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This paper describes a simple and quick method for sampling and also for carrying out the preconcentration of pesticides in
environmental water matrices using two-phased hollow fiber liquid phase microextraction (HF-LPME). Factors such as extraction
mode, time, solvents, agitation, and salt addition were investigated in order to validate the LPMEmethod.The following conditions
were selected: 6 cm of polypropylene hollow fiber, ethyl octanoate as an acceptor phase, and extraction during 30min under stirring
at 200 rpm. The optimized method showed good linearity in the range of 0.14 to 200.00𝜇g L−1; the determination coefficient (𝑅2)
was in the range of 0.9807–0.9990.TheLOD ranged from0.04 𝜇g L−1 to 0.44 𝜇g L−1, and LOQ ranged from0.14 𝜇g L−1 to 1.69 𝜇g L−1.
The recovery ranged from 85.17% to 114.73%. The method was applied to the analyses of pesticides in three environmental water
samples (a spring and few streams) collected in a rural area from the state of Minas Gerais, Brazil.

1. Introduction

The extensive use of pesticides harms the soil [1–4], air [5, 6],
food [7–10] surface and ground waters [11–14], and quality
causing serious impacts on the environment and on human
health. In natural waters pesticide residues are present at
very low levels and can be degraded when submitted to lower
pH levels or exposed to solar radiation [15]. Furthermore the
complexity of environmental matrices and large variations
in physical and chemical properties of the target compounds
requires the use of sensitive and selective techniques. Several
analytical techniques, such as high-performance liquid
chromatography (HPLC) [16, 17], gas chromatography (GC)
[18, 19], micellar electrokinetic chromatography (MEKC)
[20, 21], enzyme-linked immunosorbent assays (ELISA)
[22–24], and gas and liquid chromatography coupled to
mass spectrometry (GC/MS, LC-MS) [25, 26], have been
used for analyses of pesticides in different matrices. The
chromatographic techniques combine separation capabilities
with sensitivity from the mass systems such as ion trap (IT),

triple quadrupole (QqQ), and time of flight (TOF). However,
these techniques still remain as challenges related to low
detection limits, the variety of pesticides classes, and sample
preparation. The analytes extraction in chromatographic
analysis is critical to the method’s performance since it
enables the elimination of possible array interferences and
the preconcentration of analytes. Traditional extraction
methods such as solid phase extraction (SPE) [27, 28] and
liquid-liquid extraction (LLE) are multistage consuming
toxic solvents and require a long time to execute. Solid
phase microextraction (SPME) [29–31] is a technique that
is based on the partition between the analyte present in the
matrix and the fiber coating over a small fused silica rod.
This technique is solvent-free and gathers in a single step
extraction and preconcentration. However problems such as
low resistance, short lifetime, and high cost remain. Recently,
several materials have been proposed to increase the strength
and durability of SPME coatings such as carbon materials
[32]. Hollow fiber liquid phase microextraction (HF-
LPME) [33–37] and dispersive liquid-liquid microextraction
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(DLLME) [38, 39] have been used for the concentration and
clean-up step of pesticides analyses in waters. HF-LPME
was developed by Pedersen-Bjergaard and Rasmussen [40]
and has been used by many researchers in recent years due
to its low cost, which enables the rejection of the material
after use, eliminating problems of cross-contamination or
low reproducibility as well as its decreased consumption
of organic solvents. Moreover, the process is simple and
a clean-up step is not necessary and can be applied to a
variety of arrays reaching high enrichment factors [41]. The
technique consists of a capillary porous hydrophilic fiber,
impregnated with organic solvent and its interior filled with
an acceptor phase, so that it does not come into direct contact
with the matrices allowing for the application of agitation
during extraction [42]. HF-LPME can be used in two or three
phases. With two phases the analyte is extracted from the
donor through an organic solvent immiscible in water that
fills the membrane pores passing to the acceptor stage, which
corresponds to the same solvent [43]. With three phases
the analyte is extracted from a donor phase through an
organic solvent immiscible in water for an aqueous solution
(acceptor phase) inside the fiber. The organic phase acts as
a barrier preventing contact between the phases. Despite
the extensive use of HF-LPME for extraction of pesticides
in water [33, 44, 45], the reported studies using GC/MS are
generally for just one pesticide class. Therefore, this study
presents the development of a simple and low-cost two-phase
HF-LPME methodology for multiresidue microextraction
of organophosphorus, phthalimides, organochlorines, and
triazoles pesticides from environmental water using GC/MS.
The pesticides selected were parathion-methyl (O,O-dimeth-
yl-O-p-nitrophenyl phosphorothioate), chlorpyrifos (O,O-
diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate), cap-
tan (N-(trichloromethylthio)cyclohex-4-ene-1,2-dicarbox-
imide), procymidone (N-(3,5-dichlorophenyl)-1,2-dimethyl-
cyclopropane-1,2-dicarboximide), 𝛼-endosulfan (1,4,5,6,7,7-
hexachloro-8,9,10-trinorborn-5-en-2,3-ylenebismethylene
sulfite), prothiofos ((RS)-(O-2,4-dichlorophenyl O-ethyl
S-propyl phosphorodithioate)), cyproconazole ((2RS,3RS;
2RS,3SR)-2-(4-chlorophenyl)-3-cyclopropyl-1-(1H-1,2,4-tri-
azol-1-yl)butan-2-ol), ethion (O,O,O󸀠,O󸀠-tetraethyl S,S󸀠-
methylene bis(phosphorodithioate)), triazophos (O,O-dieth-
yl O-1-phenyl-1H-1,2,4-triazol-3-yl phosphorothioate), and
phosmet (O,O-dimethyl S-phthalimidomethyl phosphorod-
ithioate). The main parameters affecting the extraction
efficiency were optimized using GC/MS determination. The
procedure presented good accuracy and precision and low
limits of quantification and detection, besides good recovery.

