
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Junio Cezar Ribeiro da Silva

Escalonamento de Código em Arquiteturas Heterogêneas via Regressão
Linear Multivariável sobre Parâmetros de Funções

Belo Horizonte
2019

Junio Cezar Ribeiro da Silva

Escalonamento de Código em Arquiteturas Heterogêneas via Regressão
Linear Multivariável sobre Parâmetros de Funções

Versão final

Dissertação apresentada ao Programa de Pós-Graduação em
Ciência da Computação da Universidade Federal de Minas
Gerais, como requisito parcial à obtenção do título de Mestre
em Ciência da Computação.

Orientador: Fernando Magno Quintão Pereira

Belo Horizonte
2019

Junio Cezar Ribeiro da Silva

Scheduling in Heterogeneous Architectures via Multivariate Linear
Regression on Function Inputs

Final version

Thesis presented to the Graduate Program in Computer Sci-
ence of the Federal University of Minas Gerais in partial ful-
fillment of the requirements for the degree of Master in Com-
puter Science.

Advisor: Fernando Magno Quintão Pereira

Belo Horizonte
2019

© 2019, Junio Cezar Ribeiro da Silva.

 Todos os direitos reservados

 Silva, Junio Cezar Ribeiro da.

S586s Scheduling in heterogeneous architectures via multivariate
 linear regression on function inputs [manuscrito] / Junio Cezar
 Ribeiro da Silva - 2019.
 xxiv, 61 f. il.

 Orientador: Fernando Magno Quintão Pereira.

 Dissertação (mestrado) - Universidade Federal de Minas
 Gerais, Instituto de Ciências Exatas, Departamento de Ciência
 da Computação.
 Referências: f.53-61.
 .
 1. Computação – Teses. 2. Compiladores (Computadores) –
 Teses. 3. Escalonamento de processos – Teses. 4. Otimização
 combinatoria – Teses. 5. Análise de regressão – Teses. I.
 Pereira, Fernando Magno Quintão. II. Universidade Federal de
 Minas Gerais; Instituto de Ciências Exatas, Departamento de
 Ciência da Computação. III. Título.

CDU 519.6*33(043)

Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende Costa
CRB 6ª Região nº 1510

Acknowledgments

This dissertation and all the research work leading to its final shape would not be possible
without the help of many people.

In the first place, there is nothing else I can do but to thank my advisor, Professor
Fernando Pereira, for all his effort, patience, and extreme expertise while advising me
during this dissertation and also all the other projects I participated while attending the
Compilers Laboratory. From the choice of a research topic to the process of looking for
appropriate funding, he was mindful and always available. Thank you for correcting me
when required without demotivating me.

I would also like to thank Vinícius Petrucci and Abdoulaye Gamatié for providing
guidance and for the precious feedback on the project along the way. Much of the machine
learning background presented in this dissertation was introduced to us by Vinícius. Also,
being advised by Abdoulaye, while in France, was a unique experience. To me, the
cooperation between the Compilers Laboratory and the Laboratoire d’Informatique, de
Robotique et de Microélectronique de Montpellier was fundamental for polishing this work.

For my fellow labmates, thank you all for the feedback throughout these past years
and also for all the discussions in our weekly seminars. To Lorena, a special thanks for
helping me carry out some experiments and implement benchmarks.

Last but not least, I would like to thank FUNDEP (Fundação de Desenvolvimento
da Pesquisa), FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais)
and Google (through its Latin America Research Awards program) for the funding while I
was an MSc student. This support was fundamental for keep the project moving forward.

“Somewhere, something incredible is waiting to be known.”
(Carl Sagan)

Resumo

Sistemas heterogêneos multinúcleo combinam, sob um mesmo conjunto de instruções,
diferentes tipos de processadores com o objetivo de conciliar alto desempenho com baixo
consumo de energia. Uma pergunta importante sobre esses sistemas é como determinar
a melhor configuração de hardware para diferentes execuções de programas. Uma config-
uração de hardware consiste no tipo e na frequência dos processadores que o programa
pode usar em tempo de execução. As soluções atuais são completamente dinâmicas,
por exemplo, baseadas em perfilamento in vivo ou completamente estáticas, com base
em abordagens supervisionadas de aprendizado de máquina. Enquanto a abordagem
dinâmica pode gerar sobrecarga indesejada no tempo de execução, a estática falha em
não considerar a diversidade de entradas para os programas.

Nesta dissertação, mostramos como contornar essa limitação de abordagens estáti-
cas. Para esse fim, fornecemos um conjunto de técnicas de transformação de código que
realizam regressão numérica em argumentos de funções, que podem ter tipos escalares ou
abstratos, de modo a associar parâmetros com configurações ideais de hardware em tempo
de execução. Nós projetamos e implementamos nossa abordagem em uma infraestrutura
de compilação conhecida como Soot e a avaliamos em programas reais dos conjuntos PBBS
e Renaissance. Mostramos que podemos prever consistentemente a melhor configuração
para uma classe grande de programas executando em uma placa Odroid XU4, superando
outras técnicas como o GTS da ARM ou o CHOAMP, um escalonador estático lançado
recentemente.

Palavras-chave: Regressão, Função, Arquitetura Heterogênea, Escalonamento,
big.LITTLE, Compiladores.

Abstract

Heterogeneous multicore systems, such as the ARM big.LITTLE, feature a single instruc-
tion set with different types of processors to conciliate high performance with low energy
consumption. An important question concerning such systems is how to determine the
best hardware configuration for a particular program execution. The hardware configu-
ration consists of the type and the frequency of the processors that the program can use
at runtime. Current solutions are either completely dynamic, e.g., based on in-vivo pro-
filing, or completely static, based on supervised machine learning approaches. Whereas
the former solution might bring unwanted runtime overhead, the latter fails to account
for the diversity in program inputs.

In this dissertation, we show how to circumvent this last shortcoming. To this
end, we provide a suite of code transformation techniques that perform numeric regres-
sion on function arguments, which can have either scalar or aggregate types, so as to
match parameters with ideal hardware configurations at runtime. We have designed and
implemented our approach on top of the Soot compilation infrastructure, and have ap-
plied it onto programs available in the PBBS and Renaissance suites. We show that we
can consistently predict the best configuration for a large class of programs running on an
Odroid XU4 board, outperforming other techniques such as ARM’s GTS or CHOAMP, a
recently released static program scheduler.

Keywords: Regression, Function, Heterogeneous Architecture, Scheduling,
big.LITTLE, Compilers

List of Figures

1.1 Source code for a routine that calculates the factorial of an integer in (a) Java
and (b) Scala, and their representation in Soot’s Jimple IR (c). 19

1.2 A program, and its input space. 21
1.3 The ideal configuration for different parameters of the task function seen in

Figure 1.2, for 4, 8 and 16 threads, measured on an Odroid XU4 with the
userspace governor, and default configuration 4b4L. The name(s) inside each
box indicate the best configuration(s) for that input. ’X’ indicates setups
with three or more configurations tied as best. To produce these charts, we
followed a methodology yet to be described in Section 4.7. Notice that even
considering 4 threads, there is benefit to enable more than four processors,
as the Java virtual machine creates threads for garbage collection and JIT
compilation, for instance. 22

1.4 (a) The energy measurement apparatus. (b) Instantaneous power charts for
configuration 4b4L when running with different inputs. (c) Constellation for
synchronization-free input set. (d) Constellation for synchronization-heavy
input set. Frequencies are set to 2.0GHz for big, and 1.5GHz for LITTLE cores. 23

2.1 Example of OpenMP code analyzed by CHOAMP. Extracted from Figure 2
of [Sreelatha et al., 2018]. 28

2.2 Thread migration between a big and a LITTLE core with Global Task Schedul-
ing. The upper dashed line corresponds to the threshold for migrating a thread
to a big core, while the lower dashed line corresponds to a migration threshold
to a LITTLE core. These limits are based on the current thread tracked load,
represented by the continuous line in the chart. 30

3.1 The execution pipeline of Jinn-C. 34
3.2 Formula to train a 3-ary function f(α0, α1, α2). The goal of multivariate linear

regression is to find the coefficients Θ that approximate the product C =

σ(AΘ). Training set contains four samples. 34
3.3 Training set for the Task method (Fig. 1.2). The table on the right is matrix

A of independent variables. 35
3.4 Matrix of independent variables built for ten different invocations of function

Task in Figure 1.2. 36

3.5 The result of multivariate linear regression produced by the training set seen
in Examples 3.1.2 and 3.1.3. 37

3.6 The matrix Θ found in Figure 3.5 used to predict the ideal configuration for
four unseen input sets. Inputs used in the training set are the light-grey points,
whereas inputs in the test set are dark-grey. 38

3.7 Examples of annotated code snippets. (Left) Breadth-first search. (Right)
Sorting application. 39

3.8 Instrumented version of programs seen in Figure 3.7. (Left) Breadth-first
search. (Right) Sorting application. 41

3.9 Example of functionalities provided by the driver. (Left) simplified version
of the warm-up code. (Right) library code that changes the number of cores
visible to the target program. 41

3.10 Training output produced by the driver on a few inputs seen in Figure 3.3.
Y-axis is runtime in seconds. 42

3.11 The production version of function Task (Fig.1.2). 43

4.1 Variation in CPU frequency and temperature values for the big cluster while
running a sample application that uses all 8 available cores. Samples collected
at each 50 ms from thermal sensors present in the Odroid Xu4 board. The
code in the right side shows where such values are set in the Operating System. 49

4.2 Execution time of benchmarks from Table 4.1. Y -axis shows time in seconds.
X-axis shows different experiments; each experiment uses different inputs.
Boxplots are ordered by Jinn-C, CHOAMP and GTS. 52

4.3 Summary of the results displayed in Figure 4.2 53
4.4 Energy consumed by the benchmarks in Table 4.1. Y -axis shows energy in

Joules. X-axis shows different experiments. Boxplots are sorted as in Figure 4.2. 55
4.5 Summary of the results displayed in Figure 4.4 56
4.6 Power consumption of HashSync with (a) Jinn-C, (b) CHOAMP, and (c)

Jinn-C with fixed configuration during warm-up. P-values below 0.05 indi-
cate that the executions of Jinn-C’s and CHOAMP’s code are statistically
different. For this benchmark, CHOAMP (b) predicted 0b4L as the best con-
figuration for the parallel kernel. This configuration is used in all warm-up
stages and in the measurement phase. Figures 4.2 and 4.4 report values for
the measured run only. 57

4.7 Best configurations for 4 benchmarks used in our evaluation. The charts exem-
plify the convex space over benchmarks inputs. HashSync and FutureGenetic
receive 3 inputs each, but for this experiment we fixed the number of workers
in HashSync to 16 and the number of generations in FutureGenetic to 5000. . 61

List of Tables

2.1 Different solutions to the problem of finding ideal hardware configurations.
We consider the following levels: Architecture (A), Operating System (O),
Compiler (C) or Library/Programming model (L). 26

2.2 Prime features used by CHOAMP . 27
2.3 Different solutions to Isha published in recent years. Octopus-Man was

introduced by Petrucci et al. [2015], Sparta by Donyanavard et al. [2016],
DyPO by Gupta et al. [2017], Hispter by Nishtala et al. [2017], Choamp

by Sreelatha et al. [2018], SIAM by Krishna and Nasre [2018] and Astro

by Novaes et al. [2019a,b]. 31

4.1 Benchmarks used for evaluating Jinn-C. The TTime column shows the time
required to train each benchmark, which will be further explained in Sec-
tion 4.4. Lang. contains the source language of benchmarks, where J stands
for Java and S stands for Scala. The W column shows the number of warm-
up executions performed by each application. Among Jinn-C’s benchmarks,
CollinearPoints finds three points on the same line; HashSync inserts in a
concurrent table; RandomNumComp has several long sequences of branches
that are hard to predicted; and InsertAndAdd implements parallel opera-
tions on a DataBase. 47

4.2 Prime features and their correspondent Java VM implementation. 50

Contents

Acknowledgments 5

Resumo 7

Abstract 8

List of Figures 9

List of Tables 11

1 Introduction 14
1.1 Context . 14
1.2 Our Solution . 15
1.3 Background and Preliminary Definitions 17
1.4 Empirical Observation . 20
1.5 Accounting for Energy Efficiency . 22
1.6 Publications . 24

2 Literature Review 25
2.1 A General Overview on Program Scheduling in Heterogeneous Systems . . 25
2.2 Static Solutions . 26

2.2.1 Case Study: CHOAMP . 27
2.3 Dynamic Solutions . 29

2.3.1 Case Study: Global Task Scheduling 29
2.4 Hybrid Solutions . 30
2.5 Scheduling in Single-ISA Heterogeneous Systems 31

3 The Jinn-C Compiler 33
3.1 Multiple Linear Regression . 33
3.2 Engineering the Training Phase . 38

3.2.1 Code Annotation . 38
3.2.2 Extracting Sizes from Annotated Terms 40
3.2.3 Profiling, Logging and Training . 40

3.3 Generation of Adaptive Code . 43

4.1 Experimental Setup . 45
4.2 On the Choice of Hardware Configurations 48
4.3 On the Implementation of CHOAMP . 49
4.4 RQ1: Training time . 50
4.5 RQ2: Optimizing for Speed . 51
4.6 RQ3: Energy Consumption . 54
4.7 RQ4: Convexity . 58

5 Conclusion 62

Bibliography 63

4 Evaluation 45

14

Chapter 1

Introduction

1.1 Context

Modern multicore platforms provide developers with a suite of technologies to
produce code that is more energy-efficient [Orgerie et al., 2014]. Among these technologies,
two stand out today: dynamic voltage & frequency scaling [Semeraro et al., 2002] and
single-ISA heterogeneous architectures in which different processors are combined into
the same chip. The ARM big.LITTLE design exemplifies the latter technology [Hähnel
and Härtig, 2014]. Processors using both these technologies are today commonly found in
smartphones and embedded systems. As an example, the Samsung Exynos 5422 chip has
eight processors, four fast, but power hungry (the so called “big" cores), and four slow,
but more power parsimonious (thus called “LITTLE" cores). Each processor has up to
19 different frequency levels, going from 200MHz to 1.5GHz in the LITTLE processors,
and from 200MHz to 2.0GHz in the big cores [Greenhalgh, 2011]. The combination of
fast and slow processors, each one featuring multiple frequency levels, gives programmers
a vast suite of configurations to choose from when running their applications. However,
performing this choice is a challenging task [Jundt et al., 2015; Nishtala et al., 2017;
Petrucci et al., 2015].

The craft of compilers that try to map program parts or their required resources to
different hardware configurations (combinations of cores/frequencies or memory locations)
is a research topic that has been receiving considerable attention in the last decade, in
part due to the increasing popularity of systems using the NUMA architecture [Piccoli
et al., 2014b; Francesquini et al., 2015] and by those combining CPUs and GPUs [Garland
and Kirk, 2010; Nickolls and Dally, 2010]. In the former case, the architecture is usually
composed by homogeneous CPUs with different access latencies to memory banks [Majo
and Gross, 2011]. In such a scenario, the problem of mapping program resources to
hardware focus on finding the most appropriate bank to migrate memory pages before
the execution of a given section of code. In the CPU-GPU case, the problem of mapping
program parts to hardware involves not only the task of migrating memory, but also

1. Introduction 15

deals with at least two instruction sets, such as x86 for the host CPU, and TASS for the
hosted GPU, for instance. If the same function is allowed to run onto both processors, it
must be cloned at the binary level [Poesia et al., 2017]. In this dissertation, we focus on
the same problem: scheduling of computations; however, two key differences stand out.
First, we target an architecture that, differently from NUMA, does not provide specific
banks of primary memory for different CPUs and, second, this architecture uses the same
instruction set across its processing units. In this context, the same binary code might
run in different kinds of processors, while memory management is transparent to the
underlying system.

The current state-of-the-art solution to this problem is CHOAMP, a compilation
technique invented by Sreelatha et al. [2018]. CHOAMP uses supervised machine learning
to map program functions to the configuration that best fits them. Sreelatha et al. try to
capture characteristics of the target architecture’s runtime behavior. They use this knowl-
edge to predict the ideal configuration to a program, given its syntactic characteristics.
The beauty of Sreelatha et al.’s approach is the fact that it is fully static: interventions on
the program remain confined into the compiler, and no extra runtime support is required
from the hardware. In their words, “static schedulers scale better with the number of cores
as well as program complexity". Such view has been made popular by Shelepov et al.
[2009] through the success enjoyed by HASS, a scheduler for same-ISA heterogeneous
systems that leverages architectural signatures (e.g., cache miss rates) generated offline.

We observe that CHOAMP and HASS share a fundamental shortcoming: they
do not consider program inputs when performing scheduling decisions. As we explain in
Section 1.4, it is regularly possible to find out programs for which the best hardware con-
figuration for a given function varies depending on the function’s inputs. Some programs
used in the original description of CHOAMP, such as integer sort, bear this property. We
make the case that inputs are key to determine good matchings between programs and
configurations supported by the evidence that such matchings do not necessarily converge
to a single, ideal configuration, as the size of inputs grows.

