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Resumo

Este trabalho trata o problema de transporte de carga usando um veículo aéreo não
tripulado (VANT) do tipo tilt-rotor. Um VANT tilt-rotor é uma aeronave híbrida capaz de
realizar voos com velocidade de cruzeiro elevada, como VANTs de asa fixa, e decolagem e
pouso vertical, como VANTs de asa rotativa. Aborda-se o problema de rastreio de trajetória
da carga suspensa, no qual a carga deve seguir uma trajetória desejada enquanto o VANT
tilt-rotor é mantido estável. A cinemática do sistema é formulada do ponto de vista da
carga, a partir da qual um modelo dinâmico rigoroso é obtido através da formulação de
Euler-Lagrange. Obtém-se uma representação em espaço de estados não linear altamente
acoplada e afim nas entradas, na qual a posição e a orientação da carga são diretamente
representadas por variáveis de estado. Este fato permite que estratégias de controle por
realimentação de estados possam conduzir a carga através de uma trajetória de referência
com relação a um sistema de coordenadas inercial. Assumindo que todos os estados do
sistema são medidos, duas estratégias de controle linear em tempo discreto são propostas
para solucionar o problema de rastreio de trajetória da carga com rejeição a perturbações
constantes: um regulador linear quadrático de tempo discreto e um controlador H2/H∞
misto de tempo discreto com restrições na alocação de polos. O primeiro controlador
é projetado através da solução de uma equação algébrica de Riccati de tempo discreto,
enquanto o segundo controlador é projetado através de uma abordagem de desigualdades
matriciais lineares. As equações de estado são linearizadas em torno da trajetória de
referência, aumentadas com ações integrais e discretizadas para que os controladores sejam
projetados. Por outro lado, considerando que nem todos os estados estão disponíveis
para realimentação, medições estão corrompidas com ruído e sensores possuem diferentes
períodos de amostragem, propõe-se estratégias de estimação de estados com o intuito de
fornecer todo o vetor de estados para os controladores. Um filtro de Kalman linearizado
é proposto para um cenário no qual apenas a metade do vetor de estados é medida
(variáveis de posição), e corrompida com ruído Gaussiano com média nula. Para a segunda
estratégia de estimação propõe-se um estimador de estados zonotópico, considerando um
cenário no qual as medições são fornecidas por sensores que possuem diferentes períodos de
amostragem, corrompidas com ruído desconhecido porém limitado. Ambos os estimadores
são projetados baseados em equações dinâmicas linearizadas e discretizadas, aumentadas



com perturbações externas que afetam o sistema. Para corroborar o bom desempenho das
estratégias propostas, resultados de simulação numérica são apresentados.

Palavras-chave: Transporte de carga, Veículos aéreos não tripulados, Rastreio de
trajetória, Estimação de estados.



Abstract

This work deals with the problem of load transportation using a tilt-rotor unmanned
aerial vehicle (UAV). A tilt-rotor UAV is a hybrid aircraft capable of performing flights
with improved forward speed, as fixed-wing UAVs, and vertical take-off and landing and
hover, as rotary-wing UAVs. We address the problem of path tracking control of the
suspended load in hover flight, in which the load must follow a desired trajectory while the
tilt-rotor UAV is stabilized. The kinematics of the system are formulated from the load’s
perspective, from which a rigorous dynamic model is derived using the Euler-Lagrange
approach. We obtain a highly coupled, nonlinear state-space representation of the system,
affine in the inputs, with the load’s position and orientation directly represented by state
variables. This fact allows designed state-feedback control strategies to steer the trajectory
of the load with respect to an inertial frame. Assuming that all the system states can be
measured, we propose two linear discrete-time state-feedback control strategies to solve the
problem of path tracking of the load, with constant disturbances rejection: a discrete-time
linear quadratic regulator (DLQR) and a discrete-time mixed H2/H∞ controller with
pole-placement constraints. The first one is designed through the solution of a discrete-
time algebraic Riccati equation, whilst the second one is designed through Linear Matrix
Inequality (LMI) approach. The nonlinear state-space equations are linearized around the
reference trajectory, augmented with integral actions and further discretized in order to
design the controllers. On the other hand, considering that not all the system states are
available for feedback, measurements are corrupted with noise and sensors have different
sampling times, we propose state estimation strategies in order to provide the entire
state vector to the controllers. A linearized Kalman filter is proposed for a scenario in
which only a half of the state vector is measured (position variables), corrupted with
zero-mean Gaussian noise. In the second estimation strategy, a zonotopic state estimator
is proposed for a scenario in which measurements are provided by sensors with different
sampling times, corrupted with unknown but bounded noise. Both estimators are designed
based on discretized linearized dynamic equations, augmented with external disturbances
affecting the system. Numerical simulation results are presented to corroborate the good
performance of the proposed strategies.

Keywords: Load transportation, Unmanned aerial vehicles, Path tracking, State esti-



mation.
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Notation

General notation

a Italic lower case letters denote scalars

a Boldface italic lower case letters denote vectors

A Boldface italic upper case letters denote matrices

A Blackboard bold letters denote sets

General symbols and operators

R Set of real numbers

0n×m Matrix of zeros with n lines and m columns

1n×m Matrix of ones with n lines and m columns

In×n Identity matrix with dimension n

Ȧ Time derivative of A

AT Transpose of A

A−1 Inverse of A

A+ Pseudo-inverse of A

det(A) Determinant of A

tr {A} Trace of A

rs(A) Row sum of A

Modeling (Chapter 2)

dAB Displacement vector from A to B, expressed in A

RAB Rotation matrix from A to B



Rn,α Rotation of angle α about axis n

ωABC Angular velocity of frame C with respect to B, expressed in A

S(·) Skew-symmetric matrix operator

vex(·) Vex operator, the inverse of S(·)

L Lagrangian of the mechanical system

K Kinetic energy

U Potential energy

I Inertial reference frame

L Reference frame rigidly attached to the suspended load’s center of mass

B Reference frame rigidly attached to the aircraft’s geometric center

C1 Reference frame rigidly attached to the main body’s center of mass

C2 Reference frame rigidly attached to the right thruster group’s center of
mass

C3 Reference frame rigidly attached to the left thruster group’s center of
mass

ξ = [x y z]T Load’s position with respect to I

η = [φ θ ψ] Euler angles parametrizing the load’s orientation with respect to I

γ = [γ1 γ2] Angles parametrizing the aircraft’s orientation with respect to the load

αR Tilting angle of the right thruster group

αL Tilting angle of the left thruster group

β Fixed inclination angle of the thrusters towards the aircraft’s geometric
center

fR Magnitude of the thrust generated by the right propeller

fL Magnitude of the thrust generated by the left propeller

ταR Magnitude of the torque generated by the right servomotor

ταL Magnitude of the torque generated by the left servomotor

q Vector of generalized coordinates



M(q) Inertia matrix

C(q, q̇) Coriolis and centripetal forces matrix

g(q) Gravitational forces vector

ϑ Vector of generalized forces

f Force vector

τ Torque vector

I Inertia tensor

J Inertia tensor resulting from applying the Steiner’s theorem to I

D Inertia tensor resulting from applying the Steiner’s theorem to J

ĝ Gravitational acceleration vector

x State vector

u Input vector

d Disturbance vector

Control (Chapter 3)

(·)tr Trajectory values

(·)eq Equilibrium values

δ(·) (·)− (·)tr

χ State vector δx augmented with integral actions

Tc Controller sampling time

(·)k±p (·) (kt± pTc)

K State-feedback gain matrix

Ωχ,Ωu Weighting matrices of the DLQR

Z Z transform

Ψdz(ς) Discrete-time transfer matrix from d to z

‖Ψdz(ς)‖2 H2 norm of the transfer matrix Ψdz(ς)



‖Ψdz(ς)‖∞ H∞ norm of the transfer matrix Ψdz(ς)

σmax{·} Highest singular value

γ Upper-bound for the H∞ norm

γ̃ Square of the upper-bound for the H∞ norm

Hz,Dzu,Dzd Weighting matrices of the mixed H2/H∞ controller

ε Adjustment parameter of the first LMI region

$ Adjustment parameter of the second LMI region

Estimation (Chapter 4)

IR Set of real compact intervals

aq
x Italic lower case letters with corners denote interval scalars

aq
x Boldface italic lower case letters with corners denote interval vectors

Aq
x Boldface italic upper case letters with corners denote interval matrices

a, a Endpoints of aq
x

mid( aq
x ) Midpoint of aq

x

diam( aq
x ) Diameter of aq

x

� {f(x)} |x= aqx
Interval extension of f(x) at x ∈ aq

x

�N {f(x)} |x= aqx
Natural interval extension of f(x) at x ∈ aq

x

�MV {f(x)} |x= aqx
Mean value extension of f(x) at x ∈ aq

x

⊕ Minkowski sum

B Unitary interval

Br r-dimensional unitary box

c Zonotope center

gi Zonotope i-th generator

G Zonotope generator matrix

r Zonotope order



Z q
x

Family of zonotopes

�{·} Zonotope inclusion

ρ, γ, σ Strip parameters

∆(·) (·)− (·)eq

ν State vector ∆x augmented with external disturbances

y Measurement vector

w Unmodeled dynamics regarded as process noise

v Measurement noise

(·)m|n Information at time instant m given measurements up to instant n

ξB = [xB yB zB]T Tilt-rotor UAV’s position with respect to I

ηB = [φB θB ψB]T Euler angles parametrizing the UAV’s orientation with respect to I

dBBL Load’s position with respect to the tilt-rotor UAV, expressed in B

A(i) i-th line of A

A(i, j) Element from the i-th line and j-column of A

Ik Set of available measurements at time instant k

Formation control of tilt-rotor UAVs (Appendix B)

H Set of quaternions

H Set of dual quaternions

ı̂, ̂, k̂ Quaternionic units

ε Dual unit

x A dual quaternion

xST Unit dual quaternion associated with the rigid transformation from S to
T

+
H4,

−
H4 Hamilton operators for quaternions

+
H8,

−
H8 Hamilton operators for dual quaternions

J Analytical Jacobian



ξ = [x y z]T Tilt-rotor UAV’s position with respect to I

η = [φ θ ψ] Euler angles parametrizing the UAV’s orientation with respect to I

Ψdz(s) Continuous-time transfer matrix from d to z
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1
Introduction

1.1 Motivation

Unmanned aerial vehicles (UAVs) have woken up great interest of engineers and researchers
in the last decades. Firstly used only for military purposes, recent advances in technology,
mainly on small scale embedded electronics, allowed scale reduction and cost lowering,
making possible their commercial production. Nowadays, unmanned aerial vehicles have
a wide range of military and civilian applications, such as search-and-rescue missions,
precision agriculture, field recognition, surveillance, cargo transportation, archeology,
cinematographic filming, inspection of power lines and crowd monitoring. They are also
used for performing tasks in dangerous and inaccessible environments.

The most popular unmanned aerial vehicles are in fixed-wing, helicopter and quadrotor
configurations. Fixed-wing UAVs (Fig. 1.1a) are commonly used in tasks that require
improved forward flight, whilst helicopters and quadrotor UAVs (Fig. 1.1b) are used in
tasks that require vertical take-off and landing (VTOL) and hovering capabilities.

The ability of performing VTOL, hover and improved forward flights has granted
substantial attention to hybrid aircrafts. One configuration of hybrid aircrafts is the
tilt-rotor, which is provided with fixed-wings and rotary-wings, and switches between
helicopter and airplane flight-modes by tilting its thrusters. The first tilt-rotor aircraft
built which was able to perform both VTOL and forward flights was the Bell XV-15 (Fig.
1.2a), in the 70’s. Following its success, the military Bell Boeing V-22 Osprey (Fig. 1.2b)
is produced in full-scale nowadays and is quite popular due to its multi-mission capability.
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(a) Talon 240 (b) Phoenix 15

Figure 1.1: Examples of unmanned aerial vehicles: (a) Talon 240 fixed-wing UAV (Cour-
tesy of UnmannedSystemsTechnology) and (b) Phoenix 15 quadrotor UAV (Courtesy of
UnmannedSystemsTechnology).

Another example is the Agusta Westland AW609 (Fig. 1.2c), which is also used for civilian
purposes, such as passenger transport. A third, yet under development, tilt-rotor aircraft
is the military Bell V-280 Valor (Fig. 1.2d), which is designed for a record cruising speed
of 280 knots (520 km/h).

Inspired by the advantages of those aircrafts, recent researches are looking into the
design of small-scale tilt-rotor UAVs. An example is the military Bell Eagle Eye TR918 (Fig.
1.3). Their hybrid characteristics offer advantages over fixed-wing and quadrotor UAVs,
which also comes with design and control challenges. They are complex, underactuated
mechanical systems with highly coupled dynamics. Universities around the world are
engaging into this challenging subject, including the brazilian ones Federal University
of Santa Catarina and Federal University of Minas Gerais, which together founded the
ProVANT project.

The first tilt-rotor UAV developed by the ProVANT project is shown in Figure 1.4. Its
first flight was performed in 2013, at Federal University of Santa Catarina, and several
master theses were developed based on it (Gonçalves, 2014; Bodanese, 2014; Almeida, 2014;
Donadel, 2015; Santos, 2015; Alfaro, 2016). The ProVANT UAV 2.0, shown in Figure
1.5, is currently under flight tests at Federal University of Minas Gerais. Designed using
Computer Aided Design (CAD) software, and with ABS structure built using a 3D printer,
its main purposes include the development and validation of robust control strategies for
load transportation tasks in helicopter flight mode.

Currently under development, the ProVANT UAV 3.0, shown in Figure 1.6, has
improved aerodynamic fuselage and tail controlled surfaces. Some studies on adaptive
control strategies to perform flights with improved forward speed have been made recently
(Cardoso et al., 2016a,b). Furthermore, the more recent ProVANT UAV 4.0, shown in
Figure 1.7, is currently being designed for full flight envelope, being capable of operating
in helicopter and airplane flight modes.

A recent subject of interest is load transportation using UAVs. Taking advantage of
their versatility and autonomous operation, UAVs can be used for aerial load transportation,
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(a) Bell XV-15 Tilt-rotor (b) Bell Boeing V-22 Osprey Tilt-rotor

(c) Agusta Westland AW609 Tilt-rotor (d) Bell V-280 Valor Tilt-rotor

Figure 1.2: Tilt-rotor aircrafts: (a) Bell XV-15 Tilt-rotor (Courtesy of HistoryNet), (b)
Bell Boeing V-22 Osprey Tilt-rotor (Courtesy of Bell Helicopter), (c) Agusta Westland
AW609 Tilt-rotor (Courtesy of New Atlas) and (d) Bell V-280 Valor Tilt-rotor (Courtesy
of Bell Helicopter) .

Figure 1.3: Bell Eagle Eye TR918 (Courtesy of MilitaryFactory).

with applications including rapid deployment of supplies in search-and-rescue missions
(Bernard et al., 2011), vertical replenishment of seaborne vessels (Wang et al., 2014), and
safe landmine detection (Bisgaard, 2008).

The load transportation task is a challenging subject in terms of modeling and control.
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Figure 1.4: ProVANT UAV 1.0 (Donadel, 2015).

Figure 1.5: ProVANT UAV 2.0.

18  
É importante ressaltar, no entanto, que apesar do projeto se basear em grande parte no 

XV-15, do ponto de vista de controle segue os projetos anteriores do proVANT, em que os 
rotores possuem um ângulo de deflexão lateral β (Figura 18) voltados para o interior da 
aeronave, o que fica bem claro nas vistas frontais nas figuras da próxima seção. Esse ângulo é 
um requisito do projeto de controle e existe desde o VANT 1.0 (Almeida Neto, 2014). 
Considera-se que esse ângulo aumenta a controlabilidade do sistema como um todo, pois essa 
deflexão dá ao conjunto propulsor mais um eixo de atuação direto, criando empuxo no eixo y, 
mesmo que em menor escala (multiplicado por sen β), facilitando, portanto, a atuação do 
controle dos propulsores.  

 
3.1.2.1. VANT 3.1 

Essa configuração foi desenhada com o objetivo de manter o CG da aeronave similar 
ao CG da antiga aeronave (Almeida Neto, 2014), com os componentes elétricos mais pesados 
na parte inferior da fuselagem e uma configuração verticalizada, gerando CG mais baixo o 
que facilita o controle da aeronave. Outra escolha de projeto foi o formato, que tentou se 
assemelhar a um perfil aerodinâmico em sua vista lateral. No entanto, as dimensões dos 
componentes elétricos em seu interior deixaram o perfil muito espesso. Os efeitos dessa 
espessura serão discutidos na seção de projeto aerodinâmico. 

Figura 11- Três vistas do VANT 3.1 

 
 

Figure 1.6: ProVANT UAV 3.0.

The payload is usually connected to the UAV by means of a rope (Fig. 1.8), changing
its dynamic behavior considerably and adding underactuated degrees of freedom to the
system. Moreover, the rope is a non-rigid body and is not always taut, which increases
the challenge.

Another issue in load transportation is that the knowledge on the load position is
usually necessary to accomplish the task. Then, the problem of estimating the load position
arises, being commonly addressed through visual systems and state estimators.

Due to its hybrid capabilities, a tilt-rotor UAV is a promising platform for aerial load
transportation. Improved forward speed is a desired feature for missions such as rapid
deployment, which cannot be achieved by rotary-wing UAVs. Moreover, missions that
require precise positioning of the load and obstacle avoidance cannot be addressed by
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Figure 1.7: ProVANT UAV 4.0.

fixed-wing UAVs, since they cannot perform hover flights. On the other hand, the tilt-rotor
UAV can be used in both scenarios.

Figure 1.8: Load transportation using unmanned helicopters (Bernard et al., 2011).

1.2 State of the Art

This section presents a literature review concerning load transportation using UAVs, and
on state estimation techniques employed for the accomplishment of such tasks.
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1.2.1 Load transportation using UAVs

Load transportation using UAVs is a subject addressed by many recent works, using
different kinds of aircrafts and with different objectives to be achieved, ranging from path
tracking of the aircraft with reduced load swing, obstacle avoidance, transportation by
multiple aircrafts and path tracking of the suspended load. This subsection is organized
according to the type of aircraft used.

Unmanned helicopters

In la Cour-Harbo & Bisgaard (2009), a strategy combining state-feedback Linear Quadratic
Regulator (LQR) with optimal trajectory generation is proposed, to solve the path following
problem of an unmanned helicopter with reduced load swing. The control design is based on
the redundant model1 proposed by Bisgaard et al. (2009a), which takes into account effects
from slackening and tightening of the rope, as well as aerodynamic coupling between the
helicopter and load. The objective is achieved through the process of trajectory generation,
which is performed by solving an optimal control problem with specified waypoints in
trim condition as constraints, yielding feedforward control signals and reference signals
for the LQR. Obstacle avoidance is also achieved by means of state constraints in the
optimization problem. Besides achieving the proposed objectives, the authors refer to the
process of control design based on the redundant model as a challenging task, and depict
the considerable computational effort necessary to solve the optimal trajectory generation
problem. Moreover, the strategy relies on trajectory generation, thus it is an open-loop
approach and is not robust to external disturbances and unmodelled dynamics.

Another control strategy for reduced load swing motion of a unmanned helicopter is
proposed in Bisgaard et al. (2009b). Assuming that a controller for stabilization and/or
tracking of the helicopter is already available, a proportional feedback controller with time
delay is introduced in an outer-loop for load swing reduction. The time delay is introduced
in order to compensate vibrations in the rope. The controller parameters are adjusted
for maximum damping ratio of the load’s position with respect to the helicopter, and a
feedforward term based on input shaping is also employed. Simulation results show that
the load swing is substantially reduced, however the proposed strategy does not take into
account the dynamic coupling between helicopter and load.

A similar control structure is proposed in Omar (2009), for swing-free motion of a
helicopter with suspended load. However, the inner-loop controller is an LQR designed
based on the linearized dynamic equations considering entire system dynamics, and the
outer-loop delayed controller is designed based on fuzzy rules. Simulation results show
that the control strategy reduces the load swing over time, however requires large motion

1By redundant model we mean that the dynamics of the system is not described by a minimum number
of independent coordinates.
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of the helicopter and a substantial amount of time in order to eliminate the oscillations
(around one minute or even more).

Load transportation using multiple unmanned helicopters is explored in Bernard &
Kondak (2009). A redundant model is proposed based on the Kane’s method (Kane &
Levinson, 1985), in which an arbitrary number of helicopters is allowed. A cascade control
strategy is proposed for path tracking of either the helicopters or the suspended load,
composed of an outer-loop controller for translational motion of the entire system, and
inner-loop controllers for orientation of each helicopter individually. Despite the generality
of the proposed model, a simplified model is considered for design of the outer-loop
controller, in which each helicopter is a point of mass that can apply arbitrary forces to the
system. The design is further particularized for one and three helicopters: the first case
is addressed by linear state-feedback strategies, and the second one by inverse dynamics.
The inner-loop controllers are designed through individual inverse rotational dynamics,
in which the the system coupling is taken into account by means of force sensors in the
ropes. Despite being capable of performing path tracking of the helicopters or the load,
this feature is not well explained by the authors. Moreover, the strategy relies on the use
of force sensors in the ropes to take into account the dynamic coupling of the system. The
authors further discuss the developed platform and new experiments in Maza et al. (2009)
and Bernard et al. (2011).

Wang et al. (2014) study the problem of load transportation by unmanned helicopters
inspired in the problem of vertical replenishment of seaborn vessels. The authors propose
a cascade control strategy of a helicopter for load transportation, composed of a linear
H∞ controller for the helicopter attitude dynamics in inner-loop and a linear strategy
called Robust and Perfect Tracking (RPT) control method for the helicopter position in
outer-loop. However, the authors do not take into account the dynamics of the load neither
in the modeling nor in the control design. Also inspired in vertical replenishment, Wu
et al. (2015) propose a cascade control strategy for a unmanned helicopter with suspended
load, applied in autonomous transportation of barrels. The strategy is composed of
gain-scheduled PID controllers for attitude control and position control of the helicopter,
adjusted empirically, and does not take into account the suspended load dynamics.

Quadrotor UAVs

The problem of load transportation using a quadrotor UAV is addressed in Palunko et al.
(2012), where an approach for reduced load swing motion based on optimal trajectory
generation is proposed. The quadrotor’s dynamic equations are obtained through the
Euler-Lagrange formulation, in which the load’s dynamics are considered as applied
external forces and torques. The suspended load is regarded as a pendulum coupled to
the quadrotor, and its equations of motion are obtained separately through equilibrium of
forces and torques at the suspension point. Despite the derived model, the authors propose
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an adaptive control strategy based on inverse dynamics for path tracking of the quadrotor,
making use of the adaptation law to take into account changes in the system’s center of
mass due to the inclusion of the suspended load. The optimal trajectory generation is
performed through dynamic programming, derived from the approach presented in Starr
et al. (2005). Simulation and experimental results show that the load swing is substantially
reduced by tracking the optimal trajectory, however it is an open-loop approach.

Faust et al. (2013) propose another strategy based on trajectory generation for reduced
load swing using a quadrotor UAV. The trajectory generation process is based entirely on
machine learning, without assumptions on the system’s dynamics. The authors point it
out as an advantage with respect to the dynamic programming approach, which requires
knowledge on the system model. The approach is based on reinforcement learning and is
separated in two phases: (i) the value approximation function is learned for a particular
load through simulations; (ii) the value function is used for generating the trajectory
leading the aircraft to its final position, with minimized swing motion. Palunko et al.
(2013) also propose a model-free approach based on trajectory generation by reinforcement
learning for solving the problem of path tracking of the suspended load instead of reduced
load swing. These strategies are also open-loop approaches, and despite advantageous
with respect to being model-free, the entire process of reinforcement learning must be
repeated if there are any changes in the system.

A nonlinear cascade control strategy based on system decoupling is proposed in Sreenath
et al. (2013b) for path tracking of a suspended load using a quadrotor UAV for the planar
case. The authors derive rigorous dynamical models for the cases in which the cable
is taut and when it is loose, yielding a nonlinear hybrid system, and prove that it is
differentially-flat. This property is explored for trajectory generation for the suspended
load with minimum snap motion of the quadrotor UAV. The control strategy is validated
through simulations and real experiments. Sreenath et al. (2013a) extend the technique
for the three-dimensional case, keeping the decoupling-dependent cascade structure, and
validate it through simulations. In both works, the authors prove exponential stability for
the proposed controllers. However, the strategies are not robust to external disturbances
and unmodeled dynamics.

Load transportation using multiple quadrotor UAVs is studied by Lee et al. (2013b).
A nonlinear cascade control strategy is proposed for transportation of a point mass by an
arbitrary number of quadrotor UAVs. The strategy is composed of an attitude controller
based on Sreenath et al. (2013b) for each aircraft and a formation controller, allowing either
path tracking of the suspended load or formation maintaining of the UAVs with respect
to the load or the inertial frame. The authors validate the strategy through simulations
involving path tracking of the suspended load and a special case of path tracking of an
inverted pendulum over a quadrotor UAV. Lee (2014) extends the study for a rigid body
suspended load, in which its orientation is also taken into account in the control strategy.



CHAPTER 1. INTRODUCTION 35

Since these strategies use the controller proposed in Sreenath et al. (2013b) as base, they
inherit its advantages and disadvantages.

The use of a flexible cable is studied in Goodarzi et al. (2014) for load transportation
using a quadrotor UAV. A rigorous model is obtained for the system, in which the
cable is considered as a non-actuated multi-link rigid body. The authors propose linear
and nonlinear control strategies for stabilization of the whole system, validated through
simulations and compared through experiments against control strategies that consider
only the dynamics of quadrotor UAV. However, the authors consider a one-link cable for
control design in the real experiments, being inconsistent with the flexible cable motivation.
Dai et al. (2014) extend this study for the case where the mass of the suspended load is
unknown. The authors propose an adaptive cascade control strategy for path tracking of
the quadrotor UAV. Despite the flexible cable motivation, the control strategies require
information about the position of each link instead of only the load position.

de Crousaz et al. (2014) designs a control strategy based on iterative Linear Quadratic
Gaussian (iLQG) method for a quadrotor UAV with suspended load. The authors derive
a hybrid model for the system, from either the quadrotor’s perspective or the load’s
perspective. The proposed algorithm generates locally optimal linear feedback controllers
for chosen nonlinear cost functions. The authors validate the strategy through simulations,
showing that it is able to perform path tracking of the UAV with reduced load swing,
and aggressive maneuvers, e.g. pass the whole system through a narrow window, which
requires large load swing.

A trajectory planning algorithm is proposed in Tang & Kumar (2015) for the problem
of path tracking of a suspended load with obstacle avoidance using a quadrotor UAV. The
proposed method is based on optimal trajectory planning through mixed integer quadratic
programming (MIQP). The system model and control strategy are the same from Sreenath
et al. (2013a), for which the cable is taut, and the control strategy is the same as in Lee
et al. (2011), for which the cable is loose. Taking advantage of both configurations of the
system, this strategy is capable of performing aggressive maneuvers, including moving
through a narrow window, and also perform tasks such as load pick-up and release2.

Linear Model Predictive Control (MPC) strategies are studied in Jain (2015) for
set-point tracking of a quadrotor UAV with suspended load. The author derives the
whole-body system dynamics through the Euler-Lagrange formulation, which is linearized
around hover conditions and discretized for a given sampling time in order to design the
control strategies. Then, a linear time-invariant MPC is proposed with integral action over
the tracking error, and an MPC with integral actions over the system inputs (incremental
formulation), and compare the strategies against an LQR with integral actions over the
tracking error through simulation and experimental results.

Raffo & Almeida (2016) propose a robust nonlinear control strategy for swing-free path
2A video with real experiments is available at https://www.youtube.com/watch?v=qO4MsiuLCoc.
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tracking of a quadrotor UAV with suspended load, based on nonlinear H∞ control theory
and Lyapunov redesign. The authors derive a whole-body nonlinear dynamic model for
the system using the Euler-Lagrange formulation. In order to design the controller, the
authors partition the dynamic equations according to the actuated and unactuated degrees
of freedom (DOF), and further partition the equations associated with the actuated DOF
according to the variables to be regulated and variables to be only stabilized. The authors
then define an augmented state vector according to the control objectives, derive the
associated state-space equations based on which the nonlinear H∞ controller is designed.
Then, through Lyapunov redesign, the authors introduce in the control law a term based
on the load’s velocity with respect to the UAV in order to achieve swing-free motion.

A nonlinear solution to the problem of path tracking of a suspended load using a
quadrotor UAV is proposed in Pereira et al. (2016). The authors assume the quadrotor
as a system actuated by total thrust and orientation, derive a whole-body dynamical
model for the system and define the positions and velocities of the load and quadrotor as
states. Through a nonlinear change of coordinates, the control problem is casted into the
framework presented in Pereira & Dimarogonas (2016), which solves the problem of path
tracking of underactuated systems driven by directed thrust and angular velocity with
a double-integrator structure. The strategy ensures that the cable is always taut, and
provides rejection to constant disturbances in the system inputs, however is limited to
systems driven by directed thrust and angular velocity.

Tilt-rotor UAVs

For the knowledge of the author, up to the elaboration of this thesis only the ProVANT
project has studied the problem of load transportation using tilt-rotor UAVs.

Almeida et al. (2014) study the problem of load transportation using a tilt-rotor UAV
in helicopter flight-mode. The authors derive a whole-body dynamical model through the
Euler-Lagrange formulation, and design linear controllers based on D-stability and H∞
theory for path tracking of the tilt-rotor UAV with stabilization of the suspended load.
The control strategies are validated through simulations in which the system is subjected
to external disturbances and parametric uncertainties.

A nonlinear cascade control strategy of a tilt-rotor UAV for load transportation is
proposed in Almeida & Raffo (2015b), composed of three levels of feedback linearization
controllers. The authors propose two different control designs: (i) the goal is to perform
path tracking of the UAV with stabilization of the suspended load; (ii) based on the
work of Lee et al. (2013a), terms involving the load’s velocity with respect to the UAV
are introduced in the control laws in order to achieve reduced load swing motion, which
is verified through simulations. The strategy is modified in Almeida & Raffo (2015a)
for stabilization of an inverted pendulum over a tilt-rotor UAV, while it performs path
tracking.
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Santos & Raffo (2016a) propose a linear adaptive control strategy for trajectory tracking
of a tilt-rotor UAV with suspended load. The authors derive a time-varying linearized
model of the system, which is a function of the desired accelerations. For the control
design, these accelerations are considered as uncertain parameters, yielding a polytopic
representation of the system. State-feedback gains are then computed for each vertex
through Linear Matrix Inequality (LMI) approach, whose convex combination of these
gains, obtained by means of an adaptive law, is used for the closed-loop system. Through
simulations, the adaptive control strategy is compared against a LQR designed based on
the nominal model, in which is shown that for higher acceleration trajectories the proposed
strategy is successful in performing the path tracking, while the LQR destabilizes the
system.

