
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pòs-Graduação em Ciência da Computação

Pedro Henrique Silva Souza Barros

Um novo espaço de similaridade sob medida para aprendizado métrico
profundo supervisionado

Belo Horizonte
2021

Pedro Henrique Silva Souza Barros

Um novo espaço de similaridade sob medida para aprendizado métrico
profundo supervisionado

Versão final

Dissertação apresentada ao Programa de Pós-Graduação em
Ciência da Computação da Universidade Federal de Minas
Gerais, como requisito parcial à obtenção do título de Mestre
em Ciência da Computação.

Orientador: Heitor Soares Ramos Filho
Coorientadora: Fabiane da Silva Queiroz

Belo Horizonte
2021

Pedro Henrique Silva Souza Barros

A New Similarity Space Tailored for Supervised Deep Metric Learning

Final version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Master in Com-
puter Science.

Advisor: Heitor Soares Ramos Filho
Co-Advisor: Fabiane da Silva Queiroz

Belo Horizonte
2021

Acknowledgments

Primeiramente, agradeço a Deus por todas as graças alcançadas em minha vida.
Gostaria de agradecer a minha família, especialmente meus pais, Rafael e Vera,

bem como meu irmão João, por todo apoio (seja ele financeiro, emocional ou educacional)
que me foi oferecido durante todo o meu período acadêmico. Tenho certeza que sem
esse apoio, não teria conseguido finalizar essa dissertação. Vocês são minha inspiração e
motivação da minha vida.

Agradeço também pelo maior presente que Belo Horizonte me apresentou, Joyce
Elisa Herédia. Muito obrigado por toda paciência, apoio, conversas, sushis e conselhos
durante todo esse ano. Espero que nosso amor consiga durar por muito mais tempo.

Além disso, agradeço ao meu mentor, amigo e orientador Dr. Heitor Ramos, por
todo apoio que venho recebendo nesses últimos anos, desde minha graduação. Através de
sua sugestão, comecei a analisar a hipótese de realizar mestrado na UFMG.

Meus grandes amigos do Conversa Mole, por todas brincadeiras e resenhas do dia-
a-dia. Em especial, meus parceiros do return (Demetrios, Alvino e Matheus), que mesmo
longe, ainda mantemos a amizade construída durante todo período de graduação. Além
disso, agradeço meu parceiro Cristopher por todas conversas sobre o mestrado, bem como
eventos e viagem acadêmicas.

Minhas companheiras de Laccan House, Duda e Julie, que encararam dividir o
apartamento comigo durante esses dois anos, além de me apresentar os dois gatos mais
legais de BH: Miguel e Nina. Obrigado por tudo meninas.

E por fim, agradeço a todos que contribuíram de alguma forma neste trabalho,
bem como a banca avaliadora pela leitura e comentários acerca desta dissertação.

“Não há briga entre nós, mas vivemos brigando
Vivemos brigando”

(Baco Exu do Blues)

Resumo

No presente trabalho, propomos um novo método de aprendizagem métrica profunda que
diferentemente de muitos trabalhos nesta área, define um novo espaço latente obtido por
meio de um autoencoder. O novo espaço, chamado de espaço S, é dividido em difer-
entes regiões que descrevem as posições onde pares de objetos são similares/dissimilares.
Localizamos marcadores para identificar essas regiões. Em seguida, estimamos as semel-
hanças entre objetos por meio de uma distribuição t-student baseada em kernel para
medir a distância dos marcadores e a nova representação de dados. Assim, estimamos
simultaneamente a posição dos marcadores no espaço S e representamos os objetos no
mesmo espaço em nossa abordagem. Além disso, propomos uma nova função de regular-
ização para evitar que marcadores similares entrem em colapso. Apresentamos evidências
de que nossa proposta pode representar espaços complexos, por exemplo, quando grupos
de objetos semelhantes estão localizados em regiões disjuntas. Comparamos nossa pro-
posta com 9 abordagens diferentes de aprendizagem métrica a distância (quatro delas são
baseadas em aprendizagem profunda) em 28 conjuntos de dados heterogêneos do mundo
real. De acordo com as quatro métricas quantitativas utilizadas, nosso método supera
todas as nove estratégias da literatura. Além disso, investigamos alguns estudos de caso
em diferentes domínios, para verificar a eficácia de nossa proposta.

Palavras-chave: Espaço de Similaridade, Espaço Latente, Aprendizagem de Métrica
Profunda.

Abstract

We propose a novel deep metric learning method. Differently from many works in this
area, we defined a novel latent space obtained through an autoencoder. The new space,
namely S-space, is divided into different regions that describe the positions where pairs
of objects are similar/dissimilar. We locate makers to identify these regions. We estimate
the similarities between objects through a kernel-based t-student distribution to measure
the markers’ distance and the new data representation. We simultaneously estimate
the markers’ position in the S-space and represent the objects in the same space in our
approach. Moreover, we propose a new regularization function to avoid similar markers
to collapse altogether. We present evidence that our proposal can represent complex
spaces, for instance, when groups of similar objects are located in disjoint regions. We
compare our proposal to 9 different distance metric learning approaches (four of them
are based on deep-learning) on 28 real-world heterogeneous datasets. According to the
four quantitative metrics used, our method overcomes all the nine strategies from the
literature. In addition, we investigated some case studies in different domains, to verify
the effectiveness of our proposal.

Palavras-chave: Similarity Space, Latent Space, Deep Metric Learning.

List of Figures

1.1 Comparison between the canonical model of DMeL and the model used in this
chapter. 16

3.1 Simple black box schematic for our proposal. 25
3.2 The left side represents the Encoder with reconstruction, and the right

side represents the optimization process for the markers’ position for M =

{µ+
1 ,µ

+
2 ,µ

−
3 }. In this example, we used two positives and one negative marker.

Green and red crosses represent µ+
1 , µ+

2 , and µ−
3 , respectively, green and red

dots represent the similar and dissimilar input pairs. The rightmost green ar-
row shows a representation of the markers’ position optimization step by using
Cross-Entropy divergence and some regularization functions. Observe that the
number of positive and negative markers are hyperparameters. 27

3.3 Toy example for optimal latent space. Same color indicates same label. S-space
requires that each group has only elements of same class, but note that, this
space can have different groupings with elements of the same class. 29

5.1 Sonar Dataset: Latent Space and Encoder space Analysis. 40
5.2 MNIST Dataset: Latent Space and Encoder space Analysis. 40
5.3 Comparison between SMELL and other proposals. Red triangles, blue dots

and gray squares indicate when the SMELL is superior, inferior and has the
same mean accuracy result, respectively, when compared to other methods. . . 43

5.4 MNIST evaluation for different dimension of latent space. The AUC is reported
in parentheses. 44

5.5 Simultaneous training of µ+ (green) and µ− (red) markers’s position and data
representation for some training epochs. 44

5.6 Sonar Datasets: Latent Space and S-space Analysis for SMELL. 45
5.7 MNIST Datasets: Latent Space and S-space Analysis for SMELL. 46

6.1 Leishmania amastigote (magnification: 400×). Source: [27] 49
6.2 Step-by-step of the pre-processing used in this chapter. 50
6.3 The left side represents the Encoder, and the right side represents the opti-

mization process for the markers’ position for M = {µ1, µ2, µ3}. In this
example, we used two positives and one negative marker. The rightmost green
arrow shows a representation of the markers’ position optimization step by
using Cross-Entropy divergence and Contrastive regularization functions. . . 53

6.4 Latent Space and S-space Analysis for Our Dataset in Experiment I. 58
6.5 Loss analysis for our propose. 59
6.6 Quantitative evaluation of our proposal given a reference image with the par-

asite that causes Leishmaniasis. 60
6.7 Quantitative evaluation of our proposal given a reference image without the

parasite that causes Leishmaniasis. 60

7.1 The left side represents the encoder function for a image pair in original feature
space. At the end of this propose, we decide if image has leishmaniasis. 68

7.2 Schemer for malware dataset creation . 69
7.3 Two analysis of the similarity of Malware-SMELL a random choice. 72
7.4 The similarity space for our proposal. We randomly selected 400 pairs of data

(200 similar and 200 dissimilar). 73
7.5 Latent feature space for malware dataset (n=2) 75

10

List of Tables

3.1 Notation used in this article. 22

4.1 Datasets used in our experimets. 34

5.1 Performance comparison of ablation study when using KNN classification for
27 different datasets. 39

5.2 Performance comparison of some distance metrics approaches and SMELL
when using KNN classification for 27 different datasets. 41

6.1 Table showing the results for the analyzed dataset. The best values are rep-
resented in bold and * represents the values without a statistically significant
difference. 55

6.2 Table showing the results for the analyzed dataset. We represent the best
values in bold and * represents the values without a statistically significant
difference. 57

7.1 Main articles that used a visual representation of malware to infer the binary
condition. In addition, we verify which articles use an approach to imbalanced
dataset (I. D.) and Zero-shot learning approaches (Z. S. L.) 65

7.2 Description of the malware classes and families present in the Mailing dataset 70
7.3 Table showing the results for the analyzed dataset. The best values are rep-

resented in bold and * represents the values without a statistically significant
difference. 74

7.4 Description of the malware classes and families present in the Mailing dataset 76

Contents

Acknowledgments 5

Resumo 7

Abstract 8

List of Figures 9

List of Tables 11

1 Introduction 15
1.1 Motivation . 15
1.2 Objectives . 16
1.3 Contributions . 17
1.4 Outline . 18

2 Related Work 19

3 Methodology 22
3.1 Background and Notation . 22
3.2 Supervised Distance Metric learning Encoder with Similarity Space (SMELL) 24

3.2.1 Metric learning algorithm . 24
3.2.2 The S-space . 25
3.2.3 Loss function and regularization . 26
3.2.4 Optimization . 28
3.2.5 Theoretical proprieties . 29

4 Experimental setup 33
4.1 Dataset . 33

4.1.1 General purpose datasets . 33
4.1.2 The MNIST dataset . 35

4.2 Network evaluation . 35
4.3 Parameters initialization and network architecture 36

5 Results and Discussion 38
5.1 Ablation Study . 38

5.2 Performance Evaluation . 40
5.3 Behavior Analysis . 43
5.4 Latent space and S-space analysis . 45

6 Case of Study: Diagnostic Aid Software for Leishmaniosis Detection 48
6.1 Introduction . 48
6.2 Methodology . 50

6.2.1 Data Acquisition . 50
6.2.2 Data Preprocessing: Region of Interest Identification 50
6.2.3 Experiments . 51

6.3 Our Proposal . 52
6.3.1 L-SMELL . 52
6.3.2 Loss Function . 52
6.3.3 Revisiting Contrastive loss . 53
6.3.4 Parameter Setting . 54

6.4 Results and Discussion . 55
6.4.1 Numerical results . 55
6.4.2 Latent Space and Similarity space 57
6.4.3 Contrastive loss effect . 58
6.4.4 Metric learning visualization . 59

6.5 Conclusion . 61

7 Case of Study: Malware Classification 62
7.1 Introduction . 62
7.2 Related Work . 64
7.3 Malware-SMELL . 67

7.3.1 Loss Function . 68
7.4 Methodology . 69

7.4.1 Dataset . 69
7.4.2 Network evaluation . 69
7.4.3 Parameters initialization and network architecture 71

7.5 Results and Discussion . 72
7.5.1 Metric Learning . 72
7.5.2 Comparative results . 73
7.5.3 Zero short learning results . 75

7.6 Conclusions and Futures Work . 76

8 Conclusion 77
8.1 Conclusions and outlook . 77
8.2 Publication . 78

13

8.2.1 Periodical papers . 79
8.2.2 Conference papers . 79
8.2.3 UnderSubmission . 79
8.2.4 Short course . 79
8.2.5 Open Work . 80

Bibliography 81

14

15

Chapter 1

Introduction

1.1 Motivation

A distance metric is a function that provides a way to measure how far apart two
elements of a set are from each other. Among various works involving machine learning
applications, the most commonly used metric is the Euclidean distance [21]. Methods that
use Euclidean distance usually consider that all variables’ covariance is zero, i.e., there is
no correlation among them, but this assumption is hardly found in the real world [110].
Euclidean distance and cosine similarity are popular for many applications. For instance,
the cosine similarity is vastly used for text mining [51]. Even showing its effectiveness
in several applications, the cosine similarity assumes equal weight for every dimension,
limiting its application [51].

Euclidean and cosine distance are known as data-independent techniques, once
they are defined without any prior knowledge about the data. Learning distances, a.k.a
Metric Learning (MeL), from data is a common attempt to improve machine learning
approaches [23, 31, 40, 41, 52, 103]. In modern machine learning research, MeL is a
fundamental technique for several different applications such as sorting [57], classification
(e.g., k-nearest neighbors), clustering [109], and ranking [95].

MeL aims to estimate distance function parameters based on a given training
set. Thus, a distance d can be defined as dM (x, y) =

√
(x− y)TM(x− y), in which

M is a positive semi-definite matrix. In the case M is the covariance matrix, dM is the
Mahalanobis distance [21]. Classic methods proposed for metric learning use dM to search
for the best linear space that captures the semantics of the data (e.g., in a classification
setting, we search for M that minimizes the miss-classification loss). However, according
to Cao et al. [13], the linear transformation M (covariance matrix) has some limitations,
as it cannot model high-order correlations between the original data dimensions.

Using MeL, we can define metrics that consider the covariance of attributes. Addi-
tionally, MeL approaches do not necessarily assume linear relationships, although classical
MeL techniques like the Mahalanobis distance [21] assume a linear space. Moreover, MeL

1. Introduction 16

ENC

ϴ

fϴ(X1)

fϴ(X2)

X1

X2

Original
feature space

z1

z2

Latent feature
space

Similarity

(a) Canonical scheme of DMeL.

ENC

ϴ

fϴ(X1)

fϴ(X2)

X1

X2

Original feature
space

z1

z2

Latent feature
space

Similarity

S-space

(b) Our scheme of DMeL with S-space.

Figure 1.1. Comparison between the canonical model of DMeL and the model used in this
chapter.

does not assume equal weights for every attribute [51]. The assumption that MeL can
be treated as a convex optimization problem can also be relaxed using the appropriate
model.

To tackle the issues mentioned above, deep learning techniques are currently being
used for MeL [39, 56, 67, 82, 69, 120]. Since these proposals seek to learn a non-linear fea-
ture representation, they usually overperform standard techniques found in the literature.
Neural Networks (NNs) are natural candidates and are typically used to learn similarity
metrics [15, 33].

1.2 Objectives

The representation of compressed data found by a Neural Network (NN) is com-
monly named as latent feature space and the data in this space as latent data. Our
proposal hypothesizes that the latent feature space captured by NNs can be improved
with an auxiliary space. For instance, common NNs-based Deep Metric Learning (DMeL)
approaches extract a latent space that encodes similar and dissimilar points, but not the
separability between them. However, this single representation is limited, as it does not
capture pairwise information.

Unlike the literature, our approach employs NNs, fed by labeled original pairwise
data, to find a latent pairwise space with markers. These approaches are shown in Fig-
ures 1.1a and 1.1b as we now detail. In our method, data come in pairs of vectors (xi,xj)

which are deemed as similar or dissimilar. The first part of our architecture is an au-
toencoder. After encoding the pair of input objects, our major novelty is on converting
data pairs to a new Similarity-space (called S-space). A data point xi is mapped into
zi = fΘ(xi) in the latent space with a enconfoder function fΘ, where Θ are model param-
eters. The S-Space, for a pair of points i and j is composed of two novel ideas. Firstly,
we represent points as a similarity vector between pairs, i.e., sij = |zi−zj|. Secondly, and

1. Introduction 17

more importantly, we define markers that act as reference points to similar and dissimilar
regions. Markers’ position are learned in the optimization process.

Our loss function is comprised of three parts. Firstly, an autoencoder loss function
takes care of data encoding and decoding. The second loss function captures the sum
of distances between similarity vectors (sij) and markers (µm), in this proposal, we used
a Cauchy distribution (discrete version) to estimate this distance and we apply a cross-
entropy loss function between the input labels and the model output. The last part
of our loss function is called a repulsive regularizer. It is inversely proportional to the
distance of the markers of the same class. This loss function ensures that markers are
different (the loss increases as markers become similar), ensuring some diversity level on
the marker set. It attempts that markers capture complex similarity regions such as
disjoint similarity/dissimilarity regions.

We named our approach as Supervised Distance Metric learning Encoder with Sim-
ilarity Space (SMELL). Our method is herein described as supervised learning, but it can
be appropriately extended to unsupervised and semi-supervised learning. Through a wide
range of experiments on 28 datasets, we show that SMELL provides gains over the state-
of-the-art techniques in all of them. To explain its accuracy, we show evidence supporting
the following two hypotheses.

Hypothesis 1. (H1) Using SMELL, the markers group data points considered similar
(in our context, which have the same labels) and dissimilar (different labels) into disjoint
regions in S-space.

Hypothesis 2. (H2) SMELL increases the input pairs’ separability in the latent feature
space for different types of pairs (similar/dissimilar).

1.3 Contributions

Overall, the main contributions of our dissertation are:

(i) a new data representation space called Similarity space (S-space) that separates
regions where similar/dissimilar objects lie together and help the convergence of the
model. We also investigate interpretability and data visualization in this space. S-
space can capture complex regions that can model similar points in disjoint regions;

(ii) a new distance metric learning method that simultaneously learns a latent represen-
tation of the data and the markers’ position in the S-space;

1. Introduction 18

(iii) we found evidence that the number of markers is a virtual hyperparameter of the
model and does not need to be tuned.

(iv) a new regularization function to avoid model overfitting called repulsive regularizer.

1.4 Outline

The remainder of this dissertation is organized as follows: Chapter 2 presents the
related works to distance metric learning; Chapter 3 describes our proposal and some
notations and a background review for the good understanding our proposal; Chapter 4
describes the experimental setup used to analyze the data; Chapter 5 presents the main
results and discussions; Chapter 6 and Chapter 7 describes twice case study to our propose
and Chapter 8 concludes this dissertation.

19

Chapter 2

Related Work

In the distance metric learning task, prior research usually assumes that the datasets are
represented by an incomplete set of features (i.e., we can never collect all the features of
an object). This subset of features may not thoroughly inform the semantics of the data
space. Thus, the objective is to learn a similarity matrix that encodes how these features
should be combined to compute distances best.

One of the first successful cases to solve this problem was learning the linear matrix
(Mahalanobis) metric to find a new representation in the feature space [29, 44, 113]. This
paradigm requires the decomposition of eigenvalues, an operation that is cubic in the
dataset dimensionality (i.e., number of features). This issue severely impacts the training
time. Also, approaches like this one are limited to similarity matrices, which encode linear
combinations of features.

Other approaches proposed techniques based on Information Theory to tackle the
distance metric learning problem [20, 58, 66]. These works start from a reference distri-
bution to train distance functions based on divergences (e.g., Kullback-Leibler or Jeffrey)
to obtain reference probability distributions of the data. Through this reference distribu-
tion, the authors estimate the similarity. These methods usually suffer from convergence
issues [20] when optimizing.

In kernel-based methods, the input data is usually transformed into a higher di-
mensional space. The algorithm learns object similarities using the new space obtained
from the kernel function [58, 64, 89, 100]. These methods also suffer from a cubic com-
putation cost (on the number of features) or suffer from convergence issues, limiting its
applicability due to training time.

In the context of Deep Learning methods, a typical family of Deep Neural Network
models that learns distance metrics is the Siamese Neural Networks (SNNs). One of the
first works using this approach can be seen in [11], where the authors propose a model
composed of two neural networks that share their weights. This architecture was initially
proposed for the signature verification problem.

Neural Networks (NNs) seek to find nonlinear similarities between comparable
data examples by extracting a feature vector representing the difference between the
data examples. There are several work in the context of NNs developed for different

2. Related Work 20

applications [14, 16, 46, 81, 108, 116]. They are easily scalable (do not suffer from the
cubic cost as before), as they do not explore eigenvalues decomposition. NNs are typically
optimized with functions that consider pairs of inputs, called pairwise loss function, and
these proposals tend to find a new representation of the data. Therefore, a similarity
function is defined in this new representation (for example, Euclidean).

More recent work present deep metric learning with contrastive loss [15, 33] and
triplet loss [80]. Even showing promising results, these proposals present issues, such
as slow convergence and poor local optima, optimizing the model is a challenging task.
The embedding obtained by contrastive loss is highly dependent on the quality of the
representation of the training.

More recent work present deep metric learning with contrastive loss [15, 33] and
triplet loss [80]. Even showing promising results, these proposals present issues, such
as slow convergence and poor local optima, optimizing the model is a challenging task.
The embedding obtained by contrastive loss is highly dependent on the quality of the
representation of the training data. The training set must contain real-valued precision
for pairwise samples. This consideration is typically hard to satisfy, which is usually not
available in practice [99]. For the triplet model, the loss function defines an inequality
between positive and negative examples for a given anchor example. These methods suf-
fer from what is called the hard negative problem [65, 107]. Here, some specific negative
examples deteriorate the quality of the model, making the training unstable [18]. Hard
negative data mining is a proposal to work around this problem. However, the computa-
tional cost of searching for these examples becomes high. In addition, it is unclear what
defines “good” hard triplets [83].

Recent work, including N-pair loss [86], Lifted Structure [68], and the Multi-
Similarity Loss [101] propose strategies to capture relationships within a mini-batch se-
lection. Typically, these strategies consider a weight function that associates the pairs of
elements in the loss calculation. Nevertheless, these work are based on distance measure-
ments between pairs of similar and dissimilar objects in the space found by the neural
network.

The methods mentioned in this section indicate the feasibility of learning a similar-
ity function from the input data. Some of these methods inspire the present work [11, 54];
for instance, we use Neural Networks to extract the data representation and the t-student
kernel distribution to create a similarity metric.

However, we devised a novel deep metric learning method differently from the
literature using a new representation space (S-space) obtained through autoencoders.
As defined herein, the S-space helps the convergence of the proposal and, thanks to
the possibility of having multiple markers to represent similar objects, it models even
complex spaces such as noncontinuous spaces where similar objects lie in disjoints regions.
Therefore, we propose a new similarity space that helps the learning of autoencoders.