1.2 Our Solution

In this dissertation, we introduce a compilation approach to map program parts
to hardware configurations that optimize resource usage. In contrast to prior work, our
technique explicitly takes inputs into consideration when deciding which hardware con-
figurations to use. As we discuss in Chapter 3, our solution was designed considering
this challenge as a classification problem, where the target categories define a specific

1. Introduction 16

configuration to use. Our classifier is built on top of a multivariate regression model and
relies on offline training. For example, for a given function foo, a collection of its inputs
{t1, t2, . . . , tm} available for training, plus a set of hardware configurations {h1, h2, . . . , hn},
we run foo(ti), 1 ≤ i ≤ m, onto a sample of the configuration space {hj | 1 ≤ j ≤ n}.
Training gives us the ideal configuration for each input, in terms of a measurable goal,
such as runtime or energy consumption. When producing code for foo, we augment its
binary representation with this knowledge to predict the best configuration for unseen in-
puts. The use of a linear model, instead of something more sophisticated, such as decision
trees [Sayadi et al., 2017] or reinforcement learning [Nishtala et al., 2017], relies on the
nature of the best configurations search space. This space tends to be convex, allowing a
technique applying a gradient descent algorithm [Zhang, 2004] to find a global optimum,
i.e. the best hardware configuration for a given input. In fact, one of the contributions of
this work is an empirical demonstration of the convexity of this universe of solutions. As
we show in Section 4.7, by varying only one function argument, while fixing the others,
the ideal configuration is unlikely to oscillate, for instance, going from hi to hj and then
back to hi. The consequence of this observation is that derivative-based search methods
are expected to converge to an optimal result, and linear regression tends to accurately
predict this optimum.
Our Results. We have implemented our technique onto Soot [Vallée-Rai et al., 1999],
a bytecode optimizer, and have tested it onto an Odroid XU4 big.LITTLE architecture.
Soot lets us use the knowledge built during training to generate code that, at runtime,
changes the hardware configuration per program function. We call this code generator the
Jinn-C compiler, a tool that reads and outputs Java bytecodes. Although we work at the
granularity of functions, nothing hinders our approach from being applied onto smaller
(or larger) program parts. As we explain in Chapter 4, we have evaluated Jinn-C on the
subset of the Program Based Benchmark Suite [Shun et al., 2012] used by Acar et al. [2018],
and on the benchmarks from Renaissance –a collection introduced in 2019 [Prokopec et al.,
2019]– that we have been able to port to the embedded board that we use. An interesting
aspect of our approach is that the type of regression that we advocate in this dissertation
is agnostic to the objective function. In particular, we show how Jinn-C is able to reduce
either the execution time or the energy consumption of programs. The ideal hardware
configuration is the one that optimizes for such a particular objective function. We
measure energy for the entire board using physical probes [Bessa et al., 2017], and, even
if we consider all the power overhead of the peripherals, our results are easy to reproduce.
Below we summarize the benefits of our solution in the context of the existing literature:

Adaptive: contrary to previous purely static solutions to the problem of finding ideal
hardware configurations to program parts, our technique is able to take input data
–information known at runtime only– into consideration when choosing configura-

1. Introduction 17

tions.

Simple: we show that, for typical benchmarks used in high-performance computing,
either the value of scalar inputs, or the size of aggregate inputs already yield enough
information to effectively feed linear regression models.

Effective: in most of our benchmarks, only a few different input sets are already sufficient
to let us train a predictor to a high level of accuracy. Variety is, of course, important:
the more different the inputs we have, the more accurate the predictions we perform.

Efficient: our approach does not require active runtime monitoring. Inputs must be
evaluated upon function invocation, and only then. Evaluation is linear on the
number of inputs, not on their sizes. This computational complexity is O(1) per
hot function.

Automatic: our approach requires a minimum of interference from developers. De-
velopers annotate which functions must be adapted. We chose this approach for
simplicity. For zero programming overhead, we could discover hot functions via
profiling, for instance.

Easily-deployable: our solution does not require runtime monitoring; thus, it can be
deployed in any hardware and operating system, independent on them providing
performance counters. We require only the capability to change the hardware con-
figuration at runtime.

1.3 Background and Preliminary Definitions

In this section, we provide a brief overview of Heterogeneous Architectures and
present preliminary definitions for important concepts used throughout the text. We also
introduce Isha, the problem we handle in this dissertation and Soot, the framework we
use for implementing a prototype version of our solution (detailed in Chapter 3).

Heterogeneous multi-core architectures exist in a number of flavors. Architectures
combining processors that run different instruction sets are called multiple-ISA. Typi-
cally, some cores address vector/data-level parallelism, whereas others benefit more from
instruction-level parallelism. Examples include the CELL processor [Donaldson et al.,
2008], and the CPU-GPU systems [Sorensen et al., 2018]. In contrast, architectures fea-
turing different processors that run the same instruction set are called Single-ISA [Kumar
et al., 2005]. Single-ISA systems move from the compiler towards the runtime environment

1. Introduction 18

(the operating system or the hardware itself) the responsibility of mapping the program
code to hardware configurations. Nevertheless, as previous work has demonstrated, there
are benefits to bringing this awareness back into the code generation phase [Sreelatha
et al., 2018]. Such is also the position of this dissertation. Because hardware configura-
tion is an expression used with different meanings by different researchers, we shall restrict
ourselves to the following definition:

Definition 1 (Hardware Configuration). Let Π = {π1, π2, . . . , πn} be a set of n processors,
and let Freq be a function that maps each processor to a list of possible frequency levels. A
hardware configuration is a set of pairs h = {(π, f) | π ∈ Π, f ∈ Freq(π)}. If (πi, fj) ∈ h,
for some fj ∈ Freq(πi), then processor πi is said to be active in h with frequency fj,
otherwise it is said to be inactive.

Example 1.3.1 (Hardware Configuration). The HardKernel Odroid XU4 has four big
cores {b0, b1, b2, b3} and four LITTLE cores {L0, L1, L2, L3}. Each big core has 19 fre-
quency levels (200MHz , 300MHz , . . . , 1.9GHz , 2.0GHz). Each LITTLE core has 14 fre-
quency levels (200MHz , 300MHz , . . . , 1.4GHz , 1.5GHz). This SoC supports any number
of active processors; however, big cores must always use the same frequency level. The
same holds true for LITTLE cores. In this setting, an example of hardware configuration
would be (b0, 2.0GHz), (b2, 2.0GHz), (L1, 1.3GHz), (L2, 1.3GHz), (L3, 1.3GHz).

Example 1.3.1 describes a big.LITTLE architecture: a design introduced by ARM
to denote architectures that combine high and low frequency clusters of cores. This
design is today very popular in the implementation of smartphones, being used in models
produced by Allwinner, HiSilicon, LG, MediaTek, Qualcomm, Samsung and Renesas,
for instance. Yet, in spite of its rising popularity, big.LITTLE is far from being the
only single-ISA heterogeneous architecture available today at a relatively low cost. ARM
itself, in partnership with NVIDIA, has designed technologies such as Tegra [Ditty et al.,
2014], which came before the big.LITTLE model, and DynamicIQ1, which makes it more
granular, allowing clusters of cores with different performance and power characteristics.

Adaptive Compilation. The notion of hardware configuration naturally leads to an
interesting problem in the field of adaptive compilation. In the words of Cooper et al.
[2005], “an adaptive compiler uses a compile-execute-analyze feedback loop to find the
combination of optimizations and parameters that minimizes some performance goal, such
as code size or execution time". In this dissertation we are interested in solving the
adaptive compilation problem that we define below:

Definition 2. Input-Aware Scheduling in Single-ISA Heterogeneous Archi-

tectures (Isha) Input: a program P , its input i, a set of hardware configurations
1https://developer.arm.com/technologies/dynamiq

1. Introduction 19

H = {h1, . . . hn}, and a cost function Oi
P : H 7→ R, which determines the cost of running

P with input i on configuration h ∈ H. Examples of cost functions include runtime,
energy, energy-delay product, throughput, etc. Output: a configuration h ∈ H that
minimizes Oi

P .

We believe that this dissertation provides the first solution to Isha. However,
this problem is part of a more general family of compiler-related problems, henceforth
called Scheduling of Programs in Heterogeneous Architectures (Spha). Given a program
P , Spha asks for a new version P ′ of it, which uses the hardware configuration that best
suits different runtime conditions. The program input is a type of runtime condition,
but other conditions exist. Examples include number of resident processes, ratio of cache
misses, quantity of context switches, etc. Solutions to Spha run aplenty in the literature.
Chapter 2 explains how our work stands among them.

// Method of an object Fact
def fact(n: Int): Int = n match {
 case 0 => 1
 case _ => n * fact(n-1)
}

// Method of a class Fact
public int fact (int n) {
 switch (n) {
 case 0: return 1;
 default: return fact(n-1) * n;
 }
}

public int fact(int) {
 Fact$ this;
 int n, $stack3, $stack4, $stack5;
 this := @this: Fact$;
 n := @parameter0: int;
 tableswitch(n) {
 case 0: goto label2;
 default: goto label1;
 };
label1:
 $stack3 = n - 1;
 $stack4 = virtualinvoke this.<Fact$:
 int fact(int)>($stack3);
 $stack5 = n * $stack4;
 goto label3;
label2:
 $stack5 = 1;
label3:
 return $stack5;
}

(a) (b)

(c)

JAVAC SCALAC

SOOT SOOT

Figure 1.1. Source code for a routine that calculates the factorial of an integer in
(a) Java and (b) Scala, and their representation in Soot’s Jimple IR (c).

1. Introduction 20

The Soot Framework. Soot [Vallée-Rai et al., 1999] is a framework for analyzing
and instrumenting bytecode of a wide range of programming languages that generate
code compatible with the Java Virtual Machine (JVM). Scala, Kotlin, Java and Android
applications are some examples of compatible sources. Soot can output both instru-
mented JVM-like bytecode and the source code specified by any of its four Intermediate
Representations (IR), e.g. Baf, Jimple, Shimple or Grimple.

Intermediate Representation. Most compilers and instrumentation frameworks, such
as GCC [Gough, 2005], LLVM [Lattner and Adve, 2004], ICC [Intel, 2019] and Soot

rely on alternative representations to internally describe the source code of an application.
An IR should not have loss of information when compared to the original source code,
however, it should also be independent of the programming language used to write the
input program. Figure 1.1 exemplifies one of Soot’s IR. The figure shows the source code
of two methods, one written in Java (a) and another in Scala (b). Figure 1.1(c) contains
their counterpart in the Jimple IR.

We use Soot and its Jimple IR to implement the analyses and modifications we
use in this work (Chapters 3 and 4). The key advantage of working with this framework
is its design of directly loading JVM compatible bytecode, instead of the original source
code. This characteristic allows us to analyze library code and packaged Java applications,
enabling our analyses to be much more expressive.

1.4 Empirical Observation

In this section, we illustrate the Isha problem through an example and show how
current compilation and scheduling techniques are unable to solve it. Such observation
demonstrates the need for an adaptive scheduling technique which takes program inputs
into account when choosing ideal hardware configurations.

Mainstream compilers, such as Gcc or Clang, which generate code for the sys-
tems previously mentioned, do not try to capitalize on differences between cores when
producing binary programs: the same executable runs in both cores. Nevertheless, we
know of research artifacts that take these differences into consideration –CHOAMP being
the most recent technique in this direction [Sreelatha et al., 2018]. The compiler tech-
nique proposed by CHOAMP tries to match program features, such as syntax denoting
branches, barriers, reductions and memory access operations with the ideal configuration
for each function. CHOAMP has been tried on the OpenMP version of the NAS bench-
mark suite [Bailey et al., 1991] with great benefits: on average, it could produce code that

1. Introduction 21

// The number of threads is a hidden input
void task(Stream<Value> s, long keySize) {
 while (!s.empty()) {
 // Get a key of the proper size:
 BigInteger key = getNextKey(keySize);
 // Use key to update globalMap
 synchronized(globalMap) {
 Value value = s.next();
 globalMap.put(key, value);
 }
 }
}

T	=	4	

T	=	8	

T	=	16	
T	=	32	

0	

2000	

4000	

6000	

8000	

10000	

10^2	
10^3	

10^3	
10^4	

T
hr

ea
ds

s.size()

ke
yS

ize

1
2
3
4
5
6
7
8
9

10
11
12

Figure 1.2. A program, and its input space.

was 65% more energy-efficient than its counterparts.
After CHOAMP trains a regression model, the same core configuration decision

applies for a function, regardless of its actual inputs. This shortcoming of purely static
approaches has been well-known, even before the advent of CHOAMP and similar tech-
niques. Quoting Nie and Duan: “since the properties they have collected are based on the
given input set, those offline profiling approaches are hard to adapt to various input sets
and therefore will drastically affect the program performance" [Nie and Duan, 2012]. We
corroborate this observation and show that it is possible to find different programs for
which the ideal hardware configuration varies according to their inputs. Example 1.4.1
illustrates this finding with an actual experiment.

Example 1.4.1. Function task in Figure 1.2 inserts into a global map all the values
stored in a stream. Values are associated with a key, whose size varies according to
the formal parameter keySize. Task has a synchronized block; hence, it can be safely
executed by multiple threads. The number of threads is a a hidden input. These three
values: size of input stream, size of keys, and number of threads, form a three dimensional
space, which Figure 1.2 illustrates. The ideal hardware configuration for task varies
within this space. Figure 1.3 illustrates this variation for 3× 25 different input sets. The
notation XbYL denotes X big cores, and Y LITTLE cores. In this experiment, we have set
Freq(b) = 1.8GHz, for any big core b, and Freq(L) = 1.5GHz, for any LITTLE core L.

Example 1.4.1 is interesting because the ideal configuration for task varies even
for very large values of s.size() and keySize. The construction of a key, at line 5
of Figure 1.2 is a CPU-heavy, synchronization-free task. The larger the key, the more
incentive we have to use the big cores. However, the updating of globalMap at line
9 is a synchronization-heavy task: the more threads we have, the less they benefit from
the big cores. Indeed, as already observed by Kim et al. [2014], context switches are
more expensive in the big than in the LITTLE cores. So are memory accesses: on

1. Introduction 22

4b0L
4b4L

4b0L
4b4Lx 2b0Lx

4b0L4b0L
4b4Lx 4b0L

4b4Lx

4b0Lx 4b0L
4b4L

4b0L
4b4Lx

4b0L
4b4L

4b0L
4b4L 4b0L4b0L

4b4L
4b0L
4b4L

4b0L4b0L
4b4L

4b0L
4b4L

4b0L
4b4L

4b0L
4b4L

keySize

s.
si

ze
 (

)

10^1 10^2 10^3 10^4 10^5

10^5

10^4

10^3

10^2

10^1

4T

xxx 2b0Lx

4b4L4b4Lx xx

4b4Lx 4b4L 4b4L4b0L
4b4L

4b4L 4b4L 4b4L4b4L 4b4L

4b4L4b4L4b4L4b4L4b4L

8T

xxx 2b0Lx

4b0L
4b4L

4b0L
4b4Lx xx

4b0L
4b4Lx 4b0L

4b4L
4b0L
4b4Lx

4b0L
4b4L

4b0L
4b4L

4b0L
4b4Lx 4b0L

4b4L

4b0L
4b4L

4b0L
4b4L

4b0L
4b4L

4b0L
4b4L

4b0L
4b4L

16T

10^5

10^4

10^3

10^2

10^1

10^5

10^4

10^3

10^2

10^1

10^1 10^2 10^3 10^4 10^5 10^1 10^2 10^3 10^4 10^5

0b2L, 0b4L, 2b0L, 4b0L, 4b4L
x 0b2L, 0b4L, 2b0L, 4b0L, 4b4L 0b2L, 0b4L, 2b0L, 4b0L, 4b4L

x 0b4L, 2b0L, 4b0L, 4b4Lx 0b4L, 2b0L, 4b0L, 4b4L
x

x

Figure 1.3. The ideal configuration for different parameters of the task function
seen in Figure 1.2, for 4, 8 and 16 threads, measured on an Odroid XU4 with the
userspace governor, and default configuration 4b4L. The name(s) inside each box
indicate the best configuration(s) for that input. ’X’ indicates setups with three or
more configurations tied as best. To produce these charts, we followed a methodology
yet to be described in Section 4.7. Notice that even considering 4 threads, there is
benefit to enable more than four processors, as the Java virtual machine creates
threads for garbage collection and JIT compilation, for instance.

the Odroid XU4, L2 latency for big cores is 21 cycles while for LITTLE cores it is 10
cycles [Greenhalgh, 2011]. Furthermore, the larger the size of the input streams, the
more often we access the synchronized region between lines 7 and 10 of Figure 1.2. It
is worth noting that we can observe results similar to those seen in Example 1.4.1 in
algorithms like Integer Sort, a benchmark used by Sreelatha et al. [2018]. We evaluate a
Java implementation of this algorithm in Chapter 4.

1.5 Accounting for Energy Efficiency

Today, optimizing a program for energy is as important as optimizing for perfor-
mance [Cao et al., 2012; Kambadur and Kim, 2014; Pinto et al., 2014]. Such importance
comes with extra difficulties: once we add in energy efficiency alongside runtime as an-
other optimization dimension, the impact of program inputs onto the choice of the ideal
configuration becomes much higher. Because low-frequency cores tend to be more power
efficient than high-frequency processors, we end up having more incentive to use them.
However, these low-frequency cores also tend to take longer to finish tasks; consequently,
using more energy to perform a job. This observation is critical in battery-powered de-

1. Introduction 23

30	

60	

90	

120	

150	

4	 8	 12	 16	 20	 24	 28	 32	 36	

20	

40	

60	

80	

100	

120	

4	 8	 12	 16	

E
ne

rg
y

(J
)

E
ne

rg
y

(J
)

Time (s) Time (s)

1B4L

0B4L

2B4L
2B3L
2B2L
2B1L
2B0L

3B4L
3B3L
3B2L
3B1L
3B0L

4B4L

1B3L

0B3L
4B3L

0B2L

4B2L

0B1L

4B0L
4B1L

1B0L
1B1L
1B2L

4B4L
4B3L

4B2L4B1L

4B0L

0B1L

0B4L

3B4L
3B3L
3B2L
3B1L

3B0L

0B3L

1B0L

1B2L
1B3L
1B4L

1B1L
0B2L

2B3L

2B0L
2B1L

Best time and energy

Worst time
and energy

Odroid
XU4

Synchronization
circuit

Power
meter

// This function is still multi-threaded
void syncFreeTask(Stream<Value> s, long keySize,
 Map<BigInteger, Value> privateMap) {
 while (!s.empty()) {
 // Get a key of the proper size:
 BigInteger key = getNextKey(keySize);
 // Use key to update the map (private per thread)
 Value value = s.next();
 privateMap.put(key, value);
 }
}

1
2
3
4
5
6
7
8
9

10
11(a)

(c)

(b)

(d)

8 Threads 8 Threads

35

45

55

65

75

85

7 8 9 10 11 12 13 14

En
er

gy
 (J

)

Time (s)

10

30

50

70

90

2 7 12 17 22

En
er

gy
 (J

)

Time (s)

1b0L

0b1L1b1L
2b0L

1b2L

0b2L

4b1L

3b2L
3b3L
4b2L

4b3L

4b4L 0b3L
1b3L

2b1L

0b4L

2b2L

1b4L

3b1L
4b0L

3b0L

3b4L

2b4L
2b3L

2b0L

3b0L

1b0L
0b3L 0b2L

0b1L

0b4L

1b1L

3b2L
3b1L4b0L

4b4L
4b1L

4b2L

4b3L

3b4L
3b3L

2b1L

2b3L
2b3L
1b4L
1b3L
1b2L
1b1L

 (c)

(a) (b)

 (d)

8 Threads 8 Threads

0 1 2 3 4 5

0
5

10
15

20

Time (s)

iP
ow

er
 (W

)

0 2 4 6 8 10 12

0
5

10
15

20

Time (s)

iP
ow

er
 (W

)

0
6
10
16
20

0
6
10
16
20

0 2 4 6 8 10 12

0 1 2 3 4 5

iP
ow

er
 (W

)
iP

ow
er

 (W
)

Time (s)

Time (s)

8 Threads 8 Threads

Figure 1.4. (a) The energy measurement apparatus. (b) Instantaneous power
charts for configuration 4b4L when running with different inputs. (c) Constellation
for synchronization-free input set. (d) Constellation for synchronization-heavy input
set. Frequencies are set to 2.0GHz for big, and 1.5GHz for LITTLE cores.

vices, such as smartphones. The next example analyzes such tradeoffs.