Model Predictive Control (MPC) strategies are studied in Andrade et al. (2016) and
Santos & Raffo (2016b) for path tracking of a tilt-rotor UAV for load transportation. In
Andrade et al. (2016), the authors propose the control strategy based on discrete-time
linearized, time-varying error dynamics of the system, augmented with integral actions
over the error of the regulated states in order to achieve null-steady state error. On the
other hand, in Santos & Raffo (2016a), besides the integral actions over the tracking error,
the control strategy includes an incremental formulation, adding integral actions also to
the control inputs. Both strategies are validated through simulations, and in (Andrade
et al., 2016) the results are compared with an LQR controller, showing that the proposed
MPC strategy yields smoother control signals for the closed-loop system.

1.2.2 State estimation for load transportation

In load transportation tasks, in order to achieve specified goals such as obstacle avoidance
and path tracking of the suspended load, it is important to have knowledge of the
load’s position, and sometimes its orientation and velocity, which usually are not directly
measured. Although several works study the load transportation problem, only a few
propose state estimation techniques to provide this information, mainly those that present
experimental results.

In order to estimate the load’s position and velocity for a helicopter with suspended
load system, Bisgaard et al. (2007b) design a fusion algorithm based on the Unscented
Kalman Filter (UKF). The authors propose the use of dynamic equations of a 3D pendulum
as process model for the filter, which receives measurements from an Inertia Measurement
Unit (IMU) and a vision system, both located at the helicopter. In the vision system,
a camera recognizes a marker located at the suspended load, yielding images that are
converted to the angles of the wire with respect to the helicopter, and later to the load’s
position with respect to the UAV by means of trigonometric relationships. The authors
also propose methods for estimating the wire’s length. The algorithm is tested in real
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experiments, considering aggressive maneuvers that induce large load swing, such that the
load leaves the camera range. Bisgaard et al. (2010) combine this estimation algorithm
with the delayed feedback control strategy proposed in Bisgaard et al. (2009b) for reduced
load swing motion, taking advantage of the estimation of the wire’s length as an adaptive
feature, and validate the resulting control structure via experimental results.

Bisgaard et al. (2007a) propose two algorithms based on the UKF for estimation of
the full state vector of an unmanned helicopter with suspended load. The first one is
based on the kinematic model of the system, and requires measurements from a Global
Positioning System (GPS) equipment, a magnetometer, a camera and two IMUs: one on
the helicopter and the other on the load. The second algorithm is based on the redundant
model proposed in Bisgaard et al. (2006), in which the use of an IMU on the load is
optional. By means of state vector augmentation, both algorithms estimate measurement
bias and take it into account for providing the system states, while the second one also
estimate external disturbances. The authors also propose a practical solution to deal with
the different sampling times of the available sensors, in which the columns of the Kalman
gain matrix associated with the missing measurements are set to zero.

In Bernard & Kondak (2009), a linear observer is proposed for estimation of the load
position, first considering a model of the rope composed of multiple mass points, and then
considering a rigid massless rope model. The authors does not specify the estimation
technique used, and despite mentioning the models, the associated dynamic equations are
not provided.

A Linear Kalman Filter is proposed in Jain (2015) for state estimation of a quadrotor
UAV with suspended load, based on discrete-time linearized dynamics of the whole system.
Measurements are provided by external cameras and sensors embedded at the UAV, and
the algorithm is adapted to take into account the higher sampling time of the sensors in
comparison to the filter sampling time, by performing the correction step only when all
the measurements are available.

Machado & Raffo (2015) develop an integrated platform on ROS (Robot Operating
System) for load transportation by a AR.Drone quadrotor UAV using visual feedback.
The proposed platform combines information from on-board sensors and computer vision
algorithms of the UAV’s frontal camera for navigation, and its lower camera for estimating
the load’s position and velocity. The algorithm for navigation is composed of a simultaneous
localization and mapping (SLAM) system and an Extended Kalman Filter (EKF). The
EKF is based on a simplified model of the quadrotor UAV, and estimates its position,
velocity, orientation angles and yaw rate. The computer vision algorithm based on the
UAV’s lower camera tracks a marker placed on the suspended load and returns its position
and velocity with respect to the aircraft. The information provided by the EKF and from
this computer vision algorithm are used in PID controllers to perform path tracking of the
UAV with stabilization of the suspended load with or without swing-free motion.
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1.3 Justification

As presented in the previous section, some works deal with path tracking of suspended loads,
using unmanned helicopters and quadrotor UAVs. Nevertheless, to the best knowledge of
the author, the problem of path tracking of a suspended load using a tilt-rotor UAV has
not been addressed in the literature yet.

A tilt-rotor UAV is as highly coupled dynamic system, thus the presented decoupling-
based nonlinear cascade control approaches cannot be applied without making simplifica-
tions in the model. On the order hand, disturbance rejection will be of interest in this work,
which makes trajectory generation strategies not suitable for this purpose, since they are
open-loop approaches. Moreover, although it is a proper assumption for a quadrotor UAV,
a tilt-rotor UAV cannot be regarded as a system actuated by total thrust and orientation,
which is a condition required by the only nonlinear control strategy for path tracking of
suspended load presented in the previous section featuring disturbance rejection.

Load transportation using tilt-rotor UAVs is a part of the research developed in the
ProVANT project. The previous section presented the works already developed in this line,
which focused on path tracking of a tilt-rotor UAV with stabilization of the suspended
load, part of them considering swing-free motion. This thesis contributes to this research
by addressing the problem of path tracking of the suspended load, proposing a modeling
approach, robust control and state estimation strategies, for the accomplishment of the task
even when the system is subjected to external disturbances, incomplete state information,
noisy measurements and sensors with different sampling times.

1.4 Objectives

The main objective of this work is to deal with load transportation using a tilt-rotor UAV,
addressing the problem of path tracking control of the suspended load. The aircraft under
study is the ProVANT UAV 2.0, shown in Figure 1.5. It was designed specially for load
transportation tasks, and can operate only in helicopter flight-mode.

Figure 1.9 shows a flow chart used in the development of this master thesis. Specific
objectives are:

• Develop the equations of motion for the tilt-rotor UAV with suspended load from
the load’s perspective, using the Euler-Lagrange formulation, in order to obtain
a nonlinear state-space representation of the system with the load’s position and
orientation among the system states;

• Design robust, discrete-time linear state-feedback control strategies, for path tracking
of the suspended load with stabilization of the tilt-rotor UAV, featuring constant
disturbances rejection;
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• Propose state estimation strategies for scenarios in which not all the system states
are available for feedback connection, measurements are corrupted with noise and
sensors have different sampling times.

System modeling

Control strategies State estimation strategies

Simulations and results

Nonlinear
load’s perspective model

Discrete-time, augmented
linearized

error dynamics

Linearized
error

dynamics

Discrete-time linear
quadratic regulator

Discrete-time, mixed H2/H∞
control with pole

placement constraints

Full state information
scenario

Linear Kalman filter
scenario

Zonotopic state estimator
scenario

Augmented, discrete-time
linearized

error dynamics

Measurement equations
(LKF scenario)

Measurement equations
(ZSE scenario)

Linear
Kalman filter

Zonotopic
state estimator

Figure 1.9: Thesis flow chart.

1.5 Structure of the text

This thesis is organized as follows:

• Chapter 2 develops the equations of motion of the tilt-rotor UAV with suspended
load, from the load’s perspective, using the Euler-Lagrange formulation. A nonlinear
state-space representation of the system is achieved, with the load’s position and
orientation among the system states.

• Chapter 3 describes two discrete-time, linear state-feedback control strategies,
proposed for path tracking of the suspended load: a discrete-time linear quadratic
regulator and a mixed H2/H∞ controller with pole placement constraints, both based
on discrete-time linearized error dynamics.

• Chapter 4 describes two state estimation strategies: a linearized Kalman filter,
proposed for a scenario in which only a half of the state vector is measured, corrupted
with zero-mean Gaussian noise; and a zonotopic state estimator, proposed for a
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scenario in which measurements are provided by sensors with different sampling
times, corrupted with unknown but bounded noise.

• Chapter 5 presents simulations results, evaluating the proposed control and state
estimation strategies for two specified trajectories and three scenarios concerning
available measurements.

• Chapter 6 summarizes the contributions and results of this work, and presents
suggestions for future works in this line of research.

• Appendix A addresses the problem of path tracking control for a tilt-rotor UAV,
in the presence of external disturbances, measurements corrupted with unknown
but bounded noise, and sensors with different sampling times. A zonotopic state
estimator and a discrete-time linear quadratic regulator are designed for the task.

• Appendix B deals with formation control of tilt-rotor UAVs. A formation back-
stepping control strategy is designed based on dual quaternion algebra and the
cooperative dual task-space framework, and linear D-stable H∞ controllers are
designed for individual trajectory tracking of each tilt-rotor UAV.

When necessary, preliminary sections are presented within the chapters in order to
provide necessary background to the reader.

1.6 List of publications
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Robotics Symposium and IV Brazilian Robotics Symposium (pp. 163–168).

2. (Rego & Raffo, 2016a) Rego, B. S. & Raffo, G. V. (2016a). Path tracking control
based on guaranteed state estimation for a tilt-rotor uav. In Proc. of the XXI
Congresso Brasileiro de Automática. (pp. 1–6).

3. (Rego & Raffo, 2016c) Rego, B. S. & Raffo, G. V. (2016c). Suspended load path
tracking control based on zonotopic state estimation using a tilt-rotor uav. In Proc.
of the IEEE 19th International Conference on Intelligent Transportation Systems.
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2
System modeling

This chapter develops the equations of motion of a tilt-rotor UAV with suspended load.
The aircraft under study is the ProVANT UAV 2.0, and a generic payload is considered to
be coupled to it through a rod. The objective is to obtain dynamic equations describing
explicitly the time evolution of the suspended load’s position and orientation with respect
to an inertial reference frame, while the system is subject to forces and torques from the
aircraft’s actuators, viscous friction, external disturbances, and gravity.

The dynamic equations are obtained through the Euler-Lagrange formulation, in which
the dynamic coupling between the aircraft and the load is taken into account naturally.
The suspended load’s variables are chosen as degrees of freedom of the mechanical system,
while addressing the aircraft’s position and orientation only with respect to the load.
This choice of perspective, henceforth called the load’s perspective approach, leads to a
state-space representation of the system with the load’s position and orientation being
represented by state variables. Therefore, state-feedback control strategies are capable of
directly steering the trajectory of the load.

The chapter is organized as follows: Section 2.1 introduces the background material
concerning kinematics and dynamics of multi-body mechanical systems; Section 2.2
formulates the kinematics of the tilt-rotor UAV with suspended load, from the load’s
perspective, and defines the generalized coordinates; Section 2.3 obtains the kinetic and
potential energies of the system, from which the inertia matrix, Coriolis and centripetal
forces matrix, and the vector of gravitational forces are computed; Section 2.4 obtains
the contributions to the generalized forces of all non-conservative forces and torques that
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are considered to be actuating over the system; and Section 2.5 achieves the state-space
representation of the tilt-rotor UAV with suspended load.

2.1 Preliminaries

This section presents a brief introduction on rigid transformations in the three-dimensional
Euclidean space, kinematics and dynamics for multi-body mechanical systems, and also
the so-called Euler-Lagrange formulation.

2.1.1 Rigid transformations in R3

According to Murray et al. (1994), rigid transformations in R3 are composed of translations
and rotations, and preserve the Euclidean metric and the cross product between vectors.
Translations can be represented by vectors in R3, while rotations by matrices that belong
to the special orthogonal group SO(3) ⊂ R3×3. Those are henceforth called displacement
vectors and rotation matrices, respectively.

Some properties of the special orthogonal group must be registered. Let A,B ∈ SO(3).
Then:

• AB ∈ SO(3);

• A−1 = AT ;

• det(A) = 1.

Rotations about the x, y and z axes of a given reference frame correspond to elemen-
tary rotation matrices (Spong et al., 2006). These are denoted by Rx,α, Ry,α and Rz,α,
respectively (in which α is the angle of rotation), and are given by

Rx,α =


1 0 0
0 cα −sα
0 sα cα

 , Ry,α =


cα 0 sα
0 1 0
−sα 0 cα

 , Rz,α =


cα −sα 0
sα cα 0
0 0 1

 ,

where s(·) and c(·) are shorthands for sin(·) and cos(·).
Some parametrizations of rotation matrices are found in the literature. The Euler angle

parametrization (Spong et al., 2006) consists in defining a rotation matrix as a sequence
of three basic rotations, resulting in a matrix that is a function of three independent
parameters. For instance, the ZY Z convention about local axes is defined by Rz,ψRy,θRz,φ,
where φ, θ and ψ are those parameters. The local roll-pitch-yaw convention (Jazar, 2010)
is equivalent to the ZY X convention about local axes. Another parametrization is the
axis/angle one (Spong et al., 2006), in which the rotation matrix is defined by a rotation
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about an arbitrary axis. The elementary rotation matrices can be seen as special cases of
this parametrization.

Let A be a right-handed reference frame in R3, and denote as B the frame resulting
from applying a rigid transformation to A, composed of a translation followed by a rotation
(see Figure 2.1). Furthermore, denote the associated displacement vector and rotation
matrix as dAB and RAB , respectively, and the position vector of a point expressed in B as pB.
Then, the position vector of this point is given in A by

pA = dAB +RABpB. (2.1)

x y

z

A

B

dA
B ,RA

B

pA

pB

Figure 2.1: Position vectors of a point given in a right-handed reference frame A, and in a
frame B resulting from applying a rigid transformation to A.

Translations and rotations can be combined into a single algebraic structure, the
so-called homogeneous transformation matrices, which compose the special Euclidean
group SE(3) (Spong et al., 2006). However, these entities are not exploited in this work.
Alternatively, translations and rotations can both be represented by quaternions, which
can be further merged into another single algebraic structure, the unit dual quaternions,
which compose the group Spin(3) n R3, with n denoting the semi-direct product (Selig,
2005). The latter is exploited in the design of a formation control strategy in Appendix B.

2.1.2 Rigid body kinematics and dynamics

According to the Chasles’ theorem (Goldstein et al., 2001), the general displacement of a
rigid body can be represented by a translation followed by a rotation. Therefore, it can be
equivalently represented by a rigid transformation applied to a reference frame, rigidly
attached to the body.

Consider a mechanical system composed of r rigid bodies, depicted in Figure 2.2. Let
I denote a inertial reference frame, and Ci denote a reference frame rigidly attached to
the i-th rigid body, with i ∈ {1, 2, ..., r}. Furthermore, let pCii denote the position vector of
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an elementary particle that belongs to the i-th rigid body, given in Ci. Then, the forward
kinematics of this particle is obtained by recursive application of (2.1), yielding

pIi = dIC1 +RIC1(dC1C2 +RC1C2(dC2C3 +RC2C3(. . . ))), (2.2)

which finishes at dCi−1
Ci +RCi−1

Ci p
Ci
i .

x y

z

I

C1

Ci
Cr

C2

. . .
. . .

F

dF
Ci ,R

F
Ci

pCi
i

dI
C1

,RI
C1

dC1
C2

,

RC1
C2

dC2
C3

,

RC2
C3

dCi
Ci+1

,

RCi
Ci+1

d
Cr−1
Cr ,

R
Cr−1
Cr

d
Ci−1
Ci ,

R
Ci−1
Ci

Figure 2.2: A mechanical system composed of r rigid bodies.

The velocity of the particle with respect to the inertial reference frame, expressed in
I, is given by the time derivative of (2.2). Moreover, let RICi , R

I
C1
R
C1
C2R

C2
C3 . . .R

Ci−1
Ci . Then,

the time derivative of RICi satisfies (Spong et al., 2006)

ṘICi = RICiS(ωCiICi), (2.3)

where S(·) is an operator that maps a vector to a skew-symmetric matrix, and ωCiICi denotes
the angular velocity of Ci with respect to I, expressed in Ci. The latter can be obtained by

ω
Ci
ICi = vex((RICi)

T ṘICi), (2.4)

where vex(·) corresponds to the inverse of S(·). Furthermore, it can also be obtained by
addition of angular velocities (Spong et al., 2006) as follows,

ω
Ci
ICi = ω

Ci
IC1 + ωCiC1C2 + · · ·+ ωCiCi−1Ci . (2.5)

From now on, let the center of mass of the i-th rigid body coincide with the origin
of Ci, and let ρi and Vi denote the density and volume associated with the rigid body,
respectively. Then, the mass of the i-th rigid body is given by

mi =
ˆ
Vi

ρidVi. (2.6)
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The inertia tensor of the i-th rigid body, expressed in Ci, is defined by (Shabana, 2010)

Ii ,
ˆ
Vi

ρiS(pCii )TS(pCii )dVi. (2.7)

According to the parallel axis theorem (also known as Steiner’s theorem), the inertia
tensor Ii, expressed in a frame F displaced from Ci by dFCi (see Figure 2.2), denoted as Ji,
is given by (Shabana, 2010, p. 384)

Ji = miS(dFCi)
TS(dFCi) +RFCiIi(R

F
Ci

)T . (2.8)

Moreover, since Ci is attached to the center of mass of the i-th rigid body, the following
property holds (Shabana, 2013, p. 144):

ˆ
Vi

ρiS(pCii )dVi = 0. (2.9)

The kinetic and potential energies of the i-th rigid body can be obtained through the
volume integrals (Siciliano et al., 2009)

Ki = 1
2

ˆ
Vi

ρi(ṗIi )T (ṗIi )dVi, (2.10)

Ui = −
ˆ
Vi

ρiĝ
TpIi dVi = −miĝ

ToICi , (2.11)

respectively, where ĝ , [0 0 − ĝz]T is the gravitational acceleration vector expressed in I,
and oICi is the position vector obtained from the forward kinematics of the origin of Ci.
Then, the total kinetic and potential energies of the mechanical system are computed by
K =

∑r

i=1Ki and U =
∑r

i=1 Ui, respectively.

2.1.3 The Euler-Lagrange formulation

The dynamic behavior of a multi-body mechanical system can be described by a set of
differential equations, called the Euler-Lagrange equations of motion. These consist of a
theoretical result from classical mechanics that can be derived using several approaches,
such as the principle of virtual work along with the D’alembert’s principle, or the Hamilton’s
principle of least action (Goldstein et al., 2001).

Let K ∈ R and U ∈ R denote the total kinetic and potential energies of a mechanical
system with n degrees of freedom, respectively. Then, defining the Lagrangian as

L , K − U , (2.12)

the equations of motion of the system that describe its time evolution are given by (Spong
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et al., 2006)
d

dt

(
∂L

∂q̇

)
− ∂L

∂q
= ϑ, (2.13)

where q ∈ Rn are the generalized coordinates, and ϑ ∈ Rn are the generalized forces, which
correspond to projections of all non-conservative forces and torques that actuate on the
mechanical system onto the generalized coordinates.

Substituting (2.12) in (2.13) leads to the canonical equation (Spong et al., 2006)

M(q)q̈ +C(q, q̇)q̇ + g(q) = ϑ, (2.14)

where M(q) ∈ Rn×n is called the inertia matrix, obtained from rewriting the total kinetic
energy in the quadratic form K = 1

2 q̇
TM(q)q̇, C(q, q̇) ∈ Rn×n is called the Coriolis and

centripetal forces matrix, and g(q) , ∂U/∂q ∈ Rn is called the gravitational forces vector.
Let f ∈ R3 and τ ∈ R3 denote a non-conservative force and a non-conservative torque,

respectively, actuating on the mechanical system. Furthermore, let p ∈ R3 denote the point
of application of f , and F be a reference frame rigidly attached to the body to which τ is
applied. The contributions of f and τ to the generalized forces can be computed through
the following mappings1:

ϑf = (Jp)TfI ∈ Rn, (2.15)

ϑτ = (WF)Tτ I ∈ Rn, (2.16)

where Jp , ∂ṗI/∂q̇ ∈ R3×n and WF , ∂ωIIF/∂q̇ ∈ R3×n, I denotes the inertial reference
frame and ωIF denotes the angular velocity of F with respect to I. The total generalized
forces, ϑ, is given by summing up the contributions of all the non-conservative forces and
torques that actuate on the mechanical system.

2.2 Kinematics from the load’s perspective

The tilt-rotor UAV with suspended load is illustrated in Fig. 2.3. It is regarded as a
mechanical system composed of four rigid bodies: (i) the aircraft’s main body, composed
of ABS structure, landing gear, batteries and electronics; (ii) the right thruster group,
which includes the right thruster and its tilting mechanism (a revolute joint); (iii) the left
thruster group, which includes the left thruster and its tilting mechanism; and (iv) the
suspended load group, composed of the load and the rod. The following assumptions are
made:

• The rod is rigid and has negligible mass;

• The rod is connected to the aircraft’s geometric center;
1This a particular case of the approach presented by Kane & Levinson (1985).
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• The main body’s center of mass does not coincide with the aircraft’s geometric
center;

• The thrusters groups’ centers of mass are located at their respective tilting axes.

x y

z

I L

C1

C2

C3

B

Figure 2.3: The tilt-rotor UAV with suspended load and reference frames.

The essence of the load’s perspective approach consists in formulating the system’s
kinematics by starting from the suspended load. The latter is regarded as a rigid body
with free position and orientation, and the aircraft as a multi-body mechanical system
rigidly coupled to it. Six reference frames are then defined: (i) the inertial reference frame,
I; (ii) the aircraft’s geometric center frame, B; (iii) the main body center of mass frame,
C1; (iv) the right thruster group center of mass frame, C2; (v) the left thruster group center
of mass frame, C3; and (vi) the suspended load group center of mass frame, L.

The load’s position with respect to I is denoted by ξ , [x y z]T . The displacement
vector from L to B corresponds to the rod, and is expressed in L by dLB , [0 0 l]T , being l
the rod’s length. The displacement vectors from B to Ci are physical parameters of the
tilt-rotor UAV, and expressed in B are denoted by dBCi , with i ∈ {1, 2, 3}.

The orientation of the load with respect to I is parametrized by Euler angles, η ,
[φ θ ψ]T , using the local roll-pitch-yaw convention. The associated rotation matrix is given
by

RIL , Rz,ψRy,θRx,φ =


cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ + cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 .
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The orientation of the aircraft’s geometric center frame with respect to L, corresponds
to the inclination of the UAV with respect to the rod. It is described using two angles
γ , [γ1 γ2]T , such that2

RLB , Rx,−γ1Ry,−γ2 =


cγ2 0 −sγ2

sγ1sγ2 cγ1 sγ1cγ2

cγ1sγ2 −sγ1 cγ1cγ2

 .

Frames B and C1 are parallel to each other and attached to the same rigid body, then the
relative orientation is null, i.e., RBC1 = I3×3. Furthermore, the orientations of the thrusters
groups with respect to B are described by

RBC2 , Rx,−βRy,αR =


cαR 0 sαR

−sβsαR cβ sβcαR

−cβsαR −sβ cβcαR

 , RBC3 , Rx,βRy,αL =


cαL 0 sαL

sβsαL cβ −sβcαL

−cβsαL sβ cβcαL

 ,

where αR and αL are the tilting angles of the right and left thrusters, respectively, and β is
a fixed inclination angle of the thrusters towards the aircraft geometric center, designed
with the purpose of improving the aircraft’s controllability (Raffo et al., 2011).

The associated angular velocities are given by

ωLIL = vex((RIL)T ṘIL) =


1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ



φ̇

θ̇

ψ̇

 ,Wηη̇, (2.17)

ωBLB = vex((RLB)T ṘLB) =


−cγ2 0

0 −1
sγ2 0


γ̇1

γ̇2

 , Qγ̇, (2.18)

ω
C1
BC1 = vex((RBC1)T ṘBC1) = 03×1, (2.19)

ω
C2
BC2 = vex((RBC2)T ṘBC2) =

[
0 1 0

]T
α̇R = ayα̇R, (2.20)

ω
C3
BC3 = vex((RBC3)T ṘBC3) =

[
0 1 0

]T
α̇L = ayα̇L, (2.21)

in which ay , [0 1 0]T . Unitary vectors such as the latter will be used when appropriate
to provide more compact mathematical expressions throughout the chapter.

From the rigid transformations of the system, which are summarized in Figure 2.4, the
2The convention was chosen as the inverse of the one used by Almeida (2014), to describe the orientation

of the suspended load with respect to a tilt-rotor UAV.
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forward kinematics of elementary particles that belong to each rigid body are given by

pIL = ξ +RILpLL, (2.22)

pIi = ξ +RILdLB +RILRLBdBCi +RILRLBRBCip
Ci
i , (2.23)

where pL is the position of a point that belongs to the suspended load body, and pi belongs
to the rigid body with attached frame Ci.

ξ

dLB

dBC1

dBC2

dBC3

ψ

φ θ

αR

αL

γ1

γ2

β

β

pLL

p
C2
2

p
C1
1

p
C3
3

x y

z

I
L

C1
C3

C2

B

Figure 2.4: Rigid transformations of the system and positions of elementary particles that
belong to each rigid body.

Taking the time derivatives of (2.22) and (2.23) yields

ṗIL = ξ̇ +RILS(pLL)TωLIL, (2.24)

ṗIi = ξ̇ +
[
RILS(dLB)T +RILRLBS(dBCi)

T (RLB)T +RILRLBRBCiS(pCii )T (RLBRBCi)
T
]
ωLIL

+
[
RILR

L
BS(dBCi)

T +RILRLBRBCiS(pCii )T (RBCi)
T
]
ωBLB +RILRLBRBCiS(pCii )TωCiBCi .

(2.25)

The generalized coordinates of the system are chosen according to its degrees of freedom.
Therefore, based on the system’s rigid transformations, they are chosen as

q ,



ξ

η

γ

αR

αL


∈ R10, (2.26)
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where ξ = [x y z]T is the position vector of the load with respect to the inertial frame,
η = [φ θ ψ]T is the vector of Euler angles describing the orientation of the load with respect
to the inertial frame, γ = [γ1 γ2]T is the vector of angles describing the orientation of the
UAV with respect to the rod, αR and αL are the tilting angles of the thrusters.

2.3 Kinetic and potential energies

The kinetic energy of each rigid body can be calculated using (2.10), in which the quadratic
terms (ṗIL)T ṗIL and (ṗIi )T ṗIi , i ∈ {1, 2, 3}, are obtained using (2.24) and (2.25), respectively.
Taking into account (2.6)-(2.9), we have that

KL = 1
2

ˆ
VL

ρL(ṗIL)T (ṗIL)dVL = 1
2mLξ̇

T ξ̇ + 1
2(ωLIL)TILωLIL, (2.27)

Ki = 1
2

ˆ
Vi

ρi(ṗIi )T (ṗIi )dVi = 1
2miξ̇

T ξ̇ + ξ̇T
[
miR

I
LS(dLB)T+RILRLBS(mid

B
Ci

)T (RLB)T
]
ωLIL

+ ξ̇T
[
RILR

L
BS(mid

B
Ci

)T
]
ωBLB + 1

2(ωLIL)T
[
Di + S(dLB)RLBS(mid

B
Ci

)T (RLB)T

+RLBS(mid
B
Ci

)(RLB)TS(dLB)T
]
ωLIL + (ωLIL)T

[
S(dLB)RLBS(mid

B
Ci

)T +RLBJi
]
ωBLB

+ (ωLIL)TRLBRBCiIiω
Ci
BCi + 1

2(ωBLB)TJiωBLB + (ωBLB)TRBCiIiω
Ci
BCi + 1

2(ωCiBCi)
TIiω

Ci
BCi ,

(2.28)

where Di , miS(dLB)S(dLB)T +RLBJi(RLB)T corresponds to a second application of the parallel
axis theorem (2.8).

The total kinetic energy is computed by K = KL+
∑3

i=1Ki, and with (2.17)-(2.21) it can
be written in the quadratic form K = 1

2 q̇
TM(q)q̇, yielding the inertia matrixM(q) ∈ R10×10,

M(q) =



(mL +m)I3×3 M12 −RILRLBS(dm)Q 03×1 03×1

∗ M22 M23 W T
η R

L
BR

B
C2
I2ay W T

η R
L
BR

B
C3
I3ay

∗ ∗ QTJQ QTRBC2I2ay QTRBC3I3ay

∗ ∗ ∗ aTy I2ay 0
∗ ∗ ∗ ∗ aTy I3ay


, (2.29)

with ∗ denoting terms that are deduced by symmetry, and

M12 = −mRILS(dLB)Wη −RILRLBS(dm)(RLB)TWη,

M22 = W T
η [IL +D − S(dLB)RLBS(dm)(RLB)T −RLBS(dm)(RLB)TS(dLB)]Wη,

M23 = W T
η [−S(dLB)RLBS(dm) +RLBJ ]Q,

where mL is the load’s mass, m ,∑3
i=1 mi, J ,

∑3
i=1 Ji, D ,

∑3
i=1Di and dm ,

∑3
i=1 mid

B
Ci
.

Once the inertia matrix is obtained, the Coriolis and centripetal forces matrix, C(q, q̇) ∈
R10×10, can be calculated via Christoffel symbols of the first kind (Spong et al., 2006).
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Then, the element from its k-th row and j-th column is computed through

Ckj =
10∑
i=1

1
2

(
∂Mkj

∂qi
+ ∂Mki

∂qj
− ∂Mij

∂qk

)
q̇i, (2.30)

where M is an element of the inertia matrix, and k, j ∈ {1, 2, . . . , 10}.
The forward kinematics of each body’s center of mass can be obtained using (2.22)

and (2.23), by

oIL = pIL|pLL=03×1
= ξ, (2.31)

oICi = pIi |pCi
i

=03×1
= ξ +RILdLB +RILRLBdBCi . (2.32)

Then, the potential energies of the load and of each body of the aircraft can be
obtained using (2.11). Thereafter, the total potential energy of the system is computed by
U = UL +

∑3
i=1 Ui, yielding

U = −ĝT [(mL +m)ξ +mRILd
L
B +RILRLBdm] .

Then, the gravitational force vector is calculated as

g(q) = ∂U
∂q
∈ R10. (2.33)

2.4 Generalized forces

This section obtains the contributions to the generalized forces of all non-conservative
forces and torques that actuate on the tilt-rotor UAV with suspended load.

