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Resumo

Nos últimos anos observamos um crescimento expressivo no número de aplicações in-
teligentes envolvendo análise, mineração e classificação de dados. Com o aumento
da complexidade das investigações a necessidade de abordagens simples, rápidas e
com baixo custo computacional tornou-se fundamental. No contexto de análise não-
paramétrica de séries temporais, o uso da metodologia de simbolização de Bandt-Pompe
tornou-se relevante. Tendo como base o uso de padrões ordinais formados por meio
dos elementos da série analisada, quando unido ao uso de descritores causais da teo-
ria da informação mostrou-se apresentar um alto poder de caracterização da dinâmica
geradora do processo subjacente aos dados.

Dentre os descritores, dois destes por apresentarem definições complementares
vem recebendo um grande destaque na literatura: a entropia de Shannon, que neste
contexto mensura o grau de desordem da distribuição dos padrões ordinais e a complex-
idade estatística, que por outro lado, representa o grau de dependência estrutural entre
os elementos da sequência. Em conjunto, tais features formam o plano Complexidade-
Entropia, cujo o presente trabalho possui como objetivo evidenciar as suas principais
lacunas, são elas: (i) a ausência de métodos para construção de regiões de confiança
e (ii) a ambiguidade na formação dos símbolos provocada pela ausência de informações
da amplitude de seus elementos. Visando apresentar métodos alternativos para os
problemas relatados, propomos duas soluções: uma modificação no grafo de transição
de padrões ordinais, o Weighted Amplitude Transition Graph, que realiza o cálculo do
peso de suas arestas usando informações de variação de amplitude entre os símbolos, e o
HC-PCA, um método de geração de regiões de confiança empíricas sobre o plano. Para
validar nossas propostas, aplicações no contexto de sensoriamento remoto e análise de
sequências de ruídos brancos foram desenvolvidas.

Palavras-chave: Simbolização de Bandt-Pompe, Padrões ordinais, Plano
Complexidade-Entropia, Teoria da Informação.
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Abstract

In recent years we have seen significant growth in the number of intelligent applications
involving analysis, data mining, and classification. With the increase in the complexity
of the investigations, the need for simple, fast, and low computational approaches
has become essential. In the context of non-parametric analysis of time series, the
use of the Bandt-Pompe symbolization methodology has become relevant. The use
of ordinal patterns formed by time-series elements when combined with the use of
information theory descriptors proved to have a high power of characterization of the
process underlying the dynamics of the data.

Among the descriptors, two of these for presenting complementary definitions
have received a great prominence in the literature: Shannon’s entropy, which in this
context measures the degree of disorder in the distribution of ordinal patterns formed
through the time series, and the statistical complexity, which on the other hand, rep-
resents the degree of structural dependence between the elements of the sequence.
Together, these features form the Complexity-Entropy plane, whose present work aims
to highlight and solve its main gaps: (i) the absence of methods to build confidence
regions and (ii) the ambiguity in the formation of symbols caused by the lack of in-
formation on the amplitude of the elements. In order to present alternative methods
for the reported problems, we propose two solutions: a modification in the transition
graph of ordinal patterns, the Weighted Amplitude Transition Graph, which performs
the calculation of the weight of its edges using amplitude variation information between
the symbols, and the HC-PCA, a method of generating empirical confidence regions
on the plane. To validate our proposals, applications in the context of remote sensing
and analysis of white noise sequences were developed.

Keywords:: Bandt-Pompe Symbolization, Ordinal Patterns, Complexity-
entropy Plane, Information theory.
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Chapter 1

Introduction

1.1 Motivation

In the last decades we have dealt with a drastic increase in the number of applications
coming from data mining, consequently causing an increase in the diversity and volume
of information used. With this, the level of complexity of the investigations, the inter-
disciplinarity and the number of features necessary to carry out such activities were
also increased. Thus, the study of simple approaches, inexpensive computationally and
independent of the type of data for the extraction and characterization of patterns has
become fundamental.

One of the fields of study in this area is the application of information theory
descriptors. The information theory developed by Claude Shannon emerged as an in-
terdisciplinary branch, producing countless results both in the theoretical point of view
and in the applications in information extraction in signals, covering in its solutions
concepts present in Probability, Statistics and Telecommunications. It currently con-
sists of a powerful tool for the quantification of different levels of order and complexity
present in the processes that generate the data.

In the context of non-parametric analysis of time series, a new methodology was
proposed by Bandt and Pompe (2002a) for data analysis. Obtaining a representation of
the time series in Bandt-Pompe ordinal patterns, two approaches are currently being
applied to acquire a non-parametric probability distribution of the data: the use of
frequency histograms or transition graphs. When opting for this new representation of
the data, the resulting distribution becomes less sensitive to outliers and, as it does not
depend on any model, it can be applied to a variety of situations. Despite its simplicity,
this method is robust to noise and yields good results in assessing the randomness of
a sequence, characterization and classification of signals.

1
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The Bandt-Pompe methodology and its variants have been used successfully in
the analysis of many types of dynamics, receiving so far more than 1800 citations,
according to the Web of Science. We found works using this approach in several areas
of scientific knowledge such as, for example: distinguishing noise from chaos (Rosso
et al., 2007a); the study of electroencephalography signals using wavelet decomposi-
tion (Baravalle et al., 2018a,b); description of El Niño/Southern Oscillation during
the Holocene (Saco et al., 2010); the characterization of household appliances through
their energy consumption (Aquino et al., 2017); detecting and quantifying stochastic
and coherence resonance (Rosso and Masoller, 2009a,b); analysis and characterization
of economic time series, e.g., stock market, sovereign bonds, credit rating, commodi-
ties, and cryptocurrencies (Zunino et al., 2010, 2012a; Bariviera et al., 2013, 2018;
de Araujo et al., 2019); online signature classification and verification (Rosso et al.,
2016). Schieber et al. (2016) verified the effect of attacks on complex networks by
the displacement of points in the H × C plane. Aquino et al. (2015) described vehi-
cles’ behavior depending on the topology of cities, and Chagas et al. (2020) succeeded
in expanding the use of such techniques for analyzing textured images corrupted by
speckle noise. Bariviera et al. (2015) identified spurious interventions in the Libor
market using the H × C plane representation. Echegoyen et al. (2020) were able to
discriminate between individuals with mild cognitive impairment from those diagnosed
with Alzheimer’s disease using magnetoencephalography recordings.

Given the probability distribution of the patterns, each time series is then de-
scribed by a point in the R2 subinterval, the Complexity-Entropy plane. Two points
are well known in this plane:

1. White noises, that is, random sequences without any spatial structure, where
the entropy presents its maximum value while the complexity is minimal - we
can describe statistically the systems present in such locations of the plane by a
random variable taken from some distribution; and

2. Deterministic data, that is, sequences with a periodic structure, where entropy
and statistical complexity have their minimum values - we can reconstruct the
patterns of such data with only a small portion of patterns.

Through these references, we can characterize time series according to the dy-
namics of their generation process. Studies with different applications have managed
to obtain relevant results from time series through information on the nature of the
data provided by the H × C plane. Examples include: (i) Echegoyen et al. (2020)
analysis of permutation in magnetoencephalography recordings of individuals suffering
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from mild cognitive impairment and individuals diagnosed with Alzheimer’s disease by
trajectories in the H ×C plane, (ii) the study of Schieber et al. (2016) of the effect of
attacks on complex networks by shifting their points on the H×C plane, and (iii) the
description of vehicle behavior based on the topology of cities carried out by Aquino
et al. (2015).

However, we can see from the examples above that Bandt-Pompe symbolization
has a wider range of applications for one-dimensional signals, such as time series. Thus,
it still presents challenges in applications with higher dimensions, such as reducing the
loss of spatial correlation between the pixels of an analyzed image.

The aforementioned studies illustrate the importance of the symbolization
method in the most diverse areas of knowledge. This dissertation works in this context
and advances in the state of the art with a focus on investigating the main problems
still present in the literature: (i) the application of the Bandt-Pompe approach in im-
ages, (ii) the absence of amplitude weighting methods in transition graphs of ordinal
patterns, and (iii) the lack of proposals to build confidence regions.

By proposing an expansion of the applicability of Bandt-Pompe in the image
context, this work presents a new perspective of extracting texture characteristics from
SAR (Synthetic Aperture Radar) images. In this way, by linearizing the image samples,
we proposed the use of time series analysis tools for a new context: where exists
dependence and spatial correlation between the elements.

1.2 Goals

The aim of this work is to develop solutions for the main gaps in the Bandt-Pompe
symbolization methodology. Thus, we propose two solutions: the first proposal to
incorporate amplitude information in transition graphs and the first approach to build
empirical confidence regions in the Complexity-Entropy plane. We started the work
by presenting a modification of the traditional transition graphs of ordinal patterns,
which when applied to the context of analysis of SAR image textures proved to be
the first approach to be able to characterize and classify images with results directly
comparable to the techniques present in the state of the art. On the other hand, one of
the major problems involving the direct use of causal descriptors, Shannon entropy and
statistical complexity, for classification activities is the lack of an appropriate distance
metric. Due to the curvilinear shape of the plane, we verified the need for work focused
on building confidence regions and test statistics for such tooling. Thus, to minimize
the impacts caused by the absence of a specific metric, we propose the HC-PCA. Based
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on this study, we were able to increase the power of characterization of different classes
of time series, where as a use case, we present how the proposed approach manages to
determine regions of pure randomness present in the plane.

1.3 Contributions

The main contributions of this dissertation work are:

Weighted Amplitude Transition Graph: We propose the first approach of
transition graphs of weighted ordinal patterns using amplitude information of the
analyzed sequences. In this way, we were able to reduce the ordinal ambiguity
present in transition graphs, thus increasing its characterization power.

Analysis and Classification of SAR Textures using Information The-
ory: Through WATG, we propose a new representation of SAR textures, which
allows a low-dimension characterization useful for, among other applications, its
classification. Our approach is robust for rotations and the presence of speckle
noise. In addition to perfect separation between urban areas, pastures, ocean
and forest, the proposed descriptors are interpretable in terms of the degree and
structure of the spatial dependence between the observations.

HC-PCA: We provide the first contribution in the construction of confidence
regions in the Complexity-Entropy Plane, and to measure the similarity of new
data sequences with the empirical points we propose the construction of a new
test statistic.

Testing White Noise in the confidence regions: We present and evaluate a
new method of building empirical confidence regions in the Complexity-Entropy
plane for analysis of white noise. We were able to capture the random behavior
of short sequences of PRNGs already analyzed in the literature and we found
that in the scenario presented, our technique is robust to correlation structures.

1.4 Publications

The first year of the master’s degree was dedicated to research an extensive literature
review work, where a comprehensive study was review focusing on the classification of
SAR textures, alternatives for using Bandt-Pompe symbolization in two-dimensional
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data, and ordinal pattern weighting approaches by amplitude. Once have the state-of-
the-art, we use the knowledge of several fields of research, such as machine learning,
information theory, and graphs to prepare our first proposal, which resulted in some
works listed below in chronological order of publication/presentation:

• WATG: Incorporating amplitude in ordinal pattern decomposition for time series
analysis. Poster presentation at Khipu, Nov 2019, Montevideo, Uruguay. Latin
American Meeting In Artificial Intelligence, 2019.

• Characterization Of SAR Images With Weighted Amplitude Transition Graphs.
2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LA-
GIRS).

• Analysis and Classification of SAR Textures using Information Theory. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing
(2020).

• An exploratory study of the transition graphs application in different resolutions
and polarizations of SAR images. 2021 China International SAR Symposium
(CISS). (In writing and submission process).

During the second year, we plan to focus on developing our proposal for building con-
fidence regions in the Complexity-Entropy plane. Although they presented unlivable
results, detailed studies were carried out involving the use of classical bi-variate anal-
ysis, linear regression, and generalized linear models. After defining the methodology,
we focus on writing the article below that is currently in the submission process:

• Confidence Regions for Information-Theoretic Descriptors of Time Series. Inter-
national Statistical Review.

A work related to the general area studied was also carried out in collaboration with
other researchers:

• Detecção de eventos no Twitter através de Grafos de visibilidade natural. III
Workshop de Computação Urbana. SBC, 2019.

• Supervised Distance Metric learning Encoder with Similarity Space for malware
classification through image representation. Computer Networks (Under submis-
sion).



6 Chapter 1. Introduction

1.5 Work Organization

This document is organized as follows. Chapter 2 introduces concepts and definitions of
the Bandt-Pompe symbolization process and the Complexity-Entropy plane. Chapter 3
provides an overview of ordinal pattern weighting techniques. We also propose the first
algorithm for incorporating amplitude information into transition graphs, the WATG.
Chapter 4 presents a use case for WATG, providing the experimental results obtained
in characterizing and classifying homogeneous textures of SAR images. Chapter 5
discusses the state of the art analysis of white noise confidence regions in the plane.
Here we also propose the HC-PCA region of empirical confidence and the construction
of a specific statistical test. Chapter 6 presents the main results obtained in our case
study with white noise samples. Finally, in Chapter 7, we provide our final thoughts,
a perspective on this work, and directions for future work.



Chapter 2

Bandt-Pompe Symbolization:
Concepts and definitions

Dynamic systems describe the relationship in time of a point in a geometric space.
Thus, the study of time series assists in the analysis of the dynamics of its generating
processes. Whether a scalar time series collected through the observation of natural
phenomena or obtained through synthetic simulations, its values will be the result of
a function formed by its majority of unobserved and measured variables. Thus, an
important research question in data analysis has been:

Given a system and a sample resulting from it whose evolution can be
tracked over time, how much information is encoded in this observable
about the dynamics of the underlying system and the variables that char-
acterize them?