Example 1.5.1. We have used the power measurement apparatus shown in Figure 1.4(a)
to plot runtime and energy consumption for the function task earlier seen in Fig. 1.2,
considering two different input sets. Figure 1.4(b) shows the power profile of Task for a
synchronization-free set of inputs (top) and for a synchronization heavy set (bottom). Fol-
lowing da Silva et al. [2018], we call the chart relating runtime and energy a constellation.
The constellation in Figure 1.4(c) shows the behavior of task for the synchronization-
free input. In this case, the size of keys is very large, and the number of insertions in the
globalMap is very low, thus conflicts seldom happen. On the other hand, if we make
the size of keys very small, and the size of the stream very large, then we obtain a rather
different constellation, which Figure 1.4(d) outlines. This constellation shows how Task

performs in a synchronization-heavy environment.

We found the results shown in Example 1.5.1 rather unexpected, given how dras-
tically changes in inputs modify the disposition of hardware configurations in the con-
stellations. The best energy and time configuration in the CPU-heavy setting, 4b4L,
happens to be one of the worst configurations in the synchronization-heavy setting. Such
dramatic changes make it very difficult for a completely static approach to find good

1. Introduction 24

hardware configurations for program parts. The size and type of program inputs are only
known at runtime. As a typical way to handle the lack of information at compile time,
researchers have been resorting to online monitoring. In this case, an in-vivo profiler, à
la FreeLunch [David et al., 2014], constantly verifies hardware state, and takes core
configuration decisions based on dynamic information. This approach has been adopted
in systems such as OctopusMan [Petrucci et al., 2015] and Hipster [Nishtala et al.,
2017]. Yet, the same problems pointed by Nie and Duan already in 2012 persist: “online
monitoring approaches had to trace threads’ execution on all core types, which is imprac-
tical as the number of core types grows." This observation, together with the examples
discussed in this chapter, has motivated the contributions of this dissertation, which we
shall detail in Chapter 3.

1.6 Publications

An earlier version of this project, regarding the problem of mapping programs’
inputs to ideal hardware configurations, was submitted to a journal in 2019. We also
published a paper to the Proceedings of the 13th International Symposium on Reconfig-
urable Communication-centric Systems-on-Chip (ReCoSoc) [da Silva et al., 2018], which
closely relates to the topic of this dissertation.

Although not directly related to this dissertation, I also worked on two different
projects during the period as a master’s student. In one project, I designed and imple-
mented an optimization for a static pointer analysis of C and C++ code, which results
were materialized in a paper published to the Proceedings of the 21st Brazilian Sympo-
sium on Programming Languages [da Silva and Pereira, 2017]. In the other project, I
participated in the development of static analyses for JavaScript code. The results of
this last project were approved for publication in the Science of Computer Programming
journal in 2019.

25

Chapter 2

Literature Review

In this chapter: We present the main techniques available in the
literature related to code scheduling in heterogeneous systems. The
goal is to provide the reader with enough information to understand
how Jinn-C compares against the state-of-the-art approaches and other
major systems.

This dissertation uses a type of machine learning technique –multivariate linear
regression– to solve an instance of the problem of program scheduling in heterogeneous
architectures. Machine learning and scheduling in heterogeneous systems have played
an important role in compiler design in recent years. For an overview of the impact
of machine learning onto compiler construction, we recommend surveys from Wang and
O’Boyle [2018], and Ashouri et al. [2018]. The rest of this chapter focuses on scheduling.

2.1 A General Overview on Program Scheduling in

Heterogeneous Systems

The general problem of scheduling computations in heterogeneous architectures
has attracted much attention in recent years, as Mittal and Vetter [2015] have thoroughly
discussed. Table 2.1 provides a taxonomy of previous solutions to this problem. We group
them according to the level at which they are implemented, and to the way they answer
each of the following questions:
• Architecture: do they apply to Single or Multi-ISA systems?
• Source: is the program’s code modified?
• Input: is the approach input-aware?
• Auto: is user intervention required to choose a configuration?
• Runtime: is runtime information exploited?

2. Literature Review 26

Work Level Arch. Source Input Auto Runtime Learn

Poesia et al. [2017] C Multi Yes No Yes No Yes
Barik et al. [2016] C Multi Yes No Yes Yes No

Rossbach et al. [2013] C/L Multi Yes No No Yes No
Luk et al. [2009] C/L Multi Yes No No Yes No
Joao et al. [2012] A/L Multi Yes No No No No

Lukefahr et al. [2016] A Multi No No Yes No No
Van Craeynest et al. [2012a] A Multi No No Yes No No

Nishtala et al. [2017] O Single No No Yes Yes Yes
Petrucci et al. [2015] O Single No No Yes Yes No

Delimitrou et al. [2014] O Multi No No Yes Yes Yes
Augonnet et al. [2011] L Multi Yes No No No No
Piccoli et al. [2014a] O/C Single Yes No Yes Yes No

Tang et al. [2013] O/C Multi Yes No Yes Yes No
Cong and Yuan [2012] O/C Multi Yes No Yes Yes No
Sreelatha et al. [2018] C Single Yes No Yes No Yes

Jinn-C C Single Yes Yes Yes No Yes

Table 2.1. Different solutions to the problem of finding ideal hardware configu-
rations. We consider the following levels: Architecture (A), Operating System (O),
Compiler (C) or Library/Programming model (L).

• Learn: is there any adaptation to runtime conditions?
Perhaps the most important difference among the several strategies proposed to

find ideal hardware configurations concerns the moment at which said strategy is used.
In the rest of this section, we consider the following three possible choices: at compilation
time, at runtime, or both.

2.2 Static Solutions

These approaches work at compilation time. They might be applied by the com-
piler, either automatically, i.e., without user intervention [Cong and Yuan, 2012; Jain
et al., 2016; Luk et al., 2009; Rossbach et al., 2013; Poesia et al., 2017; Sreelatha et al.,
2018; Tang et al., 2013], or not. In the latter case, users can use annotations [Mendonça
et al., 2017], domain specific programming languages [Luk et al., 2009; Rossbach et al.,
2013] or library calls [Augonnet et al., 2011] to indicate where each program part should
run. The main benefit of static techniques is low runtime overhead: because scheduling
decisions are made before the program runs, no dynamic checks are necessary to schedule

2. Literature Review 27

Prime Feature Description

Branch operations Percentage of Branch operations
Memory operations Density of Memory operations
Atomic operations Percentage of atomic operations

Barriers Number of barriers
Critical sections Percentage of operations inside critical sections

False sharing Percentage of all Store operations in parallel region
Flush operations Percentage of memory locations flushed

Reduction operations Percentage of reductions in a parallel region

Table 2.2. Prime features used by CHOAMP

computations. However, these techniques are unable to take runtime information into
consideration; hence, the same program phase is always scheduled in the same way. In
Table 2.1, techniques implemented at either the compiler or library levels are purely static.

2.2.1 Case Study: CHOAMP

CHOAMP [Sreelatha et al., 2018] is an example of a technique used for statically
classify and define where computations should be performed in heterogeneous architec-
tures. This tool may be coupled with two different scheduling techniques, CES [Bal-
achandran et al., 2018], a static and compiler-based approach for OpenMP programs or
GTS [Jeff, 2013], a dynamic technique that relies on performance counters of the under-
lying Operating System.

In the work of Sreelatha et al., a number of features are collected from the source
code of target applications during compilation time. Next, these features are fed into a
supervised machine learning model, which tries to identify the most suitable hardware
configuration to execute the analyzed code. Table 2.2 shows the original features used
in their work. They perform offline training over a set of micro-benchmarks, which vary
the amount of each prime feature of interest and later, they perform static predictions
for real-world applications. Since profiling is not required, the overhead imposed on the
runtime environment in minimum.

Differently from other static approaches that do not handle variables with un-
known values, i.e. those which value depend on some external source, such as user input,
CHAOMP tries to estimate the values of those variables through a technique known as
Range Analysis [Campos et al., 2012]. The beauty of such technique is that value
ranges may be propagated, expanded or shrank by binary operations in the source code,
resulting in a wide range of variables with a correspondent value range computed. One

2. Literature Review 28

important characteristic of CHOAMP’s Range Analysis is that in face of a variable which
range cannot be precisely defined, their technique will use the largest constant value
present in the source code as an upper bound for the range. As a result, the range com-
puted for the variables may not be realistic, as the relationship among arbitrary variables
and the largest constant in the code cannot be ensured. Example 2.2.1 further details the
working of CHOAMP’s Range Analysis.

1 #de f i n e M 50000
2 i n t f (i n t ∗s , i n t A[] , i n t cumSum [] , i n t L)
3 {
4 i n t MAX = 0 , localSum = 0 , temp = L/128 ;
5 i n t N = M − temp ;
6 #pragma omp p a r a l l e l
7 {
8 i n t i , j ;
9 #pragma omp f o r r educt i on (+: localSum)
10 f o r (i = 0 ; i < N; i++) {
11 localSum += A[i] ;
12 cumSum[i] = 0 ;
13 f o r (j = 0 ; j < N; j++) {
14 i f (j <= i) cumSum[i] += A[j] ;
15 }
16 #pragma omp c r i t i c a l
17 { i f (MAX < A[i]) MAX = A[i] ; }
18 }
19 }
20 re turn MAX;
21 }

Figure 2.1. Example of OpenMP code analyzed by CHOAMP. Extracted from
Figure 2 of [Sreelatha et al., 2018].

Example 2.2.1. Figure 2.1 shows the original OpenMP code used by Sreelatha et al. for
explaining the behavior of their range analysis. In the figure, they want to estimate the
number of executions of the loop beginning at line 13. The loop has an upper bound
on the number of iterations defined by the variable N. In turn, the range of N depends
on L, which has an unknown range. According to their technique, L’s range would be
placed in the same bucket as the range of the largest constant, which in this example is
M. As a result, L’s range would have an upper bound of 50, 000. Consequently, the upper
bound of temp’s range would be 50, 000/128 and for N, this value would be 50, 000− 390

(= M − (L/128)). As they split ranges in buckets of base 10, the actual range of N would
be 50, 000 − 1, 000, leading to the final value of 50, 000 as an upper bound for the value
of N.

2. Literature Review 29

This example shows how the lack of dynamic information may negatively impact
the behavior of static approaches. From the figure, there is no clear association of variables
L and M. We see that the values for L, for example, are unpredictable, even allowing
negative numbers to be the upper bound value of L’ range.

2.3 Dynamic Solutions

Purely dynamic approaches take into account runtime information. They can
be implemented at the architecture level [Rangan et al., 2009; Lukefahr et al., 2016;
Joao et al., 2012; Van Craeynest et al., 2012a; Yazdanbakhsh et al., 2015], or at the
virtual machine VM/OS level [Petrucci et al., 2015; Nishtala et al., 2017; Zhang and
Hoffmann, 2016; Gaspar et al., 2015; Somu Muthukaruppan et al., 2014; Barik et al.,
2016]. Examples of runtime information include input sizes and resource demands.
However, there may be some overhead on accurately collecting and processing runtime
data. Besides, because scheduling decisions are taken on-the-fly, usually the scheduler
does not spend much time weighing choices. Thus, the scheduler might take sub-optimal
decisions due to its inability to solve hard combinatorial problems.

2.3.1 Case Study: Global Task Scheduling

The Global Task Scheduling (GTS), described by Jeff [2013], is a dynamic schedul-
ing approach developed by ARM. It is the default scheduler used by Linux systems running
on big.LITTLE architectures. In this technique, the scheduler is aware of the differences
in processing power of the big and LITTLE cores. Based on this knowledge and on per-
formance counters for each application thread, e.g. CPU-cycle utilization, the scheduler
migrates threads among cores based on predefined thresholds. Example 2.3.1 describes
an running example of the GTS approach.

Example 2.3.1. Figure 2.2, based on a ARM’s white paper on the GTS for big.LITTLE
systems 1, shows the general idea behind the Global Task Scheduling technique. Com-
putation initially starts in LITTLE cores and a thread workload is tracked during its life

1https://www.arm.com/files/pdf/big_LITTLE_Technology_the_Future_of_Mobile.pdf

2. Literature Review 30

Time

 Migrate to a
 big core

 Migrate to a
LITTLE core

Thread Tracked
Load

Thread eligible for migration to big core

Thread eligible for migration to LITTLE core

0 1 2 3 4 5 6 7 8 9 10 11

Figure 2.2. Thread migration between a big and a LITTLE core with Global Task
Scheduling. The upper dashed line corresponds to the threshold for migrating a
thread to a big core, while the lower dashed line corresponds to a migration threshold
to a LITTLE core. These limits are based on the current thread tracked load,
represented by the continuous line in the chart.

span. When such workload crosses a predefined up migration threshold, the computation
is migrated from the LITTLE core to the big one. In Figure 2.2, this happens for the first
time between time 1 and 3, approximately (actual time units are not provided by ARM
for this figure). After performing computation in the big core, there is a decrease in the
thread load starting at time 3. This behavior is observed until time 4, when the thread
reaches the down migration threshold, and is forced to move to the LITTLE core.

While this model overcomes limitations of static approaches by taking into account
the dynamic state of the thread/system, it is unable to take any more detailed information
into consideration, at the risk of imposing a high penalty in the performance of the client
application.

2.4 Hybrid Solutions

Approaches that mix static and dynamic techniques are called hybrid. Examples
of hybrid solutions to scheduling include works from Piccoli et al. [2014a], Cong and Yuan
[2012], and Tang et al. [2013]. Piccoli et al have used a compiler to instrument a program
with guards that determine, based on input sizes, where each loop should run. Cong and
Yuan, in turn, use the compiler to partition a program in regions of similar behavior,
and rely on runtime information to schedule computation so as to minimize the energy
consumed by each region. Finally, Tang et al. use a compiler to populate a program code
with markers, so that low-priority applications can manage their own contentiousness to

2. Literature Review 31

Approach Granularity Training Data Target Level

Octopus-Man runtime on-line self server OS
Sparta runtime off-line µ-bench client OS
DyPO runtime off-line µ-bench client OS

Tzilis et al. [2019] runtime off-line µ-bench client OS
Hispter runtime off/on-line µ-bench+self server OS
Choamp syntax off-line µ-bench client Comp.

SIAM syntax+data off-line self client Comp.
Astro syntax+data on-line self client Comp.
Jinn-C data off-line self client Comp.

Table 2.3. Different solutions to Isha published in recent years. Octopus-Man
was introduced by Petrucci et al. [2015], Sparta by Donyanavard et al. [2016],
DyPO by Gupta et al. [2017], Hispter by Nishtala et al. [2017], Choamp by Sree-
latha et al. [2018], SIAM by Krishna and Nasre [2018] and Astro by Novaes et al.
[2019a,b].

ensure the QoS of high-priority co-runners. None of these previous work use any form
of learning technique to tune the behavior of the scheduler, as Table 2.1 indicates in the
column Learn. Guards, once created, behave always in the same way.

2.5 Scheduling in Single-ISA Heterogeneous Systems

Much attention has been dedicated to the problem of finding good placements of
computation on Single-ISA systems, as Mittal [2016] has summarized in a 2016 survey.
However, we emphasize that a large part of this literature concerns the design of schedul-
ing heuristics implemented at the level of the hardware or the operating system [Cai
et al., 2016; Garcia-Garcia et al., 2018; Mittal, 2016; Neto et al., 2018; Park et al., 2018;
Van Craeynest et al., 2012b]. This section describes works that, like Jinn-C, are adaptive,
and have been specifically designed for big.LITTLE architectures. Table 2.3 categorizes
these techniques along the following lines:
• Granularity: what is the data used for training? Most of the techniques use

the system’s workload –available through performance counters. For such cases,
it is said that these techniques have a runtime granularity, as the training data
is provided by the underlying system and is only available at the execution time.
For the approaches mining features from the target’s program code, i.e. Choamp,
the syntax granularity is applied. At last, when the program’s inputs are used to
perform predictions, our case, the granularity of the training set is data.
• Training: when does learning occur? An off-line system calibrate the prediction

2. Literature Review 32

model before the target program runs; an on-line system, in turn, do it while the
program executes.
• Data: what is the source of training data? OS-based off-line systems usually rely

on micro-benchmarks (µ-benchs) to perform calibration. Choamp uses features of
the program, which it extracts from its syntax. Techniques used in servers can rely
on the target program itself as the source of training data, for said program is bound
to run for a long time.
• Target: in which scenario is the technique meant to be used? Most of the papers

that deal with Isha, ours included, present solutions for embedded devices and
smartphones. Octopus-Man and Hipster were designed for data-centers.
• Level: as seen in Table 2.1. The different adaptive techniques that we list in Ta-

ble 2.3 either run on the operating system (OS), or are implemented in the compiler.
The two related works that implement scheduling of computations in big.LITTLE

architectures at the compiler level are Sreelatha et al. [2018]’s CHOAMP, and Krishna
and Nasre [2018]’s SIAM. We have compared Jinn-C with CHOAMP extensively in this
dissertation. SIAM, in turn, is a system that targets specifically graph algorithms par-
allelized via OpenMP. It consists of a prediction model that, given a particular shape
of graph, determines the best data-structure format and hardware configuration for that
shape. We could, in principle, adapt it to implement some of our benchmarks, such
as SpaningForest and BFS –graph-based algorithms. However, this implementation
would involve providing each algorithm with different graph representations –a task to be
paid at a non-negligible programming cost.