2.4.1 Input forces and torques

The thrust forces generated by the aircraft’s propellers, denoted by fR and fL, and the
torques generated by the servomotors composing the tilting mechanisms, denoted by ταR

and ταL , correspond to the input forces and torques of the system. Expressed in their
respective thrusters’ frames, they are given by (see Figure 2.5)

f
C2
R =

[
0 0 1

]T
fR , azfR,

f
C3
L =

[
0 0 1

]T
fL = azfL,

τ C2αR
=
[
0 1 0

]T
ταR = ayταR ,

τ C3αL
=
[
0 1 0

]T
ταL = ayταL .



CHAPTER 2. SYSTEM MODELING 54

C2

C3

fR

ταR

fL

ταL

Figure 2.5: Input forces and torques.

In the inertial reference frame, these vectors are expressed as

fIR = RIC2f
C2
R = RILR

L
BR

B
C2
azfR, (2.34)

fIL = RIC3f
C3
L = RILR

L
BR

B
C3
azfL. (2.35)

τ IαR
= RIC2τ

C2
αR

= RILR
L
BR

B
C2
ayταR , (2.36)

τ IαL
= RIC3τ

C3
αL

= RILR
L
BR

B
C3
ayταL . (2.37)

It is assumed that the thrust forces are applied to the centers of mass of their respective
thrusters groups, which correspond the origins of C2 and C3. Thus, in order to map them to
generalized forces, it is necessary to compute JoC2 = ∂ȯIC2/∂q̇ and JoC3 = ∂ȯIC3/∂q̇. Making
p
Ci
i = o

Ci
Ci = 03×1 in (2.23) yields

ȯICi = ξ̇ +
(
RILS(dLB)T +RILRLBS(dBCi)

T (RLB)T
)
ωLIL +RILRLBS(dBCi)

TωBLB

= ξ̇ +
(
RILS(dLB)T +RILRLBS(dBCi)

T (RLB)T
)
W T

η η̇ +RILRLBS(dBCi)
TQγ̇

=
[
I3×3

(
RILS(dLB)T +RILRLBS(dBCi)

T (RLB)T
)
Wη RILR

L
BS(dBCi)

TQ 03×1 03×1

]
q̇,

from which

JoCi = ∂ȯICi/∂q̇

=
[
I3×3

(
RILS(dLB)T +RILRLBS(dBCi)

T (RLB)T
)
Wη RILR

L
BS(dBCi)

TQ 03×1 03×1

]
. (2.38)
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Using (2.15), (2.34) and (2.38), we obtain

ϑfR = (Jo2)TfIR =



RILR
L
BR

B
C2
az

W T
η S(dLB)RLBRBC2az +W T

η R
L
BS(dBC2)RBC2az

QTS(dBC2)RBC2az
0
0


fR. (2.39)

Analogously, through (2.15), (2.35) and (2.38),

ϑfL = (Jo3)TfIL =



RILR
L
BR

B
C3
az

W T
η S(dLB)RLBRBC3az +W T

η R
L
BS(dBC3)RBC3az

QTS(dBC3)RBC3az
0
0


fL. (2.40)

The servomotors torques are applied to their respective thrusters’ bodies, however
opposite torques due to reaction are also applied to the aircraft’s main body. These pairs
of torques are mapped to generalized forces through (2.16), for which it is necessary to
compute WC2 = ∂ωIIC2/∂q̇, WC3 = ∂ωIIC3/∂q̇ and WB = ∂ωIIB/∂q̇.

From the addition of angular velocities,

ωIIB = ωIIL + ωILB = RILω
L
IL +RILRLBωBLB

= RILWηη̇ +RILRLBQγ̇

=
[
03×3 RILWη RILR

L
BQ 03×1 03×1

]
q̇,

from which
WB = ∂ωIIB/∂q̇ =

[
03×3 RILWη RILR

L
BQ 03×1 03×1

]
. (2.41)

Furthermore,

ωIIC2 = ωIIL + ωILB + ωIBC2 = RILω
L
IL +RILRLBωBLB +RILRLBRBC2ω

C2
BC2

= RILWηη̇ +RILRLBQγ̇ +RILRLBRBC2ayα̇R

=
[
03×3 RILWη RILR

L
BQ RILR

L
BR

B
C2
ay 03×1

]
q̇,

and

ωIIC3 = ωIIL + ωILB + ωIBC3 = RILω
L
IL +RILRLBωBLB +RILRLBRBC3ω

C3
BC3

= RILWηη̇ +RILRLBQγ̇ +RILRLBRBC3ayα̇L

=
[
03×3 RILWη RILR

L
BQ 03×1 RILR

L
BR

B
C3
ay

]
q̇,
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from which

WC2 = ∂ωIIC2/∂q̇ =
[
03×3 RILWη RILR

L
BQ RILR

L
BR

B
C2
ay 03×1

]
, (2.42)

WC3 = ∂ωIIC3/∂q̇ =
[
03×3 RILWη RILR

L
BQ 03×1 RILR

L
BR

B
C3
ay

]
. (2.43)

Using (2.16), (2.42), (2.36) and (2.41), we have

ϑταR
= (WC2)Tτ IαR

+ (WB)T (−τ IαR
)

=





03×3

W T
η (RIL)T

QT (RILRLB)T

aTy (RILRLBRBC2)T

01×3


−



03×3

W T
η (RIL)T

QT (RILRLB)T

01×3

01×3




RILR

L
BR

B
C2
ayταR =



03×1

03×1

02×1

1
0


ταR . (2.44)

Analogously, through (2.16), (2.43), (2.37) and (2.41),

ϑταL
= (WC3)Tτ IαL

+ (WB)T (−τ IαL
)

=





03×3

W T
η (RIL)T

QT (RILRLB)T

01×3

aTy (RILRLBRBC3)T


−



03×3

W T
η (RIL)T

QT (RILRLB)T

01×3

01×3




RILR

L
BR

B
C3
ayταL =



03×1

03×1

02×1

0
1


ταL . (2.45)

Drag torques generated by the propellers are also considered. They are reaction torques
applied to the thrusters’ bodies, due to the blades’ acceleration and drag (Castillo et al.,
2005). If steady-state is assumed for the angular velocity of the blades, these torques are
given in the thrusters’ frames as

τ
C2
drag,R = λR

kτ
b
f
C2
R , τ

C3
drag,L = λL

kτ
b
f
C3
L ,

where kτ and b are parameters that are obtained experimentally, and λR and λL depend on
the direction that the corresponding propeller rotates: if counter-clockwise, 1; if clockwise,
−1. In the inertial reference frame, we have

τ Idrag,R = RIC2τ
C2
drag,R = λR

kτ
b
RIC2f

C2
R = λR

kτ
b
RILR

L
BR

B
C2
azfR, (2.46)

τ Idrag,L = RIC3τ
C3
drag,L = λL

kτ
b
RIC3f

C3
L = λL

kτ
b
RILR

L
BR

B
C3
azfL. (2.47)

Since the drag torques are applied to the thrusters’ bodies, it is necessary to compute
WC2 = ∂ωIIC2/∂q̇ andWC3 = ∂ωIIC3/∂q̇ in order to map them to the generalized forces. Those
have already been obtained in (2.42) and (2.43), respectively. Thus, using (2.16), (2.46)
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and (2.42), we have

ϑτdrag,R = (WC2)Tτ Idrag,R = λR
kτ
b



03×1

W T
η R

L
BR

B
C2
az

QTRBC2az

0
0


fR. (2.48)

Analogously, through (2.16), (2.47) and (2.43),

ϑτdrag,L = (WC3)Tτ Idrag,L = λL
kτ
b



03×1

W T
η R

L
BR

B
C3
az

QTRBC3az

0
0


fL. (2.49)

Finally, the total mapping of the system inputs to generalized forces is obtained by
summing up the contributions of the thrust forces, servomotor torques and drag torques.
Then, from (2.39), (2.40), (2.44), (2.45), (2.48) and (2.49),

ϑin = ϑfR + ϑfL + ϑταR
+ ϑταL

+ ϑτdrag,R + ϑτdrag,L

=



RILR
L
BrR RILR

L
BrL 03×1 03×1

W T
η ΛRrR W T

η ΛLrL 03×1 03×1

QTΓRrR QTΓLrL 02×1 02×1

0 0 1 0
0 0 0 1




fR

fL

ταR

ταL

 , Lin(q)u, (2.50)

where

rR , R
B
C2
az, ΛR , S(dLB)RLB +RLBS(dBC2) + λR

kτ
b
RLB, ΓR , S(dBC2) + λR

kτ
b
I3×3,

rL , R
B
C3
az, ΛL , S(dLB)RLB +RLBS(dBC3) + λL

kτ
b
RLB, ΓL , S(dBC3) + λL

kτ
b
I3×3.

2.4.2 Friction and external disturbances

The existence of viscous friction is considered at the point of connection between the rod
and the tilt-rotor UAV. It is assumed that the friction torques are mapped to generalized
forces by

ϑfr = −Lfrq̇, (2.51)

where Lfr , diag(0, 0, 0, 0, 0, 0, µγ, µγ, 0, 0), with µγ a constant parameter.
Furthermore, the possibility of external disturbances affecting the suspended load is
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also taken into account. Define these external disturbances in the inertial reference frame
as a force vector d ,

[
dx dy dz

]T
∈ R3. Assuming that it is applied to the load’s center of

mass, it can be mapped to the generalized forces through (2.15), for which it is necessary
to obtain JoL = ∂ȯIL/∂q̇. Making pLL = 03×1 in (2.24) yields ȯIL = ξ̇, from which

JoL = ∂ȯIL/∂q̇ =
[
I3×3 03×3 03×2 03×1 03×1

]
. (2.52)

Thus, using (2.15) and (2.52) results in

ϑdb = (JoL)Td =
[
I3×3 03×3 03×2 03×1 03×1

]T
d , Ldbd. (2.53)

It must be noted that other external disturbances can be included in the dynamic
equations in a similar way. For instance, disturbance forces affecting the tilt-rotor UAV,
applied to the origin of B, can be mapped to the generalized forces by computing JoB , and
using (2.15).

2.4.3 Total generalized forces

The total generalized forces are finally obtained by summing up the contributions from
the input forces and torques, viscous friction torques and external disturbances. From
(2.50), (2.51) and (2.53),

ϑ = ϑin + ϑfr + ϑdb = Lin(q)u−Lfrq̇ +Ldbd. (2.54)

2.5 State-space representation

Substituting (2.54) in (2.14) yields the equations of motion

M(q)q̈ + (C(q, q̇) +Lfr)q̇ + g(q) = Lin(q)u+Ldbd, (2.55)

which describes the dynamic behavior of the tilt-rotor UAV with suspended load, from
the load’s perspective. Finally, by defining the state vector

x ,

q
q̇

 ∈ R20, (2.56)

and recalling the input vector defined in (2.50), the dynamic equations (2.55) can be
written in the state-space representation

ẋ = ϕ(x,u,d) = d

dt

q
q̇

 =

 q̇

M(q)−1 [−(C(q, q̇) +Lfr)q̇ − g(q) +Lin(q)u+Ldbd]

 , (2.57)
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which is nonlinear and highly coupled, but affine in the inputs and disturbances. Note that,
since the load’s position and orientation are among the generalized coordinates (2.26),
they are directly represented by the state variables (2.56). Then, the load’s behavior is
described explicitly by (2.57). On the other hand, the aircraft’s position and orientation
are described only with respect to the load, thus appearing in (2.57) only implicitly.

2.6 Final remarks

This chapter presented the dynamic modeling of the tilt-rotor UAV with suspended load,
developed from the load’s perspective using the Euler-Lagrange formulation.

The kinematics of the tilt-rotor UAV with suspended load were formulated from the
load’s perspective, in which the load was regarded as a rigid body with free position and
orientation, and the aircraft as a multi-body mechanical system rigidly coupled to it. The
degrees of freedom of the system were chosen as:

• x, y, z: The position of the load with respect to the inertial reference frame;

• φ, θ, ψ: Euler angles parametrizing the load orientation with respect to the inertial
reference frame;

• γ1, γ2: Angles describing the orientation of the tilt-rotor UAV with respect to the
rod;

• αR, αL: Tilting angles of the thrusters groups.

The whole-body dynamic equations were then obtained through the Euler-Lagrange
formulation, yielding a highly coupled nonlinear state-space representation of the system,
affine in the inputs, with the load’s coordinates among the system states.

In the next chapters, the obtained state-space representation will be used to design
controllers and state estimators, aiming path tracking control of the suspended load.
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3
Control strategies

This chapter presents the design of state-feedback control strategies for path tracking of
the suspended load, based on the state-space equations obtained in the previous chapter.

Since the load’s position and orientation are represented by state variables, state-
feedback strategies can directly steer the trajectory of the suspended load with respect to
the inertial reference frame. Besides, the aircraft’s behavior is implicit in the state-space
equations, then stabilization of the system implies stabilization of the tilt-rotor UAV.

In real applications, controllers designed for UAVs are often implemented in embedded
microprocessors. If continuous-time control strategies are employed, a discretization method
must be applied to the controllers in order to allow their implementations. Therefore,
this work focuses on the design of discrete-time control strategies, which can be directly
implemented on digital systems.

Due to its simple design, as a proof of concept, a classical discrete-time linear quadratic
regulator (DLQR) is proposed for path tracking of the suspended load with stabilization
of the tilt-rotor UAV, based on discrete-time linearized error dynamics obtained from the
derived model. In order to improve trajectory tracking and provide rejection to constant
disturbances, the system dynamics are augmented with integral actions. The design of the
DLQR is performed by solving a discrete-time algebraic Riccati equation.

Based on the same discrete-time, augmented linearized error dynamics, a discrete-time
mixed H2/H∞ controller with pole placement constraints is also proposed for path tracking
of the suspended load with stabilization of the tilt-rotor UAV. The controller features
constant disturbances rejection due to state augmentation, and achieves disturbance
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attenuation by mininizing the H2 norm of the closed-loop system and guaranteeing
a specified upper-bound for its H∞ norm, respectively. Furthermore, time response
requirements are satisfied by imposing constraints in the pole placement process. Its design
is performed based on the linear matrix inequalities (LMI) approach.

The chapter is organized as follows: Section 3.1 introduces some background material
on analysis of discrete-time linear systems; Section 3.2 presents the linearization and state
augmentation of the state-space equations from the previous chapter; Section 3.3 describes
the design of the discrete-time linear quadratic regulator; and Section 3.4 presents the
design of the discrete-time mixed H2/H∞ controller with pole placement constraints.

3.1 Preliminaries

3.1.1 Discrete-time linear systems

According to Chen (1999), a system is called a discrete-time system if its inputs and
outputs are discrete-time signals. The control of physical systems with digital computers
or micro-controllers is very common in practice, as well as the use of digital sensors for
sampling their outputs. Then, the analysis of discrete-time systems becomes important.

The dynamics of a discrete-time, linear time-invariant system can be described by the
set of first-order difference equations

xk+1 = Axk +Buk,

yk = Hxk +Duk,
(3.1)

called state-space equations, where x ∈ Rnx are the system states, u ∈ Rnu are the system
inputs, and y ∈ Rny are the system outputs, A ∈ Rnx×nx , B ∈ Rnx×nu , H ∈ Rny×nx and
D ∈ Rny×nu . The subscript k denotes the instant time kTs, where Ts is the system’s
sampling time.

3.1.2 Controllability and observability

Two important concepts on linear dynamic systems are controllability and observability.
Controllability is often a sufficient condition for the existence of solutions in control design
problems, whereas observability is often a sufficient condition for state estimation problems.
These concepts are defined below for discrete-time linear systems (Chen, 1999).

Definition 3.1. (Controllability) The discrete-time system (3.1) or the pair (A,B) is said
to be controllable if for any initial state x0 and any final state xk̄, there exists an input
sequence of finite length that transfers x0 to xk̄.

Definition 3.2. (Observability) The discrete-time system (3.1) or the pair (A,H) is said
to be observable if for any unknown initial state x0, there is a finite integer k̄ > 0 such that
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the knowledge of the input sequence uk and output sequence yk from k = 0 to k̄ suffices to
determine uniquely the initial state x0.

In order to analyze if a discrete-time linear system is either controllable or observable,
the following theorems can be applied (Chen, 1999).

Theorem 3.1. The discrete-time linear system (3.1) or the pair (A,B) is controllable if,
and only if,

rank
{[
B AB A2B · · ·Anx−1B

]}
= nx.

Theorem 3.2. The discrete-time linear system (3.1) or the pair (A,H) is observable if,
and only if,

rank





H

HA

HA2

...
HAnx−1




= nx.

3.1.3 Lyapunov stability for discrete-time linear systems

Stability analysis of dynamic systems is also an important subject. The discrete-time
linear system (3.1) is asymptotically stable (in the sense of Lyapunov) if there exists a
scalar function V (xk) : Rnx 7→ R such that

• V (xk) > 0 ∀xk 6= 0 and V (0) = 0;

• ∆V (xk) , V (xk+1)− V (xk) < 0 ∀xk 6= 0 and ∆V (0) = 0.

It is common to choose the quadratic function V (xk) = xTkPxk for stability analysis
of linear time invariant systems (Slotine, 1991, p. 80). For this function, assuming that
uk = 0 (open-loop system), we have that

∆V (xk) = xTk+1Pxk+1 − xTkPxk = xTkA
TPAxk − xTkPxk = xTk (ATPA− P )xk.

Hence, considering the two mentioned conditions, the stability analysis for the discrete-
time linear system (3.1) turns into verifying if there exists a symmetric matrix P that
simultaneously satisfies1

P > 0, (3.2)

ATPA− P < 0. (3.3)

Equivalently, system (3.1) is asymptotically stable if, and only if, all the eigenvalues of
A are inside the unitary circle in the complex plane (Chen, 1999).

1In this work, P > 0 means that P is positive definite, P < 0 means that −P is positive definite,
and P1 > P2 means that P1 − P2 is positive definite.
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3.1.4 Linear matrix inequalities

Several control design problems can be formulated in terms of optimization problems with
linear matrix inequality (LMI) constraints. An LMI is an inequality that can be written
in the form (Boyd et al., 1994)

F (m) , F0 +
p∑
i=1

miFi > 0,

wherem ∈ Rp are the decision variables, and Fi ∈ Rq×q, i ∈ {1, 2, . . . , p} are given symmetric
matrices. The Lyapunov stability conditions (3.2) and (3.3) are examples of LMIs, where
the elements of P correspond to the decision variables.

Working with LMIs have some advantages. For instance, the associated optimization
problems are convex, and thus can be solved efficiently. Furthermore, several constraints
can be incorporated into a single problem, allowing multi-criteria control design to be
handled easily (Boyd et al., 1994).

3.1.5 Schur complement and congruence transformations

Control design problems often leads to inequalities that are nonlinear in the decision
variables. The Schur complement is a useful tool that can be used for transforming a
nonlinear matrix inequality into an LMI one.

Let N1(m) = N1(m)T , N2(m) = N2(m)T and N3(m) be affine functions of decision
variables m. Then, the Schur complement lemma states that the following inequalities are
equivalent (Boyd et al., 1994):

a) N1(m)−N3(m)TN2(m)−1N3(m) > 0, with N2(m) > 0;

b)
N1(m) N3(m)T

N3(m) N2(m)

 > 0.

Congruence transformations consist in another useful tool for the same purposes. Let
N > 0, then, for any invertible T , we have that T TNT > 0 (Trofino et al., 2015, p. 30).

3.2 Linearized error dynamics

The tilt-rotor UAV with suspended load is a mechanical system with more degrees of
freedom than control inputs, therefore being characterized as an underactuated mechanical
system. As it has four control inputs, only up to four degrees of freedom can be steered
along a desired, arbitrary trajectory, while the remaining DOF can only be stabilized.
Aiming path tracking control of the suspended load, the position ξ = [x y z]T and yaw
angle ψ of the load are chosen to be regulated.
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To design linear control strategies for path tracking of the suspended load, the system’s
state-space equations are linearized around a time-varying trajectory. Then, before
proceeding, some facts on (2.57) must be pointed out. It is possible to verify that2

the inertia matrix (2.29) and the mapping matrix (2.50) are not functions of ξ, and
also that the Coriolis matrix obtained using (2.30) is neither a function of ξ nor of ξ̇.
Moreover, assuming that the gravitational acceleration vector is constant, the gravitational
forces vector (2.33) is also not a function of ξ. Thus, by defining the auxiliary variable
ζ , [ηT γT αR αL]T ∈ R7, we have that

M ,M(ζ), C , C(ζ, ζ̇), g , g(ζ), Lin , Lin(ζ).

Let xtr(t), utr(t) and dtr(t) denote trajectory values for x, u and d, respectively. This
work assumes that the desired trajectory is feasible, i.e.,

ẋtr = ϕ(xtr,utr,dtr).

Then, linearizing the state-space equations (2.57) around these variables, through
first-order expansion in Taylor series, yields

δẋ = Ac(t)δx+Bc(t)δu+ Fc(t)δd, (3.4)

where the subscript ‘c’ denotes continuous-time, and δx , x−xtr, δu , u−utr, δd , d−dtr,

Ac(t) = ∂ϕ(x,u,d)
∂x

∣∣∣∣x=xtr(t)
u=utr(t)
d=dtr(t)

=

 010×10 I10×10

Āc(ζtr(t), ζ̇tr(t),utr(t),dtr(t))

 ∈ R20×20, (3.5)

Bc(t) = ∂ϕ(x,u,d)
∂u

∣∣∣∣x=xtr(t)
u=utr(t)
d=dtr(t)

=

 010×4

M(ζtr(t))−1Lin(ζtr(t))

 ∈ R20×4,

Fc(t) = ∂ϕ(x,u,d)
∂d

∣∣∣∣x=xtr(t)
u=utr(t)
d=dtr(t)

=

 010×3

M(ζtr(t))−1Ldb

 ∈ R20×3.

Now, define ζtr(t) , [φeq θeq ψtr(t) (γeq)T αeq
R αeq

L ]T . Assuming that for the desired
trajectory ψtr is constant, we have that ζtr is also constant. Then, ζ̇tr = 07×1, and by
defining qtr , [(ξtr)T (ζtr)T ]T , we also have that q̇tr = [(ξ̇tr)T 01×7]T and q̈tr = [(ξ̈tr)T 01×7]T .
Moreover, define xtr , [(qtr)T (q̇tr)T ]T and utr , [f tr

R f tr
L τ tr

αR
τ tr
αL

]T . Evaluating the linearized
state-space equations (3.4) at xtr and utr, and considering a scenario without external

2Through a symbolic computation software, such as MATLAB’s Symbolic Toolbox. In fact, since the
gravitational acceleration vector is assumed to be constant, and effects due to aerodynamic forces and air
friction are being neglected, it is expected that the system dynamics are independent of its position and
velocity with respect to the inertial frame.
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disturbances (i.e., dtr = 03×1), leads to the error dynamics

δẋ = Ac(t)δx+Bcδu+ Fcd, (3.6)

in which, since ζtr is constant, ζ̇tr = 07×1 and dtr = 03×1, Ac(t) is time-varying only due to
utr(t) (see equation (3.5)), and Bc and Fc are constant matrices.

In order to improve the trajectory tracking and provide constant disturbance rejection
by the controllers to be designed, the state vector δx is augmented with integral actions,
computed by integrating the error of the regulated degrees of freedom, yielding

χ ,


δx´

(ξ − ξtr)´
(ψ − ψtr)

 ∈ R24, (3.7)

whose dynamics are given by

χ̇ =



Ac(t) 020×4

1 0 0 0 0 0

04×14 04×4

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1


χ+

 Bc

04×4

 δu+

 Fc

04×3

d. (3.8)

3.3 Discrete-time linear quadratic regulator

In this section, to test the concept of the load’s perspective model, a discrete-time linear
quadratic regulator is proposed for path tracking of the suspended load with stabilization
of the tilt-rotor UAV, with constant disturbances rejection.

In order to design a discrete-time linear quadratic regulator for path tracking of the
suspended load, it is assumed that the desired trajectory requires low accelerations to be
performed, i.e., q̈tr ≈ 010×1, being the associated control signals close to equilibrium values.
Therefore, Ac(t) ≈ Ac(t)|utr=ueq , Ac, which is a constant matrix3. Resulting effects from
this approximation will be considered as unmodeled dynamics, and the controller will be
assumed to be robust enough to deal with the subsequent error.

By applying the zero-order-holder (ZOH) discretization method (Chen, 1999) over
(3.8), for a sampling time Tc (henceforth called the controller sampling time), yields the
discrete-time, augmented error dynamics

χk+1 = Aχχk +Bχδuk + Fχdk, (3.9)
3Due to limited computational resources, an analytical expression forM(q)−1 could not be obtained in

(2.57), hence neither an expression for ϕ(x,u,d). Therefore, an analytical expression for the time-varying
matrix Ac(t) could not be computed either.
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in which · k , · (kt) and · k+1 , · (kt+ Tc), with Aχ ∈ R24×24, Bχ ∈ R24×4 and Fχ ∈ R24×3.
A state-feedback, discrete-time linear quadratic regulator for (3.9) is an optimal

controller that minimizes the quadratic cost functional with infinite time horizon

JDLQR =
∞∑
k=0

χTkΩχχk + δuTkΩuδuk, (3.10)

where Ωχ ∈ R24×24 is a symmetric, positive semi-definite matrix, and Ωu ∈ R4×4 is a
symmetric, positive definite matrix. This cost functional is a measure of the energy of the
state vector χk and the control signals δuk, weighted by the matrices Ωχ and Ωu.

This work derives the solution to this optimal control problem analogously to the
procedure used in Donadel et al. (2014) and Donadel (2015) for a continuous-time linear
quadratic regulator. A deeper treatment can be found in, e.g., Dorato & Levis (1971) and
Phillips & Nagle (1995).

Consider the Lyapunov function candidate V (χk) = χTkPχk, with P > 0. Then,

∆V (χk) , V (χk+1)− V (χk) = χTk+1Pχk+1 − χTkPχk. (3.11)

Substituting (3.9) in (3.11), and assuming dk = 03×1, yields

∆V (χk) = (Aχχk +Bχδuk)TP (Aχχk +Bχδuk)− χTkPχk

= χTk (AT
χPAχ − P )χk + χTkAT

χPBχδuk + δuTkB
T
χPAχχk + δuTkB

T
χPBχδuk.

Considering the state-feedback control law δuk = −Kχk, we have that

∆V (χk) = χTk (AT
χPAχ − P −AT

χPBχK −KTBT
χPAχ +KTBT

χPBχK)χk. (3.12)

Assuming that δuk = −Kχk stabilizes the system (3.9) asymptotically, we have that
∆V (χk) < 0 for all k > 0. Then, lim

k→∞
V (χk) = 0 and

∞∑
k=0

∆V (χk) = lim
k→∞

V (χk)− V (χ0) = 0− χT0Pχ0 = −χT0Pχ0. (3.13)

Substituting (3.12) in (3.13) yields

∞∑
k=0

χTk (AT
χPAχ − P −AT

χPBχK −KTBT
χPAχ +KTBT

χPBχK)χk = −χT0Pχ0

=⇒
∞∑
k=0

χTk (AT
χPAχ−P−AT

χPBχK−KTBT
χPAχ+KTBT

χPBχK)χk + χT0Pχ0 = 0. (3.14)
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Adding (3.14) to the cost functional (3.10) results in

J =
∞∑
k=0

χTk (AT
χPAχ − P −AT

χPBχK −KTBT
χPAχ

+KTBT
χPBχK + Ωχ +KTΩuK

T )χk + χT0Pχ0,

whose minimum χT0Pχ0 is found by making

AT
χPAχ − P −AT

χPBχK −KTBT
χPAχ +KTBT

χPBχK = −Ωχ −KTΩuK. (3.15)

Then, choosing the gain matrix as

K = (BT
χPBχ + Ωu)−1BT

χPAχ, (3.16)

equation (3.15) becomes the algebraic Riccati equation

P = AT
χPAχ + Ωχ −AT

χPBχ(BT
χPBχ + Ωu)−1BT

χPAχ. (3.17)

Therefore, the discrete-time linear quadratic regulator for (3.9) consists in the state-
feedback control law δuk = −Kχk, whose gain matrix K ∈ R4×24 is given by (3.16), in
which P ∈ R24×24 is obtained by solving (3.17). It is important to mention that a sufficient
condition for such solution to exist is that system (3.9) to be controllable (Dorato & Levis,
1971). Moreover, since Ωχ, Ωu > 0, it is possible to show that, by substituting (3.15) in
(3.12), ∆V (χk) < 0 ∀χk 6= 024×1, hence the closed loop system is asymptotically stable. The
design of the controller then lies in the appropriate choice of the weighting matrices Ωχ

and Ωu, through some criteria, such as the Bryson’s rule (Johnson & Grimble, 1987).
Furthermore, since the control signals provided by the DLQR are associated with the

linearized dynamics (3.9), in order to apply the control signals to the tilt-rotor UAV with
suspended load, the feed-forward term

utr
k = Lin(qtr

k )+ [M(qtr
k )q̈tr

k + (C(qtr
k , q̇

tr
k ) +Lfr)q̇tr

k + g(qtr
k )] (3.18)

is introduced, where Lin(qtr
k )+ denotes the left pseudo-inverse of Lin(qtr

k ), and qtr
k , q̇tr

k and
q̈tr
k are provided reference signals at instant k. The complete control law is then given by
uk = utr

k + δuk = Lin(qtr
k )+ [M(qtr

k )q̈tr
k + (C(qtr

k , q̇
tr
k ) +Lfr)q̇tr

k + g(qtr
k )]−Kχk.

Notice that, since utr
k is computed using a left pseudo-inverse, it is an exact solution to

the dynamic equations (2.55) only if the desired trajectory is feasible. Moreover, equation
(3.18) assumes a scenario without disturbances, and the control signal utr

k will be sustained
for Tc seconds. The subsequent errors are also considered as unmodeled dynamics, and
the DLQR is assumed to be robust enough to deal with these effects.
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3.4 Discrete-time mixed H2/H∞ control

In this section, the discrete-time, augmented error dynamics (3.9), obtained for the design
of the DLQR in the previous section, is also considered for control design purposes. A
discrete-time, linear mixed H2/H∞ controller with pole placement constraints is designed
for path tracking of the suspended load with stabilization of the tilt-rotor UAV, featuring
constant disturbances rejection. Instead of only minimizing the energy of the tracking
error and control signals, the controller is designed for improved transient response and
compensation of unmodelled dynamics and external disturbances, while guaranteeing
settling time requirements for the closed-loop system.

The discrete-time, linear H2 and H∞ control design problems are first presented
separately, followed by the pole placement constraints technique. The design is performed
following an LMI approach.