Traditionally, the study of time series is carried out under two lines of study, in the do-
mains of time and frequency (Brockwell and Davis, 1991). However, both approaches
directly use the data resulting from the observational process, which are sensitive to
noise and contamination effects. The approach to the use of non-parametric meth-
ods appears in the literature as a way to prevent such effects from compromising the
analyzes.

To make good inferences in data analysis studies, it is expected that the proposed
approach meets the following requirements:

• Be simple, fast and transparent;

• Make little or no assumptions about the underlying process; and

• Be resilient towards outliers.

7
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When analyzing classic probabilistic techniques, we found that they cannot obtain
good results without assuming characteristic properties of the data, such as the shape
of the probability distribution of the samples. On the other hand, proposals based on
machine learning do not mean to guarantee the required simplicity and transparency,
as they do not provide a clear view of the observed characteristics (Bandt, 2019).

The 1820 citations received by the seminal paper appeared in 684 journals in-
dexed by the Web of Science. These journals belong to 127 categories, spanning from
Multidisciplinary Physics (24 % of the publications) to Zoology (only one of the of
citing articles). There are 17 citing articles from journals that belong to the Statistics
& Probability category. Five of these articles appeared in Stochastic Environmental
Research and Risk Assessment, two in the Journal of Time Series Analysis, and each of
the remaining ten appeared in a different journal. Most of these articles relate success-
ful applications of the Bandt and Pompe methodology, except Sinn and Keller (2011)
that obtained the sample entropy’s properties under zero-mean Gaussian processes. It
is also noteworthy that, in this category of publications, Abrams et al. (2013) provided
a formal and more general proof of the structure of the boundary of the H×C manifold
than that obtained by Martín et al. (2006). The lack of attention that the Bandt and
Pompe approach has received by the Probability & Statistics community confirms that
it is a fertile research avenue waiting to explore.

In this context, the analysis of ordinal patterns coupled with the use of informa-
tion theory descriptors, in addition to meeting the requirements above, has been able
to detect causal information related to the unobserved variables that control the sys-
tem, in addition to identifying chaotic components, visualization and characterization
of different dynamic regimes, among other applications.

2.1 Ordinal Patterns Representation

Bandt and Pompe (2002b) introduced the representation of time series by ordinal
patterns as a transformation resistant to noise, and invariant to nonlinear monotonic
transformations. Let X ≡ {xt}Tt=1 be a real valued time series of length T , without
ties. As stated by Bandt and Pompe (2002b) in their seminal work:

“If the {xt}Tt=1 attain infinitely many values, it is common to replace them
by a symbol sequence Π ≡ {πj} with finitely many symbols, and calculate
source entropy from it".

Also, as stressed by these authors,
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“The corresponding symbol sequence must come naturally from the {xt}Tt=1

without former model assumptions".

Let AD (with D ≥ 2 and D ∈ N) be the symmetric group of order D! formed
by all possible permutation of order D, and the symbol component vector π(D) =

(π1, π2, . . . , πD) so every element π(D) is unique (πj 6= πk for every j 6= k). Consider for
the time series X ≡ {xt}Tt=1 its time delay embedding representation, with embedding
dimension D ≥ 2 and time delay τ ≥ 1 (τ ∈ N, also called “embedding time,” “time
delay”, or “delay”):

X
(D,τ)
t = (xt, xt+τ , . . . , xt+(D−1)τ ), (2.1)

for t = 1, 2, . . . , N with N = T − (D − 1)τ . Then the vector X(D,τ)
t can be mapped to

a symbol vector π̃Dt ∈ AD. This mapping is such that preserves the desired relation
between the elements xt ∈ X

(D,τ)
t , and all t ∈ {1, . . . , T − (D − 1)τ} that share this

pattern (also called “motif”) are mapped to the same π̃Dt .

We define the mapping X
(D,τ)
t 7→ π̃Dt by ordering the observations xt ∈ X

(D,τ)
t in

increasing order. Consider the time series:

X = (1.8, 1.2, 3.2, 4.8, 4.2, 4.5, 2.3, 3.7, 1.2, 0.5) (2.2)

depicted in Fig. 2.1. Assume we are using patterns of length D = 5 with unitary time
lag τ = 1. The code associated to X

(5,1)
3 = (x3, . . . , x7) = (3.2, 4.8, 4.2, 4.5, 2.3), shown

in black, is formed by the indexes in π5
3 = (1, 2, 3, 4, 5) which sort the elements of

X
(5,1)
3 in increasing order: 51342. With this, π̃5

3 = 51342, and we increase the counting
related to this motif in the histogram of all possible patterns of size D = 5.

The dash-dot line in Fig. 2.1 illustrates X(5,2)
1 , i.e. the sequence of length D = 5

starting at x1 with lag τ = 2. In this case, X(5,2)
1 = (1.8, 3.2, 4.2, 2.3, 1.2), and the

corresponding motif is π̃5
1 = 51423.

The classic approach to calculating the probability distribution of ordinal patterns
is through the frequency histogram. Denote Π the sequence of symbols obtained by a
given series X(D,τ)

t . The Bandt-Pompe probability distribution is the relative frequency
of symbols in the series against the D! possible patterns {π̃Dt }D!

t=1:

p(π̃Dt ) =
#
{
X

(D,τ)
t is of type π̃Dt

}
T − (D − 1)τ

, (2.3)

where t ∈ {1, . . . , T − (D − 1)τ}. These probabilities meet the conditions p(π̃Dt ) ≥ 0

and
∑D!

i=1 p(π̃
D
t ) = 1, and are invariant before monotonic transformations of the time
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Figure 2.1. Illustration of the Bandt and Pompe coding. Here the gray line rep-
resents the analyzed sequence X = (1.8, 1.2, 3.2, 4.8, 4.2, 4.5, 2.3, 3.7, 1.2, 0.5), the se-
quence illustrated by the dotted line shows the path taken when applying τ = 2,
and the sequence illustrated by the black line shows the elements of the pattern
X

(5,2)
1 = (1.8, 3.2, 4.2, 2.3, 1.2).

series values. For example, the presence of α multiplicative noise in X does not change
the results of the patterns produced.

In the literature, there are two ways to perform the mapping X
(D,τ)
t 7→ πDt in the

symbolization of Bandt-Pompe: (i) Sorting the positions of the elements xt ∈ X
(D,τ)
t in

chronological order (Permutation of Classification), and (ii) Sorting the time indexes
of the elements xt ∈ X

(D,τ)
t (Chronological Index Permutation).

2.1.1 Rank Permutation Mapping

For an arbitrary t, the vector of real values X (D,τ)
t = (xt, xt+1, . . . , xt+D−1) with time

delay τ ≥ 1 (τ ∈ Z), and embedding dimension D ≥ 2 (D ∈ Z) are mapped to the
vector symbol πD = (R[xt],R[xt+1], . . . ,R[xt+D−1]) ∈ AD formed by the rank of its
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Figure 2.2. Rank permutation mapping: The complete alphabet for D = 3 of the
rank mapping technique obtained by permuting all possible ranks.

components, defined as the following function:

R[xt+n] =
D−1∑
k=0

1(xt+k ≤ xt+n) for n = 0, . . . , D − 1 (2.4)

where xt+n ∈ X
(D,τ)
t , 1 ≤ R(xt+n) ≤ D, and 1 is the indicator function: 1(Z) =

1 if Z is true and 0 otherwise. So the maximum and minimum values of rank are
R(min(xt+k)) = 1 and R(max(xt+k)) = D. The complete alphabet is all the possible
permutation of the ranks. Examples of its application can be seen in Riedl et al. (2013)
and Bandt and Shiha (2007).

For example, let us take the series 2.2, time delay τ = 1 and embedding di-
mension D = 3, the eight vectors and their corresponding patterns obtained by rank
permutation mapping are:

X
(3,1)
1 = (1.8, 1.2, 3.2) 7→ (2, 1, 3),

X
(3,1)
2 = (1.2, 3.2, 4.8) 7→ (1, 2, 3),

X
(3,1)
3 = (3.2, 4.8, 4.2) 7→ (1, 3, 2),

X
(3,1)
4 = (4.8, 4.2, 4.5) 7→ (3, 1, 2),

X
(3,1)
5 = (4.2, 4.5, 2.3) 7→ (2, 3, 1),

X
(3,1)
6 = (4.5, 2.3, 3.7) 7→ (3, 1, 2),

X
(3,1)
7 = (2.3, 3.7, 1.2) 7→ (2, 3, 1),

X
(3,1)
8 = (3.7, 1.2, 0.5) 7→ (3, 2, 1),

In Fig. 2.2, we present an illustrative drawing of this mapping for all alternatives
when we haveD = 3. As we can see, the vertical axis indexes are fixed and the resulting
pattern is obtained through the time axis labels in chronological order.

2.1.2 Chronological Index Permutation Mapping

Again, for an arbitrary t, the vector of real values X (D,τ)
t = (xt, xt+1, . . . , xt+D−1) with

time delay τ ≥ 1 (τ ∈ Z), and embedding dimension D ≥ 2 (D ∈ Z) are mapped to the
vector symbol πD = (i1, i2, . . . , iD) ∈ AD formed by the time indexes ordered according
to their amplitudes. So, the sequence must comply xt+i1 < xt+i2 < · · · < xt+iD .
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Figure 2.3. Chronological index permutation mapping: The complete alphabet
for D = 3 of the chronological mapping technique obtained by permuting all of its
indexes.

Examples of its application can be seen in Bandt and Pompe (2002b), Ravetti et al.
(2014), Parlitz et al. (2012), and Bian et al. (2012).

For example, let us take the series 2.2, time delay τ = 1 and embedding di-
mension D = 3, the eight vectors and their corresponding patterns obtained by rank
permutation mapping are:

X
(3,1)
1 = (1.8, 1.2, 3.2) 7→ (2, 1, 3),

X
(3,1)
2 = (1.2, 3.2, 4.8) 7→ (1, 2, 3),

X
(3,1)
3 = (3.2, 4.8, 4.2) 7→ (1, 3, 2),

X
(3,1)
4 = (4.8, 4.2, 4.5) 7→ (2, 3, 1),

X
(3,1)
5 = (4.2, 4.5, 2.3) 7→ (3, 1, 2),

X
(3,1)
6 = (4.5, 2.3, 3.7) 7→ (2, 3, 1),

X
(3,1)
7 = (2.3, 3.7, 1.2) 7→ (3, 1, 2),

X
(3,1)
8 = (3.7, 1.2, 0.5) 7→ (3, 2, 1),

In Fig. 2.3, we present an illustrative drawing of this mapping for all alternatives
when we have D = 3. In this mapping, the time indexes are fixed in chronological
order. The patterns are chosen by the vertical axis labels in the increasing direction of
the amplitude.

2.2 Ordinal Patterns Transition Graphs

Alternatively, given the sequence of ordinal patterns Π one may form an oriented graph
with the transitions from π̃Dt to π̃Dt+1. The Ordinal Pattern Transition GraphG = (V,E)

represents the transitions between two consecutive ordinal patterns over time t. The
vertices are the D! possible patterns for an embedding dimension D, and the edges the
transitions between them: V = {vπ̃Dt }, and E = {(vπ̃Dt , vπ̃Dt+1

) : vπ̃Dt , vπ̃Dt+1
∈ V } (Borges

et al., 2019).
The literature reports two approaches to compute the weight of edges. Some

authors employ unweighted edges (McCullough et al., 2015; Kulp et al., 2016), which
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represent only the existence of transitions, while others apply the frequency of tran-
sitions (Sorrentino et al., 2015; Zhang et al., 2017). The weights W = {wv

π̃D
i
,v
π̃D
j

:

vπ̃Di , vπ̃Dj ∈ V } assigned to each edge describe the chance of transitions between the
patterns (vπ̃Di , vπ̃Dj ) The weights are calculated as the relative frequency of each transi-
tion, i.e.:

wv
π̃D
i
,v
π̃D
j

=
|Ππ̃Di ,π̃

D
j
|

T − (D − 1)τ − 1
, (2.5)

where |Ππ̃Di ,π̃
D
j
| is the number of transitions from pattern π̃Di to pattern π̃Dj ,∑

v
π̃D
i
,v
π̃D
j

wv
π̃D
i
,v
π̃D
j

= 1, and the denominator is the number of transitions between

sequential patterns in the series of motifs of length T − (D − 1)τ .

When comparing the transition graph with other classical time series representa-
tions in graphs, we can highlight some advantageous properties (Borges et al., 2019):

(i) Speed and simplicity: the construction of the graph depends only on two pa-
rameters, the time delay τ and the embedding dimension D. On the other hand,
the time series symbolization process depends on the length N of the analyzed
series and the dimension of incorporation D, having a complexity O(n ·D2) when
we consider a simple algorithm for sorting elements with O(D2) complexity.

(ii) Scalability: Regardless of the number of elements in the time series, the number
of vertices of the transition graph will always be limited by D!, Where 3 ≤ D ≤ 7.

(iii) Robustness: Since the Bandt-Pompe symbolization produces robust ordinal
patterns to the presence of monotonous non-linear noises and transformations,
we can conclude that the transformation proposed by the transition graphs also
guarantees such specificity.

(iv) Probability of self-transition: The self-transition of the graph represent the
proportion of ordinal patterns sequentially repeated and are defined as

pst = p(π̃Di ,π̃Di ) =
∑

i∈{1,·,D!}

wv
π̃D
i
,v
π̃D
i

. (2.6)

Thus, the presence of auto-loops, when evaluated according to the τ incorporation
delay, proved to be an important characteristic of the underlying dynamics of
time series, as they are directly associated with the temporal correlation of the
elements.
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2.3 Information-Theoretic Descriptors

Let P = {pπ̃D1 , pπ̃D2 , . . . , pπ̃DD!
} = {p1, . . . , pD!} be the probability function obtained from

the 1-D signal X by Bandt-Pompe symbolization. The last step of the characterization
process consists of calculating the Information Theory descriptors: Shannon Entropy
and Statistical Complexity. Through these features we were able to obtain the point
in the H × C plane.