2. Materials and Methods

2.1. Chemical andMaterials. Parathion-methyl, chlorpyrifos,
captan, procymidone, 𝛼-endosulfan, prothiofos, cyprocona-
zole, ethion, triazophos, and phosmet of 98%w/w purity
grade were purchased from Sigma-Aldrich (St. Louis, MO,
USA). The choice of pesticides was based on their use
on the region of samples collection. A work solution of
20.00mg L−1 was prepared by the appropriate dilution in
HPLC-grade methanol, Sigma-Aldrich (St. Louis, Missouri,

United States). This work solution was used for the matrix
spike in different concentration levels (5.00 to 160.00 𝜇g L−1)
to optimize the extraction conditions during the validation
study. Calibration standards were prepared at 5.00, 10.00,
20.00, 40.00, 80.00, and 160.00 𝜇g L−1 concentrations using
ultrapure water produced in a Purelab UVMK2 purifier from
Elga (Marlow, Buckinghamshire, England). 1-Octanol HPLC
grade was purchased from Sigma-Aldrich (St. Louis, Mis-
souri, United States), ethyl decanoate, acetonitrile, and ethyl
octanoate were purchased from J. T. Baker (Xalostoc, Edo
MEX,Mexico). Hollow fiber was purchased fromUnderlying
Performance Co. (Wuppertal, Germany).

2.2. Instrumentation for GC/MS. The analysis was carried
out with a Shimadzu (Kyoto, Japan) GC/MS system model
GC-2010/QP-2010 high-performance quadrupole. The mass
spectrometer operated within the electron impact mode (EI)
at 70 eV. A capillary column (30m × 0.25mm × 0.25 𝜇m)
containing 5% diphenyl and 95% dimethylpolysiloxane HP-
5MS from Agilent Technology, Inc. (Santa Clara, California,
United States), was used. The oven temperature program
began at 80∘C and raised to 200∘C at a rate of 8∘Cmin−1
up to 300∘C at 30∘Cmin−1 and held there for 3min. Helium
(99.999%) was the carrier gas at a flow rate of 1.0mLmin−1.
The injector was operated at 280∘C in splitless mode for
3min, followed by a 1 : 20 split ratio (RD). The ion source
temperature was 200∘C, and the GC/MS interface tempera-
ture was 300∘C. The analysis was carried out in the selected
ionmonitoring (SIM)mode.The quantification was achieved
using the ion fragments shown in Table 2. The collection
of raw data was carried out using a LabSolution software,
Shimadzu (Kyoto, Japan).