3.4.1 Discrete-time state-feedback H2 control

Consider the discrete-time linear system

χk+1 = Aχχk +Bχδuk + Fχdk,

zk = Hzχk +Dzδuk,
(3.19)

where z ∈ Rnz are cost variables, Hz ∈ Rnz×24 and Dz ∈ Rnz×4 are design weighting matrices.
Let Ψdz(ς) denote the discrete-time transfer matrix from d to z, with ς ∈ C. Then, the

H2 norm of the discrete-time linear system (3.19) is defined as

‖Ψdz(ς)‖2 ,

√√√√ ∞∑
k=0

tr {Ψdz,kΨT
dz,k

}, (3.20)

where Ψdz,k , Z−1{Ψdz(ς)} is the impulse response matrix associated with the channel
d→ z, and tr {·} denotes the trace operator. The H2 norm can be interpreted as a measure
of the energy of the system (3.19) when it is excited by impulse sequences in d.

Now, consider the state-feedback control law δuk = −Kχk. The H2 control design
problem consists in computing the gain matrix K that minimizes the H2 norm of the
closed-loop system4

χk+1 = (Aχ −BχK)χk + Fχdk,

zk = (Hz −DzK)χk.
(3.21)

The solution of this optimal control problem is derived based on the procedure used in
Trofino et al. (2015) for the continuous-time linear H2 control. Applying the Z-transform

4The DLQR is a special case of the H2 control, by choosing Hz and Dz such that HT
zHz = Ωχ,

DT
zDz = Ωu and HT

zDz = 024×4 (Peres & Geromel, 1993). For instance, Hz = [
√

Ωχ 0]T and
Dz = [0

√
Ωu]T .
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to the closed-loop system (3.21) yields the discrete transfer matrix

Ψdz(ς) = (Hz −DzK)(ςI24×24 −Aχ +BχK)−1Fχ.

Taking its inverse Z-transform yields

Ψdz,k = Z−1{Ψdz(ς)} = Z−1{(Hz −DzK)(ςI24×24 −Aχ +BχK)−1Fχ} (3.22)

= (Hz −DzK)(Aχ −BχK)k−1Fχ. (3.23)

Taking the square of (3.20), and substituting (3.23) in the resulting equation yields

‖Ψdz(ς)‖2
2 =

∞∑
k=0

tr {(Hz −DzK)(Aχ −BχK)k−1FχF
T
χ ((Aχ −BχK)k−1)T (Hz −DzK)T

}
= tr

{
(Hz −DzK)

∞∑
k=0

(Aχ −BχK)k−1FχF
T
χ ((Aχ −BχK)k−1)T (Hz −DzK)T

}
= tr {(Hz −DzK)Pc(Hz −DzK)T} ,

where Pc ,
∑∞

k=0(Aχ −BχK)k−1FχF
T
χ ((Aχ −BχK)k−1)T is the controllability Gramian of

the closed loop system (3.21), and if the latter is asymptotically stable, this Gramian is
the unique solution to the Lyapunov equation (Chen, 1999)

(Aχ −BχK)Pc(Aχ −BχK)T − Pc + FχF T
χ = 0.

In order to bring this control design problem to a LMI framework, a positive definite
matrix P2 is defined, such that P2 > Pc

5. Then, we have the inequalities

tr {(Hz −DzK)P2(Hz −DzK)T} > tr {(Hz −DzK)Pc(Hz −DzK)T} ,

(Aχ −BχK)P2(Aχ −BχK)T − P2 + FχF T
χ < 0. (3.24)

Define also a symmetric matrix N , such that N − (Hz −DzK)P2(Hz −DzK)T > 0.
Hence,

tr {N} > tr {(Hz −DzK)P2(Hz −DzK)T} > tr {(Hz −DzK)Pc(Hz −DzK)T} .

As ‖Ψdz(ς)‖2
2 = tr {(Hz −DzK)Pc(Hz −DzK)T}, we have that tr {N} > ‖Ψdz(ς)‖2

2,
thus

√
tr {N} is an upper bound on the H2 norm of the closed-loop system. In addition,

the definition of N is equivalent to

N − (Hz −DzK)P2P
−1
2 P2(Hz −DzK)T > 0,

5It is possible to show that P −1
2 satisfy the inequalities (3.2) and (3.3), associated with Lyapunov

stability, for the closed-loop system (3.21). See Appendix C for a proof.
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for which applying the Schur complement results inN HzP2 −DzKP2

∗ P2

 > 0. (3.25)

Furthermore, the condition (3.24) is equivalent to P2−FχF T
χ −(Aχ−BχK)P2P

−1
2 P2(Aχ−

BχK)T > 0, for which applying the Schur complement yields
P2 − FχF T

χ (Aχ −BχK)P2

∗ P2

 > 0.

This result can be rewritten asP2 (Aχ −BχK)P2

∗ P2

−
Fχ

0

 I
[
F T
χ 0

]
> 0,

for which applying the Schur complement yields
P2 (Aχ −BχK)P2 Fχ

∗ P2 0

∗ 0 I

 > 0. (3.26)

Finally, by introducing an instrumental variable X2 in order to reduce conservativeness
(de Oliveira et al., 2002) and defining Y , −KX2, gathering the conditions (3.25) and
(3.26), and recalling that ‖Ψdz(ς)‖2

2 < tr {N}, the problem of computing the gain matrix K
that minimizes the H2 norm of the closed-loop system (3.21) is casted into the optimization
problem

min
P2,X2,Y ,N

tr {N} subject toN HzX2 +DzY

∗ X2 +XT
2 − P2

 > 0, (3.27)

P2 AχX2 +BχY Fχ

∗ X2 +XT
2 − P2 0

∗ 0 I

 > 0, (3.28)

with N = NT and P2 = P T
2 , while no properties are required on Y and X2.

It is important to note that, by choosing X2 = XT
2 = P2, the original conditions (3.25)

and (3.26) are recovered. Asymptotic stability is guaranteed by feasibility of (3.28), and
minimization of the H2 norm is guaranteed by feasibility of (3.27). The gain matrix K is
then obtained from K = −Y X−1

2 .
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3.4.2 Discrete-time state-feedback H∞ control

Consider the discrete-time linear system

χk+1 = Aχχk +Bχδuk + Fχdk,

zk = Hzχk +Dzuδuk +Dzddk,
(3.29)

where z ∈ Rnz are cost variables, Hz ∈ Rnz×24, Dzu ∈ Rnz×4 and Dzd ∈ Rnz×3 are design
weighting matrices.

Let Ψdz(ς) denote the discrete-time transfer matrix from d to z. Then, the H∞ norm
of the discrete-time system (3.29) is defined as (de Souza & Xie, 1992)

‖Ψdz(ς)‖∞ , sup
0≤φ≤2π

σmax{Ψdz(ejφ)},

where φ , ωTc, and σmax{·} denotes the highest singular value. The H∞ norm can be
interpreted as the highest gain of the system’s frequency response associated with the
channel d→ z, and can also be formulated in terms of the energies of the signals dk and
zk. Through the Parseval’s theorem we have (Lathi, 2005)

‖zk‖2
2 ,

∞∑
k=0

zTk zk = 1
2π

ˆ 2π

0
(z(ejφ))Hz(ejφ)dφ,

‖dk‖2
2 ,

∞∑
k=0

dTkdk = 1
2π

ˆ 2π

0
(d(ejφ))Hd(ejφ)dφ,

where (·)H denotes the Hermitian conjugate6. As z(ejφ) = Ψdz(ejφ)d(ejφ),

‖zk‖2
2 = 1

2π

ˆ 2π

0
(d(ejφ))H(Ψdz(ejφ))HΨdz(ejφ)d(ejφ)dφ

≤ 1
2π

ˆ 2π

0
(σmax{Ψdz(ejφ)})2(d(ejφ))Hd(ejφ)dφ

≤
(

sup
0≤φ≤2π

σmax{Ψdz(ejφ)}
)2 1

2π

ˆ 2π

0
(d(ejφ))Hd(ejφ)dφ

=⇒ ‖zk‖2
2 ≤ ‖Ψdz(ς)‖2

∞‖dk‖2
2,

which, analogously to the continuous-time case, yields (Trofino et al., 2015)

‖Ψdz(ς)‖∞ = sup
‖dk‖2 6=0

‖zk‖2

‖dk‖2
. (3.30)

Now, consider the state-feedback control law δuk = −Kχk. The H∞ control design
problem consists in computing the gain matrix K that minimizes the H∞ norm of the

6Conjugate transpose.
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closed-loop system
χk+1 = (Aχ −BχK)χk + Fχdk,

zk = (Hz −DzuK)χk +Dzddk.
(3.31)

This optimal control problem is known to be hard to solve, then, instead of minimizing
the H∞ norm, it is common to seek a sub-optimal solution that minimizes an upper bound
γ, such that ‖Ψdz(ς)‖∞ < γ. Then, from (3.30) we have

sup
‖dk‖2 6=0

‖zk‖2

‖dk‖2
< γ =⇒ sup

‖dk‖2 6=0

‖zk‖2
2

‖dk‖2
2
< γ2 =⇒ ‖zk‖2

2

‖dk‖2
2
< γ2 =⇒

∞∑
k=0

zTk zk < γ2
∞∑
k=0

dTkdk

=⇒
∞∑
k=0

(zTk zk − γ2dTkdk) < 0. (3.32)

A sufficient condition for (3.32) to be satisfied is

zTk zk − γ2dTkdk < 0. (3.33)

In order to bring the control design problem to a LMI framework, consider the Lyapunov
function candidate V (χk) = χTkPχk, with P > 0. Then,

∆V (χk) , V (χk+1)− V (χk) = χTk+1Pχk+1 − χTkPχk

= ((Aχ −BχK)χk + Fχdk)TP ((Aχ −BχK)χk + Fχdk)− χTkPχk

= χTk ((Aχ −BχK)TP (Aχ −BχK)− P )χk + χTk (Aχ −BχK)TPFχdk

+ dTkF T
χ P (Aχ −BχK)χk + dTkF T

χ PFχdk. (3.34)

Assuming that δuk = −Kχk stabilizes the closed-loop system (3.31), thus ∆V (χk) < 0,
one can consider the following inequality

∆V (χk) + zTk zk − γ2dTkdk < 0. (3.35)

Substituting (3.34) in (3.35) yields
χk
dk

T ÃT
χPÃχ − P + H̃T

z H̃z ÃT
χPFχ + H̃T

zDzd

∗ F T
χ PFχ +DT

zdDzd − γ2I

χk
dk

 < 0, (3.36)

where Ãχ , (Aχ −BχK) and H̃z , (Hz −DzuK). Inequality (3.36) can be rewritten as
P 0

0 γ2I

−
ÃT

χP H̃T
z

F T
χ P DT

zd

P −1 0

0 I

PÃχ PFχ

H̃z Dzd

 > 0,
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which, through the Schur complement, is equivalent to

Z ,


P 0 ÃT

χP H̃T
z

0 γ2I F T
χ P DT

zd

PÃχ PFχ P 0

H̃z Dzd 0 I

 > 0. (3.37)

Then, performing a congruence transformation Z̄TZZ̄ > 0, where

Z̄ ,


0 γP −1 0 0

0 0 γ−1I 0

γP −1 0 0 0

0 0 0 γI

 ,

and defining P∞ , γ2P −1, yields
P∞ ÃχP∞ Fχ 0

P∞Ã
T
χ P∞ 0 P∞H̃

T
z

F T
χ 0 I DT

zd

0 H̃zP∞ Dzd γ2I

 > 0. (3.38)

Finally, similarly to the H2 control case, by introducing an instrumental variable X∞ in
order to reduce conservativeness, and defining Y , −KX∞ and γ̃ , γ2, from the condition
(3.38) and recalling that ‖Ψdz(ς)‖∞ < γ, the problem of computing the sub-optimal solution
K that minimizes the upper-bound γ of the H∞ norm of the closed-loop system (3.21) is
casted into the optimization problem

min
P∞,X∞,Y

γ̃ subject to
P∞ AχX∞ +BχY Fχ 0

∗ X∞ +XT
∞ − P∞ 0 XT

∞Hz + Y TDT
zu

∗ ∗ I DT
zd

∗ ∗ ∗ γ̃I

 > 0. (3.39)

with P∞ = P T
∞, while no properties are required on Y and X∞.

Notice that by choosing X∞ = XT
∞ = P∞, the original condition (3.38) is recovered.

Asymptotic stability and minimization of the upper-bound γ of the H∞ norm are both
guaranteed by feasibility of (3.39). The gain matrix K is obtained from K = −Y X−1

∞ .
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3.4.3 Pole placement in LMI regions

An LMI region is defined as a convex subset D of the complex plane that can be expressed
as (Chilali & Gahinet, 1996)

D , {ς ∈ C : U + ςV + ς∗V T < 0}, (3.40)

whose shape is defined by the matrices U = UT ∈ RnD×nD and V ∈ RnD×nD . Such regions
are symmetric with respect to the real axis, and the intersection between two of them is
also an LMI region.

In control design, it is common to have requirements on the time response of the
closed-loop system. For instance, when dealing with standard second-order continuous-
time linear systems, settling time and percentage overshoot are directly related to the
real part and phase angle of their poles, respectively, and requirements on these are
guaranteed if the system’s poles belong to certain regions, given by {s ∈ C : Re(s) < −ε}
and {s ∈ C : |Im(s)| < tan(φ)|Re(s)|}, with ε ∈ R and φ ∈ [0, π/2]. On the other hand,
for discrete-time linear systems, as ς = esTc (Phillips & Nagle, 1995), the settling time is
related to ln |ς| and can be characterized by circular regions, while the percentage overshoot
depends nonlinearly on both |ς| and phase angles and can be characterized by logarithmic
spirals.

Consider now the system (3.9) and the state-feedback control law δuk = −Kχk. The
eigenvalues of the closed-loop system matrix Ãχ , Aχ −BχK belong to an LMI region D
if, and only if, there exists a symmetric matrix T > 0 such that (Chilali & Gahinet, 1996)

U ⊗ T + V ⊗ (TÃχ) + V T ⊗ (ÃT
χT ) < 0, (3.41)

where ⊗ denotes the Kronecker product of matrices, defined by

U ⊗ T ,


U11T U12T · · · U1nDT

U21T U22T · · · U2nDT
... ... . . . ...

UnD1T UnD2T · · · UnDnDT

 .

If the condition (3.41) is satisfied, the closed-loop system is said to be D-stable. This
inequality can be used for control design with pole placement constraints, via LMI approach,
in which performance requirements are specified in terms of LMI regions.

In this work, two regions are of interest (see Figure 3.1):

Region 1: D1 , {ς ∈ C : Re(ς) > ε ≥ 0}

Since the settling time is related to ln |ς|, an ideal region to ensure a desired minimum
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Re(ς)

Im(ς)

ε

(a) Region 1

Re(ς)

Im(ς)

$

(b) Region 2

Figure 3.1: LMI regions.

settling time for the closed-loop system is defined by {ς ∈ C : |ς| > ε ≥ 0}, which corresponds
to all the points of the complex plane outside a disc with radius ε, centered at the origin.
However, this is not a convex region, thus it cannot be expressed in the form (3.40).
Seeking an alternative, we define the region {ς ∈ C : Re(ς) > ε ≥ 0}, which is convex.

Given that |ς| ≥ |Re(ς)|, Re(ς) > ε and ε ≥ 0, this region guarantees that |ς| > ε,
ensuring a desired minimum settling time for the closed-loop system, while also avoiding
the ringing effect7. It can be expressed in the form (3.40) by recalling that ς + ς∗ = 2Re(ς).
Then, the condition Re(ς) > ε is equivalent to ς + ς∗ > 2ε, which can be rewritten as
2ε− ς − ς∗ < 0. Hence, its shape is defined by

U1 , 2ε, V1 , −1. (3.42)

Substituting (3.42) in (3.41) yields

AT
χT1 + T1Aχ −KTBT

χT1 − T1BχK − 2εT1 > 0,

which, by applying a congruence transformation using T −1
1 and defining T̄1 , T −1

1 and
Y , −KT̄1, leads to the LMI

T̄1A
T
χ +AχT̄1 + Y TBT

χ +BχY − 2εT̄1 > 0. (3.43)

The gain matrix K that guarantees that eig{Ãχ} ⊂ D1 is then given by K = −Y T̄ −1
1 ,

7The ringing effect is a transient behavior of the system characterized by cycling between positive and
negative deviations from the steady-state value. It is caused by the presence of poles with negative real
part, being intensified when they are close to the unitary circle (Seborg et al., 2003; Phillips & Nagle,
1995).
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where eig{Ãχ} denotes the set of eigenvalues of Ãχ.

Region 2: D2 , {ς ∈ C : 0 ≤ |ς| < $}

This region is a disc with radius $, centered at the origin of the complex plane, and
guarantees that |ς| < $, ensuring a desired maximum settling time for the closed-loop
system. It can be expressed in the form (3.40) by rewriting |ς| < $ as ςς∗ < $2, which
can be further rewritten as $ − ς$−1ς∗ > 0. Through the Schur complement, the latter is
equivalent to  $ −ς

−ς∗ $

 > 0,

which can be rewritten as−$ 0
0 −$

+ ς

0 1
0 0

+ ς∗

0 0
1 0

 < 0.

Hence,

U2 =

−$ 0
0 −$

 , V2 =

0 1
0 0

 . (3.44)

Substituting (3.44) in (3.41) yields
 −$T2 T2Aχ − T2BχK

AT
χT2 −KTBT

χT2 −$T2

 < 0,

which, by applying a congruence transformation using T −1
2 and defining T̄2 , T −1

2 and
Y , −KT̄2, leads to the LMI −$T̄2 AχT̄2 +BχY

T̄2A
T
χ + Y TBT

χ −$T̄2

 < 0. (3.45)

The gain matrix K that guarantees that eig{Ãχ} ⊂ D2 is then given by K = −Y T̄ −1
2 .

Minimum and maximum settling times can be both guaranteed if eig{Ãχ} ⊂ D1 ∩ D2,
which can be achieved by computing a gain matrix K such that (3.43) and (3.45) are
simultaneously satisfied, with T̄1 = T̄2 > 0. Unfortunately, as logarithmic spirals are not
convex regions, percentage overshoot requirements cannot be directly specified using LMI
regions, thus those are not exploited in this work.

Finally, it is interesting to note that, considering an open-loop system and making
$ = 1 in (3.45) (an unitary circle), by changing the signals of the inequality, performing
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the congruence transformation 0 I

−I 0

 T̄2 −AχT̄2

−T̄2A
T
χ T̄2

0 −I
I 0

 > 0,

followed by the Schur complement and changing signals again, the Lyapunov stability
criterion (3.3) is recovered.

3.4.4 Multi-objective control design

The present mixed H2/H∞ control paradigm is similar to the one proposed in Chilali &
Gahinet (1996).

In order to design a discrete-time mixed H2/H∞ controller with pole placement con-
straints, for path tracking of the suspended load with stabilization of the tilt-rotor UAV,
consider the discrete-time linear system

χk+1 = Aχχk +Bχδuk + Fχdk,

zk = Hzχk +Dzuδuk +Dzddk,

z̃k = Hzχk +Dzuδuk,

(3.46)

where zk, z̃k ∈ Rnz are cost variables, Hz ∈ Rnz×24, Dzu ∈ Rnz×4 and Dzd ∈ Rnz×3 are design
weighting matrices.

The objective is to design a state-feedback controller that minimizes the H2 norm
‖Ψdz̃‖2, while guaranteeing a specified upper-bound for the H∞ norm ‖Ψdz‖∞ of the closed-
loop system. Moreover, it is also desired that the closed-loop system satisfy time response
requirements that may be specified in terms of LMI regions.

The solution to this control design problem can be achieved by gathering the LMIs
discussed in the previous sections into a single optimization problem. Consider the state-
feedback control law δuk = −Kχk, a prescribed upper-bound8 γ̃ > ‖Ψdz‖2

∞, and the LMI
regions D1 , Re(eig{Ãχ}) > ε and D2 , |eig{Ãχ}| < $, where Ãχ , Aχ −BχK. In order
to guarantee convexity in the decision variables, a common solution is searched by making
P2 = P∞ = P̄ and X2 = X∞ = T̄1 = T̄2 = X̄ (Chilali & Gahinet, 1996). Then, the

8The upper-bound γ̃ can be obtained by first solving the H∞ control problem, and incrementing the
optimal value obtained.
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aforementioned control design objectives are achieved by solving the optimization problem

min
P̄ ,X̄,Y ,N

trace{N} subject toN HzX̄ +DzuY

∗ X̄ + X̄T − P̄

 > 0,

P̄ AχX̄ +BχY Fχ

∗ X̄ + X̄T − P̄ 024×3

∗ ∗ I3×3

 > 0,


P̄ AχX̄ +BχY Fχ 024×nz

∗ X̄ + X̄T − P̄ 024×3 X̄THT
z + Y TDT

zu

∗ ∗ I3×3 DT
zd

∗ ∗ ∗ γ̃Inz×nz

 > 0,

X̄AT
χ +AχX̄ + Y TBT

χ +BχY − 2εX̄ > 0,−$X̄ AχX̄ +BχY

∗ −$X̄

 < 0,

where the additional constraint X̄ = X̄T > 0 must be imposed, N = NT and P̄ = P̄ T ,
whilst no properties are required on Y . The gain matrix K is obtained from K = −Y X̄−1.

Finally, as in the case of the discrete-time linear quadratic regulator, the feedforward
term (3.18) is introduced in order to apply the control signals to the tilt-rotor UAV with
suspended load.

3.5 Final remarks

This chapter described the design of discrete-time, linear state-feedback control strategies
for path tracking of the suspended load with stabilization of the tilt-rotor UAV.

A discrete-time linear quadratic regulator was proposed for path tracking of the
suspended load with stabilization of the tilt-rotor UAV. The DLQR minimizes the energy
of the tracking error and control signals, and was designed through the solution of a
discrete-time algebraic Riccati equation. The controller was designed based on discrete-
time linearized error dynamics, obtained from the load’s perspective model derived in the
previous chapter, and augmented with integral actions for constant disturbances rejection.

A discrete-time mixed H2/H∞ controller with pole placement constraints was also
proposed for path tracking of the suspended load with stabilization of the tilt-rotor
UAV. The controller featured constant disturbances rejection due to state augmentation,
compensation of external disturbances, and time response guarantees. Its design was
performed through linear matrix inequality (LMI) approach.

The described control strategies rely on full information about the system states in



CHAPTER 3. CONTROL STRATEGIES 79

order to achieve their purposes. The next chapter focuses on the design of state estimation
strategies, for providing this information when it is not available as required by the
state-feedback controllers.
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4
State estimation strategies

In the previous chapter, state-feedback control strategies were designed for path tracking
control of the suspended load with stabilization of the tilt-rotor UAV, based on dynamic
equations formulated from the load’s perspective. These strategies rely on availability
of full information about the system states, at every time instant. However, in real
applications, it is common the case that incomplete state information is available for
feedback connection, and available information is often corrupted with noise.

This chapter focuses on the design of state estimators for providing such information
from available measurements. Two different scenarios are addressed. In the first one, only a
half of the state vector is measured, corresponding to the generalized coordinates, and this
measurement is corrupted with zero-mean Gaussian noise. For this situation, a linearized
Kalman filter is designed for estimation of the entire state vector. In the second one,
the load’s position and orientation w.r.t. to the inertial frame are not directly measured.
It is assumed that available sensors provide information about the aircraft’s position,
orientation and angular velocity, and also about the position of the load with respect to
the UAV, considering bounded noise without assumptions on probability distributions.
Furthermore, the sensors are assumed to have different sampling times. For this last
scenario, a deterministic, zonotopic state estimator is proposed.

The chapter is organized as follows: Section 4.1 introduces a background material for
the zonotopic state estimation algorithm; Section 4.2 describes the design of the linearized
Kalman filter for the first scenario; and Section 4.3 presents the design of the zonotopic
state estimator considering the second scenario.
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4.1 Preliminaries

4.1.1 Interval analysis

This subsection is mainly based on Moore et al. (2009). Notation and definitions are
presented1.

Interval analysis, mostly introduced by Moore (1966), is based on computation with
sets, by regarding real compact intervals as a new number system. It has a wide range
of applications, such as reliable computing, global optimization, solution of nonlinear
equations and differential equations, state and parameter estimation, robot localization,
path planning, and robust control (Jaulin et al., 2001).

Definition 4.1. Let IR denote the set of real compact intervals. An interval aq
x ∈ IR is

defined by
aq

x = [ a, a ] , {a ∈ R : a ≤ a ≤ a}, (4.1)

and a, a ∈ R are called its endpoints.

A real number can be seen as a special case of an interval. Let a ∈ R and aq
x = [ a, a ] ∈ IR,

such that a ∈ aq
x . If a = a, aq

x is called a degenerate interval, which is a singleton. Then,
through (4.1), we have that a = a = a, thus

[ a, a ] = a. (4.2)

Definition 4.2. Let aq
x = [ a, a ] ∈ IR. The midpoint and the diameter of aq

x are defined
by

mid( aq
x ) , a+ a

2 , diam( aq
x ) , a− a,

respectively.

Interval arithmetic defines the four basic operations with intervals.

Definition 4.3. Let aq
x = [ a, a ] ∈ IR and bqx = [ b, b ] ∈ IR. The sum of two intervals is

defined by
aq

x + bqx , {a+ b : a ∈ aq
x , b ∈ bqx }. (4.3)

Definition 4.4. Let aq
x = [ a, a ] ∈ IR and bqx = [ b, b ] ∈ IR. The difference of two intervals

is defined by
aq

x − bqx , {a− b : a ∈ aq
x , b ∈ bqx }. (4.4)

Definition 4.5. Let aq
x = [ a, a ] ∈ IR and bqx = [ b, b ] ∈ IR. The product of two intervals

is defined by
aq

x bqx , {ab : a ∈ aq
x , b ∈ bqx }. (4.5)

1Only the ones necessary for this work. Many other aspects on interval analysis can be found in the
cited references.
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Definition 4.6. Let aq
x = [ a, a ] ∈ IR and bqx = [ b, b ] ∈ IR. The quotient of two intervals

is defined by
aq

x / bqx , {a/b : a ∈ aq
x , b ∈ bqx }, (4.6)

provided that 0 /∈ bqx .

Endpoint expressions for interval arithmetic operations are given by (Moore et al.,
2009)

• aq
x + bqx = [ a, a ] + [ b, b ] = [ a+ b, a+ b ],

• aq
x − bqx = [ a, a ]− [ b, b ] = [ a− b, a− b ],

• aq
x bqx = [ a, a ][ b, b ] = [ min{ab, ab, ab, ab}, max{ab, ab, ab, ab} ],

• aq
x / bqx = [ a, a ]/[ b, b ] = [ a, a ][ 1/b, 1/b ] if 0 /∈ bqx ,

which can be applied to real numbers as well, by regarding them as degenerate intervals.
Interval addition and multiplication are commutative and associative, i.e.,

aq
x + bqx = bqx + aq

x , aq
x + ( bqx + cqx ) = ( aq

x + bqx ) + cqx ,

aq
x bqx = bqx aq

x , aq
x ( bqx cqx ) = ( aq

x bqx ) cqx ,

for any aq
x , bqx , cqx ∈ IR. Moreover, the intervals [ 0, 0 ] and [ 1, 1 ] are the identities of the

sum and product, respectively. On the other hand, the difference and quotient are not the
inverse operations of the sum and product, respectively. The latter can be concluded by
verifying that aq

x − aq
x 6= [ 0, 0 ] and aq

x / aq
x 6= [ 1, 1 ] for a non-degenerate interval aq

x ∈ IR.
Any interval aq

x ∈ IR can be written in terms of its midpoint and diameter, as

aq
x = mid( aq

x ) + 1
2diam( aq

x ) [−1, 1 ]. (4.7)

Elementary functions of intervals are defined by their ranges over them, such as sin aq
x ,

aq
x

2, e aqx , ln aq
x and √ aq

x .

Definition 4.7. An interval vector aq
x ∈ IRn, also called a box, is defined by

aq
x , {a ∈ Rn : ai ≤ ai ≤ ai, i = 1, 2, . . . , n},

where i denotes the i-th element.

Definition 4.8. An interval matrix Aq
x ∈ IRn×m is defined by

Aq
x , {A ∈ Rn×m : aij ≤ aij ≤ aij, i = 1, 2, . . . , n, j = 1, 2, . . . ,m},

where i denotes the i-line and j-th column element.
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The midpoint and diameter are defined component-wise for boxes and interval matrices,
yielding real vectors and real matrices, respectively. On the other hand, real vectors and
real matrices can be regarded as degenerate boxes and degenerate matrices, respectively.

Interval extensions of real valued functions play an important role in interval analysis.
Some of them are now presented.

Definition 4.9 (Natural interval extension). Let aq
x ∈ IRn and f(x) be a real valued

function, with x ∈ Rn, composed of arithmetic operations and elementary functions. Then,
the natural interval extension of f(x) over aq

x , denoted by �N {f(x)}|
x= aqx

, is computed
by replacing every occurrence of xi by ai

q
x , i = 1, 2, . . . , n, arithmetic operations by the

corresponding interval arithmetic ones, and evaluating the ranges of the elementary
functions over the respective ai

q
x .

Definition 4.10 (Mean value extension). Let aq
x ∈ IRn and f(x) be a real valued function.

The mean value extension of f(x) over aq
x , denoted by �MV {f(x)}|

x= aqx
, is defined by

�MV {f(x)}|
x= aqx

, f(mid( aq
x )) + � {∇xf(x)}|

x= aqx
· ( aq

x −mid( aq
x )),

where ∇xf(x) denotes the gradient of f(x) with respect to x (defined as a column vector),
� {f} denotes any interval extension of f , and · denotes scalar product.

At last, an important problem that appears in interval analysis is the so-called interval
dependency. This phenomenon usually occurs when computing an interval extension of a
real valued function in which each variable appears several times, yielding overestimated
results. For instance, let f(x) = x− x, g(x) = x · x and aq

x = [−1, 3 ]. Then,

�N {f(x)}|
x= aqx

= [−1, 3 ]− [−1, 3 ] = [−1− 3, 3 + 1 ] = [−4, 4 ]

and

�N {g(x)}|
x= aqx

= [−1, 3 ][−1, 3 ] = [ min{1,−3, 9}, max{1,−3, 9} ] = [−3, 9 ],

which are overestimated, since it is clear that f(x) = 0 ∀x ∈ R and g(x) ∈ [ 0, 9 ] ∀x ∈ [−1, 3 ].

