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Resumo
Nos segmentos da economia que operam em condição de monopólio natural, a ausência da
competição entre fornecedores pode gerar resultados indesejados para os consumidores, como
serviços de baixa qualidade e alto custo. Para evitar esse cenário, é usual a presença do agente
regulador, que deve determinar parâmetros de operação e avaliar os resultados das empresas
envolvidas. No contexto da distribuição de energia elétrica no Brasil, a agente regulador é a
Agência Nacional de Energia Elétrica (ANEEL). Em geral, os parâmetros de operação e índices de
desempenho das empresas Brasileiras do setor de energia são afetados por variáveis gerenciáveis
e não-gerenciáveis. Essas últimas variáveis relacionadas ao seu ambiente de atuação. Os efeitos
ambientais são particularmente importantes no Brasil, dada a amplitude e heterogeneidade do
seu território. A primeira parte deste trabalho explora o efeito da heterogeneidade das condições
ambientais e seu impacto nos seus índices de eficiência das empresas distribuidoras de energia
elétrica. Para contornar o problema, é implementado o método Bayesiano de regionalização
para análise espacial de índices de eficiência, permitindo a criação de regiões contíguas que
apresentem condições ambientais mais homogêneas. Essa metodologia foi proposta originalmente
para problemas de epidemiologia e foi adaptada para o problema proposto. A segunda parte
do trabalho estende esta metodologia incluindo um modelo de regressão espacial onde, além
do número e das posições dos conglomerados espaciais, ou clusters, pode-se estimar o impacto
de cada covariável em cada um deles. A metodologia atualizada é utilizada para a análise da
Duração Equivalente de Interrupção por Unidade Consumidora (DEC), um importante indicador
de performance no setor de distribuição. Os resultados demonstram a possibilidade de estimar
o número de clusters, suas posições e os coeficientes de regressão associados às variáveis que
impactam o indicador.

Palavras-chaves: Setor elétrico, Clustering, Regressão Espacial, Estatística Bayesiana.



Abstract
In the economy segments that operate under a natural monopoly condition, the absence of
competition among suppliers can generate unwanted results for consumers, such as low-quality
services at a high cost. To avoid this scenario, the regulatory agency’s presence, which must
determine the process parameters and evaluate these companies’ results, is usual. In the context
of electricity distribution in Brazil, this role is exercised by the National Electric Energy Agency
(ANEEL). Companies’ operating parameters and performance indices are a�ected by manageable
and non-manageable variables related to their operating environment. These environmental
e�ects are important in Brazil, given the breadth and heterogeneity of its territory. The first
part of this work explores the e�ect of environmental conditions’ heterogeneity and its impact on
electric energy distribution companies’ e�ciency scores. To circumvent the problem, the Bayesian
method of regionalization is implemented for spatial analysis of e�ciency indexes, allowing the
creation of contiguous regions that present more homogeneous environmental conditions. This
methodology was proposed for the epidemiology problem and was adapted to the proposed
problem. The second part of the work extends this methodology to include a spatial regression
model where, in addition to the number and positions of the clusters, each covariate’s impact on
each one can be estimated. The updated methodology is used to analyze the Duração Equivalente
de Interrupção por Unidade Consumidora (DEC) index, an important performance indicator
in the distribution sector. The results demonstrate the possibility of estimating the number of
clusters, their positions, and the regression coe�cients associated with the variables that impact
the indicator.

Keywords: Electrical sector, Clustering, Spatial Regression, Bayesian Statistics.
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1 Introdução

O mercado de distribuição de energia elétrica no Brasil, como na maioria dos países,
opera em monopólio natural. Consequentemente, os consumidores finais não podem escolher a
distribuidora de energia com tarifas baixas e alta qualidade. Sem uma regulamentação adequada,
a falta de concorrência permite que as distribuidoras de energia cobrem preços abusivos sem
melhorar a qualidade do serviço.

No Brasil, a Agência Nacional de Energia Elétrica (ANEEL - Agência Nacional de Energia
Elétrica), criada em 1996, é o regulador do setor de energia responsável pelos cálculos de tarifas,
avaliação da qualidade dos serviços, entre outras atividades relacionadas à geração, transmissão,
distribuição e comercialização de energia (ANEEL, 1996). O serviço de distribuição compreende
a entrega de energia elétrica a consumidores residenciais e a pequenos consumidores comerciais e
industriais.

1.1 Estimando conglomerados espaciais utilizando os índices de eficiência
operacional das empresas brasileiras de distribuição de energia elétrica

Com o intuito de estimular a competitividade entre as empresas distribuidoras de energia
elétrica, a Agência Nacional de Energia Elétrica (ANEEL) utiliza técnicas de Benchmarking para
determinar seus escores de eficiência relativa. Este procedimento permite encontrar as empresas
que estão na fronteira de eficiência - Benchmark do setor - e comparar as demais empresas ante
esse limiar. Desde 2011, parte do modelo regulatório implementado pela ANEEL utiliza o Data
Envelopment Analysis (DEA).

Uma das premissas do DEA é que as empresas estejam submetidas às mesmas condições
ambientais. No contexto da distribuição de energia no Brasil, essa premissa é problemática, pois
as empresas distribuidoras atuam em condições ambientais muito distintas uma das outras. Uma
forma de lidar com essas diferenças ambientais é corrigir o índice de eficiência gerado pelo modelo
DEA com uma análise que leve em consideração os fatores ambientais, o chamado ajuste em
segundo estágio. Na primeira parte da pesquisa, Capítulo 2, propõe-se uma forma alternativa de
tratar este problema. Aplicando o método Bayesiano de regionalização, pretende-se agrupar as
empresas em regiões contíguas homogêneas, ajustando o problema ao requisito de homogeneidade
dos modelos de Benchmarking.

A Estatística Espacial dispõe de diversas metodologias para lidar com dados que estão
associados a algum tipo de componente espacial. Usualmente, nos problemas de regionalização, o
número de regiões em que a área de estudo deve ser dividida é um dado pré-estabelecido. Neste
trabalho, assume-se que esta informação não está disponível e precisa ser também estimadas.
De forma a lidar com esta dificuldade, a parte inicial do trabalho busca adaptar a metodologia
de regionalização proposta por Knorr-Held (KNORR-HELD; RASSER, 2000) para análise de
dados numéricos geo-referenciados das empresas Brasileiras de distribuição de energia elétrica.



Capítulo 1. Introdução 9

Uma metodologia não-paramétrica Bayesiana de regionalização utilizando o método Markov
Chain Monte Carlo com Saltos Reversíveis, Green (GREEN, 1995) é proposto. Dado um atributo
de interesse, a metodologia particiona a área em clusters que sejam homogêneos em relação
à variável de interesse analisada. Este trabalho foi publicado na revista Applied Mathematical
Modelling no ano de 2019 com o título Bayesian detection of clusters in e�ciency score maps:
An application to Brazilian energy regulation.

1.2 Desenvolvimento de um modelo de regressão espacial Bayesiano apli-
cado à análise da duração equivalente de interrupção de energia elétrica
por unidade consumidora

A atividade de uma distribuidora de energia elétrica, doravante denominada Operador
do Serviço de Distribuição (OSD), envolve processos diversos e complexos como manutenção
dos ativos de energia elétrica, atendimento ao cliente, entrega de energia, entre outros. Assim,
o regulador brasileiro propôs indicadores-chave de desempenho para monitorar a qualidade do
serviço de distribuição de eletricidade. Entre os principais indicadores de desempenho propostos,
o regulador avalia a falta de energia fornecida, ou um indicador de falta de energia ao consumidor,
denominado DEC (Duração Equivalente de Interrupção por Unidade Consumidora) (ANEEL,
2016). O indicador DEC mede o tempo médio de interrupção do serviço de entrega de energia ao
consumidor. De fato, o indicador DEC é calculado como a média do indicador de falta de energia
ao consumidor entre as áreas geográficas de eletricidade de uma determinada empresa. Cada
área geográfica, doravante denominada conjunto elétrico, é definida pelo regulador a partir da
quantidade de ativos elétricos e da quantidade de consumidores em cada área, antes do cálculo
do indicador DEC global.

Além disso, para cada conjunto elétrico, o regulador estima um limite superior para o
indicador DEC. Se o indicador DEC observado ultrapassar esse limite regulatório, serão cobradas
multas. Além disso, o OSD também deve compensar os consumidores urbanos se a queda de
energia for superior a 2 horas e os consumidores rurais se a queda de energia for superior a 5
horas. No ano de 2019, as indenizações por falta de energia no Brasil foram estimadas em R$
617.718.741,81 (ANEEL, 2019).

Conforme demonstrado, o indicador DEC tem impactos financeiros expressivos. No
entanto, o indicador DEC tem prós e contras. Uma das principais vantagens é a simplicidade, o
que facilita para o OSD manter o controle de qualidade e intervir, se necessário. Em contraste, o
indicador DEC resume uma complexa atividade de distribuição. Assim, não é trivial avaliar os
impactos financeiros das decisões individuais de gestão sobre o indicador de falta de energia ao
consumidor e, consequentemente, sobre as compensações pagas referentes à falta de energia.

Com base em evidências técnicas, suspeita-se que variáveis ambientais, como a preci-
pitação, afetem o indicador DEC, assim como o tamanho das equipes de manutenção. Dados
os recursos limitados, é de extrema importância que os OSDs avaliem, quantitativamente, os
principais direcionadores operacionais e ambientais e seus efeitos potenciais no indicador DEC.

O uso de informações geográficas na análise do desempenho dos OSDs brasileiros foi
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introduzido pela primeira vez por (GIL et al., 2017). Resumidamente, o Brasil possui grande
diversidade ambiental e socioeconômica, principalmente devido à sua dimensão continental.
Portanto, é improvável que apenas fatores gerenciais afetem o desempenho dos OSDs. No entanto,
uma alternativa simples para a modelagem de fatores ambientais e socioeconômicos, quanto
pertinentes, consiste em segregar a região estudada em áreas geográficas menores nas quais
os OSDs localizados na mesma área são semelhantes com relação aos fatores ambientais e
socioeconômicos. A mesma abordagem pode ser aplicada à análise dos OSDs brasileiros. Por
exemplo, alguns OSDs brasileiros têm áreas de concessão maiores do que países europeus. Assim, a
área de concessão pode ser dividida geograficamente para ajustar a sua heterogeneidade ambiental
e socioeconômica.

O trabalho descrito no Capítulo 3 propõe um modelo Bayesiano de regressão espacial
baseado aplicado à análise do indicador DEC. O modelo de regressão inclui variáveis operacionais,
financeiras e climáticas como variáveis independentes. A regressão espacial permite estimar
coeficientes que variam geograficamente, permitindo aprimorar a capacidade preditiva do modelo.
Por exemplo, os resultados indicam que há três conglomerados espaciais associados aos impacto
da variável ambiental no indicador DEC. Para cada conglomerado, é estimado um coeficiente
de regressão diferenciado. Em regiões de baixa precipitação os impactos no indicador DEC são
mais atenuados do que considerando a componente ambiental em conglomerados de intensa
precipitação. Comportamentos regionalizados para as demais variáveis preditoras foram estimados
e são condizentes com o conhecimento prévio de especialistas do setor. Os resultados também
mostram que o modelo proposto atinge um coeficiente de determinação preditivo de R

2
pred = 67,6%,

o que constitui um modelo razoavelmente preciso. A partir do modelo ajustado, a empresa de
distribuição pode direcionar futuras decisões gerenciais para reduzir as interrupções de energia
do consumidor e, consequentemente, as compensações pagas aos consumidor. Esta é a primeira
proposta de um modelo de regressão espacial baseado em conglomerados aplicado à análise de
indicadores de falta de energia.

O artigo referent ao Capítulo 3 foi recentemente submetido à revista Applied Mathematical
Modelling e se encontra em processo de revisão.
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2 Bayesian detection of clusters in efficiency
score maps: an application to Brazilian
energy regulation

2.1 Introduction

In 2011, the Brazilian regulator (ANEEL) first applied benchmarking models to estimate
the e�ciency costs, i.e., e�cient operational costs, of the electricity energy distribution utilities,
hereafter named DSOs (distribution service operators). E�cient costs are the upper bound cost
estimated by the regulator and which DSOs can charge consumers in the electricity distribution
tari�, in the following years.

Electricity distribution is a classic case of natural monopoly, due to the technological
and economic features of this service which allow a single provider, in general, to meet the
overall demand at a lower cost. Consequently, competition does not thrive under these conditions.
Eventually, all firms but one will either exit the market or fail (LAZAR, 2011). If no competition
exists, then energy tari�s can be overpriced and energy quality can be compromised. The use
of benchmarking methodologies aims at creating an artificially competitive market in which
the regulator imposes constraints on the tari� prices and the modes of production. These
constraints, therefore, avoid overpricing, retain the cost advantage that monopolists may take,
but also allow companies to receive fair economic revenues (BOGETOFT; OTTO, 2011) Thus,
e�cient costs must guarantee a proper balance among DSOs’ revenues, quality of service and
fair tari�s to final consumers. Furthermore, e�cient costs are estimated using models such as
data envelopment analysis (DEA) (CHARNES; COOPER; RHODES, 1978; FARRELL, 1957;
BANKER; CHARNES; COOPER, 1984), stochastic frontier analysis (SFA) (AIGNER; LOVELL;
SCHMIDT, 1977), among others (WINSTEN, 1957; KUOSMANEN, 2012). The ratio between
observed cost and e�cient cost is named as the e�ciency score and lies within the range 0-1.

ANEEL has applied DEA using the total of 61 Brazilian DSOs. DEA comprises a weighted
linear model which is estimated using linear programming techniques. The current 2015 DEA
model has mean operational costs as the input variable and underground network, overhead
network, high voltage network, total number of consumers, weighted energy market, non-technical
losses and consumer-hour of interrupted energy as output variables. Input and output variables
comprises average values using yearly data from 2011 to 2013. In addition, the data set comprises
13 non-discretionary or environmental variables. These latter variables are not related to the
electricity distribution process, but to the environment in which the DSOs are located. The
current model produces extremely lower e�ciency scores for some companies, which may reach
32.39%. Consequently, some DSOs may bankrupt if the current cost e�ciencies are applied. These
results have been criticized by Bogetoft (BOGETOFT, 2014), Bogetoft and Lopes (BOGETOFT;
LOPES, 2015) and Lopes et al. (LOPES et al., 2016). To overcome these limitations, ANEEL
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proposed a discretionary solution of a maximum cost reduction rate of 5% per year.

Benchmarking, or best-practice modeling, requires a data set of comparable DSOs. DSOs
must produce the same outputs using the same inputs and are subject to similar environmental
conditions. In practice, there is heterogeneity with respect to production as well as environment.
Therefore, one may claim that DSOs with similar operating and environmental conditions
must be clustered prior to benchmark modeling. Thus, DSOs heterogeneity can be minimized.
Nevertheless, a major point in clustering analysis is the estimate of the optimal number of clusters,
or groups and their most likely locations. Most statistical clustering methods assume that the
number of groups, say k, is known in advance. Then, clustering analysis aims at estimating the
elements, or DSOs in each k-th group based on similarity statistics. These similarity statistics
can use production variables, i.e., input and output variables, environmental variables or a mix
of production and environmental variables.