2. Related Work 21

Unlike pairwise loss, our proposal does not require any specific sample selection strategy.

22

Chapter 3

Methodology

3.1 Background and Notation

In SMELL, we map pairwise input data into a latent space and a Similarity space.
In this section, we provide some technical background about data representation with au-
toencoders and a mathematical notation essential to the proposed method understanding.

Throughout the dissertation, we apply the following notation. We denote vectors
by boldface lowercase letters, such as x, z and µ; all scalars by lowercase letters, such
as m and n; sets of parameters by greek uppercase letters, such as Θ and Σ; and sets by
calligraphic uppercase letters, such as X and Z. The zero-mean normal distribution will
be denoted by N (µ = 0, σ). Table 3.1 summarizes this notation.

Let the set X = {xi}vi=1, with xi ∈ Rm, be v data examples defined in an m-

Notation Description
X input data examples set
xi m-dimensional single element in X
Y Label set for set X
yi single element in Y
Z Latent Feature Space from X
zi n-dimensional single element in Z
fΘ Encoder function
Θ set of weights for encoder
fΘ′ Decoder function
Θ′ set of weights for decoder
ℓ label function for a element in set X
ℓ′ label function for a element in set Z
S The similarity space from Z
sij n-dimensional single element in S
M The markers set, subset of S
µi n-dimensional single element in M
fS Function that maps a pair in X to an element in S
ψ The similarity function
Σ Set of parameters of ψ (Θ, Θ′ and M)

Table 3.1. Notation used in this article.

3. Methodology 23

dimensional feature space. For each xi ∈ X there is an associated label yi ∈ Y = {yi}vi=1,
where yi ∈ {1, ..., b}. In this way, the pair (xi, yi) indicates to which of b classes an input
xi belongs to. In a supervised Machine Learning classification problem, we seek to find a
function ℓ : X → Y that maps an unlabeled example xi into their respective label yi.

To develop the proposed work, we introduce here some important definitions:

Definition 3.1.1. (The latent feature space) Consider the set X as the original feature
space and the representation function fΘ : X −→ Z, in which fΘ(xi) = zi =⇒ ℓ(xi) =

ℓ′(zi) = yi and the function ℓ′ : Z −→ Y , which maps the latent data into their respective
labels. We can define the representation space Z called latent feature space from X as
Z = {zi}vi=1, with zi ∈ Rn.

An autoencoder is a Neural Network trained to attempt to copy a data input to its
output. It can be seen as consisting of two parts: an encoder and a decoder that produces
an input-based reconstruction [32]. An encoder is a representation learning algorithm
that seeks to find a representation function fΘ : X −→ Z for a set of weights Θ that maps
the set X to the latent feature space Z.

Similarly, the decoder function can be defined as the inverse encoder function
f−1
Θ′ : Z −→ X where Θ′ is a set of weights for the decoder. Autoencoders are trained to

minimize reconstruction errors (typically, Mean Squared Errors - MSE), and its training
is performed through Backpropagation of the error, just like a regular Feedforward Neural
Network [36].

A neural network model [11, 102] receives a pair of input examples (xi,xj) ∈ X×X
and transforms each of them to a latent data (zi, zj) ∈ Z × Z through the encoder fΘ.

In the context of supervised learning, for a data pairwise (xi,xj) ∈ X ×X , we say
they are similar iff ℓ(xi) = ℓ(xj). Analogously, they are dissimilar iff ℓ(xi) ̸= ℓ(xj).

Definition 3.1.2. (The similarity space) The representation space called Similarity space
(or S-space) is a space built from the set X × X . So, be the function fS : X × X → S,
the similarity space is defined as S = {sij}, with sij ∈ S ⊂ Rn, where if ℓ(xi) = ℓ(xj),
then sij represents the similarity vector and if ℓ(xi) ̸= ℓ(xj), then sij represents the
dissimilarity vector.

In this paper, we define the map function fS : X × X → S for a pairwise (xi,xj)

by the following element-wise absolute value operation:

sij = fS(xi,xj)

= |fΘ(xi)− fΘ(xj)|

= |zi − zj|

= (|z1i − z1j |, |z2i − z2j |, . . . , |zni − znj |)

(3.1)

3. Methodology 24

it is worth noting that since sij is obtained by an element-wise process, it has the same
dimension as zi and zj, where zni is the n-th feature of the i-th data example in a latent
space representation Z (see Definition 3.1.1).

Definition 3.1.3. (The Markers set) In S-space, we defined the markers set M ⊂ Rn

(same space as S) to improve similarity calculations. We define the set M+ representing
the set of markers responsible for quantifying the similarity between the input pairs.
Likewise, markers in set M− quantify the dissimilarity. The Markers set is defined as

M = M+ ∪M− = {µ+
i }ki=1 ∪ {µ−

j }wj=k+1. (3.2)

Therefore, in this dissertation, we seek to calculate the similarity function
ψΣ : X × X −→ [0, 1]. The parameters of ψ are defined by the set Σ = {Θ,Θ′,M},
respectively the weights of encoder, decoder and the Markers set in S-space. SMELL re-
lies in simultaneously learning all elements of Σ. More details about the proposed method
are described in Section 3.2.

3.2 Supervised Distance Metric learning Encoder

with Similarity Space (SMELL)

Our proposal, namely SMELL, simultaneously optimizes a latent data representa-
tion (using a DMeL model) and a similarity function that indicates the similarity of two
objects in the learned data S-space. This kind of technique can be useful for a wide variety
of applications, such as to feed a predictor (e.g., a classifier) with a new metric learned
from the data. This section details our proposal. Figure 3.1 shows a simple schematic for
our proposal.

3.2.1 Metric learning algorithm

There are several ways to find a similarity metric ψΣ [98, 4]. In this chapter,
we propose ψΣ being estimated from the latent representation obtained by the encoder
fΘ : X −→ Z.

3. Methodology 25

Underlying
distribution

Metric learning
algorithm

Data
sample

Metric-based
algorithmPrediction

Learned
metric

Learned
predictor

Data representation
algorithm

New data
representation

simultaneously

SMELL

Figure 3.1. Simple black box schematic for our proposal.

3.2.2 The S-space

As can be seen in in Definition 3.1.2, we define a new representation space namely
S-space S, which quantifies the similarity between pairs of objects. In Equation 3.1, we
propose a map function fS : X×X → S for a data pair (xi,xj) as an element-wise absolute
value operation representing the pairwise difference between the pair of data. Note, in
Equation 3.1, that sij ∈ Rn (it has the same dimension then latent representation space).

Regarding the pairwise labeling, we have two options for a given pair (xi,xj):
similar or dissimilar. Thus, we define the Markers set M so that each marker of M+ or
M− represents one of these possibilities (see Definition 3.1.3). The closer the vector sij is
to a marker µ+ ∈ M+ or µ− ∈ M−, the greater the probability that the elements of the
pair (xi, xj) are similar or dissimilar to each other, respectively. Then, we have, in this
case, k similarity markers and w − k dissimilarity markers for M, and M+ ∩M− = ∅.

Inspired by [49, 54, 112] we use a Cauchy distribution (discrete version) as base
for a kernel to measure the similarity between sij and a specific marker µm ∈ M, as

qmij =
(1 + ||sij − µm||22)

−1∑
µm′∈M (1 + ||sij − µm′||22)

−1 , (3.3)

where qmij ∈ R is the similarity/dissimilarity of sij in relation to the markers µm (it
is normalized by the sum of all markers in M). So, we calculate q+ij =

∑
p q

p
ij for all

µp ∈ M+ and q−ij =
∑

n q
n
ij for all µn ∈ M−. In other words, q+ij is the probability of

xi have the same label as xj and q−ij is the probability of xi and xj have different labels.
Since M+ and M− are two disjoint sets, we have q+ij + q−ij = 1.

The Cauchy distribution is a probability distribution that belongs to the student-t
distributions’ family (with 1 degree of freedom). Among the student-t distributions, the

3. Methodology 26

Cauchy distribution has the biggest uncertainty in the tails, i.e., it presents a the most
heavier tail. Also, this distribution does not have finite moments of order greater than
or equal to one; only fractional absolute moments exist [42]. It is a few stable distribu-
tions (a linear combination of two independent random variables with this distribution
has the same distribution, up to location and scale parameters). It has a probability
density function that can express analytically (e.g., normal distribution and the Lévy
distribution).

It is worth noting that we use a different version of the Deep Metric Learning
canonical model. Thus, we use the representation of the difference vector sij defined in
S-pace. In Section 5.4 we show more details about this choice.

3.2.3 Loss function and regularization

SMELL relies on simultaneously learning a latent representation of the data (with
parameters Θ and Θ′ for the encoder and decoder functions, respectively) and the posi-
tioning of the markers of the set M in S-space. Therefore, we seek to find the parameters
Σ = {Θ,Θ′,M} of the function ψΣ(xi,xj) is defined as an optimization problem. Let
the cost function be J({X ×X}), we estimate the optimal parameters set Σ∗ with Cross-
entropy loss Hc. We define regularization functions Rr and Rd to avoid overfitting in the
training process. In training, the cross-entropy is applied between the output of SMELL
and object’s classes.

Similarly to [24], Rr regards to the autoencoder’s reconstruction error. In our
proposal, for all training pairs (xi, xj) and for all reconstructed pairs (x′

i,x
′
j) we have

Rr = rrN
−1
∑

i

∑
j

(
||xi − x′

i||22 + ||xj − x′
j||22
)
, where rr is a constant to calibrate the

loss reconstruction function and N is the number of pairs in train the dataset.
When we use more than one maker as reference points to the similarity/ dissimi-

larity regions, markers of the same set M+ (or M−) tend to group altogether, hidering
the efficiency of our method. In this context, we propose a new regularization term Rd

we called Repulsive Regularizer, to avoid this undesirable behavior. It is defined as

R+
d =

1

c+

 ∑
µi∈M+

∑
µj∈M+

1

||µi − µj||22 + ϵ

 , (3.4)

where µi ̸= µj and c+ is a constant value defined as c+ =
(
k
2

)
, in which k is the number of

elements in M+ (see Definition 3.1.3). Rd is inversely proportional to the square distance
of the markers. To avoid a possible division by 0, we added the corrective term ϵ to the

3. Methodology 27

ENC

z1

z2

X1

X2

Cross-Entropy
HC	(U||Q)

DEC

ϴ'

X'1

X'2

MSE

LOSS
CALCULATION

Distance

Fo
rc
e

Regularize
Function

Rd

Rr

Similarity	value
(q12

+)

Latent	space	representation

Positioning	of	markers

P
ro
p
a
g
a
ti
o
n

E
rr
o

Simultaneous
Training

SMELL

S12

Pa
irw

is
e

X1

X2

Original feature
space S-space

ϴ

Figure 3.2. The left side represents the Encoder with reconstruction, and the right side rep-
resents the optimization process for the markers’ position for M = {µ+

1 , µ
+
2 , µ

−
3 }. In this

example, we used two positives and one negative marker. Green and red crosses represent µ+
1 ,

µ+
2 , and µ−

3 , respectively, green and red dots represent the similar and dissimilar input pairs.
The rightmost green arrow shows a representation of the markers’ position optimization step by
using Cross-Entropy divergence and some regularization functions. Observe that the number of
positive and negative markers are hyperparameters.

denominator. We conducted a manual investigation with a grid search, and we adopted
for our experiments ϵ = 10−3. In the same way, we define R−

d , and with that, we have

Rd = rd(R
+
d +R−

d), (3.5)

with a constant value rd for calibration. Note that R+
d = 0 if we have a single positive

marker k = 1. In the same way, if we have a single negative marker, R−
d = 0 if w− k = 1.

Let Q = {qij}, the SMELL output, be the set that contains the pairs qij = (q+ij , q
−
ij)

corresponding to the probability of the elements of a pairwise input (xi,xj) be similar
or dissimilar, respectively. The optimal hyperparameters set can be defined as Σ∗ =

argminΣ J({X × X}), where

J({X × X}) = Hc(U||Q)rHC +Rr +Rd, (3.6)

where rHC is a constant for calibration and uij ∈ U is defined as uij = (1, 0) if i has same
label as j and uij = (0, 1), otherwise.

SMELL learns all parameters in the set Σ∗ simultaneously. The representation
found in S-space aims at grouping the elements sij around their respective markers, as
defined in Loss Function J (Equation 3.6). The impact of the attractive behavior is
controlled by the constant rHC , i.e., the higher the rHC , the greater is the tendency to
group the points sij closer to the respective markers. Also, note that the regularization
functions operate in different spaces, i.e. Rr operate in latent feature space, Rd operates
in S-space and Hc operates in latent feature space and S-space simultaneously.

3. Methodology 28

Figure 3.2 depicts the more detailed schematic of our proposal using a toy example
(two positive markers and one negative). Observe that the number of positive and negative
markers is a hyperparameter.

3.2.4 Optimization

To find the Σ∗ set, we use mini-batch stochastic gradient decent (SGD) and back-
propagation. First, we note that the decoder weights Θ′ are only affected by the Rr

component of the loss function J . So, we can use ∂Rr/∂Θ
′ to update Θ′. Then, given a

mini-batch with g samples and learning rate λ, Θ′ is updated by

Θ′ = Θ′ − λ

g

g∑
i=1

∂Rr

∂Θ′ . (3.7)

To optimize the markers, consider that

µt = µt −
λ

g

g∑
i=1

∂J

∂µt

= µt −
λ

g

g∑
i=1

(
∂LHC

∂µt

+
∂Rd

∂µt

)
, (3.8)

where
∂LHC

∂µt

can be calculated for a given µt and sij as

∂LHC

∂µt

= 2
(qtij − uij)(sij − µt)

1 + ||sij − µt||22
,

and
∂Rd

∂µt

= −2
∑
µs∈M

[
sign(µs)

||µt − µs||2
(||µt − µs||22 + ϵ)2

]
,

where sign(µs) = 1 if µs ̸= µt and µs has same semantic (similarity or dissimilarity) than
µt, and sign(µs) = 0, otherwise.

For training SMELL, we randomly selected the mini-batch withm pairs of elements
(half are similar, and the other half are dissimilar). Also, our proposal does not have any
specific batch selection criteria.

3. Methodology 29

m
m

m

Group
with k-

element

Figure 3.3. Toy example for optimal latent space. Same color indicates same label. S-space
requires that each group has only elements of same class, but note that, this space can have
different groupings with elements of the same class.

3.2.5 Theoretical proprieties

Due to the construction of the S-space, we are able to obtain some theoretical
proprieties.

Definition 3.2.1. (Optimal Latent Space) Let xi,xj ∈ X and a latent representation
function fΘ : X → Z. The transformation fΘ generates an optimal latent space Z when
the expected value E[||sij||2] = 0 =⇒ ℓ(xi) = ℓ(xj).

SMELL is able to group points of same class into clusters. It is worth noting that
we defined the optimal space as a conditional instead of a biconditional statement. From
this definition, we can observe that SMELL may create several different clusters of the
same class, as depicted in Figure 3.3.

Proposition 3.2.1. In S-space, given k positive markers in the set M+ and n−k negative
markers in M−, the latent space found by SMELL, i.e., the estimation of the parameters
Θ of fΘ, generates an optimal latent space if ∃ µi ∈ M+ so that ||µi||22 < ||µj||22 for any
µj ∈ M−.

Proof. Given xi and xj, SMELL measures the similarity between the entries through the
t-student kernel given by q+ij , so that for Σ∗ it follows that q+ij = 1 ⇐⇒ ℓ(xi) = ℓ(xj).

Since fΘ generates an optimal space, we then have E[||sij||2] = 0 =⇒ ℓ(xi) = ℓ(xj),
so, it follows that for a optimal latent space, we must have

q+ij =

∑
k∈M+(1 + ||µk||22)−1∑

k∈M+(1 + ||µk||22)−1 +
∑

s∈M−(1 + ||µs||22)−1

=
1

1 +
∑

s∈M− (1+||µs||22)−1∑
k∈M+ (1+||µk||22)−1

.

3. Methodology 30

Hence, if we want ℓ(xi) = ℓ(xj), we should ideally have q+ij tending to 1. It follows
that

∑
s∈M−(1+ ||µs||22)−1 <

∑
k∈M+(1+ ||µk||22)−1. Therefore, let µ+ be the element with

the smallest module in the set M+; we then have
∑

k∈M+(1+ ||µk||22)−1 < k(1+ ||µ+||22)−1.
Analogously, we can consider µ− as the vector with the largest module in the set M−,
so,
∑

k∈M−(1 + ||µk||22)−1 > (n− k)(1 + ||µ−||22)−1.
We can then conclude that k(1+ ||µ+||22)−1 > (n− k)(1+ ||µ−||22)−1, and therefore,

(n − k)(1 + ||µ+||22) < k(1 + ||µ−||22). Furthermore, adding the restriction that SMELL
has a similar count of positive and negative markers (section 4.3), we have 1 + ||µ+||22 <
1 + ||µ−||22.

From Proposition 3.2.1, if SMELL finds an optimal latent space, at least one posi-
tive marker has a smaller norm than the negative marker. In addition, in practice, as we
can see in the Section 5, at least one positive marker is smaller than all negatives markers
(the positive marker is located near the origin). We observed that the model builds a
latent space of groups with elements of the same class, similar to the Figure 3.3.

Proposition 3.2.2. For S-spaces built with one marker in each group, µ+ ∈ M+ and
µ− ∈ M−, D− and D+ being the Euclidean distance of an object to the negative and
positive marker, respectively, the misclassification risk function of a positive marker is

R+ =
(D−)2 + 1√
(D−)2 + 2

[(√
(D−)2 + 2

)
log

 1√
(D+)2

(D−)2+2
+ 1

−

−
((D−)2 + 1)

[
tan−1

(
(D+)√
(D−)2+2

)]2
√
(D−)2 + 2

+

+ (D+)tan−1

(
(D+)2√
(D−)2 + 2

)]
.

.

Proof. Firstly, we consider the risk of the similarity in a random negative pair to be more
than the similarity in a random positive pair [91] as

R =

∫ ∞

−∞
p−(x)

[∫ y

−∞
p+(y)dy

]
dx.

Consider M+ = {µ+} and M− = {µ−}, i.e., M+ and M− have cardinality 1, and
D+(xi, xj) and D−(xi, xj) are the euclidean distances from the point sij to the positive
and negative markers, respectively. The risk of misclassification is

3. Methodology 31

R+ =

∫ D+(xi,xj)

0

[
p−(D+(xi, xj))

(∫ y=D+(xi,xj)

0

p+(y)d(y)

)
d(D+(xi, xj))

]
.

Therefore, due to the construction of S-space, we consider that the likelihood of
similarity/dissimilarity between the sij representation of two samples is calculated as the
relative distance to a marker. Due to this construction, we have

R+ =

∫ D+(xi,xj)

0

q−

[∫ y=D+(xi,xj)

0

q+d(y)

]
d(D+(xi, xj)).

Calculating each term separately, we have that for the markers in the sets M+

and M−, the probability of a having a similar objects is

q+ =
(1 +D+(xi, xj)

2)−1

(1 +D+(xi, xj)2)−1 + (1 +D−(xi, xj)2)−1

=
1 +D−(xi, xj)

2

2 +D+(xi, xj)2 +D−(xi, xj)2
.

Analogously, we can find that q− = 1− q+. To simplify the notation, consider that
D+ equals D+(xi, xj) and D− equals D−(xi, xj). We have for R+

R+ =

∫ D+

0

q−

[∫ y=D+

0

q+d(y)

]
d(D+)

=

∫ D+

0

(1− q+)

[∫ y=D+

0

q+d(y)

]
d(D+).

Therefore, the risk of misclassification for the positive marker can be reduced to
R+ =

∫ D+

0
(1− q+)Φ(D+)dD+, where Φ is the cumulative density function (CDF) for q+.

Calculating the accumulated histogram

Φ(x) =

∫ x

0

1 + (D−)2

2 + (x)2 + (D−)2
dx,

we get

Φ(x) =

((D−)2 + 1)tan−1

(
x√

(D−)2+2

)
√
(D−)2 + 2

.

Therefore, by solving the integral
∫ D+

0
(1 − q+)Φ(D+)dD+, we have the exact an-

alytical value of the misclassification risk function for the positive marker. With that, it

3. Methodology 32

follows that

R+ =
(D−)2 + 1√
(D−)2 + 2

[(√
(D−)2 + 2

)
log

 1√
(D+)2

(D−)2+2
+ 1

−

−
((D−)2 + 1)

[
tan−1

(
(D+)√
(D−)2+2

)]2
√
(D−)2 + 2

+

+ (D+)tan−1

(
(D+)2√
(D−)2 + 2

)]
.

Due to the S-space formulation, we obtain the probability of a pair being sim-
ilar analytically, given the distance of that pair to the positive marker (typically this
probability is estimated, as we can see in [91]).

33

Chapter 4

Experimental setup

We conducted an extensive set of experiments in several scenarios with different setups to
understand SMELL behavior and effectiveness better. Section 4.1 describes the datasets
we have employed. Section 4.2 details the classification protocol designed to evaluate our
method and the baselines. Section 4.3 discusses the initialization and the architecture of
the proposed approach.

4.1 Dataset

4.1.1 General purpose datasets

KEEL [90] is an open source1 Java software tool that can be used for a large num-
ber of different knowledge data discovery tasks. We used 28 datasets provided by KEEL
to evaluate our proposal. All datasets are numeric and have no elements missing. Fur-
thermore, all datasets have been min-max normalized to the interval [0, 1], a precondition
to the experiments’ execution.

There is a wide variety of data in KEEL. The 28 datasets used in our experi-
ments are divided into Medical data (Bupa, Cleveland, Appendicitis, Newthyroid, Pima,
Wdbc, Wisconsin, and Thyroid); natural Language Processing data (Vowel, Letter, and
Phoneme); experimental psychological data (Balance); feature-based image data (Magic,
and Satimage); hierarchical decision-making data (Monk-2, Ring, and Twonorm); nature
data (Iris and Banana); disaster prediction data (Titanic); Weather data (Ionosphere);
chemical data (Glass, Wine, Winequality-red); and Object/shape recognition (Sonar,
Movement_libras, and Vehicle).