33

Chapter 3

The Jinn-C Compiler

In this chapter: We describe the design and implementation of our
adaptive and input-guided technique for code scheduling in heteroge-
neous systems, the Jinn-C Compiler. We show the fundamentals of the
statistical regression we perform over program inputs and how it en-
ables us to efficiently identify ideal hardware configurations for programs.

We apply statistical regression on the arguments of a function to determine the ideal
hardware configurations for different inputs of that function. The effective implementation
of this idea asks for the parsing and modification of programs. The pipeline in Figure 3.1
provides an overview of our code transformation techniques. To ease our presentation,
we shall be using source code in all our examples, as seen in that figure. However, our
solution works at the Java bytecode level and all our interventions on the program happen
within the compiler –more precisely in the program’s intermediate representation. Our
techniques could have been applied directly onto Java sources or even onto a different
programming language. Nevertheless, working at the bytecode level brings one major
advantage: we can optimize programs written in different languages that run on the Java
Virtual Machine. Indeed, in Chapter 4 we shall validate our techniques using Java and
Scala benchmarks.

3.1 Multiple Linear Regression

The key ingredient of our work is the application of multivariate regression onto
the arguments of functions. We explore linear regression to build a prediction model that
can match actual function parameters with resource-efficient hardware configurations.
Because a function might have several parameters, we use multiple linear regression when
building predictors. We extend our regression model to a multivariate system, as the
output is a vector (of ideal configurations). In this model, we define a number of dependent

3. The Jinn-C Compiler 34

void task(Stream<Value> s, long keySize) {
 Bundle b = new Bundle(0xA33F0251);
 b.addConfig(Env.getCurrentConfig());
 b.addVar((double)s.size());
 b.addVar((double)keySize);
 b.addVar((double)Thread.activeCount());
 b.startTimer();
 while (!s.empty()) {
 BigInteger key = getNextKey(keySize);
 synchronized(globalMap) {
 Value value = s.next();
 globalMap.put(key, value);
 }
 }
 b.endTimer();
}

Soot
add profiling
instrumentation

.jar/.class
instrumented
for training

Bash+Java
Driver (java)
I/O hooks

List of
inputs

Training result:
(inputs, configs)

Python
Regression
Analysis

Soot
add prediction
instrumentation

.jar/.class
instrumented
for production

Regression
Coefficients

(matrix !)

@AdaptiveMethod
@HiddenInput (expr=“Thread.activeCount()”)
void task(Stream<Value> s, long keySize) {
 while (!s.empty()) {
 BigInteger key = getNextKey(keySize);
 synchronized(globalMap) {
 Value value = s.next();
 globalMap.put(key, value);
 }
 }
}

void task(Stream<Value> s, long keySize) {
 …
 config = // predicted configuration for
 // (s.size(), keySize, Thread.activeCount());
 Regression.changeConfig(config);
 while (!s.empty()) {
 BigInteger key = getNextKey(keySize);
 synchronized(globalMap) {
 Value value = s.next();
 globalMap.put(key, value);
 }
 }
 // Restore original configuration (See Fig.14)
}

Annotated
.jar/.class

Annotated
.java/.kt

Javac/Kotlinc
Pre-process
annotations

Figure 3.1. The execution pipeline of Jinn-C.

!00 !01 !02 !03 !04
!10 !11 !12 !13 !14
!20 !21 !22 !23 !24
!30 !31 !32 !33 !34

0 1 0 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 0 1

0b
1L

1b
0L

1b
1L

2b
0L

2b
1L

BestConfig(f("01, "02, "03)) = 1b0L

BestConfig(f("11, "12, "13)) = 0b1L

BestConfig(f("21, "22, "23)) = 2b1L

BestConfig(f("31, "32, "33)) = 2b1L

1 "01 "02 "03
1 "11 "12 "13
1 "21 "22 "23
1 "31 "32 "33

training inputs

function arguments

×#=

C A ϴ

Figure 3.2. Formula to train a 3-ary function f(α0, α1, α2). The goal of multivariate
linear regression is to find the coefficients Θ that approximate the product C =
σ(AΘ). Training set contains four samples.

variables, grouped into a matrix C, plus a number of independent variables, grouped into a
matrix A. The goal of the regression model is to determine a matrix Θ that approximates
the product C = σ(AΘ). In this case, σ is the softmax function, applied on the lines of
the matrix product AΘ. If Z is an 1 × n vector, e.g., a line of AΘ, then σ(Z) is also an
1×n vector, whose jth element is defined as: σ(Z)j = eZj/

∑n
1 e

Zk . The softmax function
receives a vector of real numbers, and produces a vector of same size normalized over a
probability distribution. Every σ(Z)j is a number between 0.0 and 1.0, and the sum of
all the elements within σ(Z) is 1.0.

3. The Jinn-C Compiler 35

Example 3.1.1. Figure 3.2 presents a formula for regression involving a function f that
has three formal parameters. We assume a universe of five valid configurations (0b1L,
1b0L, 1b1L, 2b0L and 2b1L). The frequency level is immaterial for this example: big
and LITTLE cores run at a certain fixed frequency, which is not necessarily the same for
the two clusters. In this example we have a training set containing four samples, each one
representing a different invocation of function f , ideally with different actual arguments.

The matrix A of independent variables. As Example 3.1.1 illustrates, the matrix
A encodes known values of function arguments. These values are called the training set
of our regression. If we are analyzing a function with n arguments, and our training set
contains m function calls, then A is a matrix with m lines, and n+ 1 columns. The extra
column is the all-ones vector 1m, which represents intercepts – constants that allow us to
handle a scenario in which the training set contains only null values. This all-ones column
is the first column of matrix A in Figure 3.2.

Example 3.1.2. Figure 3.3 shows how ten different samples of function Task, from
Fig. 1.2, are organized into a matrix A of independent variables.

1 4 10 100,000

1 4 100 1,000

1 4 10,000 100

1 8 100 100

1 8 1,000 10,000

1 8 10,000 10

1 16 1 10,000

1 16 10 1,000

1 16 100 10

1 16 10,000 100,000

T"="4"

T"="8"
T"="16"
T"="32"

1.E+00"

1.E+01"

1.E+02"

1.E+03"

1.E+04"

1.E+05"

10^1" 10^2" 10^3" 10^3"
10^4"

Th

re
ad

s

s.size()

ke
yS

ize

Threads
s.siz

e()
keyS

ize
intercepts

m
atrix A

 w
ith training inputs

Figure 3.3. Training set for the Task method (Fig. 1.2). The table on the right is
matrix A of independent variables.

The matrix C of dependent variables. C represents the ideal hardware configuration
for each input in the training set. If we admit k valid configurations, and our training set
has m samples, then C is an m × k matrix. Each line of C is a unitary vector ei, which
has all the components set to zero, except its ith index, which is set to one. If Cji = 1,
then i is the best configuration for input j. The next example illustrates these notions
with actual data.

Example 3.1.3. Figure 3.4 reuses the ten samples earlier discussed in Example 3.1.2 to
show how we build the matrix of dependent variables. Notice that this matrix has one line

3. The Jinn-C Compiler 36

per sample, and one column per configuration of interest. Because a typical heterogeneous
architecture might support thousands of different configurations, usually we separate a
few when doing regression. For instance, in Chapter 4, to render our approach practical,
we shall consider only 10 out of the 4,654 possible configurations of the Odroid XU4 board.
This need for bounding the search space might, of course, prevent us from discovering
good optimization opportunities; however, it ensures that our methodology is practical.
Chapter 4 discusses the criteria used to build the search space of allowed configurations.

T"="4"

T"="8"
T"="16"
T"="32"

1.E+00"

1.E+01"

1.E+02"

1.E+03"

1.E+04"

1.E+05"

10^1" 10^2" 10^3" 10^3"
10^4"

Th

re
ad

s

s.size()

ke
yS

ize

1b0L

4b0L

4b2L

4b0L

4b4L

4b4L

1b0L

4b0L

4b2L

4b4L

m
atrix C

 w
ith ideal configurations

1b0L 4b0L 4b2L 4b4L
1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 0

0 0 0 1

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

Figure 3.4. Matrix of independent variables built for ten different invocations of
function Task in Figure 1.2.

Finding the parameter matrix Θ. As previously mentioned, the problem of con-
structing a predictor based on multivariate linear regression consists in finding a matrix
Θ that maximizes the quantity of correct predictions on the training set. The underlying
assumption is that if Θ approximates the behavior of the training set, then it is likely to
yield also good results on the test set. There exist efficient techniques to find Θ –gradient
descent being the most well-known of them [Cauchy, 1847]. Because our model involves
only searches over a linear space, gradient descent converges quickly to a global opti-
mum. By a linear search space, we mean that, for each element (i, j) in C, we have that:
Cij = Θ0j + αi1Θ1j + . . .+ αimΘmj. Therefore, non-linear expressions such as αipαiq bear
no impact on Cij. Henceforth we shall assume that Θ can be efficiently approximated for
any training set. In Section 4.4 we shall demonstrate that such is the case.

Example 3.1.4. Figure 3.5 shows a possible matrix Θ that gradient descent finds for
the Task function, when given the training set seen in Figures 3.3 and 3.4. Once we
apply the softmax function onto the product AΘ we obtain a predicted matrix C ′, which
approximates the target matrix C, e.g., C ′ = σ(AΘ). Each line of C ′ adds up to1 1.00.

1We are using only two decimal digits; hence, rounding errors prevent us from obtaining 1.00 in every
line.

3. The Jinn-C Compiler 37

The largest value in each line i of C ′ determines the ideal configuration for the input set
Ai. The matrix Θ seen in Figure 3.5 led us into a C ′ that correctly matches the target C
in all but two inputs. Some misses are expected. If we resort to more complex regression
models, for instance, with non-linear components, then we might find a Θ that correctly
predicts every row of C. However, this matrix, which fits too well the training set, might
not yield good predictions on unseen inputs.

1b
4L

4b
0L

4b
2L

4b
4L

!=

The goal matrix C Matrix A

Matrix ϴ

1 4 10 100000

1 4 100 1000

1 4 10000 100

1 8 100 100

1 8 1000 10000

1 8 10000 10

1 16 1 10000

1 16 10 1000

1 16 100 10

1 16 10000 100000

-0.0125 0.0114 0.0006 -0.6481

-0.1964 0.0472 0.0166 -0.0759

-0.1763 -0.0008 0.0000 0.0002

0.0010 -0.0003 -0.0050 0.0000

1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 0

0 0 0 1

0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1b
4L

4b
0L

4b
2L

4b
4L

The predicted matrix C’

×

✔

✘

✔

✔

✔

✔

✔

✔

✘

✔

1.00 0.00 0.00 0.00

0.00 0.67 0.01 0.33

0.00 0.00 0.22 0.78

0.00 0.57 0.30 0.13

0.00 0.06 0.00 0.94

0.00 0.00 0.39 0.61

1.00 0.00 0.00 0.00

0.01 0.89 0.01 0.09

0.00 0.59 0.37 0.05

0.00 0.00 0.00 1.00

Figure 3.5. The result of multivariate linear regression produced by the training
set seen in Examples 3.1.2 and 3.1.3.

Using Θ to carry out predictions. The single output of regression is the matrix Θ.
Once we find a suitable Θ, we can use it to predict the ideal configuration for inputs
that we have not observed during training. To this effect, as we shall better explain in
Section 3.3, the constants in Θ are hardcoded into the binary text that we generate for
the function f under analysis. If f is invoked with a set of inputs Ai, then the expression
σ(AiΘ) is computed on-the-fly. The result of this evaluation determines the configuration
that will be active during the invocation of f .

Example 3.1.5. Figure 3.6 shows how the matrix Θ found in Figure 3.5 supports predic-
tion. We use it to guess the best configuration for four different input sets. These unseen
invocations of Task are marked as the dark spheres in Figure 3.6. In this example, Θ lets
us correctly predict the ideal configuration for three out of the four samples. In one case,
the last input in Figure 3.6, we wrongly predict the best configuration as 4b2L, whereas
empirical evidence suggests that it should be 4b4L.

3. The Jinn-C Compiler 38

!(× ϴ) =

!(× ϴ) =

!(× ϴ) =

!(× ϴ) =

T"="4"

T"="8"
T"="16"
T"="32"

1.E+00"

1.E+01"

1.E+02"

1.E+03"

1.E+04"

1.E+05"

10^1" 10^2" 10^3" 10^3"
10^4"

Th

re
ad

s

s.size()

ke
yS

ize

4b0L

4b4L

4b4L

1b0L

4b0L

4b2L

4b4L

1b4L 4b0L

4b4L

1b4L

1b0L

4b0L

4b2L

1 4 1 10000 1.00 0.00 0.00 0.00

1 8 10 100000

1 16 1 100

1.00 0.00 0.00 0.00

0.01 0.68 0.26 0.05

0.00 0.00 0.57 0.43

✔

✘

✔

✔

1b
4L

4b
0L

4b
2L

4b
4L

Unseen inputs Predictions

1 16 10000 10

Figure 3.6. The matrix Θ found in Figure 3.5 used to predict the ideal configuration
for four unseen input sets. Inputs used in the training set are the light-grey points,
whereas inputs in the test set are dark-grey.

3.2 Engineering the Training Phase

In the following subsections we describe our design decisions for the training phase.

3.2.1 Code Annotation

We use a system of annotations to tell Jinn-C what are the methods and their
inputs that should be used in the multivariate regression. This can be used as either Java
or Scala comments. We define three types of annotations:

@AdaptiveMethod: marks a method as the target of multivariate regression. The
annotated method will go through every stage outlined in Figure 3.1. Unless the
@Input annotation is also used, every formal parameter of the method will be used as
an independent variable of the linear regression. Global variables are not considered
inputs in this case.

@Input: specifies which references or primitive values are independent variables (the α′s

in Figure 3.2) in the regression. This annotation must be employed when Jinn-C’s
users know that some function arguments bear no effect onto the choice of ideal
configurations for the target method. Function parameters and global variables
(whose scope includes the point where the target method is declared) can be marked
as inputs. If names marked as inputs are not visible within the target method, a
compilation error ensues.

3. The Jinn-C Compiler 39

@HiddenInput: specifies extra information to be used as independent variables. These
hidden inputs are mostly system variables, such as the number of threads; however,
hidden inputs can also be global variables that are not directly used within a func-
tion, albeit they are accessed within methods called by said function. A method,
chain of methods or any expression can be used to obtain a reference to a hidden
input. The names used in these expressions must be visible during compilation time,
otherwise an error is thrown.

Example 3.2.1. Figure 3.7 shows two examples of annotated methods. These examples
were taken from actual applications. However, for the sake of readability, we have removed
some boilerplate code that, otherwise, would render the programs difficult to understand.
The Visit method, which is part of an implementation of the Breadth-First Search algo-
rithm, contains three Input annotations. Two of them, referring to Visited and Graph,
were applied onto global variables. The other, on NT, refers to a method argument. The
method Count, part of a sorting application, contains two Input annotations, all used on
function arguments. These annotations are redundant in this example, because whenever
an adaptive method does not present an Input annotation, all its arguments are marked
as independent variables. Because this method is invoked by threads in a Java thread
pool, the number of active threads in the pool is marked as a hidden input.

@AdaptiveMethod
@Input (global="visited")
@Input (global="graph")
@Input (param="NT")
void visit(final int NT) throws ... {
 Vector<Visitor> bots = new Vector<Visitor>(NT);
 for (int i = 0; i < NT; i++) {
 bots.add(new Visitor(graph, i));
 }
 for (Visitor v : bots) { v.start(); }
 for (Visitor v : bots) { v.join(); }
}

@AdaptiveMethod
@Input (param="START")
@Input (param="END")
@HiddenInput (expr="forkJoinPool.getActiveThreadCount()")
void count(final int START, final int END) {
 for (int j = START; j <= END; j++) {
 SingleCounter aux = counters[elements[j]];
 synchronized (aux) {
 aux.value += 1;
 }
 }
}

Figure 3.7. Examples of annotated code snippets. (Left) Breadth-first search.
(Right) Sorting application.

The expression (expr=“forkJoinPool.getActiveThreadCount()") will be
parsed by Soot, which will split it into 2 parts: forkJoinPool and getActiveThreadCount().
The former, forkJoinPool, must be an object accessible from the Count method, so
forkJoinPool needs to be global in the current class or be a class visible in the path. No-
tice that our annotations can only be processed if we compile the original java (or Scala)
file with debug information. For instance, if we use JavaC to produce bytecodes, then
we must pass the -g flag to it.

3. The Jinn-C Compiler 40

3.2.2 Extracting Sizes from Annotated Terms

Annotations tell Jinn-C to build expressions denoting the size of the annotated
names. The technique used to obtain these sizes depends on the type of the target input.
Currently, we can reconstruct sizes for the following patterns:

• Primitive types : the size of a primitive type is its own value. We do not allow anno-
tations on booleans and characters, as their values do not have a direct conversion
to a real (e.g., a double) number.