Gil et al. (GIL et al., 2017) first found statistical evidence of spatial similarities for the 2015
Brazilian estimated e�ciencies. That is, the spatial distribution of the estimated Brazilian DSOs
cost e�ciencies were not randomly scattered within the Brazilian territory. Spatial statistical
analysis showed that DSOs with lower estimated e�ciencies were, on average, geographically
closer. Similarly, DSOs with larger estimated e�ciencies were, on average, also geographically
closer. Similar statistical results were found using environmental information. For example,
DSOs with high precipitation are geographically closer, as well as DSOs with low precipitation.
Recently, Silva et al. (SILVA et al., 2018) found substantial changes in DSO operational costs
if environmental information is included in the current Brazilian benchmarking model. It can
be argued that the e�ciencies are geographically clustered because of geographically similar
production conditions, or similar environmental conditions, or a mixture of similar production
and environmental conditions.

Given prior evidence of spatial clustering of Brazilian DSOs, this work proposes a spatial
clustering method for cost e�ciencies. The main motivation is the Brazilian energy distribution
regulation, which comprises utilities with di�erent sizes and scattered in a large geographical
territory. A Bayesian framework is proposed in which a prior distribution for the number of
clusters is chosen and then the posterior distribution of the number of clusters, given the data,
is estimated using a reversible jump Markov Chain Monte Carlo (RJMCMC) simulation. This
posterior distribution provides detailed statistical information about the number of clusters
in the data and their locations. Point estimates for the number of clusters can be calculated
using the mean, median or mode of the posterior distribution. In addition, a high probability
density (HPD) interval for the number of clusters is estimated. Briefly, a model which applies the
reversible-jump Markov Chain Monte Carlo algorithm, to identify the number and the location
of spatial clusters assuming a Gaussian distribution, is proposed.

Results using simulated data with di�erent numbers of clusters show that the proposed
method is able to estimate the true number of clusters. Using the 2015 Brazilian data, the posterior
mode indicated two clusters of DSOs: one cluster with DSOs having large cost e�ciencies and
the second cluster with DSOs having lower cost e�ciencies. To the best of our knowledge, this is
the first work to present a spatial statistical procedure that estimates the number of groups in
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energy regulation.

This paper is organized as follows. Section 2 presents the literature review about clustering
techniques applied to benchmarking models. Section 3 presents the proposed Bayesian clustering
model, the simulation study and the case study. Section 4 presents the results and section 5
presents the conclusion.

2.2 Related work

Clustering of DSOs into homogeneous groups for benchmarking analysis has been proposed
by Llorca et al. (LLORCA; OREA; POLLITT, 2014) for the electricity transmission industry.
Llorca et al. propose the Latent Class Model (LCM) in which, given a cost function, each firm i

can be allocated to a group j (j œ 1, .., J) by means of a group membership probability p(j|i). The
cost function estimates are di�erent in each group j. Estimates for all parameters, including group
membership probability are achieved using maximum likelihood. The total number of groups J is
known in advance. Dai and Kuosmanen (DAI; KUOSMANEN, 2014) apply hierarchical clustering
algorithms, partitioning methods and model based clustering methods to identify similar groups
of DSOs in energy regulation. Output-input ratios are used as the clustering variables. The final
model includes Normal Mixture Model (NMM) (MCLACHLAN; BASFORD, 1988) for group
clustering, and StoNED (KUOSMANEN, 2012) for e�ciency analysis. Using NMM, the number
of clusters of DSOs are estimated. Similarly, Samoilenko and Osei-Bryson (SAMOILENKO;
OSEI-BRYSON, 2008) apply cluster analysis, DEA and decision trees (RAZI; ATHAPPILLY,
2005) to estimate and evaluate relative e�ciencies of DSOs. Agrell et al. (AGRELL et al., 2014)
apply the LCM to cluster DSOs into homogeneous groups. In sequence, DEA, Stochastic Frontier
Analysis (AIGNER; LOVELL; SCHMIDT, 1977) and Modified OLS (AFRIAT, 1972) are used to
estimate cost e�ciencies. The number of groups is fixed as four. It is worth mentioning that most
of the aforementioned clustering methods require the number of clusters be known in advance.
Furthermore, none of the methods accounts for any geographical information.

The Bayesian approach was originally applied to SFA models by Broeck et al. (BROECK
et al., 1994). The Bayesian paradigm states that, given the prior distribution about a parameter
of interest �, say p(�), a vector of data (D) and the likelihood function p(D|�) the prior
information can be updated using the Bayes Theorem p(�|D) Ã p(D|�) ◊ p(�), where p(�|D) is
known as the posterior distribution. If the prior distribution is flat, p(�) Ã 1, then the posterior
distribution is proportional to the likelihood function. Flat prior distributions are known as
weakly informative distributions. Informative distributions represent expert information which
can be combined to data using the Bayes Theorem.

Gil et al. (GIL et al., 2017) first applied spatial statistical methods to Brazilian energy
distribution utilities. Spatial statistical methods were applied to test the spatial correlation of
cost e�ciencies. A Bayesian second stage model, accounting for spatial latent structure, was
proposed to estimate corrected e�ciencies.

Using the Bayesian approach, sophisticated models can be estimated using informative,
weakly informative or non-informative prior distributions. Although mathematical estimates
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are nontrivial to very complex models, samples of the posterior distributions can be obtained
using Markov Chain Monte Carlo (MCMC) methods (GELMAN, 2014). Furthermore, reversible
jump Markov Chain Monte Carlo (GREEN, 1995) computation generates samples of posterior
distributions for vectors of parameters with varying dimensions. Using the posterior distribu-
tion, Bayesian inference and High Probability Density intervals (CHEN; SHAO, 1999) for the
parameters of interest are achieved.

Knorr-Held and Raßer (KNORR-HELD; RASSER, 2000) first applied RJMCMC to
estimate geographical variations in disease rates. The proposed Bayesian model assumes a Poisson
likelihood function (CLAYTON; BERNARDINELLI, 1992). The outcome is the number of cases
in each area. The RJMCMC generates samples of the posterior distribution of the vector of
parameters, including the number of clusters. In general, implementing a RJMCM algorithm
is not a trivial task. Brooks et al. (BROOKS; GIUDICI; ROBERTS, 2003) provide detailed
information about e�cient construction of RJMCMC.

The adapted RJMCMC methodology resembles a second stage analysis (RAY, 1988),
in which a function of the estimated e�ciencies are used as the dependent variables and
environmental variables are used as covariates in statistical regression models. This approach
was first introduced by Banker and Morey (BANKER; MOREY, 1986). The adapted RJMCMC
method assumes that DSO e�ciencies are the random variables of interest. The statistical model
assumes that the mean parameter of the e�ciencies may change over the space, thus a�ecting
local groups of DSOs. Nonetheless, the number of means, i.e., the number of groups, their
locations and the means are unknown and must be estimated.

2.3 Material and methods

2.3.1 The Bayesian model

Adapted from Knorr-Held and Raßer (KNORR-HELD; RASSER, 2000), suppose the
data comprises random variables Yi measured in a set of n DSO regions, i = 1,...,n. The
main idea is that the mean parameter is the same for a set of one or more contiguous regions,
Yi ≥ Normal(µj ,‡

2). Therefore, cluster Cj µ {1,...,n} is defined as a set of adjacent regions
with mean µj . The definition of cluster implies that the clusters C1,...,Ck cover all the studied
area and there is no overlap among them: C1

t
...

t
Ck = 1,...,n. In the limiting case: k = 1, the

mean is the same for all regions, whereas for k = n, each region has its own mean parameter. It
is assumed that the response variables Yi, i = 1,...,n, are conditionally independent, given the
mean vector Mk = (µ1,...,µk). The likelihood function of the response vector y = (y1,..,yn) is
defined as:

L(y | Mk, ‡
2) =

kŸ

j=1

Ÿ

iœCj

1
‡

„

3
yi ≠ µj

‡

4
(2.1)

where „(.) is the density of the standard normal distribution.
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The clusters model

As the first step in the definition of clusters with size k, k regions g1,...,gk are selected as
centers. Each center gj œ 1,...,n defines a cluster Cj with gj œ Cj . The vector of centers Gk =
(g1,...,gk) defines a clustering configuration, i.e., every region belongs to a cluster. Furthermore,
let d(i1, i2) be the measure of distance between regions i1 and i2, defined as the minimum number
of geographical boundaries that have to be crossed to move from i1 to i2. This measure can
be calculated using the adjacency matrix (CRESSIE, 2015). The distance d(i1, i2) is used to
assign each area to one of the clusters. Each region i is assigned to the nearest cluster center.
Nonetheless, the order of the cluster centers in vector Gk creates priority for selecting areas.
For example, center g1, which occupies the first position in vector Gk, has priority to select the
nearest areas. In sequence, center g2 has preference in selecting the remaining nearest areas, and
so on. Therefore, a cluster configuration defined by vector G2 = (1,2) is, in general, di�erent from
the cluster configuration G

ú
2 = (2,1). Consequently, the space of possible cluster configurations is

large which improves the mixing property of the RJMCMC algorithm.

Prior distribution for the number of clusters

Based on Knorr-Held and Raßer (KNORR-HELD; RASSER, 2000), the prior distribution
for the number of clusters, Pr(k), k = 1,...,n is proportional to (1 ≠ c)k, where c œ [0,1) is a
parameter defined by the user. Small values of c represent a weakly informative prior distribution.
Figure 2.1 shows two di�erent prior distributions for k. Using c = 0.333 the prior mean is 3,
whereas using c = 0.001 the prior distribution is similar to a discrete uniform distribution with a
prior mean of 31 (n = 61).

Pr(k) Ã (1 ≠ c)k
. (2.2)
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(a) Prior distribution for k using c = 0.333.
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(b) Prior distribution for k using c = 0.001.

Figura 2.1 – Prior distributions for the number of clusters using di�erent values for c.
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Prior distribution for the vector of means

It is assumed that the vector of means Mk = (µ1,...,µk) comprises independent and
identically distributed components from a normal distribution with mean µ0 and variance ‡

2
0.

Therefore, the prior distribution for vector Mk is:

Pr

1
Mk | k,µ0,‡

2
0
2

=
3 1Ô

2fi‡0

4k kŸ

j=1
„

3
µj ≠ µ0

‡0

4
. (2.3)

In other words, µj ≥ Normal(µ0,‡
2
0). In practice, using standardized values of yi, y

ú
i = (yi ≠

ȳ)/sd(y), where ȳ is the sample mean and sd(y) is the sample standard deviation, the natural
choices are µ0 = 0 and ‡

2
0 = 1.

2.3.2 Reversible jump MCMC algorithm

Samples from the posterior distribution for the number of clusters are generated using
a reversible jump Markov Chain Monte Carlo (RJMCMC) algorithm. Each sample comprises
values of ‡

2, Mk and Gk in a given step of the RJMCMC algorithm, described below. Initially,
a start configuration for the number of clusters (k and Gk), mean vector (Mk) and variance
parameter (‡2) is created. Then, given the value of the c parameter, the RJMCMC algorithm
randomly chooses one of the following five moves: birth, death, shift, switch and update moves with
probabilities of fiB, fiD, fiSh, fiSw and fiUp, respectively. These probabilities are pre-specified by
the user. Figure 2.2 shows the flowchart of the RJMCMC algorithm and each move is described
next.

Step

UpdateDeathBirth Shift Switch

Accept with
probability
Abirth

Accept with
probability
Adeath

Always
accept

Accept with
probability
Ashift

Accept with
probability
Aswitch

⇡B ⇡D ⇡Up ⇡Sh ⇡Sw

Create a new
cluster center

Delete a
cluster center

Update means
and variance
parameters

Shift a clus-
ter center

Switch two
cluster centers

Figura 2.2 – RJMCM algorithm flowchart.

Birth move

If the birth move is selected, a new cluster configuration is created by randomly selecting
a new cluster center among the areas which are not cluster centers. This new area is randomly
imputed in the vector of centers, creating the new vector Gk+1. Given the r-th position of the new
cluster center, r œ {1,...,k + 1}, a new vector of means, Mk+1, is created. The mean parameter
µr of the new cluster center is randomly selected using a normal distribution with a mean of:

µú = ‡
2

nr‡
2
0 + ‡2 · µ0 + nr‡

2
0

nr‡
2
0 + ‡2 · ȳr, (2.4)
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and variance of:
‡

2
ú = 1

1
‡2

0
+ nr

‡2
, (2.5)

where nr is the number of areas in the new cluster, ȳr is the observed mean in the new cluster, µ0

and ‡
2
0 are the parameters of the prior distribution. This proposal distribution, Ï(µr) = „

1
µr≠µú

‡ú

2

is the full conditional distribution, i.e., the prior distribution for µr times the relevant likelihood,
times a normalizing constant. The new cluster configuration with dimension k + 1 is accepted
with probability given by Eq. (2.6).

ABirth = L(y | Mk+1, Gk+1, ‡
2)

L(y | Mk, Gk, ‡2) · (1 ≠ c) ·
„

1
µr≠µ0

‡0

2

„

1
µr≠µú

‡ú

2 , (2.6)

where (1 ≠ c) = P r(k+1)
P r(k) is the prior ratio of the number of clusters, which penalizes jumps from

k to k + 1.

If accepted, the new cluster configuration (Gk+1 and Mk+1) replaces the previous confi-
guration (Gk and Mk). Therefore, the state of the RJMCMC is now of dimension k + 1.

Death move

If the death move is selected, a new cluster configuration is created by randomly deleting
one of the current cluster centers. Thus, a cluster center gr (r œ 1,...,k) in vector Mk is randomly
deleted, creating the new vector Gk≠1. The associated mean parameter µr is also deleted from
vector Mk, creating the new vector Mk≠1. The new cluster configuration with dimension k ≠ 1 is
accepted with probability given by Eq. (2.7).

ADeath = L(y | Mk≠1, Gk≠1, ‡
2)

L(y | Mk, Gk, ‡2) · 1
(1 ≠ c) ·

„

1
µr≠µú

‡ú

2

„

1
µr≠µ0

‡0

2 , (2.7)

where 1
(1≠c) = P r(k≠1)

P r(k) . If accepted, the new cluster configuration (Gk≠1 and Mk≠1) replaces the
previous configuration (Gk and Mk). Therefore, the state of the RJMCMC is now of dimension
k ≠ 1.

Shift move

If the shift move is selected, a new cluster configuration is created by shifting a randomly
selected cluster center in vector Gk, say gr, to a randomly selected area, also defined in cluster gr.
Briefly, a cluster center is shifted towards one of the areas in the selected cluster, which is not the
current center. Thus, creating a new vector G

ú
k. The dimension of the new cluster configuration

(k) and the vector of means (Mk) are not changed. The new cluster configuration with dimension
k is accepted with probability given by Eq. (2.8).

AShift = L(y | Mk, G
ú
k, ‡

2)
L(y | Mk, Gk, ‡2) · n(Gk)

n(Gú
k) · m(gr)

m(gú
r ) (2.8)
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where m(gr) is the number of free neighbors in cluster gr, i.e., the number of areas in cluster gr

which are not the cluster center, and n(Gk) is the number of cluster centers with non-zero free
neighbors.

Switch move

If the switch move is selected, then two cluster centers in vector Gk are switched. Initially,
two clusters indexes, say i and j (i ”= j, i,j œ 1,...,k) are randomly selected. Then, the cluster
centers gi and gj are switched in vector Gk, creating the new vector G

ú
k. In addition, the mean

parameters µi and µj are accordingly switched in vector Mk, creating the new vector M
ú
k . The

new cluster configuration with dimension k is accepted with probability given by Eq. (2.9).

ASwitch = L(y | M
ú
k , G

ú
k, ‡

2)
L(y | Mk, Gk, ‡2) . (2.9)

If accepted, the new cluster configuration (Gú
k and M

ú
k ) replaces the previous configuration

(Gk and Mk). It is worth noticing that the new state of the RJMCMC is also of dimension k.