These 28 datasets have substantial diversity in terms of the number of examples,
1http://keel.es/datasets.php

http://keel.es/datasets.php

4. Experimental setup 34

Dataset #Examples #Features #Classes
Appendicitis 106 7 2

Balance 625 4 3
Banana (10%) 530 2 2

Bupa 345 6 2
Cleveland 297 13 5

Glass 214 9 7
Ionosphere 351 33 2

Iris 150 4 3
Letter (10%) 2003 16 26
Magic (10%) 1902 10 2

Monk-2 432 6 2
Movement-libras 360 90 15

Newthyroid 215 5 3
Phoneme (10%) 541 5 2

Pima 768 8 2
Ring (10%) 740 20 2

Satimage (10%) 643 36 7
Segment (10%) 231 19 7

Sonar 208 60 2
Thyroid (10%) 720 21 3
Titanic (10%) 221 3 2

Twonorm (10%) 683 20 2
Vehicle 846 18 4
Vowel 990 13 11
Wdbc 569 30 2
Wine 176 13 3

Winequal-red (10%) 160 11 11
Wisconsin 683 9 2

Table 4.1. Datasets used in our experimets.

the number of features, and the number of classes. Specifically, the number of examples
ranges from 106 to 2003, and the number of features ranges from 2 to 90. The datasets
contain both binary and multiple class datasets with a maximum of 26 classes for one
dataset.

Although our method scales up to large datasets, some methods do not; hence, due
to a large number of datasets, we downsampled some of them (the ones with more than
1000 samples) to 10% of the original size. The characteristics of datasets are described in
Table 4.1.

4. Experimental setup 35

4.1.2 The MNIST dataset

The MNIST dataset2 is one of the most common datasets used for image classifica-
tion and accessible from many different sources. The data set consists of grayscale images
with 28x28 dimensions. Following [33], the training set is built from all hand-written
digits 4 and 9 from the MNIST dataset.

Due to a large number of MNIST features, the spatial correlation found in the
images, and a large number of samples, we consider the dataset suitable for this evalua-
tion. All images were normalized to the interval [0, 1], resulting in 6958 and 6824 images
corresponding to hand-written digits 4 and 9, respectively.

4.2 Network evaluation

To evaluate all metric learning techniques assessed in this chapter, including our
approach, we apply a K-Nearest Neighbor (KNN) classifier, with three neighbors, in agree-
ment with [22]. The KNN classification performance can often be significantly improved
through (supervised) metric learning. In this dissertation, the KNN classification can be
exchanged for any other algorithm that uses a metric.

Since we used several datasets to validate our proposal, we divided our assessment
into two approaches. The first is an individual evaluation for each dataset, and the second
is a general evaluation for all datasets.

For each dataset, we calculate the accuracy. For all datasets (except the MNIST),
we calculate the average accuracy (Accuracy_AVG), the average rank position value
(Ranking_AVG), and the difference of the accuracy average for the best proposal
(Diff_AVG). We also calculated the number of times our algorithm was in the first posi-
tion (# of 1st). For the MNIST dataset, we evaluated the proposals’ accuracy for different
latent space representation dimensions.

We used 10-fold cross-validation. This validation can largely retain heterogeneous
distributions in the training set and improve statistical confidence in the results. For the
sake of reproducibility, our proposal is publicly available on a Gitlab repository3.

2http://yann.lecun.com/exdb/mnist/
3https://gitlab.com/sufex00/smell

http://yann.lecun.com/exdb/mnist/

4. Experimental setup 36

4.3 Parameters initialization and network

architecture

We initialize all weights of the autoencoder layers from a zero-mean normal dis-
tribution N (µ = 0, σ = 0.01). Biases were also initialized as outcomes of a normal
distribution N (µ = 0.5, σ = 0.01), following [46]. Markers position are initialized with
Lloyd’s algorithm [53]. Furthermore, we pre-trained an autoencoder (without markers)
and further transfer the learn to the complete model (with markers) to improve the con-
vergence speed.

The encoder of all deep metric learning approaches used as baseline is identical to
the one we used in SMELL. According to [112], we set network dimensions to m-512-512-
2048-n for all datasets, where m is the number of features of the input data, and n is
the latent space representation dimension. All layers are fully connected, and we used as
activation function the Rectified Linear Unit (ReLU) [60].

In addition, we used mini-batch Stochastic Gradient Descent (SGD) where learning
rate is 0.01 and momentum is 0.9. All parameters previously mentioned (except for the
calibration of the markers) were used in all deep metric learning baseline and our proposal.

Since the optimization model depends on some hyperparameters (rHC , rd, rr, w, k),
we performed an investigation to determine which value of these variables would maximize
the model accuracy. Therefore, we randomly chose the Vehicle dataset to train the model
and select the hyperparameters.

In [59], the author proposed a method called Bayesian Optimization, which consists
of optimizing functions such as a “black box” to determine the shape of the estimate func-
tion with a Gaussian Process regression. This function to quantify (through a heuristic)
the possible values of the hyperparameters to optimize the model’s performance.

Because some hyperparameters are defined in a discrete interval, such as the num-
ber of markers, it was necessary to perform the discretization of the Bayesian Optimization
values. We used five random starting points, and then 20 rounds of the algorithm, where
we found rHC = 1 , rd = 10−1, rr = 10−3, similarity markers k = 3, dissimilarity markers
w − k = 2, these values were used in the rest of this dissertation. We realized that our
proposal typically performs well when k has a value similar to w − k.

We configured all baselines with the hyperparameters recommended in their origi-
nal articles. These parameters are listed below. Observe that three approaches (Euclidean,
NCA and NPair) do not have hyperparameters to set.

• Metric Learning algorithm

4. Experimental setup 37

– ANMM [96]: The size of the homogeneous and heterogeneous neighborhoods
for each data point is set to 10;

– KDMLMJ [66]: Let k1, k2 denote the number of neighbors for constructing the
positive and negative difference spaces, we used k1 = k2 = 5.

• Deep Metric Learning algorithm

– ContrastiveLoss [33]: The margin term equals 1;

– Triplet [80]: The margin term equals 0.2;

– MultiSimilarityLoss [101]: The hyper-parameters for the model are : α = 2,
λ = 1, β = 50;

– FastAPLoss [12]: The number of soft histogram bins for calculating average
precision is 10.

38

Chapter 5

Results and Discussion

In this section, we present the results of the SMELL’s assessment. We also discuss the
interpretability of the similarity space (S-space) and conduct a performance evaluation
comparing SMELL with three distance metric learning approaches from pyDML1 [31, 66,
96], five deep metric learning approaches [12, 33, 80, 86, 102], and Euclidean distance.

5.1 Ablation Study

For a better understanding of our proposal, we conducted an ablation study. There-
fore, we evaluated SMELL for different regularization calibration values. We evaluated
SMELL with and without the reconstruction error (rr = 0), with and without the repul-
sive error (rd = 0), and without both (rd = rr = 0). The other default values adopted in
our experiments, can be found in Section 4.

Besides, we also evaluated the behavior of our proposal when using S-space only
for training. We then use for prediction a version of SMELL without the S-space (us-
ing Euclidean distance), we named this approach SMELL (Euclidean). Therefore, after
training the model using S-space, we observe only the latent space to perform the simi-
larity metric’s extraction, i.e., we consider that the similarity between two objects is the
Euclidean distance between them in the latent space. It is also worth noting that we use
the same default values adopted in our experiments (without any restriction on rd and
rr). We provide a complete report of our results in Table 5.1.

We see that among the usual SMELL methods when we take rd = 0, the proposal
tends to have performance degradation. This behavior is easily seen in the dataset ring,
in which SMELL (rd = 0) and SMELL (rd = rr = 0) has an accuracy of 0.6536 and
0.6610, respectively. Comparing this value with the best result, we have a difference of
more than 20%. The proposal with rd = 0 has the worst performance in all four metrics
analyzed (excluding Euclidean).

1https://pydml.readthedocs.io/en/latest/index.html

5. Results and Discussion 39

Dataset SMELL SMELL SMELL SMELL SMELL
(rr = 0) (rd = 0) (rr = rd = 0) (Euclidian) (S-space)

Appendicitis 78.90 ± 11.12 79.09 ± 11.02 79.09 ± 09.59 77.18 ± 9.13 80.19 ± 7.74
Balance 97.00 ± 01.03 97.00 ± 01.12 97.00 ± 1.02 98.40 ± 1.22 98.88 ± 1.02
Banana (10%) 89.44 ± 4.89 90.76 ± 08.83 90.01 ± 3.76 87.73 ± 1.14 90.95 ± 4.42
Bupa 64.58 ± 09.92 67.05 ± 09.62 66.37 ± 8.83 55.15 ± 10.12 63.92 ± 6.85
Cleveland 52.22 ± 07.42 51.20 ± 05.65 52.21 ± 6.32 51.93 ± 7.22 51.24 ± 8.49
Glass 67.52 ± 14.71 67.81 ± 12.16 66.91 ± 11.31 70.75 ± 11.46 66.94 ± 13.24
Ionosphere 89.75 ± 5.14 88.89 ± 02.37 89.75 ± 4.98 84.88 ± 6.79 89.47 ± 4.59
Iris 95.33 ± 04.00 94.67 ± 04.47 94.67 ± 4.27 95.33 ± 4.27 96.00 ± 3.26
Letter (10%) 80.30 ± 3.72 77.58 ± 08.40 77.77 ± 3.82 62.96 ± 8.62 77.77 ± 4.72
Magic (10%) 84.44 ± 02.98 84.44 ± 02.74 84.49 ± 2.37 78.92 ± 7.11 83.49 ± 2.58
Monk-2 100 ± 0.00 100.00 ± 0.00 100 ± 0.00 100 ± 0.00 100 ± 0.00
Movement-libras 86.21 ± 04.44 84.72 ± 04.44 85.56 ± 5.39 83.33 ± 6.92 87.78 ± 3.61
Newthyroid 97.71 ± 02.25 97.71 ± 03.57 96.77 ± 2.29 90.71 ± 10.97 96.77 ± 2.11
Phoneme (10%) 82.77 ± 03.89 83.87 ± 04.97 82.21 ± 3.04 81.29 ± 4.89 81.48 ± 4.31
Pima 70.44 ± 05.17 70.98 ± 05.96 71.75 ± 2.65 69.68 ± 3.87 70.44 ± 3.52
Ring (10%) 89.32 ± 21.56 65.36 ± 19.21 66.10 ± 3.11 71.80 ± 16.55 89.22 ± 4.56
Satimage (10%) 83.49 ± 02.94 85.20 ± 03.12 84.58 ± 4.45 85.37 ± 3.11 84.11 ± 3.57
Segment (10%) 90.48 ± 04.48 89.05 ± 07.22 89.05 ± 4.42 90.27 ± 4.76 89.76 ± 3.96
Sonar 84.05 ± 10.53 85.52 ± 10.92 84.55 ± 10.44 81.76 ± 12.88 83.59 ± 11.26
Thyroid (10%) 95.59 ± 02.43 95.56 ± 02.15 95.69 ± 2.51 94.71 ± 2.24 94.71 ± 2.45
Titanic (10%) 62.41 ± 16.07 62.56 ± 05.23 63.76 ± 16.22 73.13 ± 6.13 66.97 ± 15.85
Twonorm (10%) 96.00 ± 01.41 96.75 ± 06.07 97.00 ± 1.48 93.78 ± 13.33 97.43 ± 1.76
Vehicle 84.40 ± 02.00 83.34 ± 12.02 84.87 ± 3.33 78.32 ± 18.33 84.40 ± 2.63
Vowel 98.12 ± 00.79 98.12 ± 15.63 98.99 ± 1.09 98.48 ± 1.04 98.99 ± 0.90
Wdbc 96.65 ± 02.99 96.47 ± 02.40 96.65 ± 2.99 89.11 ± 14.63 96.65 ± 2.89
Wine 97.77 ± 03.59 97.71 ± 05.12 98.30 ± 5.11 97.19 ± 5.14 97.77 ± 5.11
Wisconsin 96.21 ± 02.14 95.91 ± 01.84 95.62 ± 1.87 95.91 ± 2.48 96.21 ± 2.26
Accuracy_AVG 0.8254 0.8169 0.8178 0.7994 0.8268
Ranking_AVG 2.2857 2.8571 2.2857 3.6429 2.2857
Diff_AVG 0.0116 0.0201 0.0193 0.0376 0.0102
of 1st 9 5 9 4 10

Table 5.1. Performance comparison of ablation study when using KNN classification for 27
different datasets.

When rr = 0, we observe a slight impact on the result (when compared to rd =

0), but for the datasets Appendicitis, Vowel, Banana (10%) and Twonorm (10%) (see
Table 5.1), changing rr to zero, made SMELL stop being the first position (when analyzing
accuracy), to the second last position.

When we consider the case of SMELL with the Euclidean metric (instead of S-
space), our proposal has the worst performance among the cases analyzed for the four
metrics adopted. In particular, we see that the average difference for the first place
(DIFF_AVG) has increased 200%. In addition, it is worth noting that for the datasets
Twonorm (10%), Banana (10%), Wdbc, Movement_libras and Appendicites (see Ta-
ble 5.1), SMELL goes from first place to last place. This evidencing the limitation of the
Euclidean metric (even using the function fΘ found by our proposal).

We hypothesized that SMELL tends to find a representation in S-space that cap-
tures similarity semantics. SMELL (S-space) has the best performance among all the
versions used, evidence of the last statement. In addition, Repulsive regularizer tends to
increase the separability of latent space. This fact shows the importance of the repulsive
regularizer.

Moreover, we evaluated the behavior of SMELL in comparison with an autoencoder
(without markers). Figure 5.1 shows the behavior of the encoder output under SMELL

5. Results and Discussion 40

20 10 0 10 20 30
z1

0.04

0.02

0.00

0.02

0.04
z 2

(a) Latent space (n = 2) from SMELL.

0 1 2 3 4
X1

0

1

2

3

4

X 2

(b) Encoder (n = 2) without markers.

Figure 5.1. Sonar Dataset: Latent Space and Encoder space Analysis.

0 2 4 6 8 10 12
z1

0

1

2

3

4

z 2

(a) Latent space from SMELL.

0 2 4 6 8 10 12 14 16
z1

0

2

4

6

8

10

12

14

z 2

(b) Encoder output without markers.

Figure 5.2. MNIST Dataset: Latent Space and Encoder space Analysis.

and the autoencoder. In Figure 5.1a, whose encoder was used with SMELL, the classes
have well-defined groups, differently to Figure 5.1b, where there is a greater dispersion of
the classes, with no clustering pattern being observed. The same behavior is found in the
MNIST dataset, as shown in Figure 5.2.

5.2 Performance Evaluation

To compare our results to other techniques present in the literature, we used the
datasets and the metrics appointed in Section 4, with n = 64 (latent dimension). The
summary of results can be found in Table 5.2. The second column indicates whether the
approach is based on Metric Learning (MeL) or Deep Metric Learning (DMeL) techniques.
We compare SMELL to metric learning approaches [96, 31, 66], deep metric learning

5. Results and Discussion 41

D
at

as
et

A
N

M
M

[9
6]

K
D

M
L
M

J[
66

]
C

on
tr

as
ti

ve
[3

3]
M

SL
os

s[
10

2]
T
ri

pl
et

[8
0]

N
C

A
[3

1]
N

P
ai

r[
86

]
Fa

st
A

P
[1

2]
E

uc
lid

ia
n

SM
E

L
L

A
pp

en
di

ci
ti

s
84

.2
7
±

10
.6

4
85

.0
9

±
9.

94
84

.1
8
±

9.
95

84
.0

9
±

11
.0

2
81

.2
7
±

10
.7

9
84

.0
9
±

9.
39

84
.9

0
±

08
.6

1
84

.0
9
±

10
.0

7
84

.2
7
±

10
.6

4
81

.0
9
±

7.
74

B
al

an
ce

80
.8

1
±

4.
22

79
.8

3
±

04
.3

2
78

.9
3
±

23
.5

4
98

.2
4
±

01
.1

2
96

.1
7
±

2.
03

95
.8

4
±

2.
28

89
.7

4
±

08
.0

0
98

.2
4
±

01
.3

1
80

.1
6
±

5.
06

98
.8

8
±

1.
02

B
an

an
a

(1
0%

)
56

.1
8
±

12
.4

3
55

.6
2
±

13
.2

5
89

.0
6
±

12
.9

7
84

.3
8
±

08
.8

3
90

.1
9
±

3.
85

86
.7

9
±

2.
15

89
.4

4
±

05
.2

5
72

.5
9
±

13
.5

5
56

.1
8
±

12
.4

3
90

.9
5

±
4.

42
B

up
a

60
.9

5
±

9.
04

65
.0

0
±

7.
88

8
49

.6
3
±

5.
01

67
.0

5
±

09
.6

2
68

.6
3

±
5.

28
57

.7
9
±

6.
62

57
.1

6
±

08
.8

4
58

.7
7
±

11
.7

1
64

.9
5
±

9.
04

63
.9

2
±

6.
85

C
le

ve
la

nd
55

.1
4
±

6.
92

48
.8

3
±

06
.6

4
55

.5
4
±

2.
76

54
.5

5
±

05
.6

5
56

.9
2
±

6.
92

50
.2

3
±

6.
76

56
.9

9
±

06
.6

1
55

.8
0
±

8.
29

55
.1

3
±

6.
92

51
.2

4
±

8.
49

G
la

ss
68

.1
3
±

10
.2

6
68

.9
5

±
10

.7
8

51
.1

1
±

17
.8

9
66

.7
1
±

12
.1

6
68

.3
0
±

11
.8

2
67

.0
2
±

10
.4

0
60

.6
6
±

08
.2

0
64

.6
5
±

9.
33

68
.1

3
±

10
.2

5
66

.9
4
±

13
.2

4
Io

no
sp

he
re

85
.1

8
±

4.
92

84
.0

4
±

03
.4

3
86

.1
6
±

19
.3

0
94

.0
2

±
02

.3
7

92
.8

9
±

2.
89

88
.8

8
±

4.
15

86
.3

3
±

07
.3

2
92

.6
0
±

3.
39

85
.1

8
±

4.
92

89
.4

7
±

4.
59

Ir
is

94
.0

0
±

4.
67

96
.0

0
±

04
.0

0
96

.6
7

±
4.

47
96

.6
7

±
04

.4
7

96
.0

0
±

2.
72

95
.3

3
±

4.
27

94
.6

7
±

04
.0

0
96

.6
7

±
3.

33
94

.0
0
±

4.
67

96
.0

0
±

3.
26

L
et

te
r

(1
0%

)
78

.9
3
±

10
.9

5
85

.7
±

11
.8

3
25

.9
5
±

21
.1

5
77

.6
4
±

08
.4

0
46

.5
4
±

23
.7

9
61

.5
5
±

21
.0

8
46

.1
0
±

08
.0

6
46

.5
5
±

23
.7

9
79

.1
3
±

8.
95

77
.7

7
±

4.
72

M
ag

ic
(1

0%
)

62
.2

8
±

9.
68

77
.3

4
±

09
.5

4
73

.5
±

5.
57

84
.6

5
±

02
.7

4
84

.0
7
±

2.
64

67
.9

9
±

9.
85

82
.0

7
±

02
.5

8
84

.5
7
±

2.
60

62
.8

2
±

9.
68

83
.4

9
±

2.
58

M
on

k-
2

95
.8

9
±

3.
92

10
0

±
0.

00
71

.4
4
±

12
.1

3
96

.5
2
±

03
.2

9
98

.3
7
±

1.
48

10
0

±
0.

00
95

.2
1
±

04
.9

2
98

.8
6
±

1.
52

98
.1

8
±

2.
72

10
0

±
0.

00
M

ov
em

en
t-

lib
ra

s
80

.8
3
±

3.
39

87
.2

2
±

05
.2

8
53

.3
3
±

21
.6

4
82

.7
8
±

04
.4

4
75

.0
0
±

10
.5

4
81

.6
7
±

4.
51

33
.6

1
±

11
.8

1
67

.7
8
±

20
.3

8
80

.1
2
±

3.
39

87
.7

8
±

3.
61

N
ew

th
yr

oi
d

95
.3

6
±

2.
95

94
.8

7
±

03
.5

8
97

.2
5
±

3.
16

96
.7

7
±

03
.5

7
95

.8
4
±

3.
84

97
.7

3
±

3.
05

96
.3

2
±

04
.9

5
97

.2
5
±

3.
65

95
.3

7
±

2.
95

96
.7

7
±

2.
11

P
ho

ne
m

e
(1

0%
)

81
.9

1
±

8.
87

81
.9

1
±

08
.7

0
70

.1
6
±

9.
79

82
.3

9
±

04
.9

7
79

.9
6
±

5.
88

83
.4

±
9.

81
75

.7
3
±

04
.4

1
76

.6
4
±

8.
12

62
.7

1
±

8.
87

81
.4

8
±

4.
31

P
im

a
72

.9
3
±

4.
30

69
.2

8
±

04
.0

4
64

.4
6
±

4.
65

74
.0

1
±

05
.9

6
74

.1
1

±
3.

96
70

.4
4
±

3.
78

72
.8

0
±

05
.2

2
72

.5
5
±

3.
94

72
.9

3
±

4.
30

70
.4

4
±

3.
52

R
in

g
(1

0%
)

51
.7

0
±

6.
39

59
.6

1
±

07
.4

6
73

.1
5
±

11
.3

3
79

.4
5
±

19
.2

1
93

.9
1

±
4.

84
51

.1
9
±

9.
57

82
.7

1
±

04
.1

1
70

.1
0
±

20
.9

1
51

.7
7
±

6.
39

89
.2

2
±

4.
56

Sa
ti

m
ag

e
(1

0%
)

84
.1

8
±

9.
65

74
.5

8
±

09
.1

5
59

.5
0
±

17
.8

8
86

.3
5

±
03

.1
2

82
.8

9
±

4.
25

64
.9

3
±

21
.3

9
69

.8
2
±

11
.4

9
83

.9
9
±

4.
72

52
.9

3
±

19
.6

6
84

.1
1
±

3.
57

Se
gm

en
t

(1
0%

)
73

.1
2
±

12
.4

8
83

.6
9
±

04
.0

5
67

.1
1
±

17
.7

2
84

.7
6
±

07
.2

2
92

.2
1
±

4.
68

64
.8

8
±

15
.3

7
57

.0
2
±

16
.1

5
92

.7
4

±
3.

