
UNIVERSIDADE FEDERAL DE MINAS GERAIS 

INSTITUTO DE CIÊNCIAS EXATAS 

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO 
 
 
 
 
 
 
 

José Wesley de Souza Magalhães 
 
 
 
 
 
 
 
 
 

INSPEÇÃO AUTOMÁTICA DO ESTADO INTERNO DE PROGRAMAS EM 
UM AMBIENTE NÃO COOPERATIVO 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Belo Horizonte 
2021 



José Wesley de Souza Magalhães 
 

 
 
 
 
 
 
 
 
 
 
 

INSPEÇÃO AUTOMÁTICA DO ESTADO INTERNO DE PROGRAMAS EM 
UM AMBIENTE NÃO COOPERATIVO 

 
 
 
 
 

 
 
Versão Final 
 
 
 
 
 
Dissertação apresentada ao 
Programa de Pós-Graduação em 
Ciência da Computação do Instituto 
de Ciências Exatas da Universidade 
Federal de Minas Gerais como 
requisito parcial para a obtenção do 
grau de Mestre em Ciência da 
Computação. 

 
Orientador: Fernando Magno Quintão 
Pereira 

 
 
 
 
 
 
 
 
 
 

Belo Horizonte 
2021 



José Wesley de Souza Magalhães 
 

 
 
 
 
 
 
 
 
 
 
 

AUTOMATIC INSPECTION OF PROGRAM STATE IN AN 
UNCOOPERATIVE ENVIRONMENT 

 
 
 
 
 

 
 
Final Version 
 
 
 
 
 
 
Thesis presented to the Graduate 
Program in Computer Science of the 
Federal University of Minas Gerais in 
partial fulfillment of the requirements for 
the degree of Master in Computer 
Science. 

 
Advisor: Fernando Magno Quintão 
Pereira 

 
 
 
 
 
 
 
 
 
 

Belo Horizonte 
2021 



© 2021, José Wesley de Souza Magalhães. 

.   Todos os direitos reservados 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                Magalhães ,José Wesley de Souza  
 
M188a         Automatic inspection of program state in an uncooperative  
                environment [manuscrito] / José Wesley de Souza Magalhães  
                — 2021. 
                     xvi, 58 f. il. 
 
                     Orientador: Fernando Magno Quintão Pereira. 
                     Dissertação (mestrado) - Universidade Federal de Minas    
                Gerais, Instituro de Ciências Exatas, Departamento de Ciência  
                da Computação 
                     Referências: f.47-52 
 
                     1. Computação – Teses. 2. Programas de computador –  
                Inspeção – Teses. 3. Programas de computador – Verificação –  
                Teses. 4. Compiladores (Programas de computador) – Teses. I.  
                Pereira ,Fernando Magno Quintão. II. Universidade Federal de  
                Minas Gerais, Instituto de Ciências Exatas, Departamento de  
                Ciência da Computação. III.Título. 
 

CDU 519.6*32 (043) 

 
Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende Costa 
CRB 6ª Região nº 1510 

 





To my father, who taught me to be an honest person and who is in heaven looking
after me



vii

Acknowledgments

It is finally done. This work is the result of a great effort of research, seriousness, and
perseverance, amidst the most varied emotions and tough times. I could not have done
it alone, so I use this space to thank those who helped me.

First and foremost I thank God for having always been with me. Hearing me and
blessing me, You gave me strength and did not let me disbelieve. I am also immensely
grateful to my family, my mother Josefa and my brothers Thales and João Paulo.
Thanks for the support, for the advice, for the fun, and for being my company in all
those moments. You are the pillars of my world.

No matter how long or difficult be your journey, one needs to give the first step.
I would like to thank Relva do Egypto and Juliana for making my first steps pleasant
and cozy. It is not easy to move from the countryside to a new and huge city, and you
made me feel welcomed. I offer you my most sincere thanks.

I thank Fernando Magno for accepting me as one of your pupils and for being a
better advisor than anyone could have thought. Always being helpful, present, willing
to help, correcting me you taught me to be a real researcher. More than a Professor,
you are a good human being. Thanks for your teachings, advice, and tips on good
books. You were my Master Dohko. I would also like to thank Chunhua Liao for being
my co-advisor during this work. Your expertise was essential for it to be completed
well, and your tips taught me to perform my tasks more professionally.

I believe that being in a healthy and cooperative research environment is funda-
mental to perform a good job. I thank all the Dragons from The Nest who helped me.
You were always willing to support and welcomed in the group. Besides, you are all
experts in what you do. I wish we could have spent some more time together, but the
pandemic did not allow it. But even remotely, your assistance was greatly appreciated
by me.

Finally, to all those who helped me in some way and I did not name here, I feel
grateful for your cooperation.

José Wesley




viii

“We have just one world, but we live in different ones.”
(Mark Knopfler)

José Wesley




ix

Resumo

O estado interno de um programa é formado pelos valores que tal programa manip-
ula. Estes valores são armazenados na pilha de chamadas de funções, na heap, ou em
memória estática. A habilidade de inspecionar o estado interno de um programa é útil
para propósitos de depuração e verificação. Entretanto, não existe técnica geral para
inserir pontos de inspeção em linguagens com um sistema de tipos não seguros, como
C ou C++. A dificuldade vem da necessidade de percorrer o grafo de memória em um
assim chamado ambiente não cooperativo. Nesta dissertação, uma técnica automática
para lidar com esse problema é proposta. Nós introduzimos uma transformação es-
tática de programa para reportar o seu estado interno. Nossa técnica foi implementada
utilizando Low Level Virtual Machine (LLVM). É possível ajustar a granularidade dos
pontos de inspeção, trocando precisão por desempenho. Nesta dissertação, nós demon-
stramos como utilizar pontos de inspeção para depurar otimizações de compiladores;
para inserir código de verificação em benchmarks; e para visualizar estruturas de dados.

Palavras-chave: Pontos de Inspeção, Verificação, Estado Interno de Programa.
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Abstract

The program state is formed by the values that the program manipulates. These values
are stored in the stack, in the heap, or in static memory. The ability to inspect the
program state is useful as a debugging or as a verification aid. Yet, there exists no
general technique to insert inspection points in type-unsafe languages such as C or
C++. The difficulty comes from the need to traverse the memory graph in a so-called
uncooperative environment. In this dissertation, we propose an automatic technique
to deal with this problem. We introduce a static code transformation approach that
inserts in a program the instrumentation necessary to report its internal state. Our
technique has been implemented in Low Level Virtual Machine (LLVM). It is possible
to adjust the granularity of inspection points trading precision for performance. In this
paper, we demonstrate how to use inspection points to debug compiler optimizations;
to augment benchmarks with verification code; and to visualize data structures.

Palavras-chave: Inspection point, verification, program state.
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Chapter 1

Introduction

Regardless of the programming paradigm or language, a program describes how values
are handled in order to do computations. Said values are stored in distinct memory
regions e.g., static memory, stack or heap, which can be reached through program
structures like pointers or activation records. The ensemble of the values that a program
manipulates is called the state of a program. This state is not immutable, as during
the execution a program performs different operations that may alter the contents of
variables.

The ability to inspect the program state is useful for reasons including debugging,
verification, and visualization [Brusilovsky, 1993]. The identification of the memory
regions that constitute the program state is a solved problem for type-safe languages.
In a type-safe language, the type of each variable can be determined, either statically or
dynamically [Aho et al., 2006, Sec.7.5.1]. More specifically, those languages distinguish
pointers from other types, which means that it is possible to accurately determine
whether a data segment may point to a different memory position. The capacity of
discovering which values in a program access memory facilitates the identification of
program state. As testimony to this fact, such identification is the basis of mark and
sweep garbage collectors [Zorn, 1990; Wilson, 1992].

However, identifying program state is difficult in type-unsafe languages. These
languages include not only C, C++ and mainstream assemblies, but also the unsafe
parts of otherwise type-safe languages such as Java, C# and Racket [Mastrangelo
et al., 2015]. C and C++ are commonly known in the garbage collection community as
uncooperative [Boehm andWeiser, 1988]. They own this qualifier to a weak type system,
that neither associates size information with memory regions, nor distinguishes pointers
from scalars. Also, in type-unsafe languages, it is possible to create new pointers by
applying arithmetic operations on existing pointers or by casting from integers, for



1. Introduction 18

example. This implies that no memory fragment can be safely released since it could
still be accessed by ambiguous program elements [Aho et al., 2006, Sec.7.5.1]. Although
it is still possible to implement garbage collectors for languages like C or C++ [Boehm,
1993; Henderson, 2003; Rafkind et al., 2009; Lee et al., 2020; Banerjee et al., 2020],
such implementations are not mainstream. The more reliable these garbage collectors
are, the heavier the overhead they bring.

1.1 Motivation

The first motivation of this work was towards compiler correctness. There are plenty of
techniques to debug compilers and code optimizations, but testing is the most widely
used method. Testing-based approaches have already confirmed hundreds of bugs in
mainstream compilers such as GCC and LLVM [Le et al., 2014; Yang et al., 2011].
However, testing requires benchmarks. When used to find bugs in compilers, these
benchmarks are programs with known behavior. Benchmarks can be curated from
mainstream applications, like SPEC CPU [Henning, 2006] and DaCapo [Blackburn et al.,
2006]. Usually, these benchmark suites have few programs, which causes many re-
searches to resource to benchmarks generated automatically by tools like CSmith[Yang
et al., 2011] and LDRGen[Barany, 2017].

Nevertheless, regardless of their origin, in order to be useful, benchmarks must
provide verifiable outputs. The verification of a benchmark is commonly performed by
comparing the output of the benchmark with a reference result. This constraint makes
it harder the automatic construction of benchmarks or to adapt general programs to
be used as such, as normally a program does not provide a way to the user check if its
output is correct.

In this scenario, a technique able to automatically create outputs for any program
would be extremely useful to the research community in general, since this would
greatly increase the number of benchmarks for several tasks. However, we noticed that
our ideas could be extended not just to add verifiable outputs, but to report the entire
internal state of a program at different points during the execution. Such approach
allows us, for instance, visualizing the state of the memory and data manipulated by
a program. This also increases the effectiveness of the use of our solution as a bug-
catching tool, since we inspect more variables.