Update move

If the update move is selected, then the mean parameters µj , j = 1,...,k, of vector Mk

and the variance parameter ‡
2 are changed. The mean parameter of each cluster, µj , is changed

using a normal distribution with a mean of:

µú = ‡
2

nj‡
2
0 + ‡2 · µ0 + nj‡

2
0

nj‡
2
0 + ‡2 · ȳj (2.10)

and variance of:

‡
2
ú = 1

1
‡2

0
+ nj

‡2
, (2.11)

where nj is the number of areas in cluster j, ȳj is the observed mean in cluster j, µ0 and ‡
2
0 are

the parameters of the prior distribution. Similar to Eq. (2.4) and (2.5), Eq. (2.10) and (2.11)
represent a normal full conditional distribution, i.e., the prior distribution for µj times the
relevant likelihood.

In sequence, the ‡
2 parameter is updated assuming a weakly informative prior distribution.

The variance parameter ‡
2 is changed using an inverse-chi-squared distribution with n≠k degrees

of freedom and scaling parameter of s
2:

‡
2|y, Mk ≥ Inv-‰2

(n≠k,s2), (2.12)

where s
2 = 1

n≠k

q
i

1
yi ≠ µj(i)

22
, k is the current number of clusters and n is the number of areas

(sample size).
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The proposed RJMCMC algorithm, the spectral clustering method and the database are
available in the R package gbdcd (MINETI; COSTA, 2018).

2.3.3 The 2015 Brazilian Data Envelopment Analysis model

The DSOs cost e�ciencies were estimated by the Brazilian regulator using a DEA model
(COOPER; SEIFORD; ZHU, 2004) and average yearly data from 2011 to 2013. The current
model is presented in Technical Note 66/2015 (ANEEL, 2015) and reproduced below. The NDRS
(non-decreasing returns to scale) input-oriented e�ciency of the reference DSO (Distribution
Service Operator), is calculated using the linear programming model shown in Eq. (2.13).

◊0 = max
sÿ

j=1
‹jy

0
j + Ï

subject to:
mÿ

i=1
uix

0
i Æ 1.

sÿ

j=1
‹jy

k
j ≠

mÿ

i=1
uix

k
i + Ï Æ 0, k = 1, . . . , n.

ui, ‹j , Ï Ø 0.

(2.13)

where yj are the outputs (j = 1, . . . , s), xi are the inputs (i = 1, . . . , m), ‹j are the
output weight parameters, ui are the input weight parameters, Ï is the parameter associated
with the non-increasing returns to scale property and ◊0 is the input e�ciency estimated for
the reference DSO. The DEA model uses operating costs (OPEX) as the input; and, as output
variables, number of consumers, weighted power consumption, high level network extension, low
level network extension, underground network extension, non-technical losses and duration of
interruption of energy. Non-technical losses and duration of interrupted energy are included as
negative outputs, which are alternative representations for non-desired inputs in the DEA model
(COOK; ZHU, 2013). In addition, weight restrictions are also included in the linear programming
model. Further details about the cost e�ciency estimates are found in Gil et al. (GIL et al.,
2017) and Lopes et al. (LOPES et al., 2016).

2.3.4 The database

The database comprises cost e�cient indexes estimated for 61 energy distribution utilities
located in Brazil. The estimated cost e�ciencies are within the range 0 ≠ 1 and some of the
e�ciencies are saturated at 1. The proposed Bayesian cluster model assume that the random
variables are normally distributed, which is not the case of the original cost e�ciencies. To
overcome this limitation, unbiased cost e�ciencies were calculated using the original DEA model
and the bootstrap procedure proposed by Simar and Wilson (SIMAR; WILSON, 1998). In
sequence, the inverse of a logistic function was applied to the unbiased estimated cost e�ciencies,
generating a new latent variable yi for each company. The observed yi values were used in the
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proposed Bayesian cluster model. The yi values were calculated using Eq. (2.14),

yi = log
A

◊̃i

1 ≠ ◊̃i

B

(2.14)

where ◊̃i is the unbiased cost e�ciency (SIMAR; WILSON, 1998). Figure 2.3 shows the histogram
of the estimated latent variables (a) and their spatial distribution in the Brazilian territory (b).

latent variable (yi)

F
re

q
u

e
n

cy

−1 0 1 2

0
2

4
6

8

(a) Histogram of the latent variables yi.
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Figura 2.3 – Graphical analysis of the latent variables yi.

2.3.5 Simulation study

A simulation study was created to evaluate the proposed Bayesian cluster method. A
regular 8 ◊ 8 connected grid, with a total of 64 areas, was used as the study region. Three
di�erent scenarios were evaluated. The first scenario, named scenario A, has only one cluster.
Observed values were created using a standard normal distribution with a mean of zero and
variance equal to one, Yi ≥ Normal (0, 1). The second scenario, named scenario B, has two
clusters. Each cluster has 32 areas. Figure 2.4 (a) shows the cluster configurations for scenario
B. Observed values were created using a normal distribution with variance equal to one and
di�erent means in each cluster. The di�erence between means, ”, was calculated using Eq. (2.15),
which is the minimum distance between two groups of independently and normally distributed
variables with similar variances, ‡

2
1 = ‡

2
2 = ‡

2 = 1, which rejects the null hypothesis of equal
means (H0 : µ1 = µ2).

” = 2 · Z –
2

Û
‡2

n1
+ ‡2

n2
, (2.15)

where Z is the score statistic, n1 and n2 are the sample sizes of groups 1 and 2, respectively, and
– is the error type I. If – = 0.05, then Z 0.05

2
¥ 1.96.

The third scenario, named scenario C has four clusters. Figure 2.4 (b) shows the cluster
configurations for scenario C. The clusters shown in the diagonal share the same mean, say µ1.
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cluster 1

cluster 2

(a) Simulated scenario with 2 clusters.

cluster 1 cluster 2

cluster 3 cluster 4

(b) Simulated scenario with 4 clusters.

Figura 2.4 – Simulated scenarios with 2 and 4 clusters.

The clusters shown in the o� diagonal also share the same mean µ2. Consequently, the di�erence
between means was also calculated using Eq. (2.15). Both scenarios B and C use µ1 = 0 and
µ2 = ”, or µ2 = µ1 + ”.

For each scenario, 1,000 simulations were evaluated. The c parameter of the prior cluster
distribution was set at 0.3, which represents a prior mean close to 3. Therefore, the prior
informative distribution assumes that the number of clusters in the data is small. A start cluster
configuration is created by randomly selecting 3 cluster centers, i.e., the initial number of clusters
is the prior mean. Initial mean parameters, µj , are created using a standard normal distribution.
The RJMCM algorithm was executed for 1,000,000 iterations in order to guarantee convergence
of the chain, this is known as the burn-in. Then, 1,000,000 new iterations were run to get
samples of the posterior distribution. Therefore, 1,000,000 cluster configurations, i.e., [Gs

k,M
s
k ]

for s œ 1,..., 1,000,000, were sampled. The RJMCMC probabilities of the moves were set as
fiB = fiD = 0.35 and fiSh = fiSw = fiUp = 0.10.

Furthermore, for each simulation, the point estimate of the number of clusters was
calculated as the mode of the posterior distribution, i.e., the most frequent cluster size found in
the RJMCMC samples. In addition, 95% highest probability density (HPD) intervals (CHEN;
SHAO, 1999) of the number of clusters were estimated for each simulation.

2.3.6 Estimating the posterior location of the clusters

Using the sampled cluster configurations, the posterior distribution of the number of
clusters can be obtained using the observed sizes of the sampled cluster centers G

s
k. Likewise,

the posterior distribution for each area mean µi|y can be obtained using the observed sampled
cluster vector of means M

s
k .

Following Feng et al. (FENG et al., 2016), the posterior estimates of the clusters locations
were calculated using the marginal frequency of pairs of areas sharing geographical boundaries
and located in the same cluster. Let i and j be two areas sharing geographical boundaries,
hereafter represented as i ≥ j. Let Is(i ≥ j) be the indicator function which is equal to one if the
pair i ≥ j belongs to one of the clusters in the s sampled RJMCMC iteration, and zero otherwise.
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Let fi≥j =
q

s [Is(i ≥ j)] be the absolute frequency in which the pair i ≥ j was observed in the
same cluster in all RJMCMC sampled interations. Using the fi≥j values, the similarity matrix
Sn◊n is defined as:

Si,j = fi≥j

M
. (2.16)

where M is total number of RJMCMC iterations. Si,j represents the empirical probability that
areas i and j are grouped in the same cluster based on the RJMCMC samples. Using the
Ng-Jordan-Weiss spectral clustering algorithm (NG; JORDAN; WEISS, 2002) an approximate
posterior estimate of the cluster configuration with k̂ clusters is obtained using matrix S. Feng
et al. (FENG et al., 2016) claims that spectral clustering method generates the posterior mean
estimate of the clustering structure using the pairwise cluster membership linkage.

Briefly, the spectral clustering algorithm works as follows. Let D be a diagonal matrix
whose ith diagonal is the sum of S’s ith row. Calculate L = D

≠1/2
SD

≠1/2. Find the k largest
eigenvalues of matrix L and the associated eigenvectors. Apply a simple K-means cluster algorithm
using the rows of the selected eigenvectors as points in Rk. The cluster assignment of each row
indicates the clustering membership. Further details about spectral clustering algorithms are
found in Elavarasi et al. (ELAVARASI; AKILANDESWARI; SATHIYABHAMA, 2011).

2.4 Results

Table 2.1 shows the simulation results using weakly informative prior cluster size dis-
tribution (c = 0.001), informative prior cluster size distribution (c = 0.333) for scenarios A, B
and C. The informative prior cluster size distribution has a prior mean of 3 clusters as shown in
Figure 2.1 (a). Table 2.1 shows the average point estimate of the cluster size, the average range
of the HPD intervals and the proportion of simulations in which the true cluster sizes are within
the HPD interval. It is worth mentioning that the method is very robust regarding changes in
the probabilities of the moves. In general, di�erent probabilities a�ect the speed of convergence
but do not a�ect the posterior samples.

Results show that the average HPD size is larger using the weakly informative prior distri-
bution as compared to the informative prior distribution. This is because the weakly informative
prior distribution has a large variance as compared to the informative prior distribution. Thus,
the more informative the prior distribution, the smaller the HPD size. Nonetheless, it is worth
noticing that the proportion of simulations, in which the true cluster size is within the HPD
interval, is close to 1 (100%), using both informative and weakly informative prior distributions.

Regarding the point estimates of the number of clusters, the average posterior number of
clusters (k̄|y) was close to the true number of clusters in scenarios A and B, using both weakly
informative and informative prior distributions. It is worth noticing that using informative prior
distribution the point estimates were much closer to the true cluster size, as compared to using
weakly informative prior distribution. In scenario C, the weakly informative prior distribution
achieved an average posterior number of clusters close to the true number of clusters, as compared
to the informative prior distribution. This is because the informative prior distribution has a
prior mean smaller than the true number of clusters, i.e., the prior distribution was specified
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Tabela 2.1 – Simulated results using scenarios with di�erent cluster sizes, informative and weakly
informative prior distributions.

number of prior c parameter k̄|y average HPD size HPD proportion

clusters

1 0.001 1.40 10.5 0.99

0.333 1.19 4.2 1.00

2 0.001 2.33 11.2 1.00

0.333 2.05 5.1 1.00

4 0.001 3.80 14.8 1.00

0.333 2.26 6.8 1.00

inaccurately. Nonetheless, although the informative prior distribution was inaccurate in scenario
C, the true number of clusters was inside the HPD intervals in all simulations.

Figure 2.5 shows the RJMCMC samples and the posterior distribution of the number
of clusters using the Brazilian cost e�ciencies database. Results show that the posterior point
estimate of the number of clusters is 2 with the 95% HPD interval of 1 to 9 clusters.
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Figura 2.5 – Posterior distribution of the cluster size using RJMCMC.

Figure 2.6 shows the location of the estimated two clusters in the Brazilian territory
using the spectral clustering algorithm. Cluster 1, with higher e�ciencies, comprises the DSOs
located in the northeast, southeast, one DSO located in the north and one DSO located in central
west regions. Cluster 2, with lower e�ciencies, comprises DSOs located in north, central-west
and south regions. It is worth noticing from Figure 2.6 (b) that one DSO with e�ciency of 100%
is located in the group of lower e�ciencies, and one DSO with e�ciency close to 40% is located
in the group of higher e�ciencies. These DSOs represent extreme cases in each group.
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(b) Boxplots of DEA e�ciencies in the esti-
mated two clusters.

Figura 2.6 – Estimated results using the posterior point estimate, i.e., the posterior mode of the
number of clusters equal to 2.

Using the RJMCMC samples of the vector of means, M
s
k , a smooth map of the DSOs

e�ciencies can be estimated by applying the logistic function to the point estimates of the mean
parameters, µj(i) |y, for each DSO i. Figure 2.7 (b) shows the smooth map of the e�ciencies.
Results indicate a cluster of DSOs with mean e�ciencies of 0.75 located in the state of São Paulo.
Southeast and northeast regions share a mean e�ciency of 0.67. North and south regions share
a mean e�ciency of 0.63; and two DSOs located in the north have the lowest mean e�ciency.
Original e�ciencies are shown in 2.7 (a) for comparison.

Figure 2.7 shows significant di�erences for some regions, i.e., some DSOs. These results
represent important information for future e�ciency improvements. As shown in figure 2.6 (b),
there is one DSO with an e�ciency of 100% located in the cluster of low e�ciencies. Figure
2.7 (b) shows the map of the smoothing e�ciencies estimated using the proposed RJMCMC
approach. The smoothing map is generated using geographical information of the DSOs, i.e., the
smoothing estimate of the e�ciency in one DSO represents an average value of geographically
closer DSOs. The 100% DSO is located in the south of Brazil (bottom) as can be seen in Figure
2.7 (a). This particular DSO can be named as a benchmark to its peers because, although located
in a cluster of lower e�ciencies, it managed to achieve a large e�ciency. On the contrary, Figure
2.6 (b) also shows one DSO with a lower e�ciency located in the cluster of larger e�cient DSOs.
Figure 2.7 (a) shows that this particular DSO is located in the northeast of Brazil (top right),
closer to the coast. This low e�cient DSO is geographically surrounded by large e�cient DSOs.
Therefore, there is evidence that, despite being located in a favorable geographical location, this
DSO faces serious management limitations. Furthermore, its neighboring DSOs can be used as
benchmarks, i.e., best management practices, for future e�cient improvement.

In general, results show statistical evidence of geographical clusters of Brazilian DSOs with
respect to their e�ciencies. As mentioned, spatial clusters of DSOs indicate similar production
conditions, similar environmental conditions or a mixture of both. In Brazil, private and public
DSOs are geographically closer. Furthermore, regions are subject to local environmental conditions.
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Figura 2.7 – Comparison between original e�ciencies and posterior mean estimates.

The detected cluster with low e�ciencies comprises, on average, public DSOs subject to harsh rain
conditions. The detected cluster with high e�ciencies comprises, on average, private companies
subject to mild environmental conditions. It is worth mentioning that the method was built under
the assumption that heterogeneity can be detected using the location. Thus, if the available
information is random with respect to location, then the method will detect only one cluster.