• Wrappers : types such as Integer or Double, which work as wrappers of primitive
types, give us a size through their value() methods, e.g., intValue() for Integer, dou-
bleValue() for Double, etc.

• Arrays and Strings : we derive the size of such types via the length property.

• Collections : we derive the size of collections by invoking their size() method.

• Other classes : we search within the declaration of the type, or in any of its super-
types, for a method called size(); otherwise, we search for a property called length.
If such names are not to be found, an error ensues. Notice that, in this case, users
can still use the HiddenInput annotation to specify an expression that yields the
size of the target type.

Example 3.2.2. Figure 3.8 shows the instrumented version of the annotated programs
discussed in Example 3.2.1. We remind the reader that such profiling interventions are
inserted in the intermediate representation of these programs –source code is used only for
readability. Instrumentation is performed by a singleton class Instrumenter, which stores
“bundles" of data. Each bundle contains an identifier, a hardware configuration, the
independent variables of the adaptive method, and the runtime for those variables. The
identifier associates a method with a bundle. Multiple invocations of the same method
will produce one bundle per call.

3.2.3 Profiling, Logging and Training

Currently, we use a profiling infrastructure written as a combination of Java code
and bash scripts. The part implemented in Java consists of a driver –a service that runs

3. The Jinn-C Compiler 41

void visit(final int NT) throws ... {
 Bundle b = new Bundle(0xFF4AC08D);
 b.addConfig(getCurrentConfig());
 b.addInt(visited.length); // array
 b.addInt(graph.size()); // class has size()
 b.addInt(NT); // primitive type
 Instrumenter.save(b);
 b.startTime();
 Vector<Visitor> bots = new Vector<Visitor>(NT);
 for (int i = 0; i < NT; i++) {
 bots.add(new Visitor(graph, i));
 }
 for (Visitor v : bots) { v.start(); }
 for (Visitor v : bots) { v.join(); }
 b.stopTime();
}

void count(final int START, final int END) {
 Bundle b = new Bundle(0xFF4AC08E);
 b.addConfig(getCurrentConfig());
 b.addInt(START); // primitive type
 b.addInt(END); // primitive type
 b.addInt(forkJoinPool.getActiveThreadCount());
 Instrumenter.save(b);
 b.startTime();
 for (int j = START; j <= END; j++) {
 SingleCounter aux = counters[elements[j]];
 synchronized (aux) {
 aux.value += 1;
 }
 }
 b.stopTime();
}

Figure 3.8. Instrumented version of programs seen in Figure 3.7. (Left) Breadth-
first search. (Right) Sorting application.

the program that we want to optimize in a controlled environment. The driver has two
responsibilities. First, it is in charge of warming up the target program. We call warm-up
an execution of the target program performed before profiling starts. The warm-up phase
tends to put the virtual machine into a steady state; thus, ensuring the consistency of the
results that we produce during the training phase. Jinn-C’s users must determine the
number of warm-up rounds. Barrett et al. [Barrett et al., 2017] have shown that it is very
difficult to ensure that a given virtual machine will always reach a steady state of peak
performance. Nevertheless, in the experiments that we report in Chapter 4 using Java
Hotspot, a steady state is reached. The second responsibility of the driver is to change
hardware configurations before every profiling experiment takes place. To this end, the
driver goes over a range of pre-defined configurations, repeating the same experiment a
number of times for each of them.

void warmUp() {
 setWarmUp(true);
 for (int i = 0; i < WARM_UP_RUNS; i++) {
 // Use reflexion to call user code.
 // …
 runBench();
 }
 setWarmUp(false);
 // Next execution will be actual profiling…
}

static void setCoreConfig(Config config) throws ... {
 Runtime r = Runtime.getRuntime();
 // Build the command string for the system call:
 String configStr = configStr(config.numBig, config.nLITTLEs);
 final int pid = getProcessID();
 String cmd = "taskset -pa " + configStr + " " + pid;
 // Set the hardware configuration:
 Process p = r.exec(cmd);
 // Check for errors ...
}

Figure 3.9. Example of functionalities provided by the driver. (Left) simplified
version of the warm-up code. (Right) library code that changes the number of cores
visible to the target program.

Figure 3.9 shows part of the driver’s implementation. The code is organized as a

3. The Jinn-C Compiler 42

framework: users must implement one method called runBench, which is then invoked
a preset number of times by the WarmUp function in Figure 3.9. Any implementation
of runBench must invoke the target program once over a particular set of inputs. Users
must specify the code that reads and loads inputs. Implementing runBench is one,
out of the two tasks, that we expect from Jinn-C’s users. The other task is to provide
inputs for training. We use a suite of bash scripts to traverse and organize the program
inputs, changing hardware configurations between experiments. Our framework provides
functions to setup the hardware configuration. As an example, Figure 3.9 shows function
setCoreConfig, which determines the number of big and LITTLE cores available on
the Odroid XU4 board that we use in this dissertation.

Jinn-C receives an annotated program P , a set of different inputs I =

{ι1, ι2, . . . , ιm} of P , a set of acceptable hardware configurations H = {h1, h2, . . . , hn},
and the implementation of the runBench method. It will then invoke runBench a
pre-determined number of times for each pair (h, ι), h ∈ H, ι ∈ I. The best configuration
for each input ι is chosen among the most frequent winner, according to some objective
function, such as time or energy consumption. In case of ties, we choose the configuration
with the smallest quantity of resources. Resources are ordered according to the number of
big cores, the number of LITTLE cores, the frequency of the big cores and the frequency
of the LITTLE cores, in this sequence.

Example 3.2.3. Figure 3.10 shows a typical output produced during Jinn-C’s training
phase, considering runtime as the objective function. In this experiment, each pair formed
by a hardware configuration and an input is sampled ten times. Vectors at the bottom
of Figure 3.10 are the inputs passed to function Task (Fig. 1.2). These vectors are the

1.0

1.2

1.4

1.6

1.8

1.0

1.5

2.0

2.5

0.00

0.05

0.10

0.15

0.20

0.02

0.03

0.04

0.05

0.06

0.07

0.08

1b
0L

4b
0L

4b
2L

4b
4L

1b
0L

4b
0L

4b
2L

4b
4L

1b
0L

4b
0L

4b
2L

4b
4L

1b
0L

4b
0L

4b
2L

4b
4L

4 10 100.000 4 100 1.000 4 10.000 100 8 1.000 10.000

1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

Figure 3.10. Training output produced by the driver on a few inputs seen in
Figure 3.3. Y-axis is runtime in seconds.

3. The Jinn-C Compiler 43

independent variables in the regression model. Vectors at the top of Figure 3.10 are
the best configurations. These vectors will give us the dependent variables used in the
regression.

// Returns the product A×θ
double[] mul(double[] A, double[][] θ);

// Applies the σ function onto d
double[] softmax(double[] d);

// Returns the index that holds the largest
// value within vector pred
int indexLargestElement(double[] pred);

// Get the i-th hardware configuration
Config getConfiguration(int i);

// Get the configuration currently in use
Config getCurrentConfiguration();

// Change the configuration currently in use
// to the new configuration g
void changeConfiguration(Config g);

void task(Stream<Value> s, long keySize) {
 double Theta[][] = {{-0.0125, 0.0114, 0.0006, -0.6481},
 {-0.1964, 0.0472, 0.0166, -0.0759},
 {-0.1763, -0.0008, 0.0000, 0.0002},
 {0.0010, -0.0003, -0.0050, 0.0000}};
 double A[] = {1.0, s.size(), keySize, Thread.activeCount()};
 double P[] = Regression.softmax(Regression.mul(A, Theta));
 int i = indexLargestElement(P);
 Config originalConfig = Regression.getCurrentConfiguration();
 Config config = Regression.getConfiguration(i);
 Regression.changeConfiguration(config);
 while (!s.empty()) {
 // Get a key of the proper size:
 BigInteger key = getNextKey(keySize);
 // Use key to update globalMap
 synchronized(globalMap) {
 Value value = s.next();
 globalMap.put(key, value);
 }
 }
 changeConfiguration(originalConfig);
}

Figure 3.11. The production version of function Task (Fig.1.2).

3.3 Generation of Adaptive Code

The product of training is a collection of floating-point constraints, organized into
a matrix Θ. These constraints are hardcoded into the production code that we want
to optimize. Such step happens in the phase labeled “add prediction instrumentation"
in Figure 3.1. The instrumentation that we add into a function f of interest evaluates
the expression σ(AiΘ), where Ai is an 1 × n vector. The size of Ai is one plus the
number of inputs of the target function. The expression σ(AiΘ) yields an 1× k vector of
probabilities, whose sum adds up to 1.0. The largest element within σ(AiΘ) determines
the next configuration that will be used during the current invocation of f .

Example 3.3.1. Figure 3.11 shows the production version of our running example, the
function Task, originally seen in Figure 1.2. The dashed box outlines the code that we
add to Task to change the current hardware configuration. We show, on the right of the

3. The Jinn-C Compiler 44

figure, the key methods used to change and restore the current hardware configuration.
The matrix Θ seen in the production version of function Task was found after training,
as Example 3.1.4 explains.

45

Chapter 4

Evaluation

In this chapter: We perform an extensive evaluation of Jinn-C by
comparing its results to the ones of industry and state-of-the-art tools.
We focus on four main performance measures: Execution Time, Energy
usage, Training time, and Search Space Characterization.

To demonstrate the effectiveness of the technique presented in this work, we evaluated
Jinn-C with focus on providing answers to the following research questions:

RQ1 – Speed: what is the speedup that can be obtained by Jinn-C when compared to
scheduling techniques of similar goals?

RQ2 – Energy: what is the improvement that Jinn-C delivers on top of other tools, in
terms of energy consumption?

RQ3 – Training: what is the training time of Jinn-C, and how does it compare to the
training time of similar tools?

RQ4 – Convexity: how is the space of best configurations that Jinn-C explores when
trying to optimize programs?

We compare Jinn-C with two state-of-the-art approaches: Sreelatha et al. [2018]’s
CHOAMP, and ARM’s GTS [Jeff, 2013]. GTS, short for Global Task Scheduling, is the
default scheduler for big.LITTLE systems running the Linux Kernel. Before delving into
numbers, in Section 4.1 we introduce the runtime environment we have used to carry out
the evaluation of Jinn-C.

4.1 Experimental Setup

The Hardware. Experiments were performed in an Odroid Xu4 development board.
This device is powered by a Samsung Exynos 5422 SoC with four ARM Cortex A15 cores,

4. Evaluation 46

running at up to 2.0GHz, and four Cortex A7 cores running at up to 1.5GHz. The board
features 2GB of LPDDR3 RAM. To measure the energy consumed exclusively by specific
functions, we send signals to the synchronization circuit seen in Figure 1.4-a through one
of the board’s GPIO pin. We use the energy measurement framework proposed by Bessa
et al. [2017]. Power is measured by a National Instruments DAQ USB 6009 device, at a
rate of 12,000 samples per second.
The Software StackWe use Oracle’s openJDK/JRE 11 LTS1 and Soot 3.2.02 to analyze,
instrument and run bytecodes. No modifications have been made in the Java Virtual
Machine or its Just-in-Time compilers –all the interventions performed by either Jinn-C

or CHOAMP happen at the bytecode level, and are carried out via Soot. To mitigate
the effect of JIT compilation in the execution time of benchmarks, each application has a
warm-up stage before its actual execution. The exact number of warm-up runs is specific
for each benchmark and was manually tuned for each one of them (details in Table 4.1).
Tuning is made possible by the JVM flag -XX:+PrintCompilation, which allows us to
see when JIT compilation kicks in during the execution of an application. Thus, we can
change the number of warm-up rounds, to minimize the amount of compilation taking
place during the final –metered– run of a given benchmark. We have used Python 3.4
and Scikit Learn [Pedregosa et al., 2011] to implement regression. Python was also used,
in addition to GNU Bash 4.4.19, to generate the suite of micro-benchmarks used by
CHOAMP during its training stage (details in section 4.3). The Operating System in the
Odroid XU4 used in our experiments is the GNU/Linux Ubuntu 18.04 LTS with kernel
4.17.
The Benchmark Suite. This dissertation uses the 18 benchmarks shown in Table 4.1.
Eight of them were taken from Acar et al. [2018], who had selected nine programs from
Problem Based Benchmark Suite (PBBS) [Shun et al., 2012] to evaluate concurrency mod-
els. The version of PBBS used by Acar et al. [2018] was implemented in C/C++, so we
had to reimplement all the benchmarks in Java. We had to remove DelaunayTriangu-

lation from our collection, because we could not ensure that its parallel implementation
always produces the same output: the triangulation varies depending on how threads are
scheduled. We have replaced it with BFS, which is also part of PBBS, but was not in
Acar et al. [2018]’s suite.

We also chose six benchmarks from the Renaissance benchmark collection, which
was recently released by Prokopec et al. [2019]. Renaissance contains 21 benchmarks.
All the programs in that collection come with only one set of input values. We chose
only six benchmarks because we had to understand and augment each program with
more inputs and verification code. The extra inputs enable profiling, and the verification
code is necessary to check execution correctness. The six benchmarks that we chose are

1https://jdk.java.net/11/
2https://github.com/Sable/soot/releases/tag/3.2.0

4. Evaluation 47

Source Benchmark TTime Lang. LoC W Class

Shun et al. bfs 42m33s J 353 4 graph manipulation
Shun et al. radixSort 20m51s J 501 4 sorting algorithm
Shun et al. sampleSort 26m17s J 414 3 sorting algorithm
Shun et al. suffixArray 30m12s J 316 3 string manipulation
Shun et al. removeDuplicates 30m31s J 174 4 sequence manipulation
Shun et al. convexHull 56m30s J 499 5 geometry and graphics
Shun et al. nearestNeighbors 30m29s J 715 3 geometry and graphics
Shun et al. spanningForest 21m40s J 410 4 graph manipulation
Prokopec et al. als 80m12s S/J 97 1 matrix factorization
Prokopec et al. philosophers 21m15s S/J 146 1 synchronization algorithm
Prokopec et al. futureGenetic 26m8s S/J 115 1 genetic algorithm
Prokopec et al. finagleHTTP 225m10s S/J 119 1 server-client exchanges
Prokopec et al. chiSquare 27m15s S/J 101 1 statistical algorithm
Prokopec et al. decTree 64m22s S/J 129 1 random forest algorithm
Jinn-C collinearPoints 32m1 J 565 3 geometry and graphics
Jinn-C hashSync 94m7s J 73 3 sequence manipulation
Jinn-C insertAndAdd 47m30s J 130 4 database manipulation
Jinn-C randomNumComp 26m7s J 89 6 system exploration

Table 4.1. Benchmarks used for evaluating Jinn-C. The TTime column shows
the time required to train each benchmark, which will be further explained in Sec-
tion 4.4. Lang. contains the source language of benchmarks, where J stands for Java
and S stands for Scala. The W column shows the number of warm-up executions
performed by each application. Among Jinn-C’s benchmarks, CollinearPoints
finds three points on the same line; HashSync inserts in a concurrent table; Ran-
domNumComp has several long sequences of branches that are hard to predicted;
and InsertAndAdd implements parallel operations on a DataBase.

implemented in Scala; however, they rely on a variety of Java libraries, such as Twitter’s
Finagle [Twitter, 2019], Java Jenetics [Wilhelmstötter, 2019], the Spark Machine Learning
Library [Meng et al., 2016], and the standard Java library. Our criterion when picking
up programs was simplicity: we selected benchmarks that were easy to extend with more
inputs. We have opted for Scala programs to demonstrate that Jinn-C can deal well with
languages other than Java.

In addition to PBBS and Renaissance, Jinn-C is distributed with four extra bench-
marks. These programs are typical parallel algorithms. Three of them were taken from
public repositories; the fourth, HashSync, was adapted from Butcher [2014]’s book. We
shall refer to these four programs as part of Jinn-C’s test suite. All the 18 benchmarks
used in this dissertation share a similar running environment: an execution driver that is
responsible for warming them up, preparing the inputs and collecting time and energy val-
ues. The time and energy used by the driver itself is never considered in our experiments.
Table 4.1 presents an overview of the used benchmarks, as well as basic characteristic of
their code.
The Available Inputs. Not all benchmarks used in this dissertation are provided with

4. Evaluation 48

a large number of inputs by default. In order to circumvent this limitation, we have
augmented every one of them with 14 inputs. We have separated 10 of these inputs for
training. When evaluating the trained model, for each application we used four new,
unseen, and randomly chosen inputs. Sections 4.5 and 4.6 further discuss the impact of
different inputs in the execution time and energy consumption of the applications.

4.2 On the Choice of Hardware Configurations

When training Jinn-C and CHOAMP, we consider a universe of six core configura-
tions: 4b4L (4 big and 4 LITTLE cores), 4b0L, 0b4L, 2b2L, 2b0L and 0b2L. The LITTLE
cores run always at maximum frequency: 1.5GHz; for the big cores, we let them run at
either 1.6GHz or 1.8GHz. Therefore, the two adaptive approaches that we use might
choose from a pool of ten different hardware configurations: 4b4L at either 1.6 or 1.8GHz
(plus LITTLE cores at 1.5GHz), 0b4L at 1.5GHz, 4b0L at either 1.6 or 1.8GHz, etc. This
choice of configurations is based on the work of Sreelatha et al. [2018], with the difference
that we augmented the original set with the configurations handling 2 cores per cluster
(2b2L, 2b0L and 0b2L). GTS runs on 4b4L by default, meaning it is allowed to choose
among any possible hardware configuration involving big and LITTLE cores. We coupled
GTS with the on-demand frequency governor, meaning that the runtime system is free to
choose any frequency level available in the hardware. For the sake of reproducibility and
to better understand the impacts of our technique, we have disabled Dynamic Voltage
and Frequency Scaling (DVFS) when using either Jinn-C or CHOAMP, but not GTS.