2.3.1 Permutation Entropy

Entropy measures the disorder or unpredictability of a system characterized by a prob-
ability measure P and is measured by:

H(P) = −
D!∑
i=1

pπ̃Di log pπ̃Di . (2.7)

Its minimum value occurs when H(P) = Hmin = 0, in this particular case we will
have maximum knowledge about the system and we will be able to predict with absolute
certainty what will be the next ordinal pattern generated by the data, indicating that
the time series is deterministic. On the other hand, when the behavior of the system
is described by a uniform distribution, that is, when all the possibilities have the same
probability of occurrence and its probability is determined by P = {1/D!, . . . , 1/D!},
we will have minimal knowledge of the analyzed data, obtaining H(P) = Hmax =

logD!. In that case, the time series would be determined as a completely random
system (Bandt and Pompe, 2002b).

However, in the literature it is opted to use the normalized Shannon entropy
defined by Martin et al. (2006a), given by:

HS(P) =
H(P)

Hmax

= − 1

logD!

D!∑
i=1

pπ̃Di log pπ̃Di , (2.8)

where 0 ≤ HS(P) ≤ 1.

2.3.2 Statistical Complexity

The entropy’s ability to capture system properties is limited, so it is necessary to use it
in conjunction with other descriptors to obtain a complete analysis. Other interesting
measures are the distances between P and a probability measure that describes a non-
informative process, typically the uniform distribution.
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The Jensen-Shannon divergence to the uniform distribution U = ( 1
D!
, . . . , 1

D!
) is

a measure of how similar the underlying dynamics is to a non-informative process. It
is calculated as:

JS(P,U) =
D!∑
i=1

(
pπ̃Di log

pπ̃Di
uπ̃Di

+ uπ̃Di log
uπ̃Di
pπ̃Di

)
. (2.9)

Conversely to entropy, the statistical complexity seeks to find interaction and
dependence structures among the elements of a given series, being an extremely im-
portant factor in the study of dynamic systems. The Statistical Complexity is defined
as Lamberti et al. (2004):

CJS(P,U) = HS(P) ·QJS(P,U). (2.10)

The “disequilibrium” QJS is calculated by:

QJS(P,U) = Q0 · JS(P,U) (2.11)

= Q0 ·
{
H

[
P+U

2

]
− H[P+U]

2

}
(2.12)

The normalization constant is equal to the inverse of the maximum value of JS (Rosso
et al., 2007b), so:

Q0 = −2

{(
D! + 1

D!

)
ln (D! + 1)− 2 ln (2D!) + ln (D!)

}−1
, (2.13)

where 0 ≤ Q0 ≤ 1.
This descriptor quantifies, in addition to randomness, the presence of correla-

tional structures between patterns, reflecting the architecture of the systems, being
different from zero if there are more likely states than the others. In this way, different
degrees of structure can be quantified, reflecting properties revealed by the probability
distribution of the underlying process.

2.3.3 Causality Complexity-Entropy Plane

The set of all pairs (H(P), C(P,U)) for any time series described by patterns of
length D lies in a compact subset of R2: the Complexity-Entropy plane (or Entropy-
Complexity plane). Through this tool it is possible to discover the nature of the
series just by checking its region of location on the plane, its associated values help
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to determine whether it corresponds to a chaotic (or other deterministic dynamics) or
stochastic sequence.

Anteneodo and Plastino (1996) proved that, for a fixed value of entropy, there
are two extreme values of complexity. Martin et al. (2006b), using geometrical argu-
ments on the space of configurations, found expressions for such boundaries. The lower
boundary Cmin is continuous, while the upper Cmax is defined by D!− 1 pieces.

Fig. 2.4 shows the boundaries of the H ×C plane for the embedding dimensions
D = 3 (red) D = 4 (green), and D = 5 (blue). The jagged structure of Cmax increases
the difficulty of finding distributions for the points in the H × C plane.
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Figure 2.4. Boundaries of the H × C plane for D = 3, 4, 5.

We illustrate the use of the Complexity-Entropy (H×C) with the following time
series:

• f−k noises. Correspond to colored noise sequences generated synthetically using
the power spectrum f−k (Ravetti et al., 2014). Here, we opt to use the following
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configurations of the spectrum: white (k = 0), k = −1/2, pink (k = 1), k = 3/2,
red (k = 2), = 5/2, and k = 3;

• Logistic maps. The classical chaotic map defined by the formula xt = rxt−1(1−
xt−1) (Peitgen et al., 2006). In this work, we use this chaotic logistic series with
the parameters r = 3.6 and 4;

• Deterministic series. Monotonic increasing (log(xt + 0.1), xt = {1, 2, . . . , 104)
and periodic (sin(2xt) cos(2xt), with 0 ≤ xt ≤ 2π over ten thousand equally
spaced points).

In all cases, we used D = 6 and τ = 1. Fig. 2.5 shows nine of the histograms pro-
duced by these series using the Mersenne-Twister pseudorandom number generator; we
omitted those corresponding to the deterministic series, as they produce one and two
nonzero bins. As we can see, as we add more correlation structures, f−k noises have a
less uniform histogram, making it more evident that some ordinal patterns stand out
and are more frequent than others. Therefore, we have an indication that there is a
structure of dependence between such elements, making them more deterministic.

Fig. 2.6 shows the H × C plane with the bounds for D = 6, the time series,
and the points they were mapped onto. The points due to f−k noises appear joined
by dotted segments. It is noticeable that deterministic patterns have more complexity
than random ones. Also, points related to f−k noises tend to clutter for k < 1, having
the highest entropy values.



18 Chapter 2. Bandt-Pompe Symbolization: Concepts and definitions

0.000

0.001

0.002

0 200 400 600

White Noise

0.000

0.001

0.002

0.003

0 200 400 600

f−1 2

0.000

0.001

0.002

0.003

0.004

0.005

0 200 400 600

f−1

0.000

0.003

0.006

0.009

0 200 400 600

P
ro

b
a

b
ili

ty

f−3 2

0.000

0.005

0.010

0.015

0.020

0.025

0 200 400 600

f−2

0.00

0.02

0.04

0.06

0 200 400 600

f−5 2

0.00

0.05

0.10

0.15

0.20

0 200 400 600

f−3

0.00

0.05

0.10

0.15

0 200 400 600

Logistic Map, r = 3.6

0.00

0.01

0.02

0.03

0.04

0 200 400 600

Logistic Map, r = 4

Figure 2.5. Patterns histograms of selected time series with D = 6, τ = 1 and T = 104.
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Figure 2.6. Eleven systems and their points in the H ×C plane when we apply D = 6,
τ = 1 and T = 104.
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Weighted Amplitude Transition
Graph

Although the use of Bandt-Pompe symbolization has several advantages over other
feature extraction algorithms, it has two major gaps in its seminal definition:

(i) The ordinal ambiguity present when we have equal values in the same sub-
sequence (Traversaro et al., 2018, 2017), and

(ii) The lack of information related to differences in sample amplitude (Azami and
Escudero, 2016; Fadlallah et al., 2013; Cuesta-Frau, 2019),that is, the mean value
of the amplitudes and the differences between neighboring samples are not con-
sidered by the original methodology.

Figure 3.1 shows two examples of how sub-sequences with different structural character-
istics can be mapped to the same ordinal pattern, thus decreasing the characterization
power of the approach.

By adding amplitude information, we were able to attribute less complexity in
sequences with greater regularity and locate abrupt changes along the signal, reducing
the impact of a possible noise degradation in relation to the final value of the descrip-
tors. In this context, several modifications were proposed in the calculation of the
Bandt-Pompe distribution with the aim of neutralizing the limitations discussed and
maintaining most of the properties presented in the technique initially.

To analyze the different methods present in the literature, we will apply the
following sequence as a numerical example:

X = {−3.7,−3.5, 2, 1.3, 0.8,−2.3, 1.8, 1.7, 1.3, 2.6, 1.7, 0.9, 0,−0.4,−0.5, 7} (3.1)
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Figure 3.1. Two examples of possible D-dimensional vectors corresponding to the same
ordinal patterns when using D = 3.

The Chronological Index Permutation was used to generate the ordinal patterns,
where for D = 3 and τ = 1, we will have M = 15 vectors X(D=3) . Its proba-
bility distribution obtained by the traditional Bandt-Pompe symbolization method is
P = {0, 0.2, 0.2, 0.0666667, 0.0666667, 0.4666667}.

3.1 Weighted Ordinal Patterns Methods in

Literature

There are basically two strategies for incorporating amplitude information into ordinal
structures. The first assumes that the greater the variation in amplitude in a given
ordinal pattern, the greater its weight in calculating the probability distribution. Thus,
correction factors are proposed to carry out such weighting. The second proposes an
extension in the alphabet of symbols, mapping vectors with different amplitudes to
different ordinal patterns. Thus, the total set of patterns has more than D! Possible
components and vary according to the mapping method considered (rank permutation
or chronological index permutation).

3.1.1 Weighted Permutation Entropy

The Weighted Permutation Entropy (WPE) was proposed by Fadlallah et al. (2013).
The proposed idea is to weigh the relative frequencies of the patterns taking into
account the variability of the elements in relation to the average value of the analyzed
segment. Denote X(D,τ)

t the arithmetic mean:

X
(D,τ)

t =
1

D

D∑
k=1

xt+(k−1). (3.2)
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The weight wt is the sample variance of each vector X(D,τ)
t :

wt =
1

D

D∑
k=1

[
xt+(k−1) −X

(D,τ)

t

]2
. (3.3)

Then, the probability distribution is given from the weighted relative frequencies:

p(π̃Dt ) =

∑
i:{X(D,τ)

i 7→π̃Dt }
wi∑T−(D−1)τ

i=1 wi
. (3.4)

Using the time series 3.1 as an example, the weight shown by WPE for each
subsequence (the variance of each vector) would be as follows: w1 = 23.389, w2 =

18.389, w3 = 5.976, w4 = 0.242, w5 = 2.536, w6 = 3.047, w7 = 3.647, w8 = 0.047, w9 =

0.296, w10 = 0.296, w11 = 0.482, w12 = 0.482, w13 = 0.296, w14 = 0.047, w15 = 12.336.
Being described in the H × C plane by the following point (h, c) = (0.965, 0.0322).

3.1.2 Fine-Grained Permutation Entropy

The Fine-Grained Permutation Entropy (FGPE) was introduced in Ref. Xiao-Feng and
Yue (2009). Let βt be the difference series:

βt =
{
|xt+1 − xt|, . . . , |xt+(D−1) − xt+(D−2)|

}
. (3.5)

The weight wt quantifies such differences:

wt =

⌊
max{βt}
αs(βt)

⌋
, (3.6)

where s is the sample standard deviation, α is a user-defined parameter, and b·c is the
floor function. Then, wt is added as a symbol at the end of the corresponding pattern
to quantify the difference between neighboring elements in the vector, leading to an
update of Π:

π′
D
t = {π̃Dt ∪ wt}. (3.7)

Finally, the probability distribution is calculated as:

p(π′
D
t ) =

#
{
X

(D,τ)
t is of type π′Dt

}
T − (D − 1)τ

. (3.8)

Using the time series 3.1 as an example, when applying FGPE we will have the forma-
tion of the following symbols:
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X
(3)
1 7→ (2, 0, 1, 59),

X
(3)
2 7→ (1, 2, 0, 5),

X
(3)
3 7→ (0, 2, 1, 3),

X
(3)
4 7→ (2, 1, 0, 9),

X
(3)
5 7→ (2, 1, 0, 3),

X
(3)
6 7→ (1, 0, 2, 11),

X
(3)
7 7→ (0, 2, 1, 0),

X
(3)
8 7→ (2, 1, 0, 3),

X
(3)
9 7→ (1, 0, 2, 4),

X
(3)
10 7→ (0, 2, 1, 9),

X
(3)
11 7→ (2, 1, 0, 25),

X
(3)
12 7→ (2, 1, 0, 25),

X
(3)
13 7→ (2, 1, 0, 5),

X
(3)
14 7→ (2, 1, 0, 3),

X
(3)
15 7→ (1, 0, 2, 2)

3.1.3 Amplitude-Aware Permutation Entropy

The Amplitude-Aware Permutation Entropy (AAPE) was proposed by Azami and Es-
cudero (2016) and presents a solution to the absence of amplitude information and
also quantifies the possible effect of repeated values during symbolization. Here we will
report only its simplified version presented in Cuesta-Frau et al. (2018). It consists of
weighting the amplitude of ordinal patterns by both the mean and the differences of
the elements. For this, only an additional parameter A ∈ [0, 1] is required:

wt =
A|xt|
D

+
D−1∑
k=1

(
A|xt+k|
D

+
(1− A)|xt+k − xt+k−1|

D − 1

)
. (3.9)

The AAPE consists of one of the methods present in the first approach mentioned,
that is, it will also apply a correction factor to the ordinal patterns obtained by the
analyzed sequence. In this way, the probability histogram, instead of being updated
each time a match is found, will be updated using the weighted relative frequency:

p(π̃Dt ) =

∑
i:{X(D,τ)

i 7→π̃Dt }
wi∑T−(D−1)τ

i=1 wi
. (3.10)

Using the time series 3.1 as an example, given the ordinal patterns obtained, the
AAPE algorithm acquires the following weights for each subsequence: w1 = 2.683,
w2 = 2.016, w3 = 1.483, w4 = 2.616, w5 = 1.358, w6 = 3.216, w7 = 6.083, w8 = 7.375,
w9 = 0.983, w10 = 1.633, w11 = 0.925, w12 = 1.291, w13 = 0.858, w14 = 0.541,
w15 = 0.275.

