action is transitive.

Example 1.2.3. SO(2) acts on S1 as usual A · x = Ax for A ∈ SO(2). The action is effective,

transitive and free.

Example 1.2.4. Let X = R2 − {(0, 0)} and let Γ = Z be the group of diffeomorphisms

generated by (x, y) 7→ (2x, y/2). The action is free and for any p ∈ X its orbit doesn’t have

its accumulation points in X. Consider the compact B1((0, 0)) ∩ X = K, then the set {g ∈
Γ|gK ∩K 6= ∅} is not finite. Therefore, the action isn’t properly discontinuous and the space

X/Γ isn’t a Haussdorf space.

Proposition 1.2.5. Let (Hausdorff) Γ be a topological group acting on a topological space

(locally compact and Hausdorff) X. Γ acts properly discontinuously if and only if the map

φ : Γ×X → X ×X, given by (γ, x) 7→ (γx, x) is proper and Γ is discrete.

Proof. Suppose that Γ acts properly discontinuously and let K ⊂ X be a compact set. So,

K × K ⊂ X × X is a compact set. Since Γ acts properly discontinuously then the set {γ ∈
Γ|γ(K) ∩K 6= ∅} is finite.

φ−1(K ×K) = {(γ, x) ∈ Γ×X|(γx, x) ∈ K ×K}
= {(γ, x) ∈ Γ×X|γx ∈ K and x ∈ K}
= {γ ∈ Γ|γ(K) ∩K 6= ∅} ×K

Let {Uα × Vα}α∈A be an open covering of {γ ∈ Γ|γ(K) ∩ K 6= ∅} × K. For each γj ∈ {γ ∈
Γ|γ(K) ∩ K 6= ∅}, j ∈ {1, 2, · · · ,m}, there is a basis element, that is the union of finite

intersections of elements of the form {f ∈ C(X,X)|f(K ′) ⊂ U} for K ′ compact and U an open

set in X, then for each Uα there is a basis element Γα.

By choosing the respective basis elements Γαj for each γj, we have a finite subcovering {Γαj}mj=1

of {Uα} that covers {γ ∈ Γ|γK ∩ K 6= ∅}, and since K is compact we also have a finite

subcovering {Vαi}ni=1 of {Vα} that covers K. Then {Γj×Vαi} is a finite subcovering of {Uα×Vα}
that also covers {γ ∈ Γ|γK ∩K 6= ∅} ×K,

φ−1(K ×K) ⊂
⋃
i,j

(
Γαj × Vαi

)
for i = 1, 2, · · · , n and j = 1, 2, · · · ,m.

Then φ−1(K ×K) is compact.

To prove that Γ is discrete, let x ∈ X and Γx ⊂ X be its orbit. By the local compactness of

X, there is a compact neighborhood K ⊇ U 3 x with K compact and U open. If U ∩ gU 6=
then K ∩ gK 6= ∅, but since the action is properly discontinuous, then U ∩ gU 6= ∅ for only

finitely many g ∈ Γ. Since U ∩ Γx is finite then the action has discrete orbits. Consider the
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map Γ/Γx → Γx given by gΓx 7→ gx. This map is a homeomorphism for all x ∈ X. Therefore,

Γx(the preimage of x) is an open finite neighborhood of e, it means that Γx is discrete and

translating, the topological group Γ has an open cover by discrete sets, then Γ is discrete.

Conversely suppose that φ is a proper map and Γ a discrete group. Let K ⊂ X be a compact

set, then by hypothesis φ−1(K ×K) is a compact set in Γ×X. By projecting this compact set

in Γ we get a compact set in a discrete group, therefore finite. So it means that the actions of

Γ is properly discontinuous.

Corollary 1.2.6. Let G be a Lie group and Γ ⊂ G a discrete subgroup. Consider the action

of Γ on G by left translation. Then

(a) The action of Γ is wandering, and

(b) The action of Γ is properly discontinuous.

Proof. (a) Since Γ is discrete, for the identity element of the group e ∈ G there is a neighbor-

hood U such that Γ∩U = {e}. By using the continuity of the product map · : G×G→ G,

for each x, y ∈ U there exist neighborhoods Vx and Vy of x and y respectively such that

·(Vx, Vy) ⊂ U . Let V̂ = Vx ∩ Vy and let V = V̂ ∩ V̂ −1. Then, V = V −1 and since

V ⊂ Vx ∩ Vy we have that ·(V × V ) = V 2 ⊂ U . Let γ ∈ Γ and g ∈ G and suppose that

x ∈ γV g ∩ V g, then

x = γ(yg) = y′g for y, y′ ∈ V .

Thus γy = y′ and therefore γ = y′y−1 ∈ V V −1 = V 2 ⊂ U . Then γ ∈ Γ ∩ U and by the

hypotheses γ = e. Therefore for g ∈ G there exists a neighborhood V g such that the set

of γ ∈ Γ for which γV g ∩ V g 6= ∅ is finite.

(b) Let K ⊂ G × G be compact and let (γi, gi)i∈N be a sequence in φ−1(K) ⊂ Γ × G. Then

since (γigi, gi)i∈N ∈ K is a sequence in a compact set, then there exist g and g′ such that

a subsequence converges

γigi → g′ and gi → g.

Given U a neighborhood of g′ and V a neighborhood of g there exist N1, N2 ∈ N such that

γigi ∈ U for all i ≥ N1,

and

gi ∈ V for all i ≥ N2.
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If we consider the set S = {γ ∈ Γ|γ(V )∩U 6= ∅} then it is non-empty and must be finite.

We shall show that for i ≥ max{N1, N2}, γi → e, this proves that there is a convergent

subsequence of (γi, gi) that converges in φ−1(K) and using the proposition 1.2.5 we shall

have finished.

Let γi ∈ S then γi(v) = u for some v ∈ V and u ∈ U . Hence γi = uv−1 ∈ UV −1.

Since γi(UV
−1) ⊆ UV −1 then γi ∈ UV −1V U−1 and γi(UV

−1V U−1) ⊆ {e}. Therefore

UV −1V U−1 is a neighborhood that intersects Γ at the identity, and using the discreteness

of Γ we have that γi → e or equivalently that γi = e for i ≥ max{N1, N2}. Then the set

S is finite and the sequence (γi, gi) have a convergent subsequence, as we required.

Proposition 1.2.7. Let Γ be a group acting on a connected manifold X. The quotient X/Γ

is a manifold with X → X/Γ a covering projection if and only if Γ acts freely and properly

discontinuously.

Proof. Suppose that the action is free and properly discontinuous. Let x and y be points in X,

such that neither G(x) = {gx|g ∈ Γ} contain y nor G(y) contains x. Let K1 and K2 be compact

disjoint neighborhoods of x and y respectively and set K = K1 ∪ K2. Then K − ∪g 6=egK
is still a union of a neighborhood of x with a neighborhood of y, and these neighborhoods

project to disjoint neighborhoods in X/Γ. Given x ∈ X, take a neighborhood U of x that

intersects only finitely many of its translates gU , it’s possible because if the action is properly

discontinuous, then the action is wandering. As the action is free and X is Hausdorff, can be

chosen a smaller neighborhood of x, U ′ whose translates are all disjoints. Then each translate

maps homeomorphically to its image in the quotient, so the image is evenly covered. Then the

quotient map is a covering map and the space X/Γ is a manifold.

For the converse, let (x1, x2) be any pair of points in X×X. If x2 ∈ G(x) then exists a g ∈ Γ

such that x2 = gx1, as p : X → X/Γ is a covering map, it will be taken a neighborhood U1 of x1
that projects homeomorphically to the quotient space, and let U2 = gU1. So, gU1 ∩ U2 6= ∅. If

x2 isn’t on the orbit of x1, by the Haussdorf property of X/Γ there exist disjoint neighborhoods

of p(x1) and p(x2), so for at most one g ∈ Γ, gU1 ∩U2 6= ∅, where U1 and U2 are neighborhoods

of x1 and x2 respectively.

Now let K be any compact of X. Since K × K is compact, there is a finite covering of

K×K by product neighborhoods of the form U1×U2 , where U1 has at most one image under Γ

intersecting U2. Therefore the set {g ∈ Γ|gK ∩K 6= ∅} is finite, and Γ acts freele and properly

discontinuously.

Lemma 1.2.8. Let G act transitively on an analytic manifold X. Then X admits a G-invariant

Riemannian metric if and only if, for some x ∈ X, the image of the stabilizer Sx of x in

GL(TxX) has compact closure.

Proof. Since the Riemannian metric is preserved by G, then the map f : Sx → GL(TxX)

defined by g 7→ (Lg)∗ maps Sx to a subgroup of O(TxX), which is compact. Conversely fix x

and suppose the image of Sx has compact closure Hx. Let Q be any positive definite form on
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TxX. Any compact topological group can be given a finite measure, called Haar measure that

is invariant under left or right translations of the group. Define

(u, v) =

∫
Hx

Q ((Lg)∗u, (Lg)∗v)dg, where u, v ∈ TxX

where dg is the Haar measure on Hx. Then (u, v) is an inner product on TxX invariant under

the action of Sx . Since G acts transitively, this inner product can be propagated to TyX for

any y ∈ X, and we thus get a G-invariant Riemannian metric on X.

1.3 Bundles and connections

Definition 1.3.1. (fiber bundle). If G is a topological group acting on a topological space X,

a (G,X)-bundle (or more formally a fiber bundle with structure group G and fiber X) consists

of the following data: a total space E, a base space B, a continuous map p : E → B, called the

bundle projection, and a local trivialization, explained below. It can also be said that the space

E fibers over B with fiber X.

A local trivialization is a covering of B by a collection of open sets Ui, and for each Ui a

homeomorphism φi : p−1(Ui)→ Ui ×X which gives p when it is composed with the projection

Ui × X → Ui. The φi are required to be such that for each intersecting Ui and Uj, for each

intersecting Ui and Uj, the composition

ψij = φi ◦ φ−1j : (Ui ∩ Uj)×X → (Ui ∩ Uj)×X

has the form

ψij(u, x) = (u, γij(u)x),

where γij : Ui ∩ Uj → G is continuous.

Example 1.3.2. (product bundle). The product (G,X)-bundle over a space B is B ×X.

Example 1.3.3. (mapping torus). If M is a smooth manifold and φ : M →M is a diffeomor-

phism, the mapping torus Mφ is obtained from the cylinder M × [0, 1] by identifying the two

ends via the map φ. Clearly, Mφ is an M -bundle over the circle.

Example 1.3.4. The cylinder is an ({e},R)-bundle over S1. Also, if φ : [0, 1] → [0, 1] is the

identity map on [0, 1] then [0, 1]φ is the cylinder, obtained using the mapping torus.

Example 1.3.5. The Möbius band is a (Z2,R)-bundle over S1. Consider the diffeomorphism

φ : [0, 1] → [0, 1] given by φ(x) = 1 − x. Then [0, 1]φ is the Möbius band, obtained using the

mapping torus.

Example 1.3.6. If X is a vector space and G = GL(X) is its group of linear automorphisms,

then a (G,X)− bundle is called a vector bundle.

Definition 1.3.7. A principal bundle is one in wich the fiber is the structure group itself, and

the action is by left translations.
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Example 1.3.8. Let M be a n-manifold. A linear frame u at a point x ∈ M is a basis

X1, · · · , Xn of the tangent space TxM . Let LM be the set of all linear frames u at all points

of M and let p be the mapping of LM onto M wich maps a linear frame u at x into x. The

general linear group GL(n,R) acts freely on LM by Yi =
n∑
j=1

ajiXj, where a = (aji ) ∈ GL(n,R).

Every frame u at x ∈ U can be expressed uniquely in the form u = (X1, · · · , Xn) with Xi =
n∑
j=1

Xj
i

(
∂/∂xj

)
for (x1, · · · , xn) a local coordinate system in a coordinate neighborhood U in

M , where (Xj
i ) is a non-singular matrix. This shows that p−1(U) is in 1 : 1 correspondence

with U ×GL(n;R). So, LM is a principal G-bundle over M .

We’ll construct a fiber bundle called a fiber bundle associated with P and standard fibre F

as follows. Let P be a principal G-bundle and F a manifold on which G acts on the right:

F × G → F , via the map (ζ, g) 7→ ζg. On the product manifold P × F , let G be acting as

follows: an element g ∈ G maps (u, ζ) ∈ P × F into (g−1u, ζg). The quotient space P × F

by this group action is denoted by E = P ×G F . The mapping P × F → B wich maps

(u, ζ) into p(u) induces a mapping pE : E → B, called the projection of E over B. In fact, if

[(u1, ζ1)] = [(u2, ζ2)], then exists a g ∈ G such that (g−1u1, ζ1g) = (u2, ζ2), so [u1] = [u2] over P

and therefore pE([(u1, ζ1)]) = p(u1) = p(u2) = pE([(u2, ζ2)]. Then, pE is well defined.

For each x ∈ B, the set p−1E (x) is called the fibre of E over x. Every point x ∈ B has a

neighborhood U such that U is homeomorphic to U × G. Identifying p−1(U) with U × G, we

see that the action of G on p−1(U)× F on the right is given by

(b, g, ζ) 7→ (b, h1g, ζh) for (b, g, ζ) ∈ U ×G× F and h ∈ G.

It follows that the homeomorphism p−1(U) ' U×G induces an homeomorphism p−1E (U) ' U×F .

Definition 1.3.9. The fiber bundle that was constructed or more precisely the (G,F )-manifold

E is called the fibre bundle over the base B, with fibre F and group G, which is associated with

the principal fiber bundle P .

Example 1.3.10. (Tangent bundle). Let GL(n;R) be the structure group acting on Rn, if

ei = (0, · · · , 0, 1, 0, · · · , 0) ∈ Rn then ei 7→
∑

j a
i
jei ∈ Rn for a = (aij) ∈ GL(n;Rn). Then

for u ∈ LM , ua : Rn → TxM is the composition of the following maps, a(ei) =
∑

j a
i
jei and

u(ei) = Xi ∈ TxM ,

Rn a // Rn u // TxM .

So, the tangent bundle TM = {[(u,X)]|u ∈ LM,X ∈ Rn} with the projection map pTM :

TM →M , given by pTM([(u,X)]) = p(u) = x, is the bundle associated with LM with standar

fibre Rn and structure group Rn. The fiber of TM over x ∈M may be considered as TxM .

Example 1.3.11. The tangent sphere bundle of a differentiable n-manifold M is obtained by

collapsing each ray in TM to a point, so the fiber becomes the (n− 1)-sphere Sn−1. If M has a

Riemannian metric, the tangent sphere bundle can be thought as the subset of TM consisting

of tangent vectors of unit length. In this case it will be called the unit tangent bundle to M ,
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and denote it T 1M . In other words, T 1M is a fiber bundle over M ,where the fiber is the unit

sphere in TM and M is a Riemannian manifold.

Definition 1.3.12. (Connections) Let p : E → B be a smooth (G,X)-bundle, that is, E,B

and X are all smooth manifolds, of dimensions m+n, n and m respectively, p is a smooth map,

G is a Lie group acting smoothly on X and the transition maps γij defining E are smooth.

A connection for E is an n-plane field τ , transverse to the fibers and satisfying a (G,X)-

compatibility: for any fiber Ex, there must exist some smooth local coordinate chart E for

E such that τ is tangent to the horizontal directions. In other words, given p ∈ E and Vp
the subspace of TpE consisting of vectors tangent to a fiber over p, a connection τ in E is an

assignment of a subspace Hp de TpE such that:

(a) TpE = Hp ⊕ Vp

(b) Hgp = (Lg)∗(Hp) where g ∈ G.

(c) The distribution p 7→ Hp is differentiable.

The condition of compatibility could be expressed in the following way: Given any smooth

n-plane field τ transverse to the fibers and given a path α in the base between points x and y,

there is a map between some subset of the fiber Ex to some subset of Ey. This map called the

parallel translation along α, is obtained by lifting α to a path α̂ always tangent to τ .

Example 1.3.13. Let M be a submanifold of some Euclidean space Rn, with its inherited

Riemannian metric. Given two nearlly parallel m-planes P, P ′ ⊂ Rn, the orthogonal projection

from one to the other is nearly an isometry: it distorts the metric by a factor no greater than

the cosine of the angle between the planes. It can be taken a one-parameter family of m-planes

that mediate between P and P ′, and look at the composition of orthogonal projections from

P = P0 to P1 to P2 and so on to PN = P ′, where P1, · · · , PN−1 are elements of the family taken

in order, the distortion decreases as the subdivision gets finer, and in the limit we get an actual

isometry. Applying this to the family of tangent planes to M along a path α, we get a flow

of euclidean isometries, with trajectories orthogonal to the planes. This flow defines parallel

translation for a certain Euclidean connection on TM . The Levi-Civita connection is obtained

by normalizing the Euclidean connection by translations to keep the origin fixed, converting it

into an orthogonal connection.

Definition 1.3.14. Let τ be a connection in E. For each X ∈ TpE, ω(X) is defined to be the

unique A ∈ g such that (A∗)p is equal to the vertical component of X. The form ω is called the

connection form of the given connection τ .

Remark.

(a) Given at ∈ G the integral curve of the vector field A that begins at a0 = e. a1 is denoted

by expA and therefore at = exp(tA). The mapping exp : g→ G given by A 7→ exp(A) is

called the exponential mapping. ([KN63, p.39] )
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(b) If G acts on B on the right, the action of the 1-parameter subgroup at = exp(tA) on B

induces a vector field on B wich will be denoted by A∗ and called the fundamental vector

field corresponding to A. So, A 7→ (A∗)p is a linear mapping of g onto Vp for each p ∈ E.

([KN63, p.42])

Example 1.3.15. Let τ be the plane field in R3 that associates to (x, y, z) the plane spanned by
∂
∂x

and ∂
∂y

+x ∂
∂z

. So, τ is a connection for the (R,R)-bundle πz : R3 → R2, where πz is projection

along the z-axis. We can write τ in a dual way, as the kernel of the 1-form ω = −xdy + dz.

Example 1.3.16. Let τ be the plane field in R3 considered in the example 1.3.15, where the

1-connection form ω, is given by the expression ω = −xdy + dz. Then the curvature form of

ω is given by Ω = dω = −dx ∧ dy = −π∗zdA, where dA is the area form in the plane and π∗z
denotes the pullback under πz.

