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Resumo

Esta tese está no contexto de transferência de movimento e aparência humana entre
vídeos monoculares com preservação de características do movimento, forma do corpo e
qualidade visual. Em outras palavras, dados dois vídeos de entrada, esta tese investiga
como sintetizar um novo vídeo, onde a pessoa do primeiro vídeo é colocada no contexto
do segundo vídeo realizando os movimentos da pessoa do segundo vídeo. Possíveis
domínios de aplicação são filmes e anúncios que contam com personagens sintéticos
e ambientes virtuais para criar conteúdo visual. Este trabalho introduz dois novos
métodos para transferir aparência e movimento humano entre vídeos monoculares e por
consequência aumentar as possibilidades criativas de conteúdo visual. Ao contrário dos
recentes métodos de transferência baseados em aprendizado, nossas abordagens levam
em conta restrições de forma, aparência e movimento tridimensional. Especificamente,
o primeiro método usa uma nova técnica de renderização baseada em imagens que
apresenta resultados comparáveis com as técnicas mais modernas, com a vantagem de
não demandar um custoso processo de treinamento. O segundo método faz uso de
técnicas de renderização diferencial e modelos paramétricos para produzir um modelo
3D completamente controlável, ou seja, um modelo onde o usuário pode controlar a pose
humana e os parâmetros de renderização. Experimentos em diferentes vídeos mostram
que nossos métodos preservam características específicas do movimento que devem ser
mantidas (por exemplo, pés tocando o chão e mãos tocando um objeto) enquanto
mantém os melhores valores para aparência em termos de Similaridade Estrutural
(SSIM), Learned Perceptual Image Patch Similarity (LPIPS), Erro Quadrático Médio
(EQM) e Fréchet Video Distance (FVD). Além disso, como resultado adicional, esta
tese apresenta uma base de dados composta de vídeos com anotações das restrições do
movimento e movimento pareados para avaliar a transferência de movimento.

Palavras-chave: Transferência de Movimento Humano, Síntese de aparência humana,
Síntese de Vídeo, Síntese Visual e Manipulação de Imagens.



Abstract

This dissertation is in the context of transferring human motion and appearance from
video to video preserving motion features, body shape, and visual quality. In other
words, given two input videos, we investigate how to synthesize a new video, where
a target person from the first video is placed into a new context performing different
motions from the second video. Possible application domain are movies and adver-
tisements that rely on synthetic characters and virtual environments to create visual
content. We introduce two novel methods for transferring appearance and retarget-
ing human motion from monocular videos, and by consequence, increase the creative
possibilities of visual content. Differently from recent appearance transferring meth-
ods, our approaches take into account 3D shape, appearance, and motion constraints.
Specifically, our first method is based on a hybrid image-based rendering technique that
exhibits competitive visual retargeting quality compared to state-of-the-art neural ren-
dering approaches, even without computationally intensive training. Taking advantages
of both differentiable rendering and the 3D parametric model, our second data-driven
method produces a fully 3D controllable human model, i.e., the user can control the
human pose and rendering parameters. Experiments on different videos show that our
methods preserve specific features of the motion that must be maintained (e.g., feet
touching the floor, hands touching a particular object) while holding the best values for
appearance in terms of Structural Similarity (SSIM), Learned Perceptual Image Patch
Similarity (LPIPS), Mean Squared Error (MSE), and Fréchet Video Distance (FVD).
We also provide to the community a new dataset composed of several annotated videos
with motion constraints for retargeting applications and paired motion sequences from
different characters to evaluate transferring approaches.

Palavras-chave: Motion Transfer, Human Motion, Motion Retargeting, Human-
image synthesis, Video Generation, Image Synthesis and Image Manipulation.
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Chapter 1

Introduction

Synthetic characters and virtual environments are vital components to create visual
content. Nevertheless, creating these components requires a large amount of manual
work wherein artists apply low-level instructions such as drawing the skeletons, manip-
ulating polygons, edges, and vertices (see Figure 1.1). Furthermore, humans learned
early in their lives to recognize human forms and make sense of what emotions and
meaning are being communicated by human movement. We are, by nature, specialists
in the human movement analysis. Even for a meticulous artist, it may be hard to
capture the fine details of human form and motion in a purely manual approach. Small
imperfections when animating virtual actors might create a false appearance, especially
the high-frequency motion components in a moving character. Thus, the movement
also plays a central role in synthesizing realistic virtual moving actors.

In the last years, we witnessed an overwhelming growth in the ways and quantity
of visual content that we consume. We consume visual content when we watch movies,
play digital games, browse the Internet, and immerse in virtual reality or augmented
reality using new devices. For example, in September 2019, videos accounted for 60%
of the total volume of downstream traffic on the Internet and gaming 8.0% [Sand-
vine, 2019]. Recent studies that take into account the effects of the global COVID-19
pandemic predict that video viewing will account for 82% of all internet traffic by
2022 [InterDigital, 2020]. The democratization of disseminating visual content mainly
justifies this growth. For example, platforms such as YouTube and Steam provide tools
and services helping visual content developers expose their works to the world for a
decreasing price or even free.

People need to create visual content as part of this process, but unfortunately,
only a few are talented enough to express themselves visually. Even for one qualified
person, acquiring technical knowledge in image editing programs and modeling tools
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Figure 1.1: Example of the manual process of creating synthetic characters and virtual
environments by manipulating polygons, edges, and vertices in simulated 3D space
(Source: blender).

demands a great effort and time. Thus, there is considerable interest in tasks that
assist in creating visual content based on high-level instructions, such as removing un-
wanted objects in personal photographs, adjusting the illumination in photographs,
and inserting or changing the appearance or proportions of things in the image. Fig-
ure 1.2 shows some representative examples of the creation of visual content based on
high-level instructions.

Figure 1.2: Common tasks to create visual content: Top-left : removing unwanted
objects (image source: [Yu et al., 2018]), Top-right : adjusting the illumination
(image source: [Kanamori and Endo, 2018]), Bottom-left : inserting objects (image
source: [Pérez et al., 2003]) and Bottom-right : creating plausible videos of virtual ac-
tors from images.
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In particular, the entertainment industry overcomes the difficulties of creating
plausible videos of virtual actors either by a purely manual editing process or by em-
ploying specialized hardware. In both cases, the costs of production are very high.
This context leads to strong business interest in researches that address the creation
of human motion and synthetic characters using inexpensive hardware. Thus, an in-
creasing number of studies apply monocular cameras as recording equipment [Chan
et al., 2019; Esser et al., 2018; Wang et al., 2018]. Monocular cameras are much less
expensive than commercial approaches that use 3D and 4D scanners or multi-camera
studios with controlled lighting. Besides the cameras being much less costly, there are
many monocular videos on the web providing a rich set of motions and appearances.

Therefore, an alternative approach to overcome the lack of high-level instruction
to create visual content is to use real images (monocular videos) to drive the creation of
synthetic characters and virtual environments. Nonetheless, creating plausible videos of
virtual actors from images of real actors remains one of the key challenges in Computer
Vision and Computer Graphics fields.

1.1 Contextualization

Over the past few years, the remarkable performance of the Generative Adversarial
Networks (GANs) [Goodfellow et al., 2014] has shed a new light for the problem of
synthesizing faithful real-world images of humans. With the success of the GANs, we
have witnessed the rise of new applications such as synthesis of human faces [Karras
et al., 2018], image-to-image and video-video translation [Esser et al., 2018; Isola et al.,
2017; Wang et al., 2018; Zhu et al., 2017], motion synthesis [Ferreira et al., 2021; Lee
et al., 2019], and human retargeting and reenacting [Chan et al., 2019; Liu et al., 2019a;
Wu et al., 2018], to name a few. Although GAN-based approaches have been achieving
high quality results in generating videos and images of people, in general, they suffer
with the high variability in the poses, unseen images from viewpoints not present in
the training data, and they are limited to the 2D image domain.

Most recently, several methods have been proposed on body reenactment from
source images [Chan et al., 2019; Esser et al., 2018; Liu et al., 2019; Ma et al., 2017; Mir
et al., 2020; Sun et al., 2020]. The ultimate goal of these methods is to create a video
where the body of a target person is reenacted according to the motion extracted from
the monocular video. The motion is estimated considering the set of poses of a source
person. Despite the impressive results for several input conditions, there are instances
where most of these methods perform poorly. For instance, the works of Chan et al.
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[2019] and Wang et al. [2018], only perform good reenacting of the appearance/style
from one actor to another if a strict setup has complied, e.g., static backgrounds, a
large set of motion data of the target person to train, and actors in the same distance
from the camera [Tewari et al., 2020]. Furthermore, it is hard to gauge progress from
these results in the field of retargeting, as most works only report the performance of
their algorithms in their own set of images which, in general, is built considering the
specificities in the training regime of their approaches.

Additionally, while image-to-image translation methods are capable of generating
plausible images, many applications such as Virtual Reality (VR) and Augmented
Reality (AR) [Chen et al., 2017; Gallala et al., 2019; Minaee et al., 2020] require
a full 3D representation of the person. The view-dependence hinders the creation
of new configurations of scenes where the avatar can be included. Although view
interpolation can be applied to estimate a transition between a pair of camera poses,
it may create artifacts and unrealistic results when adding the virtual avatar into
the new scene using unseen camera poses. Video-based rendering systems are greatly
benefited through the use of realistic 3D texture-mapped models, which make possible
the inclusion of virtual avatars using unrestricted camera poses and the automatic
modification and re-arrangement of video footage. In addition to rendering human
avatars from different viewpoints, the 3D shape also allows synthesizing of new images
under different illumination conditions.

Many works in the Computer Vision and Computer Graphics communities have
made great strides in capturing human geometry and motion through model-based
and learning techniques. In particular, end-to-end learning approaches such as Peng
et al. [2018], Kanazawa et al. [2018], and Kolotouros et al. [2019] have achieved state
of the art in capturing three-dimensional motion, shape, and appearance from videos
and still images from real actors. As more vision and graphics methods are integrated
into new approaches such as differentiable rendering, more systems will be able to
achieve high accuracy and quality in different tasks, in particular, generative methods
for synthesizing videos with plausible and photo-realistic human reenactment.

1.2 Problem Definition

The problem addressed by this dissertation is transferring human motion and appear-
ance from video to video preserving motion features, body shape, and visual quality.
In other words, given two input videos, we investigate how to synthesize a new video,
where a target person from the first video is placed into a new context performing dif-
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Figure 1.3: Overview of the motion and appearance transfer from a target video to
different videos. After reconstructing a model for the target human (shown in (a)), we
transfer his shape and motion to different videos as shown in (b). Top row : video with
the source motion. Bottom row : New video with the retargeted motion and appearance
of the target human model.

ferent motions from the second video (an alluring example is depicted in Figure 1.3).

1.3 Dissertation Statement

We state that a technique to transfer human motion and appearance from video to video
can be designed considering motion constraints, body shape, and a 3D representation of
people, which contributes to synthesizing more plausible videos and tackling subjects
with different limb proportions and body shapes. To achieve this goal, we need to
tackle the following challenges:

i. An effective approach to retargeting human motion and appearance must take
into account body shape and character’s interaction with the environment. Oth-
erwise, the retarget between two people with different skeletons sizes will result in
spatio-temporally inconsistency, i.e., feet raised in the air, high frequency “jerki-
ness” in the motion, etc.;

ii. The results must retain the same quality for most poses, e.g., the retargeting
should not perform poorly when the person is bending;
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iii. The method must provide a final representation that is compatible with tradi-
tional graphic pipelines, i.e., it must generate a 3D accurate representation of
people, which is a desired feature in rendering engines and games or virtual and
augmented reality.

1.4 Contributions

In this dissertation, we present two novel video retargeting techniques for human motion
and appearance transferring, which incorporate different strategies to extract 3D shape,
pose, and appearance to transfer motions between two real human characters using
information from monocular videos. To our best knowledge, this work is the first to
transfer, not only human texture or motion but both human motion and appearance
between videos, i.e., we transfer motion and appearance in a unified way which allows
us to tackle subjects with different limb proportions and body shape without losing
the desired body proportions.

We aim to advance in the task of building a method less sensitive to the camera
and poses conditions (a stable method) and overcome the lack of details. Experimen-
tal results presented later show that our approaches are both stable and shape-aware.
In other words, they do not suffer from quality instability when applied in contexts
slightly different from the original ones (a small difference in camera position, uncom-
mon motions, pose translation, etc.) and they can handle different morphologies in
the retargeting. Moreover, we performed experiments using a newly collected dataset
containing several types of motions and actors with different body shapes and heights.
Our results show that a technique applying 3D representation of people can still exhibit
a competitive quality compared to recent deep learning techniques in generic transfer-
ring tests. Our approach achieved better results compared with end-to-end 2D learning
methodologies such as the works of Wang et al. [2018] and Chan et al. [2019] in most
scenarios for appearance metrics as structural similarity (SSIM), learned perceptual
similarity (LPIPS), mean squared error (MSE), and Fréchet Video Distance (FVD).