3.2 Proposed Method

Recent approaches to extracting knowledge in time series have been developed using
information from transition graphs of ordinal patterns. However, such tooling comes
up against the same problem as the traditional symbolization of Bandt-Pompe, the
lack of information of amplitude between different sequences. In order to be the first
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variation of transition graphs to incorporate this type of information, we propose in
this present work the Weighted Amplitude Transition Graph (WATG).

Since we are interested in a comparable metric for different data sets, the first
step is to normalize each time series X to the interval [0, 1]:

xi − xmin

xmax − xmin

7−→ xi, (3.11)

where xmin and xmax are, respectively, the minimum and maximum values of the series.
This transformation is relatively stable before contamination, e.g., if instead of xmax

we observe kxmax with k ≥ 1, the relative values are not altered. Nevertheless, other
more resistant transformations as, for instance, z scores, might be considered.

Assuming that a variation in amplitude in a given ordinal pattern should directly
impact the resulting probability distribution. Thus, we assign for each vector X

(D,τ)
t

an associated weight βt that measures the biggest difference between its elements:

βt = max{|xi − xj|}, (3.12)

where xi, xj ∈ X
(D,τ)
t .

Thus, each edge will have its value no longer associated with the number of tran-
sitions made between ordinal patterns, but with the difference in amplitude observed
during the respective transition:

wv
π̃D
i
,v
π̃D
j

=
∑

i:{X(D,τ)
t 7→π̃Di }

∑
j:{X(D,τ)

t 7→π̃Dj }

|βi − βj|. (3.13)

Thus, the probability distribution taken from the weighted amplitude transition graph
is given as follows:  λv

π̃D
i
,v
π̃D
j

= 1, if (vπ̃Di , vπ̃Dj ) ∈ E,

λv
π̃D
i
,v
π̃D
j

= 0, otherwise.
, and (3.14)

p(π̃Di , π̃
D
j ) =

λv
π̃D
i
,v
π̃D
j

· wv
π̃D
i
,v
π̃D
j∑

v
π̃Da

,v
π̃D
b

wv
π̃Da

,v
π̃D
b

. (3.15)

Note that p(π̃Di , π̃Dj ) ≥ 0 and
∑

π̃Di ,π̃
D
j
p(π̃Di , π̃

D
j ) = 1, so p is a probability function.

We were able to observe the impact of adding amplitude information to transition
graphs on two different occasions:

• If the signal 1-D shows a low variation in amplitude and peak intensity between
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a) Symbolization step

b) WATG formation

Figure 3.2. Schematic of the composition of the weighted amplitude graph (WATG).

them, the transitions of the ordinal patterns that represent the latter have greater
weights. This contributes to the probability distribution becoming less uniform,
since it will be more concentrated on these edges. Another characteristic ob-
served is a drop in the entropy values of these sequences when compared to the
traditional method.

• If the signal 1-D shows a uniform amplitude variation, the weights assigned to
the edges will be well distributed, thus also giving rise to a uniform probability
distribution and consequently a greater associated entropy.

The formation schematic of our weighted graph proposal is illustrated in Fig-
ure 3.2, where we show how we perform the calculation of the weights of ordinal
patterns.



Chapter 4

Case study: Classification of SAR
Textures

We present a newly proposed technique for texture analysis and classification based
on the Bandt-Pompe symbolization for SAR data. It consists of (i) linearize a 2-D
patch of the image using the Hilbert-Peano curve, (ii) build the Ordinal Pattern Tran-
sition Graph; (iii) obtain a probability distribution function derived from this graph;
(iv) compute Information Theory descriptors (Permutation Entropy and Statistical
Complexity) from this distribution and use them as features to feed a classifier. The
ordinal pattern graph we propose considers that the edges’ weight is related to the
absolute difference of observations, which encodes the information about the data am-
plitude. This modification considers the unfavorable signal-to-noise ratio of SAR im-
ages and leads to the characterization of several types of textures. Experiments with
data from Munich urban areas, Guatemala forest regions, and Cape Canaveral ocean
samples show the effectiveness of our technique in homogeneous areas, achieving satis-
factory separability levels. The two descriptors chosen in this work are easy and quick
to calculate and are used as input for a k-nearest neighbor classifier. Experiments show
that this technique presents results similar to state-of-the-art techniques that employ
a much larger number of features and, consequently, impose a higher computational
cost.

4.1 Introduction

Texture is an elusive trait. When dealing with remotely sensed images, the texture of
different patches carries relevant information that is hard to quantify and transform
into useful and parsimonious features. This may be since textures, in this context, is a

27
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synesthesia phenomenon that triggers tactile responses from visual inputs. This work
presents a new way of extracting features from textures, both natural and resulting
from anthropic processes, in SAR (Synthetic Aperture Radar) imagery.

SAR systems are a vital source of data because they provide high-resolution im-
ages in almost all weather and day-night conditions. They provide basilar information,
complementary to that offered by sensors that operate in other regions of the electro-
magnetic spectrum, for a variety of Earth Observation applications. Although they
present rich information, such data have challenging characteristics. Most notably,
they do not follow the usual Gaussian additive model, and the signal-to-noise ratio is
usually low.

Yue et al. (2020) provide a comprehensive account of how the physical proper-
ties of the target are translated into first- and second-order statistical properties of
SAR intensity data. There is general agreement that non-deterministic textures are
encoded in the second-order features, i.e., in the spatial correlation structure. There-
fore is frequent the use of covariance matrix and other measures that assume that a
linear dependence, namely the Pearson correlation coefficient, suffices to characterize
natural textures. However, in SAR imagery, texture is often visible only over large
areas, and the multiplicative and non-Gaussian nature of speckle antagonizes with the
additive assumption that underlies classical approaches, making complex the process
of characterizing such data.

Surface classification and land use are among the most critical applications of
the Synthetic Aperture Radar (SAR) image (Lee et al., 2004). In recent years, hand-
crafted features and representation learning (supervised and unsupervised) algorithms
have been proposed (Han et al., 2020; Huang et al., 2020; Xie et al., 2020). Algo-
rithms of the unsupervised generative adversarial network (GAN) have revolutionized
the classification of SAR images, improving performance in small sample problems, and
helping the interpretability of such data (Liu et al., 2019). Among the supervised algo-
rithms, support vector machine (SVM) (Sukawattanavijit et al., 2017), random forest
(RF) (McNairn et al., 2014), and neural network (NN) (Lin et al., 2017) have been
frequently used in remote sensing. The Principle Component Analysis (PCA) (Ressel
et al., 2015), autoencoder (Wang and Wang, 2019) and the Boltzmann machine (Qin
et al., 2017) can to extract non-local resources and classify non-labeled PolSAR pix-
els using an unsupervised approach. However, methods such as graph-based semi-
supervised deep learning algorithms (Bi et al., 2018) can improve classification accuracy
in problems with few labeled samples.

Handcrafted features in SAR textures can be studied following two complemen-
tary approaches, namely analyzing the marginal properties of the data (first-order
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statistics), and observing their spatial structure (Yue et al., 2020; Numbisi et al.,
2018). In this work, we focus on the second approach, which shows relevant results
using techniques from the image processing literature, such as co-occurrence matrices
and Haralick’s descriptors (Yu et al., 2019). Through the gray-level co-occurrence ma-
trices (GLCM), we can extract features that reflect statistical relationships of the pixel
intensity values. On the other hand, Haralick’s descriptors can capture information
on intensity and amplitude based on global statistics of SAR images. Radford et al.
(2018) used textural information derived from GLCM, along with Random Forests,
for geological mapping of remote and inaccessible localities; the authors obtained a
classification accuracy of ≈ 90 %, even when using limited training data (≈ 0.15 %

of the total data). Hagensieker and Waske (2018) evaluated the synergistic contri-
bution of multi-temporal L-, C-, and X-band data to tropical land cover mapping,
comparing classification outcomes of ALOS-2 (Kankaku et al., 2013), RADARSAT-
2 (Morena et al., 2004), and TerraSAR-X (Breit et al., 2009) datasets for a study site
in the Brazilian Amazon using a wrapper approach. The wrapper utilizes the gray-level
co-occurrence matrix texture information and a Random Forest classifier to estimate
scene importance. Storie (2018) proposed an open-source workflow for detecting and
delineating the urban-rural boundary using Sentinel-1A SAR data. The author used a
combination of GLCM information and a k-means classifier to produce a three-category
map that distinguishes urban from rural areas. In higher resolution image classification
activities, it is necessary to obtain more granular information from the data by extract-
ing local characteristics such as scale and orientation. In this scenario, techniques such
as Fourier power spectrum (Florindo and Bruno, 2012), random fields (Zhu et al.,
2016), Gabor filter (Dumitru et al., 2014) and wavelet transform (Akbarizadeh, 2012)
are usually applied.

In our approach, we opt to analyze the 1-D signals resulting from the linearization
of the image samples, using non-parametric time series analysis techniques. With
this approach, we reduce the dimensionality of the data while preserving the spatial
correlation structure. Observations are then transformed into ordinal patterns with the
Bandt-Pompe symbolization. We use Information Theory descriptors to analyze the
distributions these patterns induce, both directly and by building transition graphs
among subsequent patterns. Those descriptors are the Entropy and the Statistical
Complexity, which are easy to obtain and are interpretable. They reveal important
features of the underlying process.

The following question guides us:

What is the best representation of a texture patch that allows extracting
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expressive Information Theory descriptors to characterize textures in the
presence of speckle?

Thus, we use the Weighted Amplitude Transition Graph (WATG), incorporating
the absolute difference among observations as weights of the edges between nodes
transitions. Such weights take part in the computation of the probabilities and, thus,
influence both Entropy and Statistical Complexity.

This work’s main contribution is the proposal of a new representation of SAR tex-
tures, which allows a low-dimensional characterization useful for, among other appli-
cations, their classification. We compare its performance with the classical histograms
of Bandt-Pompe ordinal patterns and the regular transition graph. Since the proposed
approach has a low computational cost, the results obtained suggest that this technique
has good potential in other applications, such as texture segmentation tools of SAR
images.

4.2 Linearization of image patches

We perform a data dimensionality reduction by turning the 2-D patch into a 1-D
signal. This could be accomplished by reading the data by lines, columns, or any
transformation of 2-D indexes into a sequence of integers. In this work, we chose to
use the Hilbert-Peano (Lee and Hsueh, 1994) curve, due to its low computational cost
and its ability to preserve relevant properties of pixel spatial correlation.

Nguyen and Quinqueton (1982) firstly employed Space-filling curves, to map
texture into a one-dimensional signal. Carincotte et al. (2006) used the Hilbert-Peano
curve in the problem of change detection in pairs of SAR images. The authors noted
that this transformation exploits the spatial locality and that its pseudo-randomness
of direction changes work well for a large family of images, especially natural ones.

Assuming an image patch is supported by an M ×N grid, we have the following
definition.

Definition 1 An image scan is a bijective function f : N×N→ N in the ordered pair
set {(i, j) : 1 ≤ i ≤ M, 1 ≤ j ≤ N}, which denotes the points in the domain, for the
closed range of integers {1, . . . ,MN}. A scan rule is {f−1(1), . . . , f−1(MN)}.

This Definition imposes that each pixel is visited only once and that all pixels are
visited.

Space-filling curves, such as raster-1, raster-2, and Hilbert-Peano scanning tech-
niques, stipulate a proper function f . Hilbert-Peano curves scan an array of pixels
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Figure 4.1. Hilbert-Peano curves in areas of: (a) 8 × 8, (b) 16 × 16, and (c) 32 × 32
pixels.

of dimension 2k × 2k, k ∈ N, never keeping the same direction for more than three
consecutive points, as shown in Fig. 4.1. Using the Hilbert-Peano curve, we reduce the
data dimensionality while maintaining the patch’s spatial dependence information. In
this work, we use Hilbert-Peano patches of size 128× 128.

Figs. 4.3(a), 4.3(b), 4.3(c), 4.3(d), and 4.3(e) show five image patches with dif-
ferent textures. Figs. 4.3(f), 4.3(g), 4.3(h), 4.3(i), and 4.3(j) present their 1-D repre-
sentation as signals.

4.3 Methodology

Algorithm 1 outlines our methodology. Line 1 transforms the input texture patch P

in a 1-D signal with a Hilbert-Peano sequence. With this, the spatial information is
encoded into a one-dimensional signal. Line 2 computes the probability distribution
of the weighted transition graph induced by the 1-D signal. The WATG function is
detailed in Lines 7–10. Lines 3 and 4 compute the two descriptors of the patch.