Figure 2.8 shows the e�ciency changes if the ANEEL DEA model (GIL et al., 2017) is
applied separately to each cluster. In general, the cluster e�ciencies are closer to the original
e�ciencies. Some significant changes are found for a few DSOs. By splitting the DSOs into
di�erent groups, the frontier of each group is changed. By including a geographical component
in the clustering process, it can be claimed that the DSOs in the same group are homogeneous
with respect to environmental conditions, thereby adjusting the estimated cost e�ciencies to
environmental conditions. Table A.1 shows the operational costs, the ANEEL DEA e�ciencies,
the DSOs cluster e�ciencies, the ANEEL DEA e�ciency costs, the e�ciency costs estimated
for each cluster and di�erences between the clusters and original e�ciency costs. Results are
shown in decreasing order of operational costs di�erences. DSOs with major di�erences between
original and clusters e�ciencies are highlighted. Major changes in operational costs are related to
large operational costs and large changes in e�ciencies. For example, using the proposed cluster
analysis, e�cient costs for LIGHT could be increased by R$ 53,871,122.75 or U$ 20,328,725.57
(considering an average exchange rate of R$ 2.65 per U$ 1.00 in year 2014). Similar results are
found for CEMAT which is located in a di�erent cluster. Overall, using the proposed cluster
analysis, e�cient costs could be increased by U$ 140,177,549.31.

A standard hierarchical clustering approach (JOHNSON; WICHERN; others, 2002)
was applied in order to illustrate main di�erences between the proposed spatial clustering
approach and a regular statistical approach. Figure 2.9 shows a dendrogram using the original
cost e�ciencies, i.e., not using any geographical information. The euclidean distance and the
Ward hierarchical clustering approach were applied (KAUFMAN; ROUSSEEUW, 2009). Using
the dendrogram information, DSOs were divided into two groups as shown in Figure 2.10 (a).
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Figura 2.8 – E�ciency changes using the original DEA ANEEL benchmarking model applied
separately to each cluster.

Results show that, in general, DSOs with larger e�ciencies are not geographically contiguous
and are located in the north, northeast, southeast and south regions. It is worth mentioning that
there is no DSO with a large e�ciency located in the north of Brazil. Figure 2.10 (b) compares
the distribution of the estimated e�ciencies in both groups of larger e�ciencies and smaller
e�ciencies. Furthermore, some low e�cient DSOs are geographically closer to many large e�cient
DSOs. As previously mentioned, for cost e�cient estimation, DSOs with similar prodution and
environmental conditions must be clustered prior to benchmark modeling. In addition, Heaton et
al. (HEATON; CHRISTENSEN; TERRES, 2017) points that the choice of dissimilarity metric
will change the resulting clusters. Therefore, using a standard hierarchical clustering method may
generate inconsistent results.
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Figura 2.9 – Dendrogram using euclidean distance and hierarchical clustering
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Figura 2.10 – Estimated results using the k-means cluster analysis (k=2).

Figure 2.11 shows the spatial distribution of precipitation and environmental index in
the Brazilian territory. Both variables were indicated in Gil at al. (GIL et al., 2017) as strongly
correlated to DSO cost e�ciencies. Values were grouped based on the quantile distribution.
It is worth noticing the similarities among groups presented in Figure 2.11 (a) and Figure
2.11 (b) and the estimated groups using our proposed approach shown in Figure 2.6. Briefly,
our proposed Bayesian model was able to aggregate DSOs with large precipitation and large
environmental index. It is worth mentioning that the proposed Bayesian model do not rely on
any environmental information except the geographical adjacency of DSOs. Therefore, there
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is evidence that the geographical adjacency is a proxy for environmental information for the
Brazilian DSO database. Furthermore, the proposed clustering estimation process combines both
the performance ratemaking scheme (DEA) and geographical information. This is because the
proposed method uses the original estimated e�ciencies, i.e., a prior performance ratemaking
scheme, as the input to a secondary geographical clustering approach. Consequently, the estimated
groups are homogeneous with respect to the performance ratemaking scheme and geographical
location.
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Figura 2.11 – Maps of precipitation and environmental index grouped based on the observed
quantiles.

Finally, the original reversible jump implementation proposed by Green (GREEN, 1995)
includes only three moves: birth, death and update. The birth and death moves are related to the
dimensionality changes, whereas the update move comprises a standard MCMC step in order to
update the parameters of the model, given a fixed dimension. Although the probability of the
birth and death moves can be changed arbitrarily, the same e�ect can be obtained by changing
the prior distribution of the number of clusters. Therefore, in general, equal probabilities for
birth and death moves are applied.

It is worth mentioning that the RJMCMC algorithm requires the user to set the Birth
and Death a priori probabilities. These a priori probabilities are used as the frequencies in
which the algorithm will propose a new configuration with one additional spatial cluster (birth)
or a new configuration with a deleted spatial cluster (death). However, given the new cluster
configuration, the RJMCMC will accept the new configuration with probability estimated using
the a priori distributions and the likelihood. Therefore, the final birth and death rates may be
di�erent from the a priori birth and death probabilities.

Furthermore, according to Knorr-Held and Raßer (KNORR-HELD; RASSER, 2000) the
shift and switch moves were proposed in order to improve mixing performance. The authors
also argue that they seem to be unnecessary. Therefore, we tested the proposed methodology
assuming only three moves: birth, death and update with equal probabilities. We evaluated the
birth and death acceptance rate, i.e., after randomly choosing a move step we evaluated the
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proportion of steps in which the move was definitely accepted. Further details of the RJMCMC
algorithm are found in the appendix. For the proposed RJMCMC with five moves the birth and
death acceptance rates are 27.27% and 33.27%, respectively. Using the RJMCMC with only three
moves (birth, death and update), the birth and death acceptance rates are 27.53% and 33.72%,
respectively. Identical results were found for the posterior distribution of the cluster size (k)
and the posterior local means (µj). Therefore, results show that the shift and switch moves are
unnecessary, as discussed by Knorr-Held and Raßer (KNORR-HELD; RASSER, 2000).

2.5 Conclusions

Benchmarking models such as DEA and SFA aim at estimating e�ciencies of DSOs using
inputs, outputs and, eventually, environmental data. Proper e�cient estimates require a data set
of comparable DSOs, i.e., homogeneous DSOs. Heterogeneity among DSOs can be controlled
using clustering analysis. Clusters of DSOs can be estimated using production information or
environmental information. However, most clustering methods require the total number of clusters
in advance. The larger the number of clusters the smaller the data information in each cluster.

Spatial information provides an alternative to heterogeneity analysis. It only requires the
spatial location of the DSOs, and it assumes that homogeneous DSOs are geographically closer.
The proposed spatial clustering analysis automatically estimates the number of clusters and the
DSOs located in each cluster. The RJMCMC algorithm uses prior information of the number of
clusters; i.e., expert information can be used to tune the prior information in order to improve
precision. Weakly informative prior distribution can be used in order to get maximum likelihood
estimates.

Using Brazilian energy distribution data, two spatial clusters were estimated. The first
cluster comprises DSOs with lower e�ciencies; the second cluster comprises DSOs with higher
e�ciencies. It may be claimed that the estimated spatial distribution is due to spatial clustering
of public and private DSOs. There is also evidence of a secondary cluster with highly e�cient
DSOs located in the state of São Paulo. This important information can be used by the regulator
to estimate future cost incentives.

Future work aims to include the SFA regression model in the RJMCMC algorithm;
thus, estimating simultaneously the number of clusters, their locations and the SFA regression
parameters in each cluster. Consequently, the proposed clustering method will include input,
output and environmental information, as opposed to clustering e�ciencies estimated using a
previous benchmarking model.
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3 A novel clustering-based spatial regression
model applied to consumer power outage
indicator

3.1 Introduction

The electricity distribution market in Brazil, as in most countries, operates in a natural
monopoly. Consequently, end consumers cannot choose the energy distributor with low tari�s
and high quality. Without proper electricity regulation, the lack of competition allows the energy
distributors to charge abusive prices without improving the quality of the service.

In Brazil, the National Electricity Energy Agency (ANEEL – Agência Nacional de Energia
Elétrica), created in 1996, is the electricity energy regulator in charge of tari� calculations,
quality assessment of electricity services, among other activities related to electricity generation,
transmission, distribution and commercialization (ANEEL, 1996). The distribution service
comprises the delivery of electricity energy to residential and small business consumers.

The activities of an electricity distribution company, hereafter named distribution service
operator (DSO), involve di�erent and complex processes such as maintenance of the electricity
assets, customer services, energy delivery, among others. Thus, the Brazilian regulator has
proposed e�ective key performance indicators for monitoring the quality of the electricity
distribution service. Among the proposed key performance indicators, the Brazilian regulator
evaluates the lack of supplied energy, or a consumer power outage indicator, named DEC (Duração
Equivalente de Interrupção por Unidade Consumidora) (ANEEL, 2016). The DEC indicator
measures the average time a consumer has had electricity delivery service interrupted. In fact,
the DEC indicator is calculated as the mean of the consumer power outage indicator among
geographical electricity areas for a given company. Each geographical area, hereafter named
electrical area, is defined by the regulator given the number of electrical assets and the number
of consumers in each area, prior to calculating the DEC indicator.

Furthermore, for each electrical area, the Brazilian regulator estimates an upper bound
threshold for the DEC indicator. If the observed DEC indicator surpasses this regulatory threshold,
then fines are charged. In addition, the DSO must also compensate urban consumers if the
power outage is greater than 2 hours, and rural consumers if the power outage is greater than 5
hours. In 2019, the Brazilian power outage compensations were estimated at R$ 617,718,741.81
(ANEEL, 2019) or US$ 150,296,530.85 considering an exchange rate of R$ 4.11/US$ 1 (December
1st, 2019).

As shown, the DEC indicator has major financial impacts. However, the DEC indicator
has pros and cons. One of the main advantages is the simplicity, which makes it easy for the
DSO to maintain quality control and intervene, if necessary. In contrast, the DEC indicator
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summarizes a complex distribution activity. Thus, it is not trivial to evaluate the financial impacts
of individual management decisions on the consumer power outage indicator and, consequently,
on the power outage compensations.

Based on technical evidence, environmental variables, such as precipitation, are suspected
to a�ect the DEC indicator, as well as the size of the maintenance teams. Given limited resources,
it is of utmost importance that DSOs evaluate, quantitatively, main environmental and operational
drivers and their potential e�ects on the DEC indicator.

The use of geographical information in the analysis of Brazilian DSOs performance was
first introduce by (GIL et al., 2017). Briefly, Brazil has major environmental and socioeconomic
diversities mostly due to its continental dimension. Therefore, it is unlikely that only manage-
ment factors a�ect the performance of DSOs. Nonetheless, as opposed to investigate as many
environmental and socioeconomic factors as possible, a simpler alternative is to segregate the
studied region into smaller geographical areas in which DSOs located in the same area are similar
with respect to environmental and socioeconomic factors. The same approach can be applied
to some of the Brazilian DSOs. For instance, some Brazilian DSOs have concession area larger
than European countries. Thus, the concession area can be geographically divided to adjust
environmental and socioeconomic heterogeneity. The estimate of geographical clusters using
Brazilian DSOs was first proposed by (COSTA et al., 2019). Nonetheless, the studied aimed
at identifying geographical clusters in which the mean e�cient cost across the DSOs in the
same cluster was similar. The number of clusters, their locations and the respective means were
estimated using a Bayesian approach.

This work proposes a Bayesian clustering-based spatial regression model applied to the
consumer power outage indicator. The regression model includes operational, financial and
climatic variables as the independent variables. The clustering-based spatial regression allows
geographical varying coe�cients, which improves the prediction statistic of the model. The number
and locations of spatial clusters are estimated using a Reversible-Jump Markov-Chain Monte
Carlo (RJMCMC) algorithm (GREEN, 1995), inspired by epidemiological studies (KNORR-
HELD; RASSER, 2000). The main motivation and the case study is the power outage indicator
data from the main electricity distribution company in Brazil, named CEMIG. Results show
that the proposed model achieves a predictive coe�cient of determination of R

2
pred = 67.6%,

which comprises a reasonably accurate model. Based on the adjusted model, the distribution
company can drive future management decisions in order to reduce both consumer energy outage
and consumer compensations. To the best of our knowledge, this is the first proposal of a
clustering-based spatial regression model applied to power outage indicator analysis.

This work is organized as follows. Section 3.2 presents the literature review, the Brazilian
DEC indicator and the standard and Bayesian regression models. The proposed Bayesian
regression model with spatial clusters, the respective algorithm, the simulation study and the
Brazilian database is also presented in section 3.2. Simulation results and the Brazilian data set
analysis using the proposed methodology are presented in section 3. Discussion is presented in
section 3.4 and conclusion is presented in section 3.5.
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3.2 Material and methods

3.2.1 Literature review

According to the Web of Science database, the term power outage was first used in 1970
and has appeared in 900 publications, of which 387 are papers and 449 are conference proceedings.
The number of publications has grown at an average rate of 13.77%, and since 2016 has exceeded
the threshold of 100 articles annually. Recent published papers show the importance of this topic.
Next, selected publications based on the relevance of the theme to this work, impact factor of
the journal and number of citations are briefly described.

(BEENSTOCK; GOLDIN; HAITOVSKY, 1997) present a new methodology for estima-
ting the power outage cost in Israel. The authors use a two-limit Tobit model to estimate and
simulate the economic cost of power outages. The method is based on the principle of revealed
preference, using the data on investment in back-up generators to estimate the costs. They
consider their model to be of more use in countries with relatively unreliable electricity systems.

(FUJITA; SHIRAI, 1997) propose a method to estimate how much power will drop after
a severe generation outage. Their model aims to measure the generation outage in order to decide
what proportion of the energy load will be missed following the outage. According to the authors,
using dominating di�erential equations and simulations provides better power outage estimation
than using the conventional method of second-order curve approximation.

(GUHA et al., 1999) tackle the problem of e�cient recovery of an electricity system
power outage following major disasters. These problems can be dealt with on two levels: the
planning level, in which companies try to design more reliable and robust networks; and the
operational level, in which companies try to recover their systems optimally, mainly managing
the maintenance workforce. Even though the model has relevant restrictions (only the workforce
resource is considered, and travel time is ignored), obtained results are satisfactory.

(MOELTNER; LAYTON, 2002) develop a model to estimate the power outage cost
of firms in the U.S. using the Geweke-Hajivassiliou-Keane simulator and Halton sequences to
estimate high order probabilities. Even though the model is considered better than current ones,
it has restrictions regarding the specificity of the application.

(BAARSMA; HOP, 2009) analyze the Dutch energy regulatory system. The regulator uses
the perceived costs of power outage as an indicator to motivate the transmission and distribution
companies. The authors deal with the valuation of power-grid reliability by measuring the cost of
a power outage of 2 hours for households and for small and medium enterprises. Results indicate
a cost of almost 50 million euros to the Dutch society over 4 years.

(CARLSSON; MARTINSSON; AKAY, 2011) investigate willingness to pay (WTP) of
the Swedish population before and after a storm hit the country in 2005. The storm caused
power outages in 1/7 of Swedish households lasting from 24 hours to 3 weeks. The authors used
an open-end contingent valuation with di�erent random sample respondents. Results show a
wide range of responses and, even though they cannot fully explain why, the authors propose
several explanations.
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(ZACHARIADIS; POULLIKKAS, 2012) study the power outage costs in Cyprus after a
disaster compromised 60% of the power generating capacity of the country. The authors employed
economic and engineering models to estimate the value lost by the economic sector during the
outage. Results from the two proposed models are quite di�erent, exposing the di�culties and
uncertainties of such problem. Nevertheless, they consider that the emergency actions taken by
the national energy authorities at the time were appropriate, even though they were not optimal.

