
RESEARCH ARTICLE

Genotyping and Descriptive Proteomics of a

Potential Zoonotic Canine Strain of Giardia

duodenalis, Infective to Mice

Camila Henriques Coelho1, Adriana Oliveira Costa1, Ana Carolina Carvalho Silva1, Maı́ra

Mazzoni Pucci2, Angela Vieira Serufo1, Haendel Goncalves Nogueira Oliveira Busatti1,

Maurı́cio Durigan3, Jonas Perales4, Alex Chapeaurouge4, Daniel Almeida da Silva e

Silva5, Maria Aparecida Gomes6, Juliano Simões Toledo1, Steven M. Singer7, Rosiane

A. Silva-Pereira2, Ana Paula Fernandes1*

1 Departamento de Analises Clinicas e Toxicológicas – Faculdade de Farmácia, Universidade Federal de
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Abstract

The zoonotic potential of giardiasis, as proposed by WHO since the late 70’s, has been

largely confirmed in this century. The genetic assemblages A and B of Giardia duodenalis

are frequently isolated from human and canine hosts. Most of the assemblage A strains are

not infective to adult mice, which can limit the range of studies regarding to biology of G.

duodenalis, including virulence factors and the interaction with host immune system. This

study aimed to determine the infectivity in mice of an assemblage A Giardia duodenalis

strain (BHFC1) isolated from a dog and to classify the strain in sub-assemblages (AI, AII,

AIII) through the phylogenetic analysis of beta-giardin (bg), triose phosphate isomerase

(tpi) and glutamate dehydrogenase (gdh) genes. In addition, the proteomic profile of soluble

and insoluble protein fractions of trophozoites was analyzed by 2D-electrophoresis.

Accordingly, trophozoites of BHFC1 were highly infective to Swiss mice. The phylogenetic

analysis of tpi and gdh revealed that BHFC1 clustered to sub-assemblage AI. The proteo-

mic map of soluble and insoluble protein fractions led to the identification of 187 proteins of

G. duodenalis, 27 of them corresponding to hypothetical proteins. Considering both soluble

and soluble fractions, the vast majority of the identified proteins (n = 82) were classified as

metabolic proteins, mainly associated with carbon and lipid metabolism, including 53 pro-

teins with catalytic activity. Some of the identified proteins correspond to antigens while oth-

ers can be correlated with virulence. Besides a significant complementation to the

proteomic data of G. duodenalis, these data provide an important source of information for

future studies on various aspects of the biology of this parasite, such as virulence factors

and host and pathogen interactions.
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Introduction

The enteric parasite Giardia duodenalis is the main protozoan causative agent of diarrhea,
affectingmillions of people worldwide [1, 2]. In developed countries, the prevalence ranges
from 1% to 7.6%, while in developing countries it may reach 30% [3]. The majority of giardiasis
reported cases occurs after transmission of G. duodenalis cysts through the ingestion of con-
taminated water and food. However, giardiasis may also be transmitted from domestic animal
to man, as a zoonotic disease. [4].

The occurrence of eight genetic assemblages of G. duodenalis (A to H) has been depicted
frommolecular epidemiology analyses. Assemblages C and D are usually infective to dogs,
while the assemblage A is considered zoonotic, infecting both humans and domestic animals,
mainly cats and dogs [5, 6]. These zoonotic infections are usually associated to sub-assemblages
AI and AII, which share high chromosome synteny and phylogeny. However, they can differ
regarding their infectivity and pathogenic properties in mice models [7].

Proteomic analyses have revealed important biological traits in G. duodenalis, including
those associated to virulence, encystation process and antigenic variation [8–12]. Moreover,
through the generation of G. duodenalis proteomic datasets, new tools have become available
for taxonomical analysis of this intestinal pathogen. Recently, the proteomes of eight G. duode-
nalis assemblage A strains (seven AI and one AII) isolated from human, cat, sheep and bird
were obtained, allowing a more complete covering of the available data [13]. This analyss has
disclosed specific sub-assemblage differences in protein identifications, especially for the vari-
able antigens in the cell surface.