The WATG function consists of three steps: (i) each sub-sequence of size (di-
mension) D of observations at delay τ is transformed into an ordinal pattern using
the Bandt-Pompe symbolization (function BPSymbolization, Line 7); (ii) function
transitions (Line 8) calculates the sequence of alternations of the ordinal patterns;
and (iii) function weigthGraph (Line 9) generates the incidence matrix of the graph
using the as weights the amplitude differences between the time series elements. Fi-
nally, the probability distribution is obtained by turning the transition matrix into a
vector (Line 10). These steps are also depicted in Fig. 4.2.
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Ordinal Patterns

Probability Distribution

SAR Images

Linearization

Vector of observations

Bandt-Pompe simbolization

WATG

Feature in the HxC plane

Patch

Figure 4.2. Outline of the methodology used for the classification of textures.
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1 Input: Patch of texture P , dimension D and time delay τ
2 Output: H × C feature

1: signal.1-D ← hilbertCurve(P )
2: Probs ← WATG(signal.1-D, D, τ)
3: H ← ShannonEntropy(Probs)
4: C ← StatisticalComplexity(Probs)
5: return H× C
6: function WATG(signal.1-D, D, τ)
7: patterns ← BPSymbolization(signal.1-D, D, τ)
8: transitions ← transitions(patterns)
9: graph ← weigthGraph(signal.1-D, transitions)
10: Probs ← as.vector(graph)
11: return Probs
12: end function

Algorithm 1: H × C point from a patch using WATG

4.4 Image Dataset

We used the HH backscatter magnitudes of three quad-polarimetric L-band SAR im-
ages from the NASA Jet Propulsion Laboratory’s (JPL’s) uninhabited aerial vehicle
synthetic aperture radar (UAVSAR) sensor with L = 36 nominal looks:

• Forest and pasture region of Sierra del Lacandón National Park, Guatemala,
(acquired on April 10, 2015)1. The image has 8917 × 3300 pixels with 10 m ×
2 m resolution.

• Ocean regions from Cape Canaveral Ocean (acquired on September 22, 2016).
The image has 7038× 3300 pixels with 10 m × 2 m resolution;

• Urban area of the city of Munich, Germany (acquired on June 5, 2015)2. The
image has 5773× 3300 pixels with 10 m × 3 m resolution.

We manually selected 200 samples of size 128×128 to compose the dataset used in
the experiments. It is organized as follows: 40 samples from Guatemalan forest regions;
40 samples from Guatemalan pasture regions; 80 samples from the oceanic regions of
Cape Canaveral, divided into two types with different contrast; and 40 samples of
urban regions of the city of Munich. Fig. 4.3 shows examples of each. In our analysis,
both types of ocean images are grouped.

1https://uavsar.jpl.nasa.gov/cgi-bin/product.pl?jobName=Lacand_30202_15043_006_
150410_L090_CX_01#dados

2https://uavsar.jpl.nasa.gov/cgi-bin/product.pl?jobName=munich_19417_15088_002_
150605_L090_CX_01#data

https://uavsar.jpl.nasa.gov/cgi-bin/product.pl?jobName=Lacand_30202_15043_006_150410_L090_CX_01#dados
https://uavsar.jpl.nasa.gov/cgi-bin/product.pl?jobName=Lacand_30202_15043_006_150410_L090_CX_01#dados
https://uavsar.jpl.nasa.gov/cgi-bin/product.pl?jobName=munich_19417_15088_002_150605_L090_CX_01#data
https://uavsar.jpl.nasa.gov/cgi-bin/product.pl?jobName=munich_19417_15088_002_150605_L090_CX_01#data
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Figure 4.3. Types of regions (Guatemala forest, Canaveral ocean types 1 and 2, Munich
urban area, and pasture area) and their signal representation.

We randomly split the samples in training (85 %) and test (15 %) sets. We
used the first set to train a k-nearest neighbor classifier algorithm with tenfold cross-
validation.

4.5 Experimental Results and Analysis

In this section, we describe the classification process, and the results of applyingWATG.
To assess the performance of the technique here proposed, we analyze the impact of
its parameters and compare its results in the classification with other methods.

4.5.1 Properties

We conducted two experiments to analyze the response of WATG to different noise
levels and image rotations. Our truth is the deterministic image generated by the
function:

z(x, y) = sin(4x+ 0.5y),

where x, y ∈ [−2π, 2π]. Fig. 4.4(a) shows this function as a 128× 128-pixel patch.
The speckle noise was modeled as outcomes of independent, identically dis-

tributed unitary-mean Gamma random variables with shape parameter L (the num-
ber of looks, which controls the signal-to-noise ratio) W (L) ∼ Γ(L,L), with L ∈
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(a) z (b) I(100) (c) IT(500)

Figure 4.4. Ground truth, speckled, and speckled transposed versions.

{1, 100, 150, 200, 250, 300, 350, 400, 450, 500}. The observed images I(L) are the pixel-
wise product of z and w(L). Fig. 4.4(b) shows the product I(100).

Fig. 4.5 shows how the point in the H × C plane varies according to the level of
noise introduced. The ground truth (identified as “0”) has relatively low entropy and
is close to the maximum complexity (the continuous line is the upper bound). This
behavior is typical of deterministic sequences. Observe that when we inject single-
look speckle (L = 1), the entropy increases along with the complexity. Thus, the
technique is able to identify the deterministic component even when it is embedded
in the strongest possible speckle noise. The point “1” shifts towards “0” when the
signal-to-noise progressively increases.

We also verified that the points in the H × C plane are almost insensitive to
rotations. Fig. 4.4(c) shows the transpose of I(500). In all cases, the coordinates (h, c)

of the transposed noisy images were equal, up to the fourth decimal place, to those of
the original version.

These experiments provide evidence that the WATG mapping is little sensitive to
rotations (thanks to the use of Hilbert-Peano curves), and that it can identify the pres-
ence of underlying structural information in the presence of varying levels of speckle.

4.5.2 Analysis of ordinal patterns methods

Fig. 4.3 shows examples of the ocean, forest, urban, and pasture both as image patches
and as 1-D sequences after the linearization process.

The variation in the magnitude of the targets’ backscatter and, consequently,
in the intensity of the image pixels, depends on the intrinsic properties of the region
under analysis. Urban targets usually exhibit the strongest variation, followed by forest,
pasture, forests, and finally, water bodies. By adding such information related to the
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Figure 4.5. Modifications to the H×C Plane features by adding different multiplicative
noises.

amplitude, the proposed method is able to increase, compared to traditional methods,
the granularity of information captured by ordinal patterns.

As already described in Section 3, our proposal weights the edges in terms of the
difference of amplitudes. As expected, the greatest impact is observed on the transition
graphs obtained from urban areas. The urban area 1-D signal shown in Fig. 4.3 has
the largest dynamic range. Fig. 4.6 shows how this information alters the weights of
the transition graph. Notice, in particular, that (vπ̃3

123
, vπ̃3

123
) almost doubled, while

(vπ̃3
312
, vπ̃3

231
) and (vπ̃3

213
, vπ̃3

132
) became negligible.

Fig. 4.9 shows the impact of using the data amplitude information on the weights
of the transition graphs. Bandt-Pompe symbolization was the first method based on
ordinal patterns proposed in the literature. As shown in Fig. 4.9(f), it provides limited
separation of textures. The transition graphs (Fig. 4.9(g))improve the spread of the
features, but with some amount of confusion. Our proposal, shown in Fig. 4.9(k), pro-
duces well-separated features. In this way, we were able to obtain, for this experiment,
a perfect characterization and, consequently, the high descriptive power of the regions.
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Figure 4.6. Difference of edges weights between the transition graph and the weighted
graph of ordinal patterns transitions; urban area, with dimension 3 and delay 1.

4.5.3 Experiments on sliding window selection

In this section, we analyze the parameters of the proposed method and its impact
on textures classification. McCullough et al. (2015) report that inadequate values
may hinder important characteristics of the phenomenon under analysis. The two
parameters of the transition graph are the dimension D, and the delay τ . In the
experiments below, we present the results in the classification using different values of
these parameters.

The classification method’s performance based on ordinal patterns is sensitive
to window size, the embedding dimension, and the delay. In techniques based in
Bandt-Pompe symbolization, for a fixed signal, as the size of the embedding dimension
decreases, more ordinal patterns are produced. Therefore, we acquire a higher granu-
larity of information about the dynamics of the system and, consequently, we capture
more spatial dependencies between the elements.

Fig. 4.7 shows the ROC plane for different values of D ∈ {3, 4, 5, 6} and
τ ∈ {1, 2, 3, 4, 5} to select the best configuration. The configurations that extracted
most information from the 1-D signal and, thus, that presented the best results in the
experiments, are (D = 3, τ = 1) and (D = 4, τ = 1). The technique, thus, shows its
best performance choosing the parameters with the lowest computational cost.

Figure 4.8 shows the points in the H × C produced by the same samples with
all the parameters mentioned above. The spatial distribution of the points changes
with the parameters and specific configurations promote better separation. This figure
shows that the discrimination ability decreases with increasing τ . Larger values of
delay dilute the spatial dependence, as neighboring points in the sample tend to be
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more distant in the image. For this reason, we use τ = 1. Figure 4.8 suggests that
only one feature (H or C) is sufficient to discriminate the classes studied. Although
this is true for the experiments herein conducted, we opt to preserve the most common
ordinal pattern analysis, which uses both features. As we studied only homogeneous
patches, we still do not know how this approach performs with heterogeneous patches.
For this last situation, we may need both features.

Considering τ = 1 (first column of Fig. 4.8), we also notice that D = 3 produces
the best separation among classes. Increasing D also increases the Statistical Com-
plexity; this is noticeable for the Forest class. The other effect of considering larger
values of D is an increased Entropy of Ocean and an undesirable overlap with Urban
samples.

4.5.4 Quantitative Evaluation

We present a comparison between our proposal and other methods for texture char-
acterization and classification. We use the following ten methods: Gabor filters (Wel-
don et al., 1996), Histogram of oriented gradients (HOG) (Dalal and Triggs, 2005),
Gray-level co-occurrence matrices (GLCM) (Kourgli et al., 2012), Speeded-Up Robust
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Features (SURF) (Bay et al., 2006), Short Time Fourier Transform (STFT) (Port-
noff, 1980) with SURF, Bandt-Pompe probability distribution (Bandt and Pompe,
2002b), Ordinal patterns transition graphs (Borges et al., 2019), Weighted Permu-
tation Entropy (WPE) (Fadlallah et al., 2013), Fine-Grained Permutation Entropy
(FGPE) (Xiao-Feng and Yue, 2009) with α = 0.5, and Amplitude-Aware Permutation
Entropy (AAPE) (Azami and Escudero, 2016) with A = 0.5. As in Guan et al. (2019),
we computed four statistics from co-occurrence matrices: contrast, correlation, energy,
and homogeneity. Likewise, we implemented the Gabor filters in five scales and eight
orientations; using the energy, we obtained an 80-dimensional feature vector for each
patch. For the HOG technique, we used image pixels divided into equal cells of 3× 3

pixels, and for each cell, we computed 6-bin histograms ranging from 0◦ to 180◦ or 0◦

to 360◦.

The results of visualizing the features of these descriptors can be seen in Fig. 4.9.
As we can see, the algorithms that combine ordinal characteristics with amplitude in-
formation (WPE, AAPE, and FGPE) reduce the intra-class distance, but not are good
discriminators. Although the algorithms that have the largest descriptors (Gabor and
HOG) do not present a good visualization when applying the dimensionality reduction
technique, they presented excellent results in the quantitative evaluation.

We classified the features using the k-nearest neighbor algorithm with Euclidean
distance, selecting the value of k with the automatic grid search method of the Caret
R package (Kuhn, 2008). For validation, we used 10-fold cross-validation. More details
about the classifier and the sampling can be seen in Mitchell (1997).

Table 4.1 presents the number of features each method produces, as well as its
performance at classifying the 200 samples. We assessed the effectiveness of each ap-
proach using the following metrics. We used the first two metrics (Recall and Precision)
to evaluate classifiers’ per class performance and the last three metrics (Average Accu-
racy, Micro F1-score, and Macro F1-score) to evaluate the overall performance of the
multi-class classifiers. We denote TPi, TNi, FPi, and FNi as the true positives, true
negatives, false positives, and false negatives counts of a given class i, among a set of
K classes, respectively.

• Recall or True Positive Rate of the class i (TPRi):

TPRi =
TPi

TPi + FNi

.
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Figure 4.9. Bi-dimensional visualization of the descriptors obtained by our proposal
and other methods of texture characterization and classification. For those who provide
more than two features, we apply the PCA algorithm to obtain such a visualization.
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Table 4.1. Experimental results using k-NN

Method # features TPR PPV AA F1-Scoreµ F1-ScoreM
Forest Pasture Ocean Urban Forest Pasture Ocean Urban

Gabor 80 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
HOG 54 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GLCM 32 0.833 1.000 1.000 0.833 1.000 0.857 0.923 1.000 0.967 0.980 0.970
SURF 1856 0.500 0.000 1.000 0.000 1.000 0.000 0.444 0.000 0.467 0.666 0.572
STFT + SURF 1856 0.166 0.000 0.833 0.166 0.250 0.000 0.416 0.500 0.300 0.462 0.292

Bandt-Pompe 2 0.333 1.000 0.750 1.000 0.500 0.857 0.750 0.857 0.600 0.776 0.633
Transition Graph 2 0.833 0.666 0.833 1.000 0.833 0.800 0.769 1.000 0.767 0.929 0.875

WPE 2 1.000 0.833 1.000 0.833 0.857 0.833 1.000 1.000 0.933 0.868 0.779
AAPE 2 0.666 1.000 1.000 1.000 1.000 0.857 0.923 1.000 0.833 0.947 0.896
FGPE 2 0.666 0.666 1.000 1.000 0.800 0.666 0.923 1.000 0.767 0.868 0.711

WATG 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

• Precision or Positive Predictive Value of the class i (PPVi):

PPVi =
TPi

TPi + FPi
.

• Average Accuracy (AA):

AA =
K∑
i=1

{
TPi + TNi

TPi + TNi + FPi + FNi

}

• Micro F1-score:

PPVµ =

∑K
i=1 TPi∑K

i=1 TPi +
∑K

i=1 FPi

TPRµ =

∑K
i=1 TPi∑K

i=1 TPi +
∑K

i=1 FNi

F1-scoreµ = 2
PPVµ × TPRµ

PPVµ + TPRµ

.