Definition 1.3.17. The curvature Ω is a g-valued two-form: given two vectors X and Y at a

point p ∈M , map the unit square into M so that the vectors (1, 0) and (0, 1) at the origin are

taken to X and Y . For each s and t, let P (s, t) be the Parallel translation of the Levi-Civita

connection around the boundary of the rectangle [0, s] × [0, t]. Then the second derivative of

this map, with respect to s and t, is the curvature Ω(X, Y ).

In the case of the Levi-Civita connection for a Riemannian surface, there is only a one-

dimensional vector space of tangent two-vectors and a one-dimensional vector space of rotations

over the fiber( that is, the Lie algebra of O(2) is one-dimensional). Gaussian curvature of a

surface is the curvature of the Levi-Civita connection expressed in a canonical basis: the area

form and the unit speed rotation.

More generally, for an n-dimensional Riemannian manifold, the sectional curvature at a point

p with respect to a tangent plane P is obtained by restricting the domain of the curvature form

to two-vectors in P , and projecting the image to the Lie subalgebra of infinitesimal rotations of

P .

1.4 Contact structures in three dimensions

The contact structures in three dimensions are related to a kind of plane field, that is as non-

integrable as possible.

Definition 1.4.1. Le τ be a plane field in R3. A contact diffeomorphism between subsets

of R3 is one that preserves τ . The contact pseudogroup Con is the pseudogroup of contact

diffeomorphisms between open subsets of R3, and a contact structure on a three-dimensional

manifold is a Con-structure.

Example 1.4.2. Let τ be the plane field in R3 sppaned by ∂
∂x

and ∂
∂y

+ x ∂
∂z

. To understand

τ , it helps to think about Legendrian curves, which are curves in R3 whose tangent vectors are

always contained in τ . Let πx be the projection to the yz-plane along parallel lines to the x-axis.

These lines are Legendrian curves. Let γ be any Legendrian curve and its projection πx(γ). At

any time when the derivative dπx(γ(t))
dt

is non-zero, it is the slope of this tangent vector in the
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yz-plane. Now let φ be any diffeomorphism of the yz-plane. Then there is a unique contact

diffeomorphism φ̂, defined on most R3, that preserves the foliation by lines parallel to the x-axis,

and projects φ under πx. Given p = (x, y, z) ∈ R3, the projection of τ to the yz-plane is a line

of slope x. The derivative of φ maps the vector (1, x) at (y, z) to some other vector; we set the

x-coordinate of φ̂(p) to the slope of this vector. If the slope is infinite, φ̂ is undefined at p. By

construction, φ̂ preserves τ . If φ maps vertical lines to vertical lines, the slope is never infinite,

and we get a contact automorphism of R3. For example the map

(x, y, z) 7→ (x+ x0, y + y0, z + z0 + x0y)

preserves τ and preserves the foliation of R3 by the curves parallel to the x-axis and also the

foliation by vertical lines.

Example 1.4.3. (area-preserving automorphisms lift). Let φ be a diffeomorphism of

the xy-plane that preserves area (or multiplies it by a constant factor). Then there is contact

automorphism φ̃ of R3 that preserves the foliation by vertical lines, and projects to φ under πz.

Moreover, any two such maps differ by a vertical translation.

For given an arbitrary point p ∈ R3, we can connect p to a fixed point q ∈ R3 by a smooth

Legendrian curve γ. If φ̃ is to map Legendrian curves to Legendrian curves, the only possible

candidate for φ̃(p) is the end point of the Legendrian lift of φ ◦ πzγ that starts at φ̃(q). This

endpoint does not depend on the choice of γ: the lifts of two curves with the same endpoints

have the same endpoints if and only if the signed area enclosed by the curves is zero, and this

area property is preserved by φ.

This shows the existence and uniqueness of φ̃, and also that every contact automorphism of

R3 that preserves the foliation by vertical lines is of this type.



Chapter 2

The Eight Model Geometries

2.1 Model Geometry

In this section first we shall sketch the Thurston’s proof about the existence of eight 3-dimensional

geometries and second we shall describe each one of these eight geometries. In this context,

there seems to be three distinct, but related approaches to geometry which could be taken.

Often these are combined in various ways. The first approach is the classical one exemplified by

Euclid in which discusses only points, lines, incidence relations, angles and length. The second

approach is the differential geometry. Here the geometry of the Euclidean plane R2 is recovered

from the standard Riemannian metric on R2 given by the expression g = dx ⊗ dx + dy ⊗ dy.

A third approach , formulated by Klein, where X is a set and G is a group acting on X, the

geometry of the pair (X,G) is the study of those properties of X left invariant by G.

For logical purposes, we shall pick only one definition.

Definition 2.1.1. (model geometry) A model geometry (G,X) is a manifold X together

with a Lie group G of diffeomorphisms of X, such that:

(a) X is connected and simply connected;

(b) G acts transitively on X, with compact point stabilizers;

(c) G is not contained in any larger group of diffeomorphisms of X with compact stabilizers

of points; and

(d) there exists at least one compact manifold modeled on (G,X)

Example 2.1.2. Consider X = R2 and G = Isom(R2), and G1 = R2, where G1 acts on itself

by translations. The geometry (G1, X) must be ignored by the condition (c) at the definition,

because clearly G1 ⊂ G. So, the model geometry is given by (G,X). In this case, the covering

projection p : R2 → T 2 gives to T 2 the geometry of (G,X).

Theorem 2.1.3. The only simply connected, complete Riemannian n-manifolds with constant

sectional curvature are Rn, Sn, Hn.

Proof. See [DC92, p.163].

14
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Theorem 2.1.4. There are precisely three two-dimensional model geometries: spherical, Eu-

clidean and hyperbolic.

Proof. Let (G,X) be a 2-dimensional model geometry . Then at each point there exists a tangent

plane where the sectional curvature, in this case, coincides with the Gaussian curvature. Since

G acts transitively on X, and the Riemannian metric on X is G-invariant, the curvature at a

point is taken by the transitive action to any other point, and since the curvature is invariant

by the metric, then the curvature must be equal at all the points in X. Thus, by theorem 2.1.3,

X only could be R2, S2 or H2.

We obtain the classification of the 3-dimensional model geometries by considering the size

of Gx. But all the work will be focused on the connected component of the identity that we

shall denote it by G′ by the following facts that we will prove:

1. The action of G′ is still transitive and the stabilizers G′x, for x ∈ X are connected.

2. G′x/(G
′
x)0 form a covering space of X, where (G′x)0 is the component of the identity of G′x

3. Since X is simply connected the covering is trivial.

4. G′x is a connected closed subgroup of SO(3), and therefore is also a Lie group. So there

are only three possiblities: SO(3), SO(2) and the trivial group.

Since the stabilizer Gx is a Lie group of the same dimension, we obtain the classification of the

3-dimensional geometries by considering Gx = SO(3), Gx = SO(2) and Gx as the trivial group.

Lemma 2.1.5. Let (G,X) be a model geometry and G′ be the identity component of G. Then

the action of G′ is still transitive

Proof. Since G acts transitively, G/Gx is diffeomorphic to X. Moreover, G′ is an open normal

subgroup of G and hence G′Gx is an open subgroup of G. Let f : G→ G/Gx be the projection

map, and consider the image of G′Gx by f , it is an open set, because it is the image of its cosets

in G. Then we have got a collection of disjoint open sets in G/Gx, however since X is connected

and diffeomorphic to G/Gx then there is only one open set, so G′Gx = G.

Let x, y be points in X. As G acts transitively on X, there is a g ∈ G such that gx = y. By

the fact that G′Gx = G, then y = gx = h′fx = h′x, for some h′ ∈ G′ and f ∈ Gx. Therefore,

G′ acts transitively on X.

Lemma 2.1.6. Let (G,X) be a model geometry and G′ be the connected component of the

identity. Then G′x is connected.

Proof. The lemma 2.1.5 implies that the quotient G′/G′x is diffeomorphic to X. Let (G′x)0
be the connected component of the identity in G′x. If we consider the quotient of G′x by its

connected component of the identity, then, the map p : G′x/(G
′
x)0 → X will be surjective. Since

X is simply connected this covering must be trivial, and for each x ∈ X the fiber G′x/(G
′
x)0 is

exactly one point. So, G′x = (G′x)0.



16 CHAPTER 2. THE EIGHT MODEL GEOMETRIES

The lemmas 2.1.5, 2.1.6 and 1.2.8 prove that G′x is a connected closed subgroup of SO(3).

Moreover, by using the fact that a closed subgroup of a Lie group is also a Lie group, and

therefore a manifold, therefore there are only three possibilities: SO(3), SO(2) and the trivial

group. The stabilizer Gx is a Lie group of the same dimension.

Theorem 2.1.7. (Thurston) There are eight 3-dimensional model geometries (G,X), as fol-

lows:

(a) If the point stabilizers are 3-dimensional, X is S3, R3, H3.

(b) If the point stabilizers are 1-dimensional, X fibers over one of the two dimensional model

geometries, in a way that is invariant under G. There is a G-invariant Riemannian metric

on X such that the connection orthogonal to the fibers has curvature 0 or 1.

(b1) If the curvature is zero, X is S2 × R or H2 × R.

(b2) If the curvature is 1, we have nilgeometry (wich fibers over R2) or the geometry of S̃L(2,R)

(c) The only geometry with 0-dimensional stabilizers is solvegeometry, which fibers over the

line.

Proof. Let g be a G-invariant Riemannian metric on X.

(a) If the connected component of the identity G′ of G acts with stabilizer SO(3), any tangent

plane at any point can be taken by G to any tangent two-plane at any other point. If we

think of each tangent plane as a great circle of S2, and since the action of SO(3) on S2 is

by rotations, then any great circle can be taken to any other great circle. Moreover, since

the metric, and hence the curvature is G-invariant, then X has constant sectional curva-

ture. As in the 2-dimensional case, it follows that the geometry is spherical, Euclidean or

hyperbolic. The full group of isometries G contains G′ with index 2, and can be obatined

by adding any orientation-reversing isometry.

(b) If G′ acts with stabilizer SO(2), then the tangent space TxX contains a one-dimensional

subspace which is fixed under the action of G′x for any x ∈ X. Let p ∈ X and Vp a tangent

vector in the one-subspace. Since G acts transitively, g∗ : TX → TX takes Vp overall

g ∈ G and g∗(Vp) is fixed if g ∈ G′. It gives us a G′-invariant vector field V on X. The

integral curves of V form a G′-invariant one-dimensional foliation F. Let φt be the flow of

V .

Lemma 2.1.8. If g′ ∈ G′ then the flow of V commutes with G′.

Proof. Consider on V the expression ψt(p) = g◦φt◦g−1(p), so, ψt(gp) = g◦φt◦(g−1g)(p) =

g ◦ φt(p). Besides ψ0(gp) = gp and ψ′0(p) = (g ◦ φt)′|t=0(p) = g∗(Vp) = Vgp. Then ψt is a

flow of V at the time t, but since the flow is unique then ψt = φt = g ◦ φt ◦ g−1.
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Also, if an element of G′ fixes some point on a leaf F of F, it fixes any other point on F :

Given x, y two points in F , there exists a t such that φt(x) = y. Then, for any g ∈ G′x,
gy = gφt(x) = φt(gx) = y, so G′x = G′y. It proves that all the elements in the same leaf,

have the same stabilizer. This also implies that if an element of G′ takes a point x ∈ F
to another point y ∈ F , it commutes with any element of the stabilizer G′x.

Now, let F be a leaf and x ∈ F a point fixed, and let gt be an element of G taking

φt(x) back to x. Then gt ◦ φt fixes x and (gt ◦ φt)∗ is a linear automorphism of TxM .

The differential is the identity along the axis of the action of G′x. Moreover, it commutes

with rotations around this axis, that is, with elements of G′x. Then it must be itself a

rotation around this axis, possibly composed with an expansion or contraction, but since

by assumption there is compact manifold modeled on (G,X) then the vector field inherited

from X must preserve the volume. So, an expansion or contraction is ruled out. Now,

it will be proved that gt ◦ φt is a rotation around this axis. Suppose that ω and V are

the volume form and the vector field on M , respectively, inherited from X, both invariant

under G′. Then for p ∈M there exists a g ∈ G′ such that gp = q where q ∈M . So,

(φ∗t (ω))q = (φ∗t (ωgp)) = ωφt◦g(p),

Moreover, φt commutes with the elements of G′ then φt ◦ g = g ◦ φt and

ωφt◦g(p) = ωg◦φt(p) = g∗(ωφt(p)) = ((g ◦ φt)∗(ω))p.

Therefore, (φ∗t (ω))q = (φ∗t (ω))p for any p, q ∈ M , because the flow of the vector field and

the volume form are both invariant under G′. Since the divergence of the vector field V

on the manifold M with volume form ω, div V , is the Lie derivative LV ω, that measures

how much V expands or contracts volume, then (LV ω)p = (LV ω)q for any p, q ∈M , that

is, div V is constant over M . Moreover, since the manifold modeled on (G,X) is compact,

the vector field must preserve the total volume, and must preserve the volume at every

point. Therefore, the div V = 0 and it implies that (gt ◦ φt)∗ is an isometry on TxM and

thus (φt)∗ is also an isometry. Since x was arbitrary, the flow of the vector field V is by

isometries.

Let x be a point in a leaf F1 and y be a point in a leaf F2. Since X is Hausdorff there

exist Ux and Uy neighborhoods of x and y respectively. Then set Wx = GxF1, where

Gx = {g ∈ G|gx ∈ Ux}, and Wy = GyF2 in a similar way. Therefore, since the action of

G′ commutes with the flow of the vector field V , Wx and Wy are two disjoint neighborhoods

for F1 and F2 respectively. So, X/F is a Hausdorff space.

By considering a point on a leaf with its respective neighborhood and the fact that any

leaf is invariant under a subgroup G′x isomorphic to SO(2), it is then possible to conclude

that the leaf doesn’t accumulate on itself, but it is an embedded image of either S1 or R.

In fact, suppose by contradiction that the leaf F isn’t an embedded image of either S1 or

R and consider that F is an integral curve of V for all t, then it must approach a point

p without passing for it or accumulate somewhere on itself. In the first case, the point p



18 CHAPTER 2. THE EIGHT MODEL GEOMETRIES

belongs to some leaf F0 6= F but then F and F0 wouldn’t have disjoint neighborhoods,

contradicting the fact X/F is a Hausdorff space. In the other case, suppose that q is an

accumulation point in F and let (gn)n∈N be a sequence in G′ such that gn → e. If p1 is

point in the leaf for some t1 such that at the first time that the integral curve pass for p

is in t0, where t0 < t1, then the group action moves the curve “ahead” and gnp→ p1 but

this contradicts the fact that gnp→ ep = p. So, the leaf F is an embedded image of S1 or

R.

Therefore the quotient space X/F is a two dimensional manifold Y . Since V acts by

isometries, Y inherits a Riemannian metric from X (just ignore the component of the

metric of X in direction of the leaves) and a transitive action of G′ by isometries. Also Y

is connected because X is. In the same way if [x] ∈ Y and we consider a loop based at [x],

then it has multiple preimages in X. If we choose any of these paths in X, it has its ending

points at the same leaf of x and since X is simply connected and F is path-connected,

then the path is homotopic to a path between the two ending points, lying entirely inside

F . Thus the identity map and the loop are homotopic and Y is simply connected. By

the proof of the Theorem 2.1.4, Y must be one of the two-dimensional model geometries:

R2, S2 or H2. In addition, X is a principal fiber bundle over Y , with fiber and structure

group equal to S1 or R.

The plane field τ orthogonal to F is a connection for this bundle. Since the group of

isometries of X acts transitively, τ has constant curvature.

(b1) If the curvature is zero, the plane field is integrable (see [Thu97, p. 177]), and τ defines a

foliation transverse to the fibers. Since Y is simply connected, the bundle is trivial (see

[Thu97, p. 163]). There are three possibilites, depending on Y :

• If Y = S2, we obtain the model geometry S2 × R.

◦ If Y = R2, then X = R2×R = R3. Thus G′ (and hence G) is contained in a bigger group

of isometries, we don’t get a new model geometry.

• If Y = H2, we obtain the model geometry H2 × R.

(b2) If the curvature of τ is non-zero, the plane field is non-integrable. After rescaling our

metric in the direction of the fibers and choosing appropiate orientations for the base and

the fiber, we can assume the curvature is 1. If Y has non-zero curvature, X can be taken

as the tangent circle bundle of Y (or rather, its universal cover). The group is made of

derivatives of isometries of Y , together with rotations of unit tangent vector keeping the

base point fixed.

• If Y = R2, we obtain nilgeometry. This can be defined as the group of contact automor-

phisms that are lifts of isometries of the xy-plane.

◦ If Y = S2, the tangent circle bundle is SO(3), whose universal cover is S3. For G, we

get the group of isometries of S3 that preserve the Hopf fibration. This is not a maximal

group acting with compact stabilizers, so it is not a model geometry.
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• If Y = H2, the unit tangent bundle is PSL(2,R), the group of orientation-preserving

isometries of H2. Passing to the universal cover, we get X = S̃L(2,R).

(c) If G′ acts with trivial stabilizers, it can be identified with its single orbit X = G′/G′x, so X

is itself a Lie group. The work is reduced to investigate connected and simply connected

3-dimensional Lie groups, asking which ones admit a discrete cocompact subgroup and

are not subsumed by one of the preceding seven geometries. A Lie group where every

left-invariant vector field preserves volume is called unimodular. From now on G will be

assumed unimodular, so that tr ad V = 0 for all V in the Lie algebra g of G. Being

skew-symmetric, the product on g can be thought of as a map Λ2g → g. For G three

dimensional, if we fix a positive quadratic form and an orientation for g, we get an iden-

tification between Λ2g and g, sending V ∧W to the cross product V ×W . Then the Lie

bracket can be seen as a linear map L : g→ g, wich turns out to be symmetric with respect

to the quadratic form: L(V ) ·W = V · L(W ) for all V,W ∈ g. In fact, let {e1, e2, e3} be

a fixed, orthonormal, positively oriented basis for g, and let L = (lij) be the matrix of L

with respect to that basis. The unimodularity condition tr ad V = 0, applied to V = e1,

is given by
∑
i=1,2,3

[e1, ei] · ei = tr ad e1 = 0, or

L(e3) · e2 − L(e2) · e3 = l23 − l32 = 0.

Repeating this for the other basis vectors,

tr ad e2 = l31 − l13 = 0,

tr ad e3 = l12 − l21 = 0.

Thus G is unimodular if and only if the matrix of L is symmetric, in other words, if and

only if the map L is self-adjoint.