G. duodenalis canine isolates are not very frequently available and have been far less studied
than human isolates, though infection in dogs is an epidemiological noteworthy aspect of G.
duodenalis biology. Domestic dogs usually live in very close contact to humans and high rates
of G. duodenalis infection in dogs have been reported in countries such as Brazil (36.8%), Italy
(26.6%), Japan (23.4%), Belgium (22.7%) and UK (21.0%) [14–18], factors that potentially
increase the transmission rates.

An isolate of G. duodenalis (BHFC1 strain) was previously obtained from dog stools, in Bra-
zil. A preliminary genotyping of this strain revealed that it belongs to genotype A [19] and,
therefore, could be a potential source of zoonotic transmission to humans. In the present work,
this canine isolate of G. duodenalis was further characterized by phylogenetic analysis in order
to determine its sub-assemblage (AI, AII or AIII).We have also evaluated its infectivity profile
in Swiss mice and performed a proteomic mapping of BHFC1 trophozoites in both soluble and
insoluble protein fractions.

Material and Methods

Parasites and axenization

The BHFC1 strain of Giardia duodenalis, previously isolated from dog stools in BeloHorizonte
city, Brazil [19], was utilized in this study. Trophozoites were axenically cultivated in TYI-S-33
medium [20] at 36.5°C. The Portland-1 strain, cultivated under the same conditions, was used
as control to confirm the genotyping procedures and to compare infectivity in mice.

Mice infection

Female 6-week-old Swiss mice, were obtained from the animal facility of the Faculty of Phar-
macy, Federal University of Minas Gerais (UFMG). Mice were kept under observation for 1
week prior to the experiment and were maintained under a 12-h light-dark cycle with ad libi-
tum access to water and food. None of the animals became ill or died prior to the experimental

Descriptive Proteomics of a Zoonotic Canine Strain of Giardia

PLOS ONE | DOI:10.1371/journal.pone.0164946 October 19, 2016 2 / 15



endpoint. Mice were treated with Metronidazole and their stools were tested for giardiasis after
lugol staining, in order to exclude previous infection with Giardia muris.

Swiss mice received 1x106 trophozoites of BHFC1 in 0.2 mL of sterile phosphate-buffered
saline (PBS), administrated through orogastric gavage. A control group received 1x106 tropho-
zoites of Portland-1, following the same procedure. This experiment was conducted in tripli-
cate, with a minimal number of 3 mice per group (total of 10 mice, per strain) and mean and
standard deviations were calculated for each group. The physical conditions of mice were mon-
itored every 8 hours. After 7 days from inoculation, animals were anesthetized with 60 mg/Kg
of ketamine and 8 mg/Kg of xylazine and were euthanized by cervical displacement. A 15 cm
proximal segment of the small intestine (duodenum and jejunum) was removed and placed in
5 mL of sterile PBS. The tissue fragments were cut in 1 cm transversal sections and vortexed for
30s to release trophozoites from the intestinal wall. Trophozoites from the supernatant were
quantified by counting in Neubauer chamber. All experiments were conducted in adherence to
the animal protocol (7/2012) approved by the Ethics Committee on the use of Animals
(CEUA) of the Federal University of Minas Gerais.

Phylogenetic analysis

In order to determine in which G. duodenalis subassemblage (AI, AII or AIII) BHFC1 strain
could be classified, nested PCR fragments of beta-giardin (bg), triose phosphate isomerase (tpi)
and glutamate dehydrogenase (gdh) genes were sequenced. Genomic DNA from trophozoites
was obtained by purification using the kit gDNA Charge Switch Mini Tissue™ (Invitrogen) and
subjected to nested-PCR using the primers described in S1 Table. Nested PCR products were
analyzed in 2% agarose gel and purified usingWizard Genomic DNA Purification™ kit (Pro-
mega, USA), according to the manufacturer's protocol. PCR products were sequenced by
ABI3130 platform (Applied Biosystems, USA) at the company Myleus Biotecnology™.