Before presenting results, one last observation is in order: we chose 1.6GHz and
1.8GHz, instead of the highest frequency levels (1.9 and 2.0GHz), for the big cores to
better deal with thermal throttling. Thermal throttling forces the Operating System to
downscale CPUs’ frequencies [Cohen et al., 2003]. As stated by Mishra et al. [2018], this
is a security feature that keeps the system temperature under a safe threshold. Excessive
exposures to high temperatures could damage the equipment.

We have noticed empirically that thermal throttling renders experiments at 1.9
or 2.0GHz hard to reproduce. Figure 4.1 (a) illustrates this issue on the Odroid Xu4
board. The image displays the online values for temperature and clock frequency when
executing a parallel application that performs math calculations during 15 seconds. The
benchmark uses all 8 available cores and every time the temperature surpasses 176 F (80
C) the clock speed is decreased, leading to thermal values under the acceptable threshold.
Such behavior happens even when DVFS is disabled. This experiment can be easily
reproduced with the code in Figure 4.1 (b).

4. Evaluation 49

1.2

1.4

1.6

1.8

2.0

2.2

50
55
60
65
70
75
80
85

1 17 33 49 65 81 97 11
3

12
9

14
5

16
1

17
7

19
3

20
9

22
5

24
1

25
7

27
3

28
9

30
5

32
1

33
7

35
3

36
9

38
5

Cl
oc

k
sp

ee
d

(G
Hz

)

Te
m

pe
ra

tu
re

 (º
C)

Samples

Execution begins Execution ends

Temperature threshold cat /sys/class/thermal/thermal_zone0/
type
cpu0-thermal
cat /sys/class/thermal/thermal_zone0/
trip_point_2_type
active
cat /sys/class/thermal/thermal_zone0/
trip_point_2_temp
80000

(a) (b)
 Temperature Clock speed

Figure 4.1. Variation in CPU frequency and temperature values for the big cluster
while running a sample application that uses all 8 available cores. Samples collected
at each 50 ms from thermal sensors present in the Odroid Xu4 board. The code in
the right side shows where such values are set in the Operating System.

4.3 On the Implementation of CHOAMP

CHOAMP is a system that, different from our approach, relies on the syntax of
the program text –and on its implied semantics– to predict ideal hardware configurations.
CHOAMP represents this text of code as a set of characteristics that are useful for training
and prediction. Such characteristics, also called prime features, are split into two different
groups: language dependent and independent. Language independent features, such as
number of branches or memory accesses, are easier to identify and port, as they tend to
appear in most languages. On the other hand, features that depend on a specific pro-
gramming language need to be adapted when porting the technique to new environments.
CHOAMP was initially designed to work with OpenMP applications implemented in C;
therefore, some of the prime features used by Sreelatha et al. [2018] depend on OpenMP
constructs. Our re-implementation of CHOAMP targets Java applications running on
Hotspot; thus, some of its features had to be adapted to our needs. Table 4.2 presents
the list of program characteristics originally used by CHOAMP for OpenMP and the new
version of them, adapted to the JVM scenario.

Most language dependent features find correspondents in the Java standard li-
brary, as is the case of the omp atomic pragma, which we derived from classes in
the package java.util.concurrent.atomic. For instance, the occurrence of method
incrementAndGet(), from the AtomicInteger class, would add an “Atomic Operation"
to the feature vector of the function where incrementAnd Get() is invoked. However,
some features like flush operations, proposed by Sreelatha et al. [2018], were not reused
in our implementation, due to a lack of correspondents in Java.
Training and Tuning Following Sreelatha et al. [2018], we have trained the probabilistic

4. Evaluation 50

Prime Feature Language dependent OpenMP Java VM

Branch operations No - -
Memory operations No - -
Atomic operations Yes omp atomic atomic

Barriers Yes omp barrier CyclicBarrier, Phaser
Critical Sections Yes omp critical Synchronized blocks/methods

False Sharing No - -
Flush operations Yes omp flush not used

Table 4.2. Prime features and their correspondent Java VM implementation.

model of CHOAMP by running it on a set of generic micro-benchmarks. As the original
training set was written in C and OpenMP, we had to create a new training set that suits
Java. The micro-benchmarks we used were directly based on the scripts made public by
Sreelatha et al. [2018]. These scripts generate hundreds of micro-benchmarks. The user
adjusts the intensity of each prime feature through command line inputs. We used the
original generator scripts3, adjusting the code to Java. We also used the same range and
intensity of features as used in the original work of CHOAMP. Sreelatha et al. [2018] have
proposed three different regression models for CHOAMP. We have experimented with all
of them, and ended up choosing the linear fit, because, in our setup, it yields better results
than the Quadratic and Gaussian predictors. This result in on par with the findings of
Sreelatha et al. [2018].

4.4 RQ1: Training time

Both techniques, Jinn-C and CHOAMP, require training. Training adjusts the
parameters of the regression models to enable predictions of good hardware configurations.
While this cost is paid once by CHOAMP, when performing the training over a set of
generic micro-benchmarks, Jinn-C pays this cost for each application that it optimizes.
CHOAMP uses micro-benchmarks for training; Jinn-C uses the application itself. The
training time of CHOAMP is computed over a set of 285 micro-benchmarks over all the
hardware configurations previously described in Section 4.2. In our hardware, we took
about 780 minutes to train our implementation of CHOAMP. Out of this training time,
365 minutes were spent running the micro-benchmarks with the 1.8GHz CPU frequency
for the big cluster. When using the frequency of 1.6GHz, the time required for training
was 415 minutes.

3https://bitbucket. org/jkrishnavs/openmp-eigenbench

4. Evaluation 51

To train Jinn-C, we follow the methodology described in Section 3.2.3: we run
the target application on the allowed hardware configurations using the inputs available
for training. Jinn-C’s training time, naturally, depends on the target application’s run
time, and on the number of available inputs. Table 4.1 shows the training time of each
individual benchmark. Using ten inputs and ten allowed hardware states (clock speed
× hardware configurations) per benchmark, we took around 903 minutes to train the 18
programs used in this chapter. The longest time, three hours and 45 minutes were spent
in Renaissance’s FinagleHTTP. PBBS’s RadixSort gave us the fastest training time:
20 minutes and 51 seconds.

Once the benchmark is trained, no further pre-processing is required, and, as we
will see in Section 4.5, runtime overhead tends to be minimal. This overhead is due to the
matrix multiplication that happens once a hot function is invoked, as we have discussed
in Section 3.3. The product of training, the code earlier seen in Figure 3.11, is embedded
directly into a program’s bytecode. Thus, different programs adapted by Jinn-C can
coexist independently in the same runtime environment, for no changes are required in
the operating system as a result of training.

4.5 RQ2: Optimizing for Speed

We have tested Jinn-C and CHOAMP with two objective functions: speed and
energy consumption. When the cost function is speed, the tools try to decrease the
execution time of target applications. Figure 4.2 reports results observed when optimizing
for speed. In Section 4.6 we discuss energy consumption. We have tested each benchmark
with four input sets. Each chart within those figures shows four sets of three boxplots.
Boxplots refer, in this order, to Jinn-C, CHOAMP and GTS. We adopt a significance
level α = 0.05; i.e., a confidence interval of 95%. So, if the results reported by, for
instance, Jinn-C and CHOAMP cannot be distinguished with a confidence of more than
95%, then we consider them as originating from the same population. In practical terms,
we use Student’s Test to measure the p-value of two populations, and consider significant
results with a p-value lower than 0.05. White boxes with letters identify the technique
which achieved the best result for a combination of benchmark and input. J stands for
Jinn-C, C for CHOAMP and G for GTS. The grey box x means that the two winning
systems have produced results very similar (with a p-value greater than 0.05). Above
each one of the four input sets used in each benchmark, we show the configuration that
Jinn-C chose for that input. We also show, in a grey box, to the right of the name of
each benchmark, the configuration that CHOAMP chooses for that benchmark.

4. Evaluation 52

●
●

●

●

●

●

●

2

3

4

5

In1 In2 In3 In4

collinearPoints

●

●

●●● ●

●

●●

●

●

●
●

0

2

4

6

8

In1 In2 In3 In4

randomNumComp

●

●

0

1

2

3

4

5

In1 In2 In3 In4

hashSync

●

●●
● ●0

10

20

30

40

In1 In2 In3 In4

bfs

●

●

●
●

●

●

●

0.050

0.075

0.100

0.125

0.150

In1 In2 In3 In4

spaningForest

●● ●●0

10

20

30

In1 In2 In3 In4

insertAndAdd

●

●

●

●

●
●

1

2

In1 In2 In3 In4

nearestNeighbors
●

●

●

●●

●

●

●

●

0.4

0.8

1.2

1.6

In1 In2 In3 In4

convexHull

●

●

1.5

2.0

2.5

3.0

In1 In2 In3 In4

removeDuplicates

●

● ●●

●● ●1

2

In1 In2 In3 In4

suffixArray

●
●
● ●

●

● ●●● ● ●

0

5

10

15

In1 In2 In3 In4

sampleSort

● ●
●

●

●
0.2

0.4

0.6

In1 In2 In3 In4

radixSort

●●

●

●

10

20

30

In1 In2 In3 In4

philosophers
●

● ●

●

20

40

60

80

In1 In2 In3 In4

futureGenetic

●

●

●

●

1.0

1.5

2.0

2.5

In1 In2 In3 In4

finagleHttp

●

●
●

●

●

27.5

30.0

32.5

35.0

37.5

In1 In2 In3 In4

decTree

●

●

●

●

10

15

In1 In2 In3 In4

chiSquare

●

●

●

●20

40

60

80

In1 In2 In3 In4

als

JJJ

J

X

X

4b0L 4b0L 4b0L
4b4L
4b4L

X X

4b4L 4b4L

4b4L 4b4L 4b4L

0b4L
0b2L 0b2L 0b4L 4b4L

4b4L 4b4L
4b4L

4b4L
4b0L 4b4L 4b0L 4b4L

4b4L
0b4L 0b4L 0b4L 0b4L

4b4L
4b4L

XX

X X

X X

J

X X X

J X

X

X X

X

G

J

J J

J

CX

4b4L 4b0L 4b4L 4b4L 4b4L 4b4L 4b4L 4b4L

0b4L 4b4L 4b4L 4b4L 4b0L 4b0L 4b0L 4b0L 4b4L 4b4L 4b4L 4b4L

4b4L 4b4L 4b4L 4b4L

4b4L 4b4L 4b4L

4b4L
4b0L 4b4L 4b4L 4b4L

4b4L
2b0L 4b0L 2b0L 4b0L

4b4L
4b4L 4b4L 4b4L 4b4L

0b4L
4b0L 4b0L 4b0L 4b0L

4b4L
4b0L 0b4L 0b4L 0b4L

4b4L
2b0L 2b0L 0b4L 0b4L

X

X

X X J

J

J J X X X C

X X X

X J

J J J J J

J

X

J

X X

XJ

J

C

X

J

XX

X

4b4L 4b4L 4b4L

J

XX

XX

Figure 4.2. Execution time of benchmarks from Table 4.1. Y -axis shows time in
seconds. X-axis shows different experiments; each experiment uses different inputs.
Boxplots are ordered by Jinn-C, CHOAMP and GTS.

The data in Figure 4.2 shows that, in 26 cases, out of 72 combinations of [bench-
marks × inputs], Jinn-C achieved better results when compared to the other techniques.
In other 42 cases, Jinn-C was at least as fast as GTS or CHOAMP. CHOAMP, in turn,

4. Evaluation 53

in1

in2

in3

in4

JINN CHOAMP GTS Inconclusive

bfs

radixSort

sam
pleSort

suffixArray

rem
oveD

ups.

nearestN
eighs.

spanningForest

als

philosophers

futureG
enetic

finagleH
TTP

chiSquare

decTree

collinearPoints

hashSync

insertAndAdd

rdN
um

C
om

p

convexH
ull

Figure 4.3. Summary of the results displayed in Figure 4.2

accounted for 3 best results, and GTS for only one, in hashSync’s In4. These results
are summarized in Figure 4.3.

All the winning configurations, regardless of the technique, featured the frequency
of 1.8GHz whenever at least one big core was present. The most recurring configurations
were 4b4L (16x for CHOAMP and 37x for Jinn-C), 0b4L (2x/11x), 4b0L (17x for Jinn-C

only), 2b0L (4x for Jinn-C only), and 0b2L (2x for Jinn-C only). Jinn-C performed
rather poorly in collinearPoints. Such bad results were due to the fact that we have
not chosen good inputs for training. Indeed, the 10 training inputs chosen when optimizing
collinearPoints find in 4b4L their best configuration; however, coincidentally, three of
the test inputs ask for 4b0L. It suffices to switch one of the test and training inputs to put
Jinn-C on par with the other schedulers. On the other hand, for some benchmark, such
as chiSquare or futureGenetic, Jinn-C’s choices outperformed other scheduling
techiniques, with rather different configurations for different inputs, as it is expected for
the tool. In the chiSquare case, for example, with the first input (workers = 2, SIZE

= 1023464), Jinn-C prediction of the configuration 4b0L led to a mean run time of 8.18
seconds, while CHOAMP’s decision led to 8.47 and GTS to 9.00, with all values for the p-
value less than 0.008. For its second input (workers = 4, SIZE = 2250467), we observed
that Jinn-C’s predicted configuration (2b0L) led to a mean runtime of 17.00 seconds,
while CHOAMP’s had a runtime of 18.70 and GTS 17.76. For the second input, all the
p-values were below 0.0005, resulting in a confidence interval over 99%. These scenarios
illustrate well the effectiveness of Jinn-C in identifying the most suitable configuration
for applications that behave differently according to the inputs fed to them.

Furthermore, when delving into details on the behavior of some benchmarks, it is
possible to notice that Jinn-C is capable of identifying specific behaviors while generating
faster programs. For example, the Philosophers benchmark, optimized by Jinn-C, was

4. Evaluation 54

the fastest for 3 out of 4 inputs, with an improvement of 41.7% and 38.2% on top of GTS
and CHOAMP, respectively, for the last input. In this benchmark, multiple threads
access shared data and, for keeping those access safe, synchronization is required. Under
this scenario and as illustrated in section 1.4, LITTLE cores tend to perform better as
context switches are cheaper in this cluster. Even without having explicit access to this
knowledge, Jinn-C was able to identify that a configuration using LITTLE cores only is
more suitable for that benchmark×input. This shows both the applicability and generality
of our compilation framework. Jinn-C is not specifically designed for synchronization
heavy programs, but if such behavior impacts execution performance, our cost function
will take it into account when fitting our model.

Jinn-C scheduled the computations to the LITTLE cluster, indicating a possible
correlation of high synchronization rates and a better performance of the LITTLE cores.
We intentionally leave the task of further investigating this relationship of synchronization
and the decisions taken by Jinn-C as a future work, as the scope of this dissertation is
the relationship of program inputs and their dynamic behavior.

4.6 RQ3: Energy Consumption

Figure 4.4 compares CHOAMP, GTS and Jinn-C regarding energy consumption.
When set up to reduce energy consumption, Jinn-C and CHOAMP build models to
estimate the most adequate hardware configuration to save energy. The clock speed of
1.6GHz was the most common among all the schedulers, except for one input set of
RadixSort, when CHOAMP chose to use 1.8GHz.

When optimizing for speed and energy, GTS with the on-demand DVFS governor
was free to choose any possible configuration with frequency levels ranging from 200MHz
to 1.8GHz in the big cluster and from 200MHz to 1.5GHz in the little one. As this is the
default and expected behavior for the GTS scheduling policy, we kept it as is. Observe that
this scheduling technique may lead to performance degradation because GTS increases
frequency gradually, until it arrives at the top levels in computation intensive programs.
Additionally, even with several warm-up rounds, GTS might take an excessively long time
to achieve maximum frequency levels for some applications.