(ANDERSEN; DALGAARD, 2013) analyze the correlation between the power outages
and the economic growth in Sub-Saharan Africa between 1995 and 2007. Results indicate that
a 1% increase in power outage implies a long-run reduction of the per capita GDP of 2.86%.
Furthermore, if all African countries experienced the same power quality as South Africa, the
per capita GDP of the continent would increase by 2%.

(MUKHERJEE; NATEGHI; HASTAK, 2018) developed a two-stage hybrid risk estima-
tion model using data-mining techniques. The objective was to characterize the key predictors of
power outages caused by weather. They used several categories of predictors, such as historical
power outages, socio-economic data, climatological observations, electricity consumption patterns
and land-use. Results indicate that the power outage risk depends on the type of natural hazard,
the proportion of rural and urban areas and the levels of investments in operation/maintenance
activities.

(REILLY; GUIKEMA, 2015) developed a tree-based statistical mass-balance Bayesian
multiscale model to smooth the outage predictions. The authors allow spatially similar areas to
reduce the spatial error and to yield estimates of spatial aggregation, in addition to the native
model resolution. A generalized, density-based clustering algorithm is also developed. Results
can improve infrastructure performance assessments, such as improved predictions for the utility
operators and consumers. The model can also be applied to di�erent spatial infrastructures (e.g.,
pipe breaks and road closures).

(CASTILLO, 2014) presents a literature survey of restoration strategies in response to
power outages caused by hazards. The author concludes that even though there are plenty of
studies focusing either on risk analysis or risk management, there are few incorporating both.
One of the main reasons proposed is the lack of a unanimous approach in how to relate reliability
and resiliency to market e�ciency and economic loss.

(COLE et al., 2018) investigate the impact of power outages in the sales of firms from
di�erent African countries. The analysis includes firms with and without power generators.
Results show a strong negative correlation between unreliable electricity supply and the sales of
the firms, with stronger e�ects for those firms without power generators. The authors found that
a reduction in the average power outage levels could increase overall sales of firms in Africa by
85.1%, going all the way up to 117.4%, for those firms without a power generator.

(BISWAS; GOEHRING, 2019) develop a model that shows a significant anti-correlation
between the exponent value of the power-law outage size distribution and the load carried by
the grid. Even though the results were satisfying, the authors a�rm that if better outage data
were available, it would be possible to draw a statistically significant map. That map would be
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able to mirror the health of the grid, thus allowing more e�ective risk management/mitigation
strategies, enabling a more resilient and robust long-term power grid design.

(MORRISSEY; PLATER; DEAN, 2018) tackle the willingness to pay problem in Europe.
Since the European electricity supply is considered exceptionally reliable, it is not possible to
obtain data on the value of constant electricity supply. Thus, the authors propose a model to
estimate the WTP in households in northwest England. Results show that the WTP changes
depending on the period of the day, the weekday, the season and the duration of the power outage.
The authors also used a mixed logit model to incorporate socio-demographic data, defining a
price on the importance of constant electricity supply. Results can be used by both government
and industry to guide future investments and policies.

(TAIMOOR et al., 2020) propose a two-stage model to estimate power outage intensity
(first stage) and duration (second stage). The authors also use the model to define the three
most critical cities in the U.S., considering the revenue loss due to power outage. The database
contains historical power outage events, climatological annotations, socio-economic indicators
and land-use data. Results indicate that the power outage interval is a function of climatological
conditions, economic indicators, and time of the year.

(CARLSSON; MARTINSSON, 2007) use a contingent valuation survey to determine the
willingness to pay to avoid nine di�erent types of power outages of Swedish households. Results
indicate that WTP is substantially lower as compared to the U.S., and that it increases with the
duration of the outage, mainly for unplanned outages. Regarding the housing and socio-economic
variables, they were not considered significant as compared to those directly related to the power
outages.

Briefly, major findings in the literature are related to the prediction of the power outage
economic impacts. Similarly, Brazilian DSOs face economic restrictions in their revenues if power
outage levels are above regulatory levels. Thus, reliable models are required to estimate the
impact of management, socioeconomic and environmental variables in the power outage levels.

3.2.2 The DEC indicator

The Brazilian regulator has applied several key performance indicators (kpi) to evaluate
the quality of the services provided by the DSOs. The two main indicators named DEC and FEC
(frequency of consumer power outage) evaluate the time in which customers were disconnected
from the grid and the frequency of such events, respectively. Of the two indicators, the DEC is
the most important.

The DEC indicator is estimated as the yearly average time of individual power outage of
all consumers. The Brazilian DSOs must strive to achieve average interrupted time equal to or
less than regulatory limits defined by ANEEL (ANEEL, 2016). Otherwise, fines are applied, and
the operating license can even be suspended.

The DEC indicator is primarily evaluated at the electrical groups level, which comprises
non-overlapping geographical areas in the concession region, defined by the regulator. Electrical
groups have distinct characteristics. For instance, one electrical group may include several cities,
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while one city may include several electrical groups (ANEEL, 2016).

The DEC indicator is calculated using Equation 3.1,

DEC =
qCc

j=1 DIC(j)
Cc

(3.1)

where DIC is the individual (electrical group level) interrupted time and Cc is the number of
consumers in the electrical group.

However, the DEC indicator reflects a complex electrical energy activity. Mainly in
a concession area larger than many European countries. Thus, e�ective managerial decisions
based on a single indicator are, in general, naive. Consequently, such decisions may compromise
investments.

Furthermore, each electrical group has its own regulatory limit. Urban, industrial and
rural consumers are reimbursed di�erently if the power outage surpasses a time threshold. Urban
and rural consumers have di�erent compensation fees. In general, the time threshold for urban and
industrial consumers are lower than for rural consumers. Thus, a complete analysis, evaluating
regional factors as well as important drivers of the DEC indicator, is crucial to assess past
decisions and guide future decision regarding the energy distribution quality. Consequently, if
compensation fines are reduced, investments in the distribution system can be increased.

3.2.3 Multiple Linear Regression Model

The multiple linear regression model defines the relationship between the dependent
variable Y and a set of k independent variables, x1, x2, ..., xk, as follows:

Yi = —0 + —1x1i + —2x2i + . . . + —kxki + ‘i (3.2)

where ‘i is a random variable following the Normal distribution with mean of zero and variance
‡

2, and i is the sample index, i = 1,...,n. Using matrix notation, the model described in Equation
3.2 can be written as Y = X— + ‘, where:

Y =

S

WWWWWWWWWWU

Y1

...

Yn

T

XXXXXXXXXXV

, X =

S

WWWWWWWWWWU

1 x11 . . . xk1

...
... . . . ...

1 x1n . . . xkn

T

XXXXXXXXXXV

, — =

S

WWWWWWWWWWWWWWWWU

—0

—1

...

—k

T

XXXXXXXXXXXXXXXXV

, ‘ =

S

WWWWWWWWWWU

‘1

...

‘n

T

XXXXXXXXXXV

(3.3)

Considering —0 the intercept parameter of the model, each row in matrix X can be represented
by a vector xi = [1, x1i, x2i, ..., xki]. Briefly, it is possible to show that the probability distribution
of the vector Y follows a multivariate Normal distribution with mean X— and covariance matrix
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‡
2I, where I is the identity matrix of dimension n ◊ n, that is, Y ≥ N

!
X—; ‡

2I
"

(SEBER; LEE,
2012).

Assuming y = [y1, · · · , yn] an observation sampled from the vector of random variables Y,
the maximum likelihood estimator for the parameter vector — is defined as —̂ =

1
XT X

2≠1
XT y.

The covariance matrix of the vector —̂ is also known and defined as Cov(—̂) = ‡
2

1
XT X

2≠1

(SEBER; LEE, 2012).

3.2.4 Bayesian Regression Model

In the subjective Bayesian context, the vector — and the variance parameter ‡
2 are

unknown and, thus, the prior uncertainty about their values should be expressed through prior
probability distributions. In general, a joint prior distribution for the random variables — and ‡

2

is assumed to take the form:

P (—, ‡
2) Ã P (—|‡2)P (‡2). (3.4)

In this context, P (—|‡2) can be represented by a multivariate Normal distribution, denoted by:

—|‡2 ≥ Nk+1(µ0; ‡
2�0

≠1).

In a weakly informative prior specification for —, we set the mean and covariance matrix as
µ0 = 0, �0 = ⁄0I. Note that the lower the value of ⁄0, the larger is the diagonal elements of the
prior covariance matrix, that is, the larger is the prior variance for each element in —. Similarly,
a large value of ⁄0 will lead to a more informative prior for the elements in —.

Applying the conjugate concept in (GELMAN; others, 2006), the prior distribution
for the variance parameter is defined by an Inverse-Gamma distribution with shape and scale
parameters a0 > 0 and b0 > 0, respectively. Denote:

‡
2 ≥ IG(a0, b0),

P (‡2) Ã (‡2)≠a0≠1
e

≠b0/‡2
.

Using the Bayes Theorem, the posterior distribution is proportional to the likelihood
and prior distribution product,

P (—, ‡
2|y, X) Ã P (y|X, —, ‡

2) ◊ P (—, ‡
2). (3.5)

The application of Equation 3.5, using the mentioned prior probability distributions and
the likelihood shown before, allows the identification of a Gaussian posterior distribution for —

with the form

—|y,X,‡
2 ≥ Nk+1

31
XT X + ⁄0I

2≠1
XT y; ‡

2
1
XT X + ⁄0I

2≠14
.
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It can be noted that if ⁄0 = 0, then the posterior distribution has similar properties as those of
the maximum likelihood estimator,

—|y,X,‡
2
,⁄0 = 0 ≥ Nk+1

31
XT X

2≠1
XT y; ‡

2
1
XT X

2≠14
.

Finally, the posterior distribution for the variance parameter follows an Inverse-Gamma
distribution denoted by ‡

2|y, X ≥ IG(an, bn), with

an = a0 + n

2

bn = b0 + 1
2

1
yT y ≠ µT

n �nµn

2

where �n =
1
XT X + ⁄0I

2
and µn =

1
XT X + ⁄0I

2≠1
XT y. Furthermore, it is possible to show

that

µT
n �nµn = yT X

1
XT X + ⁄0I

2≠1
XT y

3.2.5 Bayesian Regression Model with Spatial Clusters

A geographical area is represented by a set of n non-overlapping regions, each one with
its own dependent variable Yi and a vector of p covariates, including the 1 for the intercept,
xi = [1, xi1,...,xip] for i = 1,...,n. Therefore, a cluster Cj µ {1,...,n} is defined as a set of
adjacent regions sharing the vector of coe�cients —j = (—j0, —j1, ..., —jp)T . The definition of
cluster implies that the groups C1,...,Ck cover all the studied area and there is no overlap among
them: C1

t
...

t
Ck = {1,...,n}. Normality is assumed for the random variables Yi. In other words,

denote Yi ≥ N (xi—j ,‡
2).

The number of clusters can vary between k = 1, where all regions are within the same
cluster, and k = n where each region characterizes a cluster having its own set of parameters.
Defining nj as the number of regions in each cluster Cj , Xj is the design matrix nj ◊ p + 1, where
the rows are {xi : i œ Cj}. Assuming that the response variables, Yi, i = 1,...,n, are conditionally
independent given the coe�cient matrix Bk = [—1,...,—k], the likelihood function for the response
variable vector y = (y1,..,yn) is defined by:

L(y | X, Bk, ‡
2) =

kŸ

j=1

Ÿ

iœCj

1
‡

„

3
yi ≠ µi

‡

4
(3.6)

where µi = xi—j(i) and „(.) is the standard normal density.

The clusters model

As the first step in the definition of a configuration with k clusters, k regions g1,...,gk are
selected as centers. Each center gj œ {1,...,n} defines a cluster Cj with gj œ Cj . The vector of
centers Gk = (g1,...,gk) defines a clustering configuration, i.e., every region belongs to a cluster.
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Furthermore, let d(i1, i2) be the measure of distance between regions i1 and i2, defined as the
minimum number of geographical boundaries that have to be crossed to move from i1 to i2. This
measure can be calculated using the adjacency matrix as presented in (CRESSIE, 2015). The
distance d(i1, i2) is used to assign each area to one of the clusters. Each region i is assigned
to the nearest cluster center. Nonetheless, the order of the cluster centers in vector Gk creates
priority for selecting areas. For example, center g1, which occupies the first position in vector
Gk, has priority to select the nearest areas. In sequence, center g2 has preference in selecting
the remaining nearest areas, and so on. Therefore, a cluster configuration defined by vector
G2 = (1,2) is, in general, di�erent from the cluster configuration G

ú
2 = (2,1).

To estimate the number of clusters, the regression coe�cients within each cluster and
the variance parameter, using the aforementioned cluster model, a reversible jump markov chain
monte carlo (RJMCMC) algorithm (GREEN, 1995) is proposed.

3.2.5.1 Prior distribution for the number of clusters

As suggested by Knorr-Held and Raßer (KNORR-HELD; RASSER, 2000), the prior
distribution for the number of clusters, Pr(k), k = 1,...,n is proportional to (1 ≠ c)k, where the
parameter c œ [0,1) assumes a positive value defined by the user. A Small value of the parameter
c represents non-informative prior distributions, whereas a large value of c indicates a prior
distribution in which a small number of clusters is preferable.

P (k) Ã (1 ≠ c)k
. (3.7)

3.2.5.2 Prior distribution for the coefficients and variance

As defined in section 3.2.4, a weakly informative Normal prior distribution is assumed
for the vectors —j :

—j |‡2 ≥ Np+1(0; ‡
2(⁄0I)≠1). (3.8)

It is assumed that the vectors —j are independent. For the variance parameter, the Inverse-Gamma
distribution with shape a0 > 0 and scale b0 > 0 is used, denote:

‡
2 ≥ IG(a0, b0).

The hyperparameters ⁄0, a0 and b0 are predefined by the analyst.

3.2.6 Reversible Jump Markov Chain Monte Carlo

The proposed RJMCMC algorithm for the parameter estimation is similar to that
proposed by Costa et al. (COSTA et al., 2019). However, the number of possible steps in
the Reversible Jump Markov Chain Monte Carlo was reduced from five to three. Costa et al.
(COSTA et al., 2019) claims that the shift and switch steps can be removed without a�ecting the
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Step

DeathBirth Update

Accept with
probability

Abirth

Accept with
probability

Adeath

Always accept

fiB fiD fiU

Create a new
cluster center

Delete a
cluster center

Update means
and variance
parameters

Figura 3.1 – RJMCMC algorithm flowchart.

performance of the algorithm. Thus, only birth, death and update steps are implemented. Figure
3.1 presents a diagram of the proposed algorithm.

Similar to Costa et al. (COSTA et al., 2019), the proposed RJMCMC randomly chooses
one of three available steps: Birth, Death or Update steps. In sequence, given the selected step a
new configuration of the geographical partition is generated or the regression model parameters
in each partition are updated. The new configurations generated using Birth and Death steps
are accepted based on calculated probabilities. The algorithm is iterated using a pre-defined
number of steps known as burn-in. After the burn-in, the algorithm is used to generate samples of
the regression parameters and the geographical partitions. Thus, generating empirical posterior
distributions. The proposed algorithm is available in the R package gbdcd (MINETI; COSTA,
2018). Further details about RJMCMC sampler are presented in the appendix.