Sequences obtained from the three loci were concatenated to definemultilocus genotypes
(MLGs). The Bayesian phylogenetic analysis was performedwith MrBayes software version
3.1.2 [21] using the GTRmodel with gamma correction (the available model most similar to
Tamura-Nei). The starting trees were random,Markov chains were run for 6,000,000 itera-
tions, and the trees were sampled every 100 iterations. Bayesian posterior probabilities were
calculated using a Markov chain Monte Carlo sampling technique. The Bayesian inferred trees
were visualizedwith TreeView X [22]

Outgroups used for construction of phylogenetic trees were: G. muris for bg and tpi
sequences,Giardia ardeae for gdh and tpi, and G. microti for tpi (S2 Table).The sequences gen-
erated in this study were deposited in GenBank under the following accession numbers:
CCPORbgKT258017, CCBHbgKT258018, CCPORtpi KT258019, CCPORgdhKT258021,
CCBHgdh KT258022.

Protein extraction for proteomic analysis

Trophozoites collected after 72 hours of culture in TYI-S-33mediumwere centrifuged (2,000
g, 10 minutes, 20°C) and washed three times with PBS (pH 7.2). The remaining sediment was
suspended in 1.5 mL of PBS and transferred to a 2 mL tube and centrifuged per 5 minutes at
3,000g at 4°C. The proteins were extracted from trophozoites by the addition of 2DE lysis
buffer (kit 2D Fractionation™, GE Healthcare), at a ratio of 200 μL for 1.4 x 109 parasites. In
order to obtain both soluble and insoluble protein fractions, the kit instructionswere followed,
with some adaptations. Originally, the manufacturer suggests up to 5 sub-fractions of the solu-
ble portion of proteins. In contrast, only the first fraction of soluble proteins (Fraction I) and
the insoluble fractionwere obtained. Proteins were quantified by the Bradford method and

Descriptive Proteomics of a Zoonotic Canine Strain of Giardia

PLOS ONE | DOI:10.1371/journal.pone.0164946 October 19, 2016 3 / 15



stored at -70°C. After determination of protein concentrations, 1 μg of protein from each frac-
tion (soluble or insoluble) was submitted to one-dimensional electrophoretic separation on
12% polyacrylamide gels, to assess the quality of the extracts and then to 2D gel electrophoresis
procedure.

2-D Electrophoresis. The protein extracts (500 μg) were solubilized in IEF rehydration
buffer (8M urea, 2M thiourea, 4% CHAPS, 0.5% bromophenol blue, 65 μM DTT and 1% Bio-
Lyte 3–10 buffer 100X (Bio-Rad) to a final volume of 350 μL.

After stirring for one hour at room temperature, the samples were centrifuged at 16,000 g
for 30 minutes at 25°C to remove non-solubilizedmaterial. The supernatant was loaded onto
17 cm IPG strips (Bio-Rad) of pH 3–10 non-linear gradient by in-gel sample rehydration and,
after 10 minutes, 1.5 mL of mineral oil was overlaid onto strips. Isoelectric focusing was per-
formed in the Protean IEF Cell (Bio-Rad) at 20°C and 50 μA/strip. Passive rehydration was car-
ried out for 4 hours, followed by active rehydration at 50V, for 12 hours. Isoelectric focusing
was performed, in gradient fashion, at 500V for one hour; 1,000V for 1 hour; 8,000V for 2
hours and from 8,000V until reach 40,000V/hour. After isoelectric focusing, the excess of min-
eral oil was removed and the strips were frozen at -70°C. In the second dimension, proteins
were separated, in 12% SDS-PAGE gels.

