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Resumo

Neste trabalho, nds estudamos alguns problemas tedéricos na teoria de corpos finitos e
que sao de interesse para varias aplicagoes, bem como em teoria de codigos, criptografia
e areas relacionadas. Em particular, nés estudamos o niimero de pontos racionais sobre
hipersuperficies e apresentamos cotas para tais nimeros e férmulas explicitas nos casos
em que certas condicoes sao satisfeitas. Para algumas dessas hipersuperficies, nés também
apresentamos condigoes para a maximalidade e minimalidade do niimero de pontos com re-
speito a cota de Weil. Outro topico de interesse nessa tese € a interacao de polinémios sobre
corpos. Por exemplo, nds estudamos o grafo funcional associado a iteracao de polinomios
sobre corpos finitos. Nés também estudamos o niimero de solucdes da equacio R™(z) = a
sobre Fq para uma funcao racional R. O ultimo tépico dessa tese contém o estudo de
codigos com meétrica de posto que sao construidos com polinoémios linearizados sobre I,
os chamados cédigos Gabidulin retorcidos.

Palavras-chave: Corpos Finitos, hipersuperficies, Fermat hipersuperficies, Artin-Schreier
hipersuperficies, curvas elipticas, somas de caracteres, somas de Gauss, somas de Jacobi,
puridade de somas de Gauss e somas de Jacobi, pontos racionais, curvas maximais, corpos
perfeitos, fungoes racionais, fungoes iteradas, grafos funcionais, dinamica sobre corpos
finitos, dinamica de fungoes polinomiais, polinémios linearizados, cédigo com métrica de
posto.



Abstract

In this work, we study some theoretical problems in the theory of finite fields that are
of interest for a number of applications, such as in coding theory, cryptography and related
areas. In particular, we study the number of rational points on hypersurfaces and present
bounds for such numbers and explicit formulas in the cases where certain conditions are
satisfied. For some of these hypersurfaces, we also provide conditions for the maximality
and minimality of the number of rational points with respect to Weil’s bound. Another
topic of interest in this thesis is the iteration of maps over fields. For example, we study
the functional graph associated to the iteration of polynomial maps over finite fields. We
also study the number of solutions of the equation R(™ () = a over Fq for a rational
function R. The last topic in the thesis contains a study of code rank metric codes arising
from linearized polynomials over F,, the so called twisted Gabidulin codes.

Keywords: Finite fields, hypersurfaces, Fermat hypersurfaces, Artin-Schreier hypersurfaces, elliptic
curves, character sums, Gauss sums, Jacobi sums, purity of Gauss and Jacobi sums, rational points,
maximal curves, perfect fields, rational functions, iterated maps, functional graphs, dynamics
over finite fields, dynamics of polynomial maps, linearized polynomails, rank metric codes.
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INTRODUCTION

Introduction

The study of finite fields goes back to Fermat (1601-1665), Euler (1707-1783), Lagrange
(1736-1813) and Legendre (1752-1833), that contribute to the structure of special finite
fields, the so called prime finite fields. The general theory of finite fields was done by Gauss
(1777-1855) and Galois (1811-1832), but the interest for the study of the finite fields theory
only increased in the last 50 years because of its many applications in combinatorics, finite
geometry, coding theory, cryptography, number theory, among others.

In the last few decades, the theory developed and led to the emergence of many
interesting problems. In this thesis, we approach some problems in contemporary topics of
finite fields. Among other matters, this thesis compiles the original work contained in the

following papers:

(i) [63] Oliveira, José Alves. On diagonal equations over finite fields. Finite Fields and
their Applications, v. 76, p. 101927, 2021.

(i) [62] Oliveira, José Alves. Equivalence, group of automorphism and invariants of a
family of rank metric codes arising from linearized polynomials. Linear Algebra and
its Applications, v. 630, p. 274-292, 2021.

(iii) [65] Oliveira, José Alves. Rational points on cubic, quartic and sextic curves over
finite fields. Journal of Number Theory, v. 224, p. 191-216, 2021.

(iv) [64] Oliveira, José Alves. On maximal and minimal hypersurfaces of Fermat type,
arXiv:2110.07452, 2021. Submitted.

(v) [66] Oliveira, José Alves; Oliveira, Daniela; Reis, Lucas. On iterations of rational
functions over perfect fields, arXiv:2008.02619, 2020. Submitted.

(vi) On the number of rational points on Artin-Schreier hypersurfaces. Collaboration

with Fabio Brochero and Herivelto Borges, in final stage of preparation.

(vii) Dynamics of polynomial maps over finite fields. Collaboration with Fabio Brochero,

in final stage of preparation.

The content of the thesis is presented in 8 chapters. In Chapter 1 we provide background

results that are used throughout the text. The remaining 7 chapters are divided in 3 parts.

Part I: In this part, we study the number of rational points on some suitable families of

hypersurfaces.

13



INTRODUCTION

e Chapter 2: We use character sums to give the number of rational points on
suitable curves of low degree over I, in terms of the number of rational points on
elliptic curves. In the case where ¢ is a prime number, we give a way to compute
these numbers. As a consequence of these results, one can readily characterize
maximal and minimal curves given by equations of the forms ax?+ by?® +c23 = 0

and az? + by* + cz* = 0.

e Chapter 3: We study the number of rational points on the affine Fermat
hypersurfaces given by equations of the form alz‘lh + -+ + asx¥ = b with
x; € Fpr, where a;,b € F, and t;|n for all i = 1,...,s. In our main results, we
employ results on quadratic forms to give an explicit formula for the number of
rational points on Fermat hypersurfaces with restricted solution sets satisfying
certain natural restrictions on the exponents. As a consequence, we present
conditions for the existence of rational points. In the case t; = --- =t, = n, we
provide results with the exact number of rational points, generalizing previous

results of Wolfmann and Cao, Chou and Gu.

e Chapter 4: We study the number of rational points on the affine hypersurface
X given by ayz{' 4 --- 4+ a,x® = b, where b € F,. A classic well-known result
from Weil yields a bound for such number of points. In the case d; = --- = d,
we present necessary and sufficient conditions for the number of solutions of a
diagonal equation being maximal and minimal with respect to Weil’s bound.
The second part of the chapter presents necessary and sufficient conditions
for the maximality and minimality of X with respect to Weil’s bound in the
case b # 0 and arbitrary exponents di,...,d,. In particular, we completely
characterize maximal and minimal Fermat curves. We also discuss further

questions concerning equations and present some open problems.

e Chapter 5: We determine the number F «-rational points of affine hypersurfaces
given by the equation y? — y = alel + -+ asx% + b in terms of Gauss sums
and provide necessary and sufficient conditions for Weil’s bound to be attained.
Moreover, we present an improvement of Weil’s bound in terms of a constant
depending on dy, ..., d,. We also prove that if the exponents d; satisfy some
natural conditions, then explicit formulas for the number of [F r-rational points

can be obtained.

Part II: This part comprises results concerning the iteration of maps over finite fields and its

dynamics.

e Chapter 6: In this chapter, we study the digraph associated to the map
T — x”h(x%), where h(z) € F,[z]. We completely determine the associ-
ated functional graph of maps that satisfy a certain condition of regularity. In

particular, we provide the functional graphs associated to monomial maps. As



INTRODUCTION

a consequence of our results, the number of connected components, length of

the cycles and number of fixed points of these class of maps are provided.

e Chapter 7: Let K be a perfect field of characteristic p > 0 and let R € K(z)
be a rational function. This chapter studies the number A, r(n) of distinct
solutions of R™(z) = a over the algebraic closure K of K, where a € K and
R™ is the n-fold composition of R with itself. With the exception of some pairs
(a, R), we prove that A, gr(n) = car - d*+ O r(1) for some 0 < ¢op < 1 < d.
The number d is readily obtained from R and we provide estimates on cq g.
Moreover we prove that the exceptional pairs (o, R) satisfy A, r(n) < 2 for
every n > 0, and we fully describe them. We also discuss further questions and

propose some problems in the case where K is finite.

Part III: This part contains a study of a class of rank metric codes that arise from linearized

polynomials.

e Chapter 8 Maximum Rank metric codes (MRD for short) are subsets of
M,nsn(Fy) whose number of elements attains the Singleton-like bound. The first
MRD codes known were found by Delsarte (1978) and Gabidulin (1985). Sheekey
(2016) presented a new class of MRD codes over F, called twisted Gabidulin
codes and also proposed a generalization of the twisted Gabidulin codes to the
codes My, s(L1, Ly). The equivalence and duality of twisted Gabidulin codes
were discussed by Lunardon, Trombetti, and Zhou (2018). A new class of MRD
codes in Moy, x2,(F,) was found by Trombetti and Zhou (2018). In this chapter,
we characterize the equivalence of the class of codes proposed by Sheekey,
generalizing the results known for twisted Gabidulin codes and Trombetti-Zhou
codes. In the second part of the chapter, we restrict ourselves to the case
Li(x) = x, where we present its right nucleus, middle nucleus, Delsarte dual
and adjoint codes. In the last section, we present the automorphism group of
M s(x, L(z)) and compute its cardinality. In particular, we obtain the number

of elements in the automorphism group of some twisted Gabidulin codes.



CHAPTER 1. PRELIMINARIES

CHAPTER

Preliminaries

In this chapter, we introduce the main definitions, notations and basic results from finite
fields and related areas that are used along the text. Most of them are presented without
a proof. Nevertheless, a detailed introduction to the theory of finite fields containing the

proof for such results can be found in [50].

1.1 Introduction to finite fields

We start by presenting one of the most important example of finite field, which is
Z/(p), the residue class modulo a prime p. It is direct to prove that the cardinality of any
finite field is a power of a prime p, usually denoted by ¢, where p is the characteristic of
the field. On the other hand, there exists, up to isomorphism, a unique finite field with ¢
elements. This finite field is denoted by F,. In particular, F, is isomorphic to Z/(p). The
extension of degree n of F, is denoted by Fy» and Fq denotes the closure of F,. We use F
to denote the nonzero elements of F,. The following result is very useful and it is used
throughout the text.

Lemma 1.1. [50, Theorem 2.8] For every finite field F,, the multiplicative group F} is

cyclic.

1.2 Characters

In this section, we provide some definitions, basic and well-known facts. Let G be a finite
abelian group. A character of G is a homomorphism from G into the multiplicative group
of complex numbers of absolute value 1. Characters of F; and Fy are called additive and

multiplicative characters, respectively. Along this thesis, x¢ denotes the trivial multiplicative

16



CHAPTER 1. PRELIMINARIES 17

character defined by xo(a) =1 for all a € F}. The order of a multiplicative character of x
is the least positive integer d for which y¢ = xo.

Throughout the thesis, unless otherwise stated, for a divisor d of ¢ — 1, x4 denotes a
multiplicative character of F, of order d and 1 is the canonical additive character of F,.

As costumary, we extend the definition of a multiplicative character of F}, by defining

x(0) =0.

1.2.1 Character sums

In this section, we present some results on Gauss and Jacobi sums, that are defined as

follows.
Definition 1.2. Let Ay, ..., Ay be a multiplicative characters of .