The main technical contributions of this work are as follows:

i. A unified methodology carefully designed to transfer motion and appearance
from video to video that preserves the main features of the human movement
and retains the visual appearance of the target character, as shown in Figure 1.3;

ii. A retargeting technique considering physical constraints of the motion in 3D and
the image domain; and a new image-based rendering technique that exhibits com-
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Figure 1.4: Overview of our data-driven formulation for transfer appearance and reen-
act human actors. Our method receives a set of frames of a person, extracts her/his
mesh (left side) and outputs a fully 3D controllable human model (right side).

petitive visual retargeting quality compared to state-of-the-art neural rendering
approaches, even without computationally intensive training;

iii. A novel data-driven formulation for transfer appearance and reenact human ac-
tors that produces a fully 3D controllable human model, i.e., the user can control
the human pose and rendering parameters, as shown in Figure 1.4;
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iv. A dataset comprising several videos with annotated motion restrictions. We
demonstrate the effectiveness of our approach quantitatively and qualitatively
using sequences from this dataset and publicly available video sequences.

Additional contributions of our approach are: i) a graph convolutional architec-
ture for mesh generation that leverages the human body structure information and
keeps vertex consistency, which results in a refined human mesh model; and ii) a new
architecture that takes advantages of both differentiable rendering and the 3D para-
metric model.

These contributions led to three publications:

i. Gomes, T., Martins, R., Ferreira, J., and Nascimento, E. (2020). Do as i do:
Transferring human motion and appearance between monocular videos with spatial
and temporal constraints. In WACV.

ii. Gomes, T., Martins, R., Ferreira, J., Azevedo, R., Torres, G., and Nascimento,
E. (2021). A Shape-Aware Retargeting Approach to Transfer Human Motion and
Appearance in Monocular Videos. In IJCV.

iii. Gomes, T., Coutinho, T., Azevedo, R., Martins, R., and Nascimento, E.
(2022). Creating and Reenacting Controllable 3D Humans with Differentiable
Rendering. In WACV.

The dataset and retargeting code are publicly available to the community
at: https://www.verlab.dcc.ufmg.br/retargeting-motion and the presentations
of our two methods are available at: https://youtu.be/seZfaiPoof4 and https:

//youtu.be/BkS4AsiR1es.

1.5 Outline

From here on, this dissertation is organized in the following chapters: Chapter 2 pro-
vides the reader an overview of the main and more recent techniques that are associated
with our problem, i.e., human motion estimation, motion transferring, and image syn-
thesis. In Chapter 3, we describe the two proposed methods to transfer motion and
appearance between videos. Following in Chapter 4, we present our carefully designed
dataset to evaluate transferring human motion and appearance from video to video. In
sequence, we present an analysis of our methodology quality in comparison to state-of-
the-art techniques in Chapter 5 and discuss the limitations of our methodology. Finally,
in Chapter 6, we present our conclusions and highlight future research directions.

https://www.verlab.dcc.ufmg.br/retargeting-motion
https://youtu.be/seZfaiPoof4
https://youtu.be/BkS4AsiR1es
https://youtu.be/BkS4AsiR1es
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1.6 Disclaimer

This document is designed to provide accurate and authoritative information in relation
to the subject matter covered. The subject covered has great potential in entertain-
ment, gaming, satire, and culture when used responsibly. Under no circumstance shall
we have any liability to you for any loss or damage of any kind incurred due to the use
of the information provided in this document.
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Chapter 2

Related Work

This chapter describes the related work to our video-based retargeting problem. De-
spite the considerable number of works correlated to human motion analysis and human
appearance synthesis, the problem addressed in this dissertation is more complex, and
up to the author’s knowledge, it has not been appropriately investigated in a unified
transferring formulation of both human motion and appearance. Therefore, we discuss
in this chapter the works that address the subproblems of our work or tackle the task of
synthesizing new views of people from images, which is the closest task to our problem.

2.1 3D Human pose and shape estimation

In general, motion transferring approaches from video to video contains a phase of
human pose/shape estimation, i.e., they estimate the configuration of the human body
in a given image or a sequence of images. A simple approach is to employ a 2D
representation of the human body pose in the image plane [Chan et al., 2019; Esser
et al., 2018; Wang et al., 2018], i.e., understanding pose estimation as the problem of
localizing anatomical keypoints or body joints in the image plane [Cao et al., 2017;
Riza Alp Güler, 2018; Simon et al., 2017; Wei et al., 2016]. Methods of 2D human pose
estimation have made significant progress during the last years, in a large extent due to
the creation of large datasets [Andriluka et al., 2014; Lin et al., 2014; Riza Alp Güler,
2018] with annotated joint positions or dense correspondences from a 2D image to a
3D human shape. Figure 2.1 presents examples of 2D representations of the human
body in the widely-adopted datasets.

Despite the progress in 2D human pose estimation, the 2D representation is
ambiguous and brings limited information about the motion. Recent works went a
step further estimating the human pose in 3D, which is a more suitable representation



28

Figure 2.1: Examples of the provided annotations to 2D human pose estimation: Top:
MPII Human Pose (Source: Andriluka et al. [2014]), Middle: COCO (Source: Lin et al.
[2014]), Bottom: DensePose (Source: Riza Alp Güler [2018]).

to transfer motion since the human body movement features like velocity, acceleration,
and restrictions are embedded in 3D space.

3D human pose detection from a single image is a challenging problem since the
projection in the image plane produces ambiguities in images with partially occluded
human poses. Moreover, an algorithm to estimate human pose must be invariant to
several factors, including background scenes, lighting, clothing shape and texture, and
skin color. Because of the challenges mentioned, even techniques used for 3D pose
estimation have different assumptions and purposes about what should be estimated.
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Figure 2.2: Different pose representations for the human body. a) Person; b) Kine-
matic joint model with 15 joint parameters; c) Kinematic joint model with 26 joint
parameters; d) SMPL volumetric model (Images extracted from [Loper et al., 2015]).

One of the critical assumptions in human pose estimation is to build and describe
the human body model. A good representative model should embed the human body
kinematic structure information and human body shape information. In the following,
we will discuss the different approaches for the problem of 3D human pose estimation
using the two most used human body models: The Kinematic model representation
and the Volumetric representation. Some examples of different kinematic body skeleton
representations and a volumetric representation with Skinned Multi-Person Linear
Model (SMPL) [Loper et al., 2015] are shown in Figure 2.2.

2.1.1 Kinematic Pose Model Estimation

Models that follow the skeletal structure are called kinematic chain models [Gong et al.,
2016]. The set of joint positions of the kinematic model is a straightforward representa-
tion of the human body model, and it is the dominant paradigm in the field [Kanazawa
et al., 2018]. Locating the major 3D joints of the body from an image is an important
task in computer vision with a wide range of scientific and commercial applications,
such as human-computer interaction, human-robot interaction, video surveillance, and
scene understanding, to name a few.

There are different streams of work for estimating the 3D joint positions given
an image. However, the main streams of work can be categorized into two approaches:
two-stage and direct estimation. Two-stage methods first extract features or 2D joint
locations from the image and then predict 3D joint locations by learning a function
to map the features into 3D pose [Kostrikov and Gall, 2014; Tekin et al., 2015] or by
regression or model fitting the 2D joints [Akhter and Black, 2015; Martinez et al., 2017].
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Two-stage methods use priors to deal with pose ambiguity. Most of the priors are about
the limb-length or proportions [Barron-Romero and Kakadiaris, 2001; Parameswaran
and Chellappa, 2004; Ramakrishna et al., 2012].

In this context, Akhter and Black [2015] collected a dataset that includes a wide
variety of stretching poses performed by trained athletes and gymnasts. Then they
learned pose-dependent joint angle limits from the data and proposed a novel prior
based on these joint angle limits. Two stage-methods benefit from being more robust
to domain shift, but the major drawback of these methods is that their accuracy is
bounded by the capacity of the 2D joints and the pose priors to explain the real poses.

There is still a lack of dataset of 3D poses for people in the wild since 3D data ac-
quisition requires expensive setups. It is challenging to acquire data outside controlled
laboratory conditions. However, after the introduction of Human3.6M dataset [Ionescu
et al., 2014b], which contains 3.6 million high-resolution images with annotated 2D and
3D joint locations, many modern methods were proposed to estimate 3D joints directly
from images using deep learning frameworks [Ionescu et al., 2014a; Li and Chan, 2014;
Mehta et al., 2017; Zhou et al., 2016b]. Since monocular reconstruction is inherently
scale-ambiguous, the input image is commonly cropped to the bounding box of the
subject before 3D pose estimation [Ionescu et al., 2014a] and the output is a subject
with normalized height. Li and Chan [2014] report that predicting positions relative to
the parent joint of the skeleton improves the performance, but relative positions are
a prohibitive simplification to motion transferring. Aware of the importance of global
position and the fact that models trained only on laboratory images do not generalize
well to the real world, Mehta et al. [2017] explore the use of transfer learning to leverage
the highly relevant mid-and-high-level features learned on readily available in-the-wild
2D pose datasets in conjunction with the existing annotated 3D pose datasets. They
reconstruct global 3D poses using a generalization of Procrustes analysis for projective
alignment.

Despite the importance of 3D joint locations to many applications in computer
vision, 3D joint locations are sparse and do not constrain each joint’s degrees of freedom,
and do not ensure that limbs are symmetric and have the correct length. Therefore,
this most straightforward representation cannot be directly applied to the motion and
shape transferring task.

2.1.2 Volumetric Pose Model Estimation

Body part volumes play an important role in the process of describing human pose
[Gong et al., 2016]. A simple way of modeling a volumetric human body is to use
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Figure 2.3: Example results on skeleton and 3D human body shape estimation of Sigal
et al. [2007]. Projection of the estimated model into 4 views (left). Projection of the
model onto image silhouettes (middle). Different views of the estimated 3D model
(right) (Source: Sigal et al. [2007]).

geometric shapes as model components, i.e., human body parts are approximated by
cylinders, conics, and other shapes [Sidenbladh et al., 2000]. A more realistic way of
modeling a volumetric human body is using meshes. Meshes can be deformed, which is
a desirable feature for the representation of non-rigid human bodies [Sidenbladh et al.,
2000].

Since the introduction of the generative model Shape Completion and Animation
for PEople (SCAPE) [Anguelov et al., 2005], a data-driven method that derives the
non-rigid surface deformation as a function of the pose and shape parameters, a large
number of solutions were proposed in the computer vision and graphics communities
to estimate both the skeleton and 3D human body shape (e.g., Anguelov et al. [2005];
Hasler et al. [2010]; Loper et al. [2015]; Sigal et al. [2007]). Typically, these methods
require a known segmentation and a few manual correspondences. Some illustrative
examples are shown in Figure 2.3.

Bogo et al. [2016] proposed the SMPLify method, which is a fully automated
approach for estimating 3D body shape and pose from 2D joints in images. SMPLify
uses a Convolutional Neural Network (CNN) to estimate 2D joint locations and then
fits a SMPL [Loper et al., 2015] to these joints. The fit is performed by minimizing
the error between the projected joints of the model and the estimated 2D joints in the
image. A few examples are shown in Figure 2.4.

In the same direction, Lassner et al. [2017b] explored the curated results from
SMPLify to train 91 keypoint detectors and included an additional optimization term
that accounts for the matching between the image silhouette and the 3D human silhou-
ette contours. However, their approach requires that the segmented silhouette in the
image to be consistent with the SMPL human model, i.e., the silhouette in the image
should be of a naked person, which is unrealistic in most videos.

In the same context, Kanazawa et al. [2018] presented a new neural-network-based
approach that uses unpaired 2D keypoint annotations and 3D scans to train an end-to-





33

Figure 2.5: Example results on shape and pose estimation of Kanazawa et al.
[2018]. Top: the original images. Bottom: ambiguous estimated models in terms
of shape/translation.

2.3 3D Retargeting Motion

One key challenge in motion transferring approach from video to video arises from
differences in the skeleton of the source and target characters. A naive transferring
approach often results in spatio-temporally inconsistency, e.g., feet raised in the air,
high frequency “jerkiness” in the motion, etc. [Arikan and Forsyth, 2002; Gleicher, 1998,
2001; Li et al., 2002], as shown in the example of Figure 2.6.

Gleicher, in his seminal work of retargeting motion [Gleicher, 1998], faced the
problem of transferring motion from one virtual actor to another. He adapted animated
motions from different characters using space-time constraints, which represented the
interactions of the human body segments and the environment. Lee and Shin [1999]
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Figure 2.6: Transferring a walk motion to characters with different skeletons. Left :
Original motion. Right : Applying this motion to a character that is 60% of the size of
the original yields a motion that skates along horizontally above the floor (Source: Gle-
icher [1998]).

decomposed the problem into two stages. In the first stage, they use a kinematics
solver to adjust the configuration of an articulated figure to meet the constraints in
each frame. Second, to ensure smoothness, the motion displacement of every joint
at each constrained frame is interpolated using multilevel B-spline curves. Tak and
Ko [2005] further added dynamics constraints to perform sequential filtering to render
physically plausible motions. Choi and Ko [2000] proposed an online retargeting method
by solving per-frame Inverse kinematics (IK) that computes the change in joint angles
corresponding to the change in end-effector positions while imposing motion similarity
as a secondary task. These approaches require an iterative optimization with hand-
designed activation constraints for several particular motions.