As an example, see the program at Figure 1.1. This program implements a
function that recursively traverses a list duplicating it with the values added by 1. A
possible reference output for this program is the final values of the variables at each
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int numNodes = 0;

struct Node {
  int data;
  struct Node* next;
};

struct Node* create(const int data, struct Node* next) {
  struct Node* p = (struct Node*)malloc(sizeof(struct Node));
  p->data = data;
  p->next = next;
  numNodes++;
  return p;
}

struct Node* incAll(struct Node *head) {
  if (head) {
    return create(head->data + 1, incAll(head->next));
  } else {
    return NULL;
  }
}

int main(int argc, char** argv) {
  struct Node *n = NULL;
  struct Node *m = NULL;
  if(argc > 1){
    for (int i = 0; i < argc; i++) {
      n = create(i, n);
    }
  }    
  if(n){
    m = incAll(n);
  }
  return 0;
}

29
30
31
32
33

22
23
24
25
26
27
28

15
16
17
18
19
20
21

8
9
10
11
12
13
14

1
2
3
4
5
6
7

34
35
36

Figure 1.1. An example program that builds two disjoint linked lists

function. It is straightforward to report variables of primitive types and its derived
types just by calling standard printing functions available in the programming language.
Nevertheless, there are variables in this program which have user-defined types that do
not have a specific format specifier. Consequently, the functions responsible to print
data do not know how to handle such variables. Besides that, the program contains
pointers that can reach other memory blocks that keep valid data, hence such data
should be reported. Our solution can report all the values manipulated by the program
in Figure 1.1 that are part of the valid state at any stage during its execution.

There exist other tools capable of observing the state of the program at different
points. An example is the debuggers, like GDB [Stallman et al., 2002]. Yet, debuggers
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require a lot of user interaction to observe values of variables, whereas our solution is
fully automatic. In addition to it, our solution enables the user to explore not just the
Reachable but the Visible program state. We explain that difference in Chapter 3.

1.2 Solution

We demonstrate that ideas previously used in the implementation of tracing-based
garbage collectors for type-unsafe languages can be used to inspect program state in
type-unsafe languages. With this goal in mind, we bring, from the systems commu-
nity into the software engineering community techniques to create Program Inspection
Points, a notion that we define in Chapter 3. Several useful applications emerge from
this perspective: program synthesizers, debuggers and visualizers, to name a few.

Our approach is highly customizable. Whoever uses it can configure the granu-
larity of inspection points, to encompass, for instance, either the return statement of
every function, or the last statement of the program that is visible to the compiler.
Similarly, state can be configured to include values stored in global, stack-allocated and
heap-allocated variables, or any combination of them. The possibility to customize the
amount of program state that is tracked is key to producing practical applications. For
instance, to debug compiler transformations, we need to inspect every memory location
affected by the program, regardless of its usage e.g., as a pointer or as a scalar, or its
location.To visualize data structures, in turn, we need to traverse the graph formed by
pointers to locations in the heap. And to synthesize verification code for benchmarks,
we need to preserve their performance; for instance, printing only the state of local
variables at the end of program execution.

We show in Chapter 4 that this customization is achievable within a unified
framework, henceforth called Whiro. Said framework relies on the compiler only—it
does not depend on the operating system or the architecture. Thus, Whiro can be used
even in embedded devices that lack support of inspection tools like Valgrind [Nethercote
and Seward, 2007] or GDB [Stallman et al., 2002]. To preserve performance, we move
to compilation time as much computation as possible. To this end, Whiro injects
local variables in the program to track the state of values. To make it useful, we rely
on the meta-information that the compiler creates to match memory locations with
source-code names. To ensure soundness, the program is augmented with a global
hash-table to track values whose address cannot be estimated at compilation time.
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1.3 Summary of Experimental Results

We have implemented a pass that inserts inspection points in the Low Level Virtual
Machine (LLVM) intermediate representation. Chapter 5 discusses three usages of this
implementation: to debug compiler optimizations (Sec. 5.1), to visualize data struc-
tures (Sec. 5.3), and to insert verification code into benchmarks (Sec. 5.2). Chapter 6
evaluates the precision and the overhead of our implementation. At its maximum preci-
sion, our implementation keeps track of every memory address that has a corresponding
allocation point in the program’s’ source code: static, local and heap allocated vari-
ables, including aggregates such as arrays and structs. At this level, we observe an
average slowdown of 1.34x on MiBench programs Guthaus et al. [2001], an increase of
memory usage of 1.63x, and an increase of static code size of 1.48x. However, precision
is customizable. For instance, when used to synthesize verification code for bench-
marks, we observe no performance regression, an increase of memory usage of 1.07x,
and an increase in code size of 1.06x.

1.4 Next Chapters

This dissertation is structured as follows. Chapter 2 explores some previous works
from areas in which our work relates to. Chapter 3 brings some definitions that are
important for the understanding of our approach. In chapter 4 we describe Whiro,
the framework that implements our technique. Chapter 5 provides three examples of
possible applications of the proposed solution. Chapter 6 presents our experimental
evaluation and in chapter 7 we conclude our work. We also provide some documentation
about the main methods implemented in this work and an overview of our framework
in Appendix A
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Chapter 2

Literature Review

This work relates to some different research areas. In terms of purpose, the ability of
inspecting program state supports the implementation of lightweight forms of program
verification. In terms of implementation, the techniques discussed in this paper are
heavily inspired by previous work on tracing-based garbage collection for type-unsafe
languages. As we will state in section 4.5 (property 7), our technique can also be
viewed as a dynamic version of shape analysis. In the rest of this chapter, we discuss
how our work fits in these different subfields of the programming languages literature.

2.1 Compiler Correctness

The area of program verification is immense. Although our work does not deliver formal
guarantees about the behavior of programs, it helps developers to debug compilers in
at least three ways: (i) automatically producing outputs for benchmarks; (ii) revealing
program state to developers; and (iii) checking the behavior of compiler optimizations.
Figure 2.1 outlines where such purposes fit in the broader area of program verification.

Solutions to assert the correctness of a compiler and code transformations range
from formal methods to testing, each one using different principles towards correctness.
Formal verification methods have been using to prove the correctness of an optimiz-
ing compiler. The most notable work in this field is CompCert [Leroy, 2009], which
translates code from a subset of C to PowerPC assembly code. [Mullen et al., 2016]
have extended that work to verify peephole optimizations. Another example of formal
verification is CakeML [Kumar et al., 2014], a compiler which supports a subset of Stan-
dard ML and uses first-order logic to check if an input program meets the semantic
specifications of the compiler.
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Figure 2.1. Comparison of different techniques to find or prevent bugs in com-
pilers. A formally verified compiler (C) is correct by construction [Leroy, 2009].
Program synthesizers such as CSmith [Yang et al., 2011] create programs (P ) that
are given as inputs to compilers to test them. Variations of P , e.g., P1, . . . , Pn,
can be created via program mutation [Le et al., 2014; Sun et al., 2016]. Trans-
lation validation [Lopes et al., 2021; Necula, 2000; Pnueli et al., 1998; Tristan
et al., 2011a] checks that the compiler’s output, e.g., the compiled program C(P ),
is correct. Our technique can be used to check the outcome of compiler opti-
mizations (O). Given a compiled program Pc = C(P ), and its optimized version
Po = O(C(P )), inspection points let developers match the final state of Pc and
Po for any input I.

Another widely used approach to debug compilers is testing. Hundreds of bugs
have been reported by testing-based approaches in mainstream compilers, like GCC and
LLVM [Le et al., 2014; Yang et al., 2011]. Testing requires benchmarks, and in order
to be useful such benchmarks must present known behavior. Besides benchmarks from
mainstream applications, like SPEC CPU([Henning, 2006] and DaCapo[Blackburn et al.,
2006], researchers also resort to synthetically generated programs. Program generation
for testing has been the focus of many works and several techniques have emerged to
automate this process. Such programs can be generated strictly based on the grammar
of a language [Amodio et al., 2017; Lindig, 2005], or by adding some context to that
grammar [Yang et al., 2011; Alipour et al., 2016; Morisset et al., 2013]. Other solutions
do not based on the grammar of the language, e.g. the works by [Eide and Regehr,
2008] and [Nagai et al., 2012], which first create constructs of the language and then
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generate the remaining of the program, and the work by [Zhang et al., 2017], which
introduces skeletal program enumeration. Testing benchmarks can also be obtained
by program mutation, whether preserving the semantics of the original programs [Le
et al., 2014; Sun et al., 2016] or not [Nagai et al., 2014].

There exist debugging techniques which use a combination of domain-specific
languages to encode optimizations and an Satisfiability Modulo Theories (SMT) solver
to prove them correct [Lopes et al., 2015; Menendez et al., 2016]; and techniques which
try to catch and insert code to prevent an program to stop running in case of an error
occurs [Sidiroglou-Douskos et al., 2015], however the latter is restrict to some categories
of faults, e.g., out-of-bound access and integer overflows.

Verifying the correctness of a compiler as a whole,i.e., checking whether the com-
piler correctly optimizes every possible input program is a difficult and time-consuming
task. The technique of translation validation [Pnueli et al., 1998] consists in certifying
the correctness of each module produced by a compiler individually by comparing both
the original and the optimized program. This approach is similar to this work in that it
compares different versions of each program after it has been transformed. Translation
validation has already been proved useful and has been applied in different domains,
including mainstream compilers, such as GCC [Necula, 2000; Sewell et al., 2013] and
LLVM [Tristan et al., 2011b; Lopes et al., 2021], high-level synthesis [Tun Li et al.,
2013; Li et al., 2013; Kundu et al., 2010], code generation [Ryabtsev and Strichman,
2009; Leung et al., 2015], and software security [Zhang et al., 2011]. Our work is similar
to translation validation in the sense that it performs individually for each program,
and the states are compared for each transformation applied.

Verification of Benchmarks’ Outputs With the rise of automated benchmark gen-
erators, program checking is increasingly the target of research. In this scenario, such
generators must provide some method for validate its benchmarks. CSmith [Yang et al.,
2011] uses a checksum mechanism to verify the output of the benchmarks generated
by it. This checksum consists of the values of global non-pointer variables at the end
of execution, and it must be unique for a same valid input, regardless of the compiler
or optimizations used on a program. It roughly corresponds to the lowest level of
granularity that we provide: inspection at the end of the program based on statically
allocated variables. The work by Richards et al. [2011] also inserts verification code
into synthesized JavaScript programs. Their instrumentation enables the recording of
program states at each stage of its execution. In contrast to our work, these techniques
are tightly coupled with program synthesis. Verification is inserted onto synthetic pro-
grams, at the time these programs are produced; not in general code, like we are able to
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accomplish. Yang et al. [2015] developed an approach which automatically instruments
Register Transfer Level (RTL) modules to assist in debugging of high-level synthesis
tools. Their technique is based on just-in-time traces to gather the expected values for
the operations in the program and use this trace to insert verification code during the
generation of the RTL module, including information about the equivalence between
the RTL and the LLVM IR of the program. However, the set of programs that can
be successfully verified by that technique is a way simpler than ours, given that the
authors restrict themselves to a specific set of instructions that they can verify. Our
work improves upon said approach, since we are able to handle a larger universe of
programs.