Every symmetric linear transformation has an orthonormal basis of eigenvectors. Chang-

ing {e1, e2, e3} to such basis, the matrix of L becomes diagonal with entries ci = lii. In

other words, [ei, ei+1] = ci+2ei+2, where the subscripts are taken modulo 3. Suppose the

quadratic form is altered, but the bracket product is fixed. If the new quadratic form is

chosen in such way that the basis {a1e1, a2e2, a3e3} were orthonormal, then

[aiei, ai+1ei+1] · ai+2ei+2 = ci+2(aiai+1/ai+2)ai+2ei+2 · ai+2ei+2 (2.1.1)

so, the new structure constants ci will be given by the expression ci(ai+1ai+2/ai).

Thus if the basis vectors are multiplied by arbitrary positive numbers then its underlying

Lie algebra wouldn’t be changed. Up to isomorphism, then there are six possibilites for

g, and therefore for the Lie group G. Only one gives rise to a new geometry, (see [Joh76,

p. 307 ]):

◦ c1, c2, c3 > 0 gives G = SU(2): group of unitary matrices of determinant 1; homeomorphic

to the unit 3-sphere.
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◦ c1, c2 > 0 and c3 < 0 gives G = S̃L(2,R) or G = O(1, 2).

◦ c1, c2 > 0 and c3 = 0 gives G = E(2) the group of rigid motions of the 2-Euclidean space.

• c1 > 0, c2 < 0, and c3 = 0 gives G = E(1, 1) the group of rigid motions of Minkowski 2-

space. This group is a semidirect group of subgroups isomorphic to R2 and to R, where each

t ∈ R acts on R2 by the matrix

(
et 0

0 e−t

)
. Thus G is an extension 0→ R2 → G→ R→ 1,

consisting of maps of the form

(x, y, t) 7→ (et0x+ x0, e
−t0y + y0, t+ t0),

for arbitrary real x0, y0 and t0.

◦ c1 > 0 and c2 = c3 = 0 gives the Heisenberg group.

◦ c1 = c2 = c3 = 0 gives G = R3.

2.2 The eight Geometries

This section will present the eight geometries found by Thurston, its Riemannian metrics,

isometries and besides we shall give examples that support the item (d) given in the definition

2.1.1. One of the most important theorems that we shall present is the Poincaré’s fundamental

polyhedron theorem, it will allow us to construct some examples in each geometry.

Definition 2.2.1. Let X be one of the spaces En, Sn, or Hn, Isom(X) its isometries group and

let G be a discrete subgroup of Isom(X). A polyhedron D is a fundamental polyhedron for G

if the following hold:

(i) For every non trivial g ∈ G, gD ∩D = ∅.

(ii) For every x ∈ X, there is a g ∈ G such that g(x) ∈ D.

(iii) The sides of D are paired by elements of G, this is, for every side s ∈ D there is a side

s′ and there is a g ∈ G such that g(s) = s′. These satisfy the conditions: gs′ = g−1s . The

element gs is called a side pairing transformation.

(iv) For any compact set K ⊂ X, we have that gD ∩K 6= ∅ for finitely many g ∈ G.

Theorem 2.2.2. Poincaré’s fundamental polyhedron theorem. Suppose that X is one of

the spaces En, Sn, or Hn with n > 1, Isom(X) is the group of isometries of X and let Γ be the

group, generated by the identification of the sides of D. Assume that we are given a polyhedron

D, where the sides of D are pairwise identified by elements of Isom(X). That is we assume that

for each side s of D, there is a side s′, not necessarily distinct from s, and there is an element

gs ∈ Isom(X), satisfying the following conditions:
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(i) gs(s) = s′.

(ii) gs′ = g−1s . If there is a side s with s′ = s then g2s = 1, this relation is called a reflection

relation.

The isometries gs are side pairing transformations.

(iii) gs(D) ∩D = ∅.
The side pairing transformations induce an equivalence relation on D where each point of

D is equivalent only to itself. Let D/Γ be the space of equivalence classes, with the usual

topology, so that the projection p : D → D/Γ is continuous and open. If D is to be a

fundamental polyhedron for Γ then

(iv) For every z ∈ D/Γ, p−1(z) is a finite set.

For each edge e = e1, let {e1, · · · , ek} be the ordered set of edges in the cycle containing

e, and let g1, · · · , gk be the corresponding side pairing transformations. Then the cycle

transformation h = h(e) = gk ◦ · · · ◦ g1 keeps e invariant. h depends on a choice of a

side abutting e; if we choose the other side to start with, then we obtain h−1 as the cycle

transformation.

(v) For each edge e, there is a positive integer t so that ht = 1. The relations in Γ, of the

form ht = 1, are called the cycle relations.

Let α(e) be the angle, measured from inside D, at the edge e.

(vi)
k∑

m=1

α(em) = 2π/t.

(vii) D/Γ is complete.

Then Γ, the group generated by the side pairing transformations is discrete, D is a fundamental

polyhedron for Γ, and the reflections and cycle relations form a complete set of relations for Γ.

Proof. See [Mas88, p.75 ]

Special Case. For the condition (vii) we are concerned with the completeness of the

quotient space obtained by gluing the sides together. Note that we have not excluded the

possibility that sides of D extend out to infinity.Suppose two sides are tangent at a point x1
on the sphere at infinity. That is, the two sides do not intersect in X but both get arbitrarily

close to x1. Note that this can only occur if X = Hn. Call one of the sides s1, let g1 be the

corresponding side pairing transformation with g1(s1) = s′1, and let x2 = g1(x1). If x2 is a point

of tangency of s′1 and some other side s2, then let g2 be the side pairing transformation with

g2(s2) = s′2, let x3 = g2(x2), and so on. If we eventually have xk = x1, for some finite k (i.e.

h = gk ◦ · · · ◦g1 leaves x1 invariant), then we call x1 an infinite tangency point and h the infinite

cycle transformation at x1. We thus require:

Every infinite cycle transformation at every infinite tangency point is parabolic.
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2.2.1 The geometry of R3.

R3 itself is a Riemannian manifold endowed with the Riemannian metric, ds2 = dx⊗ dx+ dy⊗
dy + dz ⊗ dz. With respect to the group of isometries of R3 we have that any isometry α of R3

can be expressed as α(x) = Ax+ b where A ∈ O(3) and b is a vector in R3.

Proposition 2.2.3. The map α 7→ A defines a surjective homomorphism Isom(R3) → O(3).

Then we have an exact sequence

0→ R3 // Isom(R3) // O(3) // 1.

Proof. Clearly for any A ∈ O(3), the map Ax+ b is an isometry of R3 where b is a vector in R3.

Moreover if α1 and α2 are two isometries of R3 then α1(x) = A1x + b1 and α2(x) = A2x + b2
for A1, A2 ∈ O(3) and b1, b2 ∈ R3. Then (α1 ◦ α2)(x) = A1A2(x+ b2) + b1 = A1A2x+ b3, where

b3 = A1A2b2 + b2 is a vector in R3. Then α1 ◦α2 7→ A1A2, it means that the map is a surjective

homomorphism as we required. Moreover its kernel is given by {α ∈ Isom(R3)|α 7→ I3×3 ∈
O(3)},hence the kernel of this mapping is equal to the group of translations of R3. Then, this

gives the exact sequence

0→ R3 // Isom(R3) // O(3) // 1.

The geometric description of isometries of R3 differs from that in dimension two, here we

have screw motions, these are orientation preserving isometries, consisting of the composite of

translation with a rotation about a line left invariant by the translation. Thus both translations

and rotations are special cases of this type. We can now present an example of a compact

3-manifold modeled on R3.

Example 2.2.4. Let P be a cube in R3. Define Γ as the side-pairing for P by pairing the

opposite sides of P via translations. A cube has four edges around each face and each edge is

along two faces, so it has 4× 6/2 = 12 edges. The edges are glued together in 3 groups of four,

as follows:

Let eij be the edge that lies between the faces i and j. So we get these edge identifications

� {eAC′ , eA′C′ , eCA′ , eAC}, h = g−1C gAgCg
−1
A ,

� {eAB, eA′B, eA′B′ , eAB′}, h = gBgAg
−1
B g−1A , and

� {eB′C , eB′C′ , eBC′ , eBC}, h = g−1B gCgBg
−1
C .

Since each angle measured inside P is π/2 then the angles between the faces around each edge of

the glued-up manifold is 2π. Then by the Poincare’s theorem 2.2.2 we can obtain a presentation

for Γ, moreover, we can conclude that Γ is a discrete group and that P is a fundamental

polyhedron for Γ. In other words, the quotient of R3 by Γ is obtained by P and its side-pairing

defined by Γ. This manifold is known as the three-torus (Figure 2.1) and the presentation for Γ

is given by the cycle relations, in fact Γ = {gA, gB, gC | [gi, gj] = 1, i 6= j and i, j ∈ {A,B,C}}.
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Figure 2.1: The three-torus. Each face of the cube is identified with its opposite face via translations.

The image shows the identification of each face. The euclidean manifold R3/Γ is the three-torus.

2.2.2 The geometry of H3.

We can think of H3 as the half 3-space R3
+ = {(x, y, z) ∈ R3| z > 0} with its Riemannian metric

defined by ds2 =
dx⊗ dx+ dy ⊗ dy + dz ⊗ dz

z2
. Then its vertical straight lines are geodesics in

this space, that is lines x = y =constant, are geodesics of H3. Let p and q be two points in R3
+

with the same x and y coordinate, and let z0 and z1 be its z-coordinates respectively. Then the

length of the vertical straight line segment γ from p to q is∫
γ

ds =

∫ z1

z0

1

z
dz = log

∣∣∣∣z1z0
∣∣∣∣ .

If l is a different path from p to q, we can parametrize l by t so that l has length

∫ t1

t0

1

z

((
dx

dt

)2

+

(
dy

dt

)
+

(
dz

dt

)2
)1/2

dt.

As dx/dt or dy/dt is non zero at some point then

length of l >

∫ t1

t0

1

z

((
dz

dt

)2
)1/2

dt ≥ length of γ,

Therefore all straight vertical lines in R3
+ are geodesics of H3.

Definition 2.2.5. If S ⊂ Rn is an (n − 1)-sphere in Euclidean space, the inversion iS in S is

the unique map from the complement of the center of S into itsel that fixes every point of S,

exchanges the interior and exterior of S and takes spheres orthogonal to S to themselves.

The image iS(P ) of a point P in the sphere S with center O and radius r is the point on the

ray
−→
OP such that OP ·OP ′ = r2.
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Theorem 2.2.6. The inversion in a sphere S ⊂ R3 with centre c on the xy-plane defines an

isometry of H3.

Proof. Let iS(w) = c+
r2(w − c)
||w − c||2

be the inversion in a sphere S with centre c on the xy-plane

and radius r > 0. By using coordinates for c = (x0, y0, 0) and w = (x, y, z) ∈ R3
+, then

di2S =
dx⊗ dx+ dy ⊗ dy + dz ⊗ dz

(r2z/||w − c||2)2
(r||w − c||)4

=
dx⊗ dx+ dy ⊗ dy + dz ⊗ dz

z2

Hence iS is an isometry of H3.

Now, we can say that the geodesics of H3 are the vertical straight lines and the arcs of circles

wich meet the xy-plane orthogonally.

The inversion in a sphere in Rn doesn’t map its center anywhere, but if we consider the one-

point compactification R̂n = Rn ∪ {∞} of Rn which is homeomorphic to the sphere Sn, then

the inversion iS can be extended to map the center of S to ∞ and vice versa, so it becomes a

homeomorphism of R̂n.

Definition 2.2.7. Using the stereographic projection, it is natural to think of lines and planes

as circles and spheres passing through ∞. In this way we define the inversion in a plane

P (a, t) = {x ∈ Rn|(x, a) = t}∪{∞}, where (x, a) denotes the usual inner product in Rn defined

as
∑
xiai for x = (x1, · · · , xn) and a = (a1, · · · , an), as follows:

iP (a,t)(Q) = Q− 2[(Q, a)− t]a/|a|2

Obs. The inversion in spheres which are orthogonal to the bounding plane are the hyperbolic

reflections.

Theorem 2.2.8. Let Hn be the upper half space and let O(n) be the group of isometries of the

tangent space to Hn. Then

(i) Given two points in upper half-space, Hn, there exists a composition of hyperbolic reflec-

tions that will map one to the other.

(ii) Any element of O(n) can be realized by a composition of hyperbolic reflections.

(iii) The whole group of isometries of Hn is generated by reflections.

Proof. (i) Let p, q be two points in Hn. Suppose that p = (x, t1) and q = (y, t2) for some

x, y ∈ Rn−1 and t1, t2 > 0. If we consider the inversion in the plane (x̂, a) = 0 followed

by the inversion in the plane (x̂, a) = 1
2
|a|2, we shall obtain the translation Ta(p) = p+ a.

It means that if a = (−x, 0) then Ta(p) = (0, t1). Then we shall use the inversion in the

unit sphere followed by the inversion in the sphere of radius
√
λ centred in the origin, this

composition will give us an euclidean similarity as follows:
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sλ(x) = iS√λ(iS(x)) = iS√λ(x/|x|2) =

( √
λ

|x|/|x|2

)2

x/|x|2 = λx.

By choosing λ = t2
t1

, we shall get that s t2
t1

(0, t1) = (0, t2). And applying again a translation

with b = (y, 0) then Tb(0, t2) = q. Since translations and euclidean similarities are compo-

sition of hyperbolic reflections, then given two any points p, q in Hn, we have proved that

always is possible to map one to the other using composition of hyperbolic reflections. In

our case, q = T(y,0) ◦ s t2
t1

◦ T(−x,0)(p).

(ii) We shall show by induction that O(n) is generated by reflections, and that any reflection

in O(n) can be realized by a reflection on a sphere orthogonal to the given space Rn−1

in the upper half-space model. For n = 1, O(1) = ±1, where −1 is a reflection about 0.

Then O(1) is generated by reflections. Suppose that our hypotheses is true for n− 1 and

let f ∈ O(n). If f = id then for any reflection r, we have that f = r2. Suppose that

f 6= id, if f(v) = v for some v ∈ Rn \ {0}, then let H be the hyperplane orthogonal to

Rv. So, Rn = Rv ⊕H. Besides if y ∈ f(H) then there is w ∈ H such that f(w) = y and

(v, w) = 0. Since f ∈ O(n), f preserves the inner product and

(f(v), f(w)) = (v, w) and moreover (v, y) = (f(v), f(w)) = (v, w) = 0.

Then y ∈ H, so f(H) ⊆ H. Since f is not the identity f 6= idH , and besides dim(H) =

n − 1. By induction on H, there are r1, · · · , rk, reflections about some hyperplanes Hi,

i = 1, · · · , k, such that

f |H = rk ◦ · · · ◦ r1

If H = Hi ⊕H⊥i and Ki = Hi ⊕ Rv, since H and Rv are orthogonal Ki is an hyperplane

and

Rn = Ki ⊕H⊥i = Hi ⊕ Rv ⊕H⊥i .

For every u = h+ λv ∈ H ⊕ Rv, since

ri(h) = pHi(h)− pH⊥i (h),

we can extend on Rn as follows,

ri(u) = pHi(h) + λv − pH⊥i (h), for h ∈ H, v ∈ Rv,

and

ri(h+ λv) = pKi(h+ λv)− pH⊥i (h+ λv),

which defines a reflection on Ki. Now since f is the identity on Rv, then

f = rk ◦ · · · ◦ r1.
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On the other hand if f(x) 6= x for all x ∈ Rn \ {0} then taking v = f(x)− x, let H be the

orthogonal hyperplane to f(x)− x. Since f preserves distances then

|f(x)| = |x|,

then s(x) = f(x), where s is the reflection on H. Hence,

(s ◦ f)(x) = s(f(x)) = s(s(x)) = x,

but since s2 = id then s ◦ f cannot be the identity since this would imply that f = s,

where s is the identity on H, contradicting the fact that f(x) 6= x for all x. Thus, taking

T (x) = (s◦f)(x) we are again working with the first part, where T (H) ⊆ H, and therefore

there are r1, · · · , rk reflections such that s ◦ f = rk ◦ · · · ◦ r1, so

f = s ◦ rk ◦ · · · ◦ r1.

(iii) Let f ∈ Isom(Hn) and p be a point in Hn. If f(p) 6= p, there is an hyperbolic reflection

g1 such that g1 ◦ f(p) = p. Since g1 ◦ f is an isometry, then g1 ◦ f will preserve the metric

and therefore for any v, w ∈ TpHn,

(v, w) = ((g1 ◦ f)∗)p(v), ((g1 ◦ f)∗)p(w)).

So, g1 ◦ f is an orthogonal application and therefore, there is a g ∈ O(n) such that

((g ◦ g1 ◦ f)∗)p = 1. The isometry g ◦ g1 ◦ f preserves every ray emanating from p and

preserves every sphere orthogonal to Rn−1 that pass for p with its respective direction,

then g ◦ g1 ◦ f = id. Hence f = g−11 ◦ g−1 = rk ◦ · · · ◦ r1 ◦ g−1, where ri, i = 1, · · · , k,

are hyperbolic reflections, because g1 ∈ O(n) and we had proved that every element in

O(n) is generated by hyperbolic reflections. Since f was arbitrary, any isometry of Hn is

generated by hyperbolic reflections.

We can use the upper half-space model to study the isometry group of the hyperbolic space.

Consider a reflection of H3 given by inversion in a 2-sphere S orthogonal to the space R2. The

restriction of this inversion with respect to the sphere at infinity S2
∞ = R2 ∪ ∞ is just the

inversion in the sphere S ∩ S2
∞, and every inversion of S2

∞ can be so expressed.

Definition 2.2.9. A transformation of S2
∞ that can be expressed as a composition of inversions

is known as Möbius transformation, and the group of all such transformations is the Möbius

group, denoted by Möb2.

By theorem 2.2.8(iii), all hyperbolic isometries can be generated by reflections. It follows

that the isometry group of H3 is isomorphic to Möb2. Another model of hyperbolic space that

we could use is known as the the Poincaré ball model, is what we get by taking the unit ball

D3 in R3 and declaring to be hyperbolic geodesics all those arcs of circles orthogonal to the

boundary of D3. Here the hyperbolic reflections are the inversions in 2-spheres orthogonal to

∂D3.
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Proposition 2.2.10. There is an homeomorphism from the Poincaré ball model to the upper

half space.