85
53

.1
3
±

22
.4

8
89

.7
6
±

3.
96

So
na

r
83

.0
7
±

10
.5

8
82

.0
9
±

12
.1

2
59

.2
6
±

10
.0

3
86

.0
0
±

10
.9

2
88

.4
3

±
9.

13
86

.5
0
±

9.
55

79
.3

3
±

11
.9

3
85

.0
5
±

10
.9

1
82

.7
0
±

10
.5

7
83

.5
9
±

11
.2

6
T

hy
ro

id
(1

0%
)

90
.9

9
±

2.
07

92
.6

5
±

02
.2

1
91

.6
8
±

1.
79

94
.4

8
±

02
.1

5
93

.6
9
±

2.
19

90
.1

4
±

2.
18

93
.7

4
±

02
.5

0
64

.1
7
±

31
.8

1
90

.9
9
±

2.
07

94
.7

1
±

2.
45

T
it

an
ic

(1
0%

)
61

.7
4
±

16
.7

2
71

.8
2
±

12
.6

7
73

.1
3
±

5.
05

72
.6

7
±

05
.2

3
73

.1
8
±

5.
16

64
.1

6
±

9.
05

72
.6

7
±

05
.3

4
73

.6
1
±

5.
78

74
.1

4
±

10
.9

6
66

.9
7
±

15
.8

5
T
w

on
or

m
(1

0%
)

93
.8

3
±

4.
54

95
.9

5
±

04
.3

9
91

.8
9
±

10
.6

9
95

.9
5
±

06
.0

7
96

.6
2
±

1.
38

95
.9

5
±

8.
16

98
.1

1
±

01
.3

8
93

.7
8
±

10
.2

2
97

.5
±

4.
59

97
.4

3
±

1.
76

V
eh

ic
le

70
.2

1
±

3.
66

65
.9

5
±

03
.4

6
40

.2
3
±

10
.5

5
74

.1
3
±

12
.0

2
81

.9
1
±

4.
02

74
.7

1
±

3.
13

45
.1

7
±

08
.4

0
85

.5
8

±
3.

45
65

.9
5
±

3.
66

84
.4

0
±

2.
63

V
ow

el
97

.7
7
±

0.
98

98
.2

8
±

01
.3

7
88

.6
9
±

5.
58

57
.3

7
±

15
.6

3
95

.2
5
±

3.
10

97
.6

8
±

1.
20

72
.1

2
±

06
.7

0
78

.7
9
±

10
.7

5
98

.2
8
±

0.
98

98
.9

9
±

0.
90

W
db

c
96

.4
8
±

2.
49

92
.7

9
±

03
.3

2
95

.6
1
±

4.
72

97
.3

6
±

02
.4

0
95

.1
8
±

1.
97

92
.4

4
±

3.
16

93
.8

6
±

07
.4

9
96

.4
8
±

2.
72

92
.7

9
±

2.
49

96
.6

5
±

2.
89

W
in

e
95

.5
2
±

4.
17

97
.7

1
±

02
.8

0
95

.5
1
±

4.
72

97
.2

2
±

05
.1

2
82

.5
6
±

2.
22

97
.4

4
±

2.
54

89
.2

5
±

13
.8

3
96

.6
3
±

5.
11

69
.1

8
±

4.
16

97
.7

7
±

5.
11

W
is

co
ns

in
96

.5
2
±

2.
79

96
.6

6
±

02
.7

1
74

.7
8
±

2.
51

96
.0

5
±

01
.8

4
96

.0
5
±

2.
36

95
.8

2
±

1.
73

95
.9

2
±

02
.5

8
96

.2
2
±

2.
33

96
.3

9
±

2.
94

96
.2

1
±

2.
26

A
cc

ur
ac

y_
A
V

G
0.

77
68

0.
78

27
0.

69
23

0.
80

76
0.

81
15

0.
77

32
0.

73
80

0.
78

01
0.

74
86

0.
82

68
R

an
ki

ng
_

A
V

G
5.

71
42

9
4.

96
42

9
7.

17
85

7
3.

78
57

3.
96

43
5.

67
85

7
6.

21
43

4.
78

57
5.

89
28

6
4.

32
14

D
iff

_
A
V

G
0.

07
26

0.
06

67
0.

15
71

0.
04

18
0.

03
79

0.
07

62
0.

11
14

0.
06

93
0.

10
07

0.
02

42
#

of
1s

t
0

5
1

5
4

3
2

3
1

7

T
ab

le
5.

2.
P
er

fo
rm

an
ce

co
m

pa
ri

so
n

of
so

m
e

di
st

an
ce

m
et

ri
cs

ap
pr

oa
ch

es
an

d
SM

E
LL

w
he

n
us

in
g

K
N

N
cl

as
si

fic
at

io
n

fo
r

27
di

ffe
re

nt
da

ta
se

ts
.

5. Results and Discussion 42

approaches [12, 33, 80, 86, 102], and the usual Euclidean distance. The k-fold cross-
validation results are shown by averaging the standard deviation and accuracy values
reported by the process.

SMELL achieved the best accuracy results in 7 (# of 1st) datasets, thus surpass-
ing all other analyzed algorithms (improving 40% more datasets when compared with
second best). KDMLMJ and MSLoss, the second-best, achieved the best result in 5
datasets. SMELL achieved an accuracy of 0.8268 (Accuracy_AVG). The second-best,
Triplet, achieves 0.8115, and the third-best, MSLoss, achieves 0.8081. In a simple dataset
(Monk-2), SMELL achieves 100%. It is worth mentioning that SMELL, even in some
situations its performance is not the best, reaches accuracy close to the best algorithm.
For instance, the average distance between SMELL and the best algorithm is 2.26%
(Diff_AVG), improving its average distance by 67.70% and 84.96% compared to Triplet
(second-best) and MSLoss (third-best), respectively. Finally, when we average the rank-
ing, SMELL achieved an average of 3.6429 (Ranking_AVG), the smallest value among
all algorithms. The second-best was MSLoss, reaching 3.7857.

In Figure 5.3, we compare SMELL’s accuracy with all othe approaches used in
this paper. We noticed that SMELL, in all cases, manages to overcome the techniques
presented when we compare the number of individual hits, i.e., the number of datasets
that SMELL exceeds the accuracy of the analyzed baseline. Besides, we noticed a small
scattering of the blue dots around the black line compared to the red triangles’ behavior.
It indicates that even when SMELL performs worst than another approach, its results are
close to the best.

Analyzing the metric learning approaches only (see Table 5.2), we see that
KDMLMJ and NCA algorithms achieve better results (among the algorithms adopted
as baseline) when considering the metric that counts the number of times that the algo-
rithm’s accuracy surpassed all the others. This behavior is because the algorithms have
been evaluated with KNN, and these algorithms were specifically designed to improve this
classifier.

Considering the MNIST data, we can see that our proposals achieves considerably
better results, particularly for lower dimensions (d = {1, 2, 4}). This characteristic is
highlighted by the area under the curve, as seen in Figure 5.4. We noticed that some
techniques are highly dependent on the feature extractor. For example, the Contrastive
loss [33] was proposed to capture coherent semantics in a latent space. However, the
proposal aims to capture the semantics of the data, but, without the aid of convolutions
layers, we observe a performance degradation when compared to other techniques.

5. Results and Discussion 43

ANMM

0.6

0.8

1.0
SM

EL
L

KDMLMJ Contrastive

MSLoss

0.6

0.8

1.0

SM
EL

L

Triplet NCA

0.6 0.8 1.0
NPair

0.6

0.8

1.0

SM
EL

L

0.6 0.8 1.0
FastAP

0.6 0.8 1.0
Euclidian

Figure 5.3. Comparison between SMELL and other proposals. Red triangles, blue dots and
gray squares indicate when the SMELL is superior, inferior and has the same mean accuracy
result, respectively, when compared to other methods.

5.3 Behavior Analysis

Our proposal is based on optimizing the parameter set Σ = {Θ,Θ′,M} using
markers (with a t-student kernel).

SMELL learns a representation of input pairs that groups the points with similar
and dissimilar labels around their respective markers. We can observe this behavior in
Figure 5.5. In this Figure, the input pairs of similar and dissimilar labels are represented
by pink circles and gray triangles, respectively. In addition µ+ and µ− markers are
represented by green and red crosses respectively. We plot some sij vectors for input pairs
(xi, xy) of the test set for the Balance dataset. Initially, after training the autoencoder,
a two-dimensional plot was created by the aid of PCA before (first figure) and after (the
other figures) the optimization process.

We can observe in fist plot in Figure 5.5 (before adjusting the markers’ positions)
that the points do not present a well-defined cluster structure. This behavior changes
when we analyze the last plot in Figure 5.5 (after adjusting the markers).

5. Results and Discussion 44

1 2 4 8 16 32 64 128 256
Dimension (Latent Space)

0.5

0.6

0.7

0.8

0.9

1.0
Ac

c

MSLoss (0.8839)
Triplet(0.9083)
Contrastive(0.7118)
NPair(0.8183)
FastAP(0.8704)
SMELL(0.9244)

Figure 5.4. MNIST evaluation for different dimension of latent space. The AUC is reported in
parentheses.

500 250 0 250 500
200

100

0

100

200

Eporch 0

500 250 0 250 500
200

100

0

100

200

Eporch 9

500 250 0 250 500
200

100

0

100

200

Eporch 27

500 250 0 250 500
200

100

0

100

200

Eporch 99

500 250 0 250 500
200

100

0

100

200

Eporch 130

500 250 0 250 500
200

100

0

100

200

Eporch 200

Figure 5.5. Simultaneous training of µ+ (green) and µ− (red) markers’s position and data
representation for some training epochs.

In the last plot in Figure 5.5, we can see that there are well-defined groups around
the markers. Moreover, by comparing the scale of the Figures 5.5, we see that in the
last case, points are more spaced, i.e., our proposal tends to group points around their
respective markers. This behavior corroborates our initial hypothesis described in (H1).

5. Results and Discussion 45

20 10 0 10 20 30
z1

0.04

0.02

0.00

0.02

0.04

z 2

#
#

#
#

@
@

@

(a) Latent space (n = 2)

0 5 10 15 20 25
X1

0
2
4
6
8

10
12
14

X 2

@

(b) S-space (n = 2)

Figure 5.6. Sonar Datasets: Latent Space and S-space Analysis for SMELL.

We observed that our proposal acts as an attractive potential. In this sense, the
marker “pulls” the favorable points (similarity mark “pulls” similar points). Therefore,
their movement resembles a Group Mobility Model [38], i.e., the marker is being posi-
tioned, and the points go “following” the leader as a “caravan” of nomads. At the same
time, the markers tend to repulse themselves.

This can be seen as such an intense attracting field, which locks the movement
dynamics of the points closest to the markers.

5.4 Latent space and S-space analysis

For a better understanding of the latent space found by SMELL, we analyzed the
behavior of our proposal using the sonar and MNIST datasets as shown in Figure 5.7
and 5.6. For the sake of visualization, in this analysis, we use the setup discussed in
Section 4 with n = 2 (latent dimension). Figures 5.6a and 5.7a show the latent feature
space (output of encoder). Observe that in these figures, points represent individual
objects. Red and blue points represent different classes. There are two classes in sonar
dataset, and we show only two classes of MNIST (handcraft digits 4 and 9). These
latent feature spaces result from the joint optimization process of the autoencoder and
the S-space.

In Figure 5.6a, we observe that red points are grouped in different regions far
apart at a distance approximately constant, denoted by @. Similarly, blue points are
apart at a distance approximately constant, @. Different clusters are apart at a distance
approximately constant, denoted as #.

Figures 5.6b and 5.7b show a random sample of 400 data pairs from the sonar
dataset mapped to S-space (200 similar and 200 dissimilar pairs). In S-space, points

5. Results and Discussion 46

2 0 2 4 6 8 10 121

0

1

2

3

4

5

(a) Latent space (n = 2)

0 5 10 15 20
X1

0

2

4

6

8

X 2

(b) S-space (n = 2)

Figure 5.7. MNIST Datasets: Latent Space and S-space Analysis for SMELL.

represent a pair of objects. Pink circles and black triangles represent similar and dissimilar
labels, respectively. Also, similarity and dissimilarity markers are represented by green
and red crosses, respectively.

Figure 5.6b show some clustered regions. The region grouped by the similarity
marker (closer to the origin) is responsible for grouping elements of similar classes with
a distance closer to 0. This result corroborates with the Proposition 3.2.1. The same
behavior is found in Figure 5.7b, where we observe a green cross close to the origin.

However, in Figure 5.6b, we observe some similar objects mapped to points that
have distance close to @, instead of zero. The green cross located at @ is responsible for
creating the similarity region that represents this situation. Other regions of similarity
and/or dissimilarity can occur, depending on the data complexity, and are represented
by other green/red crosses. Dissimilarity regions are depicted as #. Therefore, in the
space found by SMELL, we see the behavior of multiple groups, separated by distances
determined by the similarity/dissimilarity markers (labels # and @).

Observe in Figure 5.7a the soft transition from digit 4 to 9, which shows that the
S-space preserves the connection between these two similar digits. This effect is captured
even though we do not use any data-specific feature extractor, such as convolution layers.
In SMELL, the encoder can be switched by any feature extractor tailored explicitly for
the input data.

In Figure 5.7a, we observe that the handcrafted digits four are grouped (on the
left). We observe that even in this group, the similarities between the digits remain.
The first two digits in the top-left region correspond to numbers with thicker writing and
slightly rotated, and as we go down in the latent space, the shape of the digit starts to
become thinner. This behavior indicates a gradient that represents the thickness of the
object. This same behavior occurs similarly to digit 9. There is a transition from groups
of digits 4 to 9, i.e., there is a semantic in this transition. As we move along the diagonal
that connects the two groups, gradually, the numbers 4 resemble the number 9, so that,

5. Results and Discussion 47

in the middle of the diagonal, it is tough to differentiate between these two numbers. It
is also worth noting that, the further away from the denser regions of the points cloud,
the less readable are the numbers, for instance, the two digits four depicted below the
transition diagonal. We see that our proposal uses markers to help in the convergence
and finds a latent space that preserves the semantics of the original data. This behavior
corroborates our initial hypothesis described in (H2).

It is also worth noting that our proposal has no sensitive learning in the presence
of multiple markers, i.e., even in this experiment that we have defined three similarity
markers and two dissimilarity markers, our proposals does not use all. This behavior
is emphasized in Figures 5.6b and 5.7b , where our proposal removes excessive markers
from the groupings by locating these markers far away from the data. This behavior is
an indication that the number of markers is a virtual parameter of the model.

We hypothesize that markers group data points considered similar (in our context,
which have the same labels) and dissimilar (different labels) in disjoint regions. Fig-
ures 5.7b and 5.6b show this behavior, where we can see similar and dissimilar groups
in distinct (and disjoint) regions in S-space. In addition, we can notice in Figure 5.6a
that our proposal allows different clusters for the same class (optimal latent space), as
mentioned in Definition 3.2.1.

48

Chapter 6

Case of Study: Diagnostic Aid
Software for Leishmaniosis Detection

6.1 Introduction

Leishmaniasis, caused by species of the intracellular protozoan of the genus Leish-
mania, is a neglected and infectious vector-borne disease. It occurs in poorest countries
and most vulnerable populations with difficult access to health services. Different species
of Leishmania can cause a variety of clinical manifestations, including the Visceral Leish-
maniasis (VL), that is more severe and often fatal if not diagnosed and treated [105]. In
the Americas, VL is endemic in 12 countries. South America countries, such as Brazil,
Argentina, Colombia, Paraguay, and Venezuela are among those with the highest case
records, knowing that Brazil reports 96% of the total of cases. Some Central America
countries, such as Honduras and Guatemala, previously presented sporadic VL cases, but
they have reported an increasing number of cases in last years [105]. In southern Eu-
rope, it is a primary opportunistic infection in patients with acquired Immunodeficiency
Syndrome [70].

Serological or parasitological techniques and the Polymerase Chain Reaction
(PCR) are typically diagnostic tools used for the VL diagnosis. PCR-based assays are the
main molecular diagnostic tools, especially in immunosuppressed patients [6]. However,
it remains complex and expensive, and in most VL-endemic countries, they are restricted
to a few teaching hospitals and research centers [26]. Serological diagnosis may lack
specificity due to asymptomatic infections [104], but parasitological techniques are highly
specific. In this process, smears or biopsies can be obtained from liver, lymph nodes,
bone marrow, and spleen, but only smears from bone marrow and spleen have been used
routinely [37].

Smears are simple to prepare, and their direct examination is usually the best
diagnostic method in poorer areas where PCR is not available [26]. In this way, bone
marrow examination is an authentic method for diagnosis of VL. This procedure includes

6. Case of Study: Diagnostic Aid Software for Leishmaniosis Detection49

Figure 6.1. Leishmania amastigote (magnification: 400×). Source: [27]

the directly microscopic observation of the parasite. However, the miniature size of the
protozoan makes this a tedious task that can be very time-consuming [26]. Also, when
faced with the presence of the protozoan, the physician may not be sure about whether it
is a parasite, once it may resemble other structures present in the image content. Figure
6.1 presents an example of Leishmania amastigotes in a bone marrow microscopic color
image.

Several Deep Learning-based methods for image analysis have been used in the
interpretation of medical and biomedical images. In particular, Convolutional Neural
Networks (CNNs) have rapidly become a methodological way for analyzing these images.
The most common methods include learning algorithms for image classification [74], object
detection, object segmentation image registration, and other tasks.

In the last years, several approaches have been proposed for histopathology image
analysis [87], including that ones that aim the automated detection of parasites [115].

Relli et al. [75] propose an automatic method to counting trypanosomatid amastig-
otes in human cells infected with Chagas disease. This method is divided in a sequence
of steps that include a initial morphological operation that removes complex background
from original image; an unsupervised classification that clustered the remain objects and
a thresholding operation to preserve the interest objects: the infected cell.

In this chapter, we propose a new version of the SMELL called L-SMELL for
the classification of leishmaniasis samples. In this way we use S-space to obtain a new
representation of the microscope samples, however with some modifications in the regu-
larization function, as will be shown below.

6. Case of Study: Diagnostic Aid Software for Leishmaniosis Detection50

Gray scale Gaussian Blur Hough + Crop

Dataset

Figure 6.2. Step-by-step of the pre-processing used in this chapter.

6.2 Methodology

6.2.1 Data Acquisition

6.2.1.1 Our data

In this chapter, we built a new dataset containing samples of leishmaniasis labeled
by specialists. This dataset was collected by doctors at the University Hospital linked
to the Federal University of Alagoas. All capture preprocessing was carried out by the
doctors, thus resulting in 76 samples containing leishmaniasis.

6.2.1.2 Dataset 2

In [27], the authors propose a new dataset for patients with visceral leishmaniasis.
For data acquisition, a digital camera (Sony DSC-H9) coupled on an optical microscope
(Olampus-CH40RF200) were used and 45 data were captured for Automatic Boundary
Extraction of Leishman Bodies.

6.2.2 Data Preprocessing: Region of Interest Identification

To analyze the images obtained in the Section 6.2.1, we performed some transfor-
mation steps, as we can see in the Figure 6.2.

6. Case of Study: Diagnostic Aid Software for Leishmaniosis Detection51

Initially, We captured the images in color and transformed them into a gray-scale.
We used a Gaussian convolution filter to blur an image and to reduce the noise present in
the object of interest. The result of this operation is a smoothing of the image, reminding
the visualization through a translucent screen. This smoothing is widely used in the image
preprocessing stage to highlight the image structure at different scales. In practice, the
Gaussian filter is a convolution operation in the image with a Gaussian function.

Given the image smoothed with a Gaussian convolution filter, we apply a circular
transformation. Circle Hough Transform (CHT) is a traditional technique used in Digital
Image Processing for detecting circular objects in a digital image. We can see in the
schematic in the Figure 6.2, we removed the edge from the microscope to eliminate regions
that we are not interested in analyzing. After removing the circular border of the images,
we crop them in a patch of size 200 x 200 pixels.

6.2.3 Experiments

Typically medical image datasets are unbalanced. So, we designed experiments
with some versions of the datasets described in the previous section, as we can see:

– Experiment I: We carried out a subsample to mitigate the problem of imbalance.
Thus, for each image of the minority class, choose 1 random image of the marjoritary
class. Then, at the end of the sampling, we have a new reduced version of the original
dataset having the same number of samples from both classes.

– Experiment II: Following the previous experiment, we built a new dataset using a
subsample for a 4:1 ratio, i.e., for each image of the minority class, we have 4 images
of the marjoritary class.

– Experiment III: We use all the images contained in the dataset.

6. Case of Study: Diagnostic Aid Software for Leishmaniosis Detection52

6.3 Our Proposal

6.3.1 L-SMELL

Our proposal can be divided into 3 steps:

– Data representation algorithm: In this step we will build a representation for the
problem data.

– Metric learning algorithm: For a given new representation obtained from the previ-
ous step, we will build a similarity function for a given input data pair with S-space
as we defined in section 3.2.2.

– Metric-based algorithm: We will apply a metric based classification algorithm to
solve the problem.

6.3.2 Loss Function

Our proposal estimates the latent feature space and the S-space simultaneously
like Section 3.2.2. We can define through our proposal the similarity function dΩ(xi,xj)

that receives a pair of images and returns the similarity between them. To estimate the
parameter set Ω = {Θ,M}, we built a cost function J as based on Cross-entropy loss Hc.

In addition, we defined the contrastive loss Rc as a regularization function to effect
overfitting and assist in the convergence of the model, as we discussed in Section 6.4.3.