Figure 4.4 reveals that Jinn-C achieved best results in 20 experiments (out of 72);
GTS was the best approach in 2, and CHOAMP in 6. Figure 4.5 summarizes these results.
Most of the experiments did not have a clear winner –this difficulty to pinpoint a best
technique is, in part, due to the fact that we measure energy for the entire board, not
only for the cores. Therefore, peripherals such as the fan and the memory bus increase

4. Evaluation 55

●

●

●

●

●
●

●●

●●

●
●

●

20

30

40

In1 In2 In3 In4

collinearPoints

●●●
●●●

0

20

40

60

In1 In2 In3 In4

randomNumComp
●

●

●

●

●

●● ●

●

●
●
●

●

0

10

20

30

40

In1 In2 In3 In4

hashSync

●

●

0

100

200

In1 In2 In3 In4

bfs

●

●

●

●

●

●

●
●

0.6

0.9

1.2

1.5

In1 In2 In3 In4

spaningForest

●

●
●

●●

●

●

●0

50

100

150

200

In1 In2 In3 In4

insertAndAdd

●

●

●

●

●

●
●

●

●

●

10

20

30

In1 In2 In3 In4

nearestNeighbors

●

●
●

●

5

10

In1 In2 In3 In4

convexHull

●

●

●

●

●

●

10

15

20

25

30

In1 In2 In3 In4

removeDuplicates

●●

●

●

●

●●● ●

●

●

●

●

5

10

15

20

In1 In2 In3 In4

suffixArray

● ●

●

●

●

●
●●

●●
●●

0

50

100

In1 In2 In3 In4

sampleSort

● ● ●

●

●

●

●

●

●

2

4

6

8

In1 In2 In3 In4

radixSort

●●
● ●

●0

100

200

300

In1 In2 In3 In4

philosophers

●

●●

●
●

●
●

●●0

100

200

300

400

500

In1 In2 In3 In4

future−genetic

●

● ●

●

8

12

16

20

In1 In2 In3 In4

finagle−http

●

●

●

●

●
●

●●200

300

400

500

In1 In2 In3 In4

dec−tree

●

●●

●

●

●

●

●

●

75

100

125

150

In1 In2 In3 In4

chi−square

● ●

●

●●

●

● ●●

●

●

200

400

600

In1 In2 In3 In4

als

JJJ

X

X

4b4L 4b0L 4b0L
0b4L-1.8

4b4L

X

0b4L 0b4L

0b4L 0b4L 0b4L

0b4L
0b2L 0b2L 0b4L 2b0L

0b4L 0b4L
2b0L

0b4L
4b4L 0b4L 0b4L 4b4L

0b4L
0b4L 0b4L 0b4L 0b4L

0b4L
0b4L

X

X X

J X

C X

4b4L 0b4L 4b4L 4b4L 4b4L 4b4L 4b4L 4b4L

0b4L 4b4L 4b4L 4b4L 4b0L 4b0L 2b0L 4b0L 2b2L 4b4L 2b2L 2b2L

4b4L 4b4L 4b4L 4b4L

0b4L 4b4L 0b4L

0b4L
4b0L 4b4L 4b4L 4b4L

0b4L
4b0L 2b0L 4b0L 2b0L

0b4L
4b4L 4b4L 4b4L 4b4L

0b4L
4b0L 4b0L 4b0L 4b0L

0b4L
4b0L 0b4L 0b4L 0b4L

0b4L
2b0L 2b0L 0b4L 0b4L

X X X XC

X

X X C CX

X X

X

X

J X

4b4L 4b4L 4b4L

C X

J

G X

J J

J J

X X X

X G

X J J

J J J J

C X X X XX

J J X

X

X X J

J X X

X

X

X

X

X

Figure 4.4. Energy consumed by the benchmarks in Table 4.1. Y -axis shows energy
in Joules. X-axis shows different experiments. Boxplots are sorted as in Figure 4.2.

the variance of our results.
We have observed that Jinn-C outperforms GTS mostly due to its ability to choose

high-performance hardware configurations, such as 4b4L at 1.6GHz immediately, whereas
GTS needs a warm-up period to arrive at them. Our implementation of CHOAMP has

4. Evaluation 56

in1

in2

in3

in4

JINN CHOAMP GTS Inconclusive

bfs

radixSort

sam
pleSort

suffixArray

rem
oveD

ups.

nearestN
eighs.

spanningForest

als

philosophers

futureG
enetic

finagleH
TTP

chiSquare

decTree

collinearPoints

hashSync

insertAndAdd

rdN
um

C
om

p

convexH
ull

Figure 4.5. Summary of the results displayed in Figure 4.4

chosen the 0b4L configuration at 1.6GHz for almost all the samples in this evaluation.
We speculate that this behavior happens because some features, such as branching and
memory operations, tend to dominate the others in most of the functions that constitute a
benchmark. We believe that it is possible to improve this behavior by scaling the relative
importance of the features; however, this optimization is out of the scope of this work.

On the Influence of Execution History. The execution history impacts the energy con-
sumed by different programs. Take as an example the entry corresponding to HashSync

in Figure 4.4. When analyzing the second input set (In2), we observed that, although
predicting the same configuration as CHOAMP, Jinn-C led to marginally higher energy
consumption. This behavior is even more surprising once we consider that Jinn-C’s and
CHOAMP’s codes run in about the same time, as Figure 4.2 reveals. The culprit of this
apparently counter-intuitive result is the board state at the time measurement started.
The warm-up phase, in this case, is responsible for giving Jinn-C’s and CHOAMP’s codes
different starting states. In the discussion that follows, we shall separate the execution
of a benchmark into two parts: warm-up, when the target routine is called a number of
times to stabilize the Java Virtual Machine; and measurement, when the behavior of the
benchmark is actually gauged.

Figure 4.6 shows the power profile of HashSync, including warm-up and mea-
surement phases. The invocations of HashSync in the warm-up stage have different set
of inputs compared to its invocation in the measurement stage. As a result, our technique
predicted the configuration 4b4L for the last warm-up invocation, which is different than
0b4L, the configuration predicted at measurement. The use of big cores during warm-up
increased the amount of energy consumed by the board in the measurement step, due to
the hysteresis of power dissipation. This inertia is a well-known phenomenon [De Leon

4. Evaluation 57

and Semlyen, 1995; Piquette et al., 2002]; it may be seen as the tendency of a system to
conserve an electrical deformation caused by a stimulus. In the context of this example,
such stimulus is the use of the big cluster in the warm-up phase.

0 1 2 3 4

0
1

2
3

4
5

6

Time (s)

iP
ow

er
 (W

)

0

0 1 2 3 4

0
1

2
3

4
5

6

Time (s)

iP
ow

er
 (W

)

(b)

0 1 2 3 4

iP
ow

er
 (W

)

1
2

3
4

5
6

0 1 2 3 4

0
2

4
6

8
10

Time (s)

iP
ow

er
 (W

)

(a)

0 1 2 3 4

iP
ow

er
 (W

)

0
2

4
6

8
10

Time (s)

Time (s)

Warm up
JINN-C

Predicted
4b4L

Measured run
JINN-C

Predicted
0b4L

0

Measured runWarm up

0 1 2 3 4

(c)

iP
ow

er
 (W

)

1
2

3
4

5
6

0

Warm up
Fixed

Configuration
0b4L

Measured run
JINN-C

Predicted
0b4L

Time (s)

Energy = 9.477 J (mean of 10x) - P-value to (b) = 0.000

Energy = 8.224 J (mean of 10x)

Energy = 8.139 J (mean of 10x) - P-value to (b) = 0.362

Figure 4.6. Power consumption of HashSync with (a) Jinn-C, (b) CHOAMP, and
(c) Jinn-C with fixed configuration during warm-up. P-values below 0.05 indicate
that the executions of Jinn-C’s and CHOAMP’s code are statistically different.
For this benchmark, CHOAMP (b) predicted 0b4L as the best configuration for
the parallel kernel. This configuration is used in all warm-up stages and in the
measurement phase. Figures 4.2 and 4.4 report values for the measured run only.

The mean power dissipated by Jinn-C’s version of HashSync in Figure 4.6(a)
was 4.68W. CHOAMP’s mean power is 4.09W, as taken from Figure 4.6(b). Thus, Jinn-

C’s program consumes more energy (9.47J vs 8.22J). However, if we fix the hardware
configuration in the warm-up phase of Jinn-C’s code, then we observe that the average
power dissipation goes down to 3.95W. Figure 4.6(c) reports the power profile of this
setup. The only difference between the two executions of Jinn-C, in Figures 4.6 (a) and
(c), is the configuration used in the warm-up stage. There is no statistically significant

4. Evaluation 58

difference between the amount of energy consumed by CHOAMP and Jinn-C once we
ensure that both use the same hardware configuration during warm-up.

This behavior caused by differences between configurations chosen at warm-up and
measurement phases only affects Jinn-C. CHOAMP always chooses the same hardware
configuration per function, and GTS increases frequency gradually. The only further
impact that this difference had in Jinn-C’s behavior was observed in DecTree and
CollinearPoints. In both cases, only for the last input set (In4), and only when
measuring runtime (Fig. 4.2). The need to change configuration when moving from warm-
up to measurement has costed Jinn-C’s code some time. Although a small fraction of the
overall execution, it let CHOAMP’s program run slightly faster than Jinn-C’s. When
reporting the results in this dissertation (Figs. 4.2 and 4.4), we have opted to let the
hardware configuration fluctuate during warm-up, as this is the expected behavior of
Jinn-C, once it is deployed in production.

4.7 RQ4: Convexity

A convex space is a region within an Euclidean Space whose intersection with any
line results in a continuous line segment. If the convex space can be described by a
function, then said function is also called convex. Convex functions are very important
in optimization problems, because exploration methods based on derivatives, such as
gradient descent, are guaranteed to converge to the optimal solution when applied on
them [Boyd and Vandenberghe, 2004]. Therefore, we can restrict ourselves to them, as
they are known to be much faster than other space exploration techniques, such as those
that use quadratic or higher-order polynomials (e.g., multi-layer perceptrons). That is
the reason why we chose a linear model to match hardware configurations with program
inputs.

In our setting, the search space is a function that maps program inputs to optimal
hardware configurations. This function is discrete, because its image is a finite set of
hardware configurations. Convexity, in this case, means that if we fix all the program
inputs, and vary the one left, every region covered by the same optimal configuration
is continuous. In other words, while varying this single input monotonically, we will
not leave a region r where a certain configuration h is the best, find a new region r′

governed by a different configuration h′, only to find h again later, once we cross the
boundary between r′ and a third region r”. In this chapter, we analyze the space of
optimal hardware configurations, to provide some evidence that these regions tends to be
convex in practice. Notice that convexity is a tendency, not a principle. In other words,

4. Evaluation 59

it is possible to implement programs whose space of optimal configurations is not convex.
Example 4.7.1 shows an instance of such a program.

Example 4.7.1. If we build a function that associates the input i of the procedure
unlikely (seen below) with optimal hardware configurations, then we obtain a non-
convex (concave) space:

void un l i k e l y (i n t i) {
i f (10 <= i && i <= 100)

sync_intens ive () ;
e l s e

comp_intensive () ;
}

The unlikely routine receives one input, namely, the integer i. If i is less than 10
or greater than 100, it invokes a computationally intensive procedure; otherwise, it in-
vokes a synchronization intensive one. The optimal configurations for these two pieces
of code differ. Let configuration hc be the optimal hardware configuration for procedure
comp_intensive. The space occupied by hc, i.e., [−∞, 10[∪], 100,+∞] is non-continuous;
hence, concave.

The program discussed in Example 4.7.1 is unlikely to exist in real-world code. To
support this statement, Figure 4.7 provides a glimpse of the best hardware configurations
for different inputs of four benchmarks in our collection. The figure contains four parts.
Each part is a table, which associates a pair of inputs with the hardware configurations
that yielded the fastest execution times for those inputs. In this experiment, we chose
the two benchmarks from our collection that contain two inputs. We have augmented
this set with HashSync and FutureGenetic, to fit the figure into a 2 × 2 matrix
–for aesthetic reasons only. However, to avoid having to draw a 3D-figure, we have fixed
one input for each benchmark4: number_of_Generations for FutureGenetic, and
number_of_workers, for HashSync. The choice of benchmarks is arbitrary. We did not
add more benchmarks to this experiment because the generation of the data necessary to
build each table demands considerable computational time, e.g.:
• RadixSort: 1 hour and 37 minutes
• Philosophers: 2 hours and 24 minutes
• FutureGenetic: 55 hours and 53 minutes
• HashSync: 58 hours and 12 minutes
4Notice that varying all the three inputs would also increase substantially the time to run this exper-

iment. We speculate that this time would jump from 58 hours up to 12 days for HashSync only.

4. Evaluation 60

Furthermore, to keep evaluation within a reasonable time frame, we have used only the
frequency level of 1.8GHz for the big cores. Had we also included the level of 1.6GHz, as
in the previous sections, then our total running time would more than double.
Experimental Setup: The four tables in Figure 4.7 show convex spaces: any sequence
of rows or columns traverses a continuous region. Example 4.7.2 illustrates what we mean
by a continuous region.

Example 4.7.2. Consider HashSync in Figure 4.7(c). If we fix the value for keySize
in 106, and vary s.size() in the set {10, 102, 103, 104, 105}, we observe that each one of
the continuous intervals [10, 10], [102, 102] and [103, 105] is governed by the same set of
optimal hardware configurations.

However, to arrive at this result, we had to account for small variations in runtime.
To generate the data in every table seen in Figure 4.7, we considered 5× 5 combinations
of inputs, and the five hardware configurations used in the previous sections. We run
each pair of inputs with every configuration of interest 20 times. To reduce variance, we
removed the four fastest and the four slowest samples; hence, considering 12 executions
per input per configuration. Nevertheless, this expedient only would not be enough to
mitigate the problem of high variance, mostly when considering input settings with small
runtimes. Thus, to deal with variance, we had to resort to more sophisticated statistical
tools, as we explain in the rest of this chapter.
Dealing with variance: Had we simply picked for every input pair the configura-
tion with the best average runtime, then variations would lead to almost random re-
sults for small inputs. To avoid this problem, we consider not the best, but the set of
best hardware configurations per input. For each input, we fitted our linear regression
model (via Python’s statsmodels module [Seabold and Perktold, 2010]) using the ordinary
least squares method to estimate the model parameters. Then, we analyze the differ-
ences among group means with standard analysis of variance (ANOVA) [Fisher, 1918].
ANOVA generalizes the T-test beyond two means. In the context of this work, we con-
sider groups of hardware configuration; and the null hypothesis states that samples from
different hardware configurations came from the same probability distribution. Thus, the
null hypothesis means that there is no statistical difference between the execution time
of different hardware configurations. We checked if the data were statistically significant
considering a confidence of 95%, i.e., a P-value less than 0.05. ANOVA is an omnibus test
–it analyzes the data as a whole; hence, we performed a post-hoc test to find out where
the differences among the groups were.

The post-hoc test consists of a series of T-tests between each existing pair of
configurations. As a result, the significance level had to be adjusted to avoid spurious
positives. To that end, we used the Bonferroni correction [Bonferroni, 1936; Dunn, 1958].
Each individual hypothesis is tested with a threshold of α/n, where α is the significance

4. Evaluation 61

1684 126

750000

1250000

250000

1000000

500000El
em

en
ts

workers

4b0L 4b4L

RadixSort

101010 1010

10

10

10

10

10

s.
si

ze
 (

)

keySize

HashSync

1

2

3

4

2 3 4 5 6

4b4L, 4b0L, 0b4L, 2b0L, 0b2L

4b4L, 4b0L, 0b4L, 2b0L

4b4L

2b0L

4b4L, 4b0L

1062 84

50

90

10

70

30
N

um
be

r o
f C

ro
m

os
so

m
es

workers

FutureGenetic

4b0L

0b4L

4b0L, 0b4L

1062 84

12500

50000

3125

25000

6250

M
ea

ls

number of philosophers

Philosophers

4b4L, 4b0L, 0b4L, 2b0L, 0b2L

0b4L

(b)(a)

(d)(c)

0b4L, 0b2L, 2b0L

5

Figure 4.7. Best configurations for 4 benchmarks used in our evaluation. The charts
exemplify the convex space over benchmarks inputs. HashSync and FutureGenetic
receive 3 inputs each, but for this experiment we fixed the number of workers in
HashSync to 16 and the number of generations in FutureGenetic to 5000.

level for the entire set of comparisons, e.g., 0.05, and n is the number of statistical tests
performed. Thus, analogously to the ANOVA test, if the resulting P-value is lower than
the significance level given by the Bonferroni correction, then the null hypothesis can be
rejected. Rejection of the null hypothesis is equivalent to assume that the two groups of
configurations present a statistically significant difference. Otherwise, the two groups are
considered identical and become part of the same cluster of configurations. The runtime
of a cluster of configurations is the average of all the samples in that cluster.

62

Chapter 5

Conclusion

This work exposes our two-year long research effort into the field of Single-ISA hetero-
geneous systems, mostly in the big.LITTLE architecture, and the impact of scheduling
techniques on the execution time and energy performance of applications. While the task
of scheduling code in big.LITTLE is a widely researched topic, the input-based nature
of out work makes it stand out. The intuition nurtured during the craft of our tool lets
us believe that our technique –linear regression on function inputs– can be applied onto
different programming languages and runtime environments.

To validate our ideas, we implemented a prototype tool, Jinn-C, and showed how
to build predictors for Java and Scala applications. Our technique is able to outperform,
be it in energy consumption, be it in speed, the default Linux scheduler for the big.LITTLE
architecture (the Global Task Scheduler), and CHOAMP, a state-of-the-art tool that
predicts the best hardware configuration to a program based on its syntax (and implied
semantics).

Future works. We consider as the main limitation of our current approach its inability
to automatically identify which application’s methods and parameters should be analyzed.
As a result, we resort to user-written code annotations to guide our tool. Being able to
perform this action automatically helps in several ways, as it: (1) removes the burden from
developers, who will not need to manually annotate the code, (2) increases coverage, as
larger code bases may be analyzed all at once, and (3) allows us to integrate our tool in the
compilation pipeline of applications in an easier way. But, even with such improvement,
keeping the user’s ability to insert manual annotations is important as specific cases might
be missed by a completely automatic tool.

63

Bibliography

Acar, U. A., Charguéraud, A., Guatto, A., Rainey, M., and Sieczkowski, F. (2018). Heart-
beat scheduling: Provable efficiency for nested parallelism. In ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 769--782, New
York, NY, USA. ACM.

Ashouri, A. H., Killian, W., Cavazos, J., Palermo, G., and Silvano, C. (2018). A survey
on compiler autotuning using machine learning. Comput. Surv., 51(5):96:1--96:42.

Augonnet, C., Thibault, S., Namyst, R., and Wacrenier, P.-A. (2011). Starpu: A uni-
fied platform for task scheduling on heterogeneous multicore architectures. Concurr.
Comput. : Pract. Exper., 23(2):187--198.

Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L., Dagum, L.,
Fatoohi, R. A., Frederickson, P. O., Lasinski, T. A., Schreiber, R. S., Simon, H. D.,
Venkatakrishnan, V., and Weeratunga, S. K. (1991). The NAS parallel benchmarks
summary and preliminary results. In Supercomputing, pages 158--165, New York, NY,
USA. ACM.

Balachandran, S. et al. (2018). Compiler enhanced scheduling for openmp for heteroge-
neous multiprocessors. arXiv preprint arXiv:1808.06074.

Barik, R., Farooqui, N., Lewis, B. T., Hu, C., and Shpeisman, T. (2016). A black-
box approach to energy-aware scheduling on integrated CPU-GPU systems. In The
International Symposium on Code Generation and Optimization, pages 70--81, New
York, NY, USA. ACM.

Barrett, E., Bolz-Tereick, C. F., Killick, R., Mount, S., and Tratt, L. (2017). Virtual
machine warmup blows hot and cold. Proc. ACM Program. Lang., 1(ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages, and
Applications):52:1--52:27. ISSN 2475-1421.

Bessa, T., Gull, G., ao, P. Q., Frank, M., Nacif, J., and ao Pereira, F. M. Q. (2017). Jet-
sonLEAP: A framework to measure power on a heterogeneous system-on-a-chip device.
Science of Computer Programming, 33(1):1--37.