(a) The Gauss sum of Ay over F, is the sum

G(M) = v(@)hi(x).

z€FY
etbel,. e Jacobt sum of \1,..., s is defined as
b) Let b € F,. The Jacobi 1) A, is defined

Ay A) = > Aabr) -+ As(by);

b4t be—b
(b1 4oy bs)EJFZ

One can verify that
Jp( A1y As) = A(D) . A (D) J1 (A, oy Ag)

for all b € Iy, fact that will be extensively used in the paper. Throughout the paper, we
set J()\l, ey )\s) = Jl()\la ce )\s)

Lemma 1.3 ([50, Theorem 5.4]). Let x be a nontrivial multiplicative character of ;. Then
> ()= x(e)=0.
celfy cely

Lemma 1.4 ([50, Equation 5.4, p. 189]). Let d be a dwisor of ¢ — 1. If c € Fy, then

d—1 17 Zf Xd(c) =0
Xa(c) = d, if xalc) =1
7= 0, otherwise.

Along this thesis, for a complex number w, we denote by w the complex conjugate of w.

Lemma 1.5 ([50, Theorem 5.30]). Let d be a divisor of ¢ — 1 and a € F},. Then

d—1

> Wlaz) =X (@)G(x)).

z€lFy j=1
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Lemma 1.6. /50, Theorems 5.11 and 5.12] Let xo denote the trivial multiplicative character
of Fy. If X # Xo, then

(a) |G(X)| = V&
(b) GO)G(X) = x(—1)g;
(c) G(xo) = —1.
Throughout the paper, we use i € C to denote the imaginary unity.
Theorem 1.7 ([50, Theorem 5.15]). Let xo be the quadratic character of F;. Then

(=1)"1g2 ifp=1 (mod 4);

G(x2) =
(—=1)"tling!/2 ifp=3 (mod 4).

Theorem 1.8. /50, Theorem 5.16 (Stickelberger’s Theorem)] Let xq be a nontrivial multi-
plicative character of Fe of order d dividing q + 1. Then

q, if d odd or Tt even;

G(Xd) = d )
—q, if d even and %odd.

Theorem 1.9. /50, Theorem 5.21] If A1, ..., As are nontrivial multiplicative characters of
[y, then

J()\h-";)\s): G()q ..... )\S) I
—q¢7'G(\) .. G(N),  if Ao A s trivial.

if A1+ A 1S nontrivial;

As a consequence of Hasse-Davenport Relation, we have the following result.

Theorem 1.10. /50, Theorem 5.26] Let 1y, ...,ns be multiplicative characters of [y, not
all of which are trivial. Suppose m, ..., ns are lifted to characters Ay, ..., As of Fy.. Then

J()\l, ey )\s) = (—1)(n71)(871)=]<7]1, c. ,T]s)n

Proposition 1.11. [50, Theorems 5.20 and 5.22] Let A1, ..., A\, be nontrivial multiplicative

characters of F. Then

qz, if b# 0 and Ay - - - A\ is nontrivial;
qz, if b#0 and \y - -+ g 18 trivial;

| Jo(A1s s AR = B
(g—1)g 2z, ifb=0and \;---\g is trivial;

0, if b=0 and Ay --- N\ is nontrivial.

18



CHAPTER 1. PRELIMINARIES

1.2.2 Some important definitions

In order to make notation simpler, we introduce the following notion, which is used

along all this thesis.

Definition 1.12. Let r be a positive integer. We say that an integer d is (p,r)-admissible if
d|(p" 4 1) and there exists no v’ < r such that d|(p” + 1).

This notion was introduced by us in [63] in the study of diagonal equations and appears
as a natural condition for the maximality and minimality of the number of solutions of
these equations. It turned out that this condition is closely related to the purity of Gauss

and Jacobi sums. For more details on this, see Theorem 1.16 and Chapters 3, 4 and 5.

Definition 1.13. We define
QO ={z€C: there exists an integer n such that z" € R}.

Definition 1.14. A Gauss sum G(\1) (or a Jacobi sum Jy(A1,...,As)) is said to be pure if

some non-zero integral power of it is real.

Let x, A1, ..., As be nontrivial multiplicative characters and b € F,. We note that G(x)
is a pure Gauss sum if and only if G(x) € Q. Also, Jy(A1, ..., As) is a pure Jacobi sum if and
only if Jy(A1,...,As) € €. The concept of purity of Gauss and Jacobi sums is well-known
and widespread. The purity of Jacobi sums have been extensively studied [3, 23, 67].

Lemma 1.15. (2, X) is a group.

Along of this text, we will use relations between (p, r)-admissibility and purity in order
to prove our results. In particular, the following result will be very important in the proof

of some results in the thesis.

Theorem 1.16 ([23, Theorem 1]). Let ¢ = p™. Given a divisor d > 2 of ¢ — 1 and a

multiplicative character xq of ¥, with order d, the following are equivalent.
(i) there exist an integer r such that d is (p,r)-admissible;
(i) G(x%) is pure for all j € Z;

(ili) there ezist r such that d | (p" + 1), and for minimal such v > 0 and u = 23 (d — 1),
it follows that
Gl = —(—1) g

for all 7 Z 0 (mod d).

The following result is a direct consequence of Theorems 5.16, 5.21 and 5.26 of Lidl
and Niederreiter [50].
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Lemma 1.17. Let g = p™ and let r be a divisor of n. Let m and k be positive integers that

are (p,r)-admissible. For two integers {1, ls, it follows that

b by ——
—&/q, if X3 Xo2 18 nontrivial;
J (i x2) = ,
—1, otherwise,

where & = (—1)"/?",

Proof. The case where Xf;l X2 is trivial is direct. Assume that Xf;l X2 is nontrivial. Since

El(p" 4+ 1) and k|(p™ — 1), it follows that ord,(p) = 2r|n, where ord,(p) denotes the the
multiplicative order of p in Z/(k). Let n; and n,, be multiplicative characters of order k
and m over [F 2 such that n; and n,, are lifted to x; and x,,. By Theorem 1.10, we have

that

n

J(xd x2) = (=Dt ni2)er.

By Theorem 1.9, , )
G 6 — GG 0m)
T ) = =G

Now, let D = lem(k, m) and d = ged(k, m) and let np be a multiplicative of order D over
[F,2r such that n, = ng/d and 7, = n]];/d. Then the order of 75 is k/ ged(k, £1), the order
of n’2 is m/ ged(m, €5) and the order of n;'n is D/ ged(D, ek By Stickelberger’s
Theorem (Theorem 1.8),

4 Lim+Lok
(8, nf2) = (—1)"5" (B aedlh+ B godlmto) acd(DAZFE5))

Since p is odd along all the thesis, one can verify that

pr; 1 <% ged(k, 0) + %gcd(m, l5) + ged(D, M))
is even. Therefore, J (nil,nﬁi) = p" and so
(X xz) = (1) 'p2,
which completes the proof. [ |

1.3 Algebraic geometry over finite fields

As usual, in this text, A® is the affine s-dimensional space Ej and P? is the projective
s-dimensional space over [F,. A subset V C P® is a projective variety defined over I, (or
projective Fq—variety) if it is the set of common zeros in P of homogeneous polynomials
F,....F, € Fq (X0, ..., X]. In the same way, an affine variety of A® defined over Fq
(or affine F,-variety) is the set of common zeros in A® of polynomials Fy,..., F,, €

F,[X1,...,Xs]. A hypersurface (affine or projective) is a variety defined as the set of zeros

of a single polynomial F'. In the case where s = 2, the hypersurface is called a curve.
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A variety V is irreducible if it cannot be expressed as a finite union of proper F,-
subvarieties of V. A variety V is absolutely irreducible if it is F,-irreducible as a F,-
variety. Any F,-variety V can be expressed as a union V = V; U --- UV, of irreducible
(or absolutely irreducible) Fq—varieties, unique up to reordering, called the irreducible
(absolutely irreducible) F,-components of V.

Let IP* (F,) be the s-dimensional projective space over F, and A® (F,) the s-dimensional
[F,-vector space Fy. For a projective variety V C IP* or an affine variety V C A% V(F,)
denotes the set of F,-rational points of V, namely V(F,) := V NP*(F,) in the projective
case and V(F,) := VN A*(F,) in the affine case. For more details on algebraic geometry,
we recommend [40, 57, 83].

Along this thesis, we study the number of points on affine and projective varieties

defined over F, that are zeros of certain polynomials F' (see Sections 2.1, 2.2 and 2.3).
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Rational points on hypersurfaces
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CHAPTER 2. RATIONAL POINTS ON CURVES OF LOW DEGREE

CHAPTER

Rational points on curves of low degree

For a curve C C P? we let N,(C) = |C(F,n)|, the number of F,-rational points on
C. For an irreducible non-singular curve C over F,, the well-known result [57, Theorem
3.3] states that there exist complex numbers wy, ... ,ws, such that the number of rational

points on a curve C over F,. satisfies

29
NC)=q"+1-)
i=1

where g denotes the genus of C and |w;| = /g for all i = 1,...,2g. This result is usually
referred as Riemann Hypothesis for algebraic curves. As a direct consequence of this

statement, we have the well-known Hasse-Weil bound, given by

[Na(C) = ¢" = 1 < 29V/q™ (2.1)

In general, it is difficult to compute the number of rational points N, (C). Many authors
have studied the so called maximal curves, that are curves whose number of rational points
attains the upper Hasse-Weil bound. The number of points on some special curves was
studied in [17, 27, 39, 40, 42, 48, 81]. Aubry and Perret [6] proved the following result.

Theorem 2.1. /6, Corollary 2.4] The number of F»-rational points on an irreducible curve

C over IF, is given by
2g Ac
Na(C)=q"+1=> wl = " pr,
i=1 i=1

where A¢ is a constant depending on C and w;, B; are complex numbers. Furthermore,
lwi| = /4, for all 1 <i < 2g, and |Bi| =1, for all 1 <i < A¢. In addition, A¢ < 7 — g,

where m is the arithmetic genus of C.

The numbers (; in Theorem 2.1 are related to the singularities of the curve C. If C is

a non-singular curve, for example, Ac = 0 and then Theorem 2.1 is the well-celebrated
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Riemann Hypothesis for algebraic curves. Let ¢ be an odd prime power. After a linear

change of variables, an elliptic curve over [, is a curve given by equations of the form
y? = az® + ba? + cx + d,

with 18abed — 4b3d + b*c* — 4ac® — 27a*d* # 0, where a # 0,b,¢,d are elements of F,.
Results involving points on elliptic curves can be found in [49, 82, 88]. Since the elliptic
curve C : y? = ax® + bx? + cx + d is a non-singular curve of genus 1, Theorem 2.1 states

that there is a complex number w,(a, b, ¢, d) satisfying
No,(C) =q" +1—wy(a,b,c,d)” —w,(a,b,c,d),

where |wy(a,b, ¢, d)| = 1/q. In Section 2.2, we show a way to calculate w,(a, b, ¢, d) compu-
tationally faster than direct computation.

In this chapter, we use sums of characters to give the number of rational points on
suitable curves of degree 3,4 and 6 over I, in terms of the complex numbers w,(a, b, ¢, d).
There is a connection between character sums and number of rational points on curves,
but there exists few articles in literature exploring this relation. The connection between
character sums and elliptic curves have already been studied by Williams [107]. We use
techniques similar to those used by Williams in addition to character properties, relating
different ways to count the number of points on the same curve in order to get the exact
number of points. In this chapter, we are interested in affine curves with equation y* = f(x),
where i = 2,3 or 4 and f(z) has suitable form.

Throughout the chapter, F, is a finite field with ¢ = p* elements. For n a positive
integer and m a divisor of ¢" — 1, let x,, denote a multiplicative character of order m on
7. To reduce the notation, we leave implicit the dependence on n. It is convenient to
extend the domain of the definition of x,, from F}, to Fs by setting x,,(0) = 1if m =1

and x,,(0) = 0 if m > 2. Some of the main results of the chapter are summarized below.