3.2.6.1 Birth Step

If the birth step is selected, a new cluster configuration is created by randomly choosing
a new cluster center in non-cluster center areas. This new area is added to the center vector
at a random position, creating a new center vector Gk+1. Given the new center position r,
r œ 1,...,k + 1, a new vector of means, Bk+1, is created. The mean parameter —r of the new
cluster center is generated from the following posterior multivariate normal distribution:

—r|yr,Xr,‡
2 ≥ Np+1

31
XT

r Xr + ⁄0I
2≠1

XT
r yr; ‡

2
1
XT

r Xr + ⁄0I
2≠14

. (3.9)

The proposed distribution, Ï(—r), is the conditional distribution, that is, the prior
distribution for —r, called Ï0(—r), multiplied by the partial likelihood, that considers only the
data points observed in the new cluster (yr, Xr), and by a normalization constant. The new
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cluster configuration with dimension k + 1 is accepted with probability given by:

Abirth = L(y | X, Bk+1, Gk+1, ‡
2)

L(y | X, Bk, Gk, ‡2) · (1 ≠ c) · Ï0(—r)
Ï(—r) , (3.10)

where (1 ≠ c) = P r(k+1)
P r(k) is the prior distribution ratio of the number of clusters, penalizing steps

from k to k + 1.

If accepted, the new cluster configuration (Gk+1 and Bk+1) replaces the previous confi-
guration (Gk and Bk). Therefore, the RJMCMC state dimension becomes k + 1.

3.2.6.2 Death Step

If the death step is selected, a new cluster configuration is created by randomly removing
one of the current cluster centers. Thus, the cluster center gr (r œ 1,...,k) in the vector Gk

is removed from the vector of centers, creating a new vector Gk≠1. The mean parameter —r

associated with the selected center is also removed from the vector of means Bk, creating a new
vector Bk≠1. The new cluster configuration with dimension k ≠ 1 is accepted with probability
given by:

Adeath = L(y | Bk≠1, Gk≠1, ‡
2)

L(y | Bk, Gk, ‡2) · 1
(1 ≠ c) · Ï(—r)

Ï0(—r) , (3.11)

where 1
(1≠c) = P r(k≠1)

P r(k) . If accepted, the new cluster configuration (Gk≠1 and Bk≠1) replaces the
previous configuration (Gk and Bk). Thus, the RJMCMC state dimension reduces to k ≠ 1.

3.2.6.3 Update Step

If the update step is chosen, first, only the elements of vector Bk are updated, without
changing the dimension. Each element of vector Bk is updated according to Equation 3.9. Second,
the variance parameter ‡

2 is updated using a Gibbs sampling step, i.e., conditioned on vector
Bk a new value for ‡

2 is generated from an IG(an, bn) with:

an = a0 + n
2

bn = b0 +
qn

i=1(yi≠µi)2

2

(3.12)

where µi = xi—j(i) . Let a0 = 2.1 and b0 = 1.1 to indicate the prior information E(‡2) = 1 and
V (‡2) = 10. This variance magnitude is large, suggesting high uncertainty a priori.

3.2.7 Estimating the location of the clusters

Using the RJMCMC samples, the locations of the clusters are estimated using the
marginal frequency of pairs of electrical areas sharing geographical boundaries, as presented in
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(COSTA et al., 2019) and (FENG et al., 2016). Briefly, a similarity matrix S[n◊n] stores the
empirical probability that the electrical areas i and j are grouped in the same cluster, regardless
of the estimated number of clusters. Using the Ng-Jordan-Weiss spectral clustering algorithm
(NG; JORDAN; WEISS, 2002), and given a point estimate k̂ of the number of clusters, clustering
memberships for all electrical areas are calculated. Further details are found in (COSTA et al.,
2019) and (FENG et al., 2016).

In general, the proposed cluster location estimate requires one multiple spatial regression
model with one dependent variable and multiple independent variables. However, the proposed
RJMCMC algorithm relies on the multivariate a priori distribution for the regression parameters,
—j , which can be di�cult to tweak if highly correlated independent variables are used. Furthermore,
weakly informative prior distribution a�ects the acceptance rate of the algorithm. In general,
the more similar the prior and the proposed distributions, the higher the acceptance rate. On
the contrary, it is much easier to adjust prior distributions for univariate spatial regression
models, since only two regression parameters are estimated. Furthermore, each univariate spatial
regression model may indicate a di�erent spatial cluster partition. As opposed to estimating a
multivariate spatial cluster model, we propose to estimate the final spatial cluster partition by
combining the results of the univariate spatial regression models, as follows. First, a final similarity
matrix Sn◊x is calculated by summing the elements of the similarity matrices for each univariate
spatial model. Second, given di�erent numbers of clusters, the respective spatial partitions of
the electrical areas are generated using the spectral clustering algorithm, previously mentioned.
Third, a cross-validation approach using multiple linear regression models for each cluster, using
all independent variables, is applied to select the optimal number of clusters providing maximum
predictive performance. The leave-one-out cross validation (FRIEDMAN; HASTIE; TIBSHIRANI,
2001) and the predictive coe�cient of determination (R2

prediction) (MONTGOMERY; PECK;
VINING, 2012) is proposed to estimate the optimal number of clusters.

3.2.8 The database

The database comprises 267 electrical areas or sub-regions of a Brazilian electricity
distribution company located in southeast Brazil in the state of Minas Gerais. The power outage
indicator is provided by the Brazilian electricity regulator, ANEEL (Agência Nacional de Energia
Elétrica). In addition, a total of 25 predictor variables associated with each electrical area are
available. These variables were originally investigated by a focus group with managers, engineers
and electrical technicians from the electricity company and represent known drivers of power
outage. Initially, these 25 variables were grouped into five groups: (i) geographical assets, (ii)
electrical assets, (iii) demand for electrical services, (iv) climate variables and (v) operational
and capital costs. Due to the high correlation among the predictor variables, a multivariate
statistical analysis (dimensionality reduction) was applied. Initially, a statistical factor analysis
(JOHNSON; WICHERN; others, 2002) was applied to each group, listed above, in order to
represent each group by a single variable, i.e., the first principal component. Second, based on
cross correlation analysis among the variables within each group, some variables were reallocated
and the electrical assets and demand for electrical services groups were subdivided. Thus, the
original 25 variables were divided into seven groups in which the first principal component was
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estimated. Consequently, the seven estimated latent variables were used as potential predictors
of the power outage indicator. The proposed groups and variables within each group are shown
in Table 3.1.
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Tabela 3.1 – Available predictor variables and technical groups in which the first principal
component is estimated.

Technical Groups Variables within each group

Geographical assets Service area (km2)

Extension of roads in the service area (km)

Number of municipalities in the service area

Number of locations served according to the

electrical company definition

Electrical assets I Extension of distribution lines (km)

Extension of distribution network (km)

Number of consumers

Electrical assets II Number of substations

Number of electrical protective equipment

Number of automated equipment

Climate variable Humidity index (%)

Average temperature (oC)

Average precipitation (mm)

Demand for electrical Number of working (maintenance) teams

services I Number of commercial services

Number of emergency services

Demand for electrical Number of interruptions due to falling trees

services II on the distribution lines

Number of interruptions due to falling trees

at substations

Number of interruptions due to falling trees

in the distribution network

Operational and Operational expenditures (OPEX/R$)

capital costs Capital expenditures (CAPEX/R$)
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3.2.9 Simulation study

A simulation study was proposed to investigate the performance of the proposed spatial
cluster regression model to detect clusters and the regression coe�cients in each cluster. Simulated
data was generated using a regular grid with 16 rows and 16 columns, as shown in Figure 3.2.
Thus the sample size is n = 256. Three di�erent scenarios with one, two and four clusters were
simulated. Figures 2(a) and 2(b) show simulated scenarios with two and four clusters, respectively.

cluster 1

cluster 2

(a) Simulated scenario with 2 clusters.

cluster 1 cluster 2

cluster 3 cluster 4

(b) Simulated scenario with 4 clusters.

Figura 3.2 – Simulated scenarios with 2 and 4 clusters.

The data generating process is described as follows. It is assumed that the data is
generated using the following univariate linear regression equation: Yi = — ◊ xi + ‘i, where ‘i

follows a normal distribution with mean of zero and variance of ‡
2. The minimum least squares

estimate of —, say —̂, can be written as

—̂ =
q

i yixiq
i x

2
i

Given the statistical data generating process above, the variance of —̂ can be written as:

V ar(—̂) = ‡
2

q
i x

2
i

Using a regular grid with 256 observations, a two cluster simulation scenario (cluster A
and cluster B,) assumes that in cluster A,

—̂
[A] ≥ Normal

A

—
[A]; ‡

2
q

i(x
[A]
i )2

B

Similarly, for cluster B,

—̂
[B] ≥ Normal

A

—
[B]; ‡

2
q

i(x
[B]
i )2

B
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It is assumed a regular grid of size 128 for x
[A]
i between 0 and 1. For cluster B, x

[B]
i = ≠x

[A]
i .

Thus,
q

i(x
[A]
i )2 =

q
i(x

[B]
i )2. Consequently, it can be shown that the statistical distribution of

the di�erence between —̂
[A] and —̂

[A] is written as

—̂
[A] ≠ —̂

[B] ≥ Normal

1
—

[A] ≠ —
[B]; 2k

2
‡

2
2

(3.13)

where k
2 = 1q

i
(x[A]

i )2 . Thus, assuming an – confidence level and the null hypothesis H0 : —
[A] =

—
[B], the minimum distance between —̂

[A] and —̂
[B] that rejects the null hypothesis is

|—[A] ≠ —
[B]| Ø z–/2 · k‡

Ô
2

Our simulated scenario comprises the alternative hypothesis (Ha) in which —
[A]

> 0 and
—

[B] = ≠—
[A]. Thus,

—̂
[A] ≠ —̂

[B]|Ha ≥ Normal

1
—

[A] ≠ —
[B]; 2k

2
‡

2
2

Consequently, rewritten the hypothesis testing as a one-sided test and assuming that the
error type I (–) is equal to the error type II (“ = – or z“ = z–), it can be shown that

—
[A] = z– · k‡

Ô
2

where z– is the z-score statistic. In our simulation study, the following values of z– were used:
z– = 1.96, z– = 3.09 and z– = 4.01. In addition, for each simulated data, the coe�cient of
determination (R2), hereafter named as simulated coe�cient of determination (R2

simul), was
calculated using Equation 3.14.

R
2
simul =

qn
i=1

1
—j(i)xi ≠ ȳ

22

qn
i=1 (yi ≠ ȳ)2 (3.14)

where n is the sample size and —j is the regression coe�cient of cluster j. For one cluster scenario
two values of — were used: — = 0.45 and — = 0.10. For four clusters simulated scenarios, the same
data generating process using two clusters was applied. In sequence, each cluster data was divided
into two clusters, as shown in Figure 2(b). Furthermore, the simulated coe�cient of determination
indicates the proportion of the simulated response yi which is related to the regression equation.
It is worth mentioning, that the statistical assumptions regarding the proposed data generating
process does not include the intercept (—0).

For each scenario, 200 simulations were evaluated using di�erent values for the c parameter
of the prior cluster distribution: c = 0.01 (weakly informative distribution) and c = 0.30
(informative distribution with a smaller prior mean). The RJMCMC algorithm was executed for
600,000 iterations using 300,000 iterations as the burn-in.



Capítulo 3. A novel clustering-based spatial regression model applied to consumer power outage indicator 46

3.3 Results

3.3.1 Simulation results

Table 3.2 shows the simulated results using scenarios with one, two and four clusters;
using informative (c = 0.35) and weakly informative (c = 0.01) prior distributions for the number
of clusters and using di�erent values for the simulated coe�cient of determination (R2

simul). In
general, the larger the value of R

2
simul the greater the information conveyed by the regression

model and the larger the detection rate of the true cluster, mainly if the informative prior
distribution is applied. Furthermore, weakly informative distribution generates larger HPD
intervals, as expected. For two clusters, even if lower values of R

2
simul, such as 2,0% or 4,0% as

used, the proposed method achieves an estimated average number of clusters closer to the true
value and a large proportion of simulations in which the true value is within the HPD interval.
For four clusters, the weakly informative distribution achieves a larger proportion of simulations
in which the true value is within the HPD interval, mainly for lower values of the R

2
simul statistic.

Furthermore, detection rates are improved for larger values of R
2
simul and using the informative

prior distribution. As mentioned, if weakly informative prior distributions are applied then larger
HPD intervals are created and consequently, the more likely the true cluster size be found in
the HPD interval. Scenarios with a lower number of clusters are more likely to be detected than
scenarios with four number of clusters. This is because the larger the number of clusters the
lesser the information of the local regression model, i.e., the smaller number of observations in
each cluster. Thus, in order to correctly detect a large number of clusters, larger values of R

2
simul

are required.

3.3.2 Analysis of the consumer power outage indicator

Initially, a multiple linear regression model was estimated using the seven predictor
variables and the logarithm of the power outage indicator as the dependent variable. The logarithm
transformation of the dependent variable was required in order to adjust the heteroscedasticity of
the regression model. In addition to the estimated coe�cients and the respective P-values, Table
3.4 shows the expected correlation between the dependent and each independent variable, based
on technical information. Therefore, it is expected that: (i) the larger the climate variable, the
larger the power outage; (ii) the larger the demand for electrical services I, the larger the power
outage; (iii) the larger the demand for electrical services II, the larger the power outage; (iv) the
larger the geographical assets, the larger the power outage; (v) the larger the electrical assets I,
the larger the power outage; (vi) the larger the electrical assets II, the lesser the power outage;
and, (vii) the larger the operational and capital costs the lesser the power outage. Results show
that the expected correlation and the estimated coe�cients do not match for the climate variable,
demand for electrical services I, electrical assets I, and operational and capital costs. It is worth
noticing that only the estimate for demand for electrical services I is not statistically significant
(P-value > 0.05). The multiple linear regression model has a coe�cient of determination of
R

2 = 0.5702.

As opposed to using the proposed Bayesian spatial regression model including all seven
variables, univariate models were primarily used to investigate the estimated number of clusters,
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Tabela 3.2 – Simulated results using scenarios with one, two and four clusters, and using infor-
mative and weakly informative prior distributions for the number of clusters.

Number of Prior c Average k̄|Y,X Average HPD

clusters parameter Z– R2
simul HPD size proportion

0.01 NA 21.9% 1.26 6.48 98.0%

1 0.35 NA 21.8% 1.08 3.01 100.0%

0.01 NA 1.7% 3.6 12.7 96.0%

0.35 NA 1.6% 1.13 3.02 99.0%

0.01 1.96 1.9% 4.5 16.2 97.5%

2 0.35 1.96 1.9% 1.5 3.8 100.0%

0.01 3.09 4.2% 2.1 12.5 99.5%

0.35 3.09 4.2% 1.9 4.2 100.0%

0.01 4.01 6.7% 2.3 11.9 98.5%

0.35 4.01 6.8% 2.1 4.3 99.5%

0.01 1.96 3.4% 3.9 16.3 94.0%

4 0.35 1.96 3.3% 1.4 4 74.5%

0.01 3.09 7.4% 3.6 18.1 98.0%

0.35 3.09 7.4% 2.5 6.3 99.0%

0.01 4.01 11.7% 4.8 16 98.0%

0.35 4.01 11.7% 3.5 6.3 99.5%

their locations and the spatial varying coe�cients for each variable. Results are presented in
Figures 3.3 to 3.9, showing the a posteriori distribution of the number of clusters, the most
likely partitions of the electrical areas map using the mode as the point estimate, and the fitted
univariate regression model for each cluster.