Proof. Consider the maps: (x, y, z) 7→ 1
2
(x, y, z), (x, y, z) 7→ (x, y, z+ 1/2) and iS2 , the inversion

in the unit 2-sphere. Composing these maps we get a homeomorphism from D3 to {(x, y, z) ∈
R3|z > 1}.The translation (x, y, z) 7→ (x, y, z−1) composed with the last homeomorphism gives

us the required homeomorphism.

If this composed map is called q then the isometry group of the Poincaré ball model is given

by q−1Möb2q, where Möb2 is the isometry group of the upper half space. The Riemannian metric

in this model is given by the following relations: x̃ = 2x/r, ỹ = 2y/r, z̃ = (2(z + 1) − r)/r,
where r = ||(x, y, z + 1)||2. So,

ds2 =
1

z̃2
dx̃⊗ dx̃+ dỹ ⊗ dỹ + dz̃ ⊗ dz̃

=
(4/r2)dx⊗ dx+ dy ⊗ dy + dz ⊗ dz

(2(z + 1)− r)2/r2

=
4

(1− (x2 + y2 + z2))2
dx⊗ dx+ dy ⊗ dy + dz ⊗ dz.

By our construction an isometry of H3 is in the group Möb2 of Möbius transformations. A

Möbius transformation that preserves orientation in C∪{∞} is a map of the form z 7→ az + b

cz + d
,

where ad − bc 6= 0 and we identify C with the xy-plane. This group of orientation preserving

isometries is naturally isomorphic to PSL(2,C) and extends its natural action on R3
+ by the

action w 7→ aw + b

cw + d
, where w is a quaternion of the form x + yi + zj, z > 0. In this way such

isometries fixes one or two points of the sphere at infinity.

Definition 2.2.11. If a non-trivial orientation-preserving isometry α of H3 has an axis that is

fixed pointwise, it is called elliptic, or sometimes it is also known as a rotation about its axis.

If α is an orientation preserving isometry of H3 fixing two points x and y at infinity, it is

called hyperbolic. Then α is a screw motion whose invariant axis is the geodesic joining x and

y.

If α fixes a single point at infinity, it is called parabolic. We can conjugate α in PSL(2,C)

so that this fixed point is ∞. Now α is of the form w 7→ w + b, and the group of all parabolic

isometries fixing ∞ is clearly isomorphic to R2.

Lemma 2.2.12. If α is an isometry of H3 let fix(α) denote the set of points on the sphere at

infinity which are fixed by α.

(i) If α and β are two non-trivial orientation preserving isometries of H3 , then α and β

commute if and only if fix(α) = fix(β).

(ii) If α is a non-trivial orientation preserving isometry of H3, then the group C(α) of all

orientation preserving isometries wich commute with α is abelian and isomorphic to R2

or S1 × R.
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Proof. The points fixed by βαβ−1 are the points β(fix(α)), because βαβ−1(β(w)) =

β(α(w)) = β(w) for any w ∈ fix(α). Moreover if αβ = βα then β(fix(α)) = fix(βαβ−1) =

fix(α).

If α is elliptic and β commutes with α, then β must also fix the same axis rotation of α,

then β is also a rotation about this axis. Hence fix(α) = fix(β) and C(α) is isomorphic to

S1 × R.

If α is parabollic, we can suppose that its fixed point is ∞. If β is another isometry

that commutes with α then αβ(∞) = βα(∞) = β(∞), so β(∞) ∈ fix(α), it means that

β(∞) = ∞, and therefore β is also of the form w 7→ w + c. Clearly C(α) is abelian an

isomorphic to R2 and fix(α) = fix(β).

If α is hyperbolic, let x, y be its fixed points on S2 and σ be the geodesic which joins x

and y and that is left invariant by α. If β is another isometry that commutes with α, then

β fixes x and y, or β interchanges x and y. If β interchanges x with y then we can think

of β as a rotation through π over the great circle that joins x and y, but in this case β

has a unique axis fixed pointwise, but this is not possible by the previous paragraph, so

β must be a screw motion, and fixes x and y. Then fix(α) = fix(β) and further C(α) is

abelian and isomorphic to S1 × R.

Before continuing with the other geometries, we shall present one example of a compact

3-manifold modeled on H3 in the Poincaré ball model.

Example 2.2.13. (The Seifert-Weber dodecahedral space) Let D be a dodecahedron and

define the gluing of its opposite faces using a translation and a rotation of 3π/5 in the clockwise

direction from front to back (Figure 2.2). The 12 · 5/2 = 30 edges are glued together in six

groups of five, as follows:

Let eij be the edge that lies between the faces i and j. So, we get these edge identifications:

� {eAD, eA′B′ , eBC , eC′E′ , eED′} and h = g−1D g−1E gCg
−1
B gA,

� {eAB, eA′C′ , eCF , eF ′D, eD′B′} and h = g−1B gDgFg
−1
C gA,

� {eAE′ , eA′D′ , eDB, eB′F , eF ′E} and h = gEgFgBg
−1
D gA,

� {eAF , gA′E, eE′D, eD′C , eC′F ′} and h = g−1F gCgDgEgA,

� {eAC , eA′F ′ , eFE′ , eEB, eB′C′} and h = g−1C gBg
−1
E g−1F gA,

� {eBF ′ , eB′E′ , eEC , eC′D, eD′F} and h = gFgDgCg
−1
E gB.

The group Γ generated by the side-pairing is given by the cycle relations described before,

and its presentation is given by

Γ =
{
gA, gB, gC , gD, gE, gF | g−1D g−1E gCg

−1
B gA, g

−1
B gDgFg

−1
C gA,

gEgFgBg
−1
D gA, g

−1
F gCgDgEgA, g

−1
C gBg

−1
E g−1F gA, gFgDgCg

−1
E gB } .
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Figure 2.2: The Seifert-Weber dodecahedral space. If opposite faces of a dodecahedron are glued by

three-tenths of a clockwise revolution, the edges are glued in quintuples, for example the green and blue edges

correspond to the cycle of the edge eAD and eBF ′ respectively. The gluing can be realized geometrically if we

use a hyperbolic dodecahedron in the Poincaré ball model. The figure shows the identification of the faces A

with A′ (red faces), E with E′ (yellow faces) and two cycles of edges. The resulting space is the Seifert-Weber

dodecahedral space.

By identifying gA = a4, gB = a−12 , gC = a5, gD = a−11 , gE = a−13 , gF = a6, we obtain that Γ has

the following presentation

a1a2a5a3a4 = 1, a2a
−1
1 a6a

−1
5 a4 = 1, a−13 a6a

−1
2 a1a4 = 1,

a−16 a5a
−1
1 a−13 a4 = 1, a−14 a6a

−1
3 a2a5 = 1, a6a

−1
1 a5a5a3a

−1
2 = 1.

This presentation for Γ coincides up to isomorphism with the presentation of the fundamental

group of the hyperbolic dodecahedron [Vin69].

To prove this dodecahedron is modeled in H3, by the theorem 2.2.2, we require that the

angles between the faces around each edge of the glued-up manifold add up to 2π, so they

would each equal to 2π/5. The angles of a Euclidean dodecahedron are much larger than the

2π/5 needed to do the gluing geometrically.

By inscribing the dodecahedron in the Poincaré ball model of hyperbolic space, planes are

represented as sectors of spheres orthogonal to the boundary of the ball, and the angle between

two hyperbolic planes is the same as the angle between the two spheres.

The ideal dodecahedron in H3 whose vertices are on S2
∞ has π/3 dihedral angles and for

a very small dodecahedron its dihedral angles are approximately 116.565◦. This deformation

is continuous and therefore intermediate between a very small hyperbolic dodecahedron and a

very large dodecahedron with angles tending toward π/3 there is a dodecahedron whose dihedral

angles are exactly 2π/5, as required. Then, this dodecahedron can be glued to make a geometric

form called the Seifert-Weber dodecahedral space. Moreover Γ is discrete and D is a fundamental

polyhedron for Γ. In other words our 3-manifold defined by the quotient M = H3/Γ is modeled

on H3 and can obtained by D and its side-pairing.
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2.2.3 The geometry of S3.

We shall think of S3 as the unit sphere in R4, or identifying R4 with C2 as the set of ordered pairs

(z1, z2) such that |z1|2 + |z2|2 = 1. With the induced metric from the euclidean metric on R4,

the isometry group of S3 is O(4). A path γ is a geodesic if and only if there is a 2-dimensional

plane Π in R4 passing through the origin such that γ ⊂ Π ⊂ R4. Assuming the basic existence

and local uniqueness results about geodesics on any complete Riemannian manifold, if a and b

are two points in S3 close enough then, there exists a unique geodesic arc γ from a to b. Let Π

a 2-plane in R4 through a, b and the origin, and let Σ be any 3-plane containing Π. Making a

reflexion on Σ is clear that all the points in the plane are fixed by this isometry and in particular

γ is invariant, hence γ lies in Σ . Then, since Π was arbitrary, it follows that γ lies in Π as we

required.

Identifying the three-sphere as a topological group, we could think of S3 as the unit quater-

nions. The basis of the quaternions Q is traditionally denoted {1, i, j, k}, with the following

product, where 1 is the identity:

i2 = j2 = k2 = −1

ij = k = −ji, jk = i = −kj, ki = j = −ik.

The conjugate of a quaternion q = a+ bi+ cj + dk, is q = a− bi− cj − dk. The product qq

is a positive real number and its square root is the norm of q, denoted by |q|. A quaternion of

norm 1 is a unit quaternion. Any non-zero quaternion q has and inverse q−1 = |q|−2q. And if p

and q are quaternions then pq = qp and |pq| = |p||q|. With this, we have proved the first part

in the following theorem.

Theorem 2.2.14. The three-sphere has the structure of a non-conmutative group, with center

{±1}. Left or right multiplication gives a self-action on S3 by orientation preserving isometries.

Conjugation gives a self-action by isometries, which, in addition, takes any two-sphere with

center 1 onto itsel. The quotient S3/{±1} is isomorphic to SO(3).

Proof. Let r be a unit quaternion and let p and q two points in S3. Since Lrp = rp and Rrp = pr

are well defined then |Lr(p)− Lr(q)| = |r||p− q| = |p− q|. Hence, this map is an isometry and

in the same way, the right multiplication also is an isometry. They are orientation-preserving

by continuity, because S3 is connected.

The conjugation fr(q) = rqr−1 is also an isometry, that fixes 1, fr(1) = r1r−1 = 1. Then,

the conjugation will leave invariant the set of points at constant distance from 1, which are

two-spheres.

We define ρ : S3 → SO(3) by letting ρ(q) be the isometry of S3 sending x to qxq−1. The

kernel of this mapping is the centre of S3, Z(S3) = {x ∈ S3; qxq−1 = x}. As S3 is 3-dimensional

and the kernel of ρ is finite, the image of ρ must be a 3-dimensional subgroup of SO(3). As

SO(3) is a connected 3-dimensional group, ρ must have image SO(3). Then S3/Z(S3) ∼= SO(3).

Let q = a+ bi+ cj+ dk be a quaternion, then qi = ai− b− ck+ dj and iq = ai− b+ ck− dj.
Then, qi = iq if and only if d = c = 0. In analogous way if we take the other elements of the

basis j, k repeating this product by the left and the right, then a = 0 or b = 0 or c = 0 or d = 0.

It means that the only unit quaternions that commute with any other unit quaternion are 1

and −1. Therefore Z(S3) = {±1} as required.



2.2. THE EIGHT GEOMETRIES 31

Now, the description of the sphere via complex numbers (z1, z2) ∈ C2 can be identified as the

quaternion z1 + z2j motivating the following construction. Each complex line (one-dimensional

subspace) in C2 intersects S3 in a great circle, called a Hopf circle. Since exactly one Hopf

circle passes through each point of S3, the family of Hopf circles fills up S3, and the circles

are in one-to-one correspondence with the complex lines of C2. Formally we get a fiber bundle

p : S3 → S2 with fiber S1.

Theorem 2.2.15. The maps gt : S3 → S3 given by multiplication by eit, for t ∈ R, are

isometries, that leave the fibers of the Hopf map invariant p : S3 → S2, where p(z1, z2) = z1/z2.

Proof. Let p, q ∈ S3, then |gt(p)− gt(q)| = |eit||p− q| = |p− q|, hence these maps are isometries

for any t ∈ R. Moreover, if (z1, z2) ∈ S3, gt(z1, z2) = (eitz1, e
itz2) and p−1({λ}) is the fiber over

λ, then the circle z1/z2 = λ is left invariant by gt because gt(z1, z2) = (eitz1, e
itz2) and thus the

fiber λ = z1/z2 = eitz1/e
itz2, as required.

This theorem proves that S3 has isometries that don’t have an axis: the motion near any

point is like the motion any other point. The one-parameter family {gt} is called the Hopf flow.

Now we shall present an example of a 3-manifold modeled with the geometry of the 3-sphere.

Example 2.2.16. (Poincaré dodecahedral space) Let D be a dodecahedron and define the

gluing of its opposite faces using a translation and a rotation of π/5 in the clockwise direction

from front to back (Figure 2.3).

A dodecahedron has five edges around each face and each edge is along two faces, so it has

12 · 5/2 = 30 edges. The edges are glued together in ten groups of three, as follows:

Let eij be the edge that lies between the faces i and j. So, we get these edge identifications:

� {eAC′ , eA′B′ , eBC} and h = gCgBgA,

� {eAE, eA′D′ , eDE′} and h = g−1E g−1D gA,

� {eAD, eA′F , eF ′D′} and h = g−1D gFgA,

� {eAF ′ , eA′C , eC′F} and h = gFgCgA,

� {eAB′ , eA′E′ , eEB} and h = gBg
−1
E gA,

� {eB′F ′ , eBD′ , eDF} and h = gFg
−1
D g−1B ,

� {eB′E′ , eBF , eF ′E} and h = gEgFg
−1
B ,

� {eB′D, eBC′ , eCD′} and h = g−1D g−1C g−1B ,

� {eDC′ , eD′E, eEC} and h = gCgEgD,

� {eC′E, eCF ′ , eFE′} and h = g−1E g−1F g−1C .



32 CHAPTER 2. THE EIGHT MODEL GEOMETRIES

Figure 2.3: The Poincaré dodecahedral space. Each pentagonal face is identified with its opposite face

by one-tenth of a clockwise revolution, the resulting space is the Poincaré dodecahedral space. The image shows

the way as the edges are glued in triples in this pattern. The green and blue edges are examples of this fact.

The 12 · 5/3 = 20 vertices of the dodecahedron are glued in five groups of four, and the space

obtained by this gluing is a manifold since it is locally homeomorphic to Euclidean space. The

side pairing is given by the relations in front of each set of edges that were identified. To work

more comfortable, we shall write the cycle relations h = gCgBgA as CBA, then the group defined

by the side pairing, is given by the following relations:

CBA = 1,

E−1D−1A = 1,

D−1FA = 1,

FCA = 1,

BE−1A = 1,

FD−1B−1 = 1.

From the last two relations we get F = BD and E = AB, using these to eliminate F and E we

get

CBA = 1,

B−1A−1D−1A = 1,

D−1BDA = 1,

BDCA = 1.

Using the first relation A = B−1C−1, and eliminating A we get

B−1CBD−1B−1C−1 = 1,

D−1BDB−1C−1 = 1,

BDCB−1C−1 = 1.
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From the first of these relations D = B−1C−1B−1CB, and eliminating D from the last two

relations we get

B−1C−1BCBC−1B−1 = 1 equivalent to B2 = C−1BCBC−1

and

B(B−1C−1B−1CB)CB−1C−1 = 1 equivalent to C2 = B−1CBCB−1.

Hence, the group defined by the side pairing is

Γ = 〈B,C | CB2C = BCB, BC2B = CBC〉.

By introducing a new generator τ = BC−1 and eliminating C using the relation C = τ−1B, we

get

(τ−1B)2 = B−1τ−1B2τ−1 and B2 = B−1τBτ−1Bτ .

Then

τBτ−1Bτ−1Bτ = B−1τBτ−1Bτ, (2.2.1)

and from the relation (2.2.1) we get

Bτ = τ 2B−1 (2.2.2)

and

τ 2 = BτB (2.2.3)

By using the relation (2.2.2)

(Bτ)2 = (τ 2B−1)(Bτ) = τ 3. (2.2.4)

And, by using

B2 = B−1τBτ−1Bτ, (2.2.5)

and (2.2.2), we get

B4 = BτBτ−1Bτ

= τ 2B−1Bτ−1τ 2B−1

= τ 3B−1. (2.2.6)

Then, B5 = (Bτ)2 = τ 3. In this way, we have found another presentation for Γ, given by

Γ = 〈τ, B | B5 = (Bτ)2 = τ 3〉. The relations that define this group with this presentation is

known as the binary icosahedral group.

Observation.The groups that we have found are isomorphic.

To prove that this manifold has the geometry of S3 we require that the angles between the

faces around each edge of the glued-up manifold add up to 2π, so they would each equal to

2π/3. By inscribing the dodecahedron on the S(e4, r) sphere (e4 = (0, 0, 0, 1)) in S3 we know

that when r tends to zero then the dihedral angles of the dodecahedron are very close to the

Euclidean angles wich is approximately 116.565, but when r increases continuously until π/2,
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then the dodecahedron is geometrically a two sphere: the angles are π. In this way, we have

expressed the dihedral angle as a function depending on the radius of the sphere where it is

inscribed, taking values in (116.565, 180], so there must exist a radius where the dodecahedron

has dihedral angles equal to 120◦ = 2π/3. By taking this dodecahedron with the gluing defined

before, we have obtained a 3-manifold M = D/Γ, where Γ is the group defined by the side

pairing, and M has the geometry of the 3-sphere. By using the Poincaré’s theorem we have

proved that Γ is a discrete group of Isom(S3) and D is a fundamental polyhedron for Γ. In other

words we also could say that the quotient S3/Γ can be obtained from D by the side pairing.

2.2.4 The geometry of S2 × R.

The space S2×R is endowed with the product of the standard metrics in S2 and R respectively.

There are seven 3-manifolds withouth boundary, including S2 × R itself, with geometric struc-

ture modeled on S2 × R.The isometry group Isom(S2 × R) can be identified with the product

Isom(S2)× Isom(R).

To give an example of a compact manifold M modeled in (Isom(S2 × R),S2 × R), we shall

consider that S2 × R is a covering space of this manifold M , and that there is a subgroup Γ

of the group of isometries Isom(S2 × R) acting freely and properly discontinuously such that

M = (S2 × R)/Γ. Then p : S2 × R → M will be the respective covering map and M the

3-manifold, as we required.