4.1.2 Zonotopes

This subsection is mainly based on Alamo et al. (2005) and Le et al. (2013a).
Zonotopes are a special class of convex, symmetric polytopes that have become popular

in set-membership techniques due to several properties. Their applications include set-
membership state and parameter estimation, system identification and fault detection.

Definition 4.11. The Minkowski sum of two sets X,Y ⊂ Rn is defined by

X⊕ Y , {x+ y : x ∈ X, y ∈ Y}. (4.8)
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Definition 4.12. Given a vector c ∈ Rn and a set of vectors {g1, g2, . . . , gr}, with gj ∈ Rn,
j ∈ {1, 2, . . . , r}, r ≥ n, a r-zonotope Z in Rn is defined by

Z , {x ∈ Rn : x = c+
r∑
i=1

αigi, |αi| ≤ 1}, (4.9)

where c is called its center, g1, g2, . . . , gr its generators, and r its order.

Let B denote the unitary interval [−1, 1 ], and Br denote a r-dimensional unitary box,
which is the Cartesian product of r unitary intervals. A zonotope can be interpreted in
terms of the Minkowski sum of line segments. Define the line segment associated with gi
as giB , {x ∈ Rn : x = αigi, |αi| ≤ 1}. Then,

Z = c⊕ g1B⊕ g2B⊕ · · · ⊕ grB. (4.10)

A third, more compact representation of a zonotope is given by an affine transformation
of a unitary box. Let G , [g1 g2 · · · gr] ∈ Rn×r, then

Z = c⊕GBr, (4.11)

where G is called its generator matrix. Figure 4.1 illustrates an example of a zonotope.

x1x2

x
3

-2
0

2
4

-2024
-2
-1
0
1
2
3
4

c =

1
1
1


G =

1 1 0 −1 0
0 −1 1 −1 1
1 0 −1 0 1



Figure 4.1: A 5-zonotope in R3.

Zonotopes can represent symmetric polytopes with arbitrary complexity, which increases
according to their order. Moreover, they are closed under the Minkowski sum and linear
image:

Z1 ⊕ Z2 = (c1 + c2)⊕ [G1 G2]Br1+r2 ,

AZ , {Ax : x ∈ Z} = (Ac)⊕ (AG)Br.
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From the commutativity of the Minkowski sum in (4.10), we have also that the columns
of the generator matrix of a zonotope can be permuted without modifying the zonotope.

A box is a special case of a zonotope, in which the generator matrix is square and
diagonal. Similarly to (4.7), every box aq

x ∈ IRn can be written as

aq
x = mid( aq

x ) + 1
2diag(diam( aq

x ))


[−1, 1 ]

...
[−1, 1 ]

 = mid( aq
x )⊕ 1

2diag(diam( aq
x ))Bn,

where the interval addition was regarded as a Minkowski sum since their definitions are
equivalent (see (4.3) and (4.8)).

Theorem 4.1. (Le et al., 2013a; Kühn, 1998) Consider a zonotope Z , c ⊕GBr ⊂ Rn.
Then, the smallest box containing Z is given by c⊕rs(G)Bn, which is also called the interval
hull of Z, where rs(G) (row sum) is a diagonal matrix such that rs(G)ii ,

∑r

j=1 |Gij|.

For convenience, this work regards the interval hull of a zonotope as an “interval
extension” of it, i.e.

� {Z} , c⊕ rs(G)Bn.

Theorem 4.2. (Alamo et al., 2005) Define a family of zonotopes as Z q
x

= c ⊕ Gq
x Br ,

{Z = c⊕GBr ⊂ Rn : G ∈ Gq
x }, and the zonotope inclusion �{Z q

x
} , c⊕ [mid( Gq

x ) H ]Bn+r,
where Hii , (1/2)

∑r

j=1 diam
(
Gq

x ij

)
. Under these definitions, �{Z q

x
} ⊇ Z q

x
.

4.1.3 Strips

Strips are sets commonly used in set-membership techniques as auxiliary entities.
A strip is a set defined by S , {x ∈ Rn : |ρTx− γ| ≤ σ} ⊂ Rn, bounded by the parallel

hyperplanes {x ∈ Rn : ρTx = γ + σ} and {x ∈ Rn : ρTx = γ − σ}, where γ and σ are real
scalars, and ρ ∈ Rn (Vicino & Zappa, 1996). Figure 4.2 illustrates an example of a strip in
R2.

4.2 Linearized Kalman filter

This section presents the design of a linearized Kalman filter for the tilt-rotor UAV with
suspended load. It is considered a fictitious scenario in which only the first half of the
state vector (2.56) is measured, corrupted with additive noise, i.e.,

yk = qk + vk =
[
I10×10 010×10

]
xk + vk, (4.12)

where v ∈ R10 corresponds to the measurement noise and q is given by (2.26).
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Figure 4.2: A strip in R2.

4.2.1 State-space equations for Kalman filtering

In order to design a linearized Kalman filter (LKF) to provide the entire state vector, the
linearized state-space equations (3.4) are evaluated at an equilibrium point, resulting in a
time-invariant system, and discretized using the ZOH method for the controller sampling
time Tc, yielding2

∆xk = Ad∆xk−1 +Bd∆uk−1 + Fddk−1 +wk−1, (4.13)

with ‘d’ denoting discrete-time, Ad ∈ R20×20, Bd ∈ R20×4, Fd ∈ R20×3, and w ∈ R20 represents
unmodeled dynamics associated with linearization (truncated terms of the Taylor series
expansion).

In order to improve the state estimation, inspired by the work of Rigatos & Raffo
(2015), the external disturbances affecting the system are also estimated, by augmenting
the state vector ∆x with the disturbance vector d, leading to∆xk

dk


︸ ︷︷ ︸

νk

=

 Ad Fd

03×20 I3×3


︸ ︷︷ ︸

Aν

∆xk−1

dk−1


︸ ︷︷ ︸

νk−1

+

 Bd

03×4


︸ ︷︷ ︸
Bν

∆uk−1 +

wk−1

d̃k−1


︸ ︷︷ ︸
w̄k−1

,

where d̃k−1 , dk−dk−1. Moreover, rewriting the measurement equation (4.12) as a function
of the augmented state vector yields

∆yk =
[
I10×10 010×10 010×3

]
︸ ︷︷ ︸

Hν

∆xk
dk


︸ ︷︷ ︸

νk

+vk,

where ∆yk = yk − yeq = yk − qeq. Therefore, the discrete-time state-space equations to be
2In order to avoid misleading, (·)tr , (·)eq and δ(·) , ∆(·).
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used in the linearized Kalman filter algorithm are given by

νk = Aννk−1 +Bν∆uk−1 + w̄k−1, (4.14)

∆yk = Hννk + vk. (4.15)

Remark 4.1. As mentioned in Chapter 3, due to limited computational resources, an
analytical expression for Ac(t) could not be obtained. Hence, if the linearization were per-
formed around the desired trajectory or the estimated state vector, instead of an equilibrium
point, it would not be possible without making Ac(t) ≈ Ac(t)|utr=ueq, which in turn leads to
estimation error. The same fact also prevents the use of an Extended Kalman Filter, for
instance, since the knowledge of an analytical expression of the Jacobian matrix of the
system would be required.

4.2.2 Filter algorithm

The linear Kalman filter, proposed by Kalman (1960), is a two-step optimal state estimator
with predictor-corrector structure, whose algorithm is based on the propagation of mean
and covariance of Gaussian distributions through linear discrete-time dynamic systems.

To design a LKF based on the state-space equations (4.14)-(4.15), the unmodelled
dynamics w̄ are regarded as process noise. Moreover, w̄ and v are assumed to be white,
uncorrelated signals with zero-mean Gaussian distribution, and known, constant covariance
matrices denoted by Pw ∈ R23×23 and P v ∈ R10×10, respectively.

Let (̂·) denote estimated variables, and (·)m|n denote information at time instant m
given measurements up to instant n. Furthermore, suppose that previously estimated
states ν̂k−1|k−1 are available. Then, the state vector ν̂k|k−1 is given through propagation of
mean values in (4.14), yielding the prediction step

ν̂k|k−1 = Aν ν̂k−1|k−1 +Bν∆uk−1,

whilst ν̂k|k is given by the correction step, defined as

ν̂k|k = ν̂k|k−1 +Nk(∆yk −Hνν̂k|k−1),

being Nk the so-called Kalman gain.
Define ν̃k , νk − ν̂k|k as the estimation error, and let P ν

k|k , E [ν̃kν̃Tk ], where E [·] denotes
expected value. Then, propagation of covariances in (4.14) yields

P ν
k|k−1 = AνP

ν
k−1|k−1A

T
ν + Pw,
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whilst propagation of covariances in the correction step yields

P ν
k|k = (I20×20 −NkHν)P ν

k|k−1(I20×20 −NkHν)T +NkP
vNT

k .

The Kalman gain is computed in such a way that the LKF provides estimates with
minimum-variance error, i.e., the cost function

JLKF = tr
{
P ν
k|k

}
is minimized. The solution of this optimization problem is given by the gain update
equation (Simon, 2006)

Nk = P ν
k|k−1H

T
ν (HνP

ν
k|k−1H

T
ν + P v)−1.

The design of the LKF lies in the appropriate choice of the covariance matrices Pw,
P v, and P ν

0|0, and also the initial estimate ν̂0|0. In the case of the tilt-rotor UAV with
suspended load, for the considered scenario, P v is given according to the measurement
noise vk, while Pw and P ν

0|0 must be chosen by trial and error. For instance, P ν
0|0 should

be chosen such that P ν
k|k does not significantly changes over time (Simon, 2006, p. 140),

and Pw can first be chosen sufficiently small and adjusted incrementally by verifying the
estimation error consistency of innovation whiteness (Candy, 2009, Section 5.7). The LKF
algorithm based on the dynamic system (4.14)-(4.15) is summarized in Algorithm 4.1.

Algorithm 4.1 Linearized Kalman filter algorithm
1: procedure LKF(ν̂k−1|k−1,∆uk−1,yk,P

w,P v,P ν
k−1|k−1)

2: ν̂k|k−1 ← Aν ν̂k−1|k−1 +Bν∆uk−1

3: P ν
k|k−1 ← AνP

ν
k−1|k−1A

T
ν + Pw

4: Nk ← P ν
k|k−1H

T
ν (HνP

ν
k|k−1H

T
ν + P v)−1

5: ν̂k|k ← ν̂k|k−1 +Nk(∆yk −Hν ν̂k|k−1)
6: P ν

k|k ← (I20×20 −NkHν)P ν
k|k−1(I20×20 −NkHν)T +NkP

vNT
k

7: return ν̂k|k, P ν
k|k

8: end procedure

4.3 Zonotopic state estimator

This section presents the design of a zonotopic state estimator (ZSE) for the tilt-rotor
UAV with suspended load. A more realistic scenario is considered, in which the load’s
position and orientation are not directly measured. The following sensors are assumed to
be available:

• A Global Positioning System (GPS) equipment, providing the position of the UAV3

3In this work, the position and orientation of the UAV refer to the origin and orientation of the



CHAPTER 4. STATE ESTIMATION STRATEGIES 89

with respect to the inertial reference frame I, along axes x and y;

• A barometer, providing the position of the UAV with respect to I, along axis z;

• An Inertial Measurement Unit (IMU), providing the orientation and angular velocity
of the UAV with respect to I, the latter expressed in the geometric center frame B;

• A camera, providing the position of the load with respect to the UAV, expressed in
B;

• Embedded sensors at the servomotors, providing the tilting angles and their time
derivatives.

Moreover, the provided information is assumed to be corrupted with additive noise,
and each sensor has its own sampling time.

4.3.1 Measurement equation

The objective of this subsection is to obtain an equation of the form yk = π(xk) + vk, to
be used in the zonotopic state estimation algorithm, where yk is the measured vector at
time instant k, and vk correspond to measurement noise.

Let ξB , [xB yB zB]T denote the position of the UAV with respect to I, shown in Figure
4.3. Then, the following holds

ξB(ξ,η) = ξ +RILdLB. (4.16)

dBBL

x y

z

I
L

B

ψB

φB θB

ξB

ξ

Figure 4.3: Position and orientation of the tilt-rotor UAV, and load’s position, as measured
from the available sensors.

geometric center frame B, respectively.
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The orientation of the aircraft with respect to I, analogously to the load’s one, is
assumed to be parametrized by Euler angles, denoted by ηB , [φB θB ψB]T , using the local
roll-pitch-yaw convention. Therefore,

RIB , Rz,ψBRy,θBRx,φB =


cψBcθB cψBsθBsφB − sψBcφB cψBsθBcφB + sψBsφB
sψBcθB sψBsθBsφB + cψBcφB sψBsθBcφB − cψBsφB
−sθB cθBsφB cθBcφB

 .

However, we have also that RIB = RILR
L
B. Hence, if θB 6= ±π/2,

φB(η,γ) = arctan
(

(RILRLB)32

(RILRLB)33

)
, (4.17)

θB(η,γ) = arcsin (−(RILRLB)31) , (4.18)

ψB(η,γ) = arctan
(

(RILRLB)21

(RILRLB)11

)
. (4.19)

The angular velocity provided by the IMU is given by

ωBIB(η,γ, η̇, γ̇) = ωBIL + ωBLB = (RLB)TWηη̇ +Qγ̇, (4.20)

where η = [φ θ ψ]T are the Euler angles parametrizing the orientation of the load with
respect to I, γ = [γ1 γ2]T are the angles describing the orientation of the UAV with respect
to the rod, Wη and Q are defined in (2.17) and (2.18), respectively.

Let dBBL denotes the displacement vector from B to L, expressed in B, which is the
measurement provided by the camera (see Figure 4.3). Therefore,

dBBL(γ) = −dBLB = −(RLB)TdLLB , −(RLB)TdLB. (4.21)

Gathering (4.16)-(4.21) along with the system states αR, αL, α̇R and α̇L, and adding
the measurement noise vk, leads to the nonlinear measurement equation

yk = π(xk) + vk ,



ξB(ξ,η)
φB(η,γ)
θB(η,γ)
ψB(η,γ)

ωBIB(η,γ, η̇, γ̇)
dBBL(γ)
αR

αL

α̇R

α̇L



+ vk =



ξ +RIBdLB
arctan ((RILRLB)32/(RILRLB)33)

arcsin (−(RILRLB)31)
arctan ((RILRLB)21/(RILRLB)11)

(RLB)TWηη̇ +Qγ̇
−(RLB)TdLB

αR

αL

α̇R

α̇L



+ vk, (4.22)
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with yk,vk ∈ R16.

4.3.2 Zonotopic state estimation algorithm

This subsection presents the state estimation algorithm proposed by Alamo et al. (2005) for
nonlinear, single-output discrete-time systems, based on zonotopes and strips. According
to Kühn (1998), orbits of discrete-time systems can be bounded by zonotopes with
sub-exponential overestimation.

Consider the nonlinear discrete-time system

xk = f(xk−1,wk−1),

yk = g(xk,vk),
(4.23)

where xk ∈ Rnx are the system states, yk ∈ R is the system measurement, wk ∈ Rnw

represents process disturbances and parametric uncertainties, and vk ∈ Rnv represents
measurement noise. Assume that wk, vk, and x0 belong to known compact sets W, V and
X0, respectively.

Given the compact set Xk−1, such that xk−1 ∈ Xk−1, the uncertain trajectory of the
system (4.23) is defined as the set of values that the time update equation f achieve for
all possible xk−1 ∈ Xk−1 and w ∈W, denoted by f(Xk−1,W). Moreover, given the measured
output yk, the consistent state set is defined as Xyk

, {x ∈ Rnx : yk ∈ g(x,V)}, and the
exact uncertain state set is defined as the intersection between the uncertain trajectory of
the system and the consistent state set, denoted as Xk , f(Xk−1,W) ∩ Xyk

.
Suppose that a previously estimated set X̂k−1 is available. Then, a zonotope X̄k bounding

the uncertain trajectory f(X̂k−1,W) can be obtained through the following theorem.

Theorem 4.3 (Generalization of Kühn’s method). (Alamo et al., 2005) Given a function
f(x,w) with x ∈ X ⊂ Rnx and w ∈W ⊂ Rnw , in which X , cx⊕GxBrx and W , cw⊕GwBrw

are known zonotopes. Define

• A zonotope Zq , cq ⊕GqBrq such that f(cx,W) ⊆ Zq;

• An interval matrix M q
x , �{∇xf(X,W)}Gx ;

• A zonotope ZΨ , Zq ⊕ �{ M q
x Brx}.

Then, ZΨ ⊇ f(X,W).

This operation is called prediction step, as an analogy to the Kalman filter algorithm.
Moreover, given the measured output yk and the zonotope X̄k, a strip X̄yk

, such that
X̄k ∩ Xyk

⊆ X̄k ∩ X̄yk
, can be computed through the following theorem.

Theorem 4.4. (Alamo et al., 2005) Given the zonotope X̄k ⊂ Rnx and the measured output
yk, compute by means of interval arithmetic, ρ ∈ Rnx, s ∈ R and σ ∈ R, such that
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• ρ = mid
(
�{∇xg(X̄k,V)}

)
;

• ρT X̄k − g(X̄k,V) ⊆ [s− σ, s+ σ].

Then, X̄k ∩ Xyk
⊆ X̄k ∩ X̄yk

, where X̄yk
, {x ∈ Rnx : |ρTx− yk − s| ≤ σ}.

A zonotope bounding the intersection X̄k ∩ X̄yk
is obtained through the next theorem.

Theorem 4.5. (Alamo et al., 2005) Given a zonotope Z , c⊕GBr ⊂ Rn, a strip S , {x ∈
Rn : |ρTx− γ| ≤ σ} and a vector λ ∈ Rn. Define

• cI(λ) , c+ λ(γ − ρTc);

• GI(λ) , [(In×n − λρT )G σλ].

Then, Z ∩ S ⊆ ZI(λ) , cI(λ)⊕GI(λ)Br+1.

The last two operations together are called update step4. The resulting zonotope is
parametrized by a vector λ ∈ Rnx , which is chosen according to specific criteria. A choice
that minimizes the Frobenius norm of its generator matrix is given by the next theorem.

Theorem 4.6. (Alamo et al., 2005) Let ZI(λ) = cI(λ) ⊕GI(λ)Br+1 ⊂ Rn, where cI(λ) ,
c + λ(γ − ρTc) and GI(λ) , [(In×n − λρT )G σλ]. Then, λ = (GGTρ)/(ρTGGTρ + σ2)
minimizes the Frobenius norm of GI(λ).

The ZSE algorithm is composed of the aforementioned steps, being summarized in
the Algorithm 4.2. Although formulated for single-output systems, the ZSE can be
applied to multi-output systems, by performing the update step using each element of
the measurement vector in an iterative manner (Le et al., 2013b). Moreover, the ability
of dealing with measurements individually allows it to handle situations in which the
measurement vector is incomplete, which happens, for instance, when available sensors
have different sampling times.

Algorithm 4.2 Zonotopic state estimator algorithm
1: Compute the zonotope X̄k ⊇ f(X̂k−1,W) by means of Theorem 4.3
2: Compute the strip X̄yk

by means of Theorem 4.4
3: Compute the zonotope X̂k(λ) ⊇ X̄k ∩ X̄yk

by means of Theorem 4.5

4The terminologies prediction step and update step are not used in Alamo et al. (2005), but in the
more recent work of Le et al. (2013b).
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4.3.3 ZSE for the tilt-rotor UAV with suspended load

Despite the state estimator being formulated for nonlinear systems, the computational
burden of bounding the uncertain trajectory for (2.57) through Theorem 4.3 is very high5.
Therefore, the linear discrete-time system (4.13) is used instead. Moreover, as well as in
the linearized Kalman filter design, the state vector ∆x is augmented with the disturbances
vector d, thus the time update equation to be used in the prediction step is given by

νk = Aννk−1 +Bν∆uk−1 + w̄k−1, (4.24)

with ν ∈ R23, Aν ∈ R23×23, Bν ∈ R23×4 and w̄ ∈ R23.
Assume that νk−1 and w̄ belong to zonotopes X̂k−1 , cx̂k−1 ⊕ Gx̂k−1B

rx̂k−1 and W̄ ,

cw̄ ⊕Gw̄Brw̄ , respectively. Applying Theorem 4.3 to equation (4.24) yields

Zq = (Aννk−1 +Bν∆uk−1 + w̄k−1)|
νk−1=cx̂k−1
w̄k=W̄

= Aνcx̂k−1 ⊕Bν∆uk−1 ⊕ W̄

= Aνcx̂k−1 ⊕Bν∆uk−1 ⊕ cw̄ ⊕Gw̄Brw̄

= (Aνcx̂k−1 +Bν∆uk−1 + cw̄)⊕Gw̄Brw̄ ,

M q
x = � {∇ν(Aννk−1 +Bν∆uk−1 + w̄k−1)} |

νk−1=X̂k−1
w̄k−1=W̄ Gx̂k−1

= � {Aν} |
νk−1=X̂k−1
w̄k−1=W̄ Gx̂k−1 = AνGx̂k−1 ,

�{ M q
x Brx̂k−1} = �{AνGx̂k−1B

rx̂k−1} = AνGx̂k−1B
rx̂k−1 ,

X̄k = Zq ⊕ �{ M q
x Brx̂k−1} = (Aνcx̂k−1 +Bν∆uk−1 + cw̄)⊕Gw̄Brw̄ ⊕AνGx̂k−1B

rx̂k−1

= (Aνcx̂k−1 +Bν∆uk−1 + cw̄)⊕ [Gw̄ AνGx̂k−1 ]Brw̄+rx̂k−1 (4.25)

Hence, the prediction step is performed through equation (4.25). For the update
step, the nonlinear mapping (4.22) can be used for obtaining the strip X̄yk(i), by means of
Theorem 4.4, where yk(i) stands for i-th element of yk. The whole predicted set X̄k appears
at least twice in the computation of the parameters s and σ, which is made through interval
arithmetic. Therefore, due to interval dependency, it may result in a very large strip such
that the intersection is X̄k itself. The following theorem shows that this problem can be
avoided if the measurement equation is linear.

5It is necessary to perform interval extensions on the gradient of the time-update equation (obtained
through Euler approximation of (2.57), for instance) at each time step. As mentioned in Chapter 3, due
to limited computational resources, an analytical expression for M(q)−1 could not be obtained, hence
neither for ϕ(x,u,d), which is needed for computing an analytical expression for the gradient.
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Lemma 4.1. Consider the predicted zonotope X̄k and the linear measurement equation
yk = g(xk,vk) ,Hxk +vk, where y ∈ Rny are the measured outputs, x ∈ Rnx are the system
states, v ∈ V, V , cv ⊕GvBrv ⊂ Rny corresponds to measurement noise, and H ∈ Rny×nx.
If interval extensions are performed properly, the strip obtained through Theorem 4.4 using
the i-th element of the measured vector does not depend on X̄k.

Proof. Consider the measurement equation yk(i) = g(i)(xk,vk), where (i) denotes i-th line.
From Theorem 4.4,

ρ = mid
(
� {∇x(g(i)(xk,vk))} |xk=X̄k

vk=V

)
= mid

(
� {∇x(H(i)xk + vk(i))} |xk=X̄k

vk=V

)
= mid

(
� {H(i)T} |xk=X̄k

vk=V

)
= mid(H(i)T ) = H(i)T .

Moreover, define h(xk,vk) , ρTxk − g(i)(xk,vk). Then,

� {h(xk,vk)} |xk=X̄k
vk=V = � {ρTxk − (H(i)xk + vk(i))} |xk=X̄k

vk=V = � {H(i)xk −H(i)xk − vk(i)} |xk=X̄k
vk=V .

Depending on the adopted interval extension, interval dependency may occur due to
H(i)xk − H(i)xk, which is not zero in interval arithmetic. This issue is avoided by
performing the subtraction before the interval extension, yielding

� {−vk(i)} |xk=X̄k
vk=V = − (cv ⊕ rs (Gv)Brv) (i) = −

(
cv(i)⊕

rv∑
j=1

|Gv(i, j)|B
)

=
[
−cv(i)−

rv∑
j=1

|Gv(i, j)|, − cv(i) +
rv∑
j=1

|Gv(i, j)|
]
, [s− σ, s+ σ],

where (i, j) denotes the element from the i-th line and j-th column. Hence, the strip
parameters are given by ρ = H(i)T , s = −cv(i), and σ =

∑rv
j=1 |Gv(i, j)|, which do not

depend on any parameter of the predicted zonotope X̄k. �

Based on this fact, the measurement equations (4.22) are also linearized around an
equilibrium point, yielding

yk − π(xeq) = Hd∆xk + vk, Hd ,
∂π(x)
∂x

∣∣∣∣
x=xeq

∈ R16×20,

with v now including unmodeled dynamics due to linearization. The last equation can be
rewritten as

yk =
[
Hd 016×3

]
︸ ︷︷ ︸

Hν

∆xk
dk


︸ ︷︷ ︸

νk

+π(xeq) + vk︸ ︷︷ ︸
v̄k

.

Therefore, the measurement equations to be used in the update step are given by

yk = Hννk + v̄k, (4.26)
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with Hν ∈ R16×23.
Consider the predicted zonotope X̄k , cx̄k ⊕Gx̄k

Brx̄k , and assume that v̄ ∈ V̄, where
V̄ , cv̄ ⊕Gv̄Brv̄ . Hence, Theorems 4.4, 4.5, and 4.6, and equation (4.26), yield the update
step for the i-th element of the measured vector yk,

X̂k = (cx̃k + λ(yk(i) + s− ρTcx̃k))⊕ [(I23×23 − λρT )Gx̃k
σλ]Brx̃k+1, (4.27)

with ρ = Hν(i)T , s = −cv̄(i), σ =
∑rv̄

j=1 |Gv̄(i, j)| and

λ =
Gx̄k

GT
x̄k
ρ

ρTGx̄k
GT
x̄k
ρ+ σ2

.

Note from (4.25) and (4.27) that the order of X̂k increases at each time step. Algorithm
4.3, proposed by Combastel (2003), corresponds to an order reduction technique that can
be used in order to prevent it from increasing indefinitely, by computing a lower-order
zonotope bounding X̂k.

Algorithm 4.3 Zonotope order reduction algorithm
1: procedure order_reduction(X̂k, rmax)
2: H ← columns of Gx̂k

ordered in decreasing Euclidean norm
3: HT ← first rmax − nx columns of H
4: for i = 1, ..., nx do
5: Qii ←

∑rx̂k
j=rmax−nx+1 |Hij|

6: end for
7: X̂k ← cx̂k ⊕ [HT Q]Brmax

8: return X̂k

9: end procedure

Denote Ik as the set of available measurements at time instant k, which is given
according to the sensors’ sampling times. Then, gathering (4.25) for performing the
prediction step, and (4.27) for performing the update step, the latter iteratively for all
i ∈ Ik, yields the Algorithm 4.4.

The design of the zonotopic state estimator lies in the appropriate choice of the
zonotopes W̄ and V̄. On the other hand, a zonotope containing the system’s initial states,
X̄0, must also be proposed, to which an initial update step must be applied, using initial
measurements y0, in order to obtain X̂0.

Finally, as a drawback from using linearized state-space equations in the zonotopic
state estimation algorithm, the property νk ∈ X̂k is guaranteed only if the chosen zonotopes
W̄ and V̄ contain all the linearization effects. Moreover, by augmenting the state vector
with the external disturbances, bounds must be assumed on their variations within the
controller sampling time, instead of bounds on their magnitudes.
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Algorithm 4.4 Zonotopic state estimator for the tilt-rotor UAV with suspended load
1: procedure ZSE(X̂k−1,∆uk−1,yk, W̄, V̄, Ik, rmax)
2: X̄k ← (Aνcx̂k−1 +Bν∆uk−1 + cw̄)⊕ [Gw̄ AνGx̂k−1 ]Brw̄+rx̂k−1

3: X̃k ← X̄k

4: for all i ∈ Ik do
5: ρ←Hν(i)T
6: s← −cv̄(i)
7: σ ←

∑rv̄
j=1 |Gv̄(i, j)|

8: λ← (Gx̃k
GT
x̃k
ρ)/(ρTGx̃k

GT
x̃k
ρ+ σ2)

9: X̃k ← (cx̃k + λ(yk(i) + s− ρTcx̃k))⊕ [(I23×23 − λρT )Gx̃k
σλ]Brx̃k+1

10: end for
11: X̂k ← X̃k

12: X̂k ← order_reduction(X̂k, rmax)
13: return X̂k

14: end procedure

4.4 Final remarks

This chapter described the design of state estimFators for providing full information
about the system states to the state-feedback controllers, considering scenarios in which
incomplete and corrupted with noise state information is available.

Assuming a scenario in which only the generalized coordinates are measured, corrupted
with zero-mean Gaussian noise, a linearized Kalman filter was proposed for estimation of
the entire state vector. The filter was designed based on discrete-time linearized dynamics,
augmented with external disturbances for improved state estimation, in which unmodeled
dynamics due to linearization were regarded as process noise.

A second scenario was considered, in which the load’s position and orientation w.r.t. to
the inertial frame are not directly measured. Available sensors provided information about
the aircraft’s position, orientation and angular velocity, and the position of the load with
respect to the UAV. Unknown but bounded noise was considered, without assumptions on
probability distributions, and sensors were assumed to have different sampling times. A
zonotopic state estimator was proposed for estimation of the entire state vector.

The next chapter presents simulation results to evaluate the control and state estimation
strategies developed so far, in which different trajectories are tracked by the suspended
load, in the presence of external disturbances.
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5
Simulation results

In the previous chapters, dynamic equations were obtained for the tilt-rotor UAV with
suspended load, formulated from the load’s perspective, and state-feedback control strate-
gies were designed for path tracking control of the suspended load. Furthermore, state
estimation algorithms were also proposed, considering different situations with respect to
available measurements.

This chapter evaluates the proposed control and state estimation strategies through
simulations in MATLAB/SimulinkR© environment. Three scenarios are addressed, concern-
ing available measurements: (i) full state information, in which the entire state vector is
measured without noise, at every time instant; (ii) the linearized Kalman filter scenario,
described in Section 4.2; and (iii) the zonotopic state estimator scenario, described in
Section 4.3. Two trajectories are explored, and the suspended load is subject to external
disturbances.