Bonferroni, C. E. (1936). Teoria statistica delle classi e calcolo delle probabilità.

Bibliography 64

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University
Press, New York, NY, USA. ISBN 0521833787.

Butcher, P. (2014). Seven Concurrency Models in Seven Weeks. Pragmatic Bookshelf,
Raleigh, NC, US, 1st edition.

Cai, H., Cao, Q., Sheng, F., Zhang, M., Qi, C., Yao, J., and Xie, C. (2016). Montgolfier:
Latency-aware power management system for heterogeneous servers. In International
Performance Computing and Communications Conference, pages 1--8, Washington,
DC, USA. IEEE.

Campos, V. H. S., Rodrigues, R. E., de Assis Costa, I. R., and Pereira, F. M. Q. (2012).
Speed and precision in range analysis. In Brazilian Symposium on Programming Lan-
guages, pages 42--56. Springer.

Cao, T., Blackburn, S. M., Gao, T., and McKinley, K. S. (2012). The yin and yang
of power and performance for asymmetric hardware and managed software. In The
International Symposium on Computer Architecture, pages 225--236, Washington, DC,
USA. IEEE.

Cauchy, M. A. (1847). Méthode générale pour la résolution des systèmes d’Équations
simultanées. Comptes Rendus Hebd. Séances Acad. Sci., 25(10):536--538.

Cohen, A., Finkelstein, F., Mendelson, A., Ronen, R., and Rudoy, D. (2003). On esti-
mating optimal performance of cpu dynamic thermal management. IEEE Computer
Architecture Letters, 2(1):6–6. ISSN 1556-6056.

Cong, J. and Yuan, B. (2012). Energy-efficient scheduling on heterogeneous multi-core
architectures. In The International Symposium on Low Power Electronics and Design,
pages 345--350, New York, NY, USA. ACM.

Cooper, K. D., Grosul, A., Harvey, T. J., Reeves, S., Subramanian, D., Torczon, L., and
Waterman, T. (2005). Acme: Adaptive compilation made efficient. In International
Conference on Languages Compilers, Tools and Theory of Embedded Systems, pages
69--77, New York, NY, USA. ACM.

da Silva, J. C. R. and Pereira, F. M. Q. (2017). Demand-driven less-than analysis. In
Proceedings of the 21st Brazilian Symposium on Programming Languages, SBLP 2017,
pages 2:1--2:8, New York, NY, USA. ACM.

da Silva, J. C. R., Pereira, F. M. Q., Frank, M., and Gamatié, A. (2018). A compiler-
centric infra-structure for whole-board energy measurement on heterogeneous an-
droid systems. In International Symposium on Reconfigurable Communication-centric
Systems-on-Chip, pages 1--8, Washington, DC, USA. IEEE.

Bibliography 65

David, F., Thomas, G., Lawall, J., and Muller, G. (2014). Continuously measuring critical
section pressure with the free-lunch profiler. SIGPLAN Not., 49(10):291--307.

De Leon, F. and Semlyen, A. (1995). A simple representation of dynamic hysteresis losses
in power transformers. IEEE Transactions on Power Delivery, 10(1):315--321.

Delimitrou, C., I, I., and Kozyrakis, C. (2014). Quasar: Resource-efficient and qos-
aware cluster management. In International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 127--144, New York, NY, USA.
ACM.

Ditty, M., Architecture, T., Montrym, J., and Wittenbrink, C. M. (2014). NVIDIA’s
tegra K1 system-on-chip. In IEEE Hot Chips 26 Symposium (HCS), pages 1--26, Los
Alamitos, CA, USA. IEEE.

Donaldson, A. F., Keir, P., and Lokhmotov, A. (2008). Compile-time and run-time issues
in an auto-parallelisation system for the cell BE processor. In Euro-Par Workshops,
pages 163--173, Berlin, Germany. Springer.

Donyanavard, B., Mück, T., Sarma, S., and Dutt, N. (2016). SPARTA: Runtime task
allocation for energy efficient heterogeneous many-cores. In International Conference
on Hardware/Software Codesign and System Synthesis, pages 27:1--27:10, New York,
NY, USA. ACM.

Dunn, O. J. (1958). Estimation of the means for dependent variables. Annals of Mathe-
matical Statistics., 29:1095--1111.

Fisher, R. A. (1918). The correlation between relatives on the supposition of mendelian
inheritance. Philosophical Transactions, 52:399--433.

Francesquini, E., Castro, M., Penna, P. H., Dupros, F., Freitas, H. C., Navaux, P. O., and
Méhaut, J.-F. (2015). On the energy efficiency and performance of irregular applica-
tion executions on multicore, numa and manycore platforms. Journal of Parallel and
Distributed Computing, 76:32--48.

Garcia-Garcia, A., Saez, J. C., and Prieto, M. (2018). Contention-aware fair scheduling for
asymmetric single-isa multicore systems. IEEE Trans. Computers, 67(12):1703--1719.

Garland, M. and Kirk, D. B. (2010). Understanding throughput-oriented architectures.
Commun. ACM, 53:58--66.

Gaspar, F., Taniça, L., Tomás, P., Ilic, A., and Sousa, L. (2015). A framework for
application-guided task management on heterogeneous embedded systems. ACM Trans.
Archit. Code Optim., 12(4):42:1--42:25. ISSN 1544-3566.

Bibliography 66

Gough, B. J. (2005). An Introduction to GCC. Network Theory Ltd, 1st edition.

Greenhalgh, P. (2011). Big.LITTLE processing with ARM cortex-A15 & cortex-A7.

Gupta, U., Patil, C. A., Bhat, G., Mishra, P., and Ogras, U. Y. (2017). DyPO: Dy-
namic pareto-optimal configuration selection for heterogeneous mpsocs. Trans. Embed.
Comput. Syst., 16(5s):123:1--123:20. ISSN 1539-9087.

Hähnel, M. and Härtig, H. (2014). Heterogeneity by the numbers: A study of the odroid
xu+e big. little platform. In HotPower, pages 3--3, Berkeley, CA, USA. USENIX
Association.

Intel (2019). Intel R© c compiler 19.0 developer guide and reference.

Jain, A., Laurenzano, M. A., Tang, L., and Mars, J. (2016). Continuous shape shifting:
Enabling loop co-optimization via near-free dynamic code rewriting. In International
Symposium on Microarchitecture, pages 1–12, New York, NY, USA. IEEE.

Jeff, B. (2013). big.LITTLE technology moves towards fully heterogeneous global task
scheduling. Technical report, ARM. White paper.

Joao, J. A., Suleman, M. A., Mutlu, O., and Patt, Y. N. (2012). Bottleneck identification
and scheduling in multithreaded applications. In International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pages 223--234,
New York, NY, USA. ACM.

Jundt, A., Cauble-Chantrenne, A., Tiwari, A., Peraza, J., Laurenzano, M. A., and Car-
rington, L. (2015). Compute bottlenecks on the new 64-bit arm. In Energy Efficient
Supercomputing Workshop, pages 6:1--6:7, New York, NY, USA. ACM.

Kambadur, M. and Kim, M. A. (2014). An experimental survey of energy management
across the stack. In OOPSLA, pages 329--344, New York, NY, USA. ACM.

Kim, J. M., Seo, S. K., and Chung, S. W. (2014). Looking into heterogeneity: when
simple is faster. https://news.ycombinator.com/item?id=8714613.

Krishna, J. and Nasre, R. (2018). Optimizing graph algorithms in asymmetric multicore
processors. Trans. on CAD of Integrated Circuits and Systems, 37(11):2673--2684.

Kumar, R., Tullsen, D. M., Jouppi, N. P., and Ranganathan, P. (2005). Heterogeneous
chip multiprocessors. Computer, 38(11):32--38.

Lattner, C. and Adve, S. V. (2004). LLVM: a compilation framework for lifelong program
analysis transformation. In The International Symposium on Code Generation and
Optimization, pages 75–86.

Bibliography 67

Luk, C.-K., Hong, S., and Kim, H. (2009). Qilin: Exploiting parallelism on heterogeneous
multiprocessors with adaptive mapping. In International Symposium on Microarchitec-
ture, pages 45--55, New York, NY, USA. ACM.

Lukefahr, A., Padmanabha, S., Das, R., Sleiman, F. M., Dreslinski, R. G., Wenisch,
T. F., and Mahlke, S. (2016). Exploring fine-grained heterogeneity with composite
cores. Transactions on Computers, 65(2):535–547.

Majo, Z. and Gross, T. R. (2011). Memory system performance in a numa multicore
multiprocessor. In Proceedings of the 4th Annual International Conference on Systems
and Storage, pages 1--10.

Mendonça, G., Guimarães, B., Alves, P., Pereira, M., Araújo, G., and Pereira, F. M.
Q. a. (2017). DawnCC: Automatic annotation for data parallelism and offloading.
Transactions on Architecture and Code Optimization, 14(2):13:1--13:25.

Meng, X., Bradley, J., Yavuz, B., Sparks, E., Venkataraman, S., Liu, D., Freeman, J.,
Tsai, D., Amde, M., Owen, S., et al. (2016). Mllib: Machine learning in apache spark.
The Journal of Machine Learning Research, 17(1):1235--1241.

Mishra, N., Imes, C., Lafferty, J. D., and Hoffmann, H. (2018). CALOREE: Learning
control for predictable latency and low energy. In International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, pages 184--198,
New York, NY, USA. ACM.

Mittal, S. (2016). A survey of techniques for architecting and managing asymmetric
multicore processors. Comput. Surv., 48(3):45:1--45:38.

Mittal, S. and Vetter, J. S. (2015). A survey of cpu-gpu heterogeneous computing tech-
niques. Comput. Surv., 47(4):69:1--69:35.

Neto, J. L. D., Yu, S., Macedo, D. F., Nogueira, J. M. S., Langar, R., and Secci, S. (2018).
ULOOF: A user level online offloading framework for mobile edge computing. IEEE
Trans. Mob. Comput., 17(11):2660--2674.

Nickolls, J. and Dally, W. J. (2010). The GPU computing era. IEEE Micro, 30:56--69.

Nie, P. and Duan, Z. (2012). Efficient and scalable scheduling for performance heteroge-
neous multicore systems. J. Parallel Distrib. Comput., 72(3):353--361.

Nishtala, R., Carpenter, P. M., Petrucci, V., and Martorell, X. (2017). Hipster: Hybrid
task manager for latency-critical cloud workloads. In HPCA, pages 409--420, New York,
NY, USA. IEEE.

Bibliography 68

Novaes, M., Petrucci, V., Gamatié, A., and Pereira, F. M. Q. (2019a). Compiler-assisted
adaptive program scheduling in big.little systems. CoRR, abs/1903.07038.

Novaes, M., Petrucci, V., Gamatié, A., and Pereira, F. M. Q. (2019b). Compiler-assisted
adaptive program scheduling in big.little systems: poster. In Novaes et al. [2019a],
pages 429--430.

Orgerie, A.-C., Assunção, M. D. d., and Lefevre, L. (2014). A survey on techniques for
improving the energy efficiency of large-scale distributed systems. ACM Comput. Surv.,
46(4):47:1--47:31. ISSN 0360-0300.

Park, J., Park, S., and Baek, W. (2018). RPPC: A holistic runtime system for maximizing
performance under power capping. In CCGRID, pages 41--50, Washington, DC, USA.
IEEE.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel,
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau,
D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825--2830.

Petrucci, V., Loques, O., Mossé, D., Melhem, R., Gazala, N. A., and Gobriel, S. (2015).
Energy-efficient thread assignment optimization for heterogeneous multicore systems.
ACM Trans. Embed. Comput. Syst., 14(1):15:1--15:26.

Piccoli, G., Santos, H. N., Rodrigues, R. E., Pousa, C., Borin, E., and Quintão Pereira,
F. M. (2014a). Compiler support for selective page migration in numa architectures.
In PACT, pages 369--380, New York, NY, USA. ACM.

Piccoli, G., Santos, H. N., Rodrigues, R. E., Pousa, C., Borin, E., and Quintão Pereira,
F. M. (2014b). Compiler support for selective page migration in numa architectures.
In Proceedings of the 23rd international conference on Parallel architectures and com-
pilation, pages 369--380.

Pinto, G., Castor, F., and Liu, Y. D. (2014). Understanding energy behaviors of thread
management constructs. In OOPSLA, pages 345--360, New York, NY, USA. ACM.

Piquette, J. C., McLaughlin, E. A., Ren, W., and Mukherjee, B. K. (2002). Generalization
of a model of hysteresis for dynamical systems. The Journal of the Acoustical Society
of America, 111(6):2671--2674.

Poesia, G., Guimarães, B. C. F., Ferracioli, F., and Pereira, F. M. Q. (2017). Static
placement of computation on heterogeneous devices. PACMPL, 1(OOPSLA):50:1--
50:28.

Bibliography 69

Prokopec, A., Rosà, A., Leopoldseder, D., Duboscq, G., Tůma, P., Studener, M., Bulej,
L., Zheng, Y., Villazón, A., Simon, D., Würthinger, T., and Binder, W. (2019). Re-
naissance: Benchmarking suite for parallel applications on the jvm. In ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 31--47, New
York, NY, USA. ACM.

Rangan, K. K., Wei, G.-Y., and Brooks, D. (2009). Thread motion: Fine-grained power
management for multi-core systems. In The International Symposium on Computer
Architecture, pages 302--313, New York, NY, USA. ACM.

Rossbach, C. J., Yu, Y., Currey, J., Martin, J.-P., and Fetterly, D. (2013). Dandelion: A
compiler and runtime for heterogeneous systems. In SOSP, pages 49--68, New York,
NY, USA. ACM.

Sayadi, H., Patel, N., Sasan, A., and Homayoun, H. (2017). Machine learning-based
approaches for energy-efficiency prediction and scheduling in composite cores architec-
tures. In 2017 IEEE International Conference on Computer Design (ICCD), pages
129--136. IEEE.

Seabold, S. and Perktold, J. (2010). Statsmodels: Econometric and statistical modeling
with python. In SciPy, volume 57, page 61, Austin, Texas, USA. SciPy.org.

Semeraro, G., Magklis, G., Balasubramonian, R., Albonesi, D. H., Dwarkadas, S., and
Scott, M. L. (2002). Energy-efficient processor design using multiple clock domains
with dynamic voltage and frequency scaling. In HPCA, pages 29--, Washington, DC,
USA. IEEE.

Shelepov, D., Saez Alcaide, J. C., Jeffery, S., Fedorova, A., Perez, N., Huang, Z. F.,
Blagodurov, S., and Kumar, V. (2009). HASS: A scheduler for heterogeneous multicore
systems. SIGOPS Oper. Syst. Rev., 43(2):66--75.

Shun, J., Blelloch, G. E., Fineman, J. T., Gibbons, P. B., Kyrola, A., Simhadri, H. V.,
and Tangwongsan, K. (2012). Brief announcement: The problem based benchmark
suite. In SPAA, pages 68--70, New York, NY, USA. ACM.

Somu Muthukaruppan, T., Pathania, A., and Mitra, T. (2014). Price theory based power
management for heterogeneous multi-cores. In International Conference on Architec-
tural Support for Programming Languages and Operating Systems, pages 161--176, New
York, NY, USA. ACM.

Sorensen, T., Evrard, H., and Donaldson, A. F. (2018). GPU schedulers: How fair is fair
enough? In CONCUR, pages 23:1--23:17, Leibniz-Zentrum fuer Informatik. Schloss
Dagstuhl.

Bibliography 70

Sreelatha, J. K. V., Balachandran, S., and Nasre, R. (2018). CHOAMP: cost based hard-
ware optimization for asymmetric multicore processors. Trans. Multi-Scale Computing
Systems, 4(2):163--176.

Tang, L., Mars, J., Wang, W., Dey, T., and Soffa, M. L. (2013). Reqos: Reactive static/-
dynamic compilation for qos in warehouse scale computers. In International Conference
on Architectural Support for Programming Languages and Operating Systems, pages 89-
-100, New York, NY, USA. ACM.

Twitter (2019). Open-source twitter finagle repository at github. https://github.com/
twitter/finagle.

Tzilis, S., Trancoso, P., and Sourdis, I. (2019). Energy-efficient runtime management of
heterogeneous multicores using online projection. TACO, 15(4):63:1--63:26.

Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., and Sundaresan, V. (1999).
Soot - a java bytecode optimization framework. In CASCON, pages 13--, Indianapolis,
US. IBM Press.

Van Craeynest, K., Jaleel, A., Eeckhout, L., Narvaez, P., and Emer, J. (2012a). Schedul-
ing heterogeneous multi-cores through performance impact estimation (PIE). In The
International Symposium on Computer Architecture, pages 213--224, New York, NY,
USA. IEEE.

Van Craeynest, K., Jaleel, A., Eeckhout, L., Narvaez, P., and Emer, J. (2012b). Schedul-
ing heterogeneous multi-cores through performance impact estimation (PIE). In The
International Symposium on Computer Architecture, pages 213--224, Washington, DC,
USA. IEEE Computer Society.

Wang, Z. and O’Boyle, M. F. P. (2018). Machine learning in compiler optimization.
Proceedings of the IEEE, 106(11):1879--1901.

Wilhelmstötter, F. (2019). Open-source java jenetics repository at github. https://

github.com/jenetics/jenetics.

Yazdanbakhsh, A., Park, J., Sharma, H., Lotfi-Kamran, P., and Esmaeilzadeh, H. (2015).
Neural acceleration for gpu throughput processors. In International Symposium on
Microarchitecture, pages 482–493, New York, NY, USA. IEEE.

Zhang, H. and Hoffmann, H. (2016). Maximizing performance under a power cap: A
comparison of hardware, software, and hybrid techniques. In International Conference
on Architectural Support for Programming Languages and Operating Systems, pages
545--559, New York, NY, USA. ACM.

Bibliography 71

Zhang, T. (2004). Solving large scale linear prediction problems using stochastic gradi-
ent descent algorithms. In Proceedings of the twenty-first international conference on
Machine learning, page 116.