2.2 Garbage Collection in Uncooperative

Environments

C and C++ do not contain a standard garbage collector. The aspect that most hinders
the existence of native garbage collection for those languages is the fact that they are
unsafe languages: the type systems of these languages do not prevent values of numeric
type from being treated as pointers. Hence we can, for example, compute addresses
with arithmetic operations. Nevertheless, different research groups have designed and
implemented garbage collectors for them, and this work was inspired by such imple-
mentations. Conservative garbage collectors do not have full information about pointer
locations, therefore they assume that any pattern in memory that could be a pointer
is in fact a pointer [Boehm, 1993], thus it can reach an object. The most well-known
conservative technique for garbage collection for C is the work by Boehm et. al [1988;
1993]. It is a tracing-based algorithm that records any invalid pointer discovered dur-
ing the collection. Those ideas have been extended along different directions more
recently. Henderson [2003] keeps a list of variables that might contain pointers within
to achieve a more accurate image of the C stack. The work by Rafkind et al. [2009]
describes a garbage collector for C that is precise, in the sense that it is able to distin-
guish integers from pointers. Current research efforts are still performed in this area.
For example, the work by Lee et al. [2020] proposes a new garbage collector focusing
on non volatile memory heap objects; and Banerjee et al. [2020] present a technique
to perform this collection in a sound manner. The key idea behind their solution is
to track the provenance of the pointers, to accurately compute the set of all program
locations from which a pointer can derive.

It is not trivial to verify heap-allocated data, since they may contain pointers
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to other data, and pointers in C do not keep information that describes the data
being pointed to, unlike other languages, e.g., Fortran, in which one can access such
information through a pointer [Chen et al., 2016]. The heap-checking performed by
our tool is similar to those tracing-base garbage collectors. A tracing-based garbage
collector starts from a set of root objects and scans all the objects which are reachable
from this root set. Heap Tracing is also how we collect heap state. This work keeps a
image of the heap at every function call, which contains addresses allocated in the heap.
Using this image, we perform a depth-first-search going over the chain of references
reachable from this image, printing the contents of each variable found. Our approach is
neither over-conservative, nor relies on static analyses, and it improves the conservative
garbage collectors techniques, since we can identify precisely every allocated pointer.
However, the price for this precision is efficiency: our tracing technique would not be
a viable alternative to garbage collection in an uncooperative environment, because its
global table imposes a prohibitively large overhead on programs, as we shall see further
in this dissertation (section 6.2).

2.3 Shape Analysis

The usage of pointers is one important aspect of imperative languages. Pointers in-
crease the performance of operations such as iterating and are useful to pass large data
structures as function arguments. However, this usage is error-prone, and making mas-
sive use of pointers may hinder program understanding and debugging. Besides that,
the possibly far reachability of pointers makes program dependence analyses harder,
which causes possible loss of opportunities for optimizing. Shape analysis is a static
program analysis that aims to provide some properties of the heap-allocated data that
a program handles. The results bring valuable information for program debugging,
parallelization, and optimization [Wilhelm et al., 2000]. For example, a shape analy-
sis algorithm may assert the type of data structure that constitutes the output of a
program [Sagiv et al., 1998] or confirm that a given program is free of some types of
memory management errors [Dor et al., 2000].

Nevertheless, static analyses need to summarize the execution of a program and
consequently they do not depict the real extension of pointer’s reachability. For re-
cursive programs, summarizing procedure calls is also necessary [Rinetzky and Sagiv,
2001]. Similar to the idea of shape analysis, our work can provide a view of the format
of the heap-allocated data in a program, but we generate said view dynamically and at
different points during the execution. Due to the heap tracing, we can analyze recursive
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data structures and validate information about the heap state without the limitation
of static bounds.
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Chapter 3

Core Definitions

The goal of this dissertation is to let users observe the state of the memory manipulated
by a program at different points of its execution. To illustrate how our contribution
works, we will be using the program seen in Figure 1.1. In this example, the nodes of
the tree are allocated in the heap, while the variable that controls the loop is in the
stack of function main, and the variable numNodes is static.

In the rest of this chapter, we define the concepts that serve as the basis for our
solution, starting with the notion of a Static Inspection Point.

Definition 1 (Static Inspection Point – SIP) Given a program P written as a se-
quence of statements, a static inspection point is a point following a statement of P .

Example 1. At maximum granularity, we recognize four static inspection points in
the program in Figure 1.1 , which, have been marked as A, B, C and D. The points
are shown in Figure 3.1

Whiro observes the variables at the different calling contexts that might exist
during the execution of a program. At runtime, each time the program traverses a SIP,
values are reported at Dynamic Inspection Points, which we define as follows:

Definition 2 (Dynamic Inspection Point – DIP) A dynamic inspection point is
a static inspection point, plus a calling context when that point executes. The calling
context of a given invocation of a function f is determined by the list of functions active
when that activation of f took place.

Example 2. If we execute the program in Figure 3.1 as “main a", then we shall
observe the eight dynamic inspection points seen in Figure 3.2.
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int	numNodes	=	0;

struct	Node	{
		int	data;
		struct	Node*	next;
};

struct	Node*	create(const	int	data,	struct	Node*	next)	{
		struct	Node*	p	=	(struct	Node*)malloc(sizeof(struct	Node));
		p->data	=	data;
		p->next	=	next;
		numNodes++;
		return	p;
}

struct	Node*	incAll(struct	Node	*head)	{
		if	(head)	{
				return	create(head->data	+	1,	incAll(head->next));
		}	else	{
				return	NULL;
		}
}

int	main(int	argc,	char**	argv)	{
		struct	Node	*n	=	NULL;
		struct	Node	*m	=	NULL;
		if(argc	>	1){
				for	(int	i	=	0;	i	<	argc;	i++)	{
						n	=	create(i,	n);
				}
		}				
		if(n){
				m	=	incAll(n);
		}
		return	0;
}

29
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36

Figure 3.1. A program with four static inspection points marked with letters
A-D.

Notice that from Definition 2, the same static inspection point might yield a
large number of different dynamic inspection points. In face of recursion, a potentially
infinite number of different DIPs is possible.

3.1 Program State

At each one of the dynamic points, Whiro produces an image of the program state,
relating memory locations with the names of variables in the source code of the pro-
gram. We define as state the set of values of local, static and heap-allocated variables
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Figure 3.2. Dynamic contexts produced by the program in Figure 3.1, with the
input “main a".

of a program at a given dynamic inspection point. The Visible Program State is the
subset of the program state that is reachable from variables visible at the scope of that
dynamic inspection point:

Definition 3 (Visible Program State) The visible state of a program at a dynamic
inspection point p is a map from the program symbols visible at the scope of p to values.
Program Symbols are the names of program variables.

The notion of visible state differs from the notion of Reachable State commonly
adopted in the description of tracing-based garbage collectors. The reachable state of a
program (see, for instance, Aho et al. [2006, Sec.4.6.6]) is formed by memory allocated
statically or on the stack, plus the memory in the heap referenced by any value in
the reachable state (including the heap itself). The visible state differs with regards
to stack allocated variables. Only variables in the scope of the active function (the
function on the top of the call stack) are considered visible.

Example 3. Figure 3.3 shows the visible program state at two dynamic inspection
points during the execution of the “main" function from Figure 3.1, with string “a" as
input.
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p:	•

data:	1

next:	•
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L29

incAll
L18 B7:

main
L29

incAll
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data:	1

next:	•
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data:	1

next:	•

NULL

data:	1

next:	•

data:	0

next:	•

Static allocation Stack allocation

Dynamic Inspection Point:

Visible program state:

Visible program state:

Types of locations: heap allocation

numNodes:	4

Dynamic Inspection Point:

Figure 3.3. Visible program states at two different dynamic inspection points
from Figure 3.2. Symbol “retn" is the auxiliary variable that holds the return
value of function incAll at Line 18 of Figure 3.2.

The reason to distinguish visible from reachable state is pragmatic. The differ-
ence between visible and reachable states does not compromise Whiro’s ability to
inspect values created by recursive functions. Variables that are not in scope cannot
be modified (within the defined semantics of C, for instance [Hathhorn et al., 2015]).
Once these invisible variables become active, e.g., when their activation record reaches
the top of the calling stack, they can be inspected. Nevertheless, the static memory
and the entire heap (including parts reachable only via invisible variables) are still
tracked.



32

Chapter 4

The Whiro Framework

The solution proposed in this dissertation is presented as a framework called Whiro.
In this chapter, we describe the main features of said framework. In section 4.1 we
define the main data structure used by Whiro to track the program state. Section 4.2
details how we inspect variables in inspection points. Section 4.3 exemplifies some of the
engineering decisions that have been taken during the implementation of our solution.
Section 4.4 discuss the properties that arise from our implementation. Finally section
4.5 shows the different modes of usage of Whiro.

4.1 Tracking Program State

To track the visible program state, we use a data structure henceforth called memory
monitor, defined as follows:

Definition 4 (Memory Monitor) The memory monitor is a data structure given by
a tuple (G,S,H, T ), such that:

G,S: Maps of global or stack Symbols to (MetaVar, Trace)

H: Set of Heap Addresses

T : Set of Type Descriptors

Where:

MetaVar consists of name and type of a variable;

Trace is List of (ProgramLoC, SSADef);
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SSADef is the definition point of some expression in an Single Static Assign-
ment (SSA)-form program;

ProgramLoC is a program point, i.e., a program instruction or declaration
in the LLVM intermediate representation.

Type Descriptor is a metadata that specifies the name and the format spec-
ifier of a type in the source code.

In Definition 4, Gmaps global variables to debugging information. S is analogous,
except that it maps automatic variables to debugging information. There exists one
table S per program function—each table stores information related to variables in the
scope of a function. H is the set of addresses of memory blocks allocated in the heap.
T holds metadata describing every type in the target program.