The chapter is organized as follows: Section 5.1 presents the physical parameters of
the tilt-rotor UAV with suspended load, desired trajectories, external disturbances and
performance indexes considered in the simulations; Sections 5.2, 5.3, and 5.4 present and
discuss simulation results for the first, second and third scenarios, respectively; and Section
5.5 discusses comparative results between scenarios.
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5.1 Simulation specifications

5.1.1 System parameters

Table 5.1 shows the physical parameters of the tilt-rotor UAV with suspended load, for the
dynamic model (2.55) (see also Figure 2.4). The UAV’s mass, inertia and displacement
parameters were obtained from a Computed Aided Design (CAD) model of the ProVANT
UAV 2.0, designed in SolidworksR© software, illustrated in Figure 2.3. The gravitational
acceleration was considered constant, and the parameters kτ and b are the same considered
in Almeida (2014) and Donadel (2015). The parameters λR and λL are given according
to the direction of rotation of the UAV’s propellers: the right propeller rotates counter-
clockwise, and the left propeller rotates clockwise. The parameters related to the suspended
load, i.e., its mass and inertia matrix, as well as the rod’s length and the viscous friction
constant, are the same considered in Almeida (2014).

Table 5.1: Physical parameters of the tilt-rotor UAV with suspended load.

Parameter Value
mL 0.05000 Kg
m1 1.70249 Kg

m2, m3 0.13973 Kg
dLB [0 0 0.5]T m
dBC1 [−0.00433 0.00060 − 0.04559]T m
dBC2 [0.00002 − 0.27761 0.05493]T m
dBC3 [0.00077 0.27761 0.05493]T m
IL 2.645 · 10−6 · I3×3 Kg·m2

I1

3697.66749 0.36342 −9.51029
∗ 840.10403 0.61804
∗ ∗ 3865.05354

 · 10−6 Kg·m2

I2

441.68245 0 0
∗ 441.67985 −1.07006
∗ ∗ 0.64418

 · 10−6 Kg·m2

I3

441.68245 0 0
∗ 441.67985 1.07006
∗ ∗ 0.64418

 · 10−6 Kg·m2

ĝ [0 0 − 9.81]T m/s2

kτ 1.7 · 10−7 N·m·s2

b 9.5 · 10−6 N·s2

(λR, λL) (1,−1)
β 5o

µγ 0.005 N·m/(rad/s)

These physical parameters resulted in the following equilibrium point1:
1Computed using Simulink’s linear analysis tool, which implements optimization algorithms to find an

equilibrium point of the system based on specified constraints.
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qeq = [0 0 0 0 0 0 0.00015321 0.02808172 0.02820590 0.02774474]T ,

q̇eq = 010×1, ueq = [9.98729372 10.02221862 0 0]T .
(5.1)

The equilibrium values were used to obtain the linearized state-space equations described
in Chapters 3 and 4. Moreover, the actuators of the aircraft are assumed to saturate at
given values, as shown in Table 5.2.

Table 5.2: Saturation levels of the aircraft’s actuators.

Control input Minimum value Maximum value
fR 0 N 30 N
fL 0 N 30 N
ταR -2 N·m 2 N·m
ταL -2 N·m 2 N·m

The controller sampling time was chosen as Tc = 12 ms, which is the highest sampling
time of the actuators available for the ProVANT UAV 2.0. For this sampling time and
the physical parameters in Table 5.1, using the theorems presented in Section 3.1.2, the
discrete-time system (3.9) is controllable, and system (4.14)-(4.15) is observable. On the
other hand, the observability of system (4.24)-(4.26), which corresponds to the scenario
with different sampling times, could not be verified using theorem (3.2), since not every
measurement is available at each time instant. However, considering linear state-space
equations obtained from removing elements from the measurement vector, only the linear
system associated with the complete measurement vector was verified to be observable.

5.1.2 Desired trajectories

Two reference trajectories were specified for path tracking of the suspended load. The first
one is a circular trajectory in the three-dimensional Euclidean space, defined by

xtr(t) = 2 cos
(
πt

20

)
m, ytr(t) = 2 sin

(
πt

20

)
m, ztr(t) = 9− 8 cos

(
πt

20

)
m,

in which the initial position of the load is displaced by 30 cm from the desired trajectory
in each axis: x(0) = 1.7 m, y(0) = 0.3 m and z(0) = 0.7 m. This trajectory was proposed in
order to evaluate the performance of the designed control and state estimation strategies
in a scenario without aggressive maneuvers. Figure 5.1 illustrates this trajectory.

The second trajectory, defined in Table 5.3, is composed of several connected paths.
The initial position of the load is displaced by 30 cm from the desired trajectory along
axes x and y: x(0) = 0.3 m, y(0) = −0.3 m and z(0) = 0 m. This trajectory was proposed
to evaluate the performance of the designed strategies in a more diversified scenario,
starting with vertical take-off in a spiral path, straight line following with rapid changing
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in direction, and vertical landing. Figure 5.2 illustrates the second trajectory. In both
cases, the initial conditions of the remaining states are equilibrium values, and ψtr = 0 rad.

Table 5.3: Paths composing the second reference trajectory.

Time (sec) xtr(t) (m) ytr(t) (m) ztr(t) (m)
0 ≤ t < 10 0.01t2 cos

(
πt

4

)
sin
(
πt

20

)
sin
(
πt

4

)
2.5− 2.5 cos

(
πt

10

)
10 ≤ t < 19 −π

4 (t− 10) 1 5
19 ≤ t < 20 − 9π

4 − 0.5 sin
(
π

2 (t− 19)
)

1.5− 0.5 cos
(
π

2 (t− 19)
)

5
20 ≤ t < 29 − 9π

4 − 0.5 1.5 + π

4 (t− 20) 5
29 ≤ t < 30 − 9π

4 − 0.5 cos
(
π

2 (t− 29)
)

1.5+ 9π
4 +0.5 sin

(
π

2 (t− 29)
)

5
30 ≤ t < 40 − 9π

4 + π

4 (t− 30) 2 + 9π
4 5

40 ≤ t − pi

80 t
2 + 5π

4 t−
119π

4 2 + 9π
4 2.5+2.5 cos

(
π

10(t− 40)
)

x (m)
y (m)

z
(m

)

-2

-1
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1
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-1

0
1

2
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10
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Initial reference
Initial position

Figure 5.1: The first reference trajectory. The initial reference position and initial position
of the load are also depicted.

5.1.3 External disturbances

In order to evaluate the disturbance compensation capabilities of the proposed strategies,
external forces are applied to the suspended load as the path tracking is performed. Figures
5.3 and 5.4 show the disturbance profiles for the desired trajectories, which represent
sustained wind gusts affecting the load, and consist of steps filtered by first order filters
with time constant equal to 0.5 seconds2. The profiles differ one from another only by the

2Filtering was necessary since the disturbance variations within the controller sampling time must be
bounded in order to design the zonotopic state estimator.
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Figure 5.2: The second reference trajectory. The initial reference position and initial
position of the load are also depicted.

time of application of the disturbances, which is given according to the simulation total
time.

t (sec)

d
(N

)

0 5 10 15 20 25 30 35 40

0

0.05

0.1
dx dy dz

Figure 5.3: Disturbance profile for the first reference trajectory.

t (sec)

d
(N

)

0 5 10 15 20 25 30 35 40 45 50

0

0.05

0.1
dx dy dz

Figure 5.4: Disturbance profile for the second reference trajectory.

The magnitude of the disturbances may look low at a first glance, however the mass of
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the load is very small (0.05 Kg), as shown in Table 5.1. Therefore, the resulting acceleration
is somewhat considerable3.

5.1.4 Performance indexes

In order to analyze the performance of the designed controllers, two indexes are employed.
The first one is the Integral Square Error (ISE) index, defined by

ISE ,
ˆ tf

0
e2 dt,

where e denotes the tracking error over the variable of interest, and tf denotes final time.
The ISE index is a measure of the energy of the tracking error accumulated over time, and
will be used to analyze which controller performed a more accurate trajectory tracking.
The second one is the Integrated Absolute Derivative of the Control signal (IADU) index,
defined by

IADU ,
ˆ tf

0

∣∣∣∣dudt
∣∣∣∣ dt,

where u denotes the control signal of interest. The IADU is a measure of the control effort
necessary to perform the trajectory tracking, and will be used to conclude which controller
generated smoother control signals for the aircraft actuators.

5.2 Full state information scenario

To evaluate the performance of the proposed controllers for the ideal conditions based on
which they were designed, this section presents simulation results considering a scenario in
which the whole state vector (2.56) is measured, at every time instant and without noise.
It is further referenced as the full state information (FSI) scenario.

The adopted control structure is shown in Figure 5.5. The feedback connection is made
with the system states, which are sampled by a zero-order-holder. Blocks denoted by “χ
builder” and “Feed-forward” implement equations (3.7) and (3.18), respectively, and K
stands for the gain matrix of either the DLQR or the mixed H2/H∞ controller.

The Bryson’s rule (Johnson & Grimble, 1987) was used as starting point to synthesize
the weighting matrices of the DLQR, which are given by

Ωχ = diag
(20

22
,

20
22
,

20
22
,

1
(π/2)2

,
1

(π/2)2
,

15
π2
,

10
(π/2)2

,
10

(π/2)2
,

0.01
(π/2)2

,
0.01

(π/2)2
,

1
22
,

1
22
,

1
22
,

1
(π/3)2

,
1

(π/3)2
,

1
(π/4)2

,
5

(3π)2
,

5
(3π)2

,
0.01
(3π)2

,
0.01
(3π)2

, 50, 50, 50, 1
)
,

Ωu = diag
( 150

(30− f eq
L )2

,
150

(30− f eq
L )2

,
1000

22
,

1000
22

)
,

32 m/s2 for 0.1 N, from Newton’s second law.
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Figure 5.5: Control structure for the full state information scenario.

where f eq
R and f eq

L are equilibrium values from (5.1).
The mixed H2/H∞ control design was performed using the Yalmip toolbox (Löfberg,

2004) with the SDPT3 solver (Toh et al., 1999). The design parameters for the LMI regions
are given by ε = 0.55, $ = 0.99402, which were adjusted such that −50 < Re(s) < −0.5
in continuous time, then mapped through |ς| = eRe(s)Tc . The gain matrices of the mixed
H2/H∞ controller are given by

Hz = diag
(√

20
2 ,

√
20
2 ,

√
20
2 ,

1
π/2 ,

1
π/2 ,

√
15
π

,

√
10

π/2 ,
√

10
π/2 ,

0.1
π/2 ,

0.1
π/2 ,

1
2 ,

1
2 ,

1
2 ,

1
π/3 ,

1
π/3 ,

1
π/4 ,

√
5

3π ,
√

5
3π ,

0.1
3π ,

0.1
3π ,
√

50,
√

50,
√

50, 1
)
,

Dzu =



√
150

30− f eq
R

0 0 0

0
√

150
30− f eq

R
0 0

0 0
√

1000
2 0

02×1 02×1 02×1 02×1

0 0 0
√

1000
2

018×1 018×1 018×1 018×1



, Dzd =



010×3

I3×3

N

0.5·11×3

N

02×3

I3×3

0.5·11×3



,

with N ,
0 1 0

1 0 0

, and 1·×· denotes a matrix of 1’s. Matrices Hz and Dzu were chosen

such that HT
zHz = Ωχ and DT

zuDzu = Ωu, whilst Dzd was adjusted by trial and error. A
pure H∞ controller with pole placement constraints was designed, i.e., the optimization
problem described in Section 3.4.2, considering also the constraints described in Section
3.4.3, was solved, in order to obtain an optimal upper bound for the H∞ norm, given
by ‖Ψdz(ς)‖∞ < 17.4617. Then, the mixed H2/H∞ controller was designed by choosing
‖Ψdz(ς)‖2

∞ < γ̃ = 242, which is slightly greater than the optimal upper bound of the H∞
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norm, yielding ‖Ψdz̃(ς)‖2 <
√

33.1099.
Figure 5.6 illustrates the open-loop and closed-loop poles of the discrete-time system

(3.9) for both controllers. Note that, for the chosen design parameters, the pole placement
using both controllers were quite similar. Then, at least in the vicinity of the desired
operation point, the behavior of the closed-loop system is expected to be not so different
from one to another.
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Figure 5.6: Pole placement using the designed controllers. Solid lines denote the unitary
circle and dashed lines denote LMI region boundaries.

First trajectory

The trajectories performed by the tilt-rotor UAV and the suspended load for both controllers
are shown in Figure 5.7. The tracking error is shown in Figure 5.8. Note that the path
tracking was performed successfully, and that the external disturbances were rejected
by both controllers. Also, the closed-loop system behavior was almost the same for the
designed controllers, as corroborated through the performance indexes presented in Table
5.4. The distinct behavior of the tracking error over ψ can be explained by the fact that,
despite the state-space equations (3.9) being valid for all x, y and z (recall the discussion
presented in Section 3.2 about the dependence of the system on these variables), is valid
only in the vicinity of ψ = ψtr = 0. Thus, the behavior of the controllers is expected to be
different for ψ 6= 0.

Figure 5.9 shows the time evolution of the remaining degrees of freedom, which kept
stable as the trajectory was performed, for both controllers. Note that their equilibrium
values changed over time, which is due to the presence of external disturbances. Since the
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Figure 5.7: Trajectories performed by the UAV and the suspended load using the designed
controllers, for the first desired trajectory, FSI scenario.
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Figure 5.8: Tracking error for the first trajectory, FSI scenario.

orientation of the suspended load with respect to the inertial frame and the orientation of
the UAV with respect to the load remained stable, and also from the trajectory performed
by the aircraft shown in Figure 5.7, it can be concluded that the tilt-rotor UAV remained
stable as well4. Figure 5.10 shows the control signals applied by the aircraft’s actuators,

4As mentioned in Chapter 3, since the UAV’s behavior is implicit in the state-space equations,
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which were also similar for both controllers, and did not saturate the actuators during the
simulation.
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Figure 5.9: Time evolution of the remaining degrees of freedom for the first trajectory,
FSI scenario.

Table 5.4 shows the performance indexes for the first trajectory. The DLQR and the
mixed H2/H∞ controller presented very similar ISE and IADU indexes, as expected from
the pole placement results. The mixed H2/H∞ controller performed better path tracking
in variables x and z, while the DLQR performed better in y and ψ. The thrusters control
signals were smoother using the DLQR, while the servomotor control signals were smoother
using the mixed H2/H∞ controller. The mixed H2/H∞ is expected to be more aggressive
due to its disturbance compensation capabilities. Since the servomotor torques affect
only the tilting angles directly (see their mappings to generalized forces in Chapter 2),
to attenuate external disturbances affecting the load, less control effort is directed to the
servomotor torques, while more control effort is directed to the thrust forces.

Second trajectory

The performed trajectories are shown in Figure 5.11, whist the tracking error is shown in
Figure 5.12. As in the previous case, the path tracking was performed successfully, and the
external disturbances were rejected. The behavior of the closed-loop system was, again,

stabilization of system implies stabilization of the tilt-rotor UAV.
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Figure 5.10: Actuator signals for the first trajectory, FSI scenario. Saturation levels are
0 ≤ fR ≤ 30 N, 0 ≤ fL ≤ 30 N, −2 ≤ ταR ≤ 2 N·m and −2 ≤ ταL ≤ 2 N·m.

Table 5.4: Performance indexes for the first trajectory, FSI scenario.

Index DLQR H2/H∞ H2/H∞
DLQR

ISE(x) 0.1571 0.1521 0.9691
ISE(y) 0.1111 0.1167 1.0509
ISE(z) 0.0428 0.0385 0.8992
ISE(ψ) 1.1519·10−4 3.6213·10−4 3.1438

IADU(fR) 7.1486 7.9463 1.1116
IADU(fL) 7.7712 9.6864 1.2465
IADU(ταR) 0.1984 0.1966 0.9906
IADU(ταL) 0.1982 0.1978 0.9984

very similar for the DLQR and the mixed H2/H∞ controller, which was already expected.
The transient responses of the system due to path changing are also depicted.

The time evolution of the remaining degrees of freedom is shown in Figure 5.13. As in
the previous case, they kept stable as the path tracking was performed, and stability of the
tilt-rotor UAV can also be concluded. Once more, their equilibrium values changed over
time due to the presence of external disturbances. Figure 5.14 shows the control signals,
depicting transient responses necessary to perform path changing. Once again, the control
signals did not saturate the aircraft’s actuators.

Table 5.5 shows the performance indexes for the second trajectory. Once again, the
DLQR and the mixed H2/H∞ controller presented very similar ISE and IADU indexes.
The mixed H2/H∞ controller performed better path tracking in variables x and y, while
the DLQR performed better in z and ψ. For this trajectory, all the control signals were



CHAPTER 5. SIMULATION RESULTS 108

x (m)

y (m)

z
(m

)

-10

-5

0

5 -2 0 2 4 6 8 10

0

1

2

3

4

5

6

Desired
Performed (load)
Performed (UAV)

dx

dy

dz

dx

dy

dz

(a) DLQR

x (m)

y (m)

z
(m

)

-10

-5

0

5 -2
0

2
4

6
8

10

0

1

2

3

4

5

6

Desired
Performed (load)
Performed (UAV)

dx

dy

dz

dx

dy

dz

(b) Mixed H2/H∞

Figure 5.11: Trajectories performed by the UAV and the suspended load using the designed
controllers, for the second desired trajectory, FSI scenario.
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Figure 5.12: Tracking error for the second trajectory, FSI scenario.

smoother using the DLQR. The trajectory requires thruster tilting in order to perform
path changing at 19 and 39 seconds (see Figure 5.13), thus due to transient response, the
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Figure 5.13: Time evolution of the remaining degrees of freedom for the second trajectory,
FSI scenario.
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Figure 5.14: Actuator signals for the second trajectory, FSI scenario. Saturation levels are
0 ≤ fR ≤ 30 N, 0 ≤ fL ≤ 30 N, −2 ≤ ταR ≤ 2 N·m and −2 ≤ ταL ≤ 2 N·m.



CHAPTER 5. SIMULATION RESULTS 110

mixed H2/H∞ controller was more aggressive also with respect to the servomotor torques.

Table 5.5: Performance indexes for the second trajectory, FSI scenario.

Index DLQR H2/H∞ H2/H∞
DLQR

ISE(x) 0.3358 0.2987 0.8896
ISE(y) 0.2330 0.2326 0.9981
ISE(z) 1.0441·10−3 1.6637·10−3 1.5935
ISE(ψ) 5.1167·10−3 9.4917·10−3 1.8551

IADU(fR) 24.2162 27.2654 1.1259
IADU(fL) 24.1251 26.8009 1.1109
IADU(ταR) 0.2849 0.3020 1.0600
IADU(ταL) 0.2716 0.2867 1.0553

In both desired trajectories, the load’s initial position was displaced from the initial
reference position. During the initial convergence, the system trajectory did not deviate
significantly from the operation point based on which the discrete-time linearized model
(3.9) was obtained, hence both controllers were able to perform the convergence of the
system to the desired trajectory. However, for very large displacements, the initial
convergence requires harsher control signals and the system trajectory greatly deviates
from the operation point, hence the linear controllers are not able to perform the initial
convergence, destabilizing the system. Moreover, harsher disturbances also leads to the
same result.

5.3 Linearized Kalman filter scenario

This section presents simulation results considering the scenario described in Section 4.2,
in which only a half of the state vector (2.56) is measured, at every time instant with
additive noise. It is further referenced as the LKF scenario.

The control structure is shown in Figure 5.15. The system’s outputs, q, are sampled
by noisy sensors, whose measurements along with the system’s inputs, uk, are provided
to the estimator. In the latter, equilibrium values are added or subtracted from these
signals to adapt them for the linearized Kalman filter algorithm. The same is done to the
state vector estimated by the filter, to recover the estimated state vector of the nonlinear
system and make the feedback connection with the controller. The LKF block implements
the Algorithm 4.1, whilst the Controller block corresponds to the subsystem with same
name presented in the control structure of the FSI scenario (see Figure 5.5).

It is assumed that the initial state is precisely known, i.e., ∆x̂0|0 = ∆x0. For simulation,
the load’s position is measured with precision 3σ = 15cm, where σ is the standard deviation,
while the remaining generalized coordinates are measured precisely, i.e., σ = 0. Although
some of these assumptions may simplify the problem, it must be depicted that only the
generalized coordinates are measured, while their derivatives must be estimated by the
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Figure 5.15: Control structure for the linearized Kalman filter scenario.

filter. The covariance matrices used in the filter design are then given by

P ν
0|0 = 0.01 · I23×23, Pw = 1.0 · 10−5 · I23×23, P v =

(0.05)2 · I3×3 03×7

07×3 07×7

 ,
in which P ν

0|0 and Pw were adjusted empirically, by verifying the estimation error consistency,
i.e., if the estimation error was inside the filter’s confidence limits.

First trajectory

The trajectories performed by the tilt-rotor UAV and the suspended load are shown
in Figure 5.16, and the tracking error is shown in Figure 5.17. The path tracking was
performed successfully for the LKF scenario, demonstrating the joint performance of the
designed controllers and the linearized Kalman filter, using the adopted control structure.
Despite noise, the closed-loop system behavior is very similar for the designed controllers.

Figure 5.18 shows the time evolution of the remaining degrees of freedom, which kept
stable as the trajectory was performed. As in the previous scenario, the orientation of the
load with respect to the inertial frame and the orientation of the UAV with respect to the
load were kept stable, then it can be concluded that the tilt-rotor UAV remained stable as
well. Figure 5.19 shows the control signals, which, although noisy, did not saturate the
aircraft’s actuators.

Table 5.6 shows the IADU and ISE performance indexes. The mixed H2/H∞ controller
performed better path tracking in z, while the DLQR performed better in x, y and ψ. Due
to disturbance compensation, the mixed H2/H∞ controller demonstrated to be way more
aggressive than the DLQR, concerning the thrusters control signals (32.07% and 43.35%
greater IADU indexes for the right and left thrusters, respectively), while the servomotor
control signals were slightly harsher using the DLQR.

For simplicity, estimation results are shown only for simulations with the mixed H2/H∞
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Figure 5.16: Trajectories performed by the UAV and the suspended load using the designed
controllers, for the first desired trajectory, LKF scenario.

δ
x

(m
)

0 10 20 30 40
-0.4

-0.2

0

0.2

0.4
DLQR
H2/H∞

δ
y

(m
)

0 10 20 30 40
-0.4

-0.2

0

0.2

0.4

t (sec)

δ
z

(m
)

0 10 20 30 40
-0.3

-0.2

-0.1

0

0.1

0.2

t (sec)

δ
ψ

(r
ad

)

0 10 20 30 40
-0.05

0

0.05

0.1

0.15

DLQR
H2/H∞

DLQR
H2/H∞

DLQR
H2/H∞

Figure 5.17: Tracking error for the first trajectory, LKF scenario.

controller. Figure 5.20 shows the estimation error of the load’s position, along with the
linearized Kalman filter confidence limits (i.e., three times the standard deviation) and the
measured signals. The linearized Kalman filter reduced the standard deviation of these
signals from 5 cm to approximately 1.37 cm.

Figure 5.21 shows the estimation error of the velocities along with the linearized



CHAPTER 5. SIMULATION RESULTS 113

φ
(r

ad
)

0 10 20 30 40
-0.2

0

0.2

0.4

0.6

θ
(r

ad
)

0 10 20 30 40
-0.4

-0.2

0

0.2

0.4
γ

1
(r

ad
)

0 10 20 30 40
-0.2

0

0.2

0.4

0.6

γ
2

(r
ad

)

0 10 20 30 40
-0.4

-0.2

0

0.2

0.4

t (sec)

α
R

(r
ad

)

0 10 20 30 40
-0.2

-0.1

0

0.1

0.2

α
L

(r
ad

)

0 10 20 30 40
-0.2

-0.1

0

0.1

0.2

DLQR
H2/H∞

DLQR
H2/H∞

DLQR
H2/H∞

DLQR
H2/H∞

DLQR
H2/H∞

DLQR
H2/H∞

t (sec)

Figure 5.18: Time evolution of the remaining degrees of freedom for the first trajectory,
LKF scenario.
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Figure 5.19: Actuator signals for the first trajectory, LKF scenario. Saturation levels are
0 ≤ fR ≤ 30 N, 0 ≤ fL ≤ 30 N, −2 ≤ ταR ≤ 2 N·m and −2 ≤ ταL ≤ 2 N·m.

Kalman filter confidence limits. These variables are not measured. The estimation errors
remained in the respective confidence regions for the most time of the simulation, however
at some instants they left, mainly at the beginning of the simulation. This comes from the
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Table 5.6: Performance indexes for the first trajectory, LKF scenario.

Index DLQR H2/H∞ H2/H∞
DLQR

ISE(x) 0.1624 0.1700 1.0473
ISE(y) 0.1196 0.1385 1.1579
ISE(z) 0.0493 0.0380 0.7700
ISE(ψ) 4.2886·10−3 6.4845·10−3 1.5120

IADU(fR) 208.6821 275.6098 1.3207
IADU(fL) 207.4649 297.4057 1.4335
IADU(ταR) 5.4937 5.1566 0.9386
IADU(ταL) 5.4901 5.3431 0.9732
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Figure 5.20: Estimation error of x, y and z, for the first trajectory with the mixed H2/H∞
controller. Solid lines denote estimation error, dashed lines denote confidence limits and
dotted lines denote measured signals.

fact that the tilt-rotor UAV with suspended load is a nonlinear system, being the designed
linearized Kalman filter valid only in the vicinity of its equilibrium point. It can be noted
also that the estimation is biased at some instants, due to the nonlinearities of the system,
and since the equilibrium point changes in the presence of external disturbances.

Figure 5.22 shows the estimation error of the external disturbances affecting the
suspended load. As in the case of the velocities, the estimation errors remained in the
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Figure 5.21: Estimation error of the velocities, for the first trajectory with the mixed
H2/H∞ controller. Solid lines denote estimation error, while dashed lines denote confidence
limits.

respective confidence regions for the most time of the simulation, at some instants leaving
them and also being biased. Nevertheless, the estimation of the disturbances in x and y

had standard deviation of 0.0128 N and 0.01274 N, respectively, which is far smaller than
the magnitudes of the applied disturbances (0.1 N). On the other hand, the estimation of
the disturbances in z had not the same performance. This fact can be explained through
the mechanical properties of the system: external forces applied to the load along axes
x and y can be easily perceived through the resulting angular displacement of the load
with respect to the tilt-rotor UAV, and only the load’s mass prevents the motion. In the
case of forces applied along axis z, due to the rod, the mass of the UAV also prevents the
motion, being more difficult to be perceived. Thus, disturbances along axis z are expected
to be less observable.
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Figure 5.22: Estimation error of the disturbances, for the first trajectory with the mixed
H2/H∞ controller. Solid lines denote estimation error, while dashed lines denote confidence
limits.

Second trajectory

The trajectories performed by the tilt-rotor UAV and the suspended load are shown in
Figure 5.23, and the tracking error is shown in Figure 5.24. As in the previous case, the
path tracking was performed successfully, demonstrating again the joint performance of
the designed controllers and the linearized Kalman filter.

Figure 5.25 shows the time evolution of the remaining degrees of freedom, which kept
stable as the trajectory was performed. Once again, it can be concluded that the tilt-rotor
UAV remained stable as well. Figure 5.26 shows the control signals, which did not saturate
the aircraft’s actuators.

Table 5.7 shows the IADU and ISE performance indexes for the second trajectory. The
mixed H2/H∞ controller performed better path tracking in x, while the DLQR performed
better in y, z and ψ. As in the simulation of the first trajectory, due to disturbance
compensation, the mixed H2/H∞ controller was found to be more aggressive than the
DLQR, concerning the thrusters control signals (35.58% and 42.38% greater IADU indexes
for the right and left thrusters, respectively), while the servomotor control signals were
slightly harsher using the DLQR.

Figure 5.27 shows the estimation error of the load’s position, along with the linearized
Kalman filter confidence limits and the measured signals. Figure 5.28 shows the estimation
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Figure 5.23: Trajectories performed by the UAV and the suspended load using the designed
controllers, for the second desired trajectory, LKF scenario.
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Figure 5.24: Tracking error for the second trajectory, LKF scenario.

error of the velocities along with confidence limits, and Figure 5.29 shows the estimation
error of the external disturbances. The discussion on the estimation results for the first
trajectory also applies to these results.

As in the previous scenario, in both desired trajectories the load’s initial position was
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Figure 5.25: Time evolution of the remaining degrees of freedom for the second trajectory,
LKF scenario.
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Figure 5.26: Actuator signals for the second trajectory, LKF scenario. Saturation levels
are 0 ≤ fR ≤ 30 N, 0 ≤ fL ≤ 30 N, −2 ≤ ταR ≤ 2 N·m and −2 ≤ ταL ≤ 2 N·m.

displaced from the initial reference position. The linear controllers along with the linearized
Kalman filter were able to perform the convergence of the system to the desired trajectory.
However, for larger displacements, during the initial convergence, the linearized Kalman
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Table 5.7: Performance indexes for the second trajectory, LKF scenario.

Index DLQR H2/H∞ H2/H∞
DLQR

ISE(x) 0.3523 0.2977 0.8451
ISE(y) 0.2519 0.2799 1.1113
ISE(z) 0.0139 0.0165 1.1871
ISE(ψ) 0.0178 0.0813 4.5737

IADU(fR) 270.2537 366.4055 1.3558
IADU(fL) 268.2610 381.9623 1.4238
IADU(ταR) 6.8655 6.3388 0.9233
IADU(ταL) 6.8335 6.4827 0.9487
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Figure 5.27: Estimation error of x, y and z, for the second trajectory with the mixed
H2/H∞ controller. Solid lines denote estimation error, dashed lines denote confidence
limits and dotted lines denote measured signals.

filter provides estimates whose error significantly leaves its confidence limits, resulting in
worst situations in comparison with the FSI scenario, destabilizing the system. Harsher
disturbances also leads to the same result.
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Figure 5.28: Estimation error of the velocities, for the second trajectory with the mixed
H2/H∞ controller. Solid lines denote estimation error, while dashed lines denote confidence
limits.
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Figure 5.29: Estimation error of the disturbances, for the second trajectory with the mixed
H2/H∞ controller. Solid lines denote estimation error, while dashed lines denote confidence
limits.
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5.4 Zonotopic state estimator scenario

This section presents simulation results considering the scenario described in Section 4.3,
in which measurements are provided by a GPS, a barometer, an IMU, a camera, and
sensors embedded at the servomotors. The sensors have different sampling times, and
available measurements are corrupted with additive noise. It is further referenced as the
ZSE scenario.