Proposed by [33], contrastive loss is a function that minimizes the distance between
similar points and imposes a restrictive distance between the points of dissimilar classes.
We can define the contrastive loss for a pair (xi,xj) as

Rc(xi,xj) =

||fΘ(xi)− fΘ(xj)||22, if (xi,xj) is similar

[p− ||fΘ(xi)− fΘ(xj)||2]2+, if (xi,xj) if dissimilar,
(6.1)

where operator [.] = max(0, .) is the hinge function. In this chapter, following [33], we
use the margin p = 1.

6. Case of Study: Diagnostic Aid Software for Leishmaniosis Detection53

ENC

z1

z2

X1

X2

Cross-Entropy
HC	(U||Q)

LOSS
CALCULATION

Latent	space	representation

Positioning	of	markers

P
ro
p
a
g
a
ti
o
n

E
rr
o

Simultaneous
Training

L-SMELL

S12

Pa
irw

is
e

Rc
(Constrative Loss)

X1

Original feature
space

S-space

ϴ

Text

Leishmaniosis

No
Leishmaniosis

Figure 6.3. The left side represents the Encoder, and the right side represents the optimization
process for the markers’ position for M = {µ1, µ2, µ3}. In this example, we used two positives
and one negative marker. The rightmost green arrow shows a representation of the markers’
position optimization step by using Cross-Entropy divergence and Contrastive regularization
functions.

Let Q = {qij}, the L-SMELL output, be the set that contains the pairs qij =

(q+ij , q
−
ij) corresponding to the probability of the elements of a pairwise input (xi,xj) be

similar or dissimilar, respectively. The optimal hyperparameters set can be defined as
Ω∗ = argminΩ J({X × X}), where

J({X × X}) = Hc(U||Q)rHC + rcRc, (6.2)

where rHC is a constant for calibration for cross-entropy, rc is a calibration term for
contrastive loss, and uij ∈ U is defined as uij = (1, 0) if xi has same label as xj and
uij = (0, 1), otherwise. The scheme for our proposer can be see in Figure 6.3.

6.3.3 Revisiting Contrastive loss

In this chapter, we present L-SMELL, a novel deep metric learning formulation
to improve the deep metric learning approach. We define a k-optimal representation as
a space that the K-nearest neighbor classification (KNN) with (k − 1) neighbors obtains
100% for accuracy.

Contrastive loss [33] was proposed to compare a pair of objects (xi, xj) and output
if the objects have equal/different classes. It maps the objects to a representation space
using an encoder function fΘ. It defines a loss function J(xi, xj, yij) =

yij
2
||fΘ(xi) −

6. Case of Study: Diagnostic Aid Software for Leishmaniosis Detection54

fΘ(xj)||22 +
(1−yij)

2
[max(0,m− ||fΘ(xi)− fΘ(xj)||2)]2, where m is a margin parameter; yij

equals 1 when the pair has the same class and 0 otherwise.
Thus, Contrastive loss can be interpreted as an energy function that minimizes the

distance between points of similar classes and imposing the distance between objects of
different classes to be larger than m.

Suppose that an encoder finds a k-optimal representation for binary classification
problems, and this space is formed by clusterings so that two elements of the same group
belong to the same class. So, given a pair (ki, kj) of the same group, we have ||ki−kj||2 = 0,
and the groups of elements of different classes are distant of each other by m. We can see
a schematic for this space in Figure 3.3.

Therefore, given two elements (ki, kj) of different classes, we have that E[||ki −
kj||2] = (k ∗m + k ∗m)/(2k) = m, so that the contrastive loss equation is 0. However,
analyzing the case of a pair of elements (ki, kj) of the same class, we have E[||ki− kj||2] =
((k − 1) ∗ 0 + k ∗m

√
2)/(2k) = m

√
2/2. Thus, the contrastive function is grater than 0

and tends to deform the space found by the encoder.
Unlike contrastive, our proposal, considered the space mentioned above, tends to

conserve the k-optimal representation space. Thus, by adding the markers in positions
M+ = {(0, 0), (m,m)} and M− = {(m, 0), (0,m)}, the loss of our proposal equals zero,
and therefore conserves the space found.

6.3.4 Parameter Setting

We initialize all weights of the autoencoder layers from a normal distribution with
mean (µ) = 0 and standard deviation (σ) = 0.01. Biases were also initialized from a normal
distribution, but for this case it was used mean (µ) = 0.5 and standard deviation (σ) =
0.01, where this values can be found in Koch et al. [46].

A different learning rate was used for each round of training of the proposal, where
the rate dropped systematically in specific periods of time during the training. This
method has been implemented so that the learning rate decreases by 70% to a fixed
number of training rounds. Therefore, we defined the learning rate lt in a given training
round t as being lt = l0 ∗ r⌊t/d⌋ , where l0 corresponds to the initial learning rate, r is the
fact of decay and d the number of rounds that the learning rate remains constant. For
this chapter we used l0 = 0.1, r = 0.7 and d = 100.

We used VGG19 [84] for all deep metric learning approaches used as this works.
All layers are fully connected, and we used as activation function the Rectified Linear
Unit (ReLU). With grid search, we found rHC = 1 , rc = 10−1, similarity markers k = 3,

6. Case of Study: Diagnostic Aid Software for Leishmaniosis Detection55

Table 6.1. Table showing the results for the analyzed dataset. The best values are represented
in bold and * represents the values without a statistically significant difference.

Experiment I
Proposal ACC PREC REC F1-Score

SURF + SVM 50.77% (1.54%) 25.38% (0.77%) 50.00% (0.00%) 33.67% (0.67%)
SIFT+SVM 53.64% (0.25%) 26.82% (0.13%) 50.00% (0.00%) 34.91% (0.11%)
DeCaf [25] 54.64% (1.74%) 36.32% (0.86%) 50.00% (1.56%) 39.48% (0.75%)

NPairLoss [86] 73.57% (13.65%) 74.78% (14.25%) 73.69% (13.83%) 73.25% (13.76%)
Triplet [80] *84.26% (4.96%) *85.33% (5.24%) *84.19% (4.89%) *84.15% (4.97%)

CosFaceLoss [97] *80.38% (6.69%) *83.14% (7.27%) *80.36% (6.46%) *79.99% (6.69%)
MultiSimilarLoss [101] *81.01% (8.62%) *82.78% (8.33%) *81.19% (8.54%) 80.71% (8.89%)

L-SMELL *85.47% (10.11%) *86.46% (9.69%) *85.45% (10.08%) *85.26% (10.28%)
Experiment II

Proposal ACC PREC REC F1-Score

SURF + SVM 75.24% (4.64%) 56.03% (13.57%) 57.19% (7.19%) 55.48% 9.90%
SIFT+SVM 76.66% (0.64%) 38.33% (0.32%) 50.00% (0.00%) 43.39% (0.21%)
DeCaf [25] 73.29% (0.95%) 36.64% (0.48%) 50.00% (0.00%) 42.29% (0.32%)

NPairLoss [86] 78.36% (5.00%) 72.57% (5.76%) 75.45% (5.84%) 72.81% (5.24%)
Triplet [80] *86.76% (5.86%) 81.71% (7.91%) *80.00% (6.55%) 80.54% (5.08%)

CosFaceLoss [97] 79.88% (6.01%) 74.27% (7.49%) 74.43% (5.85%) 73.78% (6.41%)
MultiSimilarLoss [101] 81.52% (5.66%) 75.84% (7.93%) 74.26% (8.43%) 74.28% (8.17%)

L-SMELL *89.41% (6.77%) *88.77% (9.36%) *85.07% (8.14%) *86.15% (8.20%)
Experiment III

Proposal ACC PREC REC F1-Score

SURF + SVM *89.93% (0.23%) 44.97% (0.11%) 50.00% (0.00%) 47.35% (0.06%)
SIFT+SVM 89.26% (0.32%) 44.63% (0.16%) 50.00% (0.00%) 47.16% (0.09%)
DeCaf [25] 88.41% (0.06%) 44.20% (0.03%) 50.00% (0.00%) 48.92% (0.02%)

NPairLoss [86] 85.36% (3.55%) 64.13% (7.02%) *67.34% (8.71%) 65.07% (7.31%)
Triplet [80] 82.22% (2.19%) 67.12% (9.97%) *66.39% (8.45%) 66.93% (7.82%)

CosFaceLoss [97] 85.86% (3.57%) 65.99% (7.26%) *69.08% (6.77%) 67.12% (7.03%)
MultiSimilarLoss [101] *89.09% (1.61%) 71.30% (5.01%) *66.98% (6.72%) 67.95% (5.10%)

L-SMELL *89.76% (1.26%) *77.54% (8.90%) *70.32% (5.11%) *72.18% (5.54%)

dissimilarity markers w − k = 2, these values were used in the rest of this chapter. We
realized that our proposal typically performs well when k has a value similar to w − k.

6.4 Results and Discussion

6.4.1 Numerical results

To compare our results with other proposals found in the literature, we used the
experiments described in Section 6.2.3.

For dataset presented in 6.2.1.1, we carried out three experiments, and we show
results in Table 6.1. In the first experiment, we verified the behavior of proposals with
a balanced dataset. L-SMELL achieves the best value when we consider all the metrics
analyzed in this experiment. The Triplet obtains the second-best result, with a difference
of 1.13 %, 1.23%, 1.26 %, and 1.11% for the four metrics analyzed. The dataset was

6. Case of Study: Diagnostic Aid Software for Leishmaniosis Detection56

balanced, so the values of metrics are similar.
Evaluating the second experiment in Table 6.1, we found that L-SMELL and

Triplet achieve the first and second-best results for all metrics analyzed in this chap-
ter. However, we observed that in this experiment, the difference between them becomes
more evident. L-SMELL obtains 89.41 % for ACC, while Triplet obtains 86.76 %, result-
ing in a difference of 2.65 % (a result greater than 1.13 % previously found). We analyze
metrics (PREC, REC, and F1-Score) and calculate a difference of 7.06 %, 5.07 %, and
5.61 % between L-SMELL and the second-best result.

For the last experiment in Table 6.1, we analyzed the proposals for a highly un-
balanced dataset, as we see experiment III in Section 6.2.3. For the ACC metric, we
observe SURF + SVM proposal has the best value, and L-SMELL has the second-best
result. Probably this behavior occurs because the dataset is unbalanced. Therefore, other
metrics are needed to evaluate the performance of the techniques. Looking at the other
metrics, we see that the SURF + SVM proposal has a low performance. Therefore for
PREC, we found that the L-SMELL achieves the best result among the analyzed tech-
niques with a value equal to 77.54%. MultiSimilarLoss achieved the second-best result
with a value of 71.30 % for the PREC metric, resulting in a difference of 6.24 %.

For the REC metric, L-SMELL and CosFaceLoss achieve the first and second-
best results with 70.32% and 69.08%. Finally, L-SMELL had the best value for the
F1-Score metric with 72.18%, being the second-best result obtained by MultiSimilarLoss
with 67.95%, totaling a difference of 4.23%.

For the dataset proposed by this chapter, we summarize the results for the three
experiments in the Table 6.2. For the first experiment, we observed that SURF + SVM
achieves the best ACC result with 83.19 %, and L-SMELL reaches the second-best value
with 80.80 %. For the PREC metric, we observed that the first and second-best results
corresponding to the proposals SURF + SVM and L-SMELL obtained 87.18 % and 81.12
%. In the analysis of REC, SURF + SVM has the best results with 80.16 %. The second-
best position is the L-SMELL that reaches to REC metric of 79.41 %, with a difference
of 0.75 % for the first result. In the last evaluation, SURF + SVM achieves the best
performance for the F1-Score metric, while L-SMELL obtains the second-best result.

In the second experiment, SURF + SVM reaches the best value for the ACC metric
with 80.91 %, while the proposal SIFT + SVM achieves the second-best result with 76.66
%. However, for the other three metrics analyzed, we noticed that the SIFT + SVM
has a low performance. Probably, it happens in this experiment because the dataset
is unbalanced. For all three remaining metrics, we identified that SURF + SVM had
the best result. We see that the CosFaceLoss technique achieved the second-best result
for the PREC and F1-Score metrics, while the MultiSimilarLoss proposal achieves the
second-best results for REC.

For the last experiment for this dataset, we investigated the unbalanced version

6. Case of Study: Diagnostic Aid Software for Leishmaniosis Detection57

Table 6.2. Table showing the results for the analyzed dataset. We represent the best values in
bold and * represents the values without a statistically significant difference.

Experiment I
Proposal ACC PREC REC F1-Score

SURF + SVM *83.19% (3.97)% *87.18% (3.93%) *80.16% (4.45%) *81.25% (4.70%)
SIFT+SVM 58.57% (0.14%) 29.29% (0.07%) 53.21% (0.35%) 36.94% (0.06%)
DeCaf [25] 58.82% (0.33%) 29.41% (0.17%) 51.23% (0.12%) 37.03% (0.13%)

NPairLoss [86] 72.27% (4.88%) 71.82% (5.20%) 70.31% (5.25%) 70.56% (5.21%)
Triplet [80] 74.12% (6.51%) 70.63% (4.33%) 73.99% (3.54%) 72.11% (4.71%)

CosFaceLoss [97] 73.43% (6.20%) 72.71% (6.61%) 71.94% (6.99%) 72.04% (6.90%)
MultiSimilarLoss [101] 75.39% (2.86%) 75.82% (3.21%) 74.19% (3.04%) 74.65% (3.02%)

L-SMELL *80.80% (5.01%) *81.12% (5.49%) *79.41% (5.45%) *79.71% (5.44%)
Experiment II

Proposal ACC PREC REC F1-Score

SURF + SVM *80.91% (2.16%) *77.34% (2.17%) *84.04% (2.75%) *78.48% (2.39%)
SIFT+SVM 76.66% (0.32%) 38.33% (0.32%) 50.00% (0.00%) 43.39% (0.21%)
DeCaf [25] 74.13% (0.15%) 37.06% (0.08%) 50.00% (0.00%) 42.57% (0.05%)

NPairLoss [86] 67.58% (2.73%) 62.04% (3.56%) 64.55% (4.77%) 62.25% (3.67%)
Triplet [80] 71.62% (3.15%) 61.05% (1.23%) 65.32% (6.52%) 64.21% (4.16%)

CosFaceLoss [97] 74.51% (9.36%) 70.73% (10.16%) 71.84% (9.55%) 71.04% (10.24%)
MultiSimilarLoss [101] 71.99% (1.89%) 69.57% (2.77%) 73.75% (2.39%) 69.72% (2.36%)

L-SMELL 76.31% (4.79%) 69.21% (6.25%) 67.83% (6.36%) 68.16% (6.09%)
Experiment III

Proposal ACC PREC REC F1-Score

SURF + SVM *91.88% (0.04%) 45.94% (0.01%) 50.00% (0.00%) 47.88% (0.01%)
SIFT+SVM *91.88% (0.02%) 45.94% (0.02%) 50.00% (0.00%) 47.88% (0.01%)
DeCaf [25] *91.88% (0.02%) 45.94% (0.02%) 50.00% (0.00%) 47.88% (0.01%)

NPairLoss [86] 86.81% (3.85%) *63.75% (7.58%) *70.61% (9.97%) *65.95% (8.72%)
Triplet [80] 85.61% (0.44%) *67.81% (2.31%) 64.70% (3.42%) *66.05% (1.82%)

CosFaceLoss [97] 90.31% (0.60%) *68.06% (1.89%) 62.46% (3.69%) *64.62% (2.65%)
MultiSimilarLoss [101] 89.81% (2.75%) *62.71% (6.87%) *72.46% (8.31%) *67.38% (7.18%)

L-SMELL 90.46% (2.20%) *68.63% (11.61%) *68.39% (12.22%) *68.49% (12.52%)

of our dataset for the approaches used in this chapter. We verified the ACC metric, we
decide SURF + SVM, SIFT + SVM, and DeCaf was the best results. However, observing
other metrics we concluded the performance of these proposals was affected by the unbal-
anced dataset. We noticed L-SMELL gets the best results when we analyze PREC, while
CosFaceLoss begets the second-best position. MultiSimilarLoss and NpairLoss were first
and second-best results for the REC metric. For F1-Score, L-SMELL obtains the best
result with 68.49 %, while MultiSimilarLoss gets the second-best results.

6.4.2 Latent Space and Similarity space

We investigate the behavior of L-SMELL using the dataset proposed in this chap-
ter. For better visualization, we use PCA as a dimensionality reducer for 2-D as can
see in Figure 6.4. The result of the encoder output (latent feature space) can be see in
Figure 6.4a shows . Each dot represents a single object, red dots represent samples with
Leishmania parasite, and the blue dots represent samples without the parasite. The joint
optimization process of autoencoder and S-space generated this latent feature space.

6. Case of Study: Diagnostic Aid Software for Leishmaniosis Detection58

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
PCA1

0.2

0.0

0.2

0.4

0.6
PC

A 2
without Leishmania
with Leishmania

(a) Latent space (n = 128)

1.5 1.0 0.5 0.0 0.5 1.0
PCA1

0.2

0.0

0.2

0.4

0.6

PC
A 2

Similar vector
Dissimilar vector

(b) S-space (n = 128)

Figure 6.4. Latent Space and S-space Analysis for Our Dataset in Experiment I.

We realized that training process used by L-SMELL is able to separate the latent
space into two disjunct regions, thus making the inferential process for identifying the
parasite in samples.

In addition to latent feature space, our proposal estimates a new representation
space called S-space. We can see S-space in Figure 6.4b. Note that each point represents
a pair of elements, as we can see in Section 3.2.1. The pairs of similar images correspond
to red circles, while the black triangles represent dissimilar image pairs. In this space, we
estimate markers as we can see in Figure 6.4b. The red stars represent the positive mark-
ers M+, while the points represented by the black stars are the markers of dissimilarities
M−. Both spaces are estimated simultaneously by our proposal.

In S-space, shown in Figure 6.4b, we can see that L-SMELL also estimates two
disjunct regions. However, we can notice that the markers act as attractive components,
e.g., the similarity markers in M+ attract similar points, while the dissimilarity markers
in M− attract the dissimilar points. We use three positive markers and two negative
markers, but our proposal collapse some markers not used. This behavior indicates that
the number of markers is a virtual hyper-parameter of the model.

6.4.3 Contrastive loss effect

As described in section 6.3.2, we use the cross-entropy loss for training L-SMELL.
Also, we use the contrastive loss as a regularization function to avoid overfitting. We can
see in Figure 6.5a a comparison of the cross-entropy function for our proposal when we
train L-SMELL with the regularization function and L-SMELL without the regularization
function. For the case in which we do not use contrastive loss, the loss function has a

6. Case of Study: Diagnostic Aid Software for Leishmaniosis Detection59

0 250 500 750 1000 1250 1500 1750 2000
Eporch

0.4

0.5

0.6

0.7

0.8

0.9

Lo
ss

SMELL w/o Contrastive Loss
SMELL with Contrastive Loss

(a) Comparison of L-SMELL versions with
and without Contrastive Loss

0 250 500 750 1000 1250 1500 1750 2000
Eporch

100

101

Lo
ss

Contrastive Loss
Cross-entropy Loss

(b) Cross entropy and Contrastive loss for
L-SMELL training

Figure 6.5. Loss analysis for our propose.

greater dispersion of the loss values and a higher average loss value.
In Figure 6.5b, we observe separately the behavior of the two components that

define our loss, i.e., Rc and Hc. We noticed that, in the first moment, the value of Hc

has an upward behavior, while for Rc we see a drop in value. However, in the training of
L-SMELL, Hc has value reduced, while Rc has a growth trend.

Our proposal optimizes two spaces simultaneously (latent feature space and S-
space). So we believe that the model does not use any prior information, it has an
extensive search space solution, and therefore, it has some difficulty to find an effective
solution for both representations. With the addition of Contrastive loss as a regularization
function, we observed a tendency for L-SMELL to estimate a latent feature space in than
similar points are close together. However, as we can see in Figure 3.3, our proposal can
build more complex latent space, so as L-SMELL finds effective solutions, the contrastive
loss becomes less relevant (and thus its value increases), the measure that these solutions
are estimating.

6.4.4 Metric learning visualization

To investigate the behavior of the proposal, we performed a qualitative assessment
on L-SMELL. Thus, we select one image for each class of dataset proposed in this chapter.
We compared each selected image with all other images used in experiment 1 with our
dataset. This evaluation can be seen in Figure 6.6 and 6.7.

In Figure 6.6, we randomly select an image that contains the parasite that causes
leishmaniasis and perform two comparisons. In the first comparison, we verified the

6. Case of Study: Diagnostic Aid Software for Leishmaniosis Detection60

0.3 0.4 0.5 0.6 0.7 0.8
qij

0

25

50

75

100

125

150

175

200

Fr
eq

ue
nc

y

mean
median
95\% CI

(a) Histogram for q−i

0.3 0.4 0.5 0.6 0.7 0.8
q +

ij

0

50

100

150

200

250

Fr
eq

ue
nc

y

mean
median
95\% CI

(b) Histogram for q+i

Figure 6.6. Quantitative evaluation of our proposal given a reference image with the parasite
that causes Leishmaniasis.

0.3 0.4 0.5 0.6 0.7 0.8
qij

0

50

100

150

200

250

300

350

Fr
eq

ue
nc

y

mean
median
95\% CI

(a) Histogram for q−i

0.3 0.4 0.5 0.6 0.7 0.8
q +

ij

0

25

50

75

100

125

150

175
Fr

eq
ue

nc
y

mean
median
95\% CI

(b) Histogram for q+i

Figure 6.7. Quantitative evaluation of our proposal given a reference image without the parasite
that causes Leishmaniasis.

similarity of the selected sample with all images used in experiment 1 that also have the
parasite, as we can see in Figure 6.6b. Finally, we compared all dissimilar images to the
selected image, i.e., that do not have the parasite caused by leishmaniasis, resulting in
the histogram shown in Figure 6.6a.

In Figure 6.6a, we see the distribution of q− for the image with parasite. We
verified that this histogram has a median equal to 0.26 and an average with a value of
0.3621 denote the behavior of heavy tail to the right. Analogously, Figure 6.6b shows
the histogram of q+ for the pairs of similar images. We observe heavy tail behavior
with mean and median equal to 0.7508 and 0.79242. The heavy tail indicates that our
proposal captures the context of dissimilarity/similarity. This behavior shows that most
of the points have a high dissimilarity/similarity value compare to our reference image.