2.3. HF-LPME Extraction Procedure. Aqueous standards of
pesticides were prepared by spiking an appropriate amount
of the working standard. The extraction and desorption
conditions were based on Psillakis and Kalogerakis’s study
[49]. LPME sampling was tested in two and three phases,
study of salt addition, stirring speed, and extraction time.
The extractions were carried out with propylene hollow
fiber of 6.0 cm length, 600 𝜇m of internal diameter, and
wall thickness of 200𝜇m. Before the extraction, the hollow
fiber was filled with 30.0 𝜇L of solvent using a microsyringe.
Then, the U-shaped solvent-filled fiber was connected to
two syringe needles and immersed into the vial containing
15.00mL of aqueous donor solutions spiked with 100.0 𝜇g L−1
of standard pesticides solutions for the extraction under
magnetic stirring. After the extraction, the acceptor phase
was removed with a microsyringe and transferred to a 2.0mL
vial to the injection of 1.0 𝜇L in GC/MS. All experiments were
performed in replicates (𝑛 = 3).

2.4. Samples Collection. Real samples of surface water were
collected in a rural area of the state of Minas Gerais, Brazil.
In this region the main crops are coffee, eucalyptus, and
tomatoes. Samples of surface water were sampled 2 kmdown-
stream of these crops. The collected samples showed clear
appearance and no suspended particles. The amber-glass
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collection bottles were previously washed with a solution
of 5.0% v/v alkaline detergent under ultrasound bath for
15 minutes and rinsed with ultrapure water. Water samples
collected with these bottles were carefully filled to the brim
to avoid trapping air. After filling the bottles they were sealed
with Teflon lined screw caps, kept in ice, and transported to
the laboratory before 24 h where they were stored at 4∘C until
the extraction and analysis.

2.5. Quality Control and Quality Assurance. The quality
control and the quality assurance method were carried out
according to EURACHEM guidelines [50]. The limits of
detection (LOD) and limits of quantification (LOQ)were cal-
culated from mean and standard deviation of 10 blank mea-
surements with 95% confidence. Linearity was established for
all the analytes (from 0.04 to 150.0 𝜇g L−1). Six concentra-
tion levels were analyzed with three measurements at each
concentration level. The Hartley test using Origin 8.0 from
OriginLab Co. software (Northampton, MA, United States)
was used to verify the instrumental response homogeneity of
variances. The result of this test indicated heteroscedasticity
of variances, so the linear models for the calibration curves
were constructed by the least squaresmethodweighted by the
experimental variance. Intraday repeatability was calculated
with four replicates. Recovery was evaluated using blank
sample water spiked with 10.0 𝜇g L−1.

3. Results and Discussion

3.1. Optimization of HF-LPME Method. The most important
factors related to the HF-LPME extraction method such as
the extraction mode, solvents, agitation, salt addition, and
extraction time were optimized before the validation tests.
The pesticides studied were chosen based on the information
of their broad use (higher quantity retailed) in the cultures
of the region where the samples were collected. Table 1
shows few relevant physicochemical properties of the selected
pesticides [51].

3.1.1. Extraction Mode and Solvents. The extraction mode
with three phases was evaluated using acetonitrile as
the acceptor phase; 1-octanol, ethyl decanoate, and ethyl
octanoatewere tested as the organic phase. Aqueous solutions
spiked with standard pesticides were used as donor solutions.

A significant loss of the organic phase during the three-
phased extraction process significantly affected the recovery
of the acceptor phase for further analysis. Subsequently,
the two-phase mode was tested using 1-octanol or ethyl
decanoate and ethyl octanoate as the acceptor phase and
the aqueous solutions spiked with standard pesticides as
donor solutions. The two-phase extraction method provided
significant improvement in the recovery due to good immo-
bilization of the acceptor phase in the fiber. Ethyl octanoate
was selected as the acceptor phase due to its superior response
to most pesticides as shown in Figure 1.

The results obtained with 1-octanol were relatively lower
compared to the other acceptor phases studied. This can be
explained by the difference in polarity between them since
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Figure 1: Effect of organic solvent on pesticide’s extraction effi-
ciency. Conditions of the donor phase: 15mL of water spiked at
100 𝜇g L−1 of each pesticide; extraction time of 60min; and stirring
speed of 100 rpm. Error bars represented the standard deviation of
the mean peak area for 𝑛 = 3 replicates.

ethyl decanoate and ethyl octanoate are less polar than 1-
octanol. Therefore, the studied analytes are best extracted
in more hydrophobic solvents because all 𝐾ow values are
greater than 1. This indicates that there is greater solubility
in nonpolar solvent increasing the distribution ratio between
the organic acceptor solution and the donor solution [52].
The different areas observed for organochlorine pesticides
in relation to organophosphorus areas are mainly due to the
fact that the electron impact mode used in MS detector show
extensive fragmentation. Electron impact produces relatively
low signal intensity with poor sensitivity for organochlorines
compounds [53].