Theorem 2.2. Let a,b € F,. The number of rational points on the curve C : > =az® +b

over Fyn satisfies

n_

Nu(C) = q"+1 —wf — 01" —wy — " — wl — 3" — wf —ws" — x3(a) — x3(a),
where wy == wy(a™t,0,0,—ba™"), wy = w,(b71,0,0,—ab™!), ws := w,(1,0,0,—4ab) and

wy 1= wy(—4ab,0,0,1).

In what follows, the letter ¢ denotes a positive integer. The following result gives a

relation between the number of points on two suitable curves.

Theorem 2.3. Let A,B,C,a,b,c be elements in F, and oy,c0 € Fp2 be the roots of
the polynomial f(x) = az® + bx + c. Let C; : y' = (Az? + Bx + C)(ax® + bx + ¢)'!,
Cy:yi(ax? +br+c)=Ax>+ Br+C and C : 2* = (B — by")* — 4(A — ay")(C' — cy') be

curves over F,. The numbers of Fyn-rational points on the curves Cy,Cy and C satisfy

NA(C) = Nal@) — S (2) ~ 5+
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and -
Nn(CZ) = Nn(c) +1- ngc (é) — 9,
j=1
where v := [{aq, a2} NFyn| and § is given by
1+ x2(b* — 4ac), ifi = 1;

0:= 91+ x2(4Ac+4Ca —2Bb), ifi=2 and b*> — dac = 0;

1, otherwise.

Theorem 2.4. For a,b,c € F,, with a # 0, let C : y* = ax* + bx* + ¢ be a curve over F,,

with ¢ =1 (mod 4). The number of rational points on C over Fyn satisfies

)
1l Wl - W — 0" —wh —wz™, if b —dac# 0 and ¢ # 0;
"+ 1—wl—wi" — x2(b), if b —4ac # 0 and ¢ = 0;

N, (C)= q 1 1 x2(b) f #
"+ 1= x2(=b/2) + ¢" - x2(a), if b* — 4ac =0 and c # 0;
\q"+1—xg(b)+qn-xg(a), if b —4ac =0 and ¢ = 0,

2_ _ 2
where wy = wy(a™t,0,d;,0), di == Y73 wy 1= w,(c71,0,dy,0), dy := T2 and ws =

4q? 4c?
wy(a, b, c,0).

In order to prove these main results, we compute the number of points on many other
curves. For all the curves, we give explicitly the complex numbers from Theorem 2.1, as
we can see in Theorems 2.2 and 2.4.

As a direct consequence of the results presented throughout this section, one can readily

obtain results on the maximality and minimality of curves with equations of the form
ar™ +by" +c2" =0

in the cases n = 3 and n = 4, where a, b, c are elements in a prime field [F,, generalizing
the conditions presented by Garcia and Tafazolian [32] in these cases. The case where
a =b = c =1, the well-known Fermat curve, was discussed in [32]. More generally, the
techniques presented here give a new way to state when an irreducible curve attains the
upper bound given in Theorem 2.1.

The reason why we can not generalize this results to curves given by equations of the
form y* = f(z) of any degree is due to the fact that we do not know how to relate any
sum of characters with elliptic curves. For low degree, there is a natural way relate this

two objects, as we will see in the next sections.

2.1 Preparation

In this section, we recall some general results involving rational points on curves over

finite fields.
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Remark 2.5. The algebraic curves theory is developed in the projective space, then points
at infinity may be on the curve. For example, the point (xq, Yo, 2z0) = (0,1,0) is on the
homogenization of the elliptic curve y* = 23 4+ 1 . Therefore, Theorem 2.1 is considering
those points at infinity. In the results that we present in this chapter, we follow that

convention, considering those rational points.

Definition 2.6. Let a # 0,b,c,d be elements in F,. The curve C : y* = ax® + ba* + cx + d
is called elliptic curve over B, if the roots of the polynomial f(x) := az® + bx* + cx +d are

distinct.

As a direct consequence from Riemann Hypothesis for algebraic curves, we have the

following result.

Theorem 2.7. Let C : y? = ax® + bx* + cx + d be an elliptic curve over a finite field F,.

There exists a complex number w, with |w| = /q, that satisfies
N,(C)=¢"+1—-w"—-W".

The number w is unique up to conjugation. As w depends on a,b,c,d and q, we denote w
by wy(a,b,c,d).

Since wy,(a, b, ¢, d) is unique up to conjugation, we let
wg  Fi xF2 — {2 € C: [z = /q,5(2) > 0} (2.2)

be the function defined by (a,b, ¢, d) — w,(a,b, ¢, d), where I(z) denotes the imaginary

part of z. In Section 2.2, we present a way to determine w,(a, b, ¢, d) computationally fast.

Remark 2.8. By definition of w, and Theorem 2.7, we have wyn(a,b,c,d) = wy(a, b, c,d)”

for all a,b,c,d € F, and for all positive integer n.

2.2 Rational points on elliptic curves

From now, we consider ¢ odd.

Lemma 2.9. /50, Theorem 5.48] If a,b,c € F,, with a # 0 and A :=b* — 4ac, then

Z xa(az® + b +¢) = —x2(a), if A#0;
z€Fn (qn o 1)X2(a)7 ZfA _0

Remark 2.10. The discriminant of a cubic polynomial f(x) = ax® + bx* + cx + d is given
by

A = 18abed — 4b*d + b*c* — dac® — 27a*d?, (2.3)
where A # 0 if and only if the roots of f(x) are distinct. In addition, every root of f(z) is
an element of ¥y of A = 0.
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From here, let A(a,b,c,d) denote the discriminant of the polynomial f(z) = ax® +
bx? + cx + d.

Lemma 2.11. Let a,b,c,d € F,, with a # 0. If o, 0,03 € Fye are the roots of the
polynomial f(x) = ax® + bx?® + cx + d, then
—wy(a,b,c,d)” —wy(a,b,c, d)n, if A #0;
Z X2 (f(x)) =9 —xz2(a)x2(a1 — ), if f(x) = a(z — 041)2(1' — ay);
z€F n

' 0, if f(z) = alz — o),

where A :== A(a, b, c,d) as defined in Equation (2.3) and the complexr number wy(a,b, ¢, d)

1s defined as in Theorem 2.7.
Proof. Let C be the curve y? = ax® + cx? + cx + d. We observe that

N,(C)=1+ Z [1+ x2(az® + bz® + cx + d)] .

CCE]Fqn
By Theorem 2.7, if A # 0, we have
N,(C)=1+ Z [1+ x2(az® + b2® + cx + d)] = ¢" + 1 —wy(a,b, c,d)" — wy(a,b,c, d)n,

J,‘EFqn

Since ermqn 1 = ¢", the result follows. If A = 0, then there exists a root a € I, of the
polynomial az®+bx?+cx+d with multiplicity > 2. Hence, az®+ba?+ca+d = a(z—a)?(z—3),
with «, 8 € F,. Thus, from the relation

XQ(CL(J} - B)), if © # «;

Xg(ax?’ + ba? + cx + d)= x2 ((1’ — 04)2) X2 (G(JU - 5)) =
0, if r = q,

and Lemma 1.3, we have

Z xa(az® + bx? + cx +d) = Z xz(a(z — @)*(z — B))

z€Fn z€Fgn\{a}
= Z Xz2(az — af3)
z€Fgn\{a}
= —x2(aa — ap).
This completes the proof. [ |

Since we use Lemma 2.11 in most results in this chapter, it is convenient to introduce
the following notation. We define the function A’ : IF;* — {1,2,3} by letting

1, ifa;#a;foralll <i<j<3;
A'(a,b,c,d) =2, if a; = a; # oy for some {3, j, k} = {1,2,3};
3,

if 1 = O = (O3,
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where ay, an, az are the roots of the polynomial f(z) := ax® + bx? + cx + d. From this
definition, it follows that A(a,b,c,d) # 0 if and only if A’(a,b,¢,d) = 1. We also define
the function « : {(a,b,¢,d) € F; : A'(a,b,c,d) = 2} — F, by

ala,b,c,d) = aay — aag,
where f(z) = a(x — a1)*(z — as).
Lemma 2.12. /50, Lemma 7.3] Let m be a positive integer. We have

)0, if (g—1)tm orm =0;
acF, =1, if (¢g—1) | m and m # 0,

where 00 := 1.

g—1

Remark 2.13. [t is known that x2(a) = (—1)" € C if and only if a2 = (—-1)" € F,.

3
S
I
<
S
=
Q
S
S

Indeed, by definition, x2(b) = —1 if and only if b is not a square in F;, s

is a generator of the group ¥ and i is odd. It follows that b = 07 ) =(-1)' = —1.

In similar way, we have that x2(b) = —1 if and only if bE = 1.
The following lemma characterizes, modulo p, the trace of Frobenius
7,(a,b,c,d) = wy(a,b, c,d) + wy(a,b, c,d)

of an elliptic curve given by equation y? = ax® + bxz* + cx + d over F,. Since we are
interested in odd characteristic, we may suppose b = 0. This lemma allows us to calculate
the number of points on elliptic curves whose coefficients are in a prime field IF,. Along
the proof of the following result, we use |a] and [a] to denote the floor and ceiling of a

real number a.

Lemma 2.14. Let C : y* = Az + Bx + C be an elliptic curve over Fyn, where p is an odd

prime. The trace of Frobenius of C satisfies the relation

Ry

pi—l 21 p"— p"— p"—
7n(4,0,B,0)= (;l )(JA = B 0 (mod p).
=2 ’

Proof. We observe that

0, if Az + Bx + C is not a square in Fn;
1+ x2(A2® + Bz + CO) = b i
2, if Az® + Br + C is a square in Fpn.

Therefore, we have

Ni(C)=1+ ) [+xa(Az®+ Ba+C)=p"+1+ >  xo(dz®+ Bz +C).

xEFpn .’L‘EFpn
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By Remark 2.13,

n_q

Z X2(Az® + Bx + C) Z (Az® + Bz +C)" 2

SCE]Fpn IE]Fpn
p"—1
2 pl o
= g g 2 (A2’ + Bx)'C =z
7
J?EFPTL =0
pQ_ pt—1 7 .
p"—1_. 1 . - R
= E E 2 C ¢ E . A’ B* ]IQJ—H
,7 (4 - Vi
z€Fyn =0 7=0
p"—1

M-

( 2 ) (%)A’B’JC’ 7 Z ¥ (mod p).
i—0 j—o \ ' J zeF,
By Lemma 2.12, the sum >, 5 2%+ is nonzero only if 2j +¢ =0 (mod p" — 1) and
27 +1 # 0, and in these cases, the sum is —1. In addition, since
pr—1  pt-1_3(p"-1)

it follows that

™1

Jj=

1=0

L E it

) >AJBZ T
j CEE]Fpn

p m_1-21 _pt—1-21 _p"—-1_
<pn_1 Ql) 5 BQZ 5 O 5 21

4’1J
-y (3
I= [”611
i

p—1-21 p"—1 _p"—1_
=— ( l)(pn_l QZ) > B2 72 72 (mod p).

Since N1(C) =p" + 1 —71,n(A,0, B, C), the result follows. [ |

In Lemma 2.14 there is an abuse of language when we write
Z X2(Az® + Br +C) = Z(Axg + Bx + C)pTil
z€lF, z€lF,

since the left summation is over C and the right summation is over F,. In fact, we do it
many times throughout this chapter.