Static Components of the Memory Monitor. The G (global) and S (stack) com-
ponents of the memory monitor exist only at compilation time. They do not exist when
the target program executes. Their goal is to guide the insertion of instrumentation
code in the program. Said code serves two purposes: (i) report program data to the
user; and (ii) update the heap map H. The following parsing events cause updates of
these structures (at instrumentation time):

1. Declaration of global variable v at location l: an entry for v is created in G. The
pair (`, def (v)) is appended at Trace(v), in the entry G[v]. Here def(v) is the
SSA expression that encompasses the address of v.

2. Declaration of a local variable v within function f : an entry for vf is created in
S.

3. Assignment v = u to a variable v local to function f at location `. The pair
(`, def (u)) is appended at Sf [v].

As mentioned before, def (v) for a global variable v represents its address. The
addresses of global variables are determined at compilation time. Such addresses are
visible in every program point, thus the assignments to global variables in the program
are not tracked. In fact, (`, def (v)) is the only element in the Trace(v) in case of static
variables. To inspect a variable statically allocated the Memory Monitor always uses
the address definition.

Example 4. Figure 4.1 shows S and G for the program in Figure 3.1. G contains data
for global variable numNodes. Table Smain refers to function main. We omit the other
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two stack tables, e.g., Screate and SincAll, to save space. The variable i is not kept in
the Smain map because it does not exist at the inspection point of main.

numNodes numNodes, int

Global Table G:

Stack Table Smain:

m

n

argv

argc
argc, int

argv, char**

n, struct Node*

m, struct Node*

(1, 0)

(25, NULL)

(26, NULL)

(29, create(i, n))

(33, incAll(n))

Symbol MetaVar Trace

Figure 4.1. Global and stack tables for the program in Fig. 3.1. We show only
the stack table for main.

Dynamic Components of the Memory Monitor. The heap table H and the type
table T exist during program execution. We call these two tables the Auxiliary Program
State. Table T is constructed statically and is immutable. The instrumented version
of the program reads T and maintains it during the entire execution. It contains type
descriptors. Descriptors are flyweights, meaning that there exists one per type in the
program’s source code. T lets Whiro print non-scalar variables, for it associates every
type with an output format. It also allows Whiro to navigate the program’s visible
state, indicating fields of aggregate types that are pointers. For product types (e.g.,
C-like structs) the descriptor consists of the name, format, and the offset of each field.
For pointers and qualified types (const, volatile, etc), the descriptor also contains
an index to access the descriptor of the base type. This recursive nature can represent
any composite type.

Example 5. Figure 4.2 shows the type table for the program earlier seen in Figure 3.3.
The table contains seven entries, one for each type used in Figure 3.3, namely: int,
struct Node*, struct Node, const int, char**, char* and char.

The Heap Table H, in contrast to the type table, changes during the execution of
the program. Instrumentation inserted in the target program updates H. Each entry
in the heap table contains an index to a descriptor in the type table. H also keeps
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Type: 2 Type: 2 Type: 2 Type: 2

Size: 1 Size: 1 Size: 1 Size: 1

Free: 0 Free: 0 Free: 0 Free: 0

Vis: 0 Vis: 0 Vis: 0 Vis: 0

B1 B2 B3 B4

Type Table T:

Heap Table H:

N: "" N: "" N: "data" N: "" N: "" N: "" N: ""

F: %d F: %p F: %d F: %d F: %p F: %p F: %c

O: 0 O: 0 O: 0 O: 0 O: 0 O: 0 O: 0

B: 0 B: 2 B: 0 B: 0 B: 5 B: 6 B: 6

N: "next"

F: %p

O: 8

B: 2

int pointer Node

6

charpointerpointerconst

50 1 2 3 4

Figure 4.2. Auxiliary state at the seventh DIP in Figure 3.3. The keys in the
type table are N = name; F = format; O = offset and B = base type.

track of freed heap addresses, which are considered unreachable data. If a freed address
is re-allocated by the memory manager, the memory monitor sets the corresponding
entry in H as reachable again, and updates the reference to T according to the type
being allocated. The following events cause the heap table to be updated (at running
time):

1. Memory is allocated, e.g., v = malloc(Tp)1: the monitor creates an entry H[v]

(if one does not exist), sets it as reachable and associates this descriptor with
T (Tp).

2. Memory block is resized, e.g., v2 = realloc(v1, size): the monitor updates the
size of H[v1] to size.

3. Memory is freed: the monitor sets H[v] as unreachable.
1We use the same assumption as Banerjee et al. [2020]: heap-allocated addresses only come out

as the return value of particular functions (e.g malloc in C).
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Only objects initialized with memory allocation functions have their info stored
in the Heap Table. Whiro exposes the same object in case there are many program
symbols pointing to it.

int main{
  int* a = malloc(16);
  int* b = a;
  float* c = (float*)a;
  int* d = a+1;
  return 0;
}

1
2
3
4
5
6
7

Figure 4.3. A program with just one allocation of heap memory. Whiro keeps
a single entry in H and it always reports the same this same address regardless
of how many program objects point to it.

Example 6. In the program in Figure 4.3, there will be only one entry in H, referring
to an array with 16 bytes. The same value reported when inspecting a or b, i.e., a hash
code value built from the contents of an array with 16 bytes, as section 4.2 explains.
If heap tracking is disabled, then the contents of a[0] and c[0] are printed. In this case,
the former is printed as an integer, and the latter as a single-precision floating point
number. Variable d will be reported as a pointer to a single byte.

Currently, Whiro has special treatment for functions from the C standard li-
brary that manage memory ( calloc, free, malloc, realloc, reallocf, valloc and
aligned_alloc). It is important to emphasize that these functions have not been
modified: Whiro only understands that they perform memory allocation and deallo-
cation. To use a different allocator, this semantic would have to be encoded into the
implementation of Whiro. Only one of the source files would have to be modified, but
this modification requires knowledge of Whiro’s implementation.

Example 7. Figure 4.2 shows the auxiliary state after the program in Figure 3.1
executes the inspection point B for the second time. H contains four heap-allocated
blocks corresponding to the nodes of two linked lists. Each block contains an index to
access the type table; hence, Whiro is able to find the type of memory chunks. The
“Vis" column indicates whether that block was visited when traversing the heap graph,
as section 4.2 shall explain.
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4.2 Information Retrieval

Whiro inserts code at inspection points to retrieve the visible program state. Data is
printed as either a textual log, or as a DOT graph (see Section 5.3). The rest of this
section explains how Whiro retrieves this information.
Inspection Traces. Whiro instruments SSA-form programs [Cytron et al., 1989];
hence, for each source variable v there might exist several SSA definitions, henceforth
called Ins(v). When the inspection point is logged, only one Ins(v) is valid. Given a
function f , for each entry v in the global map G or in the function map Sf , Whiro

finds the valid Ins(v) as follows:

1. If a definition d(v) ∈ Trace(v) is an address in the stack of f, Ins(v) = d(v)

2. If a definition d(v) ∈ Trace(v) resides in the same basic block as the current
inspection point being created, Ins(v) = d(v). If there are multiple definitions
that meet this criterion, we choose the last.

3. If a definition d(v) ∈ Trace(v) dominates the inspection point, Ins(v) = d(v).
In case of multiple dominators, we choose the most immediate.

In SSA-programs it is also possible that a single definition is associated with
different source code variables. We rely on the debugging information generated by the
compiler to build this relation between source variables and SSA expressions. However,
such associations might disappear, for instance, after some optimization. In this case,
we will not be able to report information about some variable in the source code.
We have faced such problem due to scalarization. In this case, we had to preserve
meta-information ourselves. Example 13 explains how Whiro deals with this.
Extending Live Ranges. An inspection point reports the state of all the automatic
variables declared in the function where the SIP (Def. 1) exists. A problem ensues if
a variable v is not alive at the SIP, and the SIP can be reached through multiple SSA
definitions of v. In this case, Whiro would not know which Ins(v) to use. To deal
with this issue, Whiro inserts, at the SIP, a φ-function joining all the definitions of v
that reach that program point.

Example 8. In Figure 3.1, n and m are promoted from the stack to virtual regis-
ters. Two definitions of n can reach point D, coming from lines 25 and 29. Similarly,
definitions of m can reach D coming from lines 26 and 33. Whiro shall create two
φ-functions in the basic block that contains D, each redefining one of these variables.
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Function Counters and Calling Context. The names reported in an inspection
point are defined statically. Nevertheless, DIPs (Def 2) run in different calling con-
texts. Hence, the same name may be associated with different values during program
execution. Whiro distinguishes data at DIPs by the calling context. A static counter
is associated with every instrumented function. Said counter is incremented each time
the function is called. Thus, when reporting the program state, the current value of
the function counter is also informed.

int** foo(int M, int N) {
  int **x = (int**)malloc(M * sizeof(int*));
  for (int i = 0; i < M; i++) {
    x[i] = (int*)malloc(N * sizeof(int));
    for (int j = 0; j < N; j++) {
      x[i][j] = j;
    }
  }
  // Inspection point here
  return x;
}
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Figure 4.4. A program with that defines a 2D matrix.

Dealing with Multi-Dimensional Arrays. Whiro can print the contents of arrays
of primitive types; however, in its default mode, Whiro produces a hashcode that sum-
marizes the data stored within them. For arrays of aggregate types, Whiro inspects
each cell individually. To find the hash of an array v of primitive types, Whiro still
traverses v entirely, even if the array is multidimensional. It is to note that a change
in any array position yields a different hashcode; hence, hashing does not harm the
use of Whiro as a debugging tool. If the dimensions of the array are determined by
constants known at compilation time, then no additional instrumentation is inserted
in the program to permit this traversal: the necessary loop is hardcoded at compila-
tion time. Otherwise, Whiro inserts instructions to compute those values at runtime.
These values are kept in the S table.

For arrays of pointers, Whiro treats each contiguous block of memory indepen-
dently, so as long as the type of an array cell is declared with a pointer qualifier, Whiro

can track it. This is possible because size information is stored in the Heap Table H,
and type information is preserved in the table T . The combination of these two tables
also lets us handle arrays that contain structure types, even if said structures contain
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pointers to other arrays.

Example 9. The program in Figure 4.4 defines a 2D matrix whose root is declared as
int ∗ ∗. Whiro would prints individual hash codes for x[0] and x[1], because array x
has cells that are pointers themselves.