Example 2.2.17. Let Γ be the group generated by (idS2 , Ta) where Ta(x) = x+ a, is a transla-

tion. This group acts freely, because given (x, y) ∈ S2×R and (g1, g2) ∈ Γ if (g1, g2)(x, y) = (x, y)

then g1(x) = x and g2(y) = y, the first case where g1(x) = x is trivial because g1 = idS2 in the

other case g2 = Tma for some m ∈ Z then Tma(y) = y if and only if m = 0. Then (g1, g2) =

(idS2 , idR), i.e. Γ acts freely. To prove that Γ acts properly discontinuously, let K1×K2 ⊂ S2×R
be a compact subset, then for (g1, g2) we have the following, (g1, g2)K1 ×K2 = K1 × g2K2, if

(g1, g2)K1×K2 ∩K1×K2 6= ∅ then by the definition of the group Γ there is a n0 ∈ Z such that

gn0
2 K2 ∩K2 6= ∅, where gn2 = g2 ◦ g2 ◦ · · · ◦ g2, n- times. Therefore {(g1, g2), (g1, g22), · · · , (g1, gn2 )}

is a finite set as required. On the other hand, if gn2K2 ∩K2 = ∅ for every n ∈ Z, then, the set

{g ∈ Γ|gK1 ×K2 ∩K1 ×K2 6= ∅} = ∅, it means that it is finite, as we required. Then Γ acts

freely and properly discontinuously on S2 × R.

By the definition of Γ, S2×R/Γ ∼= S2×S1, and p : S2×R→ S2×R/Γ is the respective covering

map. Using the proposition 1.2.7 we have proved that S2×S1 is a 3-manifold which is compact,

since S2 and S1 are both compact. By considering π : (S2 ×R)/Γ→ S1 by π([(x, y)]) = [y] and

φ : (S2 × R)/Γ→ S1 × S2 by φ([x, y]) = ([y], [x]) = ([y], x), we have that the following diagram

commutes

S2 × R/Γ φ //

π
��

S1 × S2

p1
xx

S1 ,
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which makes S2 × S1 a trivial bundle over S1.

Example 2.2.18. Let Γ be the group generated by (α, Ta) where α is the antipodal map and

Ta a translation. In this case [(x, y)] = {(x, y + a), (−x, y + 2a), (x, y + 3a), · · · }, then again

we have that S2 × R/Γ ∼= S2 × S1 but in this case it isn’t a trivial bundle over S1, so, we shall

denote it by S2×̂S1.

Example 2.2.19. Let Γ be the group generated by (α, idR) where α is the antipodal map. If

(g1, g2)(x, y) = (x, y) for (x, y) ∈ S2 × R and (g1, g2) ∈ Γ then g1(x) = x and g2(y) = y. By

definition g2 = idR then for g1 we have only two cases, the first one is α(x) = −x or α2(x) = x.

Then g1 = α2 = idS2 . Hence, Γ acts freely. Now, let K1 ×K2 ⊂ S2 × R be a compact subset.

Besides the set {(g1, g2) ∈ Γ|(g1, g2)K1 × K2 ∩ K1 × K2 6= ∅} is always finite, since g1 = idS2

or g1 = −idS2 . Therefore Γ acts freely and properly discontinuously on S2 × R. By using the

proposition 1.2.7 p : S2×R→ S2×R/Γ is a covering map and S2×R/Γ ∼= P2
R×R is a 3-manifold.

If we consider φ : S2×R/Γ→ P2
R×R given by φ([(x, y)]) = ([x], [y]) = ([x], y) and π : S2×R/Γ→

P2
R given by π([(x, y)]) = [x], then the following diagram commutes,

S2 × R/Γ φ //

π

��

P2
R × R

p1
xx

P2
R ,

which makes P2
R × R a trivial R-bundle over P2

R.

Example 2.2.20. Let Γ be the group generated by (α, β) where α is the antipodal map and β

is a reflection. Then [(x, y)] = {(x, y), (−x, β(y))} it means that we get analogously S2×R/Γ ∼=
P2
R×̂R a non-trivial line bundle over the projective plane P2

R.

Example 2.2.21. Let Γ be the group generated by (α, idR) and (idS2 , Ta) where α is the

antipodal map and Ta a translation. Let (x, y) be a point in S2 × R,then

(α, idR) ◦ (idS2 , Ta)(x, y) = (α, idR)(x, y + a) = (−x, y + a)

and

(idS2 , Ta) ◦ (α, idR)(x, y) = (idS2 , Ta)(−x, y) = (−x, y + a).

Since the generators of the group Γ commute then the identifications in both components happen

independently, and therefore S2 × R/Γ ∼= P2
R × S1. Besides, if (g1, g2) ∈ Γ and (g1, g2)(x, y) =

(x, y) then (g1, g2) = (idS2 , idR), i.e., Γ acts freely. Let K1 ×K2 ⊂ S2 ×R be a compact subset,

if (g1, g2)K1 × K2 ∩ K1 × K2 6= ∅ then by the definition of Γ if (g1, g2) is such that g1 = α

then g2 = idR or g2 = Ta in any of these cases K1 = S2 because in other case is possible that

g1K1 ∩K1 = ∅, but even if it happens, then the set {g ∈ Γ|K ⊂ S2×R compact, gK ∩K 6= ∅}
is finite. If K1 = S2 then for g2 = idR is trivial that (g1, g2)K1×K2 ∩K1×K2 6= ∅. For g2 = Ta
if the intersection is non-empty then there is a n0 ∈ Z such that (g1, g2)

n0 ∈ K1 × K2, where

(g1, g2)
n = (g1, g2) ◦ · · · ◦ (g1, g2), n-times. On the other hand, if g1 = idS2 then g2 = Ta and

analogously there is a n0 ∈ Z such that (g1, g2)
n0 ∈ K1 ×K2, but even if it doesn’t happen for

any n ∈ Z then the set {g ∈ Γ|K ⊂ S2×R compact, gK ∩K 6= ∅} is finite. Hence, Γ acts freely

and properly discontinuously on S2 ×R. By using the proposition 1.2.7 p : S2 ×R→ S2 ×R/Γ
is a covering map and S2 × R/Γ ∼= P2

R × S1 is a manifold with the geometry of S2 × R.
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2.2.5 The geometry of H2 × R.

The space H2 × R is a geometry really different to the last one, there are infinitely many 3-

manifolds modeled with this geometry. For example, the product of any compact hyperbolic

surface with R or S1 is modeled with this geometry. However, there are still many similarities.

The isometry group of H2×R is naturally isomorphic to Isom(H2)×Isom(R), and this space is

endowed with the product metric of the respective Riemannian metrics in H2 and R respectively.

Lemma 2.2.22. If M is a 3-manifold modeled with the geometry of H2 ×R, then M admits a

foliation by lines or circles.

Proof. Let (α, β) ∈ Isom(H2 × R) and {x} × R be the foliation by lines of H2 × R. Then

(α, β){x} × R = {α(x)} × β(R), and thus the foliation is left invariant by this group. Since

M is modeled by this geometry there is a discrete subgroup Γ of Isom(H2 × R) such that

M = H2×R/Γ and p : H2×R→M is a covering map, then this foliation by lines {x} descends

to a foliation by lines or circles.

Analogously to the geometry of S2×R, we shall present one example of a compact 3-manifold

modeled with this geometry.

Example 2.2.23. Let X ⊂ H2 be a regular octagon, and let f1, f2, f3, f4 be the isometries of

H2 such that f1(eAB) = eCD, f2(eED) = eBC , f3(eEF ) = eHG, f4(eAH) = eFG. (Figure 2.4) The

vertices are glued in one group of eight as follows:

(E, eED)
f2 // (B, eBC)

(B, eAB)
f1 // (C, eDC)

(C, eBC)
f−1
2 // (D, eED)

(D, eDC)
f−1
1 // (A, eAB)

(A, eAH)
f4 // (F, eFG)

(F, eEF )
f3 // (G, eHG)

(G, eFG)
f−1
4 // (H, eAH)

(H, eHG)
f−1
3 // (E, eEF )

(E, eED).
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The group generated by the edge-pairing is given by the relation f−13 f−14 f3f4f
−1
1 f−12 f1f2 =

[f−13 , f−14 ][f−11 , f−12 ] = 1, then G = {f1, f2, f3, f4|[f−13 , f−14 ][f−11 , f−12 ] = 1}.

Since the octagon is regular, each angle is π
4
, and the eight vertices are glued in only one

vertice in H2/G, with angle 2π. Using the theorem 2.2.2 for n = 2, we have that the group

generated by the isometries f1, f2, f3, f4 of H2 is a discrete subgroup of Isom(H2), and X is

a fundamental region for G. Then H2/G can be obtained from X and its edge-pairing.

Let Γ be the group generated by (fi, Ta), i = 1, 2, 3, 4, where fi ∈ G, the group obtained by

the edge-pairing of X. Given (α, β) ∈ Γ if (α, β)(x, y) = (x, y) for some (x, y) ∈ H2 × R, then

(α, β) = (idH2 , idR) since G is free and Ta(y) = y + a = y implies a = 0. Since Γ is generated

by G and the translation Ta we have that each one of these groups is discrete on the isometry

groups of H2 and R respectively, then Γ is a discrete subgroup of Isom(H2 × R). By using the

corollary 1.2.6 we have that Γ acts properly discontinuously on X×R. By the proposition 1.2.7

the map p : H2 ×R→ H2 ×R/Γ is a covering map and H2 ×R/Γ ∼= M2 × S1 is manifold, that

is compact, where M2 is the compact orientable surface of genus 2. Moreover, M2 × S1 has the

geometry of H2 × R as we required.

Figure 2.4: Hyperbolic regular octagon X with its edge-pairing.

Example 2.2.24. Let Γ be the group generated by (fi, idR), where fi ∈ G, the group obtained

by the edge-pairing of X in the example 2.2.23. Then Γ acts freely and properly discontinuously
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on H2 × R , the map p : H2 × R → H2 × R/Γ is a covering map and H2 × R/Γ ∼= M2 × R is

a manifold with the geometry of H2 × R. If φ : H2 × R/Γ → M2 × R is given by φ([(x, y)]) =

([x], [y]) = ([x], y) and π : H2 × R/Γ → M2 is given by π([(x, y)]) = [x] then the following

diagram commutes

H2 × R/Γ φ //

π

��

M2 × R

p1
xx

M2

,

and therefore M2 × R is a trivial R-bundle over M2.

2.2.6 The nilgeometry

The nilgeometry can be defined in terms of our model contact structure τ of example 1.4.2 as

the group of contact automorphisms that are lifts of isometries of the xy-plane (example 1.4.3).

Let G be the group of isometries of nilgeometry and φ ∈ Isom(R2). Using the example 1.4.3

we can construct the automorphism of contact that project to φ. Let γ be a Legendrian curve

for τ whose projection to the xy-plane R2 is a line segment with endpoints (x0, y0) and (x1, y1),

so to find γ explicitly, we have to remember the fact that τ = 〈∂/∂x, ∂/∂y + x∂/∂z〉 and that

γ′ ∈ τ . So,

γ(t) = ((x1 − x0)t+ x0, (y1 − y0)t+ y0, z(t)) (2.2.7)

and

γ′(t) = (x1 − x0, y1 − y0, z′(t)) = (x1 − x0)
∂

∂x
+ (y1 − y0)

(
∂

∂y
+ z′(t)/(y1 − y0)

∂

∂z

)
. (2.2.8)

By using the equation (2.2.8) and the fact that γ′ ∈ τ we have that

z(t) =

∫
(y1 − y0)((x1 − x0)t+ x0)dt

= (y1 − y0)
(

(x1 − x0)
t2

2
+ x0t

)
+ C. (2.2.9)

Since γ(0) = (x0, y0, z0) then z(0) = C = z0, and

γ(t) =
(

(x1 − x0)t+ x0, (y1 − y0)t+ y0, (y1 − y0)
(

(x1 − x0) t
2

2
+ x0t

)
+ z0

)
.

Then the point q = (x1, y1, z1) ∈ R3 joined to p by γ has a difference in elevation given by

z1 − z0 = z(1)− z(0) = 1
2
(y1 − y0)(x0 + x1).

For given p = (x0, y0, z0) ∈ R3 we found a point q = (x1, y1,
1
2
(y1− y0)(x1 + x0) + z0) ∈ R3 fixed

and joined by a Legendrian curve γ, so if φ(x, y) = (φ1(x, y), φ2(x, y)) is the isometry given, we

have that the lifting of φ ◦ πz ◦ γ is the contact automorphism we required. So,

φ(πz(γ)) = (φ1(x(t), y(t)), φ2(x(t), y(t))),
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and

˜φ ◦ πz ◦ γ(t) = ((φ1(x0, y0)− φ1(x1, y1))t+ φ1(x1, y1), (φ2(x0, y0)− φ2(x1, y1))t+ φ2(x1, y1),

(φ2(x0, y0)− φ2(x1, y1))

(
φ1(x1, y1)t+ (φ1(x0, y0)− φ1(x1, y1))

t2

2

)
+ z1

)
.

Then

φ̃(q) = ˜φ ◦ πz ◦ γ(0) = (φ1(x1, y1), φ2(x1, y1), z1) (2.2.10)

and

φ̃(p) = ˜φ ◦ πz ◦ γ(1) =

(
φ1(x0, y0), φ2(x0, y0),

1

2
(φ2(x0, y0)− φ2(x1, y1))(φ1(x0, y0) + φ1(x1, y1)) + z1

)
,

(2.2.11)

so

φ̃ : R3 → R3

(x0, y0, z0) 7→
(
φ1(x0, y0), φ2(x0, y0),

1
2
(φ2(x0, y0)− φ2(x1, y1))(φ1(x0, y0) + φ1(x1, y1)) + z1

)
.

As a special case if φ(x, y) = (x+ x′, y + y′) is a translation in R2, then

φ̂(x, y, z) = (x+ x′, y + y′, 1
2
(y − y1)(x+ x1) + x′y − x′y1 + z1).

Therefore

φ̃(x, y, z) = (x+ x′, y + y′, z + x′y + z′),

where x′, y′, z′ are arbitrary real numbers, is an isometry of the nilgeometry.

Proposition 2.2.25. Let H be the group of isometries of nilgeometry that project over a

translation of R2. Then H ∼= H, where H is the Heisenberg group of real upper triangular 3× 3

matrices with ones on the diagonal.

Proof. Consider the action of H on R3, H ×R3 → H given by (φ̃, (x, y, z)) 7→ (x+x′, y+ y′, z+

xy′ + z′) for x′, y′, z′ arbitrary real numbers but fixed. If for some (x0, y0, z0) ∈ R3, we have

(φ̃, (x0, y0, z0)) 7→ (x0, y0, z0) then

x0 + x′ = x0
y0 + y′ = y0

z0 + x0y
′ + z′ = z0


x′ = 0

y′ = 0

z′ = 0.

Then φ̃ = idR3 . Besides given (x0, y0, z0) ∈ R3 and (x1, y1, z1) ∈ R3 exist x′ = x1−x0, y′ = y1−y0
and z′ = z1 − z0 − (x1 − x0)y0 such that

φ̃(x0, y0, z0) = (x0 + x′, y0 + y′, z0 + z′ + x′y0)

= (x1, y1, z1),

then, φ acts transitively on R3. So, if we consider R3 as a group with multiplication given by

(x′, y′, z′)(x, y, z) = (x+x′, y+y′, z+x′y+z′) then the map f : R3 → H given by f((x′, y′, z′)) =
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φ̃(x′,y′z′), where φ̃(x′,y′,z′)(x, y, z) = (x + x′, y + y′, z + z′ + x′y) is well defined, Ker(f) = {idR3}
and f(R3) = H. Moreover,

f((x0, y0, z0)(x1, y1, z1))(x, y, z) = φ̃(x1+x0,y1+y0,z1+x0y1+z0)(x, y, z)

= (x+ x1 + x0, y + y1 + y0, z + z1 + x0y1 + z0 + (x1 + x0)y)

= φ̃(x0,y0,z0)(x+ x1, y + y1, z + z1 + x1y)

= φ̃(x0,y0,z0) ◦ φ̃(x1,y1,z1)(x, y, z),

and since (x, y, z) is arbitrary f is an homomorphism of groups and R3 ∼= H. Now, if we identify

a point (x, y, z) ∈ R3 with a matrix

1 x z

0 1 y

0 0 1

 in the Heisenberg group, so,

(x′, y′, z′)(x, y, z)←→

1 x′ z′

0 1 y′

0 0 1

1 x z

0 1 y

0 0 1

,

and is also true that H ∼= H.

Observation. By identifying H with R3 then the action of H on R3 describes a left invariant

Riemannian metric . In fact, if we choose ds2 = dx⊗dx+dy⊗dy+dz⊗dz at the origin, then the

corresponding invariant metric on R3 is given by ds2 = dx⊗dx+dy⊗dy+(dz−xdy)⊗(dz−xdy).

Moreover the Heisenber group is a Lie group.

Example 2.2.26. If ha, hb ∈ H project to translations by vectors a = (a0, a1, a2) and b =

(b0, b1, b2), the commutator

[ha, hb] = hahbh
−1
a h−1b

= haba−1b−1

= haba−1(−b0,−b1,b0b1−b2)

= hab(−a0−b0,−a1−b1,b0b1−b2+a0a1−a2+a0b1)

= ha(−a0,−a1,a0a1−a2+a0b1−a1b0

= h(0,0,a0b1−a1b0)

is a vertical translation (0, 0, a0b1− a1b0), by a distance equal to the signed area of the parallel-

ogram with sides (a0, a1, 0) and (b0, b1, 0). Moreover the vertical translations form the center of

H, because for any h(x′,y′,z′) ∈ H if h(0,0,z) is a vertical translation then

h(x′y′z′)h(0,0,z) = h(x′,y′,z′+z) = h(0,0,z)h(x′,y′,z′),

and if h(x′,y′z′)h(a,b,c) = h(a,b,c)h(x′,y′,z′) then for all x′, y′, x′b = ay′. So, a = b = 0, and h(a,b,c) =

h(0,0,c) is a vertical translation.

Example 2.2.27. (Discrete subgroup of G). Let ha, hb be defined as in the example 2.2.26

and consider a = (1, 0, 0) and b = (0, 1, 0). Then, the group generated by ha and hb is known

as the integer Heisenberg group.
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So, h−1a = h−a, h
−1
b = h−b and if n ∈ Z then hna = hna and hnb = hnb. Moreover [ha, hb] =

h(0,0,1) is a vertical translation and therefore for any m1,m2,m3 ∈ Z we have that h(m1,m2,m3) =

hm1
a hm2

b [ha, hb]
m3 . These relations describe this subgroup completely.