The control structure is shown in Figure 5.30. The system’s outputs, π(x), are sampled
by the mentioned sensors, whose measurements along with the system’s inputs, uk, are
provided to the estimator. Equilibrium values are subtracted from control signals in order
to adapt them for the zonotopic state estimator algorithm, which provides the first 20
elements of the center of the zonotope X̂k as estimated states. Equilibrium values are then
added to the latter to recover the estimated state vector of the nonlinear system and make
the feedback connection with the controller. The ZSE block implements the Algorithm
4.4, whilst the Controller block, as in the LKF scenario, corresponds to the subsystem
with same name presented in the control structure of the FSI scenario.

ZOH

q̈tr

x̂k

uk

yk

q̇tr

qtr

∆ukxeq

+

+

Tilt-rotor UAV
with suspended load

d

ZSE

Controller

Estimator Sensors

vk
+

∆x̂k

−ueq
π(x)
12 ms,
24 ms,
120 ms

Figure 5.30: Control structure for the zonotopic state estimator scenario.

Table 5.8 shows the sensors parameters for this scenario. The noise bounds of the
GPS, barometer/IMU, and the servos’ sensors were taken from the Novatel OEMStar GPS
receiver, Xsens MTi-G, and Herkulex DRS-0101/DRS-0201 sensors datasheets, respectively.
The noise bounds of the camera were chosen empirically. The assumptions on probability
density functions were made for simulation purposes, being only the knowledge on the noise
bounds used for the design of the zonotopic state estimator. For Gaussian distributions,
‘noise bound’ means three times the standard deviation. The sets I correspond to the
indexes of the measurement vector yk, associated with the elements that are provided
by the corresponding sensor5. The union of all sets I of sensors whose measurements are

5{1, 2, 3} ≡ ξB, {4, 5, 6} ≡ ηB, {7, 8, 9} ≡ ωBIB, {10, 11, 12} ≡ dBBL, {13} ≡ αR, {14} ≡ αL,
{15} ≡ α̇R and {16} ≡ α̇L. See equation (4.22).
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available at time instant k yields the set Ik employed in the zonotopic state estimator
algorithm.

Table 5.8: Sensors parameters for the ZSE scenario

Sensor I Noise bound Sampling time PDF (for simulation)
GPS {1, 2} ±0.15m 120ms Gaussian

Barometer {3} ±0.51m 12ms Gaussian

IMU {4, 5, 6} ±2.618·10−3 rad 12ms Gaussian{7, 8, 9} ±16.558·10−3 rad/s

Camera {10, 11} ±0.005m 24ms Uniform{12} ±0.02m
Servos {13, 14} ±5.67·10−3 rad 12ms Uniform{15, 16} ±0.50772 rad/s

The initial predicted zonotope X̄0 was chosen as a box centered at the desired trajectory,
given by X̄0 = [(ξtr

0 )T 01×20]T ⊕Gx̄0B
23, with

Gx̄0 = diag(0.5·13×1, 0.2·|φeq|, 0.2·|θeq|, π/180, 0.2·|γ1
eq|, 0.2·|γ2

eq|, 0.2·|αR
eq|, 0.2·|αL

eq|, 0.02·113×1).

The zonotopes W̄ and V̄ were adjusted by trial and error6, and are given by W̄ =
023×1 ⊕Gw̄B23 and V̄ = π(xeq)⊕Gv̄B16, with

Gw̄ =diag(0.0001·113×1, 0.01·13×1, 0.05·12×1, 0.0001·12×1, 0.01·13×1),

Gv̄ =diag(0.18·12×1, 0.612, 3.1416·10−3, 3.1416·10−3, 0.03, 19.872·10−3, 19.872·10−3, 0.24,

0.006·12×1, 0.06, 6.8067·10−3·12×1, 0.6093·12×1).

Moreover, the order of X̂k was limited to 75 times its dimension.

First trajectory

The trajectories performed by the tilt-rotor UAV and the suspended load are shown in
Figure 5.31. The tracking error, shown in Figure 5.32 is not as small as in the previous
scenarios, due to the presence of sensors with different sampling times, non-Gaussian noise,
and also due to the choice of the center of the estimated zonotope to perform the feedback
connection. However, the path tracking was also performed successfully for this scenario,
demonstrating the joint performance of the designed controllers and the zonotopic state
estimator, using the adopted control structure.

Figure 5.33 shows the time evolution of the remaining degrees of freedom, which kept
stable, from which can be concluded that the tilt-rotor UAV remained stable. Figure
5.34 shows the control signals, which, despite being noisier than the ones from the LKF
scenario, also did not saturate the aircraft’s actuators.

6The zonotope V̄ was chosen using the noise bounds from Table 5.8 as starting point, then adjusted
empirically in order to accommodate the unmodeled dynamics due to linearization.
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Figure 5.31: Trajectories performed by the UAV and the suspended load using the designed
controllers, for the first desired trajectory, ZSE scenario.
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Figure 5.32: Tracking error for the first trajectory, ZSE scenario.

Table 5.9 shows the IADU and ISE performance indexes. Due to disturbance com-
pensation, the mixed H2/H∞ controller performed much better path tracking in x and
y (ISE indexes only 62.23% and 62.19% of the respective ones from the DLQR), and
slightly better in z, while the DLQR performed better in ψ. As in the LKF scenario, the
mixed H2/H∞ controller demonstrated to be way more aggressive than the DLQR with
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Figure 5.33: Time evolution of the remaining degrees of freedom for the first trajectory,
ZSE scenario.
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Figure 5.34: Actuator signals for the first trajectory, ZSE scenario. Saturation levels are
0 ≤ fR ≤ 30 N, 0 ≤ fL ≤ 30 N, −2 ≤ ταR ≤ 2 N·m and −2 ≤ ταL ≤ 2 N·m.

respect to the thrusters signals (35.04% and 29.6% greater IADU indexes for the right
and left thrusters, respectively), while the servomotor control signals were harsher using
the DLQR.
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Table 5.9: Performance indexes for the first trajectory, ZSE scenario.

Index DLQR H2/H∞ H2/H∞
DLQR

ISE(x) 0.4146 0.2580 0.6223
ISE(y) 0.2895 0.1801 0.6219
ISE(z) 0.1389 0.1326 0.9542
ISE(ψ) 3.8434·10−3 4.4799·10−3 1.1656

IADU(fR) 302.6595 408.7079 1.3504
IADU(fL) 314.6170 407.7327 1.2960
IADU(ταR) 7.3176 6.0647 0.8288
IADU(ταL) 7.3531 6.4135 0.8722

For this scenario as well, estimation results are shown only for simulations with
the mixed H2/H∞ controller. Figure 5.35 shows the estimation error of the generalized
coordinates, along with the zonotopic state estimator confidence limits (obtained by
computing �

{
X̂k − cx̂k

}
). The confidence regions were large for some variables (around

±1 m for x and y, and ±2 m for z), but the estimation error was close to zero. Some
patterns arised in the confidence limits due to the greater sampling times of the GPS
and the camera, whose measurements were available only every 120 ms and 24 ms for
performing the update step, respectively, while the other sensors’ data were available every
12 ms, which is the controller sampling time. Moreover, note that the estimation errors
of αR and αL left their respective confidence regions at the beginning of the simulation,
due to nonlinearities that appeared during the initial convergence of the system to the
reference trajectory.

Figure 5.36 shows the estimation error of the velocities along with the respective
confidence limits. As in the previous case, the confidence regions were large for some
variables (around ±3.25 m/s for ẋ, ±2.9 m/s for ẏ and ±5.1 m/s for ż), but the estimation
error was also close to zero, and patterns arised in the confidence limits due to the greater
sampling times of the GPS and the camera. The estimation errors of α̇R and α̇L left
their respective confidence regions at the beginning of the simulation, due to the initial
convergence of the system to the reference trajectory.

Figure 5.37 shows the estimation error of the external disturbances and the respective
confidence limits. The confidence regions were much larger than the disturbances affecting
the system (around ±0.325 N for dx, ±0.285 N for dy and ±8.25 N for dz, while the
magnitudes of the disturbances were 0.1 N). However, the estimation error of dx and dy

deviated from zero at most by around 0.06 N. On the other hand, as in the case of the
LKF, the estimation error of dz had not the same performance, deviating from zero by
values much greater than 0.1 N.

Notice that, although dealing with different scenarios, the confidence regions provided
by the zonotopic state estimator were very large if compared to the linearized Kalman filter
confidence regions. Unlike the LKF algorithm, which propagates means and covariances
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Figure 5.35: Estimation error of the generalized coordinates with the ZSE, for the first
trajectory with the mixed H2/H∞ controller. Solid lines denote estimation error, while
dashed lines denote confidence limits.

through the linearized model and minimizes the variance of the estimation error, the
ZSE algorithm propagates the estimated sets taking into account the worst case for
noise and disturbances affecting the system. Moreover, the zonotopes W̄ and V̄ had
to be overestimated empirically in order to accommodate unmodelled dynamics due to
linearization.

Figure 5.38 shows the Frobenius norm of the generator matrix of the estimated zonotope
X̂k. The same patterns due to the sampling times of the GPS and the camera arised in
the time evolution of the Frobenius norm.
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Figure 5.36: Estimation error of the velocities with the ZSE, for the first trajectory with
the mixed H2/H∞ controller. Solid lines denote estimation error, while dashed lines denote
confidence limits.

Second trajectory

The trajectories performed by the tilt-rotor UAV and the suspended load are shown in
Figure 5.39. The tracking error is shown in Figure 5.40. The path tracking was also
performed successfully for this trajectory, demonstrating again the joint performance of
the designed controllers and the zonotopic state estimator, using the adopted control
structure.

Figure 5.41 shows the time evolution of the remaining degrees of freedom, which kept
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Figure 5.37: Estimation error of the disturbances with the ZSE, for the first trajectory
with the mixed H2/H∞ controller. Solid lines denote estimation error, while dashed lines
denote confidence limits.
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Figure 5.38: Frobenius norm of the estimated zonotope’s generator matrix, for the first
trajectory with the mixed H2/H∞ controller.

stable, from which can be concluded that the tilt-rotor UAV remained stable. Figure 5.42
shows the control signals, which did not saturate the aircraft’s actuators.

Table 5.10 shows the IADU and ISE performance indexes. The mixed H2/H∞ controller
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Figure 5.39: Trajectories performed by the UAV and the suspended load using the designed
controllers, for the second desired trajectory, ZSE scenario.
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Figure 5.40: Tracking error for the second trajectory, ZSE scenario.

performed better path tracking in x (ISE index 80.59% of the respective one from the
DLQR), while the DLQR performed better in y, z and ψ. The mixed H2/H∞ controller
was again more aggressive than the DLQR with respect to the thrusters signals (27.39%
and 27.78% greater IADU indexes for the right and left thrusters, respectively), while the
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Figure 5.41: Time evolution of the remaining degrees of freedom for the second trajectory,
ZSE scenario.
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Figure 5.42: Actuator signals for the second trajectory, ZSE scenario. Saturation levels
are 0 ≤ fR ≤ 30 N, 0 ≤ fL ≤ 30 N, −2 ≤ ταR ≤ 2 N·m and −2 ≤ ταL ≤ 2 N·m.

servomotor control signals were harsher using the DLQR.
Figure 5.43 shows the estimation error of the generalized coordinates, along with the

respective confidence limits. The discussion on the confidence regions presented for the
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Table 5.10: Performance indexes for the second trajectory, ZSE scenario.

Index DLQR H2/H∞ H2/H∞
DLQR

ISE(x) 0.5242 0.4225 0.8059
ISE(y) 0.3347 0.3443 1.0285
ISE(z) 0.1123 0.1529 1.3608
ISE(ψ) 0.0123 0.0161 1.3094

IADU(fR) 406.9815 518.4401 1.2739
IADU(fL) 404.0254 516.2678 1.2778
IADU(ταR) 8.9879 7.4309 0.8268
IADU(ταL) 9.0586 7.7548 0.8561

first trajectory results also applies here. The patterns in the confidence limits due to the
sampling times of the GPS and the camera can also be observed.

Figure 5.44 shows the estimation error of the velocities along with confidence limits,
and Figure 5.45 shows the estimation error of the external disturbances. Again, the
patterns in the confidence limits can be observed, and the discussion of the first trajectory
results also applies here. Figure 5.46 shows the time evolution of the Frobenius norm of
the generator matrix of X̂k.

Regarding the initial displacement of the load, the ZSE algorithm was also designed
based on linearized dynamic equations. Then, for larger initial displacements and harsher
disturbances, the estimation error associated with the center of the estimated zonotope
significantly leaves the confidence limits, destabilizing the system.
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Figure 5.43: Estimation error of the generalized coordinates with the ZSE, for the second
trajectory with the mixed H2/H∞ controller. Solid lines denote estimation error, while
dashed lines denote confidence limits.
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5.5 Comparison between scenarios

This section compares the performance indexes associated with each scenario, to analyze
performance loss when the ideal scenario is not considered, and also between the LKF and
ZSE scenarios.

Table 5.11 compares the performance indexes for the first desired trajectory. Note that
the ISE indexes are higher in general for the LKF and ZSE scenarios, when compared
to the FSI scenario, for both controllers. Since the feedback connection was performed
using estimated states, it is expected that the trajectory tracking is less accurate for the
LKF and ZSE scenarios. The only exception was the trajectory tracking of ψ for the
mixed H2/H∞ controller and LKF scenario. This result can be explained by the fact that
the mixed H2/H∞ controller was designed for improved transient response, and since the
system is being affected by measurement noise, is it always in transient state. The IADU
indexes corroborate this statement, being much higher for the LKF and ZSE scenarios, in
comparison with the FSI scenario.

On the other hand, the ISE and IADU indexes were higher in general for the ZSE
scenario, in comparison with the LKF scenario, due to effects from the different sampling
times, harsher and non-Gaussian noise, and most measurements being associated with
coordinates from the tilt-rotor UAV instead of the load. The exception is the ISE index
associated with ψ, showing that the trajectory tracking of ψ was more accurate in the ZSE
scenario. A possible explanation is that, in the ZSE scenario the time derivative of ψ is
indirectly associated with the measured angular velocity ωBIB (see equation (4.20)). On the
other hand, in the LKF scenario, this variable is not associated with any measurement.

Table 5.11: Performance indexes for the first trajectory, comparison between scenarios.

Index LKF/FSI ZSE/FSI ZSE/LKF
DLQR H2/H∞ DLQR H2/H∞ DLQR H2/H∞

ISE(x) 1.0337 1.1177 2.6391 1.6963 2.5531 1.5177
ISE(y) 1.0765 1.1868 2.6058 1.5433 2.4206 1.3004
ISE(z) 1.1519 0.9870 3.2453 3.4442 2.8173 3.4896
ISE(ψ) 37.2310 17.9070 33.3660 12.3710 0.8962 0.6908

IADU(fR) 29.1920 34.6840 42.3383 51.4337 1.4503 1.4829
IADU(fL) 26.6966 30.7034 40.4850 42.0933 1.5165 1.3710
IADU(ταR) 27.6900 26.2289 36.8831 30.8479 1.3320 1.1761
IADU(ταL) 27.6998 27.0126 37.0994 32.4242 1.3393 1.2003

Table 5.12 compares the performance indexes for the second desired trajectory. Note
that the ISE indexes are again higher in general for the LKF and ZSE scenarios, when
compared to the FSI scenario. The only exception is the trajectory tracking of x for
the mixed H2/H∞ controller and LKF scenario. The same argument based on improved
transient response can be stated here, being corroborated by the IADU indexes, which are
again higher for the LKF and ZSE scenarios, in comparison with the FSI scenario.
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As in the first trajectory, the ISE and IADU indexes were higher in general for the ZSE
scenario, in comparison with the LKF scenario, with exception of the ISE index associated
with ψ. The same arguments based on its time derivative and available measurements can
be stated for this case.

Table 5.12: Performance indexes for the second trajectory, comparison between scenarios.

Index LKF/FSI ZSE/FSI ZSE/LKF
DLQR H2/H∞ DLQR H2/H∞ DLQR H2/H∞

ISE(x) 1.0491 0.9967 1.5610 1.4145 1.4879 1.4192
ISE(y) 1.0811 1.2034 1.4365 1.4802 1.3287 1.2300
ISE(z) 13.3129 9.9177 107.5567 91.9036 8.0791 9.2666
ISE(ψ) 3.4788 8.5654 2.4039 1.6962 0.6910 0.1980

IADU(fR) 11.1600 13.4385 16.8062 19.0146 1.5059 1.4149
IADU(fL) 11.1196 14.2518 16.7471 19.2631 1.5061 1.3516
IADU(ταR) 24.0979 20.9894 31.5476 24.6056 1.3091 1.1723
IADU(ταL) 25.1602 22.6114 33.3527 27.0485 1.3256 1.1962

5.6 Final remarks

This chapter evaluated the proposed control and state estimation strategies, designed in
the previous chapters, by means of simulations in MATLAB/SimulinkR© environment. Two
reference trajectories were specified for path tracking of the suspended load, and three
scenarios were addressed: (i) the full state information scenario, in which all states were
available for feedback connection, at every time instant; (ii) the linearized Kalman filter
scenario, in which only a half of the state vector was available, corrupted with zero-mean
Gaussian noise; and (iii) the zonotopic state estimator scenario, in which measurements
were provided by a GPS, a barometer, an IMU, a camera, and sensors embedded at
the UAV’s servomotors, corrupted with unknown but bounded noise and with different
sampling times. Moreover, the system was subject to external forces, applied to the
suspended load’s center of mass.

For the FSI scenario, the feedback connection was performed with the system states.
The proposed control strategies were successful in performing path tracking of the suspended
load for the two reference trajectories, while rejecting the external disturbances applied to
the suspended load and stabilizing the remaining degrees of freedom and the tilt-rotor
UAV as well. The behavior of the closed-loop system was similar for both controllers,
yielding close performance indexes.

For the LKF scenario, the feedback connection was performed using the states provided
by the linearized Kalman filter, with proper adaptations using equilibrium values, since the
estimator was designed based on linearized state-space equations. The path tracking was
performed successfully for the two reference trajectories, showing the good performance
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of the proposed control structure, designed controllers and the linearized Kalman filter.
However, due to the nonlinearities of the system, the estimation error left the confidence
regions of the filter at some time instants, and also become biased. Despite these problems,
the linearized Kalman filter proved capable of estimating the system states in the carried
out simulations.

For the ZSE scenario the feedback connection was performed using the center of
the estimated zonotope, provided by the zonotopic state estimator, also with proper
adaptations using equilibrium values. The path tracking was performed with success
also for this more realistic scenario, for the two reference trajectories, showing the good
performance of the proposed control structure and the zonotopic state estimator.
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6
Conclusions

This thesis dealt with the problem of path tracking of a suspended load using a tilt-rotor
UAV. A modeling approach was presented, and control and state estimation strategies
were proposed for the accomplishment of the task.

The kinematics of the system were formulated from the load’s perspective, in which the
load’s position and orientation were chosen as degrees of freedom of the mechanical system.
The aircraft’s position and orientation were regarded only relatively to the suspended load.
The dynamic equations of the system were then obtained through the Euler-Lagrange
formulation, taking into account the dynamic coupling between the aircraft and the load,
the existence of viscous friction at the suspension point, and also the possibility of external
disturbances affecting the load, yielding a nonlinear state-space representation of the
system, affine in the inputs, with the load’s position and orientation as states.

Discrete-time, robust linear state-feedback control strategies were proposed for path
tracking of the suspended load with stabilization of the tilt-rotor UAV. The nonlinear state-
space equations of the system were linearized around a generic trajectory, augmented with
integral actions over the error of the regulated states for constant disturbances rejection,
and discretized for the controller sampling time. Based on the linear discrete-time system,
two strategies were proposed:

• A discrete-time linear quadratic regulator, in which the state-feedback gains were
computed by solving a discrete-time algebraic Riccati equation, minimizing an
infinite-horizon quadratic cost functional associated to the energy of the tracking
error and control signals;
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• A discrete-time mixed H2/H∞ controller with pole placement constraints, in which
the state-feedback gains were computed through LMI approach, minimizing the H2

norm of the system for a specified upper-bound of the H∞ norm, while guaranteeing
time response specifications by means of pole placement in LMI regions;

State estimators were also designed to provide information on the system states for
feedback connection. The linearized state-space equations were evaluated at an equilibrium
point, yielding a time-invariant system, and augmented with the external disturbances
affecting the system. Two different strategies were proposed based on this model:

• A linearized Kalman filter, for a scenario in which only a half of the state vector is
measured, corrupted with zero-mean Gaussian noise. The presented algorithm is
classical, derived through propagation of means and covariances, and the Kalman
gain computed through a closed solution that minimizes the estimation error variance
at each time step. The unmodelled dynamics due to linearization were regarded as
process noise.

• A zonotopic state estimator, for a scenario in which available information is composed
of the UAV’s position and orientation, its angular velocity and the load’s position
with respect to it. This information was provided by a GPS equipment, an IMU, a
camera, and embedded sensors at the servomotors, each one with its own sampling
time, and corrupted with unknown but bounded noise. The algorithm was derived
by extending the technique presented in Alamo et al. (2005), based on zonotopes
and strips, for multi-output systems and multiple sampling times. Despite being
formulated for nonlinear systems, due to computational effort the linear discrete-time,
time-invariant model was used for the prediction step. In order to prevent interval
dependency, the measurement equations were also linearized around an equilibrium
point for the update step. Due to linearization, the zonotopes had to be adjusted so
to contain all the associated unmodelled dynamics.

The proposed strategies were evaluated through simulations in MATLAB/SimulinkR©

environment. Two reference trajectories were specified: a ring in the three-dimensional
Euclidean space, proposed to evaluate the performance of the designed strategies in a
scenario without aggressive maneuvers; and a path composed of several interconnected
stretches, proposed to evaluate the performance of the designed strategies in a diversified
scenario that includes vertical take-off in a spiral path, straight line following with rapid
changing in direction, and vertical landing. The system was subjected to external forces
applied to the suspended load. Three scenarios were addressed:

• Full state information, to evaluate the performance of the proposed controllers for the
ideal conditions based on which they were designed, in which the feedback connection
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was performed with the system states. The design parameters of the state-feedback
controllers were presented, along with the associated pole placements. The closed-
loop system demonstrated similar behaviors using the DLQR and the mixed H2/H∞
controller, which showed very close performance indexes, as expected from the pole
placement results. Both controllers rejected the external disturbances, and were
capable of performing path tracking of the suspended load in both trajectories.
The load orientation and the UAV’s orientation with respect to the load were both
stabilized, from which it could be concluded that the tilt-rotor UAV remained stable
as well.

• Linearized Kalman filter scenario, in which the feedback connection was performed
with the estimation provided by the LKF, with proper adaptations. The design
parameters of the filter and the control structure were presented, and additive noise
was assumed for the load position measurement. Due to its disturbance compensation
capabilities, the mixed H2/H∞ controller demonstrated to be more aggressive than
the DLQR for this scenario. The path tracking was performed successfully for both
trajectories. The linearized Kalman filter was capable of reducing the variance of
the estimation error substantially, while estimating the non-measured states.

• Zonotopic state estimator scenario, in which the feedback connection was performed
with the center of the estimated zonotope, with proper adaptations. The design
parameters of the zonotopic state estimator and the control structure were presented.
Datasheet noise bounds were assumed for all sensors, and higher sampling times
were assumed for the GPS and the camera. For simulation purposes, uniform noise
was assumed for the camera and the servos, while Gaussian noise was assumed
for the remaining sensors. The path tracking was performed successfully for both
trajectories, and again the mixed H2/H∞ controller showed to be more aggressive
than the DLQR. The zonotopic state estimator was capable of reconstructing the
system states from the available measurements. Furthermore, the higher sampling
times of the GPS and the camera leaded to ‘toothed’ patterns in the confidence limits,
since the update step was performed for these sensors only when their measurements
were available.

Finally, the main contributions of this thesis are summarized as follows:

• Development of equations of motion for the tilt-rotor UAV with suspended load from
the load’s perspective;

• Design of robust, discrete-time linear state-feedback control strategies for path
tracking of the suspended load with stabilization of the tilt-rotor UAV, featuring
constant disturbances rejection;



CHAPTER 6. CONCLUSIONS 142

• Design of state estimation strategies for scenarios in which not all the system states
are available for feedback connection, measurements are corrupted with noise and
sensors have different sampling times;

• Extension of the discrete-time, state-feedback H2 and H∞ control design methodolo-
gies proposed in de Oliveira et al. (2002) for the mixed case with pole placement
constraints;

• Extension of the zonotopic state estimation algorithm proposed in Alamo et al.
(2005) for multi-output systems and multiple sampling times.

6.1 Future works

This section suggests possible future works in this line of research.

• Validation of the proposed techniques in the Gazebo platform. A simula-
tion platform based on Gazebo is currently being developed in the ProVANT project.
Validation of the proposed strategies in this platform would allow further testing
their robustness.

• Validation of the proposed techniques in experimental setup. During the
elaboration of this thesis, the ProVANT UAV 2.0 was almost ready for performing
experimental flights. An important step in this research would be the implementation
of the proposed control and estimation strategies in the real system.

• Inclusion of parametric uncertainties. The proposed techniques do not take
into account parametric uncertainties in the system. The DLQR can be formulated
using an LMI approach, allowing the inclusion of parametric uncertainties (see, e.g.,
Donadel (2015)). Moreover, the discrete-time mixed H2/H∞ control formulation
presented in this thesis and allows direct inclusion of parametric uncertainties.

• Design of the linear control and state estimation strategies for the time-
varying system. In order to design the control strategies, the linearized time-
varying state-space equations were approximated by time-invariant ones, valid around
the equilibrium point. The design of time-varying control strategies would be
of interest since this approximation would be not needed. Moreover, the state-
estimation strategies were also designed based on a time-invariant model valid
around the equilibrium point. The presented LKF algorithm is appliable to time-
varying systems, and to the knowledge of the author, the ZSE can also be applied to
time-varying systems.
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• Design of model predictive control strategies for obstacle avoidance. Since
the load’s position is represented by states in the model, state-feedback model
predictive control strategies with state constraints would be able to perform path
tracking of the suspended load with obstacle avoidance.

• Design of adaptive control strategies for dealing with unknown load’s
mass and wire’s length. In real applications, the mass of the suspended load
and the length of the wire may not be accurately known. Moreover, the need
to redesign the controllers for each different load to be transported would not be
practical. Adaptive control strategies can overcome this problem by estimating those
parameters on-line.

• Design of nonlinear control and state estimation strategies. The proposed
control and state estimation strategies are either linear or were designed based on
linearized state-space equations, so they are expected to work only at the vicinity
of the desired trajectory. The design of nonlinear control and state estimation
strategies, such as the Unscented Kalman Filter, would enlarge this domain of
attraction, allowing the system to operate far from its equilibrium point, such as in
aggressive maneuvers and path tracking at higher accelerations.

• Design of control strategies for cooperative load transportation. The for-
mation control strategy presented in this thesis can be easily extended for cooperative
load transportation, by switching the inner-loop controllers based on the tilt-rotor
UAV dynamics to control strategies based on the load’s perspective model, such as
the ones proposed in Chapter 3.
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A
Path tracking control based on ZSE for the

tilt-rotor UAV

This appendix presents the results published in Rego & Raffo (2016a). The purpose of
the work was to familiarize the author with the zonotopic state estimation technique by
addressing a simpler problem, in order to solve the problem of path tracking control of the
suspended load in a latter stage.

This appendix addresses only the problem of path tracking control of a tilt-rotor UAV.
The considered scenario is similar to the one described in Sections 4.3 and 5.4, i.e., the
system must follow a desired trajectory while being affected by external disturbances, with
incomplete state information, unknown but bounded measurement noise and sensors with
different sampling times. A zonotopic state estimator is designed to provide information
about the entire state vector from the available measurements. Thereafter, a discrete-time
linear quadratic regulator is designed for the path tracking task, based on discrete-time
linearized error dynamics with integral actions. The control loop is closed by choosing the
centers of the zonotopes as estimated states.

This appendix is organized as follows: Section A.1 presents the dynamic modeling of
the tilt-rotor UAV; Section A.2 designs a zonotopic state estimator for the tilt-rotor UAV;
Section A.3 obtains the discrete-time linearized error dynamics and describes the control
design; Section A.4 presents simulation results; and Section A.5 concludes the appendix.
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A.1 System modeling

This section describes in a brief way the dynamic model of the tilt-rotor UAV, obtained
through the Euler-Lagrange formulation. The detailed modeling can be found in Donadel
(2015). The aircraft under study is the ProVANT UAV 2.0, illustrated in Figure A.1.

As mentioned in Chapter 2, the aircraft is regarded as a mechanical system composed
of three rigid bodies. The inertial frame, the aircraft’s geometric center frame, and the
frame attached to the i-th rigid body’s center of mass, i ∈ {1, 2, 3}, are denoted by I,
B and Ci, respectively. Again, it is assumed that the rotor groups’ centers of mass are
located at their respective tilting axes. The aircraft position with respect to I is denoted
by ξ , [x y z]T , and its orientation is described by Euler angles η , [φ θ ψ]T using the
roll-pitch-yaw convention. Vectors dBCi denote displacements from B to Ci, and RBCi are the
same defined in Section 2.2, for i ∈ {1, 2, 3}.

ξ

dBC1

dBC2

dBC3

ψ

φ θ

αR

αL

β

β

x y

z

I

C1

C2

C3

B

fR

ταR

fL

ταL

Figure A.1: Tilt-rotor UAV and kinematics.

Choosing q , [ξT ηT αR αL]T ∈ R8 as generalized coordinates, the tilt-rotor UAV’s
equations of motion are written in the canonical form

M(q)q̈ +C(q, q̇)q̇ + g(q) = L(q)u+ d, (A.1)

where M(q) ∈ R8×8, C(q, q̇) ∈ R8×8, g(q) ∈ R8 and L(q) ∈ R8×4 are presented in Don-
adel (2015), u , [fR fL ταR ταL ]T ∈ R4 and d ∈ R8 is a vector of external disturbances.
Defining x , [qT q̇T ]T , the dynamic equation (A.1) is written in the nonlinear state-space
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representation

ẋ = ϕ(x,u,d) =

 q̇

M−1(q) [−C(q, q̇)q̇ − g(q) +L(q)u+ d]

. (A.2)

For control strategy purposes, system (A.2) is linearized through first order expansion
in Taylor series around a generic time-varying trajectory, in a disturbance-free scenario,
yielding to (3.4), where Ac(t), Bc(t) and Fc(t) have appropriate dimensions.