Traversing the Heap Graph. The blocks allocated in the heap form a graph.
Edges exist whenever a block contains a pointer to another heap address. One of
the inspection modes of Whiro traverses this graph (see Section 4.5) in Depth-First-
Search fashion. To avoid cycles, Whiro adds a bit to every node in the heap table H,
indicating if that node has been visited. Tracing-based garbage collectors implement
similar approach [Wilson, 1992; Zorn, 1990]. To deal with aliasing, we set every node
as unvisited right after the traversal ends. In short, Whiro guarantees that every byte
that has been allocated (and not freed) is traversed at least once if this memory is
reachable.
Reporting Example. Here we show an example of report generated by Whiro.
Consider the program in Figure 4.5:

int main() {
  char* c = malloc(16);
  long *d0 = (long*)(c+8);
  *d0 = 42;
  long d1 = (long)*(c+8);
  char *c1 = (char*)&d1;
  printf("%ld\n", d1);
  return 0;
}
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Figure 4.5. A program that allocates an array in the heap and creates pointers
from the allocated address.

Using maximum precision, Whiro prints, for this program:

*c main 1: 1536899735 // Hash of a 16-byte array

*d0 main 1: 42 // Value stored in an array of type long[1]

d1 main 1: 42 // Value of a variable of type long

When inspecting variable c, Whiro checks the Heap Table and sees that the size
of the corresponding entry is 16 and the type is a scalar, so it computes a hashcode. It
does not find d0 in the Heap Table and there’s no size information associated with it,
so it inspects d0 according to its source type, i.e., a pointer to long. Whiro does not
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print anything related to c1, as this pointer is never used, after being initialized. It is
worth to emphasize that when reporting floating pointer values Whiro rounds them
up to two decimal places.

4.3 Implementation Decisions

While developing Whiro, we took a series of engineering decisions (also know as
“hacks") to ensure that the framework could handle general C/C++ programs. These
decisions, in our opinion, are not necessarily of scientific interest; however, from a
coding standpoint, they might hold some consequence. In this section, we go over
some of these decisions.

Reading one element past the end of an array The C Standard allows a compar-
ison between a pointer and the first address past the end of an array ([Schildt, 1990,
6.5.6/8]). However, this element cannot be dereferrenced. Referring to the next address
past the last address of an array is a common approach to implement C++ iterators,
for instance. Example 10 shows a program that uses this trick. This possibility poses
a problem to Whiro, for our implementation cannot know if a pointer is valid or not.
If the pointer is mentioned in the source code, this pointer will be printed as part of
the program’s visible state, once information is retrieved from the inspection point. In
this case, undefined behavior might ensue.

Example 10. Figure 4.6 shows a program that reads one element past the last address
of an array to iterate through the array. Pointer e cannot be dereferrenced; however,
it can be compared against another pointer.

int main() {
  int v[4];
  int *i;
  int *e;
  for (i = v, e = v + 4; i < e; ++i) {
    *i = 1;
  }
  return 0;
}

1
2
3
4
5
6
7
8
9

Figure 4.6. A program that reads a pointer past the last address of an array.
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Whiro does not keep a list of valid memory blocks. Keeping this list would
be overly expensive at runtime, for every memory address would have to be tagged.
Thus, if an invalid address is mentioned in the source code, it will be printed as part of
the data in a dynamic inspection point. Two problems emerge from this shortcoming.
First, debuggers, like the one discussed in Section 5.1, might try to compare these
pointers, and the result of this comparison is meaningless. Second, when tracking heap
data, Whiro might jump to whatever address it recognizes in such a pointer—possibly
incurring into a segmentation fault. Our implementation does not try to deal with the
first problem: it is up to Whiro’s users to handle false positives. To deal with the
second problem, Whiro only prints pointers within specific Executable and Linkable
Format (ELF) program segments: stack, heap, bss, data, and text. The boundaries
of these segments are given by global variables. This solution works for ELF binaries,
but it is not portable across different formats.

Dealing with Union Types Programming languages like C and C++, or the LLVM
intermediate representation, provide users with “union types". These types are sets
formed by the union of two other types. Union types in C and C++ are defined
by the union key word. Unfortunately, these unions are not tagged, as it happens,
for instance, with datatypes in functional programming languages like Haskell and
SML/NJ. Therefore, at runtime, Whiro cannot know what is the intended meaning of
a union type: any of its composing types could be a valid representation. Example 11
illustrates this issue.

Example 11. Figure 4.7 shows a program written in C that defines a union of two
types; integers and 32-bit floating point numbers. A static reaching definitions analysis
will inform us that two definitions of the union can reach Line 9: either the one at Line
5 or the one at Line 7. Yet, dynamically, only the definition at Line 5 ever reaches Line
9.

To allow the comparison between union types across two different versions of the
same program, Whiro prints them as bitmaps. In other words, the inspection of a
value declared as a union type always yields the bitmap representation of that type,
using its largest composing part. Similarly, whenever a union type is inserted into the
heap table H, it is stored as its largest constituinte, even if that is not its intended
meaning.

Shadowing Stack Variables As mentioned in section 4.2, Whiro reports all the
variables local to the function where the inspection point is defined. For variables
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union element { int i; float f; };
int main(int argc, char** argv) {
  union element e;
  if (argc) {
    e.i = 4;
  } else {
    e.f = 0.25;
  }
  return e.i;
}

1
2
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5
6
7
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9
10

Figure 4.7. Program that defines a union type.

which are not alive at said point, we extend their live range by injecting φ-functions
in the program. However, in some cases there are no definitions of a variable v from a
function f in the predecessors of the inspection block. In this case, extending the live
range of v might involve the creation of many φ-functions from the available definitions
of v until the inspection point—some of them with UNDEF values. To simplify this
process, Whiro shadows v to correctly track its value.

Shadowing a variable means duplicating in memory the value of that variable.
The duplicate must be updated whenever the original variable suffers an assignment.
To implement shadowing, we allocate a slot shadow(v) in f ’s activation record. This
slot has the same type as v. Then the trace of v is traversed and the memory monitor
injects code in f to store all the definitions in shadow(v) right after they are computed.
Since shadow(v) is created at the entry point of f with a special “undefined" value, the
shadow value is visible in all the basic blocks of that function. Therefore, that value
can be read at any point within f . Example 12 illustrates this modus operandi.

Example 12. Variable b in Figure 4.8 belongs into the local scope of function main.
This variable is assigned at two different program points which reach the static inspec-
tion point at Line 11. Furthermore, its declaration point, with an undefined value, can
also reach Line 11. Inspecting the value of b at Line 11 would require the insertion of
three φ-functions in the program (between Lines 6-7, 8-9 and 10-11). Instead, Whiro

duplicates the value of b in memory.

We shadow variables whenever undefined values can reach an inspection point.
A special undef token is stored in the shadow location. This token is unique for every
occurrence of what, in LLVM jargon, is known as an “immediate undefined behav-
ior" [Lopes et al., 2021, Sec.2]. In this way, when comparing two different versions
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int main(int argc, char** argv){
  int a = 10;
  int b;
  for(int i = 0; i < 5; i++){
    if(argc > 1){
      b = argc;
      while(b < a)
        b++;
    }
  }

  return 0;
}

1
2
3
4
5
6
7
8
9
10
11
12

SIP

alloca(shadow_b)

*shadow_b = arc

*shadow_b += *shadow_b

print(*shadow_b);

Figure 4.8. In this program, variable b would be shadowed. The value of the
duplicated variable will be printed at the inspection point.

of the same program, Whiro will match two instance of the same undef token. We
opted for this strategy for simplicity, as it makes it unnecessary to update the SSA-
form representation of the program. A more mature version of Whiro probably will
not resort to shadowing. Instead, keeping variables in SSA-like virtual registers for as
long as it is possible.

Scalarized Aggregate Types Whiro needs to deal with program transformations
when reporting the state of variables at inspection points. Many code optimizations
implemented in LLVM preserve the metadata associated with program symbols. There-
fore, they pose no problems to Whiro. However, a few optimizations invalidate this
metadata. One of these optimizations is array scalarization. Array scalarization re-
places a cell within a array with a temporary register. Readings and updates meant to
happen over the array are diverted to the register. Example 13 shows an example of
this optimization in action.

Example 13. Figure 4.9 (Top) shows a program that performs updates on an array
r. The update depends on the values of arrays a and b. It is possible to scalarize r[i].
Figure 4.9 (Bottom) shows the program after scalarization takes place.

Scalarization renders the state of an array invalid at some program regions. As
an example, the contents of array r differ within the conditionals in Figure 4.9. If an
inspection point exists in a region that contains scalarized arrays, then the contents of
these arrays cannot be compared. To deal with this problem, Whiro adds metadata
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void sum0(int* a, int* b, int*restrict r, int N) {
  int i;
  for (i = 0; i < N; i++) {
    r[i] = a[i];
    if (!b[i]) {
      r[i] = b[i];
    }
  }
}

void sum1(int* a, int* b, int*restrict r, int N) {
  int i;
  for (i = 0; i < N; i++) {
    int tmp = a[i];
    if (!b[i]) {
      tmp = b[i];
    }

    r[i] = tmp;
  }

}

1
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10
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22

scalarized:tmp/r

scalarized:tmp/r

scalarized:tmp/r

SIP

SIP inconsistent_hash:r

consistent_hash:r

Figure 4.9. (Top) Program before scalarization. (Bottom) Program after scalar-
ization.

to the program, to indicate the places in the code that contain scalarized arrays. When
traversing the data at a inspection point that exists at such a place, Whiro still prints
the hash of the scalarized array, albeit with a message to the user, indicating that the
hash was taken from stale memory.

4.4 Properties of the Memory Monitor

A number of properties ensue from our implementation. We provide here sketches
of proofs of each property. We have verified them experimentally, as we explain in
chapter 6.

Property 1.(Non-interference) The memory monitor does not alter any value origi-
nally computed by the program.

Proof (Sketch): Whiro does not update memory originally allocated by
the program. Notice that Whiro is not free of side-effects: if users inspect a
program point, data shall be output from the program.
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Property 2.(Time Complexity) When retrieving or updating information, stack and
global variables are located in O(1); heap-allocated blocks are retrieved in O(logn),
where n denotes the number of blocks stored in the heap.

Proof (Sketch): Stack and global variables are accessed via their addresses.
Whiro uses a hash table to record heap blocks. Typically, the average case to
access the Heap Table will be O(1), but collisions are handled via a balanced
tree, and so the worst case O(logn) complexity is possible.