In Figure 6.7, we randomly select an image that does not contain the Leishmania
parasite and compare it with all the remaining images in our dataset during experiment 1.
Thus, we present in Figure 6.7a, the distribution of q−j . We found a heavy tail behavior,

6. Case of Study: Diagnostic Aid Software for Leishmaniosis Detection61

with a median value around 0.2, i.e., our metric obtained a large count of dissimilarity
values. Also, there are few points with high similarity.

In Figure 6.6b, we observe the histogram for all images similar. We verified a
heavy tail behavior, a median value close to 0.8. This result is similar to the previous
experiments, indicating the good performance of our proposal.

With this quantitative experiment, we verified that our proposal can capture the
context of similarities to which the data are inserted, thus showing that L-SMELL is a
promising candidate to detect the Leishmaniasis parasite.

6.5 Conclusion

In this chapter, we propose L-SMELL. We consider that our proposals can simul-
taneously learn latent feature space and the similarity space.

We hypothesized that due to the complexity of the estimation of latent feature
space and S-space, It is difficult for L-SMELL to estimate an effective solution. So, with
the addition of contrastive loss as a regularization function, we were able to tend to search
the feature spaces. However, our proposal can build more complex latent space, so as L-
SMELL finds effective solutions, the contrastive loss becomes less relevant (and thus its
value increases), the measure that these solutions are estimating.

We conclude, with these experiments, if a dataset becomes unbalanced, then pro-
posals performance is degraded. However, the proposals based on Deep Metric Learning
had a less evident degradation if we compared them with other techniques used in this
chapter. Unlike classic literature proposals, which use information from a single element
to perform the inference, the deep metric learning approaches consider mutual informa-
tion obtained by pairs of elements, thus achieving a greater diversity of samples to be
used in training, and therefore, better performance in the classification.

62

Chapter 7

Case of Study: Malware
Classification

7.1 Introduction

Cyberattacks are today one of the main concerns in the realm of computer net-
works. Many attacks ranging from naive viruses to ransomware and then to sophisticated
malware like Stuxnet[48] jeopardize individual users’ privacy/safety and endanger entire
nations’ sovereignty. In fact, cyberattacks are so relevant nowadays that president Biden
said during his inauguration that his administration would make cybersecurity a top
priority 1.

The detection of malicious software that “deliberately fulfills its intention to harm
a system”–or malware for short [71]– is one of the most relevant security problems. For
instance, the incidence of a single malicious software can cause up to millions of dollars
in damage [5].

Per Raff et al. [73], some of the biggest challenges in malware detection are:

– Software bytes can indicate a wide range of information. The meaning of any
particular byte is context-sensitive and can be encoded by human-readable text
(for example, function names from the import table), binary code, among others.

– Software codes, and consequently bytes of binary code, exhibit several types of
spatial correlation. These correlations, in turn, have discontinuities in function calls
and jump commands.

– By treating each byte as a unit in a sequence, we are dealing with a classification
problem of an order of two million steps. In this sense, it is impracticable to use a
naive sequential neural network for this task.

Antivirus is perhaps the most popular approach for malware detection. Tradition-
ally, those products employ signature-based strategies for malware detection. Broadly,

1https://www.voanews.com/usa/us-biden-voice-new-alarm-about-cyberattack

https://www.voanews.com/usa/us-biden-voice-new-alarm-about-cyberattack

7. Case of Study: Malware Classification 63

whenever a suspect software is reported, it goes through an analysis process. If the soft-
ware is regarded as malware, then a unique signature is generated and then added to the
antivirus product database [7, 106].

Unfortunately, however, malwares also have their ways of tricking antivirus and
security countermeasures alike. For example, malwares can employ encryption to disguise
their real signature and then not decrease the effectiveness of antivirus [88]. One of the
reasons antivirus misclassifies malware is that they mainly focus on each malware file
individually instead of considering cross-files information.

As a solution to this problem, we came up with Malware-SMELL, a novel similarity
function meant to detect malware. Malware-SMELL gets two new data representation
spaces: latent feature space and similarity space.

Malware-SMELL receives a pair of objects associated with a similarity label, i.e.,
if a pair of objects have the same class, they are called similar. Similarly, we define a pair
of objects to be dissimilar, if they have different classes. Therefore, for each input pair,
Malware-SMELL estimates a new normalized feature vector using an encoder function.
This new representation is called a latent feature space.

Also, Malware-SMELL uses an auxiliary representation, called the similarity space
(or S-Space), which helps in the construction of latent feature space. In S-space, we define
similarity and dissimilarity markers to group the vectors into their respective representa-
tions (similar or dissimilar). Note that, for an input pair, we have two representations in
the latent feature space, while that same pair is represented by a single vector in S-Space.

In training, Malware-SMELL simultaneously estimates latent feature space and
S-Space. S-Space consists of disjunct regions, forming clusters referring to similar and
dissimilar data pairs. We estimate the similarity through a T-student distribution between
the new representations of the data in S-Space and the markers found by our approach. As
we perform data normalization in latent feature space, the Euclidean distance is equivalent
to Pearson’s Correlation [50].

Overall, the main contributions of this chapter are:

– We propose a new approach to malware detection based on image representation of
files extracted from binary code. Through the spaces estimated by Malware-SMELL
(latent feature space and S-space), our proposal estimates a new similarity function.

– Due to the S-space estimate, our proposal can classify new unknown families of
malware that had not been used in training (Zero-shot learning).

– Due to our pair selection strategy to model training, Malware-SMELL can make
inferences on unbalanced data sets.

– Due to the restriction of normality of vectors in latent feature space (norm equal to
1), Euclidean distance in this space corresponds to Pearson’s Correlation. Therefore,

7. Case of Study: Malware Classification 64

grouping a set of similar pairs corresponds to identifying a new representation of
the data that have sections with high Pearson’s correlation between them.

We have performed a series of experiments over the analyzed dataset and shown
that Malware-SMELL outperforms baseline methods by a ratio of 0.56 %. In addition,
if we consider the classification problem in the context of Zero-shot learning, Malware-
SMELL outperforms baseline methods by a ratio of 29.09 %.

7.2 Related Work

To obtain efficiency and robustness malware analysis techniques study the behavior
and structure of executables, extracting resources that can describe their malicious intent.
Traditionally, the methods are classified based on the static and dynamic analysis of the
program files and by the feature extraction approach used.

The dynamic analysis consists of an automated classification system based on
heuristics that examine the sample execution behavior in its network activities, reading,
and writing operations in a restricted area environment. Although a dynamic analysis
component is likely to be important for a long-term solution, such an approach is still
slow, requires high computational power, and requires a controlled environment to ensure
good results.

On the other hand, static analysis detects an executable file without executing
code execution in real-time. Using signature-based methods, it identifies patterns of
strings extracted through observations of the binary code or the internal file structure, so
it requires unzipping the program before doing the analysis [79].

Among the set of static malware analysis, image-based approaches are gaining
popularity due to their ease of use and the existence of infrastructure for synthetic im-
ages [28, 62]. In such methods, executable files are converted into grayscale images,
making it possible to use traditional image processing methods. Once the construction
of the malware image from the executable file is able to maintain information from the
program’s code, text and resources sections, promising results have been acquired [61].

Many methods have calculated the similarity between different representations of
the malware images to perform the classification. Lim et al. [34] generated arrays of
RGB images of Opcode strings extracted from the malware and calculated similarities
between the arrays using simHash. His experimental results showed that his method
ranks effectively with 98.96% accuracy. Han et al. [35] converted executable files into

7. Case of Study: Malware Classification 65

Table 7.1. Main articles that used a visual representation of malware to infer the binary
condition. In addition, we verify which articles use an approach to imbalanced dataset (I. D.)
and Zero-shot learning approaches (Z. S. L.)

Paper Approach Taxonomy I. D. Z. S. L. year

[45] Garbor + Wavelet Features extraction ✗ ✗ 2013
[111] SURF + LHS Features extraction ✗ ✗ 2014
[47] CMYK + RF Features extraction ✗ ✗ 2016
[2] CNN + SVM NN ✗ ✗ 2017
[43] Hamming Distance + CNN Features extraction + NN ✗ ✗ 2018
[19] Subsampling + CNN NN ✓ ✗ 2018
[1] GMM Features extract ✗ ✗ 2019
[8] SOINN NN ✗ ✗ 2019

[118] SPP + CNN NN ✗ ✗ 2019
[17] Gabor + RF Features extraction ✗ ✗ 2019
[85] CNN NN ✗ ✗ 2019
[76] CNN features + SVM NN ✗ ✗ 2019
[94] CNN + LSTM NN ✗ ✗ 2019
[72] CNN + SVM NN ✗ ✗ 2019
[114] CNN + Attention NN ✗ ✗ 2019
[30] ResNeXt NN ✗ ✗ 2020
[117] RCNN NN ✗ ✗ 2020
[119] R-CNN NN ✗ ✗ 2020
[77] gcForest Deep Learning ✗ ✗ 2020
[93] Enseble CNN NN ✗ ✗ 2020
[121] CapsNet NN ✓ ✗ 2021
[10] UMAP Manifold Learning ✗ ✓ 2021
[92] CNN + Finetuning NN ✓ ✗ 2021

Our approach Malware-SMELL Deep metric learning ✓ ✓ 2021

grayscale images and introduced a similarity technique based on entropy graphs. His
experimental results showed that his method achieves a 97.9% similarity rate.

The analysis of binary texture resources using local and global descriptors also
proved to be an alternative for the classification of malware. Ban et al. [111] extracted
local features from the images using the SURF (Speeded up robust feature) descriptor
and performed the correspondence using LSH (Local sensitive hashing). Such a method
achieved 85% accuracy in the ranking task.

Applying a global features analysis approach, Lakshman et al. [63] and Aziz et
al. [55] proposed the use of the GIST descriptor and the K-nearest neighbors (KNN)
algorithm for classification. His experimental results indicated that his technique achieves
96% accuracy. Kumar et al. [47] analyze images based on malware with different color
representation systems. The authors use different color systems (grayscale, RGB, CMYK
and HSL) and extract features using GIST to perform classification with Random Forest.

Following a different path, Barath et al. [61] introduced a new technique of static
visual analysis for extracting global resources from images in the Microsoft Malware Clas-
sification Challenge (BIG 2015) dataset, using PCA. Three algorithms, namely, support
vector machine (SVM), and K-nearest neighbors (KNN) are applied to classify malware
based on PCA resources. Such a method achieved 96.6 % accuracy with KNN.

Deep learning has been applied in various fields of knowledge such as speech recog-
nition, image classification and dimension reduction as a powerful feature extract tool.
Neural networks (NN) seek to learn a non-linear feature representation, they usually over-

7. Case of Study: Malware Classification 66

perform standard features description (e.g. GIST, SURF, PCA) found in the literature.
Roseline et al. [77] use a Deep Forest (Forest) to classify malware. This method

generates a deep forest ensemble, with a cascade structure which enables gcForest to
representation learning. Its representational learning ability can be further enhanced by
multi-grained scanning when the inputs are with high dimensionality, potentially enabling
gcForest to be contextual or structural aware.

We see in Singh et al. [85], the authors use a convolutional neural network to classify
malware files. The authors apply a color map and based on the new visual representation,
they obtained 96.08 % accuracy for their dataset. In Go et al. [30], the authors use a
neural network based on ResNeXt to classify images based on malware.

Vasan et al. [93] propose an ensemble formed with convolutional neural networks
for malware detection. Thus, for each neural network architecture, the authors apply the
PCA to the features found by the convolutional layers, and with this new representation,
they use a classifier obtaining 98.11% accuracy.

Yakura et al. [114] propose the use of an attention mechanism to calculate the
attention map, which is expected to specify regions having higher importance for classifi-
cation. This distinction of regions enables the extraction of characteristic byte sequences
peculiar to the malware family without prior knowledge.

We also see that several studies use convolutional layers (CNN’s) associated with
different classification approaches. Vinayakumar et al. [94] proposes a neural network
architecture that combines convolutional (CNN) and recurrent (LSTM) layers to identify
malware based on visual representation.

The authors in [117] propose a new neural network architecture called recurrent
convolutional neural network (RCNN). In this architecture, the authors construct some
stages of CNN (feature extraction and max polling) recursively. In the recurring stage, the
authors resize the images in order to identify different representations of the same object.
With RCNN, the authors identify malware through the visual representation (grayscale)
obtained through the binary file, obtaining 91.64 % accuracy based on Exploit kits.

The authors in [119] use a Region-Convolutional Neural Networks (R-CNN) to
classify malware. R-CNN was initially proposed for the identification of regions and,
therefore, for object detection. The authors used a trained architecture and performed
transfer learning for the target dataset (which contains the visual representations of the
malware). The authors obtained 92.8 % accuracy for a set of JPEG images infected with
malware.

In [2, 72, 76], the authors use the features extracted from the convolution layers and
are used by the SVM algorithm to classify malware. Note that [2, 72] SVM are designed
specifically for the problem and we can train CNN and SVM simultaneously whereas
Rezende et al. [76] use the features found in CNN training and, this new representation
was used with an SVM classifier.

7. Case of Study: Malware Classification 67

We noticed that the datasets referring to malware have imbalanced data (I. D.).
Thus, techniques that consider this type of problem are interesting for the task of classi-
fying malware.

In [121], the authors propose to use a Capsule Neural Network (CapsNet) for
malware classification. CapsNet is a Neural Networks that can be used to better model
hierarchical relationships. The idea is to add structures called “capsules” to a convolutional
neural network (CNN), and to reuse output from several of those capsules to form more
stable (with respect to various perturbations) representations for higher capsules [78] and
imbalance datasets inference.

In another work, Cui et al. [19] propose to use a convolutional neural network to
identify malware based on its visual representation, but differently from some approaches,
a sub-sample of the dataset was performed for each training round of the algorithm for
mitigate imbalance class problem.

Approaches that can classify unknown malware (that were not in the training set),
are very promising in this type of task. Zero-shot learning (Z. S. L.) is a problem setup in
machine learning, where at test time, a learner observes samples from classes that were
not observed during training.

The authors in [10] propose the use of a manifold learning and dimension reduc-
tion technique called UMAP for the problem domain and evaluated its contribution to
unknown malware detection problem (zero short learning).

The methods mentioned in this section indicate the feasibility of learning to classify
malware from the input data using a visual representation. Table 7.1 summarizes the
malware classification works using a visual representation.

However, we found that literature proposals typically use descriptors to capture
information from a single object. Therefore, we developed a new method that captures
pairwise information from data pairs. Thus, we propose a new measure of similarity
designed for the context of malware identification. To the best of our knowledgment, this
chapter is the first deep metric learning approach in the context of identifying malware
through a visual representation.

7.3 Malware-SMELL

As defined in Section 3.2, we use, in Malware-SMELL, a latent feature space and S-
space, but we propose a new version of SMELL for image classification. Note that, unlike
SMELL, in this chapter we normalize the vector in latent feature space (||fΘ(xi)||2 = 1).
We describe the loss function for this version of SMELL.

7. Case of Study: Malware Classification 68

ENC

ϴ

fϴ(
X1)

fϴ (X2)
| fϴ(X1) - fϴ(X2) |

Original feature
space

z1
(Normalized)

z2
(Normalized)

Latent feature
space S-space

Pairwise
Similarity

Input

Secure

CNN-SMELL

Figure 7.1. The left side represents the encoder function for a image pair in original feature
space. At the end of this propose, we decide if image has leishmaniasis.

7.3.1 Loss Function

Our proposal conducts the simultaneous training of the set M, and latent feature
space with parameters Θ and Θ′ for the encoder and decoder functions, respectively.

We defined the cost function

J({X × X}) = Hc(U||Q) +Rc +Rr, (7.1)

where Hc is the cross-entropy loss, Rr is reconstruction function and Rc is a regularization
function to avoid overfitting in the training process.

We can define the contrastive loss as a function that minimizes the distance be-
tween similar points and imposes a restrictive distance between the points of dissimilar
classes [33]. So, we can define the contrastive loss for a pair (xi,xj) as

Rc(xi,xj) =

rc||fΘ(xi)− fΘ(xj)||22, if ℓ(xi) = ℓ(xj)

rc[p− ||fΘ(xi)− fΘ(xj)||2]2+, on the contrary,
(7.2)

where rc is a calibration term, and operator [.] = max(0, .) is the hinge function. In this
chapter, following [33] we use the margin p = 1.

Note than Rc function works only in the latent feature space, minimizing the Eu-
clidean distance between similar points. The Hc function acts in the latent feature space
and the S-space simultaneously, grouping the elements sij around the respective markers.

7. Case of Study: Malware Classification 69

Binary to 8 bit vector

8 bit vector to 2D
array

Figure 7.2. Schemer for malware dataset creation

7.4 Methodology

7.4.1 Dataset

To analyze the performance of Malware-SMELL we used the Malimg Dataset [62],
developed by the University of California’s vision research laboratory 2. This data set con-
tains 9339 samples from 25 malware families, obtained through experiments of mixtures
of network and the Windows operating system malware.

For the generation of the dataset, each malware binary data, which consists of an
8-bit unsigned integer vector, is organized in a two-dimensional matrix resized to 64 x 64
dimension and viewed as a grayscale image, as can see in Figure 7.2. Thus, sample variants
belonging to the same malware family will have similar visual and textural characteristics.
Details about the dataset can be found in Table 7.2.

7.4.2 Network evaluation

To evaluate our approach, we apply a K-Nearest Neighbor classifier, with three
neighbors, in agreement with [9]. The KNN classification performance can often be sig-
nificantly improved through (supervised) metric learning. In addition, we use KNN with
the Euclidean distance to compare with our proposal, e.g., sanity check.

2https://vision.ece.ucsb.edu/research/signal-processingmalware-analysis

https://vision.ece.ucsb.edu/research/signal-processingmalware-analysis

7. Case of Study: Malware Classification 70

Table 7.2. Description of the malware classes and families present in the Mailing dataset

Class Family # of samples

Backdoor Agent.FYI 116
Backdoor Rbot!gen 158

Dialer Adialer.C 125
Dialer Dialplatform.B 177
Dialer Instantaccess 431
PWS Lolyda.AA 1 213
PWS Lolyda.AA 2 184
PWS Lolyda.AA 3 123
PWS Lolyda.AT 159
Rogue Fakerean 381

TDownloader Dontovo.A 162
TDownloader Obfuscator.AD 142
TDownloader Swizzot.gen!I 132
TDownloader Swizzot.gen!E 128
TDownloader Wintrim.BX 97

Trojan Alueron.gen!J 198
Trojan C2Lop.gen!g 200
Trojan C2Lop.P 146
Trojan Malex.gen!J 136
Trojan Skintrim.N 80
Worm Allaple.L 1591
Worm Allaple.A 2949
Worm VB.AT 408
Worm Yuner.A 800

Worm:AutoIT Autorun.K 106

We used 10-fold cross-validation. This validation can largely retain heterogeneous
distributions in the training set and improve statistical confidence in the results.

For evaluation, we calculate average accuracy (ACC), average precision (PREC),
average recall (REC), and average F1-Score (F1-Score).

These evaluation metrics have been extensively used in research community to
provide detailed assessments of methods.

So, we can define True Positive (TP): means correct detection of a benign; True
Negative (TN): means correct identification of malware; False Positive (FP): means
false identification of malware as a benign application; False Negative (FN): means false
identification of a benign file as malware, and

– Accuracy is defined as the ratio of correctly predicted outcomes to the sum of all
predictions, as follows:

ACC =
TN + TP

TN + FN + TP + FP
.

7. Case of Study: Malware Classification 71

– Precision determines if the positive predictions of the model are correct and is
calculated by dividing the sum of true positives by all positive predictions as:

PREC =
TP

FP + TP
.

– Recall is the positives identified by the model among all possible positives and is
obtained by dividing true positives by the sum of actual positives as:

REC =
TP

TP + FN
.

– F1 score is the weighted average of recall and precision. Balanced F-score (F1 score)
or F-measure is the harmonic mean of recall and precision,

F1− Score = 2 ∗ PREC ∗REC
PREC +REC

.

To evaluate Zero-shot learning, we used Recall@K, as seen in [101]. Each test
image (query) first retrieves K nearest neighbors from the test set and receives score 1 if
an image of the same class is retrieved among the K nearest neighbors and 0 otherwise.
Recall@K averages this score over all the images.

7.4.3 Parameters initialization and network architecture

We initialize all weights of the autoencoder layers following [46]. We initialized
Markers position with Lloyd’s algorithm [53]. For the encoder, we used the convolutional
layers of the VGG 19 architecture as a feature extractor, proposed by [84].

Thus, after the convolutional layer, we designed a feedforward network with three
layers of dimensions f-4096-d, where f is the output of the convolutional feature extractor,
and d is the latent feature space representation. For this chapter, we used d = 256.
All layers are fully connected, and we used as activation function the Rectified Linear
Unit(ReLU).

Besides, we used mini-batch Stochastic Gradient Descent (SGD) where the learning
rate is 0.01, and momentum is 0.9.

Since the optimization model depends on some hyperparameters (rc, w, k), we
performed an investigation to determine which value of these variables would maximize
the model accuracy.

7. Case of Study: Malware Classification 72

0.5 0.6 0.7 0.8 0.9 1.0
q +

ij

0

200

400

600

800

1000

1200

1400

Fr
eq

ue
nc

y

mean
median
95\% CI

(a) Similarity frequency distribution
for Allaple.A class.

0.2 0.4 0.6 0.8 1.0
q +

ij

0

50

100

150

200

250

300

350

400

Fr
eq

ue
nc

y

mean
median
95\% CI

(b) Similarity frequency distribution
for Allaple.L class.

Figure 7.3. Two analysis of the similarity of Malware-SMELL a random choice.

We used a grid search approach for hiperparameters optimization, where we found
rc = 10−1, similarity markers k = 3, dissimilarity markers w − k = 2, these values were
used in the rest of this chapter.