The work of Peng et al. [2018] takes a step towards in transferring motion from
real people to virtual humanoids automatically. The authors proposed a reinforcement
learning framework for learning full-body motion from a monocular video with real
people performing skills. Despite remarkable results, their goal is to transfer the style
of the motion, different from our objective that is adjust the original motion. Aber-
man et al. [2019] proposed a 2D motion retargeting using a high-level latent motion
representation. Their method has the benefit of not explicitly reconstructing 3D poses
and camera parameters, but it fails to transfer motions if the character walks towards
the camera or with variations of the camera’s point-of-view.

A kinematic neural network with an adversarial cycle consistency was developed
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in Villegas et al. [2018] to remove the manual step of defining the motion constraints.
Aberman et al. [2020] explored deep learning techniques for motion retargeting between
skeletons that have different structures. However, both Villegas et al.’s and Aberman et
al.’s approaches are limited by disregarding scenarios where the original motion must
be enhanced or adjusted because of environment changes.

2.4 Synthesizing Views

When working with real images of people, the retargeting problem becomes more chal-
lenging, since the deformation on the appearance starts playing a key role. Tradition-
ally, image-based rendering techniques [Kang and Shum, 2000] have been used to solve
the view synthesis problem. Image-based modeling techniques have been an alternative
to traditional geometry-based methods, where a collection of sample images are used
to render new views. However, several image-based rendering methods are still focused
on simple objects [Kang and Shum, 2000; Shum et al., 2003; Zhang and Chen, 2004]
not being well adapted for complex objects like the human body.

The past five years has witnessed the explosion of neural rendering approaches
and Generative Adversarial Network (GAN). GANs have emerged as promising and
effective approaches to deal with the tasks of synthesizing new views against image-
based rendering approaches (e.g., Kang and Shum [2000]; Shum et al. [2003]; Zhang and
Chen [2004]). More recently, the synthesis of views is formulated as being a learning
problem (e.g., Balakrishnan et al. [2018]; Dosovitskiy et al. [2015]; Esser et al. [2018];
Tatarchenko et al. [2015]; Yang et al. [2015]), where a distribution is estimated to
sample the new views. A representative approach is the work of Zhou et al. [2016a].
Their work uses a learning-based approach to implicitly approximate the geometry of
the object. Instead of generating color values for each pixel in the target view, it is
generated an appearance flow vector indicating the corresponding pixel in the input
view that will compose the target view. However, those methods mainly synthesize
rigid objects such as cars and furniture, not dealing with deformable objects with rich
details such as human body.

The works proposed by Isola et al. [2017]; Mirza and Osindero [2014] showed a
new approach to generate images of desired properties based on the input. In this
context, Ma et al. [2017] proposed to transfer the appearance of a person to a given
pose in two steps. First, their method applies a variant of the U-Net [Esser et al., 2018]
focusing on the global structure of the human body. Then, they use a variant of Deep
Convolutional GAN (DCGAN) to improve appearance details based on the first stage
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Figure 2.7: Esser et al. [2018]’s model to synthesize new images based on estimated
edges and body joint locations. The Esser et al. [2018]’s model learns to infer ap-
pearance from the queries images (on the left) and can synthesize images with that
appearance in different poses, as shown in the top row (Source: Esser et al. [2018]).

Figure 2.8: Wang et al. [2018]’s model to synthesize new videos based on estimated
pose. Each set shows the original dancer, the extracted poses, and the synthesized
frames (Source: Wang et al. [2018]).

result. Similarly, Lassner et al. [2017a] proposed a GAN called ClothNet. ClothNet
produces random people with similar pose and shape in different clothing styles given
a synthetic image silhouette of a projected 3D body model.
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Balakrishnan et al. [2018], for their turn, decomposed the problem of synthesizing
new views into a background and foreground layer segmentation. First, they segment
the source image into a background layer and multiple foreground layers corresponding
to different body parts. The segmentation allows their methodology to spatially move
the body parts to target locations. The second subtask consists in composing the
multiple foreground layers and background to produce the final output image. In the
work of Esser et al. [2018], a conditional U-Net is used to synthesize new images based
on estimated edges and body joint locations. Despite the impressive results for several
inputs, learning-based methods are limited to synthesize detailed body parts such as
faces, as shown in Figure 2.7.

Recent works such as Aberman et al. [2018] and Chan et al. [2019] start applying
adversarial training to map 2D poses to the appearance of a target subject. Although
these works employ a scale-and-translate step to handle the difference in the limb
proportions between the source skeleton and the target, their synthesized views still
have clear gaps in the test time compared with the training time. Wang et al. [2018]
proposed a general video-to-video synthesis framework based on conditional GANs to
generate high-resolution and temporally consistent videos of people, as shown in Fig-
ure 2.8.. Shysheya et al. [2019] attempt to handle the poor generalization by training
a model using different actors’ point-of-views. Their approach is also data-driven,
which requires training a model for each new character, including the full acquisition
setup information and camera poses. Mir et al. [2020] proposed to leverage the in-
formation from DensePose to learn a model to perform texture transfer of garments.
Although their method is texture agnostic and not actor specific, it is designed to
deal with garments transference (shirts and pants) and does not address the problem
of full-body transference neither handle the cross-transference. It also disregards the
motion constraints and human-to-object interactions [Hassan et al., 2019]. In the same
line, Neverova et al. [2018] investigated a combination of surface-based pose estimation
and deep generative models; however, their method only considers the layout locations
and ignores the personalized shape and limb (joint) rotations. Despite the impressive
results for several inputs, end-to-end learning-based techniques still fail to synthesize
the human body’s details, such as face and hands. Furthermore, it is worth noting
that these techniques focus on transferring style, which leads to undesired distortions
when the characters have different morphologies (proportions or body parts’ lengths).
An alluring example is depicted in Figure 2.9, where we perform the transfer between
actors with differences in body shape (first row) and height (second row).

Another limitation of recent approaches such as Aberman et al. [2018], Chan
et al. [2019], and Wang et al. [2018] is that they are data-driven, i.e., they require
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Figure 2.9: Motion and appearance transfer in different morphologies. From left to
right: target person, source motion video with a human of different body shape,
vid2vid [Wang et al., 2018], and our retargeting results. Note that vid2vid stretched,
squeezed, and shranked the body forms whenever the transferring characters have dif-
ferent morphologies.

training a different GAN for each video of the target person with different motions to
perform the transferring. This training is computationally intensive and takes several
days on a single GPU. In order to overcome these limitations, Liu et al. [2019] proposed
a 3D body mesh recovery module to disentangle the pose and shape; however, their
performance significantly decreases when the source image comes from a different do-
main from their dataset, indicating that they are also affected by poor generalization
to camera viewing changes. Recently, Sun et al. [2020] also proposed a data-driven
method where projections of the reconstructed 3D human model are used to condition
the GAN training, in order to maintain the structural integrity of the transfer to dif-
ferent poses. Nevertheless, all analyses were made in a strict setup where the person is
standing parallel to the image plane, and the considered motions have reduced lateral
translations.

In this dissertation, we show that there is still a performance gap of recent end-to-
end deep learning techniques against an image-based model when this comprises care-
fully designed steps for human shape and pose estimation and retargeting. These results
extend the observation of the works of Bau et al. [2019] and Wang et al. [2020b], where
the authors observed that GANs still present limited generation capacity. While Bau
et al. [2019] showed that generative network models could ignore classes that are too
hard at the same time producing outputs of high average visual quality, Wang et al.
[2020b] demonstrated that CNN-generated images are yet surprisingly easy to spot.
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2.5 Graph Convolutional Networks (GCN) and

Adversarial Learning

Graphs can be used to model many types of problems in real-world applications, includ-
ing social analysis, traffic prediction, path optimization algorithms, and many more.
According to Zhang et al. [2018b], by representing the data as graphs, the structural
information can be encoded to model the relations among entities and furnish more
promising insights underlying the data. For example, in a human skeleton, nodes are
the body joints, and edges represent the limbs. In addition to the spatial information
provided by the joints’ position, the graph structure describes the relationship between
the joints.

In this context, Graph Convolutional Networks (GCN) recently emerged as a
powerful tool for learning from data lying on manifolds beyond n-dimensional Euclidean
vector spaces. They have been widely adopted to represent 3D point clouds such as
PointNet [Qi et al., 2017] or Mesh R-CNN [Gkioxari et al., 2019], and notably, to model
the human body structure with state-of-the-art results in tasks such as human action
recognition [Yan et al., 2018], pose estimation [Wang et al., 2020a; Zhao et al., 2019],
and human motion synthesis [Ferreira et al., 2021; Ren et al., 2020; Yan et al., 2019].
Often GCNs have been combined and trained in adversarial learning schemes, as in
human motion [Ferreira et al., 2021], and pose estimation [Kanazawa et al., 2018]. Our
work leverages these capabilities from GCNs and adversarial training to estimate 3D
texture-mapped human models.

2.6 Differentiable Rendering

Most methods to estimate human body geometry and texture rely on supervised train-
ing regimes and costly annotations, which makes collecting the data challenging and
expensive. Thus, there are recent efforts towards leveraging 2D information and dif-
fering levels of supervision for 3D scene understanding. One of the approaches is
integrating graphical rendering processes into neural network pipelines.

Differentiable renderers (DR) are operators allowing the gradients of 3D objects
to be calculated and propagated through images while training neural networks. As
stated in Kato et al. [2020], DR connects 2D and 3D processing methods and allows
neural networks to optimize 3D entities while operating on 2D projections. Loper and
Black [2014] introduced an approximate differentiable render that generates derivatives
from projected pixels to the 3D parameters. Kato et al. [2018] approximated the back-



40

ward gradient of rasterization with a hand-crafted function. Liu et al. [2019b] proposed
a formulation of the rendering process as an aggregation function fusing the probabilis-
tic contributions of all mesh triangles with respect to the rendered pixels. Niemeyer
et al. [2020] represented surfaces as 3D occupancy fields and used a numerical method
to find the surface intersection for each ray, then they calculate the gradients using
implicit differentiation. Mildenhall et al. [2020] encoded a 3D point and associated
view direction on a ray using periodic activation functions, then they applied classic
volume rendering techniques to project the output colors and densities into an image,
which is naturally differentiable. In this dissertation, we propose a carefully designed
architecture for human neural rendering, leveraging the new possibilities offered by dif-
ferentiable rendering techniques [Liu et al., 2019b; Loper and Black, 2014; Ravi et al.,
2020; Zhang et al., 2020].

2.7 Summary and Closing Remarks

In this chapter, we presented an overview of human pose estimation methods from
images and representations of the human body. The representation of the human body
is one of the critical assumptions in our problem. A good representative model should
embed the human body kinematic structure information and human body shape infor-
mation. Since meshes are a realistic way of modeling a human body, we presented a
brief overview of human mesh reconstruction methods. These methods are limited to
estimating static 3D character models, which is insufficient to create animated virtual
characters. In sequence, we introduced the retargeting problem and presented some
relevant solutions. Following, we presented view synthesis methods that focus on trans-
ferring style without considering differences in the human body shape of the source and
target characters, which leads to undesired distortions when the characters have dif-
ferent morphologies (proportions or body parts’ lengths). Finally, we introduced GCN
and Differentiable Rendering techniques. GCN is a powerful representation for learning
from data lying on manifolds beyond n-dimensional Euclidean vector spaces, and Dif-
ferentiable Rendering is a promising technique to supervision 3D scene understanding
using 2D information.
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Chapter 3

Methodology

This chapter presents two human transferring methods considering the importance of
human motion, body shape, and appearance in the retargeting. Unlike most techniques
that transfer either appearance [Aberman et al., 2018; Chan et al., 2019; Esser et al.,
2018; Wang et al., 2018] or motion independently [Peng et al., 2018; Villegas et al.,
2018], we present techniques that simultaneously considers body shape, motion retar-
geting constraints, and human-to-object interactions over time, while retaining visual
appearance quality.