Property 3.(Space Complexity) The sizes of the components G, S and T of the
memory monitor are determined statically. G and S exists only at compilation time;
T exists at compilation time and also at running time. The size of G is proportional
to the number of global variables in the program; the size of S is proportional to the
number of local variables declared in the program; the size of T is proportional to the
number of types declared in the program.

Proof (Sketch): These facts are consequence of Whiro’s implementation:
the sizes of G, S and T are determined statically, based on the number of global
and automatic variables, and in the number of types declared in the program.

Property 4.(Ordering) When inspecting visible state, first stack-allocated names and
heap-blocks are read, then global names. Global and stack data are reported in lexico-
graphical order on the names of variables in source code. Heap blocks in the root of the
reachable graph are reported in the order of updates. Within a connected component,
the heap graph is reported in the order of updates.

Proof (Sketch): Global and stack variables are kept in G and S maps
respectively. The contents of such maps are sorted by the key values, which in
this case are the program symbols. Newly allocated heap blocks are pushed to
the end of H, which means that it can be traversed as a list

Property 5.(Covering) At maximum precision granularity, every block that has been
allocated in the heap and has not been freed is traversed at least once if this memory
is reachable.

Proof (Sketch): Every allocated block is kept in the Heap Table. When
inspecting a variable that points to heap-allocated data, Whiro checks if such
data points to another valid memory location. In positive case, Whiro will also



4. The Whiro Framework 46

report the data in said location and perform the reachability checking again. By
doing that, Whiro is able to traverse the entire valid heap. By keeping the Free
flag in the entries of H, we are able do distinguish which addresses are valid in
the program

Property 6.(Data Reporting) If data in the program is an alias to the first address
of a memory block, then the block is traversed. Otherwise, the data is printed as an
array with a single cell with the declared type of the data.

Proof (Sketch): When inspecting programs, Whiro is able to gather infor-
mation regarding the size of memory allocation, if such information is available
in the program. This information can be either by directly accessing constants
or values of variables or by creating instructions to compute such size at run-
time. In this case, Whiro will traverse the entire block of memory using the size
information and report all the data within that block. In case there is no size
information of memory allocation, Whiro reports the data by just as a single
cell array

4.5 Customizations

Whiro can be customized along three dimensions: memory allocation, tracking graph,
and SIP granularity. These dimensions trade precision for performance. In this context,
“precision" is ranked by the amount of information stored in the memory monitor, and
“performance" is ranked by the running-time overhead imposed by instrumentation.

Memory Allocation. This customization determines which memory region of the
program will be tracked by inspection points. Whiro recognizes any combination of
three regions:

Static: Tracks memory allocated statically.

Stack: Tracks memory allocated on the stack.

Heap: Tracks memory allocated in the heap.

Tracking Graph. When showing the visible program state, Whiro can either treat
program symbols as isolated entities, or can relate them via the pointers present in the
instrumented code. These two possibilities give us the following customization modes:
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Fast: Only local and static variables are tracked as isolated locations. Hence,
this mode does not follow pointers when presenting the program state.

Precise: Whiro shows the graph formed by relations between pointers. Con-
trary to the previous mode, this customization requires building the heap table.

Whiro, in the Precise mode, works as a dynamic version of shape-analysis [Sagiv
et al., 1998]—a fact that we state in Property 7.

Property 7.[Shape] Let πs be a static inspection point, and let πd be any related
dynamic inspection point. Whiro will produce for πd an image of the heap with no
more edges than a “may" version of shape-analysis would summarize for πs. Similarly,
its image should contain for any πd no less edges than a “must" version of shape analysis
summarizes.

Proof (Sketch): Whiro draws edges between heap blocks only if such blocks
are reachable. Although the heap table maintains freed addresses, edges that tar-
get such addresses are never reported. Whiro essentially implements a dynamic
analysis on programs: every fact that it reports is a fact that happened during
some execution of a program. Therefore, if the fact is "Pointer p must refer to
memory m", then Whiro will not report false positives, provided that p has been
declared with a pointer-qualified type. Similarly, if a correct implementation of a
may-shape analysis says that "p might never refer to m", then Whiro will never
report this edge in the heap graph.

int main(){
  int* a = (int*)malloc(16);
  int *b = a;
  int *c = a + 1;
  return 0;
}

1
2
3
4
5
6

Figure 4.10. A program with one heap allocation.

Example 14. Consider the program shown in Figure 4.10. When inspecting this
program in Precise mode with heap tracking, Whiro will print:
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*a main 1: 2347902291 // Hash of a 16-byte array

*b main 1: 2347902291 // Hash of a 16-byte array

*c main 1: 0 // Value at a[1]

When inspecting this program in Precise mode without heap tracking, Whiro

will print:

*a main 1: 0 // Value at a[0]

*b main 1: 0 // Value at a[0]

*c main 1: 0 // Value at a[1]

In short, blocks of memory allocated in the heap are reported as a hash code of
the contents of their bytes. Pointers to the first address of these blocks are reported as
said hash code. Pointers to addresses past that point are reported as single-cell arrays
with the type declared for the pointer.

SIP Granularity. Whiro allows the customization of static inspection points. In
principle, any region in the program where a new instruction could be inserted is an
inspection point. However, for the sake of pragmatism, we currently support only two
granularities of inspection points:

Main: the return point of the main routine is inspected.

Any: The return point of any routine is inspected.
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Chapter 5

Applications of Inspection Points

This chapter presents three applications of Whiro, each using a different customization
of the framework. We go over the case studies in sections 5.1–5.3.

5.1 Debugging Aid

The construction of tools to debug compiler optimizations has been a common source
of research in programming languages [Pnueli et al., 1998; Necula, 2000]. The ability
to compare states in an inspection point that is common across different versions of a
transformed program lets us contribute along this direction.
Purpose: Given a program P plus a set of inputs, and an optimized version P ′ of it,
compare the internal state of P and P ′ when executing with the given inputs. Use the
result of this comparison to pinpoint bugs in the optimization.
Challenge: We are comparing two potentially very different versions of the same
program. There is not a perfect match between inspection points: optimizations like
inlining remove some inspection points in the Any mode. There is not a perfect match
between program symbols neither, as optimizations like constant propagation remove
symbols.
Instrumentation mode: To maximize the likelihood that differences in program
state are observed, we instrument every memory region (Static+ Stack+ Heap),
using the Precise mode, at maximum granularity (Any).
Results: We deliver an approximate solution for the problem of bug finding: our
debugger only matches program points that are equivalent in both versions of the
program. We are able to highlight program symbols that have been erased in the
optimized version of the program, to reduce false positives. Auxiliary variables created
by the compiler are not considered in this comparison, for they are not associated with
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high-level debugging information, nor they have exact correspondence between P and
P ′. In section 6.5 we show that this usage of Whiro has been able to detected bugs
injected in LLVM’s implementation of constant propagation.

5.2 Adding Verification Outputs to Benchmarks

The synthesis of benchmarks is an important program in the construction of predictive
compilers [Cummins et al., 2017, 2018]. A common technique to synthesize benchmarks
is to mine code from open-source repositories [da Silva et al., 2021]. However, for
verification purposes, a benchmark must have some output. By comparing said output
with a reference, compiler engineers have confidence on the validity of any test produced
with that benchmark.
Purpose: Given a program P , add output to it, by printing the state of static and
local variables after execution.
Challenge: If instrumentation is too intrusive, the results obtained through bench-
marking P might be subject to “probe effects". These effects emerge when inspecting
the program provokes unintended alterations of its behavior. Therefore, the perfor-
mance of P must be preserved as much as possible.
Instrumentation mode: To reduce probe effects, we configure Whiro to instrument
Main. It reads Static and Stack memories in the Fast mode.
Results: We have applied the above customization of Whiro onto 137 executable
programs downloaded from AnghaBench. Each benchmark was tested with 10 dif-
ferent inputs. Outputs were produced for all the 137 programs, in 1,359 executions
(out of a total of 1,370). Property 4 was verified when repeating this experiment.
Each benchmark consists of a driver plus a function (which is the benchmark proper).
Not counting the driver, which always gives us the same outputs, on average Whiro

inspects 7.8 variables per function, with a minimum of 2 variables and a maximum of
32 variables. The instrumented benchmarks have been returned to the maintainers of
AnghaBench, and are now publicly available.

5.3 Data Visualization

Tools able to provide graphic representation of the heap are useful for program under-
standing and debugging [Aftandilian et al., 2010]. Viewing data structures and other
program elements in a graphical format makes it easier to analyze the state of memory,
recognize patterns, and observe the relation between different allocated blocks.
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a) MiBench's Patricia

Figure 5.1. (a) Snapshot showing the two disjoint data structures in MiBench’s
Patricia, after the first invocation of pat_search returns with the test input. (b-
c) The two disjoint graphs in the heap of a program that copies a binary tree into
a hash table. Collisions are stored in a linked list.

Purpose: Adapted Whiro to render a visual representation the graph determined by
relations between pointers in the heap in a program.
Challenge: To the best of our knowledge, all the techniques discussed in the literature
to visualize program state deal with type-safe languages with managed memory. Java
is the usual target [Aftandilian et al., 2010; Grech et al., 2017]. Tracking relations
between pointers in C or C++ is non-trivial, due to the difficulty to distinguish memory
addresses from scalar types.
Instrumentation mode: We customize Whiro with the following configurations:
the tracking graph is Precise; the SIP granularity is Any; and considering the Heap

memory allocations.
Results: Figure 5.1 shows heap snapshots produced with our adaptation of Whiro.
To ease visualization, we are showing only nodes stored in the heap. Currently, we
can visualize the heap of all the programs in the MiBench collection, for instance.
Graphs are produced in DOT format. Users can render them using different graph
visualization algorithms. We are not able to distinguish pointer relations created by
non-pointer types, like it happens in the infamous doubly-linked XOR list. As an
example, when given the program in Figure 1 of Banerjee et al., Whiro prints a series
of unconnected blocks with the xorlist type.
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Chapter 6

Experimental Results

In this chapter we evaluate the ideas presented in this paper. We implemented our
instrumentation on LLVM version 10.0.0. Data structures that store the auxiliary
state are implemented in C. They are linked statically with the bytecode that LLVM
produces. All the experiments were performed in an 8-core Intel i7-8565U processor
with a clock of 1.80 GHz, and 8GB of DDR4 (RAM) operating at 2,400MHz and
running Linux Ubuntu 64-bit version 18.04.5 LTS. Running time and memory usage
are collected via Linux’ built-in time command. Number of LLVM instructions are
collected using LLVM’s –instcount. The other statistics reported in Section 6.4 are
gathered directly by the instrumentation pass.