We shall prove that this subgroup is discrete. Let h(an,bn,cn) be a sequence in 〈ha, hb〉 such

that h(an,bn,cn) → h(a,b,c), in other words h(an,bn,cn)h
−1
(a,b,c) → e. For given ε = 1/2, there is a

N ∈ N such that |h(an−a,bn−b,cn+(ab−c)−anb) − e| < ε for n ≥ N . Then an − a → 0, bn − b → 0

and cn + (ab− c)− anb→ 0 for n ≥ N . Since an, bn, cn, a, b, c ∈ Z and the distance between two

different integers is greater or equal than one, then it is only possible that an = a, bn = b and

cn = c for n ≥ N . Then, the sequence is almost constant and we can conclude that 〈ha, hb〉 is a

discrete subgroup of the group of isometries of nilgeometry. Let us denote the integer Heisenberg

group by HZ.

Example 2.2.28. (Compact 3-manifold modeled on the nilgeometry).

Let M = R3/HZ, since HZ is a discrete subgroup of the group of isometries of nilgeometry, by

using the corollary 1.2.6, the integer Heisenberg group acts properly discontinuously, moreover

it acts freely and therefore R3/HZ is a manifold with covering map p : R3 → R3/HZ. If

(x, y, z) ∼ (x′, y′, z′) then there is h(m1,m2,m3) ∈ HZ such that h(m1,m2,m3)(x, y, z) = (x′, y′, z′), so,

(x′, y′, z′) = (x+m1, y+m2, z+m3+m1y). Suppose without loss of generality that m1,m2,m3 >

0 and consider the parallelepiped [0,m1]× [0,m2]× [0,m3] ⊂ R3. By choosing a constant value

for the last coordinate we have the equation z = k − (m3 + xy), where k ∈ [m3, 2m3], it means

that for the planes x = 0 and x = m1 we have an identification given by z = k −m3 in x = 0

and z = k − (m3 +m1y) in x = m1. Then the quotient of R3 by HZ is also the quotient of the

parallepiped by the cyclic group generated by the (x, y, z) 7→ (x + m1, y + m2, z + m3 + m1y).

So, the map f : [0,m1] × [0,m2] × [0,m3] → M given by (x, y, z) 7→ [(x, y, z)] describes the

quotient manifold M and by definition it is compact. (Figure 2.5)

Figure 2.5: The quotient of R3 by HZ. The quotient of R3 by the integer Heisenberg group is also the

quotien of the parallelepiped of [0,m1]× T 2 by the cyclic group generated by the map (x, y, z) 7→ (x+m1, y +

m2, z +m3 +m1y). The figure shows [0,m1]× T 2, the two squares represent the toruses at x = 0 and x = m1.

We get our manifold by taking the region between the two toruses and identifying the toruses.

The example 2.2.28 gives us a manifold that is circle bundle over the torus. Moreover the
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Heisenberg group is nilpotent, in fact, it is the only three-dimensional, non abelian connected

and simply connected Lie group. This explains the term “nilgeometry”.

2.2.7 The geometry of S̃L(2,R)

The universal covering of the 3-dimensional Lie group SL(2,R) = {A ∈ GL(2,R)|det(A) = 1}
is denoted by S̃L(2,R). To describe a Riemannian metric on S̃L(2,R) we shall consider the

following facts.

Proposition 2.2.29. For given any A ∈ PSL(2,R), the action on H2 given by A(z) =
az + b

cz + d
,

where A =

(
a b

c d

)
, induces an action on TH2, via the differential map (A∗) at z.

Proof. Let z ∈ H2, v ∈ TzH2 and let γ be a path in H2 such that γ(t0) = z and γ′(t0) = v.

Then

(A∗)z(v) =
d

dt

∣∣∣∣
t=t0

(A ◦ γ) t

=
d

dt

∣∣∣∣
t=t0

aγ(t) + b

cγ(t) + d

=
aγ′(t)(cγ(t) + d)− (aγ(t) + b)cγ′(t)

(cγ(t) + d)2

∣∣∣∣
t=t0

=
(ad− bc)γ′(t0)
(cγ(t0) + d)2

=
1

(cz + d)2
v

= A′(z)v.

Then

PSL(2,R)× T (H2)→ T (H2)

is an action given by (A, (z, v)) 7→ (A(z), A′(z)v) for (z, v) ∈ T (H2) where v ∈ TzH2.

Corollary 2.2.30. The action of PSL(2,R) on H2 is transitive.

Proof. For any z1, z2 ∈ H2 there is a matrix A ∈ PSL(2,R) such that Az1 = i. Of course if

z1 = x1 + iy1 then A(z1) = az1+b
cz1+d

= i and if c = 0, then a 6= 0, d 6= 0, ad = 1 and

a(x1) + b

d
+
iay1
d

= i,

so, b = −ax1 and y1 = d2. Therefore the matrix A =

(
1/
√

(y1) −x1/
√
y1

0
√
y1

)
∈ PSL(2,R) and

A(z1) = i. Analogously, for z2 there exists another matrix B ∈ PSL(2,R) such that B(z2) = i.

Then, B−1A(z1) = z2 as we required.
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Theorem 2.2.31. The action of PSL(2,R) on T 1H2 is free and transitive. Then PSL(2,R) ∼=
T 1H2.

Proof. Let z0 = i and v0 = (0, 1)i be a tangent vector at i. Let (z, v) ∈ T 1H2 andA ∈ PSL(2,R).

For (z, v) there exists a geodesic σ ∈ H2 such that σ(t0) = z and σ′(t0) = v. Let L denote the

positive imaginary axis. Since L is a geodesic in H2 and PSL(2,R) is the group of preserving-

orientations isometries, there exists an A ∈ PSL(2,R) that maps L in σ and maps z0 to z, in

other words A(L) = σ and A(z0) = z. Then, (A∗)z0(v0) = v as we required, this proves the

existence and uniqueness of A. Therefore, we can conclude that the action is free. The map

A 7→ (A∗)i(i) = (A(i), A′(i)i) gives us the identification we required, so PSL(2,R) ∼= T 1H2.

T 1H2 is submanifold of TH2, and by definition it is a bundle over H2 with fibre S1. Clearly

any isometry f of H2 gives us an isometry f∗ of TH2 that is also an isometry of T 1H2. Moreover

by the theorem 2.2.31 we have an identification of T 1H2 and PSL(2,R), and therefore a metric

on PSL(2,R). This metric will give us a metric on S̃L(2,R), because PSL(2,R) is doubly

covered by SL(2,R) and S̃L(2,R) is the universal covering of SL(2,R). So, using the pullback

we can define a metric on S̃L(2,R), as we required. But, there is still something unsolved and

is the fact that by the construction S̃L(2,R) has the structure of a bundle over H2 with fiber

R. We could think of that S̃L(2,R) has a relation with H2 × R, even when topologically this

bundle must be trivial, we shall show that S̃L(2,R) is not isometric to H2 × R.

Let π : T (H2)→ H2 be the projection given by its smooth structure. For each v ∈ T (H2) we

define the vertical space Vv as the tangent vectors to the fiber through v and let σ be a geodesic

in H2 through x, such that its lift σ̃ to T (H2) passes through v. Then, define the horizontal

space Hv as the tangent plane of the union of all such paths, one for each geodesic of H2 through

x. Clearly σ̃ is is the parallel transportation along σ and defines an isomorphism between the

fiber through x, Tx(H2) and the fiber through any point of σ, Tσ(t)H2. Clearly this defines a

connection τ for T (H2).

Definition 2.2.32. Let M be a 2-dimensional Riemannian manifold and x ∈ M . If l is a

loop based at x, the parallel translation along l induces a rotation of the fiber TxM called the

holonomy of l and the angle of rotation is called the holonomy angle.

Example 2.2.33. If σ is a loop, then the parallel translation induces a rotation on TxM . We

called this rotation the holonomy of σ and the angle of rotation is the holonomy angle. If

M = R2 is clear that the holonomy of any loop is trivial.

Example 2.2.34. Let 4 be a geodesic triangle in H2, and denote by σ the loop defined the

edges of the geodesic triangle. The holonomy angle is π − (α + β + γ). And the holonomy in

this case is not trivial.

Proposition 2.2.35. Let τ be the connection defined for T (H2). Then, the horizontal plane

field is not integrable.

Proof. Let S ⊂ T (H2) be the surface formed by the union of all such paths through v, used to

define the horizontal space Hv. The projection map π : S → H2 is a covering map. Hence, as H2

is simply connected, S meets each fiber of T (H2) exactly once. Moreover if γ is a loop based at
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x with non-trivial holonomy then its parallel translation will find the fibre over x in two points.

But it is a contradiction. Therefore the horizontal plane field on T (H2) is not integrable.

We shall define an inner product on Vv taking the inner product of TxH2, because by defini-

tion Vv is a tangent plane to TxM . Hence, the induced Riemannian metric on TxM will make

TxM isometric to R2. The inner product on Hv is chosen to be essentially the same as that

on TxM . Precisely, given the connection τ , the projection π : T (H2) → H2 gives us a linear

isomorphism between Hv and TxM . Since TvTH2 = Hv ⊕ Vv, then an inner product on this

space induce a Riemannian metric on T (H2), that we shall choose in such way that Hv and Vv
are orthogonal. In other words if wi, wj ∈ TvTH2

〈wi, wj〉TvTH2 = 〈hi + ki, hj + kj〉TvTH2

= 〈hi, hj〉TvTH2 + 〈hi, kj〉TvTH2 + 〈ki, hj〉TvTH2 + 〈ki, kj〉TvTH2

= 〈hi, hj〉Hv + 〈ki, kj〉Vv .

Since S̃L(2,R) is a R-bundle over H2, we call again this fibers vertical. The horizontal plane

field on T 1H2 gives a plane field on S̃L(2,R) which we again call horizontal. As the projection

map p : S̃L(2,R) → T 1H2 is a local isometry, this plane field is non-integrable. This shows

directly that SL(2,R) is not isometric to H2 × R by any homeomorphism preserving fibers.

Now we have the required metric on PSL(2,R). Moreover, PSL(2,R) acts on T 1H2 by

isometries, when T 1H2 has the metric we have described. The induced metric on PSL(2,R) is

invariant under left multiplication, because PSL(2,R) acts on H2 on the left. So, the metric on

S̃L(2,R) is also invariant under left multiplication.

Definition 2.2.36. The group Isom(S̃L(2,R)) is given by the group S̃L(2,R) acting by left

multiplication together all the isometries in H2 whose lifts fixes the fibers.

Example 2.2.37. Let X be the regular octagon in H2 and let Γ be the side-pairing defined

by the isometries defined in the example 2.2.23, here, we proved H2/Γ is a compact orientable

hyperbolic surface, called the genus 2 surface, M2. Moreover, since T 1H2 ∼= PSL(2,R), then

PSL(2,R)/Γ̂ ∼= T 1H2/Γ̂ ∼= T 1H2/Γ,

where Γ̂ is the group of isometries in TH2 induced by the isometries in Γ. Therefore T 1M2 is a

compact 3-manifold modeled on S̃L(2,R).

S̃L(2,R)

��
SL(2,R)

��
PSL(2,R) ∼= T 1H2 // T 1M2

Example 2.2.38. Analogously to the example 2.2.37, for given a compact hyperbolic surface

M , its unit tangent bundle T 1M is a compact 3-manifold modeled on S̃L(2,R).
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2.2.8 The geometry of Sol.

The Lie group Sol, is defined as a split extension of R by R2. Thus we have the exact sequence

0 // R2 // Sol // R // 0,

where R acts over R2 via the map R × R2 → R2 given by (t, (x, y)) 7→ (etx, e−ty). For a

given non-zero t, the map ϕt : R2 → R2 given by (etx, e−ty) is a linear isomorphism, where its

transformation is given by the matrix (
et 0

0 e−t

)
,

whose determinant is one and his eigenvectors are et and e−t.

Definition 2.2.39. If we identify Sol with R3, we can define the multiplication “ · ” of Sol by

(x, y, z) · (x′, y′, z′) = (x+ ezx′, y + e−zy′, z + z′).

Proposition 2.2.40. R2 is a normal subgroup of R3 and (0, 0, 0) is the identity of this group.

Proof. Clearly

(0, 0, 0) · (x, y, z) = (0 + e0x, 0 + e0y, 0 + z)

= (x, y, z)

= (x+ ez0, y + ez0, z + 0)

= (x, y, z) · (0, 0, 0).

Moreover for any (x, y, z) ∈ R3, (x, y, z)−1 = (−xe−z,−yez,−z). Then,

(x, y, z) · (x′, y′, 0) · (x, y, z)−1 = (x+ ezx′, y+ e−zy′, z)(−xe−z,−yez,−z) = (ezx′, e−zy′, 0) ∈ R2.

Then R2 / R3 and (0, 0, 0) is the identity of (R3, ·).

Definition 2.2.41. Let R3 be the group defined with the multiplication (x, y, z) · (x′, y′, z′) =

(x+ ezx′, y + e−zy′, z + z′) and ds2 = dx⊗ dx+ dy ⊗ dy + dz ⊗ dz be the metric at the origin.

Then we can define the left-invariant metric on R3 by

ds2 = e−2zdx⊗ dx+ e2zdy ⊗ dy + dz ⊗ dz.

By considering the map ϕt(x, y) = (etx, e−ty) we can obtain some information about the

identity component of Sol and its full group of isometries of Sol. Of course, the eigenspaces

generated by this map are given by the following relations(
0 0

0 e−t − et

)(
v1
v2

)
=

(
0

0

)
and (

et − e−t 0

0 0

)(
v1
v2

)
=

(
0

0

)
.
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Then E(et) = {(x, 0)|x ∈ R} and E(e−t) = (E(et))⊥ = {(0, y)|y ∈ R}.
So there are independent reflection in the two eigenspaces in the R2 direction. And one

can also reflect in the R direction while at the same time interchanging the two eigenspaces.

So the stabiliser at the origin consists of maps of R3 given by (x, y, z) 7→ (± x,± y, z) and

(x, y, z) 7→ (± y,± x,−z), so the index of Sol′ in Sol is 8.

Proposition 2.2.42. These eight maps are isometries of Sol.

Proof. We shall verify that one of these maps is an isometry, analogously the other maps also

are. By taking the map (x, y, z) 7→ (y, x,−z) we have that our new coordinates are x1 = y,

x2 = x, x3 = −z. Then

ds2 = e−2(−z)dy ⊗ dy + e2(−z)dx⊗ dx+ dz ⊗ dz
= e−2zdx⊗ dx+ e2zdy ⊗ dy + dz ⊗ dz.

Then, the map is an isometry as we required.

Example 2.2.43. Let Mφ be the mapping torus defined at the example 1.3.3, and let φ be

the diffeomorphism from the torus to itsel given by (x, y) 7→ (2x + y, x + y). This linear

automorphism has matrix

(
2 1

1 1

)
. Its eigenvalues are λ = 3±

√
5

2
and its eigenspaces are given

by the following relations (
1+
√
5

2
1

1 −1+
√
5

2

)(
x

y

)
=

(
0

0

)

and E
(

3−
√
5

2

)
=
(
E
(

3+
√
5

2

))⊥
. Then E

(
3+
√
5

2

)
=
{((

1−
√
5

2

)
t, t
)
|t ∈ R

}
and E

(
3−
√
5

2

)
={(

t,
(√

5−1
2

)
t
)
|t ∈ R

}
.

By arranging the universal cover of the torus T 2 so that the two of the eigenspaces of φ line

up with x- and y-axes, since the eigenvalues of φ are reciprocal to each other, there is some t0
such that the transformation

ψ : (x, y, t) 7→ (et0x, e−t0y, t+ t0)

of R3 induces the given automorphism φ between R2×{0} and R2×{t0}. Let Γ be the group of

automorphisms of Sol generated by ψ together with unit translations along the x- and y-axes.

For a given m ∈ Z, ψm(x, y, t) = (emt0x, e−mt0 , t+mt0). If fm = ψm and fm → id, where id is

the identity automorphism of Sol, then for the open neighborhood of id, f({(x, y, t)}, (0, 1/2)3) =

{f ∈ C(R2,R2)|f(x, y, t) ⊂ (0, 1/2)3}, in the compact-open topology, where (x, y, t) ∈ (0, 1/2)3 =

(0, 1/2) × (0, 1/2) × (0, 1/2) ⊂ R3 is fixed, we have that there must be a N ∈ N, such that

fm ∈ f({(x, y, t)}, (0, 1/2)3) whenever m ≥ N . So, (emt0x, e−mt0y, t+mt0) ∈ (0, 1/2)3 whenever

m ≥ N .

Then,

0 < t+mt0 ≤ 1
2
, emt0x < 1

2
and e−mt0y < 1

2
for m ≥ N .
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Figure 2.6: The torus mapping T 2
φ for φ(x, y) = (2x+ y, x+ y). The torus mapping T 2

φ is also the quotient

of R3 by the discrete group Γ. The figure shows the parallelepiped T 2 × [0, t0], where the two shaded squares

represent the toruses at z = 0 and z = t0 . We get R3/Γ by taking the region between the two toruses and

identifying the torus so the shadings match.

There must be some natural number N0 with N0 ≥ N such that e−N0t0 > 1
y

or eN0t0 > 1
x
. Then

e−mt0y > 1 > 1
2

( or emt0 > 1
2
) for m ≥ N0. On the other hand, also there must be a natural N1

such that t+N1t0 > 1 or t+N1t0 < 0 for N1 ≥ m. Hence, fm = id for m ≥ min{N0, N1}, and

fm is an almost constant sequence.

Moreover, let gm = Tm(1,0,0) (or gm = Tm(0,1,0)) be the translation m-times in the x-( or y-)axis,

and suppose that gm → id. Let f({(x, y, t)}, (0, 1/2)3) be an open neighborhood of id. So,

(mx, y, t) ∈ (0, 1/2)3 (or (x,my, t) ∈ (0, 1/2)3) whenever m ≥ N for some natural N ∈ N. Then

0 < mx < 1/2 (or 0 < my < 1/2). There must be a natural N0 with N0 ≥ N such that N0x > 1

(or N0y > 1). Then N0x > 1 (or N0y > 1), so, gm → id if and only if gm = id for m ≥ N0.