3.1 General Methodology

This section details the steps used to design our two new methods to transfer human
motion and appearance from video to video. As depicted in the Figure 3.1, our two
methodologies build upon our general methodology composed of four main components:

i. Human Motion Estimation: This component estimates the motion of the char-
acter performing actions in the source video, where essential aspects of plausible
movements, such as a shared coordinate system for all image frames and temporal
motion smoothness are ensured;

ii. Target Character Processing: This component extracts the target character’s
appearance and body shape in the second video;

iii. Motion Retargeting: This component adapts the estimated movement to the
body shape of the target character while considering temporal motion consistency
and the physical human interactions (constraints) with the environment;
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Figure 3.1: Overview of our general methodology. Each component is designed to
deal with a subproblem of the video-to-video retargeting problem. The four subprob-
lems are: human motion estimation in the source video (Human Motion Estimation);
appearance and shape estimation in the target video (Target Character Processing);
motion transfer from source character to target character (Motion Retargeting); and
target person synthesis into the source video (Compositing).

iv. Compositing: This component combines the extracted target character appear-
ance and the adapted movement into the background of the source video.

A central objective of our general methodology is to split the video-to-video
retargeting problem into subproblems. Dealing with the subproblems will ensure that
our retargeting methods: i) retain the same quality for most poses (Human Motion
Estimation); ii) preserve visual quality (Target Character Processing); iii) take into
account body shape and the character’s interaction with the environment (Motion
Retargeting), which allows handling different morphologies in the retargeting; and iv)
place the target person into a new context (Compositing).

3.2 Shared Components

In this section, we detail three components shared by the novel video retargeting tech-
niques.
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3.2.1 Human Motion Estimation

As discussed in the previous chapter, for most motion transferring approaches from
video to video, it is necessary to estimate the configuration of the human body in
a given image or a sequence of images. Unlike recent learning-based techniques, we
do not employ a 2D representation to this task, since 2D representations have two
drawbacks that this work intends to overcome. First, scale-and-translate strategies
to motion transferring in the image domain are not powerful enough to ensure the
constraint of the motion. Second, learning-based techniques using 2D representation
limit the method to be applied in actors that share the same skeleton proportions
and that were captured from similar view angles. Because of the problems described
above, we estimate the human pose in 3D and employ a volumetric representation of
the human body, which is more suitable to capture body shape features.

We divided our motion estimation description into three different subsections. In
the first subsection, we detail our representations of the human body and motion. In
the second subsection, we describe the estimation of the 3D pose for each time instant.
Then in the third subsection, we consider a set of consecutive frames together and
regularize the motion in time.

3.2.1.1 Human Body and Motion Representation

The most common model to represent human motion consists of two parts. One part
details the skeleton’s hierarchy and initial pose, and the second part describes the
operation that takes the initial pose to the desired pose for each frame. The skeleton
is defined by a kinematic tree of a set of joints. The kinematic tree consists of the
initial location of the root joint, offsets of each joint from their parent, and rotational
parameters for each joint that represents the relative rotation of the joint with its
parent.

The human skeleton is a complex system composed of many limbs and joints
where these limbs follow specific rules of proportions. Thus, to capture the statistics of
shape variation and limb-length proportions, we represent the structure of the skeleton
together with the 3D shape of the human body using the Skinned Multi-Person Linear
(SMPL) model [Loper et al., 2015] that represents a wide variety of body shapes in
natural human poses. The SMPL model is a skinned vertex-based model, where a
mean template mesh of N = 6890 vertices is controlled by two sets of parameters,
one for body shape, the other for the pose. The initial mesh and pose are shown in
Figure 3.2.
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Figure 3.2: The initial mesh and pose in our motion representation using the SMPL
model.

More formally, SMPL is defined as M(β,θ,M), where β is a vector of shape
parameters that are responsible for the 3D body shape due to identity, i.e., how in-
dividuals vary in height, weight, and body proportions. The θ is a vector of pose
parameters representing body part rotations in a kinematic tree. The fixed parame-
tersM represents the orthonormal principal components of shape displacements and
the blend skinning weights that were learned from a large number of 3D body meshes.

Considering the SMPL shape coefficients β ∈ R10 as our representation of hier-
archy and initial pose, our motion is a set of translations and rotations of the skeleton
joints over time. Therefore, we define Pi ∈ SE(3) as the pose of a joint i. Each pose
Pi is given by recursively rotating the joints of the skeleton tree, starting from the root
joint and ending in its leaf joints, i.e., the Forward kinematics (FK).

3.2.1.2 Human Pose Model Fitting

In this section, we describe the estimation of the 3D pose for each frame. Our
method builds upon the learning-based SMPL human pose/shape estimation frame-
work of Kolotouros et al. [2019], whose objective is to infer the 3D human body and the
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Figure 3.3: Example of global pose reconstruction. The input images cropping (blue),
the resulting change of field of view (red), and the global camera coordinates (black).

camera pose such that its 3D joints project onto the annotated 2D joints. At the same
time, an adversarial discriminator network is used to determine if the 3D parameters
are real meshes from the unpaired data or not.

Kolotouros et al. [2019] predict pose in the coordinate system of the bounding
box crop, where a weak-perspective camera model is adopted. The total number of
parameters that represents the 3D reconstruction of a human body for each frame k is
a 85 dimensional vector composed of 10 shape coefficients (βk), 72 joint angles (θk),
translation in axis u and v (tk ∈ R2), and the scale (sk ∈ R).

According to Mehta et al. [2017], the bounding box cropping normalizes person in
size and position, which frees 3D pose regression from having to localize the person in
scale and image space. However, this strategy loses the global pose information, which
is required to our motion transfer, see the Figure 3.3. Thus, after cropping the person
using Openpose [Cao et al., 2017; Simon et al., 2017; Wei et al., 2016] and estimating
the parameters that represents the 3D reconstruction, we map the reconstruction of
Kolotouros et al. [2019] from the virtual camera coordinates to the original camera
by minimizing an objective function that is the sum of two terms: one term that
encourages the projections of the joints to remain in same locations into the global
reference, and one term that encourages to keep the joints’ angles. Together with this
process, we force the subject shape to have same mean shape coefficients (βs) of the
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video. Thus, our energy function is given by:

E(θk, t) = λ1EJ(βs,θk, t,K,J2D) + λ2Eθ(θ
s
k,θk), (3.1)

where t ∈ R3 is the translation, K ∈ R3×3 is the camera intrinsic matrix, J2D is the
projections of the joints in the reconstruction of Kolotouros et al. [2019], and λ1, λ2 are
scaling weights. Finally, the human model pose in each frame is then obtained with
the forward kinematics (FK) in the skeleton tree:

(
Pk

0 Pk
1 . . . Pk

23

)
= FK(M,βs,θk), (3.2)

where Pk
i is the pose of the joint ith or Pk

i = [FK(M,βs,θk)]i). Consequently, consid-
ering the new set of θs as the reconstructed set of θ, the raw actor motion is defined as
M(βs,θs) = [P1 P2 ... Pn] ∈ R24×4×4×n, where β = [βs

1,β
s
2, . . . ,β

s
n] ∈ R10×n and θ =

[θs
1,θ

s
2, . . . ,θ

s
n] ∈ R72×n are composed of the stacked βs,θs

k over time.

3.2.1.3 Motion Regularization

Since we estimate the character poses frame-by-frame, the resulting motion might
present shaking motion with high-frequency artifacts in some short sections of the video.
To alleviate these effects, we perform a regularization to seek a new set of joint angles θ̂s

that creates a smoother motion. After applying a cubic-spline interpolation [De Boor
et al., 1978] over the joints’ motion M(βs,θs), we remove the outlier joints from the
interpolated spline. The final motion estimate is obtained by minimizing the cost:

min
(
||θ̂s −Θ||2 + γ||FK(βs, θ̂s)−Psp||2

)
, (3.3)

where Θ is the subset of inlier joints, FK is the forward kinematics, βs defines the
proportions and dimensions of the human body in the source video, Psp is the spline
interpolated joint positions, and γ is the scaling factor between the original joint angles
and the interpolated positions. This strategy removes high-frequency artifacts of the
joints’ motion while retaining the movement features.

Finally, we consider the final set of joint angles of the source video θs as the set
of joint angles θ̂s that creates a smoother motion.

3.2.2 Motion Retargeting

After estimating the motion from the input video, i.e., M(βs,θs), and 3D model βt

of the target human, we can proceed to the motion retargeting step. Our second
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shared component (Motion Retargeting) is essential to guarantee that some physical
restrictions are still valid during the target character animation. In this dissertation,
we assume that the target character has a homeomorphic skeleton structure to the
source character, i.e., the geometric differences are in terms of bone lengths and body
proportions. Our retargeting motion estimation loss is designed to guarantee the mo-
tion similarity and physical human-object interaction constraints over time. Similar
to Gleicher [1998], our first goal is to retain the joint configuration of the target as
close as possible to the source joint configurations at instant k, θt

k ≈ θs
k, i.e., to keep

ek small such as: θt
k = θs

k + ek. We also aim to keep similar movement style and speed
in the retargeted motion. Thus, we propose a one step speed prediction in 3D space
defined as ∆M(β,θk) = FK(β,θk+1) − FK(β,θk) to maintain the motion style from
the original joints’ motion:

LP (e) =
i+n∑

k=i+1

||∆M(βt,θs
k + ek)−∆M(βs,θs

k)||1, (3.4)

where e = [ei+1, . . . , ei+n]T , and n is the number of frames considered in the retargeting.
Rather than considering a loss for the total number of frames, we use only the

frames belonging to a neighboring temporal window of n frames equivalent to two
seconds of video. This neighboring temporal window scheme allows us to track the
local temporal motion style producing a motion that tends to be natural compared
with a realistic-looking of the estimated source motion. The retargeting considering a
local neighboring window of frames also results in a more efficient optimization.

3.2.2.1 2D/3D human-to-object interactions

The human-to-object interactions (i.e., motion constraints) are important to identify
key features of the original motion that must be preserved in the retargeted motion.
The specification of these interactions typically involves only a small amount of work
in comparison with the task of creating new motions. Typical interactions are, for
instance, that the target character’s feet should be on the floor; holding hands while
dancing or while grabbing/manipulating an object in the source video. Some examples
of human-to-object motion constraints are shown in Figures 3.4 and 3.5, where the
character is placing his left hand over a cone object and interacting with a box.

Going one step further than classic retargeting constraints defined in Gleicher
[1998] and Choi and Ko [2000], where end-effectors must be at solely a desired 3D
position at a given moment, we propose an extended hybrid constraint in the image
domain, i.e., the joint of the character must also be projected at a specific location in the
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Figure 3.4: Example of 3D constraints from human-to-object interactions. The charac-
ter is forced to use the original foot positions (red dots in left) and placing his left hand
over a cone object (red dots in right). The retargeting preserves smoothness (green
dots), i.e., it does not include undesired high frequencies to the original motion.

Figure 3.5: Example of hybrid 2D/3D constraints from human-to-object interac-
tions. Top row: Original video with 3D constraints (blue dots) and 2D constraints (red
dots). Middle row: Motion retargeting to a new character using only 3D constraints.
Bottom row: The results for the new character applying hybrid 2D/3D constraints
using our retargeting approach. Observe that the hands’ positions are more consistent
when adopting our hybrid strategy.

image. This type of motion constraint allows the user to exploit the visual knowledge
of interactions of the actor in the scene. Some examples are shown in Figure 3.5, where
two types of constraints are defined: 3D interactions (blue dots) impose the feet and
right hand to be in the same location after the retargeting, and 2D constraints (red
dots) imposing the correct position to the left hand in the image.

Our retargeting is capable of adapting to such situations by defining the motion
retargeting constraints losses in respect to end-effectors’ (hands, feet) 3D poses PR3D
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and 2D poses PR2D as:

LR3D(ek) = ||FK(βt,θs
k + ek)−PR3D||1, (3.5)

LR2D(ek) = ||Π(FK(βt,θs
k + ek),K)−PR2D||1. (3.6)

where the Π(.,K) operator performs the projection taking a 3D point (x, y, z) and
projecting it into the image plane given the camera parameters K.

3.2.2.2 Space-time loss optimization

The final motion retargeting loss L combines the source motion appearance with the
different shape and constraints of the target character from Equations 3.4, 3.5, and
3.6:

L = ||W1e||2 + λ1LP (e) + λ2LR3D(e) + λ3LR2D(e), (3.7)

where the joint parameters to be optimized are e = [ei+1, . . . , ei+n]T , n is the number
of frames considered in the retargeting window, λ1, λ2, and λ3 are the contributions
for the different error terms, and W1 is a positive diagonal matrix of weights for the
motion appearance for each body joint. This weight matrix is set to penalize more
errors in joints that are closer to the root joint.

One representative example of the retargeting strategy considering these hybrid
2D/3D constraints is shown in Figure 3.5. In this video sequence, the target actor is
bigger and taller than the one in the source video (shown in the two first rows of the
figure). Notice that the retargeting of the target actor (shown in the third row) results
in more bent poses to maintain the human-to-object interactions, and thus the hands’
positions are consistent when adopting our strategy.