7.5 Results and Discussion

7.5.1 Metric Learning

To qualitatively evaluate the performance of our proposal, we investigated the
behavior of the similarity function found by Malware-SMELL. Thus, we randomly select
an element x and calculate the similarity with Malware-SMELL for all similar pairs (x,
xj), i.e., x has the same label as xj. Among the classes with the largest number of
elements, we selected a unique object for each evaluation, as we can see in Figure 7.3.

Initially, for the class Allaple.A, we can see in Figure 7.3a similarity distribution
for q+. We can see that the distribution is asymmetrical, with a heavy tail on the left.
The median (50 % of the analyzed values) is 0.982, indicating that our metric had a
satisfactory result since all the analyzed pairs are similar. This behavior indicates that
most points have high similarity. Also, we see that the average has a 0.936, even in a
heavy tail distribution, which tends to decrease the value of the average considerably.

Looking at Figure 7.3b, we see similar behavior for an element of the class Allaple.L.
The median has a 0.93, indicating the behavior of a heavy tail.

We observed the similarity space formed by Malware-SMELL. We selected a ran-

7. Case of Study: Malware Classification 73

0.4 0.2 0.0 0.2 0.4
PC1

0.4

0.2

0.0

0.2

0.4

0.6

0.8

PC
2

Similar
Dissimilar

Figure 7.4. The similarity space for our proposal. We randomly selected 400 pairs of data (200
similar and 200 dissimilar).

dom sample of 400 pairs (200 similar and 200 dissimilar). As defined in section 3.2, a pair
of objects represents a single point in S-space. Pink circles and black triangles represent
dissimilar and similar labels, respectively.

We see that S-space forms two well-defined disjoint regions. This behavior indicates
that the model obtained a good estimate of similarity.

7.5.2 Comparative results

We compared our proposal with 12 standard techniques found in literature and a
sanity check with the usual KNN for Euclidean distance. We use the metrics described
in Section 7.4.2. The results were reported in Table 7.3.

For the sanity check, we noticed a significant difference between our proposal and
standard KNN equal 47.70% for the F1-Score metric.

Vinayakumar et al. [94] achieves the best average accuracy result when compared
with other techniques, resulting in 98.59%. The second and third best results were ob-
tained by Malware-SMELL and Roseline et al. [77] with 97.76% and 97.21% respectively,

7. Case of Study: Malware Classification 74

Table 7.3. Table showing the results for the analyzed dataset. The best values are represented
in bold and * represents the values without a statistically significant difference.

Proposal ACC PREC REC F1-Score

SURF + SVM 31.58% (0.02%) 1.26% (0.01%) 3.99% (0.01%) 1.92% (0.01%)
KNN (Euclidian) 39.86% (0.07%) 64.62% (0.09%) 39.85% (0.07%) 41.99% (0.09%)

GLCM + SVM [19] 62.96% (0.81%) 56.04% (1.51%) 62.96% (0.81%) 53.64% (1.09%)
BAT [19] 69.15 % (43.39 %) 66.45 % (43.43 %) 67.80 % (41.78 %) 66.42 % (42.35 %)

Garbor + RF [17] 80.89% (0.79%) 78.74% (0.72%) 80.89% (0.79%) 78.49% (0.80%)
HOG + SVM 89.09% (0.84%) 88.28% (0.93%) 89.09% (0.84%) 88.23% (0.91%)

GIST + SVM [76] 92.20% (1.35%) 92.50% (2.57%) 91.40% (3.57%) 92.41% (3.20%)
CNN + SVM [3] 94.12% (5.55 %) 88.86 % (8.69 %) 88.82 % (8.62 %) 88.44 % (9.16 %)

VGG 19 [85] 95.15% (0.58%) 89.84% (1.25%) 90.23% (1.15%) 89.81% (1.23%)
Singh et al. [85] 95.57 % (4.39 %) 95.89 % (3.58 %) 95.56 % (4.39 %) 95.21 % (4.91 %)

UMPA [10] 96.62 % (0.33 %) 95.26 % (0.62 %) 94.29 % (0.81 %) 94.54 % (0.74 %)
Roseline et al. [77] 97.21 % (0.38 %) 97.23 % (0.38 %) 97.21 % (0.37 %) 97.14 % (0.38 %)

Vinayakumar et al. [94] ∗98.59 % (0.26 %) 96.57 % (0.76 %) 96.33 % (0.74 %) 96.33 % (0.74 %)
Malware-SMELL 97.76% (0.49%) ∗97.84% (0.52%) ∗97.76% (0.49%) ∗97.69% (0.51%)

representing 0.83% and 1.36% difference for Vinayakumar et al. [94]. However, when we
analyze the other metrics, this difference becomes more evident. Probably this behavior
occurs because the dataset is unbalanced, with the sum of the two major classes equal
to 4540 (representing 48.61% of the dataset). Therefore, other metrics are needed to
evaluate the performance of the techniques.

Analyzing the precision, we see that Malware-SMELL achieves 97.84%. The
second-best result obtained 97.23% with Roseline et al. [77] technique, thus totaling 0.61%
difference. This difference becomes greater when compared to Vinayakumar et al. [94]
(third-best result), equal 1.27%.

Observing the recall, we see that the second and third-best performance in the
analyzed dataset is obtained by the proposals Roseline et al. [77] and Vinayakumar et
al. [94], with 97.21% and 96.33% respectively. When compared to Malware-SMELL, which
obtained the best performance with 97.76%, we noticed a difference of 0.36% and 1.43%.

Finally, we evaluated the performance of the proposals using the F1-score metric
(harmonic average of the precision and recall). Malware-SMELL again obtained the best
result of 97.69%, when compared with the second and third best approach 97.14% and
96.33% obtained by Roseline et al. [77] and Vinayakumar et al. [94], respectively.

We observed that Malware-SMELL managed to be the best technique among all
analyzed. In addition, we performed the t-student test for static comparison between the
results. For PREC, REC and F1-Score, the result obtained by Malware-SMELL has a
static difference to the other approaches. Figure 7.5 show the latent feature space for
Mailing dataset found by Malware-SMELL.

7. Case of Study: Malware Classification 75

0.0 0.5 1.0 1.5 2.0 2.5
0.5

1.0

1.5

2.0

2.5

Adialer.C
Agent.FYI
Allaple.A
Allaple.L
Alueron.gen!J
Autorun.K
C2LOP.P
C2LOP.gen!g
Dialplatform.B
Dontovo.A
Fakerean
Instantaccess
Lolyda.AA1
Lolyda.AA2
Lolyda.AA3
Lolyda.AT
Malex.gen!J
Obfuscator.AD
Rbot!gen
Skintrim.N
Swizzor.gen!E
Swizzor.gen!I
VB.AT
Wintrim.BX
Yuner.A

Figure 7.5. Latent feature space for malware dataset (n=2)

7.5.3 Zero short learning results

Our proposal estimates two representation spaces: latent feature space and S-space.
In this way, we were able to estimate similarity between unknown malware, i.e., class of
malware that did not appear in training set (Zero-shot learning). Therefore, we investigate
the behavior of malware detection proposals that consider Zero-shot learning, as seen in
Table 7.1.

In Table 7.4, we evaluate the behavior of Malware-SMELL and UMPA for Malimg
Dataset. Initially, we randomly selected 12 classes for training (Adialer.C, Agent.FYI, Al-
laple.A, Allaple.L, Alueron.gen!J, Autorun.K, C2LOP.P, C2LOP.gen!g, Dialplatform.B,
Dontovo.A, Fakerean, Instantaccess) totaling 6579 images. All other 14 classes remain-
ing (Lolyda.AA1, Lolyda.AA2, Lolyda.AA3, Lolyda.AT, Malex.gen!J, Obfuscator.AD,
Rbot!gen, Skintrim.N, Swizzor.gen!E, Swizzor.gen!I, VB.AT, Wintrim.BX, Yuner.A) were
used for testing totaling 2760 images.

As described in Section 7.4.2, we use Recall@K to evaluate the behavior of Zero-
Shot-Learing proposals for different K values. Thus, we adopt K = {1, 4, 8, 10, 40, 80}.
Notice how Skintrim.N has only 80 samples, we cannot adopt K > 80.

In Table 7.4, we see that for all K values analyzed, Malware-SMELL has the best

7. Case of Study: Malware Classification 76

Table 7.4. Description of the malware classes and families present in the Mailing dataset

Recall@K (%)

Propose K = 1 K = 4 K = 8 K = 10 K = 40 K = 80

UMPA [10] 82.72 % 76.98 % 76.25 % 72.56 % 63.29 % 53.33 %
Malware-SMELL 95.47 % 94.79 % 94.08 % 93.32 % 89.26 % 86.69 %

performance. In addition, as the K value increases, we realize that the degradation of
the result in Malware-SMELL is less than UMPA. For K = 1 we have that our proposals
reach 95.47 % of Recall@K, while UMPA has 82.72 %, resulting in a difference of 12.75 %.
However, as the value increases, i.e., K = {4, 8, 10, 40, 80} we have a difference between
Malware-SMELL and UMPA of {17.81%, 17.83%, 20.76%, 25.97%, 33.36% } respectively.

7.6 Conclusions and Futures Work

In this chapter, we propose a new metric of similarity to identify malware using
visual representation. Our proposal, called Malware-SMELL, finds two representations
(latent feature space and similarity space) that quantify similarity between objects. Due
to the fact that Malware-SMELL is the first deep metric learning proposal for identify-
ing malware using image representation, our approach is a promising technique, when
compared to techniques found in the literature.

In future works, we will build the space of similarity with the Generative Adver-
sarial Network. We believe that with a generative model, we will be able to improve
the metric extracted by our proposal. In addition, we will extend our analysis to more
datasets.

77

Chapter 8

Conclusion

This chapter presents the final thoughts about this dissertation. In Section 8.1, we rein-
force the achieved contributions while we provide our view about future research direc-
tions that can follow from this dissertation. Section 8.2 shows the list of publications we
achieved during this dissertation.

8.1 Conclusions and outlook

In this dissertation, we proposed a Supervised Distance Metric learning Encoder
with Similarity Space (SMELL), based on the fact that the distance metrics can be si-
multaneously learned along with a latent representation of the data and the similarity
markers.

It is worth noticing that all four parts play a major role. Firstly, the autoencoder
maps data to the latent space. Secondly, the sum of distances assures that markers
capture similarities. Thirdly, the cross-entropy loss function assures that markers captures
the similar and dissimilar classes. Finally, the repulsive regularizer ensures some level of
diversity on the marker set, guaranteeing that markers capture complex similarity regions
such as disjoint similarity/dissimilarity regions.

We hypothesized that SMELL groups data points consider similar and increases
classes separability. We showed evidences that support our hypothesis by a comprehensive
behavior analysis.

Due to the construction of the auxiliary space (S-space), we were able to map the
latent feature space in the S-space, and, we extracted some theoretical guarantees about
the SMELL observing only the position of the markers. In addition, for a particular case
of our proposal, we calculate the theoretical misclassification risk function.

We also conducted an extensive validation of our proposal comparing it to many
methods over different type of input data. We obtained promising results and, in general
context, we got best results. We also carried out a study on the SMELL hyper-parameters.

8. Conclusion 78

In the ablation study, we checked several versions of SMELL in order to understand the
contribution of each component.

Specifically for the MNIST, image dataset, we were able to carry out a qualitative
assessment about SMELL for this dataset. We note that, besides separating the groups,
our proposal preserves the semantics of the data.

We intend to investigate the possible applications for this type of approach, as
well as to use the Proposition 3.2.2 to build a novel loss function specifically tailored for
SMELL.

For chapter 6, we propose, a new method of deep metric learning for Leishmaniasis
Parasite Detection in Bone Marrow Smears. In this chapter, we use Contrastive Loss as
a regularization function, to improve SMELL convergence.

We hypothesized that due to the complexity of the estimation of latent feature
space and S-space, It is difficult for L-SMELL to estimate an effective solution. So, with
the addition of contrastive loss as a regularization function, we were able to tend to search
the feature spaces. However, our proposal can build more complex latent space, so as L-
SMELL finds effective solutions, the contrastive loss becomes less relevant (and thus its
value increases).

For chapter 7, we propose, a new method of deep metric learning to classify mal-
ware using visual representation. We compare our proposal to many different approaches.
According to the four quantitative metrics used, our method overcomes all baseline strate-
gies from the literature.

We have performed a series of experiments over the analyzed dataset and shown
that Malware-SMELL outperforms baseline methods by a ratio of 0.56 %. In addition,
if we consider the classification problem in the context of Zero-shot learning, Malware-
SMELL outperforms baseline methods by a ratio of 29.09 %. The best of our knowledge,
this is the first proposal of deep metric learning in the context of classification of malware
with image representation.

8.2 Publication

In the following sections we list the publications achieved during this dissertation.
The list is divided into four categories: (i) periodical papers, (ii) conference papers, (iii)
under submission, and (iv) short course. Works that start with a (X) mark are related to
a direct contribution of this dissertation.

8. Conclusion 79

8.2.1 Periodical papers

Barros, P. H., Cardoso-Pereira, I., Allende-Cid, H., Rosso, O. A., Ramos, H. S.
(2020). Leveraging Phase Transition of Topics for Event Detection in Social Media.
IEEE Access, 8, 70505-70518.

8.2.2 Conference papers

Barros, P. H., Cardoso-Pereira, I., Foschini, L., Corradi, A., Ramos, H. S. (2019,
June). Load balancing in D2D networks Using Reinforcement Learning. In 2019
IEEE Symposium on Computers and Communications (ISCC) (pp. 1-6). IEEE.

Cardoso, I., Barros, P. H., Borges, J., Loureiro, A. A. F., Ramos, H. S. (2019,
May). Classificação de Séries Temporais Através de Grafos de Transição de Padrões
Ordinais. In Anais do XXXVII Simpósio Brasileiro de Redes de Computadores e
Sistemas Distribuídos (pp. 622-635). SBC.

Tenorio, F. F. A., Chagas, E., Barros, P. H., Ramos, H. S. (2019, September).
Detecçao de eventos no twitter através de grafos de visibilidade natural. In Anais
do III Workshop de Computação Urbana (pp. 181-193). SBC.

8.2.3 UnderSubmission

(X) Neuralcomputing : Barros, P. H., Queiroz, F., Figueredo, F., Santos, J. A.
D., Ramos, H. S. (2020). A New Similarity Space Tailored for Supervised Deep
Metric Learning. arXiv preprint arXiv:2011.08325.

8.2.4 Short course

https://www2.dcc.ufmg.br/cursos/deeplearning/

8. Conclusion 80

8.2.5 Open Work

In addition, we have 4 papers in the writing process.

– The paper analyzes mobility patterns in the context of the SARS-Cov-2 pandemic.
In this work we use the epidemiological model to characterize mobility. This work
will be sent to the PLOS ONE Journal.

– (X) Titled paper: Supervised Distance Metric learning Encoder with Similarity Space
for malware classification through image representation. This paper is an extension
of Chapter 7. This work will be sent to the Computer Networks Journal.

– (X) Titled paper: Deep Learning for Leishmaniasis Parasite Detection in Bone
Marrow Smears. This paper is an extension of Chapter 6. This work will be sent
to the IEEE Transactions on Medical Imaging.

– (X) Titled paper: Zero-shot learning tailored Similarity Space for Space-time cor-
relation grouping sensors in smart buildings. This work groups sensors located in
same environment (for example, room), based on Zero-Short Learning paradigm
with a new version of SMELL adapted for time series. This work will be sent to the
Expert Systems with Applications Journal.

81

Bibliography

[1] Abdullayeva, F. (2019). Malware detection in cloud computing using an image vi-
sualization technique. In 2019 IEEE 13th International Conference on Application of
Information and Communication Technologies (AICT), pages 1–5.

[2] Agarap, A. F. and Pepito, F. J. H. (2018a). Towards building an intelligent anti-
malware system: A deep learning approach using support vector machine (SVM) for
malware classification. CoRR, abs/1801.00318.

[3] Agarap, A. F. and Pepito, F. J. H. (2018b). Towards building an intelligent anti-
malware system: A deep learning approach using support vector machine (SVM) for
malware classification. CoRR, abs/1801.00318.

[4] Ahmed, E., Jones, M., and Marks, T. K. (2015). An improved deep learning architec-
ture for person re-identification. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3908–3916.

[5] Anderson, R., Barton, C., Böhme, R., Clayton, R., Van Eeten, M. J., Levi, M.,
Moore, T., and Savage, S. (2013). Measuring the cost of cybercrime. In The economics
of information security and privacy, pages 265--300. Springer.

[6] Antinori, S., Calattini, S., Longhi, E., Bestetti, G., Piolini, R., Magni, C., Orlando,
G., Gramiccia, M., Acquaviva, V., Foschi, A., Corvasce, S., Colomba, C., Titone, L.,
Parravicini, C., Cascio, A., and Corbellino, M. (2007). Clinical Use of Polymerase
Chain Reaction Performed on Peripheral Blood and Bone Marrow Samples for the Di-
agnosis and Monitoring of Visceral Leishmaniasis in HIV-Infected and HIV-Uninfected
Patients: A Single-Center, 8-Year Experience in Italy and Review of the Literature.
Clinical Infectious Diseases, 44(12):1602–1610. ISSN 1058-4838.

[7] Bailey, M., Oberheide, J., Andersen, J., Mao, Z. M., Jahanian, F., and Nazario, J.
(2007). Automated classification and analysis of internet malware. In Kruegel, C.,
Lippmann, R., and Clark, A., editors, Recent Advances in Intrusion Detection, pages
178--197, Berlin, Heidelberg. Springer Berlin Heidelberg.

[8] Baptista, I., Shiaeles, S., and Kolokotronis, N. (2019). A novel malware detection
system based on machine learning and binary visualization. CoRR, abs/1904.00859.

Bibliography 82

[9] Barros, P. H., Queiroz, F., Figueredo, F., dos Santos, J. A., and Ramos, H. S. (2020).
A new similarity space tailored for supervised deep metric learning. arXiv preprint
arXiv:2011.08325.

[10] Bozkir, A. S., Tahillioglu, E., Aydos, M., and Kara, I. (2021). Catch them alive: A
malware detection approach through memory forensics, manifold learning and computer
vision. Computers and Security, 103:102166. ISSN 0167-4048.

[11] Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1994). Signature
verification using a" siamese" time delay neural network. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), pages 737--744.

[12] Cakir, F., He, K., Xia, X., Kulis, B., and Sclaroff, S. (2019). Deep metric learning
to rank. In 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1861–1870.

[13] Cao, X., Ge, Y., Li, R., Zhao, J., and Jiao, L. (2019). Hyperspectral imagery classi-
fication with deep metric learning. Neurocomputing, 356:217 – 227. ISSN 0925-2312.

[14] Cheng, G., Yang, C., Yao, X., Guo, L., and Han, J. (2018). When deep learning meets
metric learning: Remote sensing image scene classification via learning discriminative
cnns. IEEE Transactions on Geoscience and Remote Sensing, 56(5):2811–2821.

[15] Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learning a similarity metric dis-
criminatively, with application to face verification. In 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05), volume 1, pages
539--546.

[16] Chopra, S., Hadsell, R., LeCun, Y., et al. (2005). Learning a similarity metric
discriminatively, with application to face verification. In IEEE Computer Vision and
Pattern Recognition (CVPR), pages 539--546.

[17] Corum, A., Jenkins, D., and Zheng, J. (2019). Robust pdf malware detection with
image visualization and processing techniques. In 2019 2nd International Conference
on Data Intelligence and Security (ICDIS), pages 108–114.

[18] Cui, Y., Zhou, F., Lin, Y., and Belongie, S. (2016). Fine-grained categorization and
dataset bootstrapping using deep metric learning with humans in the loop. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19] Cui, Z., Xue, F., Cai, X., Cao, Y., Wang, G., and Chen, J. (2018). Detection
of malicious code variants based on deep learning. IEEE Transactions on Industrial
Informatics, 14(7):3187–3196.

Bibliography 83

[20] Davis, J. V., Kulis, B., Jain, P., Sra, S., and Dhillon, I. S. (2007). Information-
theoretic metric learning. In International Conference on Machine Learning (ICML),
pages 209--216.

[21] De Maesschalck, R., Jouan-Rimbaud, D., and Massart, D. L. (2000). The maha-
lanobis distance. Chemometrics and intelligent laboratory systems, 50(1):1--18.

[22] Deng, Z., Zhu, X., Cheng, D., Zong, M., and Zhang, S. (2016). Efficient knn classi-
fication algorithm for big data. Neurocomputing, 195:143 – 148.

[23] Deudon, M. (2018). Learning semantic similarity in a continuous space. In Advances
in Neural Information Processing Systems (NeurIPS), pages 986--997.

[24] Dizaji, K. G., Herandi, A., Deng, C., Cai, W., and Huang, H. (2017). Deep clustering
via joint convolutional autoencoder embedding and relative entropy minimization. In
2017 IEEE International Conference on Computer Vision (ICCV), pages 5747–5756.

[25] Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Darrell, T.
(2014). Decaf: A deep convolutional activation feature for generic visual recognition.
In Xing, E. P. and Jebara, T., editors, Proceedings of the 31st International Conference
on Machine Learning, number 1 in Proceedings of Machine Learning Research, pages
647--655, Bejing, China. PMLR.

[26] Elmahallawy, E. K., Sampedro, A. M., Rodriguez-Granger, J., Hoyos-Mallecot, Y.,
Agil, A., Navarro, J. M., and Fernández, J. (2014). Diagnosis of leishmaniasis. Journal
of Infection in Developing Countries, 8(8):961 – 972. ISSN 2036-6590.

[27] Farahi, M., Rabbani, H., and Mehri, A. (2014). Automatic boundary extraction
of leishman bodies in bone marrow samples from patients with visceral leishmaniasis.
Journal of Isfahan Medical School, 32(286).

[28] Fu, J., Xue, J., Wang, Y., Liu, Z., and Shan, C. (2018). Malware visualization for
fine-grained classification. IEEE Access, 6:14510--14523.