Since |7(4,0, B, C)| = |w,(A, 0, B,C) +w,(A,0, B,C)| < [2,/p] (by Theorem 2.7), we
can use Lemma 2.14 to compute the complex number w,(A,0, B, C) in the case where

p > 17, as in the following example.

Example 2.15. Let J : y> = 23 + 2 be an elliptic curve over Fig. From Lemma 2.1/,

4
- 2
wio(1,0,0,2) + wie(1,0,0,2) = ) (ﬂ)( 11)031—929—21 =7 (mod 19).
=
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Since Jwig(1,0,0,2) +wie(1,0,0,2)| < [2v19] = 8, we have wig(1,0,0,2) +wi9(1,0,0,2) =
7. Thus, using that |wi9(1,0,0,2)| = V19, we must have

7 /
W19(1,0,0,2):2 19——_—

In addition, the number of rational points of J over Fign is given by

. T2\ (7. 27\

We will use this technique in the examples of this chapter in order to compute the
number of rational points on suitable curves. In [95], the author presents congruences
similar to congruence in Lemma 2.14. In fact, some values of w, are well-known in the case

where p is a prime number, e.g. see Theorem 6.2.9 and Theorem 6.2.10 in [11].

2.3 Rational points on curves of the form y* = f(z)
Throughout this section, for an event A, let

1, if A occurs;
ﬂAZI:
0, if A does not occur

be the indicator function of the event A. In Algebraic Geometry, a hyperelliptic curve of

genus g > 1 is an algebraic curve given by equation

v+ hz)y = f(2),

where f(z) is a polynomial of degree 2g + 1 or 2g + 2 with distinct roots and h(z) is
a polynomial of degree at most g + 1. When the characteristic of the field is not 2, we

can take h(x) = 0 (make the change of variables, by taking y = z — 1h(z) and z = w).

Hyperelliptic curves are useful in cryptography (for example, see [15]). In Ulas [101] and
Nelson, Solymosi, Tom and Wong [60], the authors present results concerning the number
of rational points on hyperelliptic curves. In this section, we present the number of rational
points on curves of the form y* = f(x), where f(z) € F,[z] is a suitable polynomial of
degree 4 or 6. In particular, we give the number of points on most hyperelliptic curves of

genus 1 when ¢ is odd.

Remark 2.16. Let Ay, Ay C Fy be two sets with the same number of elements. Let f be a
bijective map from Ay to Ay and g : Ay — F, an arbitrary function. Then

D xe(g(f @) = D xlo(2))

zEM z€A2
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Lemma 2.17. Ifa,b,c,d € F,, with a # 0 and d # 0, then

—wy(d, c,b,a)" — wy(d, c, b, a) = xa(a), ifA=1;

> Xalaz® +ba® +cx+d)xa(z) = § —ya(a) — xala), if A = 2;

et —xz(a), if A" =3,
)

where A" := A'(a,b,c,d), o := a(a,b,c,d) and wy(d,c,b,a) is defined as in Theorem 2.7.

Proof. Using the fact that y2(0) = 0, we have

Z xa(az® 4+ bx® + cx + d) a2 (x Z xa(az® 4+ bx* + cx + d)x2(z7?)

2€Fyn z€F?,
= Z xa2(a+bz™ !+ ca? + da?)
xGIF;n
= Z Xa(a + bz + c2* + d2°).

zeFZn

By Lemma 2.11,

—wy(d, ¢,b,0)" —wy(d,c,0,0)" = xa(a), if A =1;

D xela+bz+c2” +d2%) = —xy(a) — xa(a), if A =2
z€F*,
‘ —xea(a), if A’ =3,
where A’ := A’(a, b, ¢,d) and a := «a(a, b, ¢, d). [ |

Theorem 2.18. For a,b,c,d,e € F,, with a # 0, let C : y* = (az® + bz* + cx + d)(z + ¢€) be

a curve over F,. The number of rational points on C over Fyn satisfies

41 —wy(d, W, d ) —w (d, 0, a) —xa(d), if d #0 and A =

q" +1—x2(a) — x2(a’), if d #0 and A" = 2,
Nu(C) = S ¢ + 1 — xa(d'), if d #0 and A’ = 3;

" +1—xa(d) — x2(c), if d =0 and (V')* # 4a'd

¢+ 1+ (¢" — D)xz2(a") — x2(c), if d =0 and (V')* = 4d'd

where a’ = a, ¥ =b— 3ae, ¢ = 3ae* —2eb+c,d = be* —ae®* +d —ec, A = N(d,V,,d)

and o = a(d', b, d,d).

Proof. We have
N,(C) =1+ Z [1+ xo(az® + bx® + cz + d)xa2(z + €)]

IEEFqn
="+ 1+ Y xala(z—e)’ +b(z =€) +c(z =€) + d)xa(2)
ZEFqn
=q"+ 1+ Z Xo(a(2®— 32%e + 3ze” — €)+ b(2° — 2ze + €°) + c(z— e)+ d) x2(2)
Ze]Fqn

=q"+14+ Y x2(az’+ (b= 3ae)2” + (3ae® = 2eb + ¢)2 + be’ — ae’ + d— ec)xs(2).

ZEFqn
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Hence, the result follows from Lemma 2.17 in the case be? — ae® + d — ec # 0. Otherwise,

N,(C)=q"+1+ Z x2(az’ + (b — 3ae)z* + (3ae® — 2eb + ¢)2)x2(2)

zGF;n
=q¢"+1+ Z xa2(az® + (b — 3ae)z + (3ae* — 2eb + ¢)).
zGF;n
In this case, the result follows from Lemma 2.9. |

Example 2.19. Let J : y? = (a®* + 2> —x + 1)(z + 1) be a curve over Fr3. In order to
calculate wqy3(2,0,—2,1), we use Lemma 2.14 as in Example 2.15. We note that

18

36 21

wr3(2,0,-2,1) +wr3(2,0, -2, 1) = Y (2Z) (36 - z) 236-1(2)31=36136=2l = 16 (mod 73),
=12

then wr3(2,0,—2,1) = 8 + 3i. Since A'(2,0,—2,1) = 1, Theorem 2.18 states that the
number of rational points on J over Frsn is given by
N.(T)=73"—(8431)" — (8 — 3i)".

Theorem 2.20. For a,b,c,d € F,, with a # 0, let C : y* = az® + ba* + cx® + d be a curve

over F,. The number of rational points on C over Fyn is given by

(

"+1—w]—w"—wy —w" — xa(a), if d#0 and A" = 1;
¢" + 1= x2(n) — x2(a2) — x2(a), ifd#0 and A" = 2;
N,(C) = ¢+ 1— xz(a), if d #0 and A" = 3;
" +1—w! =" — xa(a) — xa(c), if d =0 %# c and b* — 4ac # 0;
" +1—xalar) + (¢" — 1)xz2(a) — xa(c), ifd=0 and b* — 4ac = 0;
"+ 1 — xa(a1) — xa(a) — xa(c), if c=d=0 and b* — 4ac # 0,
where wy = wy(a,b,c,d), wy = wy(d,c,b,a),a; = afa,b,c,d),as = a(d,c,b,a) and

A" := A(a,b,c,d).
Proof. The number of rational points on C is given by
N,(C)=1+ Z [1+ x2(az® + bz* + cz® + d)]

LL’EFqn

=14 Y [L+x2(a2” + b2® + cx + d)] [1 + xa()]

.’L'EFqn

=q¢"+1+ Z [x2(az® + b2® + cx + d) + xa(2) + x2(az® + br® + cx + d)x2 ()] -

IE]Fqn

The result follows from Lemmas 2.11, 1.3 and 2.17 in the case d # 0. Otherwise,

N,(C)=q"+1+ Z Yo(az® + ba® + cx) + Z x2(az® 4 bx® + cx)x2(2)

z€Fyn :vE]FZn

=q¢"+1+ Z xo(az® 4 bz® + cx) + Z x2(az? + bx + ).

z€Fn :):E]F:;n

Hence, the result follows from Lemma 2.9 and Lemma 2.11. [ |
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Example 2.21. Let J : y* = 225+ 1 be a curve over Fag. In order to calculate wyg(2,0,0,1)
and wyg(1,0,0,2), we use Lemma 2.14 as in Example 2.15. We note that

7
14
w29(2,0,0,1) + wy(2,0,0,1) = Y ( )( )214—l03l—14114—2’ =0 (mod 29)
=
and
7
w29(1,0,0,2) + wy(1,0,0,2) = Y ( )( )114—l03l—14214-2l =0 (mod 29),

1=5

then weg(2,0,0,1) = wq9(1,0,0,2) = 1v29. Since 2 is not square residue in Fog and
A'(2,0,0,1) =1, Theorem 2.20 states that the number of rational points on J over Fagn
s given by

20" 4. 29%K+1 - ifn = 4k + 2 for an integer k;

Nu(T) = < 29" — 4. 292 if n = 4k for an integer k;

29" + 2, if n s odd.

Theorem 2.22. For a,b,c € F,, with a # 0, let C : y*> = ax* + br? + ¢ be a curve over F,.

The number of rational points on C over Fyn is given by

/

¢"+1—wy(a,b,c,0)" —wy(a,b,c, O) —x2(a), if b* —dac # 0, with ¢ # 0;
"+ 1—x2(b a if b — dac # 0, with ¢ = 0;

N,(C) = 4q x2(b) — x2(a), f #
"+ 1—xa(=b/2) + (¢" — 1)x2(a), if b — 4ac = 0, with ¢ # 0;
\q”—i—l—I—(q”—l)Xg(a), if b? — dac = 0, with ¢ = 0.

Proof. As in the last theorem,

N,(C)=q"+1+ Z [x2(az® + bx + ¢) + x2(x) + x2(az® + br® + cx)] .
IEFqn

By Lemmas 2.9, 1.3 and 2.11, the result follows. |

Lemma 2.23. Let i be a divisor of ¢" —1 and A, B,C,a,b,c € F,, with A # 0 and a # 0.
If an, a0 € F 2 are the roots of the polynomial f(x) = ax® 4+ bx + ¢ and the polynomials
f(z) and g(x) = Ax? + Bz + C have no common roots, then

2 [ (AR )+ o+ (A5REE )| = a0y == 1+ ()]
o)
where C is a curve given by the equation 2*> = (B — by*)? — 4(A — ay®)(C' — cy*) and 6 is a
constant referent to points at infinity given by
1+ x2(b* — 4ac), ifk=1;
0:= ¢ 1+ x2(4Ac+4Ca —2Bb), if k =2 and b* — dac = 0;

1, otherwise.
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Proof. We observe that the summation