A.2 Zonotopic state estimator design

This section presents the design of a zonotopic state estimator to provide information on all
states of the tilt-rotor UAV. It is assumed that available measurements are corrupted with
unknown but bounded noise and provided by sensors with different sampling times. This
section uses definitions, theorems, and algorithms presented in Section 4.3. Moreover, the
sensors available are the same from Section 4.3, with exception of the camera. Considering
additive noise, the measurement vector is given by

yk ,


q

η̇

α̇R

α̇L

+ vk =


I8×8 08×3 08×3 08×1 08×1

03×8 03×3 I3×3 03×1 03×1

01×8 01×3 01×3 1 0
01×8 01×3 01×3 0 1


︸ ︷︷ ︸

Hd

xk + vk. (A.3)

Similar to the case of the tilt-rotor UAV with suspended load, due to computational
complexity, the linearized system (4.13) is used in the prediction step instead of (A.2),
with appropriate changes in dimensions. Rewriting (A.3) as a function of ∆x yields
yk = Hd∆xk + v̄k, where v̄k ,Hdx

eq + vk.
Considering that the system is affected only by forces applied to the UAV’s geometric

center, define d = [d̄ 01×5]T , d̄ ∈ R3, and d̃k−1 , d̄k− d̄k−1. In order to estimate the external
disturbances along with the system states, the augmented state vector ν , [∆xT d̄T ]T is
introduced, yielding (4.24) and (4.26), where

Aν =

 Ad F̄d

03×16 I3×3

 ∈ R19×19, Bν =

 Bd

03×4

 ∈ R19×4,

Hν =
[
Hd 013×3

]
∈ R13×19, w̄ ,

[
wT d̃T

]T
,

in which F̄d corresponds to the first three columns of Fd.
Assume that w̄ and v̄ belong to zonotopes W̄ = cw̄ ⊕ Gw̄Brw̄ and V̄ = cv̄ ⊕ Gv̄Brv̄ ,

and let νk−1 ∈ X̂k−1 = cx̂k−1 ⊕ Gx̂k−1B
rx̂k−1 . Moreover, denote Ik as the set of available
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measurements at time instant k. Then, similarly to the procedure presented in Section
4.3, the state estimation Algorithm 4.4 is obtained, with appropriate change of dimensions
in the variables.

A.3 Control design

A discrete-time linear quadratic regulator is proposed to solve the path tracking problem
of the tilt-rotor UAV, with constant disturbances rejection. The derivation of the discrete-
time linearized error dynamics, augmented with integral actions, as well as the design of
the controller, are performed in the same lines of Sections 3.2 and 3.3, just adapted for
the tilt-rotor UAV dynamic equations.

A.4 Simulation results

The model parameters of the tilt-rotor UAV, which are the same from Table 5.1, resulted
in the following equilibrium used for linearization

qeq = [03×1 − 0.00015712 − 0.02887388 0 0.02899790 0.02853108]T ,

q̇eq = 08×1, ueq = [9.74110841 9.77602843 0 0]T .
(A.4)

The controllability matrix for pair (Aχ,Bχ) was verified to be full rank, thus the
associated system is controllable. Moreover, the observability matrix for pair (Aν ,Hν)
were verified to be full rank, thus the associated system is observable, however only when
all measurements are available.

The sensors parameters are shown in Table A.1. For simulation purposes, the noise
from the servos’ sensors was assumed to have zero-mean uniform distribution, and noise
from the other sensors was assumed to have zero-mean Gaussian distribution. For the
latter, “noise bound” means three times the standard deviation.

Table A.1: Sensors parameters

Sensor I Noise bounds Sampling time
GPS 1, 2 ±0.15m 120ms

Barometer 3 ±0.51m 12ms

IMU 4, 5, 6 ±5.15·10−3 rad 12ms9, 10, 11 ±5.15·10−3 rad/s

Servos 7, 8 ±5.67·10−3 rad 12ms12, 13 ±0.50772 rad/s

Discretizations were performed for sampling time 12 ms. For the zonotopic state
estimator, it was assumed that X̄0 = [(ξtr

0 )T 01×16]T ⊕ Gx̄0B
19, W̄ = 019×1 ⊕ Gw̄B19 and
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V̄ = Hdx
eq ⊕Gv̄B13, where

Gx̄0 =diag(0.5·13×1, 0.2·|φeq|, 0.2·|θeq|, π/180, 0.2·|αeq
R |, 0.2·|αeq

L |, 0.02·111×1),

Gw̄ =diag(10−4·116×1, 0.1, 0.1, 0.2),

Gv̄ =diag(0.15·12×1, 0.51, 5.15·10−3·13×1, 5.67·10−3·12×1, 5.15·10−3·13×1, 0.50772·12×1),

in which Gw̄ was adjusted by trial and error. The Bryson’s method was used again as
starting point for choosing the weighting matrices, which are given by

Ωχ = diag
(20

22
,

20
22
,

20
22
,

10
(π/2)2

,
10

(π/2)2
,

15
π2
,

0.01
(π/2)2

,
0.01

(π/2)2
,

1
22
,

1
22
,

1
22
,

5
(3π)2

,
5

(3π)2
,

1
(π/4)2

,
0.01
(3π)2

,
0.01
(3π)2

, 30, 30, 30, 1
)
,

Ωu = diag
( 750

(30− f eq
L )2

,
750

(30− f eq
L )2

,
5000

22
,

5000
22

)
,

(A.5)

where f eq
R and f eq

L are values from equilibrium ueq. The control loop was closed using the
first 16 elements of cx̂k , as δx = (cx̂k(1, 2, . . . , 16) +xeq)−xtr. Moreover, the order of X̂k was
limited to fifty times its dimension.

The trajectory to be performed is defined by the following equations: xtr(t) = 4 cos(πt/40);
ytr(t) = 4 sin(πt/40); ztr(t) = 17 − 16 cos(πt/40); and ψtr = 0. The initial states are
x0 = [3.9 0.1 0.9 φeq θeq 0 αeq

R αeq
L 01×8]T .

Figure A.2 shows the desired trajectory and the performed trajectory. Figure A.3 shows
the applied external disturbances, and Figure A.4 shows the error of the regulated states.
Note that, despite noise, external disturbances and multiple sampling times, the path
tracking is performed with almost null steady-state error, presenting good performance of
the designed DLQR controller and the guaranteed state estimator. The time evolution of
the remaining generalized coordinates is illustrated in Figure A.5. These variables remain
stable throughout the trajectory tracking. Figure A.6 shows the computed control signals.

Estimation error and confidence limits for x, y, ẋ and ẏ, are shown in Figure A.7. Note
the pattern that arises in the behavior of the limits, which is a consequence of the GPS’s
higher sampling time. Figure A.8 shows the estimation error and confidence limits for the
remaining states.

A.5 Conclusions

This appendix presented a path tracking control strategy based on zonotopic state estima-
tion for a tilt-rotor UAV. The aircraft’s equations of motion were presented. Assuming
that available information is provided by noisy measurements with different sampling
times, a zonotopic state estimator was designed, providing information about the entire
state vector at the controller sampling time. Based on the discrete-time linearized error
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Figure A.5: Time evolution of the remaining generalized coordinates.

t (sec)

T
hr

us
t

fo
rc

es
(N

)

0 20 40 60 80
4

6

8

10

12
fR fL

t (sec)

Se
rv

om
ot

or
to

rq
ue

s
(N

.m
)

0 20 40 60 80
-0.02

-0.01

0

0.01

0.02
ταR ταL

Figure A.6: Control signals.

dynamics with integral actions, a DLQR controller was designed for path tracking with
constant disturbances rejection capability. Simulation results corroborated the validity of
the control strategy, and also showed the good performance of the state estimator.
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B
Formation control of tilt-rotor UAVs

This appendix presents the results published in Rego et al. (2016), in which the problem
of formation control of tilt-rotor UAVs was considered. The purpose of the work was to
familiarize the author with the tilt-rotor UAV.

A control problem that arises in the field of robot cooperation is the formation control,
in which the robot team must perform a specified task while a desired formation is
maintained. There exist several approaches in the literature that deal with this problem
(Chen & Wang, 2005), and a particular one is the leader-follower.

The present appendix formulates the leader-follower control problem by means of the
cooperative dual task-space, which was introduced by Adorno et al. (2010). This approach
benefits from the unit dual quaternion representation, which encapsulates position and
orientation together in a single algebraic structure and does not have representational
singularities. The addressed formation scheme is composed of three agents: one leader,
which performs tracking of a desired trajectory, and two followers that keep a desired
time variant formation while following the leader. A backstepping control strategy with
integral action (Raffo et al., 2015) is designed based on the formation kinematics. As a
case study, tilt-rotor UAVs are chosen as agents. A linear state-feedback controller based
on the UAV’s linearized dynamic equations is designed to perform individual reference
tracking, while in an hierarchical structure the formation backstepping controller computes
the desired trajectory.

This appendix is organized as follows: Section B.1 presents the formation kinematic
model formulated using the cooperative dual task-space; Section B.2 presents the dynamic
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equations of the tilt-rotor UAV; Section B.3 presents the design of the formation back-
stepping controller, the linear state-feedback controller, and also a formation controller
based on the task-space inverse dynamics technique (for comparison); Section B.4 presents
simulation results and, finally, Section B.5 concludes the work.

B.1 Formation modeling

This section presents the formation kinematic model, which is developed using unit dual
quaternions.

B.1.1 Mathematical preliminaries

Consider the quaternionic units ı̂, ̂ and k̂, such that ı̂2 = ̂2 = k̂2 = ı̂̂k̂ = −1. A quaternion
h ∈ H is defined as h , Re(h) + Im(h), where Re(h) , h1 and Im(h) , h2ı̂+ h3̂+ h4k̂, with
h1, h2, h3, h4 ∈ R. The conjugate of h is given by h∗ , Re(h)− Im(h).

Furthermore, let ε be the nilpotent Clifford unit, such that ε 6= 0 and ε2 = 0 (Selig, 2005).
A dual quaternion h ∈ H is defined as h , P(h) + εD(h), where P(h) , hp and D(h) , hd,
with hp, hd ∈ H. The real and imaginary parts of h are Re(h) , Re(P(h)) + εRe(D(h))
and Im(h) , Im(P(h)) + εIm(D(h)), respectively. The conjugate of h is given by h∗ ,

Re(h)− Im(h).
The vec4 operator is defined for quaternions as vec4(h) , [h1 h2 h3 h4]T . An analogous

operator is defined for dual quaternions as vec8(h) , [vec4(P(h))T vec4(D(h))T ]T . The
Hamilton operators

+
H4 and

−
H4 are matrices that satisfy, for ha, hb ∈ H (Adorno, 2011),

vec4(hahb) =
+
H4(ha)vec4(hb) =

−
H4(hb)vec4(ha).

For dual quaternions, the Hamilton operators
+
H8 and

−
H8 are defined analogously (switching

vec4 to vec8).
A rigid transformation from an arbitrary frame S to another arbitrary frame T ,

composed of translation followed by rotation around a specific axis, is represented by the
unit dual quaternion xST = rST + ε(1/2)pSST rST , where pSST , xSST ı̂+ ySST ̂+ zSST k̂ corresponds to
the translation quaternion from the origin of S to the origin of T , expressed in S, and rST ,
cos(α/2) +n sin(α/2) corresponds to the rotation quaternion associated with the orientation
between S and T , described by a rotation of angle α around axis n , nxı̂+ ny ̂+ nzk̂.

B.1.2 Formation model using the cooperative dual task-space

The formation scheme addressed in this paper, shown in Fig. B.1 along with all the
reference frames and transformations that are discussed in this section, consists of three
agents. Agent σ tracks a reference trajectory and acts as a leader. Agent τ performs an
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arbitrary movement with respect to agent ζ. Furthermore, frame a, located at a fraction of
the relative transformation xr, keeps a desired pose (position and orientation) with respect
to agent σ.

σ

I

ζ

τ

a

xζ xσ

xτ

xσa

xa

xr

Figure B.1: Formation scheme, reference frames and transformations.

The rigid transformation from inertial frame, I, to a frame rigidly attached to agent
i, denoted by xi, is a function of the configuration variables of the latter, ρi ∈ Rni , with
i = {σ, ζ, τ}. The associated differential kinematic mapping is given by

vec8(ẋi) = Jiρ̇i, (B.1)

where Ji , Ji(ρi) ∈ R8×ni is the analytical Jacobian (Adorno, 2011).
Transformations xr and xa called the relative and absolute dual positions, respectively,

are defined by (Adorno et al., 2010)

xr , x∗ζxτ , (B.2)

xa , xζxr/ϕ, (B.3)

where ϕ is a constant such that xr/ϕ is a ϕ-th part of transformation xr (Adorno et al.,
2010).

Performing the time derivative of (B.2) and applying the vec8 operator to both sides
of the resulting equation, leads to the differential kinematic mapping associated with xr,

vec8(ẋr) = Jrρ̇c, (B.4)

where Jr , Jr(ρc) ∈ R8×(nζ+nτ ) and Jr = [
−
H8(xτ)E8Jζ

+
H8(x∗ζ)Jτ ], with ρc ,

[
ρTζ ρTτ

]T
and

E8 , diag([1, −1, −1, −1, 1, −1, −1, −1]).
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The differential kinematic mapping vec8(ẋr/ϕ) = Jr/ϕρ̇c can be obtained, where Jr/ϕ ,
Jr/ϕ(ρc) ∈ R8×(nζ+nτ ),

Jr/ϕ = 1
ϕ

J11 04×4

J21 J22

Jr,
with J11,J21,J22 ∈ R4×4,

J11 =
−
H4(P(x∗r)P(xr/ϕ)),

J21 =
−
H4(P(xr/ϕ))

+
H4(D(xr))E4 +

+
H4(D(xr/ϕ)P(x∗r/ϕ)) +

−
H4(D(x∗r)P(xr/ϕ)),

J22 =
−
H4(P(xr/ϕ))

−
H4(P(x∗r)),

E4 , diag([1,−1,−1,−1]).
Performing the time derivative of (B.3), and applying the vec8 operator to both sides

of the resulting equation, yields

vec8(ẋa) =
−
H8(xr/ϕ)vec8(ẋζ) +

+
H8(xζ)vec8(ẋr/ϕ)

=
−
H8(xr/ϕ)Jζρ̇ζ +

+
H8(xζ)Jr/ϕρ̇c. (B.5)

Defining JK , [
−
H8(xr/ϕ)Jζ 08×nτ ] ∈ R8×(nζ+nτ ), from (B.5) the differential kinematic map-

ping vec8(ẋa) = Jaρ̇c associated with xa is obtained, where Ja , Ja(ρc) = (JK+
+
H8(xζ)Jr/ϕ) ∈

R8×(nζ+nτ ).
Transformation xσa is given by

xσa = x∗σxa. (B.6)

Performing the time derivative of (B.6), and applying the vec8 operator to both sides of
the resulting equation, leads to the differential kinematic mapping associated with xσa,

vec8(ẋσa) = Jσaρ̇S, (B.7)

where Jσa , Jσa(ρS) ∈ R8×(nσ+nζ+nτ ),

Jσa = [
−
H8(xa)E8Jσ

+
H8(x∗σ)Ja], (B.8)

and ρS ,
[
ρTσ ρTζ ρTτ

]T
.

Given the previously stated formation control problem, the appropriate differential
kinematic model is obtained combining (B.1) for i = σ, (B.4) and (B.7), as

ẋS = JSρ̇S, (B.9)
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where ẋS , [vec8(ẋσ)T vec8(ẋr)T vec8(ẋσa)T ]T and JS , JS(ρS) ∈ R24×(nσ+nζ+nτ ),

JS =


Jσ 08×nζ 08×nτ

08×nσ Jr

Jσa

 .

Moreover, performing the time derivative of (B.9), yields to

ẍS = J̇Sρ̇S + JSρ̈S, (B.10)

which is the formation’s second order differential kinematic model.

B.2 Tilt-rotor UAV modeling

This section presents the linearized dynamic equations of the tilt-rotor UAV used to
design the linear state-feedback D-stable H∞ controller. The UAV’s differential kinematic
mapping used in the formation control is also described.

B.2.1 Uncertain linearized dynamic equations

The studied tilt-rotor UAV is the ProVANT UAV 2.0. Its dynamic equations are the same
presented in Section A.1, which are linearized around the individual reference trajectory,
under zero disturbance scenario, and augmented with integral actions, in order to design
the linear state-feedback D-stable H∞ controller, yielding

χ̇ =



Ac 016×4

1 0 0 0 0 0

04×10 04×4

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 1


︸ ︷︷ ︸

Aχ

χ+

 Bc

04×4


︸ ︷︷ ︸
Bχ

δu+

 Fc

04×3


︸ ︷︷ ︸

Fχ

d. (B.11)

Taking into account the existence of uncertain parameters, system (B.11) is rewritten
using convex polytope representation, as follows:

χ̇ = Aχ(α)χ+Bχ(α)δu+ Fχ(α)d, (B.12)

where α ∈ Rn with n = 2p and p being the number of uncertain parameters in (B.12),
Aχ(α) =

∑n

i=1 αiAχi
, Bχ(α) =

∑n

i=1 αiBχi
, and Fχ(α) =

∑n

i=1 αiFχi , with 0 ≤ αi ≤ 1 and∑n

i=1 αi = 1. This appendix consider uncertainties in the fixed mechanical angle β, assumed
to vary from 0 to π/18 radians, then p = 1 and n = 2.
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B.2.2 Differential kinematic mapping of the tilt-rotor UAV

The approach described in Section B.1 requires that the differential kinematic mapping
(B.1) is available for every agent. Thus, the differential kinematic mapping of the tilt-rotor
UAV must be obtained.

For formation purposes1, it is assumed that the kinematic model of the UAV comprises
only its position, x, y, and z, and yaw angle, ψ. Then, the transformation associated with
the tilt-rotor UAV i, with i = {σ, ζ, τ}, is given by xi = ri+ε(1/2)piri, where pi = xiı̂+yi̂+zik̂,
and ri = cos(ψi/2) + k̂ sin(ψi/2). Differentiating xi with respect to time and applying the
vec8 operator, equation (B.1) is obtained with ρi =

[
xi yi zi ψi

]T
.

B.3 Control design

This section presents the overall control strategy. A backstepping controller based on the
formation kinematic model, which is formulated using the cooperative dual-task space
framework, is designed. Also, a controller based on task-space inverse dynamics is presented
for comparison purposes. Furthermore, a linear state-feedback D-stable H∞ controller,
based on the dynamic equations of the tilt-rotor UAV, is designed for individual reference
tracking. Finally, a hierarchical structure is built.

B.3.1 Formation controller based on backstepping approach

Combining (B.9) and (B.10), and defining xA , xS and xB , ẋS, the formation kinematic
model can be written in the state-space form

ẋA = xB

ẋB = J̇SJ
+
S xB + JSρ̈S,

where J+
S denotes the pseudo-inverse of JS.

The following change of variables is applied (Raffo et al., 2015):


eA = xA − xd

eB = xB − Φ

eC =
´ T

0 eB(t)dt,

where xd is a vector which contains all reference signals information for xσ, xr and xσa , and
Φ is a virtual control law to be determined. The first step of the backstepping approach is

1And also to take into account the underactuated nature of the tilt-rotor UAV.
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based on the subsystem
ėA = xB − ẋd

eB = xB − Φ.
(B.13)

The Lyapunov function candidate V1(eA) = (1/2)eTAeA is proposed for stability analysis
of (B.13), and its time derivative is V̇1 =eTA [eB + Φ− ẋd]. Choosing Φ=−KAeA + ẋd, with
KA ∈ R24×24 a positive definite matrix, results in V̇1 = −eTAKAeA + eTAeB, which is negative
definite when eB = 024×1. The error eB is stabilized at the origin in the next step of the
backstepping approach, being its dynamics the fast one.

For the second step, the following system is considered:
ėC = eB

ėB = ẋB − Φ̇.
(B.14)

The Lyapunov function candidate

V2(eA, eB, eC) = V1(eA) + 1
2e

T
CKCeC + 1

2e
T
BeB

is proposed for (B.14), with KC ∈ R24×24 a positive definite matrix, and its time derivative
is

V̇2 = −eTAKAeA + eTAeB + eTCKCeB + eTB
[
J̇SJ

+
S eB + J̇SJ+

S Φ + JSρ̈S − Φ̇
]
.

Therefore, choosing the control law

ρ̈S = J+
S

[
−KBeB + Φ̇− J̇SJ+

S [eB + Φ]−KCeC − eA
]
, (B.15)

with KB ∈ R24×24 a positive definite matrix, yields V̇2 = −eTAKAeA − eTBKBeB, which
guarantees that the equilibrium (eA, eB, eC) = 0 of the closed-loop is UGAS (uniform
global asymptotic stable).

B.3.2 Formation controller based on task-space inverse dynam-
ics technique

Considering (B.10), by the task-space inverse dynamics (TSID) technique, the control law
is given by (Spong et al., 2006)

ρ̈S = J+
S

[
ẍd − J̇Sρ̇S −K1ėA −K2eA

]
, (B.16)

with K1,K2 ∈ R24×24, K1,K2 > 0.
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Taking the second order time derivative of eA from (B.13), we have

ëA = ẍS − ẍd = J̇Sρ̇S + JSρ̈S − ẍd. (B.17)

Substituting (B.16) in (B.17) yields to ëA = −K1ėA −K2eA, which implies asymptotic
stability.

B.3.3 Tilt-rotor UAV controller design

The chosen state-feedback control law is given by δu = −Kχ, where K ∈ R4×20 is computed
through the linear H∞ control problem formulated via linear matrix inequalities (LMIs).
The optimization problem also considers a D-stability region.

Consider the uncertain system (B.12) along with the cost variable z ∈ Rnz defined by

z = Hzχ+Dzuδu+Dzdd,

where Hz, Dzu and Dzd are weighting matrices. Then, the H∞ norm of the system is
defined by

‖Ψdz(s)‖∞ = sup
d6=0

‖z(t)‖2

‖d(t)‖2

< γ.

The control law δu = −Kχ that minimizes the attenuation level γ for the worst case
of disturbances is obtained through the following LMI (Dullerud & Paganini, 2005):


A(α)Q+QA(α)T +B(α)Y + Y TB(α)T F (α) QHT

z + Y TDT
zu

∗ −γI8×8 DT
zd

∗ ∗ −γInz×nz

 < 0, (B.18)

with K computed by K = −Y Q−1. Terms denoted by ∗ are deduced by symmetry.
The eigenvalues of the closed-loop system belong to a D sub-region of the complex

plane if there exists Q > 0 such that (Chilali & Gahinet, 1996):
Region 1: For Re(s) < −λ :

A(α)Q+QA(α)T + Y TB(α)T +B(α)Y + 2λQ < 0; (B.19)

Region 2: For a disc centered in (c, 0) with radius r:
−rQ −cQ+A(α)Q+Bu(α)Y
∗ −rQ

 < 0; (B.20)
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Region 3: For a conic region defined by |Im(s)| < tan(µ) |Re(s)|:
sin(µ) (U +UT ) cos(µ) (U −UT )

∗ sin(µ) (U +UT )

 , (B.21)

where U , A(α)Q+B(α)Y . To design the H∞ controller taking into account D-stability
based on these three regions, LMIs (B.18)–(B.21) are considered.

Furthermore, the feed-forward term utr = L(qtr)+ [M(qtr)q̈tr +C(qtr, q̇tr)q̇tr + g(qtr)] is
added to the state-feedback control law, where qtr, q̇tr and q̈tr are the reference signals
provided by the formation controller, and L(qtr)+ denotes the left pseudo-inverse of L(qtr),
such that L(qtr)+L(qtr) = I. Then, the complete control law is given by u = δu + utr =
−Kχ+L(qtr)+ [M(qtr)q̈tr +C(qtr, q̇tr)q̇tr + g(qtr)].

B.3.4 Control structure

To perform the proposed task, a hierarchical structure is built with the formation controller
and one linear state-feedback D-stable H∞ controller per tilt-rotor UAV. Either (B.15) or
(B.16) provides individual acceleration references to the UAVs. To generate velocity and
position references to the linear controllers, these accelerations are integrated once and
twice, respectively.

B.4 Results

The physical parameters of the tilt-rotor UAV are the same from Table 5.1. The equilibrium
used for linearization of (A.2) is given by (A.4). The controllability matrix for pair
(Aχ,Bχ) was verified to be full rank for the given model parameters, thus system (B.12) is
controllable for the nominal parameter β.

The weighting matrices used for the H∞ controller are given by

Hz = diag
(√

20
2 ,

√
20
2 ,

√
20
2 ,

√
10

π/2 ,
√

10
π/2 ,

√
15
π

,
0.1
π/2 ,

0.1
π/2 ,

1
2 ,

1
2 ,

1
2 ,
√

5
3π ,
√

5
3π ,

1
π/4 ,

0.1
3π ,

0.1
3π ,
√

30,
√

30,
√

30, 1
)
,

Dzu =



√
750

30− f eq
R

0 0 0

0
√

750
30− f eq

R
0 0

0 0
√

5000
2 0

02×1 02×1 02×1 02×1

0 0 0
√

5000
2

014×1 014×1 014×1 014×1



, Dzd =



08×3 08×3 08×2

I3×3 03×3 03×2

03×3 I3×3 03×2

02×3 02×3 02×2

I3×3 03×3 03×2

01×3 v 01×2


,
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where v , [0 0 1]. Matrices Hz and Dzu were adjusted such that HT
zHz = Ωχ and

DT
zuDzu = Ωu, where Ωχ and Ωu are given in (A.5), while Dzd was adjusted by trial and

error. Table B.1 shows the gain matrices used in both formation controllers and the
D-stability parameters. For these matrices and the presented D-stability parameters, the
attenuation level γ comes to be 113.4739. The gain matrices of the formation controllers
were adjusted by trial and error, whilst the D-stability parameters were adjusted according
to time-response properties associated with each region (Chilali & Gahinet, 1996).

Table B.1: Gain matrices of the formation controllers and D-stability parameters

Backstepping TSID D-stability
KA 1.2 · I24×24 K1 1.3 · I24×24 λ 2.2
KB 0.1 · I24×24 K2 1.12 · I24×24 c 0
KC 0.1 · I24×24 r 100

µ π/10

The reference signals for the formation in all simulations are given by xσd = 1 +
ε(1/2)[(2t)̂ı+(cos(0.2t)−1)k̂], xrd = 1+ε(1/2)[3 cos(0.3t)̂+3 sin(0.3t)k̂] and xσad = 1+ε(1/2)(−ı̂),
which are concatenated into xd after applying the vec8 operator. The formation’s parameter
ϕ was chosen as 3.

The first simulation was performed considering a disturbance free scenario. The
Euclidean norm of the error vector is shown in Fig. B.2. Note that its time evolution is
almost the same for the backstepping controller and the TSID controller, both achieving
null steady-state error. Since the Euclidean norm cannot assume negative values, at some
point between three and five seconds it increases due to overshoot.
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Figure B.2: Euclidean norm of the error vector in the disturbance-free scenario.

The second simulation considered constant disturbances added to the acceleration
signals generated by the formation controller. As illustrated in Fig. B.3, unlike the TSID
controller, which not achieved null steady-state error, the backstepping controller was
capable of rejecting the disturbances. To demonstrate the sustained disturbances rejection
feature of the D-stable H∞ controller, external forces are also applied to the UAVs. The
disturbance profiles are shown in Fig. B.4. Finally, Fig. B.5 illustrates the trajectories
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performed by the tilt-rotor UAVs for the scenario with disturbances using the backstepping
controller.
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Figure B.3: Euclidean norm of the error vector in the scenario with external disturbances.
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Figure B.4: Applied disturbances: external forces (left) and acceleration disturbance
(right). The former ones are applied to the geometric center of each tilt-rotor UAV, whilst
the latter is added to the reference signals ẍtr

i , ÿtr
i and z̈tr

i provided by the formation
controller, with i ∈ {σ, ζ, τ} .

B.5 Conclusions and future work

A control strategy for the leader-follower formation problem was presented in this ap-
pendix. The formation model was formulated using the cooperative dual task-space, and
a backstepping controller based on this approach was proposed. Another control strategy,
based on the TSID technique, was designed for comparison purposes. A group of tilt-rotor
UAVs was taken as case study, and a linear state-feedback D-stable H∞ controller was
designed for each individual reference tracking based on the UAV’s linearized dynamic
equations. Then, the backstepping controller and one linear state-feedback controller
per UAV were arranged in a hierarchical structure. Simulation results performed in the
MATLAB/Simulink environment for the backstepping controller and the TSID controller
were presented and compared. In a disturbance-free scenario, the UAVs’ behavior was
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Figure B.5: Trajectories performed by the tilt-rotor UAVs: 3D view (top) and top view
(bottom).

almost the same for both controllers. However, when constant disturbances were added to
the acceleration signals generated by the formation controller, the backstepping controller
rejected them, while the TSID controller did not. Also, constant external forces were
added, so the sustained disturbances rejection feature of the D-stable H∞ controller could
be shown.

The presented formation control strategy is based on a centralized approach. When the
formation is scaled up (which is possible by defining multiple relative and absolute posi-
tions), JS increases in eight rows and ni columns per agent, and also becomes ill-conditioned.
Therefore, the computational effort necessary to compute J+

S grows polynomially (Burden
& Faires, 2010). Considering this fact, future works may deal with decentralized formation
control strategies.
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C
Miscellaneous proofs

In Chapter 3, it was claimed that the inverse of the positive definite matrix P2, defined for
derivation of the discrete-time H2 control, satisfies the inequalities (3.2) and (3.3) for the
closed-loop system (3.21). A proof is presented in this appendix.

Firstly, since P2 > 0, we have that P −1
2 > 0, hence the inequality (3.2) is satisfied. For

clarity, the inequality (3.24) is repeated here,

(Aχ −BχK)P2(Aχ −BχK)T − P2 + FχF T
χ < 0.

Since FχF T
χ is positive semi-definite1, we have that

(Aχ −BχK)P2(Aχ −BχK)T − P2 < 0,

which is equivalent to

(Aχ −BχK)P2P
−1
2 P2(Aχ −BχK)T − P2 < 0.

By applying the Schur complement, yields P2 (Aχ −BχK)P2

P2(Aχ −BχK)T P2

 < 0.

1xTFχF
T
χ x = ‖F T

χ x‖2
2 ≥ 0, ∀x ∈ R24
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Then, through the congruence transformation 0 P −1
2

P −1
2 0

 P2 (Aχ −BχK)P2

P2(Aχ −BχK)T P2

 0 P −1
2

P −1
2 0

 < 0,

leads to  P −1
2 (Aχ −BχK)TP −1

2

P −1
2 (Aχ −BχK) P −1

2

 < 0.

Finally, by applying the Schur complement yields

(Aχ −BχK)TP −1
2 (Aχ −BχK)− P −1

2 < 0,

which is the inequality (3.3) for the closed-loop system (3.21).
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