Then Γ is a group endowed with the discrete topology.

Therefore Mφ is a compact Sol-manifold: it is the quotient of R3 by the discrete group Γ

(Figure 2.6).



Chapter 3

3-dimensional hyperbolic manifolds

3.1 Gieseking Manifold

This section is dedicated to present in some detail an example found by Gieseking (1912). It

is an example of a cusped, non-compact 3-dimensional hyperbolic manifold. Consider the ideal

hyperbolic tetrahedron T0 on the upper half model for the hyperbolic 3-space H3 having vertices

0, 1, ∞ and −ω (Figure 3.1) and the isometries of H3 defined by

(−ω, 0,∞) U // (−ω, 1, 0) , and (1, 0,∞) V // (−ω, 1,∞) .

Figure 3.1: Ideal hyperbolic tetrahedron T0.

Moreover,

(1, 0,∞)
Rot1∞// (1,−ω,∞)

Ref0∞ // (−ω, 1,∞)

and

(−ω, 0,∞)
Rot−ω0// (−ω, 0, 1)

Ref−ω∞// (−ω, 1, 0) .

Then, U = Ref−ω∞ ◦Rot−ω0 and V = Ref0∞ ◦Rot1∞, where Rotab is a rotation respect the edge

eab and Refab is a reflection respect the edge eab.

48



3.1. GIESEKING MANIFOLD 49

Now, if we consider the same tetrahedron T0, but in the Poincaré ball model for the 3-

hyperbolic space H3 we can map U over the tetrahedron to obtain an adjacent tetrahedron T ′0
such that:

The face (−ω, 0,∞) maps to the face (−ω, 1, 0) and let U(1) = p (Figure 3.2). With this

new tetrahedron, we glue the faces in pairs respecting not only face labels but also directions,

for example in the face (−ω, 0,∞) we have the three edges (−ω, 0) (from −ω to 0), (−ω,∞)

(from −ω to ∞) and (0,∞) (from 0 to ∞). Let S ′ = (ω, 0, p), S = (1, 0,∞), T ′ = (p, 0, 1),

T = (−ω, 1,∞), E = (−ω, 0,∞) and E ′ = (ω, p, 1) (Figure 3.3).

Figure 3.2: Mapping of the tetrahedron T0 over the tetrahedron T ′0.

Define the identification of the faces as follows:

S ′ : (−ω, p, 0) U
−1
// (−ω, 1,∞) V −1

// (1, 0,∞) : S ,

E ′ : (−ω, p, 1)U
−1
// (−ω, 1, 0) U−1

// (−ω, 0,∞) : E ,

T ′ : (p, 1, 0) U
−1
// (1, 0,∞) V // (−ω, 1,∞) : T .

And in this way, we got the edge identifications as follows:

(−ω,∞) V −1
// (1,∞) V −1

// (0,∞) U // (1, 0) V // (−ω, 1) U−1
// (−ω, 0) U−1

// (−ω,∞) ,

where the cycle transformation is h = U−2V UV −2. Analogously we can find the infinite cycle

transformation by using the figure and the identification of the faces, just as follows:

e−ω∞
U2
// e−ω1

UV −1
// ep1

U−2
// e0∞

UV // ep0
V U−1

// e−ω∞ ,

h = V 2U−1V −1U2. By the special case of the Poincaré’s theorem 2.2.2 the group Γ is given by

the last infinite cycle transformation U−2V UV −2 = 1. Γ = 〈U, V : V U = U2V 2〉 is a discrete

subgroup of Isom(H3), all the vertex are all identified, and since the six edges of T0 are all

identified and its dihedral angles must be π/3 then each edge in the manifold add up to 2π then

T0 is a fundamental polyhedron for Γ. The identification of the faces of T0 define a cusped,

non-compact hyperbolic manifold called the Gieseking manifold.

Now, we shall show that the Gieseking manifold is double covered by the complement of the

figure-eight knot S3\K8. In this way, we will find the first the fundamental group of S3\K8 using
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Figure 3.3: Gluing pattern of the tetrahedra T0 and T ′0.

the Wirtinger algorithm [Rol03, p.56]. We have a presentation with generators x1, x2, x3, x4 and

relations

1. x−13 x4x3 = x1

2. x−11 x2x1 = x3

3. x2x3x
−1
2 = x4

4. x4x1x
−1
4 = x2

Figure 3.4: Figure-eight knot with its generators x1, x2, x3, x4 for the Wirtinger algorithm.
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We may simplify using 2., 3. and 4. as follows:

x2 = x4x1x
−1
4

= x2x3x
−1
2 x1x2x

−1
3 x−12

= x2x
−1
1 x2x1x

−1
2 x1x2x

−1
1 x−12 x1x

−1
2 .

So, 1 = x−11 x2x1x
−1
2 x1x2x

−1
1 x−12 x1x

−1
2 . By taking x = x−12 and y = x1 we obtain an equivalent

presentation

π1(S3 \K8) = 〈x, y|xy−1x−1yxyx−1y−1xy = 1〉.

According to [Mag74, p.155] a subgroup D of index 2 in the group Γ is generated by the elements

U2 = x, V 2 = y

with the single defining relation

xy−1x−1yxyx−1y−1xy = 1.

It means that π1(S3\K8) is a subgroup of index 2 in Γ. Since Γ is a presentation of the Gieseking

manifold’s fundamental group, it proves that the Gieseking manifold is double covered by a

manifold homeomorphic to the complement of figure-eight knot as required. Finally we will

present a fundamental polyhedron for this subgroup D.

Figure 3.5 shows one three-dimensional gluing pattern. Start with two tetrahedra T and T ′

with labeled faces and directed edges divided into two types. Then glue faces in pairs, respecting

not only face labels but also edge types and directions. Let the two tetrahedra be regular ideal

tetrahedra in hyperbolic space and let eij be the edge that lies between the face i and j. We

get the following cycle relations:

� eAB
gA′ // eA′C′

gC // eCD
gD′ // eD′A′

gA // eAC
gC′ // eC′B′

gB // eAB , h = gBg
−1
C gAg

−1
D gCg

−1
A .

� eAC
gA′ // eA′D′

gD // eCD
gC′ // eC′A′

gA // eAB
gB′ // eC′B′

gC // eAC , h = gCg
−1
B gAg

−1
C gDg

−1
A .

� eAD
gA′ // eA′B′

gB // eBD
gD′ // eD′C′

gC // eCB
gB′ // eD′B′

gD // eAD , h = gDg
−1
B gCg

−1
D gBg

−1
A .

Then, the group defined by the side-pairing relations is given by

BC−1AD−1CA−1 = 1, CB−1AC−1DA−1 = 1, and DB−1CD−1BA−1 = 1.

From the first one relation, we get that B−1 = C−1AD−1CA−1. Moreover, this relation is equal

to the second one, so, we will use the last one, as follows:

1 = DB−1CD−1BA−1 (3.1.1)

= DC−1AD−1CA−1CD−1AC−1DA−1CA−1. (3.1.2)

By taking x = DA−1 and y = CD−1 we obtain an equivalent presentation

DC−1AD−1CA−1CD−1AC−1DA−1CA−1 = y−1x−1yxyx−1y−1xyx = 1.
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Figure 3.5: Gluing pattern for the tetrahedra T and T ′. Each face has a label, and faces with the same label

are identified in a way that is unambiguously determined by the requirement that edge types(one or two tiny

segments crossing it) and directions match.

Thus, the group defined by the side-pairing is

Γ̂ = 〈x, y|xy−1x−1yxyx−1y−1xy = 1〉.

Note that the gluing pattern gives us the identification of the sides in two sets with six edges

each one. Since the hyperbolic tetrahedra are regular, each dihedral angle is π/3, so with the

gluing, the dihedral angle of the edges identificated add up to 2π. Then, by the Poincaré’s

polyhedron theorem 2.2.2, we can conclude that this gluing is a fundamental polyhedron for Γ̂

whose presentation is exactly the group D as required. Note that, combinatorially, a regular

ideal tetrahedron is a simplex with its vertices deleted.

3.1.1 Hyperbolic structure on the complement of the figure-eight

knot

This part is based on the study of knots, specifically on the figure-eight knot to give it a

hyperbolic structure. Along this part of the text, we will consider H3 as the half 3-space. In

addition, we refer the reader to the following articles [Fox62, Ril72, Ril75].

Definition 3.1.1. k is a knot if there exists a homeomorphism of the unit circle S1 into 3-

dimensional sphere S3 (or in the 3-dimensional space R3) whose image is k. It is often usefull

to work in R3 and view S3 as the one point compactification of R3. Two knots k1 and k2 are

equivalent if there exists a homeomorphism of S3 onto itself which maps k1 onto k2. Equivalent

knots are said to be of the same type, and each equivalence class of knots is a knot type.

Example 3.1.2. The knots equivalent to the unknotted circle x2 + y2 = 1, z = 0, are called

trivial and constitute the trivial type. The informal statement that the figure-eight knot and the

unknot are different is rigorously expressed by saying that they belong to distinct knot types.
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Definition 3.1.3. A polygonal knot is one which is the union of a finite number of closed

straight-line segments called edges, whose endpoints are the vertices of the knot. A knot is

tame if it is equivalent to a polygonal knot; otherwise it is wild.

Example 3.1.4. The figure-eight knot is tame.

Definition 3.1.5. An isotopic deformation of a topological space X is a family of homeomor-

phisms ht, 0 ≤ t ≤ 1, of X onto itself such that h0 is the identity, and the function H defined

by H(t, p) = ht(p) is simultaneously continuous in t and p. Knots k1 and k2 are said to belong

to the same isotopy type if there exists an isotopic deformation {ht} of R3 such that h1k1 = k2.

The letter k denotes a tame knot in S3, K denotes the isotopy type of k, and K denotes the

type of k. We write πK for the group of K, i.e. πK = π1(S3 \ k; ∗).

Definition 3.1.6. An element of πK is called peripheral if, for every neighborhood of k, it is

representable as a loop of the form γαγ−1 where γ is a path from the base point to a point

of W − k and α is a loop in W − k. An element determined by the boundary of a small disk

pierced once by k is a meridian. An element determined by a curve that runs parallel to k

and is homologous to 0 in the complement of k is called a longitude. Any maximal peripheral

subgroup of πK is generated by a meridian and a longitude, and any two maximal peripheral

subgroups are conjugate.

Definition 3.1.7. We define the marked group of K, denoted πK, to be πK with the conjugacy

class of maximal peripheral subgroups specified.

To mark πK consider an over presentation

πK = 〈x1, · · · , xn|r2, · · · , rn〉.

The first named over generator x1 is a meridian of πK to which corresponds a unique longitude

γ ∈ πK that commutes with x1 and is determined by a loop running “parallel” to k in the

sense of the orientation of k. The subgroup 〈x1, γ〉 is then a maximal peripheral subgroup of

πK which determines the marked group πK. We write

πK = 〈x1, · · · , xn|r2, · · · , rn|γ〉

for this marked group, and in each specific case γ would be written out as a word in x1, · · · , xn.

If k8 denotes the figure-eight knot, we want to find a presentation for the image group θ(πK8)

where θ is a parabolic representation θ : πK8 → PSL(2,C). These projective representations

can be divided into two types parabolic or non-parabolic, according as the image of any over

generator of πK is parabolic or not. We have the following presentation for the figure-eight

knot group

πK8 =
〈
x−11 x2x1x

−1
2 x1x2x

−1
1 x−12 x1x

−1
2 = 1

〉
.

Let ω = −1+
√
−3

2
, and define a map θ from πK8 into SL(2,C) by

θ(x1) = A =

(
1 1

0 1

)
and θ(x2) = B =

(
1 0

−ω 1

)
.
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The complement in S3 of an open tubular neighborhood of the figure-eight knot k8 is a compact

3-manifold X1 whose boundary ∂X1 is a torus. The marked knot group πK1 is π1(X1) with a

particular peripherical subgroup distinguished, and has a presentation

πK8 =
〈
x1, x2|wx1w−1 = x2|γ

〉
, (3.1.3)

in which

w = x−11 x2x1x
−1
2 , w̃ = x1x

−1
2 x−11 x2, γ = w̃−1w.

Define

W = θ(w) =

(
0 ω

−ω2 1− ω

)
, W̃ = θ(w̃) =

(
0 −ω
ω2 1− ω

)
,

Then on writing A{t} =

(
1 t

0 1

)
we find

θ(γ−1) = W−1W̃ = A{2 + 4ω}. (3.1.4)

So, A{2+4ω} is a translation in a direction perpendicular to that of A. We write G = 〈A,B〉 =

θ(πK8).

Note that by definition θ is a homomorphism since the relation in πK8 is satisfied by the

matrices A and B. In fact,

A−1BAB−1AB =

(
−ω2 ω

ω3 − ω −ω2 − ω + 1

)
. (3.1.5)

On the other hand

BA−1BA =

(
1 + ω ω

−ω2 − 2ω −ω2 − ω + 1

)
. (3.1.6)

Since ω3 − ω = ω(ω2 − 1) = ω(−1 − ω − 1) = ω(−ω − 2). Then A−1BAB−1AB = BA−1BA

as required. To determine the faithfulness and discreteness Riley constructs a fundamental

polyhedron for the action of θ(πK8) on H3.

Theorem 3.1.8. A presentation for G is

Generators A,B

Assistan generator W := A−1BAB−1,

Relation WAW−1 = B.

Consequently, the parabolic representation θ : πK8 → G is an isomorphism.

Proof. See [Ril75].

Definition 3.1.9. Given T =

(
a b

c d

)
∈ PSL(2,C) with c 6= 0 we define the isometric circle

I0(T ) ⊂ C×{0} as the set of (z, 0) ∈ C×{0} such that |z+c−1d| = |c−1|. We call the hyperbolic

plane I(T ) whose Euclidean boundary is I0(T ) the isometric sphere of T . When c = 0, T has

no isometric sphere.
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Example 3.1.10. Let B =

(
1 0

−ω 1

)
be a matrix in PSL(2,C) acting on CP 1. Its isometric

circle is given by

I0(B) = {(z, 0) ∈ C× {0}; |z − ω| = 1}.

Definition 3.1.11. Let G be a discrete subgroup of PSL(2,C), G acts discontinuously on H3

and G∞ acts discontinuously on C×{0}. Hence G has an open fundamental domain D(G) ⊂ H3.

A Ford domain is the portion of H3 outside all isometric spheres of G which (Euclidean)-projects

onto a fundamental domain of G∞.

To determine the faithfulness and discreteness Riley constructed a fundamental polyhedron

for the action of θ(πK8) on H3.

Consider the isometric spheres of W±1, B±1 whose radius is 1. Their centers are

I(B) : (ω2, 0), I(W ) : (1 + 2ω, 0),

I(B−1) : (1 + ω, 0), I(W−1) : (0, 0).

Every α ∈ Z[ω] is congruent to one of these centres mod (1, 2 + 4ω), so α is the centre of an

isometric sphere of G of radius 1. The collection L of all these spheres is a regular triangular

lattice of spheres which is stable under 〈A,A{2 + 4ω}〉. Each sphere of Lmeets six other spheres

of L along the edges of a regular hyperbolic hexagon, and the angles of intersection are all 2π/3.

Furthermore, the interior of the closure of the union of the (Euclidean)-projections on C× {0}
of the hexagons on I(B±1), I(W±1) is a fundamental region D∞ of 〈A,A{2 + 4ω}〉. Let D

be the portion of H3 lying above all spheres in L which (Euclidean)-projects onto D∞. The

euclidean-vertical sides of D meet the spherical sides in the angle π/3. We refer to the figure

3.6 which depicts the projection on C× {0} of the objects that we defined.

D was the fundamental domain for G that Riley constructed. Note that the quotient mani-

fold has the same fundamental group and peripheral structure as the figure-eight knot comple-

ment, in the Waldhausen’s language there exists an isomorphism from the fundamental groups

which respect the peripheral structure. And again if we invoke the Waldhausen’s work [Wal68],

we can affirm that there exist a homeomorphism between these manifolds.

Corollary 3.1.12. The identified polyhedron D∗ is homeomorphic to the knot complement

S3 \ k8.

Proof. See [Ril75].

With this we have constructed a quotient manifold which admits a hyperbolic structure and

is homeomorphic to the complement of the figure eight-knot as required.
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Figure 3.6: Fundamental Domain D of G (euclidean)-projected on C×{0}. The cycle transformation

corresponding to the purple edges is given by B−1W−1A−1BA = 1.

3.2 The hyperbolic dodecahedra spaces

This section will provide us examples of hyperbolic dodecahedra obtained through gluings. First,

we will apply the Mostow’s Rigidity theorem to obtain the Seifert Weber dodecahedral as the

orbit space of the kernel of a mapping onto the alternating group A5. Finally, we shall show how

different gluing patterns in the same hyperbolic polyhedron could give us non-homeomorphic

hyperbolic manifolds. This section is based overall on the article [Bes71].

Lannér enumerated the hyperbolic tetrahedra possesing the property of having all dihedral

angles equal to an integer submultiple of π. Letting π/λi and π/µi, i = 1, 2, 3, be the angles

at opposite edges of the tetrahedron, where π/λi, i = 1, 2, 3, are the angles at the edges of a
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face, he showed there are precisely nine such non-congruent tetrahedra described by its dihedral

angles [λ1, λ2, λ3 : µ1, µ2, µ3].

T1[2, 2, 3 : 3, 5, 2], T2[2, 2, 3 : 2, 5, 3], T3[2, 2, 4 : 2, 3, 5],

T4[2, 2, 5 : 2, 3, 5], T5[2, 3, 3 : 2, 3, 4], T6[2, 3, 4 : 2, 3, 4],

T7[2, 3, 3 : 2, 4, 5], T8[2, 3, 4 : 2, 3, 5], T9[2, 3, 5 : 2, 3, 5].

The canonical presentation of the associated hyperbolic tetrahedral group is

aλ1 = bλ2 = cλ3 = (bc)µ1 = (ca)µ2 = (ab)µ3 = 1.

Consider the group Γ corresponding to T4:

a2 = b2 = c5 = (bc)2 = (ca)3 = (ab)5 = 1.

Let N be a proper normal subgroup of Γ and r, s, and t be the respective images of a, b, and c

under the canonical homomorphism φ : Γ→ Γ/N . Then r, s, t generate Γ/N and the relations

r2 = s2 = t5 = (st)2 = (tr)3 = (rs)5 = 1 hold. If a ∈ N then r = 1 and by considering the

relations we have the following:

Since t5 = (tr)3 = 1 implies that t2 = 1 then t = t2 ∗ t = 1, so t = 1. Moreover 1 = s2 = s5

implies that s3 = 1, so s = s ∗ s2 = 1.