Using the climate variable, Figure 3.3 shows that three clusters were estimated. The
largest cluster comprises the north region, in which low precipitation rates are generally observed.
A second cluster comprises the south region, in which high precipitation rates are generally
observed. The third cluster comprises the west (left) region in which high precipitation rates are
also observed. The estimated coe�cients for clusters located in the north and south are positive,
as technically expected (see Table 3.4); i.e., the larger the climate variable, the larger the power
outage. The estimated coe�cient for the cluster located in the west is negative.
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Tabela 3.3 – Mode of the estimated number of clusters and number of areas in each cluster sorted
in increasing order.

evaluated Mode of the Number of areas in each cluster

variables number of clusters cluster 1 cluster 2 cluster 3 cluster 4

Geographical assets 3

Electrical assets I 4

Electrical assets II 4

Climate variable 3

Demand for electrical

services I 4

Demand for electrical

services II 4

Operational and

capital costs 4

Tabela 3.4 – Multiple linear regression results using the estimated latent variables and the
logarithm of the power outage indicator.

Predictor variable Expected Coe�cient P-value

correlation Estimate

Intercept 6.103e-17 1.000

Climate variable positive -0.1831 2.49e-05

Demand for electrical services I positive -0.1297 0.1056

Demand for electrical services II positive 0.8606 < 2e-16

Electrical assets I positive -0.5087 5.36e-06

Electrical assets II negative -0.6563 1.96e-08

Geographical assets positive 0.3645 1.30e-05

Operational and capital costs negative 0.2451 0.0003

(a) The a posteriori distribution of the number
of clusters and the most likely partition using
the mode as the point estimate.

(b) Univariate regression models estimated for
each cluster.

Figura 3.3 – Results using the univariate Bayesian spatial regression model and the climate
variable as the predictor.
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Using the demand for electrical services I, Figure 3.4 shows that four clusters were
estimated. The largest cluster comprises the north region. The second cluster comprises the
south region. The third cluster comprises the west (left) region and the fourth cluster, a small
cluster, comprises electrical areas in the state capital. The estimated coe�cient for the cluster
located in the north is close to zero. The estimated coe�cients for clusters located in the south
and west are negative and the estimated coe�cient for the small cluster located in the state
capital is positive. The expected correlation is positive (see Table 3.4).

(a) The a posteriori distribution of the number
of clusters and the most likely partition using
the mode as the point estimate.

(b) Univariate regression models estimated for
each cluster.

Figura 3.4 – Results using the univariate Bayesian spatial regression model and the demand for
electrical services I as the predictor.

Using the demand for electrical services II, Figure 3.5 shows that four clusters were
estimated. The largest cluster comprises the north and west regions. The second cluster comprises
the southwest region. The third cluster comprises the southeast (bottom right) region and the
fourth cluster, the smallest cluster, comprises electrical areas in the state capital and surrounding
areas. The estimated coe�cients for all clusters are positive, as technically expected. However,
the values of the coe�cients vary among the clusters showing that in some clusters, such as the
smallest cluster and the cluster located in the southeast, the correlation between demand for
electrical services II and the power outage is larger as compared to the remaining clusters.
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(a) The a posteriori distribution of the number
of clusters and the most likely partition using
the mode as the point estimate.

(b) Univariate regression models estimated for
each cluster.

Figura 3.5 – Results using the univariate Bayesian spatial regression model and the demand for
electrical services II as the predictor.

Using the geographical assets, Figure 3.6 shows that three clusters were estimated. The
largest cluster comprises the north region. A second cluster comprises the southeast (bottom right)
region. The third cluster comprises the west and southwest regions. The estimated coe�cients
for clusters located in the north and southeast regions are positive, as technically expected (see
Table 3.4); i.e., the larger the geographical assets, the larger the power outage. The estimated
coe�cient for the cluster located in the west/southwest region is slightly negative.

(a) The a posteriori distribution of the number
of clusters and the most likely partition using
the mode as the point estimate.

(b) Univariate regression models estimated for
each cluster.

Figura 3.6 – Results using the univariate Bayesian spatial regression model and the geographical
assets as the predictor.

Using the electrical assets I, Figure 3.7 shows that four clusters were estimated. Results
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are similar to those findings using the electrical services I. The largest cluster comprises the
north region. The second cluster comprises the south region. The third cluster comprises the
west (left) region and the fourth cluster, the smallest cluster, comprises electrical areas in the
state capital. The estimated coe�cients for the clusters located in the north and south regions
are close to zero. The estimated coe�cient for the cluster located in the west is negative, and the
estimated coe�cient for the small cluster located in the state capital is positive. The expected
correlation is positive (see Table 3.4).

(a) The a posteriori distribution of the number
of clusters and the most likely partition using
the mode as the point estimate.

(b) Univariate regression models estimated for
each cluster.

Figura 3.7 – Results using the univariate Bayesian spatial regression model and the electrical
assets I as the predictor.

Using the demand for electrical services II, Figure 3.8 shows that four clusters were
estimated. The largest cluster comprises the north region. The second cluster comprises the
northwest region. The third cluster comprises the south (bottom right) region, and the fourth
cluster, the smallest cluster, comprises electrical areas in the state capital and surrounding areas.
The estimated coe�cients for clusters located in the west and close to the state capital are
negative, as technically expected. The estimated coe�cients for the remaining clusters are close
to zero.
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(a) The a posteriori distribution of the number
of clusters and the most likely partition using
the mode as the point estimate.

(b) Univariate regression models estimated for
each cluster.

Figura 3.8 – Results using the univariate Bayesian spatial regression model and the electrical
assets II as the predictor.

Using the operational and capital costs, Figure 3.9 shows that four clusters were estimated.
The largest cluster comprises the north region. The second cluster comprises the west (left)
region. The third cluster comprises the southwest region, and the fourth cluster comprises the
southeast region. The estimated coe�cients are close to zero for clusters located in the north and
west regions. The estimated coe�cient in the west region is negative, as technically expected.
The estimated coe�cient in the southeast cluster is positive indicating that, in this region, the
larger the operational and capital costs, the larger the power outage.

(a) The a posteriori distribution of the number
of clusters and the most likely partition using
the mode as the point estimate.

(b) Univariate regression models estimated for
each cluster.

Figura 3.9 – Results using the univariate Bayesian spatial regression model and the operational
and capital costs as the predictor.
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A close look at the estimated clusters for each variable shows similar patterns. In general,
all univariate models indicate a large cluster located in the north region. A second cluster is
located in the west region. Some univariate models indicate a third cluster located either in
south/southeast or southwest region, and some univariate models indicate a fourth cluster, with
a smaller number of electrical areas, located closer to the state capital. Interestingly, by dividing
the data into spatial clusters, some of the estimated coe�cients had their signs changed. For
example, without any spatial partition, the regression model presents a negative and statistically
significant coe�cient for the climate variable, as shown in Table 3.4. By dividing the data
into spatial clusters, the estimated coe�cients within some clusters are positive, as technically
expected. These results indicate a concept known as the Simpson’s paradox, or reversal paradox
(SIMPSON, 1951), in which a trend appears in several di�erent groups of data but disappears or
reverses when these groups are combined. The reversal paradox can also be partially observed
for demand for electrical services I, electrical assets I, and operational and capital costs. These
findings indicate that the spatial partition is an important variable in the model.

Figure 3.10 shows the spatial estimate of the regression coe�cient (—1) for each electrical
area and predictor variable. Results indicate spatial locations in which the regression equation is
more pronounced. Values close to zero indicate a zero slope, i.e, the absence of the regression
e�ect.

Figure 3.12 illustrates the Bayesian univariate spatial regression results using a simulated
scenario with no spatial clusters, i.e., only one cluster. In this case, the proposed model correctly
identified a single partition on the map and that the spatial estimates of the regression coe�cient
(—1) are homogeneous.
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(a) Climate variable (b) Demand for electrical ser-
vices I

(c) Demand for electrical ser-
vices II

(d) Geographical assets (e) Electrical assets I (f) Electrical assets II

(g) Operational and capital
costs

Figura 3.10 – Spatial estimate of the regression coe�cient —1 for each electrical area.
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(a) The a posteriori distribution of the number
of clusters.

(b) Spatial estimate of the regression coe�cient
—1.

Figura 3.11 – Results using the univariate Bayesian spatial regression model and a simulated
scenario with no clusters.

Table 3.5 shows the birth and death acceptance rates for models with di�erent number of
independent variables (predictors) and di�erent values for the parameter c, which tunes the a
priori distribution of the number of clusters. The larger the value of c, the more informative the
a priori distribution with probability mass towards smaller number of clusters. Whereas lower
values of c comprise weakly informative distributions, i.e., a flat a priori distribution. Results
show that the more independent variables are included in the model the lower the birth acceptance
rate. Furthermore, a weakly informative a priori distribution for the number of clusters achieves
larger acceptance rates as compared to more informative a priori distribution. Using the complete
number of independent variables, i.e., seven predictor variables, the birth acceptance rate is the
lowest wheres the death acceptance rate is large. Consequently, the a posteriori distribution of
the number of clusters has a probability mass towards the lowest value, which is one spatial
cluster. Future studies aim at proposing di�erent a priori distributions for vector —j , which can
improve the birth acceptance rates. Therefore, the a priori distribution shown in Equation 3.8
has limitations if the number of independent variables is large. Alternatively, one may combine
the univariate spatial regression results into a multiple spatial regression analysis as described
below.

For each univariate spatial regression model, the clustering algorithm was applied varying
the number of clusters from 1 to 5. For each cluster configuration, a multiple linear regression
model using all predictor variables was adjusted for each partition. Finally, the predictive
coe�cient of determination (R2

pred) (MONTGOMERY; PECK; VINING, 2012) was calculated
and the cluster configuration achieving the maximum value of R

2
pred was selected. Figure 12(a)

shows the R
2
pred values using di�erent number of clusters. Results show that the maximum value

of R
2
pred = 61.79% is achieved using three clusters. Figure 12(b) shows the best configuration of

clusters with one cluster comprising the north region, one cluster comprising the south and west
regions, and one cluster comprising electrical areas located in the state capital and surrounding
areas.
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Tabela 3.5 – Birth and death acceptance rates for models with di�erent number of independent
variables and varying a priori parameter c.

number of c = 0.35 c = 0.001

predictors birth death birth death

1 7.4% 7.4% 9.3% 9.3%

3 2.4% 2.4% 2.8% 2.8%

4 2.3% 2.3% 3.1% 3.1%

7 0.9% 6.3% 0.9% 8.7%

(a) Predictive coe�cient of determination
(R2

pred) for di�erent number of clusters.
(b) Electrical areas divided into 3 spatial clus-
ters.

Figura 3.12 – Final selection of the number of clusters based on the predictive coe�cient of
determination for di�erent number of clusters.

Table 3.6 shows the expected sign, the univariate coe�cient estimates and the multivariate
coe�cient estimates using the data from the first cluster, i.e., using the electrical areas in the
north region. Only three predictor variables were statistically significant (P-value < 0.05). The
demand for electrical assets variable presented a positive coe�cient, as expected. On the contrary,
the electrical assets I variable presented a negative coe�cient for both univariate and multiple
linear regression models. The Variance Inflation Factor (VIF) statistic was large for electrical
assets II, indicating multicollinearity.

Table 3.7 shows results using data from the second cluster, located in the south and west
regions. In this second cluster, three predictor variables were statistically significant (P-value
< 0.05). The demand for electrical services II and de geographical assets variables presented
positive coe�cients, as expected. On the contrary, the electrical assets I variable presented a
negative coe�cient. Similarly to results found in cluster one, the VIF statistic presented a large
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Tabela 3.6 – Estimated univariate and multiple liner regression coe�cients for the spatial cluster
1.

Predictor Expected Cluster 1

variable sign univariate coe�cient P-value VIF

Climate variable positive 0.0671 -0.0186 0.6840 1.49

Demand for electrical services I positive -0.0068 -0.0027 0.9764 6.21

Demand for electrical services II positive 0.1118 0.3720 0.0000 3.93

Electrical assets I positive -0.0265 -0.3589 0.0002 9.04

Electrical assets II negative 0.0059 -0.1601 0.1654 13.38

Geographical assets positive 0.0531 0.0993 0.1090 4.40

Operational and capital costs negative 0.0359 0.0980 0.0778 2.70

Sample size: 115 electrical areas

value for electrical assets II.

Tabela 3.7 – Estimated univariate and multiple liner regression coe�cients for the spatial cluster
2.

Predictor Expected Cluster 2

variable sign univariate coe�cient P-value VIF

Climate variable positive 0.0266 -0.1029 0.0651 1.18

Demand for electrical services I positive -0.1806 -0.1931 0.0274 9.43

Demand for electrical services II positive 0.0322 0.4039 0.0000 5.19

Electrical assets I positive -0.1479 -0.2470 0.0019 8.68

Electrical assets II negative -0.1412 -0.1649 0.0912 12.30

Geographical assets positive 0.0811 0.2140 0.0008 3.81

Operational and capital costs negative -0.0882 0.0398 0.5334 3.50

Sample size: 120 electrical areas

Table 3.8 shows results using data from the third cluster, the smallest cluster, located in
the in the state capital and surrounding areas. Despite the small sample size, three statistically
significant variables are found. The demand for electrical services II variable presents positive
coe�cient as expected. The electrical assets II variable presents a negative coe�cient, as expected.
The geographical assets variable presents a negative coe�cient in the multiple linear regression
model, even though the univariate model estimated a positive coe�cient (as expected). The
electrical assets I and geographical assets presented larger values of the VIF statistics.
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Tabela 3.8 – Estimated univariate and multiple liner regression coe�cients for the spatial cluster
3.

Predictor Expected Cluster 3

variable sign univariate coe�cient P-value VIF

Climate variable positive 0.6781 0.4922 0.0795 1.54

Demand for electrical services I positive 0.1044 -0.1770 0.1922 8.61

Demand for electrical services II positive 0.3971 1.4204 0.0000 9.26

Electrical assets I positive 0.1979 0.1284 0.6455 15.02

Electrical assets II negative -0.0022 -0.3788 0.0034 6.30

Geographical assets positive 0.3184 -1.3093 0.0105 10.88

Operational and capital costs negative 0.0942 0.1127 0.1199 4.93

Sample size: 31 electrical areas

Results shown in Tables 3.6, 3.7 and 3.8 provide evidence that the predictive performance
of the available variables with respect to the power outage indicator varies geographically. Thus,
models using di�erent variables are required in order to improve the predictive performance of
the DEC indicator.

3.4 Discussion

As previously mentioned, Brazil has continental dimensions and some of the Brazilian
DSOs has concession areas larger than many european countries. Consequently, the electrical
distribution service faces many challenges related to weather, vegetation and socioeconomic
factors. In the case study, the geographical heterogeneity was technically known for engineers and
management sta�. Nonetheless, providing a proper treatment was a di�cult tasks since standard
statistical analysis do not rely on simultaneous estimation of spatial clusters and regression
coe�cients.

The estimated number of cluster as three and their respective locations do show consistent
result, as expected by experts. The cluster located in the north (cluster one) comprises a drier
region with little precipitation and old assets. The second cluster located in the west and south
regions is mostly related to agricultural production. Large agricultural industries are located
in the west whereas the precipitation index is larger in the south. Nonetheless, the variables
associated with the electrical assets were also statistically significant but with di�erent coe�cients.
Finally, cluster three comprises a highly industrialized and populated electrical areas. All detected
clusters indicated the strong correlation between the power outage indicator and the variables
associated with the electrical assets.

Figure 3.13 illustrates one limitation of the proposed clustering-based Bayesian spatial
model. The original spatial partition algorithm, as proposed by Knorr-Held and Raßer (KNORR-
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HELD; RASSER, 2000), may overestimate the number of clusters if their locations do not fit
the spatial partition algorithm. For instance, Figure 13(a) shows a simulated scenario with two
clusters in which one cluster is located in the center of the study region. The original spatial
Bayesian algorithm does not allow such partition. Nevertheless, the central cluster is detected by
creating additional clusters, as shown in Figure 13(b). Consequently, the algorithm overestimates
the number of clusters, but the estimate of the regression parameters between the outer clusters
are similar. Thus, future studies aim at developing more flexible spatial partition algorithms.