Before SDS-PAGE, IPG strips were first maintained for 10 minutes in 5 mL of Equilibration
Buffer I (50mM Tris-HCl, pH8.8, 6M urea, 30% glycerol, 2% SDS, 0.5% Bromophenol Blue
and 130mMDTT) and, thereafter, for 10 minutes in Equilibration Buffer II (50mMTris-HCl,
pH8.8, 6M urea, 30% glycerol, 2% SDS, 0.5% Bromophenol Blue and 135mM Iodoacetamide).
The molecular weight standard (Broad Range™, Bio-Rad) was applied on filter paper, placed on
top of polyacrylamide gel and sealed with 0.5% agarose containing bromophenol blue. The IPG
strips were washed in SDS-PAGE electrode buffer (25mM Tris, 192mM glycine, 0.1% SDS),
and sealed with 0.5% agarose on top of 12% polyacrylamide gels.

Electrophoresis was carried out in a Protean II XLMulti-Cell™ (Bio-Rad) connected to a
Multitemp II cooling bath (Amersham Biosciences) at 16°C under 50V, constant voltage, for
the first hour and then under 200V, until the front dye reached the bottom of the gel. The gels
were stained with Colloidal Coomassie Blue G-250 [23]. The 2D stained gels were scanned
using a GS-800 densitometer (Bio-Rad), at a resolution of 300dpi, and then stored at 4°C, in
25% ammonium sulfate solution prior to perform excision of the spots for mass spectrometry.
The images of duplicate 2D gels were analyzed by PDQuest™ 8.0.1 software (Bio-Rad).

MALDI-ToF Mass Spectrometry. Each spot of interest was located and manually excised
from the gel for the mass spectrometry identification. The excised spots were washed twice for
15 minutes in 400 μL 50% acetonitrile (Fisher Scientific) and 25mM ammonium bicarbonate
(Sigma), pH 8.0, until removal of the blue stain. Acetonitrile (200 μL) (Fisher Scientific—USA)
was used to dehydrate the gel pieces. After dehydration acetonitrile was removed and the gels
were dried in a Speed Vac Concentrator Plus™ (Eppendorf) for 15 minutes. Afterwards, 10 μL
of 20 μg/mL SequencingGrade Modified Trypsin (Promega) were added and 10 minutes after,
50 μL of 25 mM ammonium bicarbonate (Sigma), pH 8.0, were added. Tubes were incubated
for 16 hours at 37°C, for protein digestion. The solution was transferred to a clean tube. To the
tube containing pieces 30 μL of 5% formic acid (Merck—USA) and 50% acetonitrile (Fisher
Scientific—USA)were added for extraction of tryptic peptides. This procedure was performed
twice under stirring for 30 minutes each. The supernatant was pooled to the respective tube
containing the initial peptide solution. The samples were concentrated in a SpeedVac to a vol-
ume of about 10 μL, and then the peptides were desalted in reversed phase micro columns Zip
Tip C18 ™ (Eppendorf—Germany), according to the manufacturer's instructions.

Tandem mass spectra for protein identification were obtained on an AB Sciex 5800 (AB
Sciex, Foster City, CA) MALDI mass spectrometer. Usually, up to twelve of the most intense
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peaks of each spot were selected for MS/MS acquisition, while masses related to trypsin autoly-
sis products and common keratin masses were excluded. Calibration in MS mode was per-
formed using a standard of six peptides including the following molecularmasses: des-
Arg1-Bradykinin (m/z = 904.468), angiotensin I (m/z = 1296.685), Glu1-fibrinopeptideB
(m/z = 1570.677), ACTH (1–17 clip) (m/z = 2093.087), ACTH (18–39 clip) (m/z = 2465.199),
and ACTH (7–38 clip) (m/z = 3,657.929). In addition, MS/MS spectra were calibrated by
matching up to five fragment ions in the tandemmass spectrumof Glu1-fibrinopeptideB
(m/z = 1570.677). The peak lists of these experiments were searched against an in-house cre-
ated parasite database (117944 sequences) using the programMascot (Mascot version 2.1).
The search parameters included tryptic cleavage products, two trypticmissed cleavages
allowed, and variable modifications of cysteine (carbamidomethylation), methionine (oxida-
tion), asparagine and glutamine (deamidation), as well as pyroglutamate formation at N-termi-
nal glutamine of peptides. To obtain maximum confidence in protein identification, p-values
were finally adjusted to reach false discovery rates (FDR) of 1 percent or below.