• Macro F1-score:

PPVM =
1

K

K∑
i=1

TPi
TPi + FPi

TPRM =
1

K

K∑
i=1

TPi
TPi + FNi

F1-scoreM = 2
PPVM × TPRM

PPVM + TPRM

.

Table 4.1 shows that, among the methods of weighting ordinal patterns, FGPE
produced the worst results: AA = 76.7 %, F1-scoreµ = 86.8 %, and F1-scoreM =
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71.1 %. WPE also produced a low F1-score, but it produced consistently better results
in the other metrics, presenting AA = 93.3 %. AAPE achieved one of the best F1-
score results: AA = 83.3 %, F1-scoreµ = 94.7 %, and F1-scoreM = 89.6 %. WATG,
considering the transition graph of ordinal patterns, can better describe the textures
presented, as it achieves the best performance achievable in all metrics: 100 %.

STFT + SURF produced the worst results: AA = 30.0 %, F1-scoreµ = 46.2 %,
and F1-scoreM = 29.2 %. SURF alone provided a better performance: AA = 46.7 %,
F1-scoreµ = 66.6 %, and F1-scoreM = 57.2 %. HOG and Gabor filters achieved the
highest success rates among all the handcrafted methods here considered: AA = 100 %,
F1-scoreµ = 100 %, and F1-scoreM = 100 %. However, WATG achieves that same
performance using only 2 features. This reduction implies less computational power
requirement and avoids the curse of dimensionality (Altman and Krzywinski, 2018).
Moreover, the features it is based upon are fully interpretable.

4.6 Conclusions

We presented and assessed a new method of analysis and classification of SAR image
textures. This method consists of three steps: (1) linearization, (2) computing the
Weighted Ordinal Pattern Transition Graph, and (3) obtaining Information Theory
descriptors. A simple k-NN algorithm applied to the pairs Entropy-Statistical Com-
plexity classifies the data with 100 % performance. In addition to such perfect sep-
aration among urban, pasture, ocean, and forest areas, the proposed descriptors are
interpretable in terms of the degree and structure of the spatial dependence among
observations.

Experiments using patches from UAVSAR images showed that the proposal per-
forms better than GLCM, Bandt-Pompe, Transition Graphs, SURF, STFT + SURF,
and other techniques which also employ amplitude information in the analysis of ordi-
nal patterns. Our approach provides the same quality of results obtained with Gabor
filters and HOG. However, while Gabor filters employ 80 features and HOG uses 54

features, our proposal requires only two. This such reduced dimensionality consists
of a huge advantage over the other techniques, with added values: Firstly, by reduc-
ing the dimension of the features to 2-D, we can visualize the differences between the
classes of regions analyzed. Secondly, for machine learning algorithms, the smaller the
number of dimensions, the faster the training process is, and the less storage space is
required. Thirdly, we managed to avoid overfitting, a recurring problem in data with
high dimensionality.
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We also observed that only one feature (H or C) is enough to discriminate the
classes with the same reported performance. We opted to preserve both features be-
cause we consider that this study shed light on a novel way of SAR image analysis.
Thus, we preferred to stick to the most common ordinal pattern analysis using the
H × C plane. As future work, we consider investigating the discriminative power of
these features in more complex situations.

Our approach is robust to rotations and the presence of speckle noise. The behav-
ior showed in Figure 4.5 shows that our approach can capture the speckle contamination
adequately.

Since the application of this work is limited to texture patches from homogeneous
regions, we aim to study the possible impacts of heterogeneous areas, such as mixed
culture and urban regions.

4.7 Reproducibility and Replicability

Following the guidelines presented in Ref. Frery et al. (2020), the text, source code, and
data used in this study are available at the SAR-WATG repository https://github.

com/EduardaChagas/SAR-WATG. The information includes a link to download the 200

labeled samples we employed in the analysis.

https://github.com/EduardaChagas/SAR-WATG
https://github.com/EduardaChagas/SAR-WATG
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HC-PCA Confidence Regions

Although the limits ofH×C are well defined, a complete characterization of its intrinsic
topology is an open problem, due to the restrictions imposed by its curvilinear space.
The lack of knowledge of the joint distribution of the points obtained by this plane, due
to the existing correlation between its variables, prevents the studies on test statistics
for typical time series in this characterization space. However, with the knowledge of
the expected variability of such points, according to the underlying dynamics, we can
test hypotheses for a wide variety of models. Results in this direction can be found
in the literature. Larrondo et al. (2006) showed that the Complexity-Entropy plane
(H ×C) is a good indicator of the results of Diehard tests for pseudo-random number
generators. De Micco et al. (2008) evaluated ways to improve pseudo-random sequences
for their representation in this plane.

In this context, a open problem present in the characterization of sequences using
the H × C plane is the absence of a representative metric distance, which makes it
difficult to build confidence regions. Thus, in the proposed approach, we opted for the
construction of empirical confidence regions obtained through an orthogonal projection
of data in the space of principal components. Therefore, the larger is the data set used
to build the region, the more representative it will be.

To investigate the power of representation of the proposed confidence region, we
defined as a first application a review of the results obtained in the literature using the
H ×C plane in pseudo-random sequences. Thus, the necessary input to our algorithm
consists of sequences of true random generated by physical procedures. As a result, we
verify how the sequences previously analyzed behaved in this new analysis scenario.

Below we list the main strategies and sequences analyzed by the literature for
the study of randomness using the information theory descriptors. Soon after, the test
and characterization framework is presented.

45
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5.1 Complexity-Entropy plane in the literature

The first works on the characterization of white noises with permutation entropy arose
from the need to discriminate them in relation to chaotic maps (Rosso et al., 2013;
Xiong et al., 2020).

Stationary time series can be decomposed into two main components:

1. Deterministic: it is described by a linear combination of its own past,

2. Random: it is a component of the moving average of finite order.

In this way, chaotic systems produce sequences composed of a physical structure, easily
captured by measures of complexity. Thus, it was found that the measure of statistical
complexity was able to efficiently quantify the performance of pseudorandom number
generators, expanding the possibilities of using information theory descriptors with the
Bandt-Pompe symbolization (Larrondo et al., 2002; González et al., 2005; Larrondo
et al., 2006).

Table 5.1 presents a summary of the main works in the literature that perform
analysis of non-chaotic algorithmic generators, according to their features in H × C.
We also provide the length T and embedding dimension D of the time series under
scrutiny. The following algorithmic generators were analyzed:

• Mother RNG, available in Marsaglia website (Marsaglia, 1994) (MOT);

• Multiple with carry RNG (MWC) (Marsaglia, 1994);

• Combo RNG (COM) (Marsaglia, 1994);

• Lehmer RNG (LEH) (Payne et al., 1969);

• Fractional Gaussian noise with α = 0 (fGn) (Bardet et al., 2003);

• f−k noise with k = 0 (Larrondo, 2012);

• Linear Congruential Generator (LCG) (Knuth, 1997).

None of these works provide p-values or hypothesis tests for their analysis. The
focus of the articles is finding the set of descriptors that best discriminates chaos from
noise. The authors make assessments about the randomness of sequence on ad hoc
visual inspection of the point’s location in the H ×C plane. Our work fills such a gap
for finite sequences of white noise and proposes a methodology that can be extended
to any other situation.
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Table 5.1. Result of the main works of white noise sequences analysis in the H × C
plane.

Reference PRNG T D H C
Considered
random?

Larrondo et al. (2013) MOT NA 6 ∼= 0.9969 ∼= 0 no

González et al. (2005) MWC 65536 NA ∼= 1 0.3 yes
MOT 65536 NA ∼= 1 0.3 yes
COM 65536 NA ∼= 1 0.05 yes

Larrondo et al. (2006) LEH 5× 106 5 ∼= 1 10−4 yes
MOT 5× 106 5 ∼= 1 10−4 yes
MWC 5× 106 5 ∼= 1 10−4 yes

Rosso et al. (2013) LCG 1× 107 6 0.997871 0.005101 no

Xiong et al. (2020) fGn 2× 1017 6 ∼= 1 ∼= 0 yes
f−k 2× 1017 6 ∼= 1 ∼= 0 yes

5.2 Proposed Method

In this section, we formalize the task of building a confidence region in the Entropy-
Complexity manifold. Then, we present our proposal to change space through the
algorithm of the principal components analysis. Our goal is to find a latent space
representative of the data, without the restrictions of a curvilinear space. Through
this new representation of the data, we calculate empirical regions with different levels
of confidence. Finally, after calculating these regions, we build a test statistic that
determines the probability that a given sequence belongs to the distribution of the
points provided.

5.2.1 Overall Framework

The structure of our proposal consists of two steps:

• Empirical confidence region: With the data present in a Euclidean plane, we
can easily calculate empirical regions that involve the data with a certain level
of confidence.

• Construction of a test statistic: To measure the similarity of new data se-
quences with the empirical points, a test statistic was proposed. By acquiring a
p-value less than 0.05, we can reject the null hypothesis, which states that such
data belong to the empirical probability distribution used for the construction of
the confidence region.



48 Chapter 5. HC-PCA Confidence Regions

5.2.2 Empirical Confidence Regions and p-values

Our first approaches to analyzing sequences of points in the H × C plane produced
by TRWNS verified that they, and usual transformations, are far from bivariate Gaus-
sian and generalized Hyperbolic distributions (Schmidt et al., 2006). Different types
of regression models of C explained by H did not produce acceptable results. Thus,
we adopted a non-parametric approach and made an empirical analysis of the data ob-
tained from physical sources for using them as our reference in the search for confidence
regions and p-values.

Let x˜ = (x1, x2, . . . , xN) be N times series of length T , and define an embedding
dimension D. In the sequel, whenever possible, we will omit T and D. For each
n = 1, 2, . . . , N , the time series xn is mapped onto the point (hn, cn) in the H × C

plane, thus hc˜ =
(
(h1, cn), (h2, c2), . . . , (hN , cN)

)
are the points that correspond to the

N time series. Fig. 5.1(a) illustrates this step. We will obtain confidence regions and
p-values from hc˜ .

The first step consists in finding and applying the principal components trans-
formation to hc˜ . With this, we obtain the set of uncorrelated points uv˜ =(
(u1, v1), (u2, v2), . . . , (uN , vN)

)
, in which un and vn are the first and second principal

components of hn and vn, respectively. This projection allows us to obtain a “cen-
tral” point of the data set, around which we will build a rectangular box containing
100 (1− α)% of the observations, where α is the significance level analyzed. Such box
is a variation of the bagplot (Rousseeuw et al., 1999). Notice that finding the smallest
box that encloses k out of N points is difficult; cf. the work by Chan and Har-Peled
(2020).

For simplicity, and without loss of generality, assume N is odd.

1. Find the indexes that sort the values of the first principal component u =

(u1, u2, . . . , uN) in ascending order: r = (r1, r2, . . . , rN), i.e., ur1 is the minimum
value, and urN is the maximum value.

2. Find the point (u, v) whose first principal component is the median: (ur(N+1)/2
, ·).

Apply the inverse principal components transformation, and obtain P ′ = (h′, v′).
Call the corresponding time series “emblematic time series.”

3. Find the point (u, v) whose first principal component is the quantile α/2:
(ur[Nα/2] , ·).

4. Find the point (u, v) whose first principal component is the quantile 1 − α/2:
(ur[N(1−α/2)] , ·).



5.2. Proposed Method 49

0.000

0.001

0.002

0.003

0.004

0.9985 0.9990 0.9995 1.0000
H

C

(a) Mapping true white noise
random sequences onto the H ×
C plane.

Median

−0.025

0.000

0.025

0.050

−2 −1 0 1 2
PC1

P
C

2

(b) Transformation of the points
in the H ×C plane by Principal
Components, and determination
of minimal boxes.

0.0024

0.0026

0.0028

0.0030

0.99875 0.99880 0.99885 0.99890 0.99895 0.99900
H

C

(c) Inverse transformation from
the Principal Components plane
to the H × C plane.

Figure 5.1. Outline of the methodology used for the construction of the confidence
regions.

5. The values ur[Nα/2] and ur[N(1−α/2)] are the rightmost and leftmost bounds of the
box, respectively.

6. The bottom bound of the box is the smallest second principal component value
whose first principal component is at least ur[Nα/2] ; denote this values vmin.

7. The top bound of the box is the largest second principal value whose first principal
component is at most ur[N(1−α/2)] ; denote this value vmax.

8. The corners of the box are (ur[Nα/2] , vmin), (ur[Nα/2] , vmax), (ur[N(1−α/2)] , vmin) and
(ur[N(1−α/2)] , vmax).

9. Apply the inverse principal components transformation to these corners obtaining
P1 = (hv1 , cv1), P2 = (hv2 , hv2), P3 = (hv3 , cv3) and P4 = (hv4 , cv4).