In addition, as shown in the case study, the more predictor variables are included in
the spatial regression model, the lower the birth acceptance rate. Consequently, the proposed
Bayesian spatial regression model may not detect any spatial partition. An alternative is to
adjust univariate spatial regression models. In sequence, combine the univariate spatial partition
information and use multiple regression models and cross-validation analysis to find the optimal
number of partitions. Results using the power outage data suggest that this approach may
overcome the lower acceptance rates and the spatial clustering limitation, previously mentioned.

(a) Simulated scenario with two spatial clusters. (b) Detected clusters.

Figura 3.13 – Overestimation of the number of clusters using the spatial Bayesian approach. In
order to detect the central cluster, two additional clusters are created.

3.5 Conclusion

The unexpected failure of electrical energy supply generates major production and fi-
nancial losses to industrial, local market and residential consumers. In general, main causes of
power outage can be attributed to both managerial and non-managerial factors. Precipitation,
lightning, wind gusts are known environmental factors related to power outage. Likewise, so-
cioeconomic factors may also a�ect the electricity supply, mainly in vulnerable socioeconomic
areas. Thus, DSOs with large concession areas have a di�cult task to evaluate the di�erent
factors, as well as their di�erent impacts, in the power outage behavior across the concession
region. Consequently, adjusting statistical regression models to geographical clusters captures
the geographical heterogeneity with respect to both managerial and non-managerial factors.
However, reliable estimates of the number of geographical clusters, their respective locations
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and the local regression coe�cients is overwhelming and can be overcome using the proposed
statistical Bayesian approach.

This work has successfully proposed a spatial Bayesian linear regression model which
estimates spatial clusters and the respective regression coe�cients. The main motivation and the
case study is the prediction of the power outage indicator, named DEC, in the largest Brazilian
DSO located in the southeast region. Results provide strong statistical evidence that the proposed
geographical clustering approach improves the predictive accuracy of the DEC indicator. Briefly,
three geographical clusters were estimated. Most important drivers are related to electrical and
geographical assets. Secondary drivers are related to climate variables, operational and capital
costs and demand for electrical services. Furthermore, the estimated e�ects of the drivers, i.e.,
the regression coe�cients, do vary among the di�erent clusters. The estimated coe�cients of the
models can drive future management decisions to reduce the DEC indicator and, consequently,
reduce compensation paid to consumers. Thus, the studied DSO can increase future investments
in network expansion and quality of the services.
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A Apêndice do primeiro artigo

A.1 Details of the RJMCMC sampler

Algorithm 1 RJMCMC_Sampling(Y ,Steps,Neigh,fiB,fiD,fiSh,fiSw,fiUp)
Require: Y : input data; Steps: number of RJMCMC steps; Neigh: neighboring data; fiB , fiD, fiSh, fiSw and fiUp: probabilities

of the five moves.
Ensure: RJMCMC samples: Mk and Gk at each step.

µ0 Ω 0; ‡2
0 Ω 1

k Ω prior mean of the number of clusters.
Gk Ω randomly select k cluster centers.
Mk Ω apply the update move (Eqs. (2.10) and (2.11))
for s=1 to Steps do

Randomly choose one of the five moves with probabilities
fiB ,fiD,fiSh,fiSw,fiUp.

if birth move is selected then
Gú

k+1 Ω randomly choose a new cluster center and randomly
impute in vector Gk.

µr Ω random normal value using Eqs. (2.4) and (2.5).
Mú

k+1 Ω update Mk with µr.
Use Mú

k+1, Gú
k+1, Mk, Gk, Neigh and Y to calculate ABirth (Eq. (2.6))

– Ω min (1, ABirth)
u Ω uniform random number between 0 and 1.
if u Æ – then

Mk Ω Mú
k+1

Gk Ω Gú
k+1

end if
end if
if death move is selected then

Gú
k≠1 Ω delete one random cluster center from Gk.

Mú
k≠1 Ω delete the respective mean parameter from Mk.

Use Mú
k≠1, Gú

k≠1, Mk, Gk, Neigh and Y to calculate ADeath (Eq. (2.7))
– Ω min (1, ADeath)
u Ω uniform random number between 0 and 1.
if u Æ – then

Mk Ω Mú
k≠1

Gk Ω Gú
k≠1

end if
end if
if shift move is selected then

Gú
k Ω shift a randomly selected cluster center in Gk to a random new area

in the same cluster.
Mú

k Ω Mk.
Use Mú

k , Gú
k, Mk, Gk, Neigh and Y to calculate AShift (Eq. (2.8))

– Ω min (1, AShift)
u Ω uniform random number between 0 and 1.
if u Æ – then

Mk Ω Mú
k

Gk Ω Gú
k

end if
end if
if switch move is selected then

Gú
k Ω switch two random cluster centers in Gk.

Mú
k Ω switch the respective mean parameters from Mk.

Use Mú
k , Gú

k, Mk, Gk, Neigh and Y to calculate ASwitch (Eq. (2.9))
– Ω min (1, ASwitch)
u Ω uniform random number between 0 and 1.
if u Æ – then

Mk Ω Mú
k

Gk Ω Gú
k

end if
end if
if update move is selected then

Mk Ω Update the mean parameters in vector Mk using a normal random numbers with
mean µú (Eq. (2.10)) and variance ‡2

ú (Eq. (2.11)), µj ≥ Normal(µú, ‡2
ú).

‡2 Ω Update the variance parameter using an inverse-Chi squared random number,
‡2 ≥ Inv-‰2

(n≠k,s2) (Eq. (2.12))
end if

end for
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Tabela A.1 – Operational costs, ANEEL DEA e�ciencies, and changes after applying DEA to
each cluster, sorted in decreasing order of cost di�erences between clusters and
original costs. Major changes in e�ciency indexes are highlighted.

DSO OPEX (R$) DEA Cluster DEA E�cient Cluster e�. OPEX Cluster

DEA change OPEX (R$) OPEX (R$) change (R$)

LIGHT 722,222,026.67 0.7839 0.8585 0.0746 566,164,085.62 620,035,208.38 53,871,122.75 2

CEMAT 423,266,803.33 0.7611 0.8872 0.1261 322,137,914.71 375,505,981.35 53,368,066.64 1

ELETROPAULO 1,255,830.566.67 0.8692 0.8978 0.0285 1,091,601,201.50 1,127,442,012.68 35,840,811.19 2

COPEL 1,225,581.910.00 0.6363 0.6577 0.0214 779,838,353.26 806,069,990.62 26,231,637.35 1

CEMIG 2,041,586.440.00 0.6904 0.7019 0.0115 1,409,558,101.29 1,432,963,631.09 23,405,529.80 2

CELG 762,130.693.33 0.6854 0.7130 0.0276 522,375,199.97 543,409,078.53 21,033,878.56 2

CELPA 577,061.083.33 0.5618 0.5971 0.0353 324,181,293.18 344,568,130.82 20,386,837.64 1

CERON 239,274.793.33 0.4824 0.5505 0.0681 115,417,359.45 131,722,731.56 16,305,372.10 1

ESCELSA 302,786.963.33 0.7105 0.7640 0.0535 215,121,723.61 231,329,840.81 16,208,117.19 2

ENERSUL 331,261.320.00 0.6638 0.7111 0.0473 219,895,151.68 235,569,603.77 15,674,452.09 1

CPFL PAULISTA 720,481.060.00 0.9463 0.9667 0.0204 681,804,974.32 696,481,235.96 14,676,261.63 2

CEEE 597,813.956.67 0.4109 0.4312 0.0203 245,661,139.49 257,770,570.30 12,109,430.81 1

CEB 333,767.260.00 0.5244 0.5571 0.0327 175,026,169.25 185,945,986.66 10,919,817.41 2

AMPLA 479,317.470.00 0.6998 0.7175 0.0177 335,446,567.37 343,928,567.10 8,481,999.72 2

BANDEIRANTE 327,364.556.67 0.8173 0.8418 0.0245 267,543,956.62 275,561,328.86 8,017,372.24 2

ELEKTRO 463,617.950.00 0.9382 0.9492 0.0110 434,969,778.88 440,076,792.69 5,107,013.81 2

ELETROACRE 89,155.566.67 0.5096 0.5659 0.0563 45,432,241.24 50,451,410.61 5,019,169.37 1

CELESC 842,382.040.00 0.6191 0.6228 0.0037 521,490,795.12 524,602,257.91 3,111,462.79 1

COSERN 196,500.780.00 0.9192 0.9307 0.0115 180,614,479.03 182,878,056.59 2,263,577.56 2

CHESP 12,527.823.33 0.7948 0.9640 0.1692 9,957,058.29 12,076,365.05 2,119,306.76 2

ENE. BORBOREMA 35,458.666.67 0.7306 0.7897 0.0591 25,907,284.95 28,001,418.71 2,094,133.76 2

CELPE 549,361.833.33 0.8692 0.8729 0.0037 477,528,928.99 479,552,828.82 2,023,899.84 2

ENE. SERGIPE 164,595.263.33 0.5999 0.6116 0.0117 98,735,547.87 100,663,288.75 1,927,740.88 2

AME 374,980.226.67 0.3239 0.3289 0.0050 121,468,720.88 123,332,231.06 1,863,510.18 1

CEAL 312,737.580.00 0.4351 0.4405 0.0054 136,063,148.88 137,752,552.65 1,689,403.77 2

AES SUL 270,415.596.67 0.8131 0.8183 0.0053 219,867,105.97 221,293,566.13 1,426,460.16 1

MOCOCA 9,542.343.33 0.9152 1.0000 0.0848 8,733,233.06 9,542,343.33 809,110.27 2

SULGIPE 36,088.133.33 0.6624 0.6802 0.0177 23,906,494.05 24,546,300.27 639,806.22 2

BRAGANTINA 38,394.170.00 0.6854 0.7018 0.0164 26,314,825.44 26,944,307.55 629,482.11 2

CFLO 14,326.320.00 0.6714 0.7117 0.0403 9,618,035.01 10,195,671.94 577,636.94 1

DME-PC 30,082.166.67 0.4164 0.4342 0.0178 12,526,454.31 13,060,971.52 534,517.21 2

ENE. PARAÍBA 249,989.183.33 0.8210 0.8230 0.0020 205,245,777.08 205,737,856.66 492,079.58 2

CPEE 13,787.390.00 0.8876 0.9146 0.0271 12,237,063.94 12,610,116.20 373,052.26 2

NACIONAL 29,008.853.33 0.6726 0.6846 0.0120 19,511,007.50 19,859,199.75 348,192.25 2

CEPISA 334,005.756.67 0.5893 0.5903 0.0010 196,839,326.96 197,180,192.36 340,865.40 2

ENE. MINAS GERAIS 95,472.570.00 0.8291 0.8326 0.0035 79,155,784.18 79,487,813.12 332,028.94 2

ELETROCAR 13,944.003.33 0.5109 0.5318 0.0209 7,124,250.89 7,415,991.34 291,740.45 1

COOPERALIANÇA 9,767.343.33 0.6302 0.6546 0.0244 6,155,163.57 6,393,630.73 238,467.17 1

SANTA MARIA 28,950.813.33 0.8087 0.8161 0.0074 23,411,296.57 23,626,859.65 215,563.08 2

IGUAÇU 13,072.183.33 0.5535 0.5673 0.0138 7,234,987.80 7,415,274.47 180,286.67 1

DEMEI 8,913.560.00 0.5737 0.5836 0.0098 5,113,872.60 5,201,522.23 87,649.62 1

CAIUA 56,770.493.33 0.7362 0.7376 0.0014 41,794,327.49 41,875,755.46 81,427.96 2

HIDROPAN 6,030.620.00 0.5198 0.5287 0.0090 3,134,660.32 3,188,640.57 53,980.24 1

SANTA CRUZ 44,712.816.67 0.7737 0.7744 0.0008 34,594,095.34 34,627,725.34 33,630.00 2

COCEL 15,634.566.67 0.5620 0.5638 0.0018 8,786,463.96 8,814,172.63 27,708.66 1

URUSSANGA 4,996.156.67 0.4442 0.4456 0.0014 2,219,521.37 2,226,415.97 6,894.61 1

VALE PARANAPANEMA 45,450.040.00 0.7008 0.7008 0 31,852,899.13 31,852,899.13 0 2

CEMAR 394,983.213.33 0.8734 0.8734 0 344,986,075.20 344,986,075.20 0 2

COELBA 835,616.980.00 0.9714 0.9714 0 811,742,349.18 811,742,349.18 0 2

CELTINS 158,705.426.67 1 1 0 158,705,426.67 158,705,426.67 0 2

JAGUARI 10,427.793.33 1 1 0 10,427,793.33 10,427,793.33 0 2

COELCE 459,836.866.67 1 1 0 459,836,866.67 459,836,866.67 0 2

PIRATININGA 273,902.093.33 1 1 0 273,902,093.33 273,902,093.33 0 2

CSPE 15,405.500.00 1 1 0 15,405,500.00 15,405,500.00 0 2

RGE 244,263.520.00 1 1 0 244,263,520.00 244,263,520.00 0 1

NOVA PALMA 4,967.863.33 1 1 0 4,967,863.33 4,967,863.33 0 1

MUXFELDT 1,781.550.00 1 1 0 1,781,550.00 1,781,550.00 0 1
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B Apêndice do segundo artigo

B.1 Details of the RJMCMC sampler

Algorithm 2 RJMCMC_Sampling(Y,X,Steps,Neigh,⁄0,a0,b0,fiB,fiD,fiUp)
Require: Y, X: input data; Steps: number of RJMCMC steps; Neigh: neighboring data; fiB , fiD and fiUp: probabilities of the

three moves.
Ensure: RJMCMC samples: Mk and Gk at each step.

k Ω prior mean of the number of clusters.
Gk Ω randomly select k cluster centers.
Bk Ω apply the update move (Eq. (2.4))
for s=1 to Steps do

Randomly choose one of the three moves with probabilities
fiB ,fiD,fiUp.

if birth move is selected then
Gú

k+1 Ω randomly choose a new cluster center and randomly
impute in vector Gk.

—r Ω multivariate normal random value using Eq. (2.4).
Bú

k+1 Ω update Bk with —r.
Use Bú

k+1, Gú
k+1, Bk, Gk, Neigh and Y to calculate ABirth (Eq. (2.6))

– Ω min (1, ABirth)
u Ω uniform random number between 0 and 1.
if u Æ – then

Bk Ω Bú
k+1

Gk Ω Gú
k+1

end if
end if
if death move is selected then

Gú
k≠1 Ω delete one random cluster center from Gk.

Bú
k≠1 Ω delete the respective mean parameter from Bk.

Use Bú
k≠1, Gú

k≠1, Bk, Gk, Neigh and Y to calculate ADeath (Eq. (2.7))
– Ω min (1, ADeath)
u Ω uniform random number between 0 and 1.
if u Æ – then

Bk Ω Bú
k≠1

Gk Ω Gú
k≠1

end if
end if
if update move is selected then

Bk Ω Update the mean parameters in vector Bk using multivariate normal random numbers with
mean of

!
XT

r Xr + ⁄0I
"≠1 XT

r yr and variance of ‡2
!

XT
r Xr + ⁄0I

"≠1
(Eq. (2.4)).

‡2 Ω Update the variance parameter using an inverse-Gamma random number,
‡2 ≥ IG (an, bn) (Eq. (2.12))

end if
end for
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