The proteomic data was analyzed against the GiardiaDB platform (www.giardiadb.org), in
order to evaluate protein features and the presence of signal peptide and membrane domains.
In order to find the major biological functions of the identified proteins, graphics were con-
structed using the software Panther1, according to their Gene Ontology reference. All the pro-
teins identified in this work were deposited in the Giardia DB.

Results

The BHFC1 strain belongs to sub-assemblage AI

In order to establish the phylogenetic relationships of the canine strain according to G. duode-
nalis subassemblages (AI to AIII), nested-PCR products obtained for the genes bg, tpi and gdh
of BHFC1 and Portland-1 (control) were sequenced. The phylogenetic analysis discloses that
BHFC1 shares a common ancestor with assemblage A strains. However, the phylogeny
obtained with tpi and gdh genes sequences clustered BHFC1 to sub-assemblage AI, while bg
analysis clustered it to AII assemblage. Then, a consensus phylogenetic analysis using gdh, bg
and tpi genes with Bayesian posterior probabilities was performed (Fig 1), after alignment with
additional public sequences of other assemblages (S2 Table). The canine strain was also clus-
tered in the AI assemblage, according to this analysis, as well as the Portland-1 reference strain.

The BHFC1 strain is infective to Swiss mice

The quantitative results obtained by counting of trophozoites or cysts recovered from the small
intestine of Swiss mice after infectionwith BHFC1 and Portland-1, are shown in Table 1.
While infectionwith BHFC1 strain resulted in recovering high numbers of trophozoites, but
not cysts, in three independent experiments, only cysts, in low numbers, were recovered from
mice infected with Portland-1.

The proteomic map disclosed new hypothetical proteins of G.

duodenalis and an active metabolic profile for BHFC1 canine strain

Spots obtained either from soluble or insoluble protein extracts were localized in the 2D gels,
and labeled with numbers 1 to 903 during the gel excision procedure. From the soluble protein
fraction gel, 429 spots were excised, and from the insoluble protein fraction gel, 474 spots (Figs
2 and 3). The proteomic map was elaborated using the localization of each protein according to
their migration in the first and second dimensions. After the mass spectrometry analysis, this
proteomic map revealed 187 protein access numbers (S3 Table). Among these, 160 proteins
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had been previously annotated, whilst 27 were identified as hypothetical. Among the 160 pro-
teins, 79 were identified in the insoluble protein fraction, 53 in the soluble protein fraction, and
28 presented peptides from both insoluble and insoluble protein fractions. Among the 27 hypo-
thetical proteins, 20 were identified in the insoluble protein fraction, four in the soluble protein
fraction, and 3 were detected in both insoluble and soluble protein fractions. Additional infor-
mation related to the previously annotated hypothetical proteins is described in Table 2.
Among the 187 proteins identified by mass spectrometry, 5 were related to other parasites and
are described in the S4 Table.

Fig 1. Consensus phylogenetic relationships of G. duodenalis with Bayesian posterior probabilities

using a Markov chain Monte Carlo sampling technique, for bg, tpi, and gdh gene sequences of G.

duodenalis. Markov chains were run for 6,000,000 iterations and the trees were sampled every 100

iterations. The GTR model was used with gamma correction. Sequences from Giardia muris, Giardia microti

and Giardia ardeae were employed as outgroups.

doi:10.1371/journal.pone.0164946.g001
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Table 1. Number of trophozoites or cysts recovered from Swiss mice gut after infection with G. duodenalis strains BHCF1 and Portland-1. Mice

were inoculated with 1 x 106 trophozoites through intra-gastric route. Parasites were recovered from gut and counted in Neubauer chamber. Numbers corre-

spond to average and standard deviation of parasite counting’s obtained for each group, from three independent experiments, with minimal number of 3

mice per group, in each experiment.