3.1.2. Agitation. Agitation provides continuous exposure of
the extraction surface for the aqueous sample. The fiber is
depleted of the analytes due to their partitioning in the donor
phase; hence, the agitation diminishes this depletion area by
bringing fresh undepleted sample close to the fiber. Agitation
also reduces the time required to reach thermodynamic
equilibrium and induces convection in the membrane phase.
To optimize sample agitation, ethyl octanoate was used as the
acceptor phase, and aqueous pesticide was used as the donor
phase. The stirring rates studied were 0; 200; 400; 800; and
1600 rpm using metallic stir bars of 0.5 cm. The extraction
time was 60min. The results presented in Figure 2 show that
the largest areas were obtained using 200 rpm of agitation
speed. It was also observed that the agitation speed higher
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Table 2: Analytical performance of GC/MS method using HF-LPME for the extraction of pesticides in environmental water.
aPesticide Quantification ion (m z−1) Linearity (𝑅2) bPrecision RSD (%) cRecovery (%) LOD (𝜇g L−1) LOQ (𝜇g L−1)
Parathion-methyl 263 0.9932 2.80 110.05 0.04 0.14
Chlorpyrifos 97 0.9950 3.98 114.73 0.44 1.46
Captan 79 0.9955 14.98 100.65 0.20 0.67
Procymidone 67 0.9996 4.77 113.68 0.17 0.57
𝛼-Endosulfan 195 0.9903 6.50 110.75 0.12 1.69
Prothiofos 113 0.9990 0.90 112.17 0.35 1.16
Cyproconazole 125 0.9943 9.31 85.17 0.14 0.48
Ethion 125 0.9807 2.36 113.36 0.13 0.42
Triazophos 161 0.9906 13.56 91.08 0.09 0.31
Phosmet 160 0.9874 15.16 111.10 0.23 0.76
aCompounds are listed in sequence of elution. b,cConcentration 10 𝜇g L−1; 𝑛 = 3.
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Figure 2: Effect of the stirring speeds on pesticide extraction
efficiency. Extraction conditions of the donor phase: 15.0mL of
water spiked at 100.0 𝜇g L−1 of each pesticide; extraction time of
60min; and ethyl octanoate in the acceptor phase. Error bars
represented the standard deviation of the mean peak area for 𝑛 = 3
replicates.

than 200 rpm decreases extraction efficiency despite the fact
that stirring promotes mass transfer between the donor and
acceptor phases. The relative decreased extraction yield was
due to the fact that vigorous agitation promotes the formation
of air bubbles which adhere to the fiber surface [54]. The
efficiency of the extraction at 0 rpm and 400 rpm are similar
because in the static stage the diffusion layer close to the fiber
is not renewed; this effect decreases the mass transfer to the
donor layer. However, the formation of bubbles on the outer
surface of the fiber starts from 400 rpm, which contribute to
reducing the mass transfer of the acceptor phase.

3.1.3. The Salting-Out Effect. The effect of salt addition to
the LPME extraction of the pesticides was examined in the
presence of different concentrations of NaCl: 0.0; 5.0; 10.0;
and 15.0%w/v. The extraction time was 60min. The acceptor
phase was ethyl octanoate with agitation at 200 rpm. The
addition of salt in the aqueous samples generally improves the
extraction of analytes in the organic phase. The salt increases
the ionic strength decreasing the solubility of hydrophobic
analytes in the donor phase; therefore, it enhances their
partitioning into the acceptor phase. However, in this study
the addition of salt did not present a positive influence on
the extraction process of most analytes (Figure 3). Phosmet
presented a large improvement in the extraction efficiency of
5.0% NaCl concentration, although at higher concentrations
the peak area decreased drastically. The presence of higher
concentrations of salt can change the physical properties of
the extraction film reducing the diffusion rates of the analytes
into the organic phase [55]. Therefore, the increase in ionic
strength resulting from the addition of salt increased the
salting-in effect.This effect has been observed in other studies
regarding environmental water samples [35, 56].