Fig. 5.1 illustrates these steps. Fig. 5.1(a) shows the points produced by TRWNS
in the H × C plane. The blue box includes a certain percentage of points, with sides
parallel to the H and C axes. The area in the H × C plane overestimates the desired
proportion and may include “unacceptable” points. Fig. 5.1(b) shows the previous
points projected onto the principal components space (steps 2 to 7). The red box
includes the same percentage of desired points, with axes parallel to the first and second
principal components. We highlighted in red the point whose first principal component
is the median of the observed values. Fig. 5.1(c) shows the result of projecting back
the red box from the principal components space to the H × C plane (step 9). The
comparison of the red and blue boxes shows that the area has been reduced, thus
improving the test’s power.
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Algorithm 2 provides details on how we obtain the confidence regions, defined by
a set of points P1,P2,P3,P4, for each D ∈ D, each T ∈ T , and each significance level
α. We also obtain the “emblematic point” P ′, a kind of median point in the H × C
plane for each situation.
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input : A data base of true random values
input : The desired values of embedding dimension D, sequence length T ,

and confidence levels A
output: Confidence regions as points in the H × C plane

1 for each D ∈ D do
2 for each T ∈ T do
3 for each n = 1, 2, . . . , N do
4 build the time series pn with unused values from the data base;
5 compute the point (hn, cn) in the H ×C plane that corresponds to

pn;

6 end
7 obtain PC(D,T ), the principal components transformation based on

the points (h1, c1), (h2, c2), . . . , (hN , cN), and its inverse PC−1(D,T );
8 apply PC(D,T ) to the points (h1, c1), (h2, c2), . . . , (hN , cN), and

obtain (u1, v1), (u2, v2), . . . , (uN , vN);
9 find the indexes r = (r1, r2, . . . , rN) that sort the values of the first

principal component u = (u1, u2, . . . , uN) in ascending order;
10 find the point (u, v) whose first principal component is the median:

(ur(N+1)/2
, ·);

11 apply the inverse principal components transformation PC−1(D,T ) to
(u, v), and obtain P ′ = (h′, v′); call the corresponding time series
“emblematic time series”;

12 return P ′;
13 for each confidence level α ∈ A do
14 find the point (u, v) whose first principal component is the

quantile α/2: (ur[Nα/2] , ·);
15 find the point (u, v) whose first principal component is the

quantile 1− α/2: (ur[N(1−α/2)] , ·);
16 the values ur[Nα/2] and ur[N(1−α/2)] are the rightmost and leftmost

bounds of the box, respectively;
17 the bottom bound of the box is the smallest second principal

component value whose first principal component is at least
ur[Nα/2] ; denote this value vmin;

18 the top bound of the box is the largest second principal value
whose first principal component is at most ur[N(1−α/2)] ; denote this
value vmax;

19 the corners of the box are (ur[Nα/2] , vmin), (ur[Nα/2] , vmax),
(ur[N(1−α/2)] , vmin) and (ur[N(1−α/2)] , vmax);

20 apply the inverse principal components transformation
PC−1(D,T ) to these corners obtaining P1 = (hv1 , cv1),
P2 = (hv2 , hv2), P3 = (hv3 , cv3) and P4 = (hv4 , cv4);

21 return P1, P2, P3, P4;

22 end

23 end

24 end
Algorithm 2: Determination of confidence regions and emblematic time series
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These confidence regions obtained provide a powerful tool to make binary assess-
ments about the adequacy of a given time series x to the null hypothesis H0 that it
is white noise. More generally, we are interested in obtaining the p-value of x under
H0. We present a procedure to obtain an approximate p-value based on the evidence
collected to build the confidence regions.

The procedure operates on the principal components space and consists of mea-
suring the closeness between the “emblematic point” and the observed point. We are
given a time series x of size T , and we want its p-value when contrasted with TWNRS
of the same size at embedding dimension D. We use N TWNRS of size T , compute
their points in the H ×C plane, and project them to the corresponding principal com-
ponents space. We then do the same with x, and obtain a new point (ux, vx). The
closer x is to the emblematic time series, the larger its p-value. Assume that the em-
blematic time series is represented by (u, v) in the principal components space. We
measure this closeness by building a box around (ux, vx) that contains (u, v); assume
that ux > u, then:

1. the right side of the box is the smallest uj which is larger that ux; assume it
corresponds to the quantile ηu of u˜ = (u1, u2, . . . , uN). By definition, ηu ≥ 1/2.

2. the left side of the box is the 1− ηu quantile of u˜.
3. the top side of the box is the smallest vj which is larger that vx; assume it

corresponds to the quantile ηv of v˜ = (v1, v2, . . . , vN). By definition, ηv ≥ 1/2.

4. the bottom side of the box is the 1− ηv quantile of v˜.
Fig. 5.2 illustrates theses steps.

The definition of the box for the case ux < u follows naturally, and is described
in Algorithm 3. With this approach, we obtain the smallest box that (i) contains the
new point, and (ii) is defined by observed points from TRWNS.

Such boxes are less prone to distortions in this space since the distribution of the
points becomes less asymmetric than in the H × C plane; cf. Fig. 6.2. Algorithm 3
shows the details.
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Figure 5.2. Outline of the methodology used to calculate the p-value. The new point
is denoted as a crossed circle.
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input : The sequence x of length T to be contrasted to the null hypothesis
H0 that it is adherent to white noise

input : The embedding dimension D
input : N points (h1, c1), (h2, c2), . . . , (hN , cN) of true white noise series of

length T ; the principal components tranformation PC(D,T )
induced by these points; the points projected onto the H ×C plane:
(u1, v1), (u2, v2), . . . , (uN , vN)

output: An approximate p-value
1 find the point (u, v) whose first principal component is the median:

(ur(N+1)/2
, ·);

2 find the point (h, c) of the sequence x;
3 find the projection (ux, vx) of (h, c) onto the principal components space

using PC(D,T );
4 if ux > u then
5 ur[N(1−α/2)] is defined as the smallest element larger than ux;
6 ur[Nα/2] ← 2u− ur[N(1−α/2)] ;
7 else
8 if ux < u then
9 ur[Nα/2] is the largest minor element of ux;

10 ur[N(1−α/2)] ← 2u− ur[Nα/2] ;
11 else
12 ur[Nα/2] and ur[N(1−α/2)] is equal to u, the median point of the first

principal component;
13 end
14 end
15 obtain the maximum values of the second component whose values of the

first principal component are at least ur[Nα/2] and at most ur[N(1−α/2)] and
denote it vmax;

16 obtain the minimum values of the second component whose values of the first
principal component are at least ur[Nα/2] and at most ur[N(1−α/2)] and denote
it vmin;

17 the corners of the box bα(h, c) are (ur[Nα/2] , vmin), (ur[Nα/2] , vmax),
(ur[N(1−α/2)] , vmin) and (ur[N(1−α/2)] , vmax);

18 count nx, the number of points out of the N points which belong to bα(h, c);
19 return 1− nx/N

Algorithm 3: Determination of the p-value of the sequence x under H0



Chapter 6

Case study: White Noise
Confidence Regions

In this section, we will present the results obtained by the first proposal for the con-
struction of empirical confidence regions in the Complexity-Entropy plane for white
noise models. Through these regions, we want to check if the randomness present in
such PRNGs can be captured by the descriptors even with the use of short sequences.
As a consequence, we observed that the proposed methodology proved to be consistent
and coherent, managing to capture the randomness of truly random sequences, repro-
ducing the results obtained by generators previously analyzed in the literature, and
proving to be robust in the addition of correlation structures.

6.1 Introduction

Several works have used deterministic and pseudorandom sequences aiming at under-
standing the properties of the points they produce in the H × C plane. Martin et al.
(2006b) analyzed the logistic chaotic map and discuss the boundaries of the H × C

plane. De Micco et al. (2009) studied chaotic components in pseudorandom number
generators. Ravetti et al. (2014) tackled the often hard problem of distinguishing chaos
from noise. Zunino et al. (2012b) used a multi-scale approach to analyze the interplay
between chaotic and stochastic dynamics.

However, we were able to verify that the reported works carry out statistical
studies using as a basis the descriptors of Information Theory. Motivated by previous
works, in this work, we advance the state-of-the-art providing the first test for white
noise points in the H × C plane. In this proposal, the input is a sequence of true ran-
dom observations generated by a physical-based procedure. We obtain the confidence

55
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regions by performing an orthogonal projection of the data onto the space of principal
components, thus eliminating the restrictions imposed by the bounded space of the
Complexity-Entropy plane. Our contributions can be summarized as follows:

• We provide the first contribution in constructing a test in the Complexity-Entropy
Plane: we provide confidence regions and p-values.

• We evaluate this test’s size by analyzing random sequences generated by physical
procedures and pseudorandom generators (PRNGs).

• We verify the test’s power contrasting correlated noise time series.

6.2 Experimental Settings

We evaluated the performance of the proposed method in relation to a large set of
random sequences provided by state-of-the-art pseudo-random number generators. In
this section, we present the settings of the parameters that we use as a reference,
the true random physical generators used to calculate the empirical distribution, and
descriptive analysis of representative points in relation to the confidence regions.

6.2.1 Parameters Settings and Dataset

We conducted an ablation study to identify the influence of the parameters T , D,
and τ in the construction of empirical confidence regions. We verified that the results
involving the time delay parameter variation did not show significant differences in
repeated experiments; therefore, in the sequel, we did no consider τ as a determining
factor. On the other hand, we found two relevant variables: the length of the sequence
and the embedding dimension. We, thus, employed the following factors:

• Sequence length T ∈ T = {T = 103, 5× 104},

• Embedding dimension D ∈ D = {3, 4, 5, 6}.

and kept τ = 1, which is the most frequently used option. The values of D are within
the range recommended in the literature (Bandt and Pompe, 2002a).

Using this parametric space, we analyzed the different degrees of information
captured by the ordinal patterns formed. For the construction of the confidence regions
presented, we used:

• A set of 104 596 points in the H ×C plane, corresponding to sequences of length
T = 1000, for each value of D ∈ D, and
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• a set of 2093 points in the H × C plane, corresponding to sequences of length
T = 50000, for each value of D ∈ D.

We used the R platform (R Core Team, 2017, v. 4.0.3) for data generation and
analyses, and the ggplot2 library Wickham (2009) for generating the plots.

6.2.2 True Random Numbers

Random numbers are used in many fields, from gambling to criptography, aiming
to guarantee a secure, realistic or unpredictable behavior. Pseudo randomic results
can be achieved by software in a deterministic way. But, some applications need
actual random numbers (despite the somewhat elusive nature of actual randomness).
Randomness can be observed in unpredictable real world phenomena like cathodic
radiation or atmospheric noise.

In this study we used two sources of random numbers, here called true random,
both from physical phenomena observation and measurement. The first is based on
vacuum states to generate random quantum numbers, the setup consists of an ordinary
laser source to generate a local oscillator (LO), a half-wave plate, a polarizing beam-
splitter (BPS), and two balanced detectors working together adding or subtracting the
photocurrents results in a quadrature measurement of the LO or vacuum state. The
probability distribution of the vacuum state is binned into 2n equal parts (bins of same
size), than, assigning a fixed bit combination of length n to each sample point in a
given bin Gabriel et al. (2010). The second one is based on atmospheric noise cap-
tured by a cheap radio receiver, started as a gambling engine, the randomness comes
from an ordinary radio receiver that has no filter for static unwanted sounds caused
by atmospheric noise, but perfect for random purposes, developed over a distributed
setup with some radios located at different geographical locations sending random bits
to a cloud server who process data and hosts random.org, the history, and some other
information could be found at Haahr (2018). We used 54× 106 4B words from each
physical generator, which approximately amounts 200 MB of data.

In Fig. 6.1, we show how the samples used to build the empirical confidence
regions are arranged in the H × C plane.
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Figure 6.1. White noise samples considered during the construction of the proposed
confidence regions.
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(a) Points in the Principal Components plane for
for D = 3

(b) Points in the Principal Components plane for
for D = 6

Figure 6.2. Representation of true random white noise sequences of length T = 50000
in the PCA space for D = 3 and D = 6, and the quantiles of 90 %, 95 %, 99 %, and
99.9 %.

6.3 Experimental Results and Analysis

6.3.1 Descriptive analysis of empirical confidence regions

The regions used as a reference in this work are obtained through true random se-
quences, where we extract the empirical distribution of white noises in the Complexity-
Entropy plane. Tables 6.1 and 6.2 list the coordinates in theH×C plane of the emblem-
atic point P ′ and of the four points P1,P2,P3,P4 that define the confidence regions
at 90 %, 95 %, 99 %, and 99.9 %, for D = 3, 4, 5, 6 and N = 1000, 50000, . The points
are presented counterclockwise, starting with the one with the largest complexity.

Fig. 6.2 shows the results for T = 50000 and D = 3, 6 in the new principal
components space, along with the quantiles of order 90 %, 95 %, 99 %, and 99.9 %.
We also show the projection of the H × C plane boundaries in this space, as well
the median of each data set, the latter being represented as red dots. The confidence
regions exceed the H × C boundaries, but this issue does not compromise the test’s
size since no points can be observed outside such boundaries.

Fig. 6.2 also shows that the data are not evenly distributed among the axes of the
first principal component. They tend to concentrate close to the point that corresponds
to (1, 0) in the H×C plane. As we use order statistics to define the confidence regions,
this issue is also of little relevance for our results. Moreover, Fig. 6.3 shows that such
asymmetry diminishes when the embedding dimension D increases.

As we can see in Fig. 6.3 in the new representation space produced by the PCA,
the data are not evenly distributed among the axes of the first main component, main-
taining the character presented in the H × C plane, since such points tend to be
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Figure 6.3. Histograms of the first principal component for D = 3, 4, 5, 6

concentrated close to the point (1, 0).