Strain Mean and Standard Deviation of parasite counts

Experiment 1 (n = 3) Experiment 2(n = 4) Experiment 3 (n = 4)

BHFC1a 29,167 ± 21,262 135,000 ±112,110 121,667±98,752

Portland-1b 500 ± 866.02 333.33±577.35 0±0

a Only trophozoites were recovered
b Only cysts were recovered

doi:10.1371/journal.pone.0164946.t001

Fig 2. 2D protein map showing the spots of the soluble protein fraction (Proteins 1 to 429) and the numerical distribution of localized

proteins. The protein identification correspondent to each number is shown in S3 Table.

doi:10.1371/journal.pone.0164946.g002

Descriptive Proteomics of a Zoonotic Canine Strain of Giardia

PLOS ONE | DOI:10.1371/journal.pone.0164946 October 19, 2016 7 / 15



The identified proteins were further classified according to their molecular function, biolog-
ical process and protein class (Fig 4). According to these classifications, the majority (57%) of
the proteins were either involved in metabolic processes, including carbonmetabolism or act
on cellular processes, and 50 (31.2%) proteins have a catalytic activity. Nucleic acid binding
proteins (14.4%), hydrolases (13.7%) and oxidoreductases (7.5%) were also highly prevalent
(Fig 4c).

In order to evaluate whether the proteins identified potentially presented characteristics in
the genetic annotation databases that could indicate its localization on plasmatic cell mem-
brane, a search against the GiardiaDB was performed for presence of transmembrane domains
and signal peptides in these proteins. This search resulted in 32 proteins presenting signal pep-
tides. Of those, 26 were identified in the insoluble protein fraction. Eleven proteins presented
transmembrane domains, seven of them from the insoluble fraction and four from the soluble.
Among the ten proteins displaying both transmembrane domain and signal peptide, seven
were present in the insoluble protein fraction (Table 3). Three proteins containing signal pep-
tides were concomitantly present in soluble and insoluble protein fractions, which may be
related to their intracellular trafficking.

Fig 3. 2D protein map showing the spots of the insoluble fraction (Proteins 430 to 903) and the numerical distribution of localized proteins.

The protein identification correspondent to each number is shown in S3 Table.

doi:10.1371/journal.pone.0164946.g003
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Discussion

Considering the limited amount of data concerning G. duodenalis strains isolated from dogs,
proteomic characterization, especially of those strains belonging to zoonotic assemblages, is an
interesting approach, providing new tools to study parasite’s biology. Moreover, the discovery
of novel proteins, enzymes and antigens is relevant for developing biotechnological strategies
aiming to improve the diagnosis and prevention of giardiasis.

The consensus Baeysian phylogenetic analysis, based on three different gene sequences of G.
duodenalis, showed that BHFC1 has a common ancestor with strains of the assemblage A, and
is more closely related to sub-assemblage AI strains. The fact that the phylogeny based on bg
gene clustered BHFC1 in sub-assemblage AII may be explained by recombination events in
this locus. A similar hypothesis has been previously raised to explain discordant genotyping
results and assemblage clustering obtained after sequencing genes of G. duodenalis isolates
[24]. Thus, besides confirming our previous data [19], this analysis further refined BHFC1
characterization, indicating its phylogenetic relationship to the sub-assemblage AI.

G. duodenalis strains belonging to assemblage A do not always cause infection in mice,
unless animals are treated with antibiotics that affect the intestinal microbiota [25]. In agree-
ment, the Portland-1 strain was less infective to Swiss mice, since low numbers of cysts were

Table 2. Characteristics of the identified hypothetical proteins, including the access number, the number of amino acids (aa) and the presence

of putative conserved domains according to Protein Blast webtool (http://blast.ncbi.nlm.nih.gov).