We chose MiBench [Guthaus et al., 2001] to evaluate our techniques. We use the
version of MiBench available in the LLVM test repository, which contains 16 bench-
marks. We have constructed inputs for these programs using a synthesizer available
at https://github.com/ekut-es/mibench, to ensure that each benchmark runs for
more than 1.0 second when compiled with clang -O0 (v10.0). We failed to meet this
criterion for MiBench’s Patricia, which runs for about half-a-second with the largest
input that we found.

To guide our evaluation process, we investigate the following research questions:

Compilation Overhead: What is the overhead that our instrumentation adds
to the compilation time?

Running Time Overhead: What is the runtime overhead imposed by our
transformation on the instrumented programs?

Memory Overhead: What is the memory consumption imposed by our tech-
nique?

https://github.com/ekut-es/mibench
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Code-Size Overhead: How does the size of the instrumented program grows
in relation to its original size?

Effectiveness: Can our technique be used to detect actual bugs in compiler
optimizations?

Experiments in sections 6.1, 6.2, and 6.3 report averages of 12 executions, while
discarding the 2 slowest ones. The programs were compiled with mem2reg, to promote
memory references to virtual registers, and mergereturn, to ensure that every function
will have a single exit point. Results are considered statistically significant within a
confidence level of 99% via a Student T-Test.

6.1 Compilation Overhead

One of the design principles of Whiro is to move to compilation time as much instru-
mentation overhead as possible. On the one hand, this strategy reduces the overhead
that our inspection points impose onto executable programs, as we shall demonstrate
in Section 6.2. On the other, it extends compilation time. This section analyzes this
impact.
Discussion: Figure 6.1 shows the time required to instrument the different programs
in MiBench. For reference purposes, we also show the time taken to compile each pro-
gram with clang -O0 -g. Instrumentation time is shorter than standard compilation
time in every case. The Fast and Precise inspection modes lead to longer instrumen-
tation time in almost all the benchmarks, since all the variables in every function must
be inspected. Main tends to be always the fastest instrumentation mode, because it
inspects only one function. Static is also fast, because MiBench programs usually
have less static variables than local and heap variables. The slowest absolute instru-
mentation time was 7.26 seconds using the Precise mode in MiBench’s typeset.
Yet, just to compile typeset without any optimization already takes 33.55 seconds.
Table 6.4 provides complete ratios.

6.2 Running Time Overhead

Whiro imposes an overhead on executable programs due to: (i) keeping the auxiliary
state; and (ii) shadowing stack-allocated variables. This section analyzes this impact.
Discussion: Figure 6.2 shows how the performance of executable programs varies de-
pending on the instrumentation mode. Points in Figure 6.2 show the ratio between
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Figure 6.1. Time to instrument programs (in seconds). For reference, we provide
the time of compiling each program with clang -O0 -g.

the execution time of the instrumented program and its original version. Overhead
increases with the granularity of the inspection; hence, Precise yields the slowest
executables. This outcome is to be expected, because Precise inspects all the vari-
ables in a program and updates the heap table during execution. Static is also slow
in general, because this mode inspects static variables at every function call (unless
Main only is used). MiBench’s djkistra accounted for the largest overheads. The
slowdown, in this case, was caused by excessive heap usage: the program manipulates
a graph stored dynamically. There were cases in which the instrumented program was
faster than its original version. However, for all these cases we found p-values greater
than 0.01; hence, we cannot consider them statistically significant.
Printing Data Overhead. Depending on the instrumentation mode, we have ob-
served runtime overheads of almost 40x in dijkstra. However, Whiro manipulates
a large quantity of data; hence, this overhead is to be expected. To give the reader
some perspective on this observation, we analyze the overhead that Whiro incurs if
this data is to be printed. Table 6.1 compares the running time of three benchmarks:
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Figure 6.2. Increase of execution time (with relation to the original program).
Numbers in boxes denote the running time of the original program.

stringsearch, sha, and FFT with and without counting the time necessary to print
the inspection traces. Printing obviously increases the running time in all inspection
modes. This increase is more noticeable in the Fast and Precise modes, which in-
spect values stored in all memory regions. Time grows, in the worst case, by factors of
2.7x, 35.7x and 24.8x in stringsearch, sha, and FFT, respectively.

Table 6.1. Time to run the benchmarks (in seconds) with and without counting
the time to print inspection traces.

stringsearch sha FFT

Inspection Mode No Print Print No Print Print No Print Print
Main 2.59 2.85 1.97 2.89 4.09 4.24
Stack 2.56 4.35 2.09 57.44 4.23 3.62
Static 2.62 6.75 1.97 2.31 3.95 92.03
Heap 2.59 2.67 1.95 1.94 4.02 4.32
Fast 2.56 2.67 2.13 57.80 3.99 85.90

Precise 2.56 6.88 2.11 75.26 3.98 93.83
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6.3 Memory Overhead

The dynamic components of the Memory Monitor exist during all the execution of a
program. Therefore, inspection points are expected to increase memory consumption.
To read peak memory usage, we use Linux’ time -v and report memory consumption
as the “maximum resident set size".
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Figure 6.3. Increase in memory consumption (with relation to the original
program). Numbers in boxes denote memory consumed by the original program,
in Kilobytes.

Discussion: Figure 6.3 plots the memory consumption ratio between instrumented
and non-instrumented programs. In 81% of the benchmarks, memory consumption
increased by no more than 1.3x, and in 75% of them, this overhead was less than
1.1x. The inspection modes which use more memory are Precise and Heap. In
addition to the type table T , these instrumentation modes keep the heap table H in
memory. Large memory usage was observed in dijkstra when using either of these
instrumentation modes. The largest increase of memory consumption due to non-heap
memory was observed in jpeg. With 2,560 entries, this program gave us the largest
type table among all the benchmarks.
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6.4 Code-Size Overhead

Instrumentation increases code. This boost is due to the new routines that access the
T and H tables, due to the variables created to shadow stack-allocated data, and due
to code to print the values of variables at inspection points. In this section, we analyze
this growth. The size of code is measured in number of LLVM instructions.
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Figure 6.4. Code growth (with relation to the original program). Numbers in
boxes denote the number of LLVM instructions in the original program, compiled
with mem2reg. Benchmarks are sorted by the size of the original program.

Discussion: Figure 6.4 shows the ratio between the sizes of instrumented and original
programs in MiBench. The Fast and Precise instrumentation modes are, as ex-
pected, the most prodigal, increasing code size by factors of almost 4x in lame. Growth
in the other benchmarks is more moderate, but typically above 2x for these modes.
Static also tends to increase code-size by substantial margins, because static variables
are inspected in every function call. The Main mode accounts for the smallest code
increase, because an inspection point is created in only one function.
Factors of Code Growth. We conducted an experiment aiming to investigate
whether there exist features of programs that correlate well with code growth. Ta-
ble 6.2 summarizes these results. MiBench contains 1,228 functions spread across 16
benchmarks. Most variables, 7,130, are stack allocated; 3,582 variables are non-static
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pointers and 788 are static (of any type). Table 6.2 shows that the number of func-
tions and variables is strongly correlated with code growth when inspecting only the
stack or the heap. In all these cases, Pearson R2 is above 0.95. When inspecting only
static memory, the number of variables and the number of original instructions are the
determining factors. In this case, R2 is always above 0.85. When inspecting the entire
program—with either the Fast or the Precise modes—instructions are the factor
that determines growth, with an R2 value of 0.86.

Table 6.2. Relations between program features and code growth. We let fst =
Fast and prc = Precise.

Variables Functions Instructions

Inspection Mode Total Mean R2 Total Mean R2 Total Mean R2

Main 891 52.4 0.80 1 1 X

38
8,
00

3

22
,8
23

.7

0.29
Stack 7130 419.4 0.97

1,
22

8

76
.7
5

0.97 0.73
Static 788 46.4 0.87 0.57 0.85
Heap 3582 210.7 095 0.97 0.91
fst/prc 7918 465.8 0.63 0.60 0.86

6.5 Effectiveness

As mentioned in Section 5.1, Whiro can be used to debug program transformation
techniques like compiler optimizations. A state mismatch between two versions of a
program processing the same input is a strong indication of a bug. Since inspection
points are inserted after the program has been optimized, they do not prevent opti-
mizations from happening altogether and can therefore be used as an alternative to
detect bugs. Nevertheless, it is important to emphasize that our instrumentation is
not capable of building the same execution trace in face of all compiler optimizations.
Some transformation that change the shape of the program may invalid inspection
points, and Whiro would miss some data in those cases.

To analyze the effectiveness of Whiro as a debugging aid, we manually inserted
a bug into the LLVM’s sparse conditional constant propagation pass. We altered the
optimization lattice by changing the semantics of its meet operator. Whenever we have
two constants c1 ∧ c2, with c1 = c2, we propagate an undefined value instead of the
constant. Programs were instrumented using Precise mode.
Discussion: The unsound implementation of constant propagation caused bugs in
five, out of 16 MiBench programs. Opportunities for injecting bugs did not occur
in the other benchmarks. Figure 6.3 summarizes results. The first row reports the
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Table 6.3. Bugs reported by Whiro.

basicmath susan jpeg FFT gsm
Differences in IR 8 4 1 2 1
Bugs injected 21 1 1 2 1
Whiro warnings 2 0 10 2 0

number of different instructions found in a diff between programs compiled with the
correct and the buggy implementation of constant propagation. The second row reports
how often a wrong value was computed in the incorrect implementation of constant
propagation. The last row shows the number of program variables identified by Whiro

with incorrect values due to the bug. Whiro has correctly pinpointed 14 of the 26
bugs. The correspondence is not perfect because: (i) Whiro only prints out results for
variables that have a name in the program—auxiliary locations created by the compiler
are not tracked; and (ii) Whiro only compares state at the return point of functions.
Notice that this choice of inspection point is configurable. Furthermore, in jpeg, one
wrong value propagation led to 10 incorrect values found at execution time.

6.6 Summary of Results

Table 6.4 summarizes the key results discussed in this section. For reference, the 16
programs in MiBench, together, gives us 376,338 LLVM instructions when compiled
with clang -O0 -g with the mem2reg pass. It takes 115 seconds to compile these
programs (with the above flags) in our setup.