Ax?+Bz+C k—1 ( Az?’+Bz+C
Z |:1 + Xk < agf’z:Qeraerc >+ et Xk ( aa;:2+bgf+c )]
xEFqn
r@{o1,az}
count the number of rational points on the curve C’ : y*(ax? + bx + ¢) = Ax®> + Bz + C
over Fn. Let yb € Fyn, if there exists zg € Fyn such that (zo, o) is on the curve, then it is

given by one of the following
by* — B+ M
2(A—ay*) '
where M? = (B—by*)?—4(A—ay*)(C —cy"). Therefore, fixing y& € F,n, there exists 2o € Fn
such that (o, yo) is on the curve C’ only if (B —byf)? —4(A—ayk)(C' —cyf) is a square in Fn
or if y& = Aa~!. Let C be the curve given by equation 2% = (B —by*)? —4(A—ay®)(C — cy¥).
In the case where Aa™! is a k-th power in F,» and Aa~'b # B, there are i rational points of
the form (%“;’_fj,fy) on the curve C’, where v is a k-th primitive root of Aa~!. Since there
are 2k rational points in C where y* = Aa~! (namely (:i:BaT_bA, 7)), the result is proved in

this case. In the case where Aa~'b = B, there are no rational points with y* = Aa~! on

the curve C' and only &k on C, then, in the same way, the result follows. [ |

Remark 2.24. Let b,c, A, B,C € Fy, with A# 0, b# 0 and A(5£)* + B(5¢) + C # 0. For

k a divisor of ¢" — 1, in the same way of the proof of Lemma 2.23, we have

N,(C)—2, ifk=1;
Z[l-FXk (Aﬁ;;f?c)Jr . (AIQI;J;Ei+C)] _ () |
z€Fgn N,(C) =1, otherwise.
x#—c/b

where C is a curve given by the equation 2*> = (B — by*)? — 4A(C — cy*).
Proof of Theorem 2.3. By Lemma 2.23,

N,(C) =1+ Z 1+ + Xﬁ’l((sz + Bz + O)(az® + bx + c)kfl)}

(EGFqn

z€F n\{on,00}

Az + Bz +C
ax?+bxr +c

=1+ o, a0} NFp| + No(C) = [T+ () + -+ (2)] =4,
where C is the curve given by the equation 22 = (B — by*)? — 4(A — ay*)(C — cy¥). In the
same way,

Ax* + B C Az* + B C
N 24 Y {1+Xk( 2% + Bz + >+---+X';§‘1( 2%+ Bx + H

2 2
reF o\ fot 2] ar? +bx +c ar? +br+c

=24+ N,C)—[1+xx (2)+ -+ x ' (D)] -0

a
[
We have the necessary tools to compute N, (C) in some cases, as we will see in the

following results.

34



CHAPTER 2. RATIONAL POINTS ON CURVES OF LOW DEGREE

Corollary 2.25. Let A, B,C,a,b,c be elements in I, that satisfy the hypothesis of the
Lemma 2.23. Assuming b* — 4ac # 0 and B* — 4AC # 0, the number of rational points on
the curve C : y*(az® + bx + ¢) = Az + Bx + C over Fyu is given by

"+ 1—wy(d, b, 0)" —wq(a’,b’,c’,O)n — xz2(a") — xe (é), if A #£0;

N,(C) = ' .
¢" 41— x2(@) + (¢" = )xa(d) — x2 (2) if A=0,

where a' := b* — 4ac, V' := 4Ac+ 4Ca — 2Bb, ¢ := B* — 4AC, A := A(d,V,c,0) and

a=aldlV,d,0).
Proof. It follows from Theorems 2.3 and 2.22. [ |

Corollary 2.26. Let A, B,C,a,b,c be elements in F, that satisfy the hypothesis of the
Lemma 2.23. Assuming b*> — 4ac # 0 and B? — 4AC # 0, the number of rational points on
the curve C : y* = (ax® 4+ bx + ¢)(Az* + Bx + C) over Fyn is given by

qn+ 2- :H'{Oélqun}_ wq(a,7 bl; Cl? O)H_ wq(ala bl? 0,7 0) = XQ(CL/) — X2 (%) ) ZfA ;é 07
"+ 2 1aermy — x2(@) + (¢" — 1)xa(ad’), if A =0,

Nn(c) =

where a' := b* — 4ac, V' := 4Ac+ 4Ca — 2Bb, ¢ := B> —4AC, A := A(d,V,c,0) and

a=aldV,,0).
Proof. It follows from Theorems 2.3 and 2.22. [ |

The previous result generalizes the sums of quadratic characters studied by Williams

in [107], where the author computes the sum

Z xz ((az® + bx + ¢)(Az® + Bz + C))

z€lFp

over a prime field F,.

Example 2.27. Let J : y* = (2* + 3z + 2)(2* — 22 — 5) be a curve over Fg;. In order to
calculate wgr(1,0,24,0), we use Lemma 2.14 as in Example 2.15. We note that

16

—_— 33 21

wer(1,0,24,0) + wer(1,0,24,0) = <2 z) (33 - z) 13371(24)3733033"2 = 0 (mod 67),
=11

then wer(1,0,24,0) = iv/67. Since A(1,0,24,0) = —55296 # 0, Corollary 2.26 states that
the number of rational points on J over Fgr is given by

67" — 2 (i\/ﬁ)n, if n is even;

67", if n is odd.

Nn(j) =
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In Theorem 2.18 and Corollary 2.26, we give the number of rational points on y? = f(x),
where f(z) is a polynomial of degree 4 that is reducible over F,. In Theorem 2.22 we give

this number in the case where f(z) = ax? + bz? + c. Hence, we presented the number of

rational points on most hyperelliptic curves of degree 4 over finite fields of odd characteristic.

The remaining case is the curve given by the equation y? = ax* + bx? + cx + d, with ¢ # 0,
where f(z) = az* + bz? + cx + d is an irreducible polynomial over F,. In fact, we do not

know how to calculate the number of rational points in this specific case.

2.4 Rational points on curves of the form y° = f(z)

In this section, we assume ¢ = 1 (mod 3). The case ¢ Z 1 (mod 3) is not interesting,

since the function y — y* permutes the elements of F,,.

Theorem 2.28. Let a, A, B,C € F, with A#0. Let Cy : y* = (x + a)(A2? + Bz + C) and
Cy i y° = (z + a)*(Ax? + Bx + O)? be curves over F,. If Aa®> — Ba + C # 0, then the

number of rational points on Cy and Cy over Fyn satisfies
No(Cr) = Nu(Co) + x3 (A) + x5 (A) = ¢" + 1 — wy(d’,0,0,)" — w,(a’, 0,0, )",
where a' := 4Aa® + 4C — 4Ba and ¢ := B? — 4AC.

Proof. Since the number of rational points on the C; : y* = (v +a)(Az? + Bx + C) is equal
to the number of rational points on the curve C’ : y* = (z + a)*(Az? + Bz + C), except 3
possible points at infinity, the value N,,(C;) follows from Theorem 2.3 and Lemma 2.11. In

order to calculate N, (Cs), we note that
N, (Cy) =1+ Z [1+ x5 ((z + a)*(Az? + Bz + C)?) + x3 ((z + a)*(Az* + Bz + C)?)]
:EE]Fqn

=1+ Z [1+ x5 (x4 a)*(Az® + Bz + C)*) + x5 ((z + a)(Az® + Bz + 0))]

CEE]Fqn

=1+ Z [1+ x5 ((z+a)(Az® + Bz + C)) + x5 ((z + a)(Az® + Bz + C))]

= No(C1) = x3 (A) = x5 (4).
|

Example 2.29. Let J; : y* = (x+3)(—2? 422 +2) be a curve over Fs;. In order to calculate
w3r(—52,0,0,12), we use Lemma 2.14 as in Example 2.15. We note that

20 J\18 — 1

9

1 21

ws7(—52,0,0,12) + wsz7(—52,0,0,12) :Z< 8>< >(—52)18103“812182l: 27 (mod 37),
=6

then ws7(—52,0,0,12) = —=5+1v/12. Theorem 2.28 states that the number of rational points

on J1 over Fszn is given by

Na(J1) =37+ 1= (=5 + i\/ﬁ)n —(-5- Mﬁ)n.
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In addition, the number of rational points on the curve Jo : y* = (x + 3)?(—2? + 2z + 2)?

over Fsm is given by
No(o) =37 = 1= (=5 +iV13)" = (-5 -1V12) .

Theorem 2.30. Let a,b € F,. The number of rational points on C : y® = az® + b over Fn

satisfies

N,(C) = ¢" + 1 —wy(a™",0,0, (b/2a)*)" — wy(a=1,0,0, (b/2a)?)".
Proof. We have

N,(C) =1+ xs(a) + x3(a) + Z [1+ xs(az 4+ b) + x3(az + b)] [1 + x3(2) + x5()]

IG]Fqn

=1+ xs(a) + x3(a) + S + S,

where
Sii= Y [L+xs(aa® + bx) + x3(az® + b)]
:£: s (aG-2) +0(-2))+x3 (- 2) +b(:-2))]
S f (o ) i (e )]
-

Spi= Y [xslar +b)x3(x) + x3(az + b)x3(x)]

a:EIF;n

=" Desla+bd) + x3(a+0b)]

wGFZn

= Z [Xg(a +b2) + x3(a + bz)]
= —xs(a) — x3(a).

Since S; count the number of rational points in the curve with equation z? = £ + %, the

result follows from Lemma 2.11. [ |

Proof of Theorem 2.2. We note that

Na(€) =1+ > [1+xs(az® +b) + x3(az® + b)] [1 + x3(z) + x3(x)]

JSEFqn
=14+ 51+ 95+ 955,

where
Si= D7 [1 xs(ar® +0) + xi(a? + ) + xa(o) + X5(0)]

$€Fqn

= ) [1+ xs(az® + ) + x3(az® + )]

IE]Fqn

- Z [1+ x2(a w® —ba™)],

’wEFqn
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Sy = > [xa(ax® +b)xs(x) + x3(az” + b)x3(x)]

xG]Fqn
ar®+b 9 ax® +b
= Z X3 2 X3 T2
IGF;n
= Y [xsla+b2) + x3(a +b2%)]
ZEIF;‘n
= Z Xg(b_lw?’ — ab_l) — xs(a) — X%(a)
’u)e]Fqn
and
Ss= Y [xs(az® + b)x3(z) + x3(az” + b)xs(x)]
xE]Fqn
0 +b\ |, (az® +b
= Z X3 + X3 :
xzelF*, v o

By Lemma 2.11,

S1=¢"—w —w",
where w; := w,(a1,0,0,—ba"') and
Sy =~ — " — xs(a) — x3(a),
where wy := w,(b™1,0,0, —ab™!). By Remark 2.24 and Theorem 2.20,
Sz = —wy —W3" —wy —wp",
where w3 = w,(1,0,0, —4ab) and wy = w,(—4ab, 0,0, 1). [ |

Example 2.31. Let J : y> = 2% + 1 be a curve over Fip3. We use Lemma 2.14 as in

Ezxample 2.15 to calculate the complex numbers w; tn Theorem 2.2. We have
wi3(1,0,0, —1) = —10+iV/3, wigs(1,0,0, —4) = Y8 4 005(—4,0,0,1) = ~13E1V2E
Then, by Theorem 2.2,

N (JT)=103"-1—-2 -w! —2-W;" —wy — Wy —wy — w3,

where wy == —10 +iv/3, wy := THYS0 gnd wy = 134NV

2.5 Rational points on curves of the form y* = f(x)

In this section, we compute the number of rational points on curves of the form
y* = ax* + bz? + c. The case ¢ = 3 (mod 4) must be considered separately, since every

square is a fourth power, as we show in the following lemma.

Lemma 2.32. Let F, be a finite field with ¢ = 3 (mod 4) elements and k a positive integer.

An element a € F, is a square if and only if it is a 2¥ power.
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Proof. Since ged(251, 1) = 1, there are integers a,b such that 2¥=! . q + L. p = 1.
Then

a? = a2k-a+(q71)-b _ (aa)zk

for all a € F,. Conversely,

a2k . O{QQk_la+2k_l(Q71)b _ (a22k_2a>2 ’
which completes the proof. |

Therefore, in the case ¢ = 3 (mod 4), the number of rational points on £ : y* =
ax* + bx? + c is the same as the number of rational points on y? = az* 4 bx? + ¢ except
points at infinity. We have already presented the number of points on y? = ax* + bx? + ¢
in Theorem 2.22. In order to compute N, (L) for any positive integer n in the case where
the a, b, ¢ are elements in a prime field, we have to compute the number of points in these

curves in the case ¢ =1 (mod 4).