3.1.4. Extraction Time. LPME sampling is an equilibrium
process, in which analytes are partitioned between the donor
phase and acceptor phase. The equilibrium time refers to the
time after which the amount of extracted analyte remains
constant. Extraction times of 10.0; 20.0; 30.0; 40.0; and
60.0 minutes were tested for the extraction using the best
conditions of the variables previously assessed. As seen in
Figure 4, the extraction efficiency reached its maximum
value after 30min for most of the pesticides evaluated.
Therefore this was the extraction time selected. Periods above
30min reduced extraction efficiency in some analytes, such
as parathion-methyl, captan, phosmet, and triazophos. This
reduction occurs due to the prolonging of the stirring time,
which originates the formation of bubbles in the outer fiber,
contributing to increased losses of the donor phase.

3.2. Chromatographic Evaluation. After evaluating the differ-
ent parameters that could affect the extraction the following
optimized conditions were selected for all experiments: 6 cm
polypropylene hollow fiber impregnated and filled with 30 𝜇L
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Figure 3: Influence of the aqueous phase ionic’s strength on
pesticides extraction efficiency. Extraction conditions of the donor
phase: 15.0mL of water spiked at 100.0 𝜇g L−1 of each pesticide with
NaCl; extraction time of 60min; stirring speed of 100 rpm; and ethyl
octanoate in the acceptor phase. Error bars represented the standard
deviation of the mean peak area for 𝑛 = 3 replicates.
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100.0 𝜇g L−1 of each pesticide; stirring speed of 200 rpm; and ethyl
octanoate in the acceptor phase. Error bars represented the standard
deviation of the mean peak area for 𝑛 = 3 replicates.
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Figure 5: (a) Chromatogram of pesticides GC/MS analysis using
HF-LPME extraction. Extraction for 30 minutes in aqueous donor
solution spiked at 50.0 𝜇g L−1; stirring speed 200 rpm; and ethyl
octanoate as acceptor phase. 1: parathion-methyl. 2: chlorpyrifos.
3: captan. 4: procymidone. 5: 𝛼-endosulfan. 6: prothiofos. 7: cypro-
conazole. 8: ethion. 9: triazophos. 10: phosmet. (b) Chromatogram
of pesticides in real environmental water sample under same
extraction conditions.

of ethyl octanoate, immersion in a vial containing 15.0mL of
sample for 30min under stirring at 200 rpm, and injection of
1.0 𝜇L to the acceptor phase in the GC/MS system. Figure 5
shows chromatogram of pesticides GC/MS analysis using
HF-LPME extraction in aqueous donor solution spiked at
50.0 𝜇g L−1 with standards (Figure 5(a)) and real environ-
mental water sample (Figure 5(b)) under the same extraction
conditions. Chromatographic separation was satisfactory for
all target analytes in a short time.

Under the optimal extraction conditions ten pesticides
were selected for the analysis.The parameters linearity, limits
of detection (LOD), limits of quantification (LOQ), recovery,
and precision were carefully investigated. The experimental
results are presented in Table 2.

A linear range of 0.14 𝜇g L−1 to 200.00𝜇g L−1 was used
in the investigation. The linearity was assessed by the deter-
mination coefficient (𝑅2) that was in the range of 0.9807–
0.9990.The LOD ranged from 0.04𝜇g L−1 to 0.44 𝜇g L−1, and
LOQ ranged from 0.14𝜇g L−1 to 1.69 𝜇g L−1. The recovery
and precision studies were performed by three replicates of
real water samples spiked with concentration of 10.0𝜇g L−1
of each pesticide. Recovery ranged from 85.17% to 114.73%.
Intraday precision (RSD, 𝑛 = 3) ranged from 0.90% to
15.16%.Themerit parameters values of linearity and precision
obtained in this study are consistent with other results
reported in the analysis of pesticides in water [37, 57–61].
On the contrary, the limits of detection and quantification
obtained in this study were better than those obtained in



8 Journal of Analytical Methods in Chemistry

Table 3: Comparative study for some parameters of HF-LPME-GC/MS developed method with other related methods.

Extraction
method

Number of
analytes Multiclassa LOD (𝜇g L−1) Precision (%) Recovery (%) Extraction time (min) Cost effective Refer.