Table 6.4. Summary of results. Cmp: compilation time (Sec. 6.1). This
column is the geometric mean of 16 ratios comparing the instrumentation time
with the compilation time (clang -O0 -g). Exe: runtime overhead (Sec. 6.2);
Mem: Memory consumption (Sec. 6.3); CG: code growth (Sec. 6.4). These three
columns report geometric means of 16 ratios between instrumented and original
program. Size: number of LLVM instructions in the 16 benchmarks.

Cmp Exe Mem CG Size

Main 0.01 1 1.07 1.06 381,129
Stack 0.02 1.04 1.07 1.21 409,706
Static 0.01 1 1.07 1.32 720,339
Heap 0.01 1.31 1.63 1.12 395,882
Fast 0.03 1.04 1.07 1.48 747,094
Precise 0.03 1.34 1.63 1.48 747,439
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Chapter 7

Conclusion

In this dissertation, we presented a technique to inspect the internal state of programs.
We are able to observe values stored in the heap, in the stack of functions, and in static
memory. In terms of implementation, this technique borrows most of its ideas from
previous research concerning the design and implementation of tracing-based garbage
collectors for C and C++. However, we have redirected these ideas: instead of doing
memory management, we give users a human-observable “peephole" into the program
state. This peephole can be used in various ways, as Chapter 5 demonstrates; further-
more, it is adjustable, going from slow/precise to fast/cursory modes. For pragmatic
reasons, we choose to inspect the return point of functions, but our solution can report
the program state at any program point where code can be injected. In addition to it,
we can handle programs optimized in several ways.

Dealing with a type-unsafe language has indeed proved to be a challenge. For
example, not being able to know whether an address is valid within the program’s
memory segment made us take decisions that limit our extent, but that make our
implementation safe. We also had to overcome the fact that some information is not
available at compilation time, such as the final values stored in union variables. Nev-
ertheless, our technique is effective and efficient for different purposes and, as Chapter
6 shows, we imposed minimum overhead to the execution of a program.

7.1 Limitations & Future Work

This work, which exits today as the Whiro framework, has limitations. In particular,
Whiro, like most on-the-fly garbage collectors [Zakowski et al., 2019], does not syn-
chronize access to the heap table H by default. Thus, it cannot guarantee Property 4
for multi-threaded programs. As many of our decisions, this one is also pragmatic:
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between performance and ordering, we opted for the former. Reversing this decision is
a small change in the framework’s implementation.

Another limitation of our solution concerns types. As mentioned in section 5.3,
we are not able to correctly inspect the doubly-linked XOR list because the pointer
relations are created by non-pointer types. Without type information, it becomes very
challenging to recover the intention of a program and Whiro cannot retrieve tricky
handling of program elements.

int main(){
  int* p1 = (int*) malloc (sizeof(int));
  char a[80];
  scanf("%s", a);
  int* p2 = (int*)atoi(a);
  int i = (int)p2;
  return 0;
}

1
2
3
4
5
6
7
8

Figure 7.1. A program with type casts between a pointer and integer.

Example 15. In the program in 7.1, the programmer might want to use p2 as an
integer, and i as a pointer. It might be possible to design static analysis that recover
part of this original intent, e.g., if an integer eventually is cast into a pointer, then it
was meant to be used as a pointer in the first place. This said, we have not worked on
this line of research.

Concerning the choice of tools to implement our ideas, LLVM proved to be a
good choice for some aspects and not a good fit for others. We used it to instrument
programs, by means of a pass that works in the intermediate representation produced
by compiling the program with the clang compiler. LLVM provides a great interface
to create instructions and inject them into programs, which facilitated the creation of
shadow variables, code to update the heap table, and inspection points. Furthermore,
the debug information emitted by the compiler is accurate enough to support the
building of traces of source code variables.

On the other hand, LLVM makes some of the aspects of our approach difficult.
The LLVM intermediate representation has its own type system, which is different
from the type system of high-level programming languages. Although we instrument
the LLVM bytecodes of programs, we rely on the source type system to inspect variables
because it allows us to report information that may be not available in the intermediate
representation, such as names of fields in structure types. Relating the SSA definitions
with source code types is not a straightforward task. Another drawback ensued from
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working at the intermediate representation level is handling the variables which are
dead at inspection points. As we explained in Chapter 4, we deal with this by extending
live ranges and shadowing variables in the stack of functions. This would not be
necessary in case the instrumentation is inserted before other compiler optimizations
run. We believe that moving our instrumentation to earlier stages in the compilation
pipeline would solve this problem and the generated code would probably be more
efficient. We leave this as possible future direction for this research.
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Appendix A

Whiro Documentation

In this chapter we present an overview of Whiro framework and a brief documentation
of the main methods implemented.

A.1 Overview

Figure A.1 depicts a summary of our implementation. At compilation time, the instru-
mentation pass builds the static components of the memory monitor. First, it gathers
information concerning the types present in the original program and builds the type
table. Then, it analyzes the entire intermediate representation to create the global map
G and the stack maps S for each function in the program. Using this information, the
monitor inserts all the required instrumentation in the program to track and report
its internal state. The instrumented program is statically linked against the bytecodes
containing the dynamic components of the memory monitor. We call Composite Inspec-
tor the set of functions that are used to report non-scalar variables, such as pointers,
unions, or arrays. At execution time, the instrumented version of the program reads
the type table T and executes normally while updating the heap table H and using
the composite inspector as an auxiliary library at the inspection points.

A.2 Methods

We will here focus on the methods that execute together with the program at runtime.
These methods are used to report values of variables and to update the heap table.
They are all implemented in C.
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Figure A.1. Whiro framework overview

openTypeTable
Signature: openTypeTable (const char* ProgramName, int TableSize, int InsHeap, int
InsStack, int TrackPtr)

This function is in charge of reading the type table binary file built by the instrumen-
tation pass. It allocates memory for each one of the type descriptors. This function
is called at the beginning of the execution of the program and since it is called only
once, we also use it to set some flags concerning filtering. More specifically, through
this function we set the tracking graph granularity and we filter memory for pointer
variables that may point either to stack locations or heap data. Static pointers are
handled during instrumentation.

Parameters:

• ProgramName is the name of the program. It is used to open the type table file

• TableSize is the size of the type table

• InsHeap is true if the heap is to be inspected

• InsStack is true if the values store in the stack are to be inspected

• TrackPtr is true for Precise and false for Fast
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insertHeapEntry
Signature: void insertHeapEntry(void* Block, int Size, int ArrayStep, int TypeIndex)

This function is responsible to insert a new entry in the heap table H. This entry
corresponds to the heap block addressed by Block. It first checks whether there exists
an entry holding that address. In a positive case, it just updates its size and type
index. Otherwise, the function allocates a new entry and sets it up

Parameters:

• Block is the heap address

• Size is the number of elements allocated

• ArrayStep is the increment the pointer to Block, so Whiro can visit all data
allocated in that block

• TypeIndex is the type to access the type descriptor of that data

deleteHeapEntry
Signature: void deleteHeapEntry(void* Block)

This function sets the heap entry addressed by Block to unreachable, if such entry
exists in the table.

Parameters:

• Block is the heap address

inspectHeapData
Signature: void printHeapData(HEAPENTRY* Entry, char* PtrName, char* FuncName,
int CallCounter)

This function takes an entry from the heap table and report the data contained in
it at some inspection point. It prints it together with the calling context, formed by
the pointer name in the source code, the name of the function in which the inspection
point is defined, and the current value of the call counter of that function. If that heap
data contains a reference to another heap address, this functions is called recursively.
Before it returns, it sets Entry as visited.
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Parameters:

• Entry is the heap table entry to be inspected

• PtrName is the name of the pointer that points to that heap address in the
source code

• FuncName is the name of the function from the source code that it is being
inspected

• CallCounter is the current value of FuncName

updateHeapEntrySize
Signature: void updateHeapEntrySize(void* Block, int NewSize)

This function updates the size of a H entry when there is a heap reallocation in the
original program.

Parameters:

• Block is the heap address

• NewSize is the new size of the entry

setAllHeapUnivisited
Signature: void setAllHeapUnivisted()

This function sets the entire heap table as univisited. Whiro uses it to report aliases

inspectData
Signature: void inspectData(void* Data, TYPE* DataType, char* Name, char* Func-
Name, int CallCounter)

This function prints any type of data manipulated by the program. It receives a type
descriptor and print every field within data data. It is usually used to print non-scalar
variables, except for unions.
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Parameters:

• Data is the value to be inspected

• DataType is the type descriptor of Data

• Name is the name of the variable holding Data in the program

• FuncName is the name of the function currently being inspected

• CallCounter is the current value of the call counter of FuncName

inspectPointer
Signature: void inspecPointer(void* Ptr, int TypeIndex, char* Name, char* FuncName,
int CallCounter

This function is responsible to report a value pointed by a pointer in the program. If
the instrumentation mode is Fast, this function only prints the type of the pointer.
If the instrumentation mode is Precise, this function will track the pointer to print
its contents. It checks if Ptr is pointing to an address stored in the heap table. If yes,
the function to print heap data is called to inspecct the value accordingly. Otherwise
it checks if Ptr is pointing to a location within ELF segments, as 4.3 explains. In a
positive case, this function retrieves the type descriptor accessing T using TypeIndex
and calls printData, which will derreference Ptr and print its contents.

Parameters:

• Ptr is the value to be inspected

• TypeIndex is the index to access the type descriptor of Ptr in the type table

• Name is the name of the pointer in the program

• FuncName is the name of the function currently being inspected

• CallCounter is the current value of the call counter of FuncName

inspectUnion
Signature: void inspectUnion(char* Union, size_t Size, char* Name, char* FuncName,
int CallCounter)
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This function is in charge of inspecting variables of union type. As described in section
4.3, Whiro prints unions as bitmaps. It iterates the pointer to Union and prints every
byte of it.

Parameters:

• Union is the pointer to an union

• Size is the size of the largest composing part in the union type

• Name is the name of the variable holding Data in the program

• FuncName is the name of the function currently being inspected

• CallCounter is the current value of the call counter of FuncName

computeHashcode
Signature: int computeHashcode(void* Array, int TotalElements, int Step, int Format)

This method computes the hashcode for any multidimensional array of primitive types.
It traverses the array entirely. It receives a pointer to the beginning of the array and
increment it using a step value. Using this step, Whiro can reach all the 1-D arrays
inside this one. This function returns the hashcode value.

Parameters:

• Array is a pointer to the beginning of the array

• Step is the step that the base pointer must take

• TotalElements is the number of elements of the array

• Format is a value indicating the primitive type of Array, so Whiro can cast
each element to compute the hashcode.
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