3.2.3 Compositing

Figure 3.6: Example of the intermediate results of the compositing step. From left to
right: Original image, background, rendering of the character and composition.
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The third shared component is to compose the final image with the transferred
person and the source background. We first segment the source image into a back-
ground layer using as a mask the projection of our computed model with a dilation.
Next, the background is filled with the method proposed by Criminisi et al. [2004] to
ensure temporal smoothness to the final inpainting. We compute the final pixel color
value as the median value between the neighboring frames. Finally, the background
and the target character are combined in the retargeted frame. Figure 3.6 shows an
example of the intermediate results of the compositing step.

We also tested different inpainting formulations, such as the deep learning-based
methods presented in Wang et al. [2019]; Yu et al. [2018]. Our experiments show
that although these deep learning-based methods synthesize plausible pixels for each
frame, the adopted inpainting strategy has better results considering the visual and
spatio-temporal consistency between the frames.

3.3 Method I: Image-Based Rendering

2D human neural rendering approaches such as Wang et al. [2018], Chan et al.
[2019], Aberman et al. [2018], and Sun et al. [2020], appeared as effective approaches
for human appearance synthesis. However, these methods still suffer in creating fine
texture details, notably in some body parts as the face and hands. Besides, it is well
known that these methods suffer from quality instability when applied in contexts
slightly different from the original ones, i.e., a small difference in camera position, un-
common motions, pose translation, etc. These limitations motivate the proposal of our
Image-Based Rendering method, which is designed to leverage visibility map informa-
tion and semantic body parts to refine the initial target mesh model while keeping finer
texture details in the transferring.

For a recap, the proposed methodologies to transfer jointly human motion
and appearance are based on four components introduced in Section 3.1. Thus,
we first estimate the motion of the character performing actions in the source
video using the shared component proposed in Section 3.2.1. Second, we extract
the body shape and texture of the target character in the second video. We also ex-
tract the texture, refine body geometry and estimate the visibility information of the
body parts for transferring the appearance. Then, the shared retargeting component
(see Section 3.2.2) adapts the estimated movement to the body shape of the target
character while considering temporal motion consistency and the physical human in-
teractions (constraints) with the environment. Finally, the image-based rendering and
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Figure 3.7: Overview of our Image-Based Rendering approach. Our method is com-
posed of four main components: human motion estimation in the source video (first
component); we retarget this motion into a different target character (second compo-
nent), considering the motion constraints (third component), and by last, we synthesize
the appearance of the target character into the source video.

composition component combines classical geometry rendering and image-based ren-
dering to render the texture (appearance extracted from the target character) into the
background of the source video. Figure 3.7 shows a schematic representation of our
Image-Based Rendering method.

In the next subsection, we describe the Target Character Processing component of
our Image-Based Rendering method, which is designed to leverage visibility map infor-
mation and semantic body parts to refine the initial target mesh model while keeping
finer texture details in the transferring. In the sequence, we present the improvements
made to the Compositing step.

3.3.1 Target Character Processing

In order to create a more stable method and overcome the lack of details, we design a
new semantic-guided image-based rendering approach that copies local patterns from
input images to the correct position in the generated images. Our idea stems from
using semantic information of the body (e.g., face, arms, torso locations, etc.) in
the geometric rendering to encode patch positions and image-based rendering to copy
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pixels from the target images, and therefore maintaining texture details. This strategy
estimates a generic target body model βt, comprising body geometry, texture, and
visibility information at each frame that will be transferred to the source video in the
retargeting step.

3.3.1.1 Semantic-Guided Human Model Extraction

When extracting the appearance and geometry of the human body, the self-occlusion of
body parts and the deformable nature of the human body (and of clothes) bring chal-
lenging conditions. In order to tackle these difficulties, we propose a semantic-guided
image-based rendering of body parts that explores the global and local information of
the human body into the body model estimation.

While we gathered the global geometric information from the pose and shape
as discussed in Section 3.2.1, the local geometric information is extracted for each
viewpoint and aligned with the contours of their semantic body parts in the image. To
perform this alignment, we partitioned and computed the correspondence of the 3D
body model into fourteen meaningful body part labels (face, left arm, etc.). The 2D
semantic body labels are computed using the Gong et al. [2018]’s body parsing model,
which we fine-tuned using the people-snapshot dataset [Alldieck et al., 2018].

After computing the semantic map of the body, for each contour point (red
squares in Figure 3.8) in the map, we define the vertex from the body mesh with
the same semantic and the smallest Euclidean distance to the contour point as a con-
trol point (blue circles in Figure 3.8). The Euclidean distance is computed between
the contour point and the 2D projection of the vertex. Each control point will receive
a target position given its correspondent contour point. These control points and their
new locations guide the deformation of the mesh to fit the shape into the semantic
map’s contour. In the deformation, we seek a new body mesh Q that is a locally
rigid transformation of the source body mesh P , following the control points given by
the semantic contours. The mesh deformation is solved efficiently with the local rigid
deformation As-Rigid-As-Possible (ARAP) [Levi and Gotsman, 2015]. The correspon-
dence between each contour point and control point is represented in Figure 3.8 with
colored small lines. Notice that the desired motion of the control points guides the
deformation to fit the body mesh into the contours of the semantic map.

3.3.1.2 Human Textures and Visibility Maps Extraction

The geometric information allows rendering the human target character in a new view-
point by applying the desired transformations and re-projecting them onto the image
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Figure 3.8: Semantic guided deformation. The contour points (red squares) in the
semantic map indicate the target localization of the control points (blue circles) in
the body mesh that it will guide the ARAP algorithm to fit the body mesh into the
contours of the semantic map. The correspondence between each contour point and
control point is illustrated with colored small lines.

plane. In order to compare and merge the information from the human actor from
different viewpoints, we map the views to a common UV texture map space. The com-
mon UV texture map space is depicted in Figure 3.9. The mapping function is given
by a parametric function S that maps a point in the mesh from frame k to a point in
the texture space with coordinates (u, v), S : R3 → R2. Then, the accumulated texture
map UV (u, v) for all available images of the target character is done by the rendering
with S:

UV (S(x, y, z)) = I(Π((x, y, z),K)), (3.8)

where the Π(.,K) operator performs the rendering taking a 3D mesh point (x, y, z)

and projecting it into the image plane given the camera parameters K, and I is the
texture information in the image coordinates.

Finally, we assert which mesh points are visible by exploring the inverse map
S−1(u, v), as illustrated in Figure 3.10. Each visibility map indicates which parts of
the body model are visible per frame. Then we select the closest viewpoint to the
desired new viewpoint, for each part of the body model from the visibility maps.
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Figure 3.9: Our common UV texture map space. Each vertex in the mesh is mapped
to a specific point in the texture space.

3.3.2 Model Rendering and Image Compositing

In our framework’s last step, we combine the rendered target character and the source
background to make a convincing final image. We explored the visibility map of the
retargeted body model (global geometric information discussed in Section 3.3.1.2) to
select the human body parts that better matches the target parts. Since the trans-
formation between the retargeted SMPL model and the estimated SMPL model to
the images is known, we apply the same transformation used in the local geometric
information to move them to the correct positions. Instead of directly applying 3D
warping in the selected images, we use our pre-warping step (texture map) to improve
the rendering speed of 3D warping.

In order to fill the remaining part holes in the warped image, we explored the
median of the accumulated texture UV (see Figure 3.10). Finally, the background and
the target character are combined in the retargeted frame.
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Figure 3.10: Rendering of the visibility maps and texture images. Top: We project
each target actor viewpoint in a common UV texture space using the estimated geom-
etry and create a binary map of visibility body parts. Bottom: Given the goal pose
(retargeted pose), we estimate its visibility body parts map, and then select the better
matching visibility body parts created from the viewpoints from the target actor.

3.4 Method II: 3D Differentiable Human Rendering

Image-based rendering techniques like our previous technique are effective solutions to
create 3D texture-mapped models of people, capable of synthesizing images from any
arbitrary viewpoint without using a large number of images. On the other hand, image-
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based rendering methods cannot improve the visual quality of the synthesized images
by using more data when available. Furthermore, the deformation process proposed
in our previous method is not fast enough to be used in real-time applications. Thus,
we offer a strategy to take advantage of all available data and, in addition, reduce
inference time at the cost of increasing preprocessing time (training time).

Therefore, we propose a data-driven method, i.e., a method that requires training
a different model for each target person to perform the transferring. This training is
computationally intensive, but the inference is very fast. Furthermore, we take a step
towards combining learning and image-based rendering approaches in a new end-to-
end architecture that synthesizes human avatars capturing both body geometry and
texture details. The proposed architecture comprises a graph convolution network
(GCN) operating over the mesh with a differentiable rendering approach [Liu et al.,
2019b]. This architecture estimates a refined mesh and a detailed texture map to
properly represent the person’s shape and appearance for a given set of input frames.

Our method is also composed of four main steps: i) After estimating the motion
in the source (see Section 3.2.1); ii) we extract the 3D shape and appearance from
the target person using an end-to-end approach; iii) Then, by adapting the motion
to constraints such as the different body proportions and physical constraints (see
Section 3.2.2); iv) At last, the texture (appearance) extracted from the target is mapped
into the 3D shape and is rendered in the source video (see Section 3.2.3). In the next
subsection, we describe our end-to-end Target Character Processing.

3.4.1 Target Character Processing

In order to generate a deformable 3D texture-mapped human model, our end-to-end
architecture has three main components to be trained during the rendering. The first
component models local deformations on the human 3D body shape extracted from the
images using a three-stage GCN. In the second component, a CNN is trained to estimate
the human appearance map. Similar to the GCN, the CNN is also trained in a self-
supervised regime using the gradient signals from the differentiable renderer. Finally,
the third component comprises an adversarial regularization in the human appearance
texture domain to ensure the reconstruction of photo-realistic images of people. In the
inference/test time, we can feed our architecture with generic meshes parametrized by
the SMPL model, and then we can create a refined mesh and a detailed texture map
to represent the person’s shape and appearance properly. Figure 3.11 outlines these
components and their relations during the training phase and Figure 1.4 outlines these
components during the inference phase.
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• Graph convolution. This convolutional layer propagates information along
mesh edges using a aggregation strategy. Similar to Gkioxari et al.
[2019], given the input vertex feature fi, the layer updates the feature as
f ′i = ReLU(W0fi +

∑
j∈N W1fj), where W0 and W1 are learned weighting ma-

trices, and N (i) gives the i-th vertex’s neighbors in the mesh;

• Vertex refinement. To improve the quality of the vertex position estimation,
this operation computes vertex offsets as ui = tanh(W [f ′i ; fi]). W is a learned
weighting matrix;

• Vertex refinement clamping. To avoid strong deformations (large ||ui||2),
we constraint and bound the position update of each vertex vi as
v′i = vi + min(max(ui,−K(vi)), K(vi)), where K(v) is the 3D update bounds al-
lowed to the vertex v, depending on the body part it belongs to. Each body part,
e.g., face, footprints, hands, head, torso, arms, feet, etc., have predefined bound
thresholds. This operation ensures that the offsets do not exceed the threshold
defined to that body part, and that the refinement of the mesh geometry do not
affect the body’s topology.

Each of the three stages of the mesh network produces an intermediate mesh that
is further refined by the next stage.

Loss function. For learning the mesh refinement, our model exploits two differen-
tiable renderers that emulate the image formation process. Techniques such as pre-
sented by Liu et al. [2019b]; Ravi et al. [2020] enable us to invert such renderers and
take advantage of the learning paradigm to infer shape and texture information from
the 2D images.

During the training, the designed loss minimizes the differences between the image
silhouette extracted from the real input image Is and the image silhouette Îs of the
human body obtained by rendering the deformed 3D human model M into the image
by SoftRenderer, a differentiable renderer Πs(M). SoftRenderer is a differentiable that
synthesises the silhouette of the actor (see images examples in Figure 3.12). We can
define the loss of the Mesh Network Gm as:

Lm = λglLgl + λgnLgn + Ls, (3.9)

where Lgl and Lgn regularize the Laplacian and the normals consistency of the mesh re-
spectively Ravi et al. [2020], λgl and λgn are the weights for the geometrical regularizers,









62

reduce the effects from outlier poses. Each adversarial loss is designed as follows:

LGAN(G,D) = Ey[logD(y)]+

Exv ,xp [log(1−D(Πc(M,G(xv, xp))))],
(3.13)

where xv is the visibility map, xp is the output of the Texture Network,M is the refined
mesh, and y is the corresponding segmented real image I ⊗B.

Finally, to reduce the effects of wrong poses, which causes mismatches between
the rendered actor silhouette and silhouette of the real actor, we also add a regular-
ization loss to prevent the GAN from applying the background’s color into the human
texture. The first term of the regularization loss acts as a reconstruction of the pixels
by imposing the l1 norm in the person’s body region, and the second term enforces
eventual misaligned regions to stay close to the coarse texture:

Lr = α1

∥∥∥(I − ÎRN)⊗B
∥∥∥
1
/‖B‖1+

α2

∥∥∥(ÎTN − ÎRN)⊗ C
∥∥∥
1
/‖C‖1,

(3.14)

where α1 and α2 are the weights, ÎTN is the rendered image using the coarse texture,
ÎRN is the rendered image using the refined texture, and C is the misaligned regions
without the face region, i.e., the image region where the predicted silhouette and
estimated silhouette are different.