Table 6.1. Coordinates in the H × C plane of the emblematic series and the points
that define the confidence regions at 90 %, 95 %, 99 %, and 99.9 % for D = 3, 4, 5, 6 and
N = 1000

N = 1000

D Point 90 % 95 % 99 % 99.9 %

3 P ′ (0.9992089, 0.0007800)
P1 (0.9973334, 0.0025601) (0.9967311, 0.0031343) (0.9953009, 0.0045054) (0.9931825, 0.0065387)
P2 (0.9974047, 0.0026304) (0.9968219, 0.0032238) (0.9954349, 0.0046375) (0.9933704, 0.006724)
P3 (0.9999497, 0) (0.9999398, 0) (0.9999203, 0) (0.9998925, 0)
P4 (1, 5.17× 10−5) (1, 6.12× 10−5) (1, 8.45× 10−5) (1, 0.0001104)

4 P ′ (0.9967032, 0.0043297)
P1 (0.994364, 0.0081246) (0.9937138, 0.0089796) (0., 99225750.0108947) (0.9902578, 0.0135243)
P2 (0.9939234, 0.0075452) (0.9932534, 0.0083741) (0.9917308, 0.0102022) (0.9897312, 0.0128318)
P3 (0.9994791, 0.0013982) (0.9991609, 0.0018166) (0.9987924, 0.0023012) (0.9985727, 0.0025901)
P4 (0.9990385, 0.0008188) (0.9987005, 0.0012111) (0.9982658, 0.0016087) (0.9980461, 0.0018976)

5 P ′ (0.9864873, 0.0245632)
P1 (0.9811818, 0.0321294) (0.9801289, 0.0340045) (0.977917, 0.0377295) (0.9753326, 0.0425299)
P2 (0.9827429, 0.0350291) (0.9817117, 0.0369446) (0.9796031, 0.0408613) (0.9770187, 0.0456617)
P3 (0.9919707, 0.0120896) (0.9909376, 0.0139279) (0.9898161, 0.0156277) (0.9892599, 0.0166608)
P4 (0.9935319, 0.0149893) (0.9925204, 0.016868) (0.9915021, 0.0187595) (0.9909459, 0.0197926)

6 P ′ (0, 9296429, 0.1841438)
P1 (0.9121895, 0.2201993) (0.9105951, 0.2239294) (0.9105951, 0.2239294) (0.9077672, 0.2305874)
P2 (0.9146048, 0.2260776) (0.9130413, 0.2298829) (0.9130413, 0.2298829) (0.9102595, 0.2366531)
P3 (0.9443868, 0.1418373) (0.9419202, 0.1476904) (0.9396577, 0.1531967) (0.9383611, 0.1561279)
P4 (0.9468021, 0.1477156) (0.9443663, 0.1536439) (0.9421039, 0.1591502) (0.9408534, 0.1621937)

6.3.2 Test Size

To analyze the efficiency of the confidence region calculated, we tested its applicability
on a set of true random data generated physically not used by the algorithm during
its construction. We assessed the size of the test by contrasting 100 new TWNRS for
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Table 6.2. Coordinates in the H × C plane of the emblematic series and the points
that define the confidence regions at 90 %, 95 %, 99 %, and 99.9 % for D = 3, 4, 5, 6 and
N = 50000

N = 50000

D Point 90 % 95 % 99 % 99.9 %

3 P ′ (0.9999853, 1.45× 10−5)
P1 (0.9999489, 5.06× 10−5) (0.9999384, 6.11× 10−5) (0.9999079, 9.11× 10−5) (0.9998625, 0.0001361)
P2 (0.9999487, 5.04× 10−5) (0.9999382, 6.09× 10−5) (0.9999077, 9.09× 10−5) (0.9998622, 0.0001358)
P3 (0.9999998, 4× 10−7) (0.9999994, 9× 10−7) (0.9999982, 2× 10−6) (0.9999973, 3× 10−6)
P4 (0.9999996, 2× 10−7) (0.9999991, 7× 10−7) (0.999998, 1.8× 10−6) (0.999997, 2.7× 10−6)

4 P ′ (0.9999394, 7.94× 10−5)
P1 (0.9999684, 3.98× 10−5) (0.9999725, 3.44× 10−5) (0.9999783, 2.68× 10−5) (0.9999833, 2.02× 10−5)
P2 (0.9999696, 4.13× 10−5) (0.9999737, 3.6× 10−5) (0.9999795, 2.83× 10−5) (0.9999845, 2.18× 10−5)
P3 (0.9998075, 0.0002508) (0.9998506, 0.0001942) (0.9998756, 0.0001615) (0.9998889, 0.000144)
P4 (0.9998087, 0.0002524) (0.9998518, 0.0001958) (0.9998768, 0.000163) (0.9998901, 0.0001456)

5 P ′ (0.9997616, 0.0004264)
P1 (0.9998172, 0.0003232) (0.9998259, 0.0003075) (0.9998428, 0.0002774) (0.9998573, 0.0002517)
P2 (0.9998194, 0.0003273) (0.9998282, 0.0003116) (0.999845, 0.0002814) (0.9998593, 0.0002553)
P3 (0.9994812, 0.0009246) (0.9996371, 0.0006455) (0.9996703, 0.0005862) (0.9996884, 0.000554)
P4 (0.9994834, 0.0009286) (0.9996394, 0.0006495) (0.9996725, 0.0005901) (0.9996904, 0.0005576)

6 P ′ (0.9989108, 0.0026093)
P1 (0.9990169, 0.002336) (0.9990368, 0.002288) (0.9990736, 0.0021997) (0.9991069, 0.0021197)
P2 (0.9990249, 0.0023554) (0.9990449, 0.0023074) (0.9990817, 0.0022191) (0.999115, 0.0021392)
P3 (0.9978983, 0.0050219) (0.998714, 0.0030633) (0.998765, 0.0029407) (0.9987884, 0.0028845)
P4 (0.9979064, 0.0050413) (0.998722, 0.0030827) (0.9987731, 0.0029601) (0.9987965, 0.0029039)

each situation of D = 3, 4, 5, 6 and of α = 0.01, 0.05. Table 4.1 and Fig. 6.4 show the
results.

On the one hand, long series (T = 50000) present a good size for every embedding
dimension. On the other hand, short series (T = 1000) exhibit only one situation with
a noticeable divergence between the expected and the observed size: the test rejects
13 % of the 100 series when D = 6. In contrast, we expected 1 % of rejection. This
might be because, in this case, the condition D!� T is not respected. Notice that the
wrongly rejected TWNRS are all close to the point (1, 0).

We may then conclude that the test has good empirical size, provided D! � T ,
a condition that does not hold for D = 6 and T = 1000.

6.3.3 Test Power

We assessed the power of the test by contrasting time series with different correlation
structure (under the f−k model) in the H × C plane. Several studies in the literature
have used this approach for identifying and characterizing randomness.

Our study’s basis is the emblematic time series for each length T and dimension
embedding D. Recall that the emblematic time was chosen as the most representative
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Figure 6.4. Results of the analysis behavior of true random noises in the regions of
confidence built.

of the data set. We use these series, transform them into f−k correlated noise, and
verify the new point’s location in the H × C plane.

As we can observe in the plane, as the correlation between the observations in-
creases, that is, k > 0, the randomness decreases, and the entropy presented decreases,
informing the loss of its stochastic characteristic.

Fig. 6.5(a) shows the overall effect of transforming the emblematic time series
into f−k correlated noise, with k = 1/2, 1, 3/2, 2, 5/2, 3. At this scale, the emblematic
time series k = 0 and the one with k = 1/2 appear overlapped. As the correlation
increases with k, the randomness decreases, causing a drop in the entropy; the series
become progressively more predictable.

Fig. 6.5(b) is a zoom close to the (1, 0) point, along with the confidence regions
for the white noise. We see that k = 0 and k = 0.1 are inside the 95 % confidence
region, and k = 0.2 is inside the 99 % box. Notice that the time series with k = 3/10 is
outside the confidence regions and does not pass the randomness test. The same holds
for all k > 3/10.
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Figure 6.5. Analysis of the test power with correlated f−k noise.

6.3.4 Revisiting the White Noise Hypothesis in the Literature

In this section, we compare the performance of our test with that of previous analyses
that employ the Complexity-Entropy plane. To this aim, we produced 100 sequences
of length T = 5× 104 for each generator and computed the p-value for each D =

{3, 4, 5, 6}. Previous results are shown in Table 5.1, and ours are in Table 6.3. We
grouped our results in those that rejected (R) the null hypothesis and those that did
not reject it (NR).

Comparing Tables 5.1 and 6.3, we see that our test captures adequately the
random dynamics of the sequences produced by most of the analyzed generators. It is
noteworthy that the generator Combo RNG sequences only pass our white noise test
for D = 3. In higher embedding dimensions, as we consider longer words, the sequences
produced by this generator are not labeled as white noise.

6.4 Conclusions

We presented and evaluated the first test for white noise in the Complexity-Entropy
plane. Our proposal is based on two stages: (1) building non-parametric empirical
confidence regions in the principal components space and mapping these boxes back
to the H × C plane. (2) computing an approximate p-value for a given sample by
comparing it with points produced by true white noise random sequences (TWNRS).
We obtained the TWNRS with data from physical devices.

Our test has a good size, mostly with long TWNRS. We also determined the
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Table 6.3. Results of the sequences generated by the main PRNGs in the literature.
The sequences have length T = 5× 104.

Algorithm D p-value HC-PCA

MOT 3 0.305 NR
4 0.572 NR
5 0.455 NR
6 0.508 NR

MWC 3 0.501 NR
4 0.477 NR
5 0.496 NR
6 0.496 NR

COM 3 0.123 NR
4 0.002 R
5 1.11× 10−16 R
6 1.11× 10−16 R

LEH 3 0.531 NR
4 0.515 NR

Algorithm D p-value HC-PCA

LEH 5 0.495 NR
6 0.501 NR

fGn 3 0.521 NR
4 0.519 NR
5 0.498 NR
6 0.470 NR

f−k 3 0.482 NR
4 0.520 NR
5 0.513 NR
6 0.508 NR

LCG 3 0.009 R
4 1.11× 10−16 R
5 1.11× 10−16 R
6 1.11× 10−16 R

power of our test for the alternative hypothesis of correlated f−k noise and found that
it rejects the null hypothesis (k = 0) for k > 3/10.

Although our work focuses on the study of short sequences, we were able to
capture the random behavior of well-known pseudorandom number generators already
analyzed in the literature. With this, we verified the adequacy of our technique as it
is capable of detecting correlation structures.

6.5 Reproducibility and Replicability

Following the recommendations provided by Frery et al. (2020), we make the text,
source code, and data used in this study available at the Confidence-Regions repository
https://github.com/EduardaChagas/ConfidenceRegions.

https://github.com/EduardaChagas/ConfidenceRegions


Chapter 7

Conclusions and Future Work

The main objective of this work was the investigation of problems present in the
methodology of symbolization of Bandt-Pompe and its applicability in the charac-
terization of time series and images. Interested in expanding the range of possible
applications, we focus on investigating properties of transition graphs and their pos-
sible limitations present in the state of the art. Another objective was the study of
the joint distribution obtained by the descriptors of the Complexity-Entropy plane, as
well as possible linear transformations in this space. Thus, we have advanced in the
state of the art by proposing some solutions to deal with scenarios not foreseen in the
seminal article by Bandt-Pompe.

The work developed consists of the presentation of two new approaches and their
respective applications in data analysis scenarios. The first problem investigated was
the characterization and classification of homogeneous patches of SAR image textures.
Knowing the limitations that exist in sequences that do not follow a unidimensional
structure, the first step was the study of linearization methods, as well as the study of
the different properties obtained in each class of data analyzed. Thus, we propose a
new approach for classification of remote sensing images, which consists of the following
steps: linearization of data using Hilbert curves, generation of the weighted amplitude
transition graphs for each sequence, extraction of information theory descriptors, and
the classification of these features through the k-nearest neighbors algorithm. As a
result, we verified that we were able to obtain the same evaluation metrics of state-
of-the-art handcraft algorithms with the use of only two features, which still provides
the user with a new way of the general view of the problem, through the Complexity-
Entropy plane.

The most important step of the application above was the proposal for a new
generation of the ordinal patterns probability distribution, the weighted amplitude

65
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transition graph (WATG). Considering that the magnitude variation of the targets’
backscatter signal is an intrinsic characteristic of the analyzed region, we propose a
modification in the ordinal patterns transition graph. As can be seen in the literature,
one of the limitations of traditional methods of ordinal patterns is the absence of am-
plitude information during the generation of the distribution. In this way, we propose
here the first variation of transition graphs that adds amplitude variation informa-
tion to its edges. An advantage of using WATG before classical techniques of adding
amplitude information to the symbol histogram is in the higher level of information
captured about the underlying dynamics of the system, even when using smaller values
of patterns dimension. Thus, we can obtain a greater degree of data discrimination
more quickly and efficiently.

Another focus of the work was the development of an approach to build confidence
regions in the Complexity-Entropy plane. In order to improve the plane characteriza-
tion capacity, we proposed the HC-PCA, which consists of calculating empirical regions
in a new space generated by the linear transformation made by the principal compo-
nent analysis algorithm. We found that due to the correlation between the descriptors,
proposals such as classical bivariate analysis, regressions and generalized linear models
cannot describe the system dynamics well. To verify the effectiveness of the proposal,
we used these regions to capture the randomness of PRNGs in short sequences and thus
characterize generators previously analyzed in the literature. The technique proved to
be fast, consistent and robust the addition of correlation structures.

This work presents several possibilities for future research. For example, the
use of WATG can be explored in different application scenarios. Considering that its
main characteristic consists of discriminating sequences with variations in amplitude
along with the arrangement of its elements, its applicability is not restricted to remote
sensing images. In the context of SAR images, modifications can be made to increase
the generalizability of the technique. Its possible application in the segmentation of
classes of regions is a challenging problem.

On the other hand, under the context of confidence regions, our work opens up a
huge range of related research. The study of regression models on correlated descriptors
and the development of specific kernels for the Complexity-Entropy plane are fruitful
possibilities for investigation. We also emphasize the need for efforts to build represen-
tative metrics. With the advancement of deep metric learning techniques (Barros et al.,
2020), we can explore the learning of projections in a linear transformation specific to
the plane, which would allow progress to build specific machine learning algorithms
for the Complexity-Entropy space. This means that there is a lot of space to conduct
further investigations regarding WATG and HC-PCA.
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