Lemma 2.33. Let a,b,c € F,, witha # 0 and ¢ =1 (mod 4). For f(z) := az® + bx + ¢, we

have
—wy(a™,0,d,0)" —w,(a=1,0,d, 0):1 if b2 — 4ac # 0;
S Dalf@) + 3 (f@)] = ' o
= 0, if b* — dac =0,
where d := =3¢

Proof. We observe that

1+ Z [1+ xa(az® + bz + ¢) + xj(az® + bz + ¢) + xi(az® + bz + ¢)]

Z‘G]Fqn

=1+ ) [T xafaz® = 550) + xd(a2” — B50) + i (a® — B0

ZGFqn

calculate the number of rational points on the curve C : 22 = £ + b2_42“c
p a da

L:= Y [xa(f(z)) + x3(f(x))], by Theorem 2.22, we have

Z‘G]Fqn

. Therefore, letting

—wy(a™t,0,d,0)" — wy(a=1,0,d,0)" — xa(a), if b2 — dac # 0;
L=— Z X3 (ax?+br+c)+ o ) ol ) x2(a) 7
z€Fn (¢" — 1)xa(a), if b2 — 4ac =0,

b%2—4ac

12 The result follows from Lemma 2.9. [

where d :=

Proof of Theorem 2.4. We have

Na(C)=0+ > [1+xa(az®+ bz+ ¢)+x3(aa’+ ba+ o)+ (ar’ + b+ ¢)| [14x3(x)]

CIJE]Fqn

=0+ 51+ Sy,
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where 0 := 1+ x4(a) + x3(a) + x3(a).

Sy = Z 1+ xa(az® + bx + ¢) + x3(az® + bz + ¢) + x3(az® + bx + c)
CCE]Fqn
and
Spi= Y [14xa(az’® + bz + ¢) + xi(ax® + ba + ¢) + xi(az® + bx + )] ().
xeF;n
By Remark 2.16,
) ar?+ bx+ ¢ 0, 3 . o sfaz? +bx+c
Sp= ) i)+ x5 )+ adlar’+ b+ eo)+ i ———5——
xeF;n

= Z X3 (az® + ba? + cx) + Z [xa(a+ bz + cz®) + xi(a + bz + ¢2%)].

xEIF;n z€F%

Using Lemmas 2.9 and 2.33 in S; and Lemmas 1.3, 2.11 and 2.33 in S5, the result follows.

Example 2.34. Let J : y* = 2% + 422 — 1 be a curve over Fy;. We use Lemma 2.14 as in

Example 2.15 to calculate the complex numbers w; in Theorem 2.4. We have
wy1(1,0,5,0) = wy1(—1,0,5,0) = wyi (1,4, —1,0) = =5 + 4i.
Then, by Theorem 2.4, the number of rational points on J over Fyn is given by
Ny (TJ)=41"4+1—-3-(=5+4i)" —3- (=5 —4i)".

In the following result, we use that the number of rational points on £ : y* = ax*+bax?+c
is essentially the number of points on £’ : y? = az* + bxz? + ¢, as we have seen in Lemma

2.32.

Corollary 2.35. For a,b,c € F),, where p =3 (mod 4) is a prime number and a # 0. The

number of rational points on the curve C : y* = az* + bx® + ¢ over Fyn satisfies

(p" +1—2(i/p)" — 2(—iy/p)" —w" —w", if b* —4ac# 0 and ¢ # 0;
N, ()= Pt +1—(iy/p)" — (—iy/D)" — x2(b), if b* — 4ac # 0 and ¢ = 0;
Pt 41— x2(=b/2) + p™ - x2(a), if > — 4ac =0 and ¢ # 0;
[P+ 1= x2(0) + 9" - x2(a), if b» —4ac =0 and ¢ = 0,

where w = w,(a, b, ¢,0).

Proof. By Theorem 2.4 and Remark 2.8,

(

Pl — Wi — o — Wl — 0P — Wit —w3?, if b? — dac # 0 and ¢ # 0;
P+ 1 — Wit — W — xa(b), if b — 4ac # 0 and ¢ = 0;
P+ 1 — x2(=b/2) + p*™ - x2(a), if b> — 4ac = 0 and ¢ # 0;
\p2"+1—xg(b)+p2"-xg(a), if b — 4ac =0 and ¢ = 0,

NQn(C> -
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2 _ 2_
where w; 1= w,(a™,0,d;,0), di = 53 wy == w,(c71,0,ds,0), dy = 3% and wy :=

4q? 4c2
wy(a, b, c,0). Lemma 2.14 states that

w+w =wy+w; =0 (mod p).
Since |w; + @1 < 2/p and |wy + W] < 2,/p, we must have
R(w1) = R(we) =0
for p > 4. A straightforward calculation shows that
R(ws(a™t,0,dy,0)1) = R(ws(c1,0,dy,0)) = 0.

In addition, since there are 1+ y2(a) points at infinity on C (by Lemma 2.32, each element

a € F,, has exactly 0 or 2 fourth roots), by Theorem 2.22, we have

'p2n—1 +1— Wil gy if b — dac # 0, with ¢ # 0;
o (€) Pl 41— xo(b), if b2 — 4ac # 0, with ¢ = 0;
Pt 1 — xo(=b/2) + p*" L xa(a), if b2 — dac = 0, with ¢ # 0;
\p%_l +1+4p> 1 xs(a), if b — 4ac = 0, with ¢ =0

for all positive integer n. The result follows by gathering the expressions for Ny, and Na, 1.

The results provided in this chapter can be readily used to characterize the maximality

and minimality of the Fermat curve
ax" +by" +cz" =0,

where a,b,c € F} and n € {3,4}. For more details on how this can be done, see Section 7
of [65]. In this thesis we will study a more general version of this problem. In Chapter 4
we provide necessary and sufficient conditions in which hypersurfaces of Fermat type are

maximal or minimal.
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CHAPTER 3. HYPERSURFACES OF FERMAT TYPE

CHAPTER

Hypersurfaces of Fermat type

Throughout this chapter, F, denotes a finite field with ¢ = p" elements. For @ =
(a1,...,a,) €F d=(dy,...,d,) € L5, T = (t,...,t,) € Z% and b € F,, let N,(d,d.1,q,b)

be the number of F -rational points on the affine hypersurface defined over I, given by
ar - taa® =10 (3.1)

where x; € Fj;. The Equation (3.1) is also called diagonal equation in the literature. In
this thesis, we prefer using the algebraic geometry notation so that all the chapters have
the same notation. Along the chapter, by Fermat type hypersurface we mean the affine
hypersurface defined by Equation (3.1). We sometimes call them Fermat hypersurface
for short. We set N,(d, d.q, b) = N(d, d.t.q, b), where £ = (n,...,n). Weil [105] and Hua
and Vandiver [43] independently showed that N, (@, d, g, b) can be expressed in terms of

character sums. In particular, Weil’s result implies that
INy(@,d,q,0) — ¢* | < I(dy,...,d)(q—1)g" 2/ (3.2)

where I(dy,...,ds) is the number of s-tuples (yi,...,ys) € Z°, with 1 <y; <d; — 1 for all

i =1,...,s, such that
24_...4_%50 (modl). (3'3)
dy ds

The study of solutions of diagonal equations played an essential role in the statement of

Weil’s conjectures for algebraic varieties and in the development of the algebraic geometry.

A formula for I(dy,...,ds) can be found in Lidl and Niederreiter [50, p. 293]. A simpler
formula is established in Lemma 9 of [89]. Some properties of I(dy,...,ds) have been
explored by several authors [12, 93] and the possible values of N(d, d.q, 0) in the case
where I(dy,...,ds) € {1,2} was studied by Sun and Yuan [94]. A Fermat hypersurface
(with b = 0) is called mazimal (or minimal) if its number of F -rational points attains

the bound (3.2) and the maximality or minimality are set accordingly to Ny(a, d q, 0)
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CHAPTER 3. HYPERSURFACES OF FERMAT TYPE

attaining the upper or lower bound, respectively. The number of F,-rational points of
Fermat hypersurfaces, with s = 3, d; = dy = d3 and b = 0, is closely related to the
number of F -rational points on projective curves given by the equation axz™ +by™ = ¢ (see
Section 3.6 for more details). Maximality and minimality have been extensively studied in
the context of curves [33, 97, 98]. For instance, maximal and minimal Fermat type curves
of the form 2™ + y™ = 1 were studied by Tafazolian [96].

The number of F -rational points on Fermat hypersurfaces with ¢; = --- =t; = n has
been extensively studied in the last few decades [8, 9, 12, 41, 94, 110]. In many cases, the
authors present a formula for the number of [ -rational points on Fermat hypersurfaces
whose exponents satisfy certain natural restrictions. The case where ¢ is a square provides
families of Fermat hypersurfaces whose number of points can be obtained by means of simple
parameters. For instance, in the case where ¢ = p™ for an even integer n, Wolfmann [109]
presented an explicit formula for Ny(d@, cf, q,b) in the case where d = d; = --- = ds and
there exists a divisor r of n such that d divides p” + 1. Still in the case where n is even,
Cao, Chou and Gu [13] obtained a formula for N(a, d.q, b) in terms of I(dy, ..., ds) in the
case where there exists a divisor r of n such that d; divides p” + 1 and a; € F,- for all
i=1,...,s. For more results concerning Fermat hypersurfaces, see Section 7.3 in [59] and
the references therein.

In [78], the author studies a class of suitable generalized diagonal equations with
restricted solutions sets. The problem of counting the number of F -rational points with
variables in different subfields of finite fields has been studied theoretically in great
generality by Wan [102, 103]. In his works, it is proved the rationality of the associated
partial zeta function. Although the zeta function have been studied by Wan, none explicit
formula is known. Inspired by Weil’s approach on the counting of F,-rational points on
Fermat hypersurfaces and the results obtained recently in [78, 102, 103], one goal of this
chapter is to present a study on the number of F,-rational points on Fermat hypersurfaces
over F, where each variable is restricted to a subfield of IF,. It turned out that the number
of F,-rational points on these hypersurfaces can be computed similarly to the way that is
done in the traditional Fermat hypersurfaces’ case. In order to do that, we employ some
well-known results on quadratic forms over finite dimensional vector spaces over a finite
field.

In this chapter, we also obtain an explicit formula for N(a, J; q,b) in a setting more
general than that presented in [109] and [13]. In Theorem 3.7, we present the number
of [F,-rational points on Equation (3.1) in the case where b = 0, ¢ = p" and, for each
i=1,...,s, there exists a divisor r; of n such that d;|(p" 4+ 1). Most notably, Theorem 3.9
provides the number of F -rational points Equation (3.1) in the case where b # 0, ¢ = p"
and there exists a divisor r of ¢ such that d;|(p" + 1) foralli =1,...,s.

The chapter is organized as follows. In Section 3.1 we state our main results and
provide some important remarks. Section 3.2 provides preliminary results which will be

used to prove some of our results. In Section 3.3 we prove our counting results in the
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CHAPTER 3. HYPERSURFACES OF FERMAT TYPE

general case. The case dy = --- = dy = 2 is settled in Section 3.4. We focus on the
case where t; = --- = ty, = n in Section 3.5. In Section 3.6, we present bounds on the
number of [F -rational point on Fermat curves. Finally, in Section ?? we provide some final

considerations and open problems.