ORF number Number of amino acids Conserved domains

GL50803_10016 317 Fascin Superfamily

GL50803_10524 250 Absent

GL50803_10808 228 Absent

GL50803_10524 837 Absent

GL50803_115159 644 Phospholipase B

GL50803_12224 300 Smc (Structural maintenance of chromosomes)

GL50803_13584 386 Smc

GL50803_21628 184 Absent

GL50803_15499 431 Sm (Archae type)

GL50803_15918 228 Absent

GL50803_16267 537 Trichoplein

GL50803_16424 252 Mlf1IP (Myelodysplasia-myeloid leukemia factor 1-interacting protein)

GL50803_16507 875 Absent

GL50803_16844 324 Absent

GL50803_16996 413 Enkurin (Calmodulin-binding)

GL50803_17278 297 Absent

GL50803_2107 328 Absent

GLC50803_21628 383 Absent

GL50803_24451 139 FGF family (Fibroblast growth factors)

GL50803_3910 123 TRX Family

GL50803_4149 440 Hom_end_hint

GL50803_4239 98 Absent

GL50803_4692 239 Absent

GL50803_5810 131 Pyridoxine 5’-phosphate(PNPOx-like)

GL50803_19861 385 Absent

GLP15_2507 821 Absent

GL50803_115159 644 Phospholipase B

doi:10.1371/journal.pone.0164946.t002
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recovered after infection. In contrast, the BHFC1 strain was able to infect mice, with a large
number of trophozoites recovered from the intestine after infection. The fact that only cysts
could be recovered from Portland-1 infection compared to trophozoites from BHFC1 infection
may be attributed to a loss of virulence or to faster transformation from trophozoites to cysts in
the Portland-1 strain. Indeed, it is known that axenic cultivation for prolonged periodsmay
lead to the loss of virulence in protozoans [26]. Additionally, the virulence of G. duodenalis
infection is attributed to the ability of trophozoites to persist and attach to the host gastrointes-
tinal tract.

The proteomic study of the BHFC1 strain allowed the identification of molecules that sug-
gest a high active metabolic profile, including proteins associated to carbonmetabolism, cellu-
lar trafficking and endoplasmic reticulum-mediated endocytosis [27–29]. Some of these
proteins have been associated to virulence in other pathogens, including Candida albicans [30],

Fig 4. Classification of the identified proteins by molecular function (A), biological process (B) and protein class (C). This classification is

suggested by gene ontology and Panther® and provides a general characterization of a group of proteins. The numbers presented in each graph

correspond to the number of proteins.

doi:10.1371/journal.pone.0164946.g004
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Shigella flexneri [31] and Pseudomonas sp [32]. Although the metabolism of cultured trophozo-
ites cannot always be associated to virulence, a proteomic study also have previously correlated
virulencewith a highmetabolic activity [8].

The search for conserveddomains revealed the presence of a phospholipase B domain in
one identified hypothetical protein. This is an interesting point, since G. duodenalis trophozo-
ites have phospholipase A2 (PLA2) activity in sub-cellular fractions, but no phospholipase
genes have been found in G. duodenalis genome [33]. Moreover, the PLA2 activity in sub-cellu-
lar fraction has been associated with virulence in some protozoans [34, 35]. Intriguingly, G.
duodenalis is not able to synthesize phosphatidylethanolamine (PE) and phosphatidylglycerol
(PG), two of the phospholipids present in trophozoites and cysts, and seems to generate these
compounds by base-exchange reactions rather than de novo synthesis [36]. These phospholip-
ids components may be obtained directly from the growth media or from degradation of com-
plex molecules by phospholipase activity. Therefore, phospholipases may be an important
element of phospholipids metabolism in G. duodenalis, and deserve further investigation on
their function, structure and biological roles.