3.5 Summary and Closing Remarks

In this chapter, we presented two human transferring methods that simultaneously
consider body shape, motion retargeting constraints, and human-to-object interactions
over time, while retaining visual appearance quality. In method I, our carefully designed
approach based on a rendering pipeline reduces the effects of poor generalization to
changes in camera viewpoint, scale, and camera intrinsics and allows the proposed
method to be applied even if a few images are available. In method II, our data-driven
approach takes advantage of both differentiable rendering and the 3D parametric model
to produce a fully 3D controllable human model using all available data. In addition,
this approach reduces the inference time at the cost of increasing preprocessing time
(training time).
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Chapter 4

Human Retargeting Dataset and
Evaluation

Datasets are one cornerstone of recent advances in Computer Vision. While there are
many large datasets available for human shape and pose estimation [Andriluka et al.,
2014; Lin et al., 2014; Mahmood et al., 2019], existing motion retargeting datasets
are yet rare, hampering progress on this area. Due to the lack of suitable benchmark
datasets, recent works on neural view synthesis and body reenacting [Chan et al., 2019;
Esser et al., 2018; Wang et al., 2018] only analyze their results in qualitative terms or
quantitative terms to self-transfer in which the source and target actors are the same
subjects. The provided data is adapted to the requirements of their method setup, and
it is hard to perform a comparison with other methods on this data. Cross-transfer is
far more complicated than self-subject transfer. First, self-transfer is not affected by
body appearance changes (from body shape, and clothing for example). Second, the
self-shape transfer does not account for human-to-object interactions or disregards the
influence of existing human-environment physical interactions.

4.1 Existing Datasets

Existing video retargeting datasets are still rare. Villegas et al. [2018] provided human
joint poses from synthetic paired motions, however, paired visual information is not
available, limiting the appearance transferring. Chan et al. [2019] made available videos
with random actor movements that can be used to learn the appearance of the target
actor. However, the provided data is limited to their setup requirements, and it does
not allow the analysis and comparison with other methods. Liu et al. [2019] presented
a set of videos with random actions of target subjects, as well as videos of the subjects
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performing an A-pose movement. This set enables methods focusing on modeling 3D
human body estimation or using few keyframes to be executed using their data. On the
flip side, the lack of paired motions limits motion and appearance retargeting results
in quantitative terms, where the source and target actors are different subjects. Con-
versely, our proposed dataset, in addition to videos with random actions of the target
subjects and videos of the subjects performing an A-pose video, also provides several
carefully paired reconstructed 3D motions and annotated human-to-object interactions
in the image and 3D space.

4.2 Human Retargeting Dataset

To evaluate the retargeting and appearance transfer with different actor motions, con-
sistent reconstructed 3D motions, and with human-to-object interactions, we created
a new dataset with paired motion sequences from different characters and annotated
motion retargeting constraints. For each video sequence, we provide a refined 3D actor
reconstructed motion and the actor body shape estimated with Alldieck et al. [2018].
The refined reconstructed 3D motions and 2D-3D annotation of interactions were col-
lected by manual annotation. The provided motions are not prone to typical motion
artifacts such as bended knees, body shape variations, and camera-to-actor translation
changes. Figure 4.1 shows the annotated labels.

Our carefully designed dataset comprises eight subjects. To keep the dataset
with diversity, we choose participants (subjects S0 to S7) with different gender, sizes,
clothing styles, and body shapes. Figure 4.2 shows the subjects, their respective body
models and labels. A short description of these subjects is as follows:

• S0: A female character, 1.65 meters height, and neat hourglass body shape;

• S1: A male character, 1.85 meters height, and inverted triangle body shape;

• S2: A male character, 1.70 meters height, and rectangle body shape;

• S3: A male character, 1.83 meters height, and pear body shape;

• S4: A male character, 1.83 meters height, and lean column body shape;

• S5: A male character, 1.81 meters height, and apple body shape;

• S6: A male character, 1.84 meters height, and rectangle body shape;

• S7: A female character, 1.54 meters height, and pear body shape.
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Figure 4.1: Human retargeting dataset. a) Paired motions (upper and lower rows)
with annotated motion constraints (3D constraints in blue and 2D constraints in red).
b) The reconstructed 3D motions.

We also selected a set of movements that are representative to the problem of
the retargeting, increasing level of difficulty and with different motion constraints.
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Figure 4.2: The subjects participating in our dataset. F irst row: Subject number.
Second row: Subject’s image. Third row: Subject’s body model. Last row: Their
respective height.

These movements are of “picking up a box”, “spinning”, “jumping”, “walking”, “shaking
hands”, “touching an object”, “pulling down”, and “fusion dance”. Figure 4.3 shows each
movement performed by a different subject. A brief description of the recorded videos
and the motion restrictions presented therein is as follows:

• Jump: The subjects were instructed to jump from a side of the scene to another,
trying to jump the same distance at every jump. The restrictions are in frames
where the feet touch the floor plane. In this motion, the subjects of different
heights (their height often correlates to the length of legs) have difficulties making
this motion because of the distance between each jump. For instance, the actors
with lower height should adapt their pose to be able to reproduce the movement.
These videos sequences have around 100 frames.

• Walk: The subjects walked from a side of the scene to another. The restrictions
of this movement are when the subject touches the floor with his/her feet. In
this motion, subjects with lower height should adapt their legs to be able to give
a step with the same distance. These videos sequences have around 100 frames.

• Spinning: The subjects were instructed to rotate like a ballet dancer, while
another person holds their right hand extended upwards. The restrictions of this
motion are in the right hand of the subject touching the hand of the second
person, and in the subject’s feet when he/she is doing the spinning movement.
These videos sequences have around 230 frames.

• Shake Hands: The subjects were instructed to stay in the same position, then
performing a handshaking movement. The restrictions of this motion are in the
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their body without taking off the feet of the floor, and touch a cone placed in
front of them. The restrictions in this motion are the subjects’ feet touching
the floor, and in frames where the hand of the subject touches the cone. In this
motion, the subjects made different body poses because of the distance between
them and the cone in the scene. These videos sequences have around 150 frames.

• Pull Down: The subjects were instructed to start in a defined position, then
take a step backward to another defined position, while holding a hand of another
person. The restrictions of these motions are the feet of the subject touching the
floor plane and subject’s hand touching the hand of the other person placed in
the scene. These videos sequences have around 70 frames.

• Box: The subjects were instructed to hold a position, then pick up a box at the
floor and put it on a chair placed in front of them, without taking off their feet
of the floor. The restrictions of this motion are the subject’s feet touching the
floor, in the subject’s hands when picking up the box and while moving the box
to the chair. These videos sequences have around 210 frames.

Each actor performed all eight actions. We paired two actors to perform the same
motion sequence, where the subjects were instructed to follow marks on the floor to
perform the same action, resulting in four paired videos per action (a total of 32 paired
videos). Then, we define the combination of actors aiming at the most challenging
configuration for the task of human retargeting motion. For instance, actors S0, S2,
S4, and S6 were paired respectively with S1, S3, S5, and S7. We also provide, for each
subject, three videos: one video where the subject is rotating and holding an A-pose,
a four-minute video where the subject is performing different poses, and a 15-second
video where the subject is dancing. All videos were recorded with 1,000 × 1,080 of
resolution 1 at 30 frames per second. This information allows training most existing
approaches for evaluation.

4.3 Protocol

The evaluation often employed by works on character reenacting/synthesis [Aberman
et al., 2018; Chan et al., 2019; Liu et al., 2019; Sun et al., 2020] consists in setting the
source character equal to the target character. However, we argue that this protocol
is used because of the absence of paired motion sequences, as also noted in Liu et al.
[2019] and Sun et al. [2020]. While this protocol might be appropriate to assess new

1This resolution was adopted in previous methods in the literature.
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synthesized view/pose in the same scene background, we state that it is not appro-
priate for evaluating the synthesis of new videos of people when taking into account
motion constraints (e.g., human-to-object interactions), distinct shapes and heights,
and transferring them in different backgrounds where they were initially recorded.

Therefore, we run our evaluation protocol as follows: when evaluating a new
synthesized video, we place the target actor performing a similar motion to the source
actor (all physical constraints and the human-to-object interactions are taken into
account). Then, we move the target actor to a different scenario configuration to
perform the retargeting. If the retargeting is successfully executed, the method will
place the target actor moving as the source actor into the source actor’s scenario.

4.4 Evaluation Metrics

We measure the quality of the synthesized frames in terms of the following metrics:
i) the structural similarity (SSIM) [Wang et al., 2004] that compares local patterns of
pixel intensities normalized for luminance and contrast. SSIM assumes that human
visual perception is highly adapted for extracting structural information from objects;
ii) learned perceptual similarity (LPIPS) [Zhang et al., 2018a], which provides a deep
neural learned similarity distance closer to human visual perception; iii) the mean
squared error (MSE) that is computed by averaging the squared intensity differences
between the pixels; and iv) Fréchet video distance (FVD) [Unterthiner et al., 2019],
which was designed to capture the quality of the synthesized frames and their temporal
coherence in videos. These are widely used perceptual distances to measure how similar
the synthesized images are in a way that coincides with human judgment.

To properly evaluate the quality of retargeting, it is required a paired video
where the target character is the same as the source video sequence. Collecting real
paired motion sequences from different characters is a challenging task, even when the
movement of the actors is carefully predefined and synchronized. For instance, each
actor has a movement style that can result in videos with unsynchronized actions (as
seen in the third column in Figure 4.1-a). Thus, to make possible the computation of
quantitative metrics, we relax the assumption that the frame k in the synthesized video
must be the frame k in the paired video by applying a small window of acceptance
around k, i.e., we evaluate the quality of one synthesized frame as a better answer
between the frame and a small window of frames in the paired video. The window of
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acceptance w is estimated for each pair of videos according to:

w(V1, V2) = max(15, 2× (|len(V1)− len(V2)|), (4.1)

where len(V ) is the number of frames in the video V . Equation 4.1 captures how much
two videos are not synchronized allowing the synthesized frames to match with the
paired video. The lower bound value of 15 frames was empirically selected by a visual
analysis of our videos.

Aside from the image quality metrics, we also propose to evaluate the approaches
with fake image detectors. Since our dataset provides paired motion sequences, we can
evaluate the retargeted frames’ quality and realism with an image forgery detector. We
applied the detector in the generated and real frames from the sequence where the same
subject performs the retargeted motion. The retargeted frames were generated using
motion extracted from source videos whose subject performing the motion is different
from the target subject.

We adopted the image forgery detection algorithm presented by Marra et al. [2020]
to evaluate all methods in our experiments. The Marra et al.’s method evaluates images
by detecting pixel artifacts, which is a common metric for detecting CNN-generated
images. We remark that we tested different image forgery detection algorithms such as
the method proposed by Wang et al. [2020b], but the results were inconclusive, which
might be because of the high resolution of our images. Furthermore, our images are not
only generated by CNN methods, and as the authors stated, their method performs
at chance in visual fakes produced by image-based rendering or classical commercial
rendering engines. Finally, we define the forgery performance as the difference between
the probability of the paired real image and its respective synthetic frame of being
classified as fake. This difference indicates how far a synthetic frame is from being
recognized as fake with a similar result of a real image.

4.5 Videos for Qualitative Analysis

Although our dataset contains several videos, it is essential to evaluate the behavior
of our methodology in less controlled data acquisition. Thus, we provide three videos
acquired under uncontrolled conditions. In our experiments, we used these videos to
analyze the effectiveness of our method with more complex motions, background, and
varying illumination. A short description of these videos is as follows:

• joao-pedro: Video with moderate frequency motions and a static background,
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where a 1.80 meters height male character is walking and interacting with a cone
in the floor. The motion constraints are in the feet, and the hand, where the
person touches the top of the cone object;

• tom-cruise2: Video with moderate frequency motions and large translation in
all directions, where a 1.70 meters height male character is pretending to sing
while dancing. The annotated restrictions are in the dancer’s feet;

• bruno-mars3: Video with high-frequency motion where a 1.65 meters height
male character is dancing. The motion has strong occlusions in the arms and
feet. The annotated restrictions are in the dancer’s feet. Moreover, this sequence
was also used by Chan et al. [2019] and became a famous sequence for appearance
transferring.

2https://www.youtube.com/watch?v=IUj79ScZJTo
3https://www.youtube.com/watch?v=PMivT7MJ41M

https://www.youtube.com/watch?v=IUj79ScZJTo
https://www.youtube.com/watch?v=PMivT7MJ41M
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Chapter 5

Experiments and Results

In this chapter, we describe a set of experiments to analyze the gain related to our
techniques based on the compromise of three main aspects: appearance, motion, and
body shape. First, we present our baselines. Second, we show that our Image-Based
Rendering method exhibit a competitive quality compared to recent 2D neural ren-
dering techniques, besides having several advantages in terms of control and ability to
preserve motion features and body shape. Finally, we analyze our 3D Differentiable
Human Rendering method.