3.1 Main results

In this section we state the main results of this chapter. Throughout the chapter, ¢ = p™

for some positive integer n and an odd prime p and « is a primitive element of F,. If d; =1

for some i € {1,..., s}, then the number of F,-rational points on Equation (3.1) over F, is
¢°~!, then along the chapter we assume that d; > 1 for alli = 1,...,s. We let @ denote
a vector (ai,...,a;) € Fy, where a; # 0 for all i = 1,...,s. For d a divisor of ¢ — 1, let

Xa be a multiplicative character of I} of order d. As usual, we extend x4 to F, by setting

Xa(0) = 0. The following definitions will be extensively used in our main results.

Definition 3.1. For @ = (ai,...,a;) € F5, d = (di,....d,) and £ = (t1,...,t,), let
Ny(a, J:f, q,b) be the number of F -rational points on the Fermat hypersurface given by

arf + -+ aa® =b (3.4)
where x; € F, .

For ¢ a divisor of n, let Tryn,: denote the trace function from - into IF,:. Throughout
the following results, let £ = (2ty,...,2t,) and @ € 7, where 2t;|n for all i = 1,.. ., s. Since
we are interested in the number of F,-rational points given by the hypersurface defined by
Equation (3.1), by a simple change of variables, we may assume without loss of generality
that d; is a divisor of p?* — 1 foralli=1,...,s.

Throughout the chapter, when we assume d; is (p, r;)-admissible, we mean d; is (p, ;)-
admissible for all ¢ = 1,...,s. This hypothesis is extremely important and it will be used
frequently in our results. More comments about the importance of this hypothesis can be

found in Section ?7.

Definition 3.2. Let a € F, and let d,t,r be positive integers such that r|t, 2t|n and d is a
(p,7)-admissible. We set m = Pty = PFL gnd e = (=1)Y". Let T(x) = Try /et ().

d d
(a) ForceF,, let
p', if T(ca) = 0;
Aa,d,t,r,c) = S (1 —d), if T(ca)™ =%
g, if T(ca)™ & {0,e%}.

(b) Let A(a,t) ={ce€F,:T(ca) =0}.

We start with the following important result.
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CHAPTER 3. HYPERSURFACES OF FERMAT TYPE

Theorem 3.3. Assume that d; is (p,r;)-admissible. Then
Ns(av d_: t_: q, 0) = pt1+~--+t5—n Z H A(a’iv div tia T4, C)a
celFq i=1
where A(a;, d;, t;,r;,c) is as in Definition 3.2.

As a direct consequence of Theorem 3.3, if £+ - - +t, > n, then we have that pi1+ - +ts=n
divides N,(@,d, ,¢,0). Then N,(@,d,t.q,0) > 0 implies that N,(@,d,,q,0) > phrt-+ts—n,

Corollary 3.4. Let b € F, and suppose dy = --- = d, = d. Assume that d is (p, r)-admissible.
Then
S ptl‘i’““‘l’ts*n S
Ns C_I:,d, 7Q7b = A—b,d,"r’,’r,cpr—l Aa’i7d7ti7r7cv
( ) T %F: (A( ) ) 11 ( )

where A(—=b,d,r,r,c) and A(a;, d, t;,r,c) are as in Definition 3.2.

Some results in the literature (for example Theorem 1 of [109] and Theorem 2.9 of
[13]) can be obtained by a direct employment of Theorem 3.3 and Corollary 3.4, which
means that the results of this chapter are far more general than the known results. The
case where d; = --- = d, = 2 and n is even is covered by Corollary 3.4. More about the

case where d; = --- = d, = 2 is discussed in Section 3.4.

Corollary 3.5. Assume that d; is (p, r;)-admissible. Then

<> I II@-v,

ceFN\A icv(c) 1Zv(c)

Ni(d,d, t,q,0)
pt1+"'+ts_n

— |Aphttts

where A = N{_;A(a;,t;) and v(c) = {i € {1,...,s} : ¢ € Aa;,t;)}. In particular, if
A(a;, t;) N A(aj,t;) =4{0} forall1 <i<j<s and

i ® 1 1 s—1
di -1 e 1 s - t1+-+ts—n
H( )<Z<pti(di_1) thi) Tl q ) <P ’

i=1 =1

then there exists one Fy-rational point on the Fermat hypersurface if b = 0.

One can obtain bounds for the case b # 0 and d; = --- = d, from Corollary 3.4. In
particular, tight bounds can be obtained in case where s = 2, as we will see in Section 3.6.

In the case where t; = --- = ¢, = n in Equation(3.1), the number of F,-rational
points on Fermat hypersurfaces can be more deeply studied. In the following results, we
present the number of F,-rational points on Fermat hypersurfaces in this case and also
present necessary and sufficient conditions in which Weil’s bound is attained in the case
di = --- = ds. In particular, we employ Theorem 3.3 to obtain Theorem 3.7. Throughout
the following results, we assume that dy, . .., ds are integers, not all equal to 2. The following

definition will be important throughout the chapter.
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CHAPTER 3. HYPERSURFACES OF FERMAT TYPE

Definition 3.6. For d a dwisor of ¢ —1 and a,b € F}, we set

L, if xa(a) = xa(b);

0, otherwise.

Hd(a, b) =

Let o be a primitive element of ;. Our main results for ¢; = --- = ¢, = n can be

summarized as follows.

Theorem 3.7. Let @ € F;. Assume that d; is (p, r;)-admissible. For each i =1,...,s, let
A = a® D2 5 @ (72 + 1) and let N = 1 otherwise. Then

qg—1 s

Ny(@,d,q,0) = ¢ +¢= Y J]et —d),

=1 i=1
where g; = (—1)"? and A; j = 04,(a;, \ia?).

The following results are generalizations of Theorem 1 in Wolfmann [109] and Theorem
2.9 in Cao, Chou and Gu [13].

Corollary 3.8. Let a € ;. If d; is (p,r)-admissible for all i =1,... s, then

\/6—5 s

Ni(@,d,q.0) = ¢+ (Va+e) Y [ —d),

j=1 i=1

where &;; = 04,(a;, 7)) and e = (—1)"/*".

For the case b # 0, we have the following result, which is one of the most important of

this chapter.
Theorem 3.9. Let a € F;. If d; is (p,7)-admissible, then

q—€ s
N

Ni(@,d,q.b) = ¢ = g7 [ g —d)® - > T - dy (3.5)
=1

=1 i=1
for b # 0, where 6; ; = 04, (a;, o), v;(b) = 04,(a;,b) and e = (—1)/?".

Theorems 3.7 and 3.9 were already known (see Theorem 2.9 in [13]) in the particular
case where ay, ..., as € Fy,, which yields a setting where the bound (3.2) is attained. In
Theorem 4.1, we present necessary and sufficient conditions for which the bound (3.2) is
attained. In the special case where s = 2, we have the following result for the [F -rational

number of points on Fermat curves.

Corollary 3.10. Let a,b € F; and c € F,. Let m and k be divisors of ¢ —1 and let N(c) be

the number of F,-rational points on the affine Fermat curve given by equation az®+by™ = c.

If m and k are (p,r)-admissible, then

N(0) =g —(qg— 1)1 =D 41— C(k,m)
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and
N(c) = g —ey/q(1 — k)@ (1 —m)fn®) (/g —e)(1 = 1P + 1 - C(k,m)

for ¢ # 0, where | = ged(m, k), e = (=1)"/" and C(k,m) := (1 — k)% if k = m and
C(k,m) := 0 otherwise.

3.2 On the number of solutions of T, (az?) = A

In this section we provide tools from quadratic forms over finite fields which will be
used throughout the chapter. We use the ideas from Wolfmann [108] in order to generalize

his results. The following result is well known (see [50]).

Lemma 3.11. Let ® be a quadratic form on a k dimensional vector space E over F,, ¥ the
associated symmetric bilinear form and k the dimension of the kernel of V. For A € Fy, let
Sy be the number of solutions in E of ®(x) = A. If k = 2t and k = 2v, then there ezists
D e {—1,0,1} such that

¢+ Dg g 1), ifA=0;
q2t—1 _ Dqt-i-’l)—l, Zf}\ 7é O

S\ =

The following result can be obtained from Lemma 2 in [108].

Proposition 3.12. Let ¢ = p™ and let t and r be integers such that 2t|n and r|t. For each

a € Fy, the map ®, from Fp2e into F,, defined by ®,(x) = Tryp(az? ™) is a quadratic form.
p2t_1
pr+1”

Let a = Try )2t (a) and m = If v and D are integers as defined in Lemma 3.11, then
1. Ifa=0, thenv=t and D = 1;

2. Ifa™ = (=1)!/", thenv =7 and D = (—1)1/""1;

8. Ifa™ ¢ {0,(—1)/"}, thenv =0 and D = (—1)"/".

Theorem 3.13. Let ¢ = p" and let d|(p* — 1) such that d is (p,r)-admissible. Let a € F;,
A € F, and let Ny denote the number of solutions of Try, (axd) = X over . Set

a=Try/(a), k= thd_l, e= (=1 and u = ’%. Then

(a) If a =0, then
p2t7 Zf)‘:()v

0, if\#£0.

Ny =

(b) If a* & {0,&*}, then

P e p—1),  ifA=0;
p2t71 _ Sptfl’ Zf)\ ?é 0.

Ny =
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(c) If a* = &*, then

P —ep T d=D(p 1), ifA=0;
ptpeptl(d 1), if A #0.

Ny =

Proof. Let a be a primitive element of JF;% and let M, denote the number of elements
x € Fp2r such that

Try/p (aaéda:pmrl) =\

By using the same arguments used in page 2057 of [108} it follows that

= (3.6)

For ¢ = 0,..., prjl — 1, we set a, = Trq/pzt(aa 4) and observe that Trg(ac'®) =

o Try 2 (a) = o'a, so that a, = 0 if and only if Tr, /2 (a) = 0. In this case, Proposi-
tion 3.12 and Equation (3.6) implies that Ny = ¢** and Ny = 0 if A # 0. Let m = p:J:ll
and € = (—1)"/". We split the remaining part of the proof into two cases:

e If there exists no j € {0,.. — 1} such that a?" = (—1)"/", then Proposition 3.12

and Equation (3.6) entail that

P tepTHp—1), i A=0;
p?tt —epttl, if X #£ 0.

Ny =

o If there exists some j € {0, .. — 1} such that a7 = (—1)"/", then it is easy to
verify that a” # (—1)¥/" for all i€ {0, L, 1}\{]} so that a straightforward
computation using Proposition 3.12 and Equatlon (3.6) shows that

Pt —eptHd—-1)(p—1), if A=0;

Ny =
pt epti(d - 1), if X #£0.
Our assertion follows from observing that there exists j € {0,..., 1% — 1} such that
am = (—1)/" if and only if aw*=1/d — c@"+1/d, |

3.3 Counting results in the general case

In this section, we prove our counting results. To prove Theorem 3.3, we will follow
the main ideas of Wolfmann [109]. We let a € F, and ¢, (z) = exp ((27i) Try/p(az)/p), an

additive character. We have the following known results.