Twenty-seven identified proteins had been describedonly in the G. duodenalis genome
therefore being hypothetical proteins. Thirteen of these proteins have conservedputative

Table 3. Presence of transmembrane domains and signal peptide for the annoted proteins identified in insoluble and soluble protein fractions.

Protein Description ORF name TD SP Insoluble fraction Soluble fraction

Cathepsin L precursor GL50803_16380 X X

Variant-Specific Surface Protein 160 (VSP-160) GL50803_137612 X X X

Cathepsin B precursor GL50803_14019 X X

Tenascin-like GL50803_16833 X X

Thymus-specific serine protease precursor GL50803_10843 X X

Adenylate kinase GL50803_90402 X X

PDI5—Protein disulfide isomerase GL50803_8064 X X X

Variant-Specific Surface Protein 126.1 (VSP-126.1) GL50803_11521 X X X

Leucine-rich repeat protein GL50803_4039 X X X

Leucine-rich repeat protein 1 virus receptor protein GL50803_5795 X X X

Variant-Specific Surface Protein 100 (VSP-100) GL50803_33279 X X X

Serine peptidase, putative GL50803_15871 X X

Variant-Specific Surface Protein 88 (VSP-88) GL50803_101074 X X X

Leucine-rich repeat protein GL50803_5795 X X

Alanyl dipeptidyl peptidase GL50803_15574 X X X

High cysteine membrane protein Group 1 GL50803_15317 X X X

Bip (BiP) GL50803_17121 X X X

Dipeptidyl-peptidase I precursor GL50803_8741 X X X

Peptidyl-prolyl cis-trans isomerase B precursor GL50803_17000 X X

Tenascin precursor GL50803_8687 X X

Alpha-7.2 giardin GL50803_114119 X X

Variant-Specific Surface Protein 186 (VSP-186) GL50803_14586 X X X

Phospholipase B GL50803_93548 X X

Neurogenic locus Notch protein precursor GL50803_16322 X X

5’ nucleotidase family protein GL50803_92645 X X

Lysosomal acid phosphatase precursor GL50803_7556 X X

High cysteine membrane protein Group 2 GL50803_16721 X X

Variant-Specific Surface Protein 71 (VSP-71) GL50803_137681 X X

Variant-Specific Surface Protein 53.1 (VSP-53.1) GL50803_11470 X X

doi:10.1371/journal.pone.0164946.t003
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domains, though they all have high similarity to G. duodenalis and low similarity to other para-
site’s molecules.

Five of the proteins found in this work presented homology to proteins of other parasites
(S4 table). RhoGAP domain-containing protein (Entamoeba histolytica HM-1: IMSS) is part of
the Rho GTPase proteins that have emerged as key players in the regulation of a variety of bio-
logical activities, including actin polymerization, adhesion, cell cycle progression and cell
polarity, and are common in eukaryotes [37]. The role of RhoGAP domain proteins in G. duo-
denalis has not been characterized yet, although, according to the Smart™database, there are
nine putative proteins in the genome of G. duodenalis presenting this domain [38]. Kinesins,
here found related to Trypanosoma cruzi, have been described as an important virulence factor
for this parasite. During T. cruzi invasion of the host cells, lysosomes are mobilized to the site
of parasite attachment by a microtubule/kinesin-mediated transport. [39]. In G. duodenalis,
only one study reported that kinesin-13 is responsible for regulating the flagella extension of G.
duodenalis [40].

In conclusion, the proteomic analysis of the BHFC1 strain led to the identification of several
proteins, including hypothetical proteins, which may be related to an active metabolic and vir-
ulent profile of this G. duodenalis canine strain. Further studies on the protein function, expres-
sion and structure of these newly identified proteins may reveal their role in G. duodenalis
biology. Additionally, due to its infectivity to mice, BHFC1 becomes a valuable tool for a better
understanding of G. duodenalis biology and more amenable laboratory model.

Supporting Information
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