5.1 Comparison with Previous Approaches

We compare our methods against four recent representative methods with differ-
ent assumptions, including V-Unet [Esser et al., 2018], vid2vid [Wang et al., 2018],
EBDN [Chan et al., 2019], and iPER [Liu et al., 2019]. V-Unet is a notorious repre-
sentative of image-to-image translation methods using conditional variational autoen-
coders to generate images based only on a 2D skeleton and an image from the target
actor. Similar to V-Unet, iPER is not data-driven, but it is a generative model trained
in an adversarial manner. Vid2vid and EBDN methods, for their turn, are data-driven
methods, i.e., they require training a GAN for several days over one video of the target
subject in a large set of different poses.
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5.2 Method I: Image-Based Rendering

5.2.1 Implementation details

In the motion estimation, we used λ1 = 10−6 and λ2 = 10−2. In the human motion
estimation and retargeting steps, we used γ = 10, λ1 = 5, λ2 = 1, and λ3 = 1.
We minimize the retargeting loss function with Adam optimizer using 300 iterations,
learning rate 0.01, β1 = 0.9, and β2 = 0.99. To deform the target body model with the
semantic contour control points, we employed the default parameters proposed by Levi
and Gotsman [2015], and we fed the method with eight images taken from different
viewpoints of the actor (see Figure 3.7). For a complete comparison, we also present
qualitative results of the new frames from the state-of-the-art approaches by replacing
the generated background regions from the methods by the source video background.

5.2.2 Processing Time

Although vid2vid and EBDN required a few seconds to generate a new frame, the
training step of vid2vid spent approximately 10 days on an NVIDIA Titan XP GPU
for each target subject, and to run the fine-tuning of the EBDN took approximately
four days to complete all stages for each subject. On the other hand, our first approach
does not need to be trained. The significant parts of our method’s processing time are
the retargeting optimization, the deformation, and the model rendering. On an Intel
Core i7-7700 CPU and NVIDIA Titan XP GPU, the average run-time for one frame
of retargeting optimization was about 1.2 seconds, including I/O. The deformation
took around 720 seconds on eight frames. The model rendering, i.e., selecting the best
texture map considering the visibility map, warping the selected parts, and filling all
the holes in the texture, took about 30 seconds per frame. Thus, the total processing
time t(N) in seconds to run our method on a video with N frames with a resolution
of 1,920× 1,080 is approximately t(N) = 1.2×N + 720 + 30×N seconds.

5.2.3 Ablation Study

To verify that the space-time motion transfer optimization, motion regularization,
semantic-guided deformation, and visibility maps contribute to our approach’s suc-
cess in producing more realistic frames, we conducted several ablation analysis using
the motion sequences from our dataset.

Table 5.1 shows the results of our ablation study in terms of MSE and FVD
of five ablated versions of the Method I. We draw the following observations. First,
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Table 5.1: Ablation study. Comparison of mean MSE and FVD for different ablated
versions of our method on all motion types of our dataset (best in bold).

Method MSE↓ FVD↓

No motion regularization 275.47 887.94
No semantic guidance 275.88 879.86
No 2D/3D constraints 285.33 859.67
No use of visibility mask 273.45 789.06
Full method 259.75 738.96

Table 5.2: Quantitative ablation analysis of the retargeting with different
pair of actors. Table shows the error in pixels between the constraints position and
the end-effectors location. This error indicates how far the end-effector is from the
target position (better close to 0).

Method
Pair of actors

S0-S1 S2-S3 S4-S5 S6-S7 Avg.

Direct Transfer 27.41 22.84 10.06 22.88 20.80
Retargeting 4.57 3.19 2.67 5.19 3.90

Table 5.3: Quantitative ablation analysis of the retargeting with different
motion types. Table shows the error in pixels between the constraints position and
the end-effectors location. This error indicates how far the end-effector is from the
target position (better close to 0).

Method
Motion type

jump walk spinning shake hands cone fusion dance pull down box Avg.

Direct Transfer 13.73 14.49 21.90 18.22 16.77 24.67 34.11 22.49 20.80
Retargeting 2.44 1.94 2.04 2.90 2.76 10.66 3.14 5.35 3.90

the best result is achieved when the full method is applied. Second, removing the
2D/3D constraints reduces the performance in terms of MSE. These constraints play
a key role in the compliance of the poses to motion constraints. By removing them,
large fragments from the background are computed as part of the retarget character
body when computing MSE using the paired video, leading to the worst MSE value.
Third, without the shape-aware regularization, which hinders the temporal coherence,
the model presents the worst value of FVD. We can also see that after removing the
semantic guidance, which decreases the quality of the texture applied onto the 3D
model, the frames have more artifacts, and the model also performs poorly in terms of
FVD.
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Figure 5.1: Qualitative ablation analysis of the retargeting. Top row: source video
containing the actor S3. Middle row: transferring results to the actor S7 without the
physical interactions. Bottom row: transferring results of our method with 2D-3D
interactions.

Figure 5.2: Retargeted trajectory with motion constraints. The curves show the left
hand’s trajectory on the y-axis when transferring the motion of picking up a box
between two differently sized characters: original motion (blue line), a naïve transfer
without constraints at the person’s hand (red line), and with constraints (green line).
Frames containing motion constraints are located between the red circles.

The results of a more detailed performance assessment of the effects from motion
constraints in the video retargeting are shown in Table 5.2 and 5.3. The error between
the computed position of the end-effectors and the target positions (motion constraints
from the human-to-object interactions) is significantly smaller for all motion sequences
and pairs of actors when applying our retargeting strategy. Some frames are shown in
Figure 5.1 to illustrate the created visual artifacts when not considering the motion
constraints. In this setup, the source actor (top row) is taller than the target (bottom
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row), and the target actor does not touch the floor nor touch with her hands the cone
without the hybrid motion constraints (middle row). Conversely, these features are
kept when considering the 2D/3D human-to-object losses in the retargeting. Another
representative example of the retargeted motion trajectory over time, with one shorter
actor interacting with a box, is shown in Figure 5.2. Please notice the smooth motion
adaptation produced by the retargeting with the restrictions in frames 47 and 138

(green line) when the character’s left hand is touching the box. Additionally, these
results illustrate that our method is able to impose different space-time human-to-
object interactions and motion constraints in the retargeting.

Table 5.4 shows the forgery performance when synthesizing the frames after re-
moving the visibility map extraction and the semantic-guided human model extraction.
We can see that these two steps significantly enhance the quality of the results to a
point where the detector returns for the “shake hands" sequence a probability of 29.24

higher when removing these two components.

Table 5.4: Visibility maps and semantic-guidance analysis. Average forgery
performance for each movement (better close to 0).

Motion
Method

No Semantic-guidance
and Visibility Map

Complete
Model

jump 46.97 31.11
walk 45.76 23.35
spinning 34.46 21.09
shake hands 34.91 5.67
cone 39.20 24.80
fusion dance 33.24 15.97
pull down 35.68 17.85
box 38.09 17.63

5.2.4 Quantitative Analysis

We performed the video retargeting in all sequences in our dataset, including several
public dance videos also adopted in the works Chan et al. [2019] and Liu et al. [2019].
Table 5.5 shows the comparison of our approach in the dataset considering the motion
types and pair of actors. We can see that despite not being dataset-specific, V-Unet and
iPER did not perform well when the reference image is not from their datasets. One can
see that our method outperforms, on average, all methods in considering SSIM, LPIPS,
MSE, and FVD metrics. Regarding the experiments considering the pairs of actors,
our first approach also achieved the best average results in all metrics. In particular,
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Figure 5.3: Method I: Qualitative analysis in the dataset sequences. Transferring
results considering the cases where the person is not standing parallel to the image
plane or has the arms in front of the face. In each sequence: the first row shows the
worst generated frame for each method and the second row presents the best generated
frame for each method.

our method presented better results when the subjects have different heights (S0-S1
and S6-S7). We ascribe this performance to our method being aware of the shape and
physical interactions, which allows it to correct the person’s position when the source
actor is taller or smaller than the target person. Moreover, it is noteworthy that the
sequences “spinning” and “fusion dance” are challenging for all methods, including our
methodology that was affected by wrong pose estimations. Our first approach was
slightly outperformed by vid2vid only in these two sequences.

Table 5.6 shows the results for the experiments on image forgery detection. These
experiments indicate that the fake detector in the frames generated by our method has
the closest performances to real images. For instance, in the “shake hands” sequence,
the probability of a frame synthesized by our method to be fake is only 5.67% higher
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Table 5.6: Forgery performance. Quantitative metrics of the movement transfer
approaches considering the forgery performance metric (better close to 0).

Motion
Method

EBDN iPER vid2vid V-Unet Method I (Ours)

jump 39.46 46.56 41.66 47.41 31.11
walk 41.00 44.27 30.79 45.79 23.35
spinning 33.64 33.56 32.36 34.51 21.09
shake hands 31.71 33.56 19.39 34.93 5.67
cone 38.23 37.84 24.74 39.25 24.80
fusion dance 26.07 32.64 16.49 33.38 15.97
pull down 31.30 34.65 19.85 35.67 17.85
box 35.96 37.11 24.70 38.12 17.63

than when applying the detector to the respective real frame.

5.2.5 Qualitative Analysis

We evaluated the capability of our method to transfer motion and appearance and
retain interactions of the original motion despite the target actor having different pro-
portions to the actor in the source video.

Some frames used to compute the metrics in Table 5.5 are shown in Figure 5.3.
One can note the large discrepancy between the quality of the frames for the same
method. As shown in Figures 5.3 and 5.4, the end-to-end learning techniques have
impressive results when the person is standing parallel to the image plane and the
arms are not in front of the face; however, these methods perform poorly when the
person is out of these contexts, such as when bending. The proposed first method, for
its turn, retains the same quality for most poses.

We also analyzed the impact of the camera pose and the actor’s scale in the
quality of the resulting videos of the methods. We transferred two target persons
from our dataset to two videos with different camera setups and image resolutions:
“bruno-mars” and “tom-cruise” sequences. In the “bruno-mars” sequence, shown in
Figure 5.4, we ran vid2vid and EBDN using their respective solution to tackle with
different image resolutions and actors with different proportions from the training data.
Vid2vid’s strategy (scaling to keep the aspect ratio and then cropping the image) results
in an actor with different proportions compared with the training data, which leads
to a degradation of quality. EBDN’s strategy (pose normalization, scaling to keep
the aspect ratio, and then cropping the image) keeps the similarity between the input
video and training data, but body and face occlusions are still problems. The red
squares highlight these issues on the right side in Figure 5.4, where EBDN and vid2vid
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Figure 5.4: Method I: Qualitative evaluation to bruno-mars sequence. First row:
original video and target actor S5; Second row: Result of vid2vid and their compositing
with the target background; Third row: Results of EBDN and their compositing with
the target background; Fourth row: Our results for both backgrounds.

reconstructed poorly the target’s face. These strategies also incur a loss of the relative
position in the original image; thus, whenever the actor presents a large translation,
he/she can stay out of the crop area. Figure 5.5 depicts the results of “tom-cruise”
sequence. In this sequence, the source actor has a large translation in all directions;
thus, we include a margin in the image to allow EBDN and vid2vid to process it.
Nevertheless, the difference in the actor’s scale results in low quality for vid2vid and
EBDN, which suggests their lack of generalization of these methods to different poses,
and changes in camera viewpoint and intrinsic parameters. On its turn, our method
did not suffer from problems caused by the camera and image resolution, and provided
the best scores and visual results.
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Figure 5.5: Method I: Qualitative evaluation to tom-cruise sequence. First row:
original video and target actor S2; Second row: Result of vid2vid and their compositing
with the target background; Third row: Result of EBDN and their compositing with
the target background; Fourth row: Our results for both backgrounds.

5.2.6 Results in the iPER Dataset

Aside from our dataset, we also evaluated our approach using the iPER dataset [Liu
et al., 2019]. Since the iPER dataset does not provide paired motions as the proposed
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Table 5.7: Method I: Comparison with iPER in their proposed dataset. Our
approach is able to provide the best values in terms of SSIM and LPIPS, while per-
forming worse in terms of FVD (best in bold).

Metric iPER Method I (Ours)

SSIM↑ 0.8410 0.8936
LPIPS↓ 0.0848 0.0722
FVD↓ 955 1269

it also allows to create a deformed model from images that can be included in virtual
scenes using existing rendering frameworks, such as Blender. Figure 5.7 illustrates an
application of this capability.