Then N = Γ, but it is a contradiction since we assume Γ as a proper normal subgroup. It

implies that a /∈ N . By a similar argument b, c, bc, ca, ab are not in N , and since these are the

unique elliptic elements, then N is torsion-free.

The smallest non-trivial group onto which Γ can be mapped homomorphically is the alter-

nating group A5, a homomorphism ψ : Γ→ A5 being given by

ψ(a) = (15)(34), ψ(b) = (14)(23), ψ(c) = (12345).

The kernel of ψ is determined by the Reidemeister-Schreier method to be the group Γ0 on six

generators and defining relations

abcde = 1, cxad−1e−1 = 1,

axdb−1c−1 = 1, dxbe−1a−1 = 1,

bxec−1d−1 = 1, exca−1b−1 = 1.

Obs. The Reidemeister-Schreier method [Bes71, MKS04] also is accesible via a computer, in our

case we use GAP (computer algebra system), which can be found at https://www.gap-system.org/.

We considered S = {ck, clack, clac2ack, clac2ac3a}l,k=0,1,··· ,4. as the Schreier system of representations

of the right cosets with respect to Γ0. Excluding unnecessary generators and relations Γ0 is generated

by transformations

ak = ck−1ac2ac4b(ck+1a)−1, k = 1, 2, · · · , 5, a6 = c2ac2ac3ab.

This group Γ0 is in fact, the fundamental group of the Seifert Weber dodecahedral space (example

2.2.13).
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Theorem 3.2.1. ( Mostow’s Rigidity Theorem ) If two hyperbolic manifolds of finite volume,

with dimension n ≥ 3, have isomorphic fundamental groups, then they must necessarily be isometric

to each other.

Proof. See [Mos73, Joh82].

Since H3/Γ0 and the Seifert Weber dodecahedral space have isomorphic fundamental groups, by the

Mostow’s Rigidity theorem 3.2.1, we can conclude that the orbit space of the kernel of ψ is isometric

to the Seifert Weber dodecahedral space as required.

To finish this section, consider the following example, where our main objective is to construct

hyperbolic 3-manifolds from the dodecahedron with dihedral angles 2π/5.

Example 3.2.2. Let X be a hyperbolic dodecahedral (Figure 3.7) with dihedral angles 2π/5 and the

following gluing patterns.

Figure 3.7: Dodecahedron X.

a : ABCDE → TPQRS b : AEJKL→ QGHIR

c : BALMN → JKSRI d : CBNOF →MTSKL

e : DCFGH → NOPTM f : EDHIJ → POFGQ.

These identifications give us that the 30 edges are glued in 6 groups of 5, where eij is the edge

corresponding to the segment ij at the respective face of the hyperbolic dodecahedron.

� {eAB, eTP , eGF , eIH , eKJ}, h = cbfea−1.

� {eBC , ePQ, eEJ , eGH , eTM}, h = de−1b−1fa−1.

� {eCD, eQR, eAL, eKS , eON}, h = edc−1ba−1.

� {eDE , eRS , eML, eCF , eOP }, h = fe−1dca−1.

� {eEA, eST , eNB, eIJ , eGQ}, h = bf−1c−1da−1.
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� {eHD, eMN , eRI , eKL, eOF }, h = fdbc−1e−1.

At the glued-up manifold M , the edges add up to 2π and by the Poincare’s polyhedron theorem, we

have got a hyperbolic 3-manifold, where M ∼= H3/Γ and the hyperbolic dodecahedral is fundamental

for Γ, the discrete group given by the cycle relations, i.e.,

Γ = {a, b, c, d, e, f |cbfea−1, de−1b−1fa−1, edc−1ba−1, fe−1dca−1, bf−1c−1da−1, fdbc−1e−1}.

Moreover, since our objective is to show that even with the same manifold, different gluing patterns

could give us different hyperbolic 3-manifolds, we will study the first homology group of the manifold.

By considering the first homology group as the abelianization of the first fundamental group, we will

use the following map Γ → Γ/[Γ,Γ]. Let A1, A2, · · ·A6 be the homological classes given by the map,

for the elements a, b, · · · , f . Then from the cycle relations we obtained relations for the elements

A1, · · · , A6 that generate the first homology group:

A2 −A3 +A4 −A5 +A6 = 0,

−A1 +A3 +A4 −A5 +A6 = 0,

−A1 −A2 +A4 −A5 +A6 = 0,

−A1 +A2 +A3 +A5 +A6 = 0,

−A1 +A2 −A3 +A4 −A6 = 0,

−A1 +A2 −A3 +A4 +A5 = 0.

This satifies the following matrix relation

0 1 −1 1 −1 1

−1 0 1 1 −1 1

−1 −1 0 1 −1 1

−1 1 1 0 1 1

−1 1 −1 1 0 −1

−1 1 −1 1 1 0





A1

A2

A3

A4

A5

A6


=



0

0

0

0

0

0


. (3.2.1)

By elementary transformations the system (3.2.1), reduces to the following:

(I) A2 −A3 +A4 + 2A6 = 0,

(II) −A1 +A3 +A4 −A5 +A6 = 0,

(III) −A2 −A3 = 0

(IV) 2A1 +A3 +A4 + 2A6 = 0,

(V) A5 +A6 = 0.

(VI) −A1 +A2 −A3 +A4 +A6 = 0

From the equations (I), (III) we get

(VII) 2A2 +A4 + 2A6 = 0.

From the equations (II), (III) and (V) we get

(VIII) −A1 +−A2 +A4 + 2A6 = 0.
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From the equations (IV) and (III) we get

(IX) −2A1 −A2 +A4 + 2A6 = 0.

From the equations (III) and (VI) we get

(X) −A1 + 2A2 +A4 +A6 = 0.

By adding the inverse of the equation (IX) to the equation (VIII) we get

(XI) A1 = 0.

Then, from the equations (IX), (VII) and A1 = 0 we get

(XII) 3A2 = 0.

From the equations (VIII), (X) and 3A2 = 0 we get

(XIII) A6 = 0.

From A6 = 0 and the equation (IX) we get that

(XIV) A2 = A4.

To summarize, the matrix relation (3.2.1) reduces to

3A2 = 3A4 = 0, A1 = A6 = 0, A3 = −A2 and A5 = −A6 = 0.

Then H1(M) ∼= Z3 ⊕ Z3.

The table 3.1 shows that there are another six non-homeomorphic 3-manifolds, which are obtained

from the dodecahedron with dihedral angles 2π/5 by identifying pair of its faces. We refer again to

the Figure 3.7.

Obs. The presentation and the homology groups in the table 3.1, were got by an analogous process

that we explained with more detail at the example 3.2.2.

In conclusion, at the table 3.1 we have shown that although the identification has been made using

the same dodecahedron, we could obtain non-homeomorphic hyperbolic 3-manifolds only changing the

gluing pattern on its faces, since these manifolds are determined by their fundamental groups.
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Identified faces Fundamental group

(Presentation)

Homology group

a : ABCDE → RSTPQ; b : AEJKL→ QGHIR ac−1dbc−1 = 1 = ad−1ecd−1,

c : BALMN → RIJKS; d : CBNOF → SKLMT ae−1fde−1 = 1 = af−1bef−1, Z5 ⊕ Z5 ⊕ Z5

e : DCFGH → TMNOP ; f : EDHIJ → POFGQ ab−1cfb−1 = 1 = dcbfe.

a : ABCDE → PQRST ; b : AEJKL→ IRQGH af−1edc−1 = 1 = ab−1fed,

c : BALMN → KSRIJ ; d : CBNOF →MTSKL ac−1bfe−1 = 1 = ad−1cbf−1, Z5 ⊕ Z5 ⊕ Z5

e : DCFGH → OPTMN ; f : EDHIJ → GQPOF ae−1dcb−1 = 1 = becfd.

a : ABCDE → PQRST ; b : AEJKL→ FGQPO ab−1fdc−1 = 1 = aebf−1d−1,

c : BALMN → DHGFC; d : CBNOF → JIHDE afe−1d−1c = 1 = ae−1c−1bd, Z5 ⊕ Z15

e : GHIRQ→ STMLK; f : IJKSR→ PONMT af−1ecb−1 = 1 = dbefc.

a : ABCDE → TPQRS; b : AEJKL→ HIRQG ae−1fdc−1 = 1 = dcb−1fa−1,

c : BALMN → KSRIJ ; d : CBNOF → LMTSK ed−1cba−1 = 1 = ac−1be−1f, Z3 ⊕ Z3

e : DCFGH → TMNOP ; f : EDHIJ → POFGQ d−1ecfb−1 = 1 = bfeda−1.

a : ABCDE → TPQRS; b : AEJKL→ IRQGH cbf−1ea−1 = 1 = dc−1bfa−1,

c : BALMN → JKSRI; d : CBNOF → SKIMT ab−1fde−1 = 1 = fedca−1, Z3 ⊕ Z3

e : DCFGH → TMNOP ; f : EDHIJ → FGQPO ad−1ecb−1 = 1 = dbef−1c−1.

a : ABCDE → KJEAL; b : DCFGH → JKSRI ab−1a2c−1 = 1 = eded−1a−1,

c : BALMN → KLMTS; d : EDHIJ → QPOFG a2cab−1 = 1 = ac2fd−1, Z35

e : CBNOF → HIRQG; f : MNOPT → PTSRQ ac−1ab−1a = 1 = fc−1f2e−1.

Table 3.1: Hyperbolic 3-Manifolds obtained from the dodecahedron (dihedral angles: 2π/5) by the identifica-

tion in pairs of its faces.
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A brief historical note

Before finishing the dissertation, I want to present that was known as the Thurston’s geometrisation

conjecture and some important facts that have made possible the development of the theory of 3-

manifolds. Let me begin by talking about the Poincaré conjecture.

Poincaré was interested in the topological properties that could characterize a 3-sphere. In 1900,

Poincaré had claimed that the Homology was enough to tell when a 3-manifold was a 3-sphere. But,

in 1904, he presented a counterexample in a paper for his first claim. Currently, the counterexample

is called the Poincaré homology sphere and is exactly the Poincaré dodecahedral space, the elliptic 3-

manifold that we constructed in the example 2.2.16. This manifold has exactly the same homology of

the 3-sphere. To establish the difference between this manifold and the 3-sphere, Poincaré introduced

a new topological invariant, the fundamental group, in this way, he showed that the Poincaré homology

sphere has a fundamental group of order 120 while the 3-sphere has trivial fundamental group. Finally,

at the same paper, Poincaré wondered whether a 3-manifold with the homology of a 3-sphere and also

trivial fundamental group had to be a 3-sphere and in spite of he never declared that this additional

property could characterize the 3-sphere, the statement that it does is known as the Poincaré conjecture.

Poincaré conjecture. Every simply connected, closed 3-manifold is homeomorphic to the 3-sphere.

After nearly a century the conjecture was proved by Grigori Perelman in 3 papers in 2002 and 2003 on

arXiv. The proof was built by using the Ricci flow with surgery, an idea introduced at the program of

Richard S. Hamilton [Ham82] that hadn’t been proved in three dimensions. In these papers, Perelman

completed the proof [Per02, Per03b, Per03a].

The prime decomposition

The geometrisation conjecture asserts that any 3-manifold can be cut in geometric pieces. We will first

begin by describing how to decompose the manifold to understand the conjecture. An application of

this conjecture is precisely the proof of the Poincaré conjecture.

When we write M1#M2 to denote the connected sum of M1 and M2, note that M# S3 is always

homeomorphic to M . We say that a 3-manifold M is prime if any expression of M as M1#M2 has

M1 or M2 homeomorphic to S3. A theorem of Kneser [Kne29] asserts that any compact 3-manifold

can be expressed as a finite connected sum of primes, and Milnor [Joh62] showed that the factors

62
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involved are unique if M is orientable. The non-orientable case is explained by the homeomorphism

N#S1 × S2 ≈ N#S1×̃S2 when N is non-orientable.

Theorem 4.0.1. Every compact oriented 3-manifold M with (possibly empty) boundary decomposes

into prime manifolds:

M = M1#· · · # Mk.

This list of prime factors is unique up to permutations and adding/removing copies of S3.

A detailed proof of the theorem can be found at [Hat07].

On the other hand, we say that a 3-manifold is irreducible if every embedded sphere bounds an

embedded ball. In general these definitions are nearly equivalent for the following facts:

� Every irreducible 3-manifold M is prime.

� Every prime orientable 3-manifolds are irreducible, except one: S1 × S2.

This prime decomposition is obtained by cutting M along a separating 2-sphere and then adding a

3-ball to each of the manifolds obtained. Beyond the prime decomposition there is a further decom-

position of irreducible compact orientable 3-manifolds, splitting along tori rather than spheres.

Firstly, we need to define some properties of embedded surfaces on 3-manifolds. Let M be a

3-manifold and let S ↪→ M be an embedded connected surface. An embedded disk D ↪→ M with

D ∩ S = ∂D is called a compressing disk for S. Now, an incompressible surface on a 3-manifold is a

connected surface S ⊂ M other than the 2-sphere or the 2-disk if for each compressing disk D ⊂ M

for S there is a disk D′ ⊂ S such that ∂D = ∂D′. The incompressible surfaces are interesting because,

if they are removed from an irreducible manifold, it remains irreducible. Also, we can say that S is an

incompressible surface if the map ι : π1(S) ↪→ π1(M) is injective. This less intuitive way to define it

comes from the fact that if D ⊂M is a compressing disk, then ∂D is nullhomotopic in M , hence also

in S if the map ι is injective.

The incompressible surfaces we are interested in are incompressible tori. A compact 3-manifold M is

said to be atoroidal if we cannot embed any incompressible tori in it. The following theorem, known

as the JSJ splitting theorem, was discovered in the 1970s by W. Jaco and P. Shale from one side, and

K. Johannson independently [JS76].

Theorem 4.0.2. (JSJ splitting theorem) Let M be an irreducible, compact and orientable 3-

manifold. There exists a finite collection T = {T1, · · · , Tk} of disjoint incompressible tori such that

each component M \ T is either atoroidal or a Seifert manifold, and a minimal such collection T is

unique up to isomorphism.

Note that the JSJ decomposition is obtained by cutting along tori, it means that each component

of M \ T is a manifold Mi with boundary ∂Mi = Ti, for some Ti ∈ T .

To summarize, given the prime decomposition of a compact, orientable 3-manifoldM = P1#· · ·#Pn,

as every prime component Pi is either S1 × S2 or an irreducible manifold Ni, we can write M =

N1#· · ·#Nr#S1 × S2#· · ·#S1 × S2. Moreover the irreducible components Ni can be split along tori,

by a JSJ splitting, so that each subcomponent is either atoroidal or a Seifert manifold (or both). The

interior of such subcomponents is a manifold. This final decomposition is known as canonical decom-

position and through this decomposition we have obtained the canonical pieces into wich a 3-manifold

decomposes, that can be Seifert manifolds or atoroidal manifolds.
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The geometrisation conjecture

In 1982, Thurston gave a first version of the Geometrisation conjecture:

Thurston’s Geometrisation Conjecture. Every compact, orientable 3-manifold decomposes canon-

ically into pieces whose interior is either Seifert fibred or hyperbolic.

The canonical decomposition he refers is the last decomposition that we described above. Neverthe-

less, this statement does not mention geometric structure. Nowadays, the geometrisation conjecture is

enunciated as follows:

Geometrisation Conjuecture. The interior of any compact, orientable 3-manifold M can be split

along a finite collection of disjoint embedded spheres and incompressible tori into a canonical collection

of 3-submanifolds M1, · · · ,Mn such that, for each i, the manifold obtained from Mi by capping off all

sphere components by balls admits a geometric structure.

The geometrisation conjecture was motivated because some partial results were known before. In

1981, Thurston proved that any Haken manifold is hyperbolic if, and only if, it is atoroidal, where a

Haken manifold is a compact, orientable, irreducible 3-manifold that contains an irreducible surface.

Clearly a Haken manifold satisfies the geometrisation conjecture.

The JSJ splitting theorem 4.0.2 asserts that the interior of the pieces obtained in the canonical decom-

position are either Seifert or atoroidal. Moreover, any Seifert manifold admits a geometric structure

[Sco83], so in order to prove the geometrisation conjecture one only needs to prove that atoroidal

manifolds have either an elliptic or hyperbolic geometry, according to whether the fundamental group

is finite or not. Then, the geometrisation conjecture splits in two simpler conjectures as follows.

Conjecture. M is a closed, orientable 3-dimensional manifold modeled on S3 if and only if π1(M) is

finite.

Conjecture. M is a closed, orientable hyperbolic 3-dimensional manifold if and only if it is atoroidal

and has infinite fundamental group.

In 2003, Grigori Perelman presented a proof of the geometrisation conjecture, based on the Richard

Hamilton notes about the Ricci flow. He showed that any compact orientable manifold M decomposes

as

M = M1#· · ·#Mr#E1#· · ·#Ek#S1 × S2#· · ·# S1 × S2

where Ei are manifolds modeled on S3 and each Mi admits a torus decomposition as Hi t Gi, with

Hi an hyperbolic manifold and Gi a graph manifold. (A Graph manifold is a 3-dimensional compact,

orientable manifold that is a union of Seifert manifolds along toral boundaries).

Note that the geometrisation theorem, together with the Thurston’s classification theorem, gives a

complete understanding of the geometric structures on compact, orientable 3-dimensional manifolds.

We can say that such a manifold can be decomposed into canonical pieces whose interior can be mod-

elled in one and only one of the eight Thurston’s geometries. Moreover the canonical decomposition



65

described is sufficient but no necessary, since Sol geometry does not appear. Any manifold modeled

on Sol is neither Seifert nor hyperbolic, although it has a geometric structure.

Moreover, the Poincaré conjecture results as a consequence of the geometrisation theorem:

Proof of the Poincaré Conjecture. Let M be a compact, simply connected manifold. As π1(M)

is trivial, it has no incompressible tori since the fundamental group of the torus is Z⊕ Z. Hence, the

canonical decomposition of M must be trivial, and thus by the geometrisation theorem M admits a ge-

ometric structure. Again, since M is simply connected, it is its own universal cover, so the M must be

the model geometry of M . Then M is one of the eight Thurston geometries, but the only compact one is

S3 as required. �
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