[29] Globerson, A. and Roweis, S. (2005). Metric learning by collapsing classes. In
International Conference on Neural Information Processing Systems, NIPS’05, pages
451--458.

[30] Go, J. H., Jan, T., Mohanty, M., Patel, O. P., Puthal, D., and Prasad, M. (2020).
Visualization approach for malware classification with resnext. In 2020 IEEE Congress
on Evolutionary Computation (CEC), pages 1–7.

[31] Goldberger, J., Hinton, G. E., Roweis, S. T., and Salakhutdinov, R. R. (2005).
Neighbourhood components analysis. In Advances in Neural Information Processing
Systems (NeurIPS), pages 513--520.

Bibliography 84

[32] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
http://www.deeplearningbook.org.

[33] Hadsell, R., Chopra, S., and LeCun, Y. (2006). Dimensionality reduction by learning
an invariant mapping. In 2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition (CVPR’06), volume 2, pages 1735--1742. IEEE.

[34] Han, K., Kang, B., and Im, E. G. (2014). Malware analysis using visualized image
matrices. The Scientific World Journal, 2014.

[35] Han, K. S., Lim, J. H., Kang, B., and Im, E. G. (2015). Malware analysis using
visualized images and entropy graphs. International Journal of Information Security,
14(1):1--14.

[36] Hecht-Nielsen (1989). Theory of the backpropagation neural network. In Conference
on Neural Networks, pages 593–605.

[37] Ho, E. A., Soong, T.-H., and Li, Y. (1948). Comparative merits of sternum, spleen
and liver punctures in the study of human visceral leishmaniasis. Transactions of The
Royal Society of Tropical Medicine and Hygiene, 41(5):629–636. ISSN 0035-9203.

[38] Hong, X., Gerla, M., Pei, G., and Chiang, C.-C. (1999). A group mobility model
for ad hoc wireless networks. In International Workshop on Modeling, Analysis and
Simulation of Wireless and Mobile systems, pages 53--60.

[39] Hou, R., Ma, B., Chang, H., Gu, X., Shan, S., and Chen, X. (2019). Interaction-and-
aggregation network for person re-identification. In The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[40] Huai, M., Miao, C., Li, Y., Suo, Q., Su, L., and Zhang, A. (2018). Metric learning
from probabilistic labels. In ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1541--1550.

[41] Inaba, S., Fakhry, C. T., Kulkarni, R. V., and Zarringhalam, K. (2019). A free
energy based approach for distance metric learning. In ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pages 5--13.

[42] Johnson, N. L., Kotz, S., and Balakrishnan, N. (1995). Continuous univariate dis-
tributions, volume 2, volume 289. John wiley & sons.

[43] Kalash, M., Rochan, M., Mohammed, N., Bruce, N. D. B., Wang, Y., and Iqbal, F.
(2018). Malware classification with deep convolutional neural networks. In 2018 9th
IFIP International Conference on New Technologies, Mobility and Security (NTMS),
pages 1–5.

http://www.deeplearningbook.org

Bibliography 85

[44] Kan, S., Zhang, L., He, Z., Cen, Y., Chen, S., and Zhou, J. (2020). Metric learning-
based kernel transformer with triplets and label constraints for feature fusion. Pattern
Recognition, 99:107086.

[45] Kancherla, K. and Mukkamala, S. (2013). Image visualization based malware de-
tection. In 2013 IEEE Symposium on Computational Intelligence in Cyber Security
(CICS), pages 40–44.

[46] Koch, G., Zemel, R., and Salakhutdinov, R. (2015). Siamese neural networks for
one-shot image recognition. In ICML Deep Learning Workshop, volume 2.

[47] Kumar, A., Sagar, K. P., Kuppusamy, K. S., and Aghila, G. (2016). Machine learning
based malware classification for android applications using multimodal image represen-
tations. In 2016 10th International Conference on Intelligent Systems and Control
(ISCO), pages 1–6.

[48] Langner, R. (2011). Stuxnet: Dissecting a cyberwarfare weapon. IEEE Security
Privacy, 9(3):49–51.

[49] Li, F., Qiao, H., and Zhang, B. (2018). Discriminatively boosted image clustering
with fully convolutional auto-encoders. Pattern Recognition, 83:161--173.

[50] Li, S., Hong, D., and Wang, H. (2020). Relation inference among sensor time series
in smart buildings with metric learning. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2020, The Thirty-Second Innovative Applications of Arti-
ficial Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New York, NY, USA, February 7-12,
2020, pages 4683--4690. AAAI Press.

[51] Lin, Y., Jiang, J., and Lee, S. (2014). A similarity measure for text classification and
clustering. IEEE Transactions on Knowledge and Data Engineering, 26(7):1575–1590.

[52] Liu, Y., Zhao, K., and Cong, G. (2018). Efficient similar region search with deep
metric learning. In ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pages 1850--1859.

[53] Lloyd, S. (1982). Least squares quantization in pcm. IEEE Transactions on Infor-
mation Theory, 28(2):129–137.

[54] Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-sne. Journal of
Machine Learning Research (JMLR), 9(Nov):2579--2605.

[55] Makandar, A. and Patrot, A. (2015). Malware analysis and classification using ar-
tificial neural network. In 2015 International Conference on Trends in Automation,
Communications and Computing Technology (I-TACT-15), pages 1–6.

Bibliography 86

[56] Mao, C., Zhong, Z., Yang, J., Vondrick, C., and Ray, B. (2019). Metric learning
for adversarial robustness. In Wallach, H., Larochelle, H., Beygelzimer, A., d Alché-
Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing
Systems 32, pages 480--491. Curran Associates, Inc.

[57] McFee, B. and Lanckriet, G. R. (2010). Metric learning to rank. In International
Conference on Machine Learning (ICML), pages 775--782.

[58] Mika, S., Ratsch, G., Weston, J., Scholkopf, B., and Mullers, K. R. (1999). Fisher
discriminant analysis with kernels. In Neural Networks for Signal Processing IX: Pro-
ceedings of the 1999 IEEE Signal Processing Society Workshop, pages 41–48.

[59] Mockus, J. (1975). On the bayes methods for seeking the extremal point. IFAC
Proceedings Volumes, 8:428 – 431.

[60] Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltz-
mann machines. In International Conference on International Conference on Machine
Learning (ICML), pages 807--814.

[61] Narayanan, B. N., Djaneye-Boundjou, O., and Kebede, T. M. (2016). Performance
analysis of machine learning and pattern recognition algorithms for malware classifica-
tion. In 2016 IEEE National Aerospace and Electronics Conference (NAECON) and
Ohio Innovation Summit (OIS), pages 338--342. IEEE.

[62] Nataraj, L., Karthikeyan, S., Jacob, G., and Manjunath, B. (2011a). Malware im-
ages: visualization and automatic classification. In Proceedings of the 8th international
symposium on visualization for cyber security, pages 1--7.

[63] Nataraj, L., Karthikeyan, S., Jacob, G., and Manjunath, B. S. (2011b). Malware
images: Visualization and automatic classification. In Proceedings of the 8th Inter-
national Symposium on Visualization for Cyber Security, VizSec ’11, New York, NY,
USA. Association for Computing Machinery.

[64] Nguyen, B. and De Baets, B. (2019). Kernel-based distance metric learning for
supervised k -means clustering. IEEE Transactions on Neural Networks and Learning
Systems, 30(10):3084–3095.

[65] Nguyen, B. and De Baets, B. (2020). Improved deep embedding learning based on
stochastic symmetric triplet loss and local sampling. Neurocomputing, 402:209 – 219.
ISSN 0925-2312.

[66] Nguyen, B., Morell, C., and Baets, B. D. (2017). Supervised distance metric learning
through maximization of the jeffrey divergence. Pattern Recognition, 64:215 – 225.
ISSN 0031-3203.

Bibliography 87

[67] Niethammer, M., Kwitt, R., and Vialard, F.-X. (2019). Metric learning for image
registration. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[68] Oh Song, H., Xiang, Y., Jegelka, S., and Savarese, S. (2016). Deep metric learning
via lifted structured feature embedding. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

[69] Paixao, T. M., Berriel, R. F., Boeres, M. C. S., Koerich, A. L., Badue, C., Souza,
A. F. D., and Oliveira-Santos, T. (2020). Fast(er) reconstruction of shredded text
documents via self-supervised deep asymmetric metric learning. In The IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR).

[70] Peters, B. S., Fish, D., Golden, R., Evans, D. A., Bryceson, A. D. M., and Pinching,
A. J. (1990). Visceral Leishmaniasis in HIV Infection and AIDS: Clinical Features and
Response to Therapy. QJM: An International Journal of Medicine, 77(2):1101–1111.
ISSN 1460-2725.

[71] Petrik, R., Arik, B., and Smith, J. M. (2018). Towards architecture and os-
independent malware detection via memory forensics. In Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, CCS ’18, page
2267–2269, New York, NY, USA. Association for Computing Machinery.

[72] Priyamvada Davuluru, V. S., Narayanan Narayanan, B., and Balster, E. J. (2019).
Convolutional neural networks as classification tools and feature extractors for distin-
guishing malware programs. In 2019 IEEE National Aerospace and Electronics Con-
ference (NAECON), pages 273–278.

[73] Raff, E., Barker, J., Sylvester, J., Brandon, R., Catanzaro, B., and Nicholas, C. K.
(2018). Malware detection by eating a whole exe. In Workshops at the Thirty-Second
AAAI Conference on Artificial Intelligence.

[74] Rasti, R., Rabbani, H., Mehridehnavi, A., and Hajizadeh, F. (2018). Macular oct
classification using a multi-scale convolutional neural network ensemble. IEEE Trans-
actions on Medical Imaging, 37(4):1024–1034. ISSN 0278-0062.

[75] Relli, C., Facon, J., Ayala, H. L., and Britto Jr, A. D. S. (2017). Automatic counting
of trypanosomatid amastigotes in infected human cells. Computers in Biology and
Medicine, 89:222--235.

[76] Rezende, E., Ruppert, G., Carvalho, T., Theophilo, A., Ramos, F., and Geus, P. d.
(2018). Malicious software classification using vgg16 deep neural network’s bottleneck
features. In Latifi, S., editor, Information Technology - New Generations, pages 51--59,
Cham. Springer International Publishing.

Bibliography 88

[77] Roseline, S. A., Geetha, S., Kadry, S., and Nam, Y. (2020). Intelligent vision-based
malware detection and classification using deep random forest paradigm. IEEE Access,
8:206303–206324.

[78] Sabour, S., Frosst, N., and Hinton, G. E. (2017). Dynamic routing between capsules.
arXiv preprint arXiv:1710.09829.

[79] Saeed, I. A., Selamat, A., and Abuagoub, A. M. (2013). A survey on malware and
malware detection systems. International Journal of Computer Applications, 67(16).

[80] Schroff, F., Kalenichenko, D., and Philbin, J. (2015). Facenet: A unified embedding
for face recognition and clustering. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[81] Shen, C., Jin, Z., Zhao, Y., Fu, Z., Jiang, R., Chen, Y., and Hua, X.-S. (2017). Deep
siamese network with multi-level similarity perception for person re-identification. In
Proceedings of the 25th ACM International Conference on Multimedia, pages 1942--
1950.

[82] Shen, J., Wang, H., Zhang, A., Qiu, Q., Zhen, X., and Cao, X. (2020). Model-
agnostic metric for zero-shot learning. In The IEEE Winter Conference on Applications
of Computer Vision (WACV).

[83] Shi, H., Yang, Y., Zhu, X., Liao, S., Lei, Z., Zheng, W., and Li, S. Z. (2016).
Embedding deep metric for person re-identification: A study against large variations.
In Leibe, B., Matas, J., Sebe, N., and Welling, M., editors, Computer Vision – ECCV
2016, pages 732--748, Cham. Springer International Publishing.

[84] Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-
scale image recognition. In Proceedings of ICLR.

[85] Singh, A., Handa, A., Kumar, N., and Shukla, S. K. (2019). Malware classification
using image representation. In Dolev, S., Hendler, D., Lodha, S., and Yung, M., edi-
tors, Cyber Security Cryptography and Machine Learning, pages 75--92, Cham. Springer
International Publishing.

[86] Sohn, K. (2016). Improved deep metric learning with multi-class n-pair loss objec-
tive. In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R., editors,
Advances in Neural Information Processing Systems 29, pages 1857--1865. Curran As-
sociates, Inc.

[87] Swiderska-Chadaj, Z., Pinckaers, H., [van Rijthoven], M., Balkenhol, M., Melnikova,
M., Geessink, O., Manson, Q., Sherman, M., Polonia, A., Parry, J., Abubakar, M.,
Litjens, G., [van der Laak], J., and Ciompi, F. (2019). Learning to detect lymphocytes

Bibliography 89

in immunohistochemistry with deep learning. Medical Image Analysis, 58:101547. ISSN
1361-8415.

[88] Szor, P. (2005). The Art of Computer Virus Research and Defense: ART COMP
VIRUS RES DEFENSE _p1. Pearson Education.

[89] Torresani, L. and Lee, K.-c. (2007). Large margin component analysis. In Advances
in Neural Information Processing Systems (NeurIPS), pages 1385--1392.

[90] Triguero, I., González, S., Moyano, J. M., García, S., Alcalá-Fdez, J., Luengo, J.,
Fernández, A., del Jesús, M. J., Sánchez, L., and Herrera, F. (2017). Keel 3.0: An
open source software for multi-stage analysis in data mining. International Journal of
Computational Intelligence Systems, 10:1238–1249.

[91] Ustinova, E. and Lempitsky, V. (2016). Learning deep embeddings with histogram
loss. In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R., edi-
tors, Advances in Neural Information Processing Systems 29, pages 4170--4178. Curran
Associates, Inc.

[92] Vasan, D., Alazab, M., Wassan, S., Naeem, H., Safaei, B., and Zheng, Q. (2020a). Im-
cfn: Image-based malware classification using fine-tuned convolutional neural network
architecture. Computer Networks, 171:107138. ISSN 1389-1286.

[93] Vasan, D., Alazab, M., Wassan, S., Safaei, B., and Zheng, Q. (2020b). Image-based
malware classification using ensemble of cnn architectures (imcec). Computers and
Security, 92:101748. ISSN 0167-4048.

[94] Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., and Venkatraman,
S. (2019). Robust intelligent malware detection using deep learning. IEEE Access,
7:46717–46738.

[95] Vogel, R., Bellet, A., and Clémençon, S. (2018). A probabilistic theory of supervised
similarity learning for pointwise ROC curve optimization. In International Conference
on Machine Learning (ICML), pages 5065--5074.

[96] Wang, F. and Zhang, C. (2007). Feature extraction by maximizing the average
neighborhood margin. In 2007 IEEE Conference on Computer Vision and Pattern
Recognition, pages 1–8.

[97] Wang, H., Wang, Y., Zhou, Z., Ji, X., Gong, D., Zhou, J., Li, Z., and Liu, W.
(2018). Cosface: Large margin cosine loss for deep face recognition. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 5265–5274.

Bibliography 90

[98] Wang, J., Gao, X., Wang, Q., and Li, Y. (2012). Prodis-contshc: learning protein dis-
similarity measures and hierarchical context coherently for protein-protein comparison
in protein database retrieval. BMC Bioinformatics, 13(7):S2.

[99] Wang, J., Zhou, F., Wen, S., Liu, X., and Lin, Y. (2017). Deep metric learning with
angular loss. In The IEEE International Conference on Computer Vision (ICCV).

[100] Wang, L., Yang, B., Chen, Y., Zhang, X., and Orchard, J. (2017). Improving neural-
network classifiers using nearest neighbor partitioning. IEEE Transactions on Neural
Networks and Learning Systems, 28(10):2255–2267.

[101] Wang, X., Han, X., Huang, W., Dong, D., and Scott, M. R. (2019a). Multi-similarity
loss with general pair weighting for deep metric learning. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[102] Wang, X., Han, X., Huang, W., Dong, D., and Scott, M. R. (2019b). Multi-similarity
loss with general pair weighting for deep metric learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 5022--5030.

[103] Weinberger, K. Q. and Saul, L. K. (2009). Distance metric learning for large margin
nearest neighbor classification. Journal of Machine Learning Research (JMLR), 10:207-
-244.

[104] Werneck, G., Rodrigues, L., Santos, M., Araújo, I., Moura, L., Lima, S., Gomes, R.,
Maguire, J., and Costa, C. (2002). The burden of leishmania chagasi infection during
an urban outbreak of visceral leishmaniasis in brazil. Acta Tropica, 83(1):13 – 18. ISSN
0001-706X.

[105] World Health Organization. Pan American Health Organization (2019). Epidemio-
logical report of the americas. leishmaniases.

[106] Wressnegger, C., Freeman, K., Yamaguchi, F., and Rieck, K. (2017). Automati-
cally inferring malware signatures for anti-virus assisted attacks. ASIA CCS ’17, page
587–598, New York, NY, USA. Association for Computing Machinery.

[107] Wu, C.-Y., Manmatha, R., Smola, A. J., and Krahenbuhl, P. (2017). Sampling mat-
ters in deep embedding learning. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2840--2848.

[108] Wu, H., Zhou, Q., Nie, R., and Cao, J. (2020). Effective metric learning with
co-occurrence embedding for collaborative recommendations. Neural Networks.

[109] Wu, L., Hoi, S. C. H., Jin, R., Zhu, J., and Yu, N. (2012). Learning bregman
distance functions for semi-supervised clustering. IEEE Transactions on Knowledge
and Data Engineering, 24(3):478–491.

Bibliography 91

[110] Xiang, S., Nie, F., and Zhang, C. (2008). Learning a mahalanobis distance metric
for data clustering and classification. Pattern Recognition, 41(12):3600 – 3612. ISSN
0031-3203.

[111] Xiaofang, B., Li, C., Weihua, H., and Qu, W. (2014). Malware variant detection
using similarity search over content fingerprint. In The 26th Chinese Control and
Decision Conference (2014 CCDC), pages 5334--5339. IEEE.

[112] Xie, J., Girshick, R., and Farhadi, A. (2016). Unsupervised deep embedding for
clustering analysis. In International Conference on Machine Learning (ICML), pages
478--487.

[113] Xing, E. P., Ng, A. Y., Jordan, M. I., and Russell, S. (2002). Distance metric learn-
ing, with application to clustering with side-information. In International Conference
on Neural Information Processing Systems, NIPS’02, pages 521--528.

[114] Yakura, H., Shinozaki, S., Nishimura, R., Oyama, Y., and Sakuma, J. (2019). Neural
malware analysis with attention mechanism. Computers and Security, 87:101592. ISSN
0167-4048.

[115] Yang, F., Poostchi, M., Yu, H., Zhou, Z., Silamut, K., Yu, J., Maude, R. J., Jaeger,
S., and Antani, S. (2020). Deep learning for smartphone-based malaria parasite de-
tection in thick blood smears. IEEE Journal of Biomedical and Health Informatics,
24(5):1427–1438.

[116] Yang, Y., Chen, H., and Shao, J. (2019). Triplet enhanced autoencoder: Model-
free discriminative network embedding. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 5363--5369.

[117] Yoo, S., Kim, S., and Kang, B. B. (2020). The image game: Exploit kit detection
based on recursive convolutional neural networks. IEEE Access, 8:18808–18821.

[118] Zhang, P., Sun, B., Ma, R., and Li, A. (2019). A novel visualization malware
detection method based on spp-net. In 2019 IEEE 5th International Conference on
Computer and Communications (ICCC), pages 510–514.

[119] Zhao, Y., Cui, W., Geng, S., Bo, B., Feng, Y., and Zhang, W. (2020). A mal-
ware detection method of code texture visualization based on an improved faster rcnn
combining transfer learning. IEEE Access, 8:166630–166641.

[120] Zheng, F., Deng, C., Sun, X., Jiang, X., Guo, X., Yu, Z., Huang, F., and Ji, R.
(2019). Pyramidal person re-identification via multi-loss dynamic training. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Bibliography 92

[121] Çayır, A., Ünal, U., and Dağ, H. (2020). Random capsnet forest model for imbal-
anced malware type classification task.

	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Contributions
	1.4 Outline

	2 Related Work
	3 Methodology
	3.1 Background and Notation
	3.2 Supervised Distance Metric learning Encoder with Similarity Space (SMELL)
	3.2.1 Metric learning algorithm
	3.2.2 The S-space
	3.2.3 Loss function and regularization
	3.2.4 Optimization
	3.2.5 Theoretical proprieties

	4 Experimental setup
	4.1 Dataset
	4.1.1 General purpose datasets
	4.1.2 The MNIST dataset

	4.2 Network evaluation
	4.3 Parameters initialization and network architecture

	5 Results and Discussion
	5.1 Ablation Study
	5.2 Performance Evaluation
	5.3 Behavior Analysis
	5.4 Latent space and S-space analysis

	6 Case of Study: Diagnostic Aid Software for Leishmaniosis Detection
	6.1 Introduction
	6.2 Methodology
	6.2.1 Data Acquisition
	6.2.2 Data Preprocessing: Region of Interest Identification
	6.2.3 Experiments

	6.3 Our Proposal
	6.3.1 L-SMELL
	6.3.2 Loss Function
	6.3.3 Revisiting Contrastive loss
	6.3.4 Parameter Setting

	6.4 Results and Discussion
	6.4.1 Numerical results
	6.4.2 Latent Space and Similarity space
	6.4.3 Contrastive loss effect
	6.4.4 Metric learning visualization

	6.5 Conclusion

	7 Case of Study: Malware Classification
	7.1 Introduction
	7.2 Related Work
	7.3 Malware-SMELL
	7.3.1 Loss Function

	7.4 Methodology
	7.4.1 Dataset
	7.4.2 Network evaluation
	7.4.3 Parameters initialization and network architecture

	7.5 Results and Discussion
	7.5.1 Metric Learning
	7.5.2 Comparative results
	7.5.3 Zero short learning results

	7.6 Conclusions and Futures Work

	8 Conclusion
	8.1 Conclusions and outlook
	8.2 Publication
	8.2.1 Periodical papers
	8.2.2 Conference papers
	8.2.3 UnderSubmission
	8.2.4 Short course
	8.2.5 Open Work

	Bibliography