Regarding the method’s processing time, our current implementation of the
Method I is a modular Python code, but without any optimization, i.e., the code
was not parallelized either and was not adapted to run fully on a GPU. However, we
highlight the available room for speeding up the processing time with a parallel imple-
mentation of different parts of the approach as, for instance, in the deformation model
steps, which currently require 30 seconds per frame. They could be easily adapted to
be executed in parallel with multiprocessing.

Figure 5.7: Method I: Model-to-virtual. Our method is able to provide a deformed
model from images that can be included in virtual scenes using existing graphic ren-
dering tools, such as Blender. The partial occlusions between the scene and model are
handled in a natural way (red squares).

5.3 Method II: 3D Differentiable Human Rendering

5.3.1 Implementation details

We use PyTorch3D [Ravi et al., 2020] implementation of differentiable rendering and
GCN operators. We trained our body mesh refinement network for 20 epochs with
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batch size equal to 4. For the optimizer, we used AdamW [Loshchilov and Hutter,
2019] with parameters β1 = 0.5, β2 = 0.999, weight decay = 1 × 10−2, and learning
rate of 1 × 10−4 with a linear decay routine to zero starting from the middle of the
training. We empirically set λ1 and λ2 to 1.0 and 0.5, respectively. In the Vertex
refinement clamping component, we defined the set of thresholds as follows: K ∈ {face
= 0.0; footprints = 0.0; hands = 0.0; head = 0.04; torso = 0.06; arms = 0.02; forearms
= 0.04; thighs = 0.04; calves = 0.03; feet = 0.02} meters.

Due to remarkable performance of pix2pix [Isola et al., 2017] in synthesizing
photo-realistic images, we build our Texture Network upon its architecture. The opti-
mizers for the texture models were configured as the same as the Mesh Network, except
for the learning rates. The learning rate for the whole body and face discriminators,
the global texture and refinement texture generators were set as 2 × 10−5, 2 × 10−5,
2× 10−3, and 2× 10−4, respectively. The parameters of the texture reconstruction was
set to α1 = 100 and the regularization as α2 = 100. We observed that smaller values
led to inconsistency in the final texture. For the training regime, we used 40 epochs
with batch size 8. The global texture model was trained separately from the other
models for 2,000 steps, then we freeze the model, the texture refinement generator and
the discriminators were trained.

5.3.2 Processing Time

All the training and inference were performed in a single Titan XP (12 GB), where
the GCN mesh model and the human texture networks took around 6 and 20 hours
per actor, respectively. The inference time takes 92 ms per frame (90 ms in the GCN
model deformation and 2 ms in the texture networks).

5.3.3 Training Setup

For the training of both texture models and the mesh human deformation network
we considered four-minute videos provided by our dataset, where the actors perform
random movements, allowing the model to get different views from the person in the
scene. We use the SMPL model parameters calculated by our Motion Estimation
method (3.2.1) and the silhouette image segmented by MODNet [Ke et al., 2020] for
each frame of the video.
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Figure 5.8: Method II: Ablation study. a) Results of the texture training without the
refinement stage; b) Model without the Vertex Refinement Clamp layer. We observe
an excessive growth of the mesh without update thresholds. The texture produced
lacks details and even could not preserve the actor’s face; c) shows the results for our
complete model.

Table 5.8: Method II: Ablation study. SSIM, LPIPS, MSE, and FVD comparison
by motion types. Best in bold.

Method
Metrics

SSIM1 LPIPS2 MSE2 FVD2

Texture Refinement Removal 0.869 0.136 262.39 795.15
Vertex Refinement Clamping 0.866 0.142 288.04 829.60
Complete Model 0.868 0.134 259.79 769.54

1Higher is better 2Lower is better

5.3.4 Ablation Study

We evaluate the contributions of different parts of the method to the overall view syn-
thesis performance. We investigated the benefits from the Vertex refinement clamping
component in the Mesh Refinement Network (MRN) and the use of adversarial training
in the texture generation. For the first experiment, we removed the vertex refinement
thresholds, letting the mesh grow loosely. All other steps of texture training were
maintained. Table 5.8 shows that the performance dropped drastically when compared
to our original model. A qualitative analysis of the results in Figure 5.8-a demon-
strates that removing the Vertex refinement clamping component led to strong wrong



86

deformations in the hands and feet, i.e., the regions with higher pose estimation errors.
In the adversarial training analysis, we maintained the original Mesh Refinement

Network and removed the Texture Refinement Network and its discriminators, training
only the Global Texture Network using Equation 3.11. Figure 5.8-b shows the texture
quality of the models trained with and without the adversarial regime. After removing
the GAN the model could not generate textures with fine details, producing blurry
results. This result is also reported in the metrics of Table 5.8, where we show the
average values calculated from all motion sequences in the test data in which the model
without GAN is outperformed in all results besides SSIM. This result is coherent, since
SSIM is based on low-level image features, and blurred textures can lead to higher
SSIM.

5.3.5 Quantitative Comparison with State of The Art

We performed the neural rendering for actors with different body shapes, gender, cloth-
ing styles, and sizes for all considered video sequences. The video sequences used in
the actor animation contained motions with different levels of difficulty, which aims to
test the generalization capabilities of the methods in unseen data. Table 5.9 shows the
performance for each method considering all motion and actors types in the dataset.
We can see that our Method II achieves superior peformance as compared to the meth-
ods in most of the motion sequences and actor types considering the SSIM, LPIPS,
MSE, and FVD metrics. We argue that these results indicate that our second method
is capable of deforming the mesh according to the shape of the given actors and then,
rendering a texture optimized to fit the morphology of the person in the scene. Further-
more, the training methodology, that considers multiple views from the actor and the
shape parameters, allows the generation of consistent rendering with less deformations
when the character is performing challenging movements, such as bending or rotating.

5.3.6 Qualitative Visual Analysis

The visual inspection of synthesized actors also concur with the quantitative analysis.
In Figure 5.9, we provide the best frames for each movement using four actors in the
dataset. Our Method I and our Method II are the only models capable of keeping the
body scale of the authors along all scenes, while the other methods failed, in particular
in the movements shake hands and walk. Besides generating coherent poses, our second
method also generated more realistic textures in comparison to the other methods.
Comparing the results of the movements jump and spinning, one can visualize some
details as the shadow of the shirt sleeve of the actor and the shirt collar, respectively.
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Figure 5.9: Method II: Qualitative comparison. Transferring results considering the
cases where the person is not standing parallel to the image plane or has the arms in
front of the face. In each sequence: the first row shows the worst generated frame for
each method and the second row presents the best generated frame for each method.

The Figure 5.10 illustrates a task of retargeting in two different scenarios. These results
demonstrate the capability of generating detailed face and body texture, producing a
good fit of the actors in the different scenes.

5.3.7 Discussion

The experiments show that the proposed method superior quality compared to recent
neural rendering techniques, besides having several advantages in terms of control and
ability to generalize to furthest views. Yet we observed none of the existing methods
obtain artifact-free results, which suggests the problem of synthesizing realistic views
of people in general contexts is still a challenging problem. On the other hand, the
results indicate that neural networks and differentiable rendering approaches have the
potential to push forward the area.
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Figure 5.10: Method II: Human retargeting example. The first line of each scene
illustrates the real movement. On the second line is the retargeting using our proposed
method. The red squares highlight our face generation quality.

5.4 Conclusions and Closing Remarks

This chapter presented several experiments that we performed to show the behavior
of our two methods. We performed a comparative analysis in terms of motion, shape,
and appearance quality against the literature’s recent 2D neural rendering methods.
In these experiments, the Image-Based Rendering method and the 3D Differentiable
Human Rendering method outperformed the other approaches, including data-driven
methods like EBDN and vid2vid.

Our strategy that simultaneously considers body shape, motion retargeting con-
straints, and visual appearance quality results in methods less sensitive to the camera
and pose conditions. As shown in the experiments, our approaches are both stable and
shape-aware. In other words, they do not suffer from quality instability when applied in
contexts slightly different from the original ones (a small difference in camera position,
uncommon motions, pose translation, etc.), and they can handle different morpholo-
gies in the retargeting. Moreover, the proposed methodology has several advantages in
terms of control and adaptability to new contexts. For example, our methods can easily
replace the background and incorporate a tracking algorithm to work appropriately in
scenes with two or more people, which is impossible in previous work since they embed
the character into the same learned background.

As shown in the experiments, none of the existing methods obtain artifact-free
results, which suggests the problem of synthesizing realistic views of people in general
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contexts is still a challenging problem. Moreover, aspects such as illumination and
temporal harmonization still are neglected by all methods. They are essential aspects
of achieving realism.

We remark that it would be pertinent further to analyze the local quality of the
retargeting methods. The metrics adopted in this dissertation and the literature com-
pute the global quality of a synthesized frame. However, the background corresponds to
most of the image region, and it is known that facial abnormalities draw the attention
of humans, which is not considered in the metrics.
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Chapter 6

Conclusions

This dissertation proposes a general methodology of transferring human motion and
appearance from video to video preserving motion features, body shape, and visual
quality. We designed two novel methods using our methodology presented in Chapter
3 and we demonstrated that this methodology is adequate to be used as a design
guide in the creation of new methods to transfer human motion and appearance from
video to video preserving motion features, body shape, and visual quality. From a
theorical standpoint, our work exploits motion constraints, body shape, and a 3D
representation of people to synthesizing more plausible videos and allows us to tackle
subjects with different limb proportions and body shape. Thereby, this work offers
three main contributions to the state of the art:

i. A unified methodology carefully designed to transfer motion and appearance
from video to video that preserves the main features of the human movement
and retains the visual appearance of the target character;

ii. A retargeting technique taking into account physical constraints of the motion
in 3D and the image domain; and new semantic-guided image-based rendering
approach that copies local patterns from input images to the correct position in
the generated images, which defines a more stable method and overcome the lack
of details;

iii. A novel data-driven formulation for transferring appearance and reenact human
actors that produces a fully 3D controllable human model, i.e., the user can
control the human pose and rendering parameters.

We performed experiments on different publicly available videos and on a dedi-
cated collected dataset containing several types of motions, constraints, and actors with
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Figure 6.1: Limitations. Top: Retargeting resulting in undesired motion where the
actor positions his hand down and curves his back instead of bending his knees. Bot-
tom: Typical failure cases in the avatar: artifacts in the texture and body parts with
unreal shapes.

different body shapes. Our approaches achieved better results than learning method-
ologies like the EBDN and vid2vid in most scenarios for appearance metrics (SSIM,
LPIPS, MSE, FVD). Our results also indicate that retargeting strategies based on
image-to-image learning are still challenged to retarget motions while keeping the de-
sired movement constraints, shape, and appearance simultaneously. Furthermore, we
show in our second method that it is possible to build hybrid strategy that produces
a fully 3D representation of the person. By taking advantages of both differentiable
rendering and the 3D parametric model, this approaches allow controlling the human
pose and rendering parameters.

6.1 Future Work

Although achieving the best results in these more generic test conditions, the proposed
approaches also suffer from certain limitations. Ideally, the constrained optimization
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problem would maintain the main features of the source motion. However, there is no
single solution to a set of constraints, which can result in undesired motions, as shown
in Figure 6.1, where the actor positions his hand down and curve his back instead of
bending his knees. One possibility to increase the robustness of this method would
be using simultaneously kinematic and dynamic constraints such as self-collisions and
balance. Another interesting topic is how to reuse other existing sources of motion. If
we want a human character to imitate a dog’s walking, there is no one-to-one corre-
spondence between the bones of their skeletons. Capture systems may define different
skeletons even if we are dealing with the same type of characters. Thus, transferring
stylistic motion features between characters with different skeletal topologies might be
an exciting topic.

The textured avatars built by our first method may exhibit artifacts in the pres-
ence of part segmentation estimation errors, which can also lead to wrong deformations,
and errors in the deformation result in body parts with unreal shapes. Segmentation
errors are also depicted in Figure 6.1. The results of our second method indicate that
neural networks and differentiable rendering approaches can push forward the area and
reduce the artifacts. However, it is challenging to train GANs to produce mesh and
texture due to training instability and optimization issues. These challenges call for
more robust loss functions and stable training procedures. In the future, end-to-end
training with more compact, simple, and memory-efficient network architectures is a
potential next step in this direction. Also, the results shown in the experiments chap-
ter have demonstrated the importance of using an appropriate strategy to combine
human motion and appearance transferring. We believe it is important and necessary
to proceed with a theoretical investigation about the limits and best ways to perform
such combinations.

Another important direction in the future is to address the composition step. We
would like to try a strategy to estimate the light of the target scene and the material
properties of the model. Thus, removing the inconsistency between the foreground
and background would be possible by applying the correct shading and shadows to the
scene, which is impossible to our methods.

Although differentiable rendering is a novel field, it is rapidly maturing, aided
by the continuous development of new tools to simplify its usage. This will enable
more researchers to develop hybrid approaches that combine the best of model-based
and learning-based approaches. Differentiable rendering of videos is also an exciting
research direction to be explored, in order to train an end-to-end pipeline that combines
video data with motion constraints.
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