SPE 12 Yes 0.004–0.08 2.5–17.4 83–126 − High [28]
SPME 5 No 2.0–8.0 − − 30 High [31]
HF-LPME 9 No 0.002–0.012 4.2–18.4 69.4–122.7 360 Low [35]
DLLME 18 No 0.001–0.025 5–15 75–101 0.5 Low [39]
HF-LPMEb 3 No 0.015–0.080 8.7–30 Low [44]
SPME 6 Yes 0.003–0.145 4–12 60 High [46]
SPME 16 Yes 0.015–0.13 1.9–9.6 82–114 60 High [29]
SPME 7 Yes 0.006–0.600 2.7–23.5 60–121 80 High [47]
SPME 16 Yes 0.02–0.30 6.3–16.9 70.2–104.6 30 High [48]
HF-LPME 11 Yes 0.04–0.35 0.9–15.2 85.2–114.7 30 Low This work
aPresence of different class of pesticides. bSample extraction of 72 h.

Table 4: Analyses of pesticides in real environmental water samples (spring water, stream 1, and stream 2).

Pesticide Average (𝑛 = 3) concentrations (𝜇g L−1) cPermitted value (𝜇g L−1)
Spring water Stream 1 Stream 2

Parathion-methyl a0.06 a0.08 0.15 35
Chlorpyrifos bND ND ND dx
Captan ND ND ND x
Procymidone ND ND ND x
𝛼-Endosulfan a0.16 ND a0.20 0.2
Prothiofos ND ND ND x
Cyproconazole ND ND ND x
Ethion a0.30 a0.31 ND x
Triazophos a0.17 a0.14 a0.16 x
Phosmet ND ND ND x
aBelow LOQ. bND: not detected. cRegulation 357/2005. Ministry of Environment: pesticide levels in surface water in Brazil. dx: not regulated by Brazilian
legislation.

other works using HF-LPME [59, 62]. Besides, comparing
other methods described in the literature (Table 3) to the
multiclass pesticides analysis thisHF-LPMEmethod presents
better precision and low cost.

3.3. Analysis of Real Environmental Samples. The application
of the HF-LPME-GC/MS method for determination of pes-
ticides of real samples was achieved through the analysis of
three real samples of surface water (spring, stream 1, and
stream 2) collected in a rural area of the state ofMinas Gerais,
Brazil.

Agriculture is the main activity in the region upstream.
The concentrations determination for each pesticide in water
samples are shown in Table 4.

Parathion-methyl was quantified in the sample of stream
2 and detected in spring water and stream 1. The value found
for this pesticide in the samples analyzed is lower than the
limit established by Brazilian legislation [63]. Triazophos
was detected in all the samples analyzed. 𝛼-Endosulfan was
detected in the spring water and stream 2. Ethion was
detected in spring water and stream 1. These results show
the ability of the method for the analysis of ten pesticides of
different chemical classes in real samples.

4. Conclusions

This study describes the use of a simple and quick method
for the determination of pesticides in environmental water
by two-phase HF-LPME-GC/MS.Themain factors related to
HF-LPME extraction method such as the extraction mode,
solvents, agitation, salt addition, and extraction time were
investigated and optimized before the validation tests. The
proposed method showed good linearity, low detection and
quantification limits, high selectivity, and good repeatability
for the pesticides selected.This procedure is selective, simple,
fast, and low cost; it has minimal use of solvents and does
not require pretreatment of samples. The results obtained
from the analyses of three environmental water samples
(spring and streams) have demonstrated the ability of the
method to measure trace levels of pesticides. This method
has the potential for automation and capacity for integrated
sampling.
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J. J. Santana-Rodŕıguez, “Microextraction techniques coupled
to liquid chromatography with mass spectrometry for the
determination of organic micropollutants in environmental
water samples,”Molecules, vol. 19, no. 7, pp. 10320–10349, 2014.

[62] D. A. Lambropoulou and T. A. Albanis, “Liquid-phase micro-
extraction techniques in pesticide residue analysis,” Journal of
Biochemical and BiophysicalMethods, vol. 70, no. 2, pp. 195–228,
2007.

[63] Ministry of Environment: pesticide levels in surface water in
Brazil, CONAMA, Resolution No 358/2005, http://www.mma
.gov.br/port/conama/res/res05/res35805.pdf.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Inorganic Chemistry
International Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

 International Journal ofPhotoenergy

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Carbohydrate 
Chemistry

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Physical Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com

 Analytical Methods 
in Chemistry

Journal of

Volume 2014

Bioinorganic Chemistry 
and Applications
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Spectroscopy
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Medicinal Chemistry
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Chromatography  
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Applied Chemistry
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Theoretical Chemistry
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Spectroscopy

Analytical Chemistry
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Quantum Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Organic Chemistry 
International

Electrochemistry
International Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Catalysts
Journal of