Lemma 3.14. Let d = (a4,...,as) € F; and d=(dy,... d,) e 75, such that d;|(q — 1) for
alli=1,...,s. Then

where S;(c) 1= erlezt,v Yea; (2%).
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Proof. It follows from an argument similar to the proof of Proposition 1 of [109]. |
Lemma 3.15. Let ¢ =p", c € Fy, and d, d and Si(c) as defined in Lemma 3.14. Suppose
d; is (p,r;)-admissible. Let &; = (—1)t/m ¢; = éngl+1)/di and a; = Try 2 (ca;). Then, for
eachi=1,...,s, we have that

(a) If a; = 0, then S;(c) = p;

(b) If &z(‘pmi_l)/di = ¢, then Si(c) = —ei(d; — 1)p";

(c) If &Z(-p%*l)/di Z {0, ¢}, then S;(c) = &; p'i.

Proof. We observe that

S0 =Y exp <27;“> Ny, (3.7)

AEF,

where N, is as in Lemma 3.13. Our result follows directly from Equation (3.7) and
Theorem 3.13. |

From Lemmas 3.14 and 3.15, we are able to prove Theorem 3.3.

3.3.1 Proof of Theorem 3.3

Since b = 0, it follows from Lemma 3.14 that

N(@d 0.0 = 3 [ 560

celFq i=1

Let g; = (=1)/" m; = ’% and u; = 2. Let Tj(z) = Try)p2: (7). By Lemma 3.15, it

i

follows that S;(c) = p'iA(ay, d;, t;, r;, ¢). This completes the proof of our assertion. [ |

Definition 3.16. For f € F [zy,..., 24 and t=(ty,...,t,) with t;ln for alli=1,... s, let
Ve(f(zr, .., 2s) =0) = {(21,...,25) € Fpr X -+ - X Fpe = f(24,...,25) =0},

the set of zeros of f. Fori € {1,...,s}, let

Ve, (f(1,.. . m5) = 0) = {(21,...,05) € Fpu X -+ X Fpee ¢ fy,...,25) = 0 and z; # 0}.

3.3.2 Proof of Corollary 3.4

Let b € IF, to = (2ty,...,2t,,2r) and t = (2ty,...,2t,). For indeterminates z, . .., zs, y,
let
(U V;B’y(alxcf + - Fagx? = by?) = V(a4 - + a2zt = b)
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be the function defined by

(xl,...,xs,y) = (‘Tl/ya"'a"L‘S/y)'

Since r|t; for all i = 1,..., s, it follows that 1) is well-defined. It is direct to verify that ¢

is a (p*" — 1)-to-one function and then

Vi

to,y

(azf + -+ a2l =by")| = (p* — D|Vi(araf + - + a2 =b)|.  (3.8)

We observe that V-

oy(azd + -+ agxd = by?) is equal to

Vig (anaf + -+ agaf = by")\Vy (arz] + -~ + a,a§ = 0%),
so that

Vi

oyt tased = by?)| = [V (a4 tasad = byh)| = |Vp a2+ +asad = 0)]. (3.9)

Let ap = (aq,...,as,b) and do = (d,...,d) € Z**'. Since N,(@,d,,q,b) = |Vi(ayz? +

-+ az? =b)|, Ny(@,d,tq,0) = |Vi(aad + - + a,zt = 0)] and N,y (dp, do, g, q,0) =
Vo (azf + - + asad = byd)|, our result follows from Equations (3.8) and (3.9) and
Theorem 3.3. L

3.3.3 Proof of Corollary 3.5

Let A =nj_,A(a;,t;). By Theorem 3.3, we have that

Ni(@,d,,q,0)p" """ = ZHA (ai, di, ti, 7, )

celfg i=1

= ZﬁA(ai,di,ti,m,c) + Z ﬁA(ai,di,ti7ri, C)
ceA i=1 c€F\A i=1

= ’A‘pt1+---+ts + Z ﬁA(aiadiatiariac)a

cEF,\A i=1

and then

Z HA(ai,di,tz’J’i>c)- (3.10)

cEF,\A i=1

Ny(@,d. £, q,0)p" "=t — [A]ph T 1] <

By the definition of A(a;,d;, t;, i, ¢), it follows that

pli, if ¢ € A(ay, t;);
di — 1, lf C g A(al,tz)

|A(aia di) tia T, C)| S

and therefore the Triangle Inequality on Equation (3.10) implies that

N,(@,d,t.q,0
ARLLED < S TLo [T@-0 @)

ce€F\A iev(c) iZv(c)
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where v(c) = {i € {1,...,s} : ¢ € Ala;,1;)}. This completes the first part of our result.

Assume that A(a;,t;) N A(a], ;) ={0} for all 1 <i < j <s. In this case, we have that

SO # I @-v <Z<|A a5, ty)] - pJH<di—1>>+<q—1—§j<|A<aj,tj>|—1>> [Tt - .

cefg\A i€v(c)  igv(c) i#] j=1 i=1

Since |A(ay,t;)] = q/p*, it follows that

1 1 s—1
SOOI P I @i-v <qu_1<Z(ptiMil)_thi>+l+q> (3.12)

c€FN\A i€v(c) iZv(c)

Therefore, Equations (3.11) and (3.12) imply that

N(@,d.1.q, 0 e 1 1 s—1
; H (d; — 1) )41
pt1+---+tsfn - —q Z pti (dz — 1) p2ti Tl q ’

which is bigger than zero whenever

[Jt -1 (Z <pn(dj_ 0 1 ) +14+= 1) < phrrrh

2t;
i=1 =1 p q

This completes the proof of the Corollary. [ |

3.4 Thecased, = ---=d,=2

In the case where d; = --- = dy; = 2, we can compute the number of F -rational
points on Fermat hypersfaces over arbitrary finite fields, as we will see in this section. The
following result will be useful to compute the number of solutions of Equation (3.1) in this

case.

Lemma 3.17. For t|n, a € F; and A\ € F,, let Ny denote the number of solutions of
Tryyp (az?) = X over Fye and let a = Tryype(a). Assume that @ # 0. Then

)
=14 o (a)pt/? if t is even and p=1 (mod 4);

p
N 't +itye(a)pt/? 1, if t is even and p=3 (mod 4);
\ =
P+ xao(=Aa)ptt=b/2, ift is odd and p=1 (mod 4),
Lptfl + it yo(=Aa)pt=Y/2 ) ift is odd and p=3 (mod 4),
if A #0 and

Pt — (p— Dxa(a)pt?>71, if t is even and p=1 (mod 4);
No = p=' — (p— Ditxa(a)p*/?>", ift is even and p=3 (mod 4),
pt, if t is odd,

where x2 denotes the quadratic multiplicative character of .
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Proof. Let 1(x) = exp ((2m1) Trye () /p), the canonical additive character, let § € Fy
be an element such that Try/,(6) = A and let @ = Try /e (a). We observe that if ¢ € Fp,
then Try/, (ac?) = Trpt s, (Tre/pt(a)c?) = Trpey, (ac?) so that Tryy, (ac?) = X if and only if
Y(ac* — &) = 1. Therefore,

pNy =Y [1+- +¢(ac® — 6]

= Z [1 + -+ (ac— 6)p_1} [1 4 x2(c)]
— ' S ) Y B()e(e)
=1 zeIFpt
S () el G )
=1

where G(x2) is the Gauss sum of x over F,:. Now, we split the proof into two cases:

e If A =0, then
= -1 ~ . .
pz:w(_é)%@(gl&l) = pZ:XZ(gldl) _ (p —1)xa(a), iftis even;
! =1 0, if £ is odd.

o If A # 0, then

(=8 N0 = X2 (3) D (=0)Xall) = xa(3) D D(=50)Xx(0)
=1 (cFs, (eF;,
=x2 (F) D v@Xa(r) = x2 (F) D v(@)xa(2)
—x2 (@), if ¢ is even;

X2 (—Aa) Gp(xz2), if tis odd,

where G,(x2) is the Gauss sum of x, over F,. Our result follows directly by using
Theorem 1.7 in the values of G(x2) and G,(x2).

Proposition 3.18. Forc,ay,...,a; € Fy, leta; =Tr 1, (ca;) and Sj(c) == 3 cp , Voo, (2?).
If a; =0, then S;(c) =pY. If a; # 0, then

( .
_Xgﬁ)(dj)ptj/Q, ift; is even and p=1 (mod 4);
—iti N (a,)pt/2,  ift; is even and p=3 (mod 4);
5 (a;)p472, iftj is odd andp=1 (mod 4);

\itfxgj)(dj)ptﬂﬂ, if t; is odd and p =3 (mod 4),

Si(c) =

where ng) denotes the quadratic character in I ;.
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Proof. For a fixed j € {1,..., s}, we observe that

Sj(c) =) exp (27?) N, (3.13)

A€EF,

where N is denote the number of solutions of Tr,, (axQ) = A over F 1;. Assume that ¢; is
odd. If p=1 (mod 4), then Equation (3.13) and Lemma 3.17 imply that

27iA 27iA t'_l
Ze P NA_X2 a] Ze v X X()(aj)p 2 Gp(X2)-

AEF,, AEF

If p=3 (mod 4), then Equation (3.13) and Lemma 3.17 imply that

27iA " PR tj—1 2miA " ti—1
doer Na=—i"0P@)p T Y e k() = 1 @)p T Gylxa):

AEF, AEF}

By Theorem 1.7, we have that

p/2, ifp=1 (mod 4);

Gylx2) =
’ ip/?2, ifp=3 (mod 4),

from where our result follows. The case where ¢; is even follows directly from Lemma 3.17.

The following result is a straightforward application of Lemma 3.14 and Proposition 3.18

Theorem 3.19. Let ay,...,as,b € Fy, where ¢ = p™. The number of F,-rational points on
the Fermat hypersurface defined by the equation

2 2
ary+ - +ax;=">0

with z; € F ¢ is given by

S

BN | T

celr,

t1+ +its _

where X2 denotes the quadratic character in ¥ ; and

pli, if Tr, .t (ca;) = 0;
Li(c) = (—1)tj+1xgj)(Trq/pJ (cay)), if Tr, i (ca;) #0 andp=1 (mod 4);
(—1)ti+1its (J)(Trq/p](ca])) if Tr,)(ca;) #0 andp=3 (mod 4).

Theorem 3.19 generalizes Theorems 6.26 and 6.27 of [50].

3.5 On the number of [ -rational points in the case where
t=(n,...,n)

In this section, we study deeper the case where ¢ = (n,... with n even. At first, we

1)
employ Theorem 3.3 to give a more explicit formula for N,(d, d,q ,0).
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3.5.1 Proof of Theorem 3.7

By Theorem 3.3,

Ns(aa d_: q, O) = qs_l + q_l Z H A(ai7 diarh C)?

ceF? i=1
where
Al(aj, d;yri,c) = gi(1—d;), if xq(ca;) =€
&4 if xa,(ca;) # €
oo pT;_:rl and ; = (—1)"?". Since d; is (p,r;)-admissible, it follows that ¢; = —1

if and only if d;|(p™/? + 1) and (p" + 1)/d; is odd. Furthermore, if d;|(p™? + 1), then
n (g—1)/d;
(a(p /2“)/2) ! = ¢,;. Altogether, we have shown that

A(Gi, di,T'i, C_l) = 51(1 _ di)edi(ai,)\ic)\/a’

where \; = a®"*+tD/2 if d;|(p™/2 4+ 1) and A; = 1 otherwise. Therefore,

qg—1 s
Ni(@,d,q,0) = ¢ + ¢ Y et —di)*,
=1 i=1
where g; = (—=1)"?" and A; j = 04, (a;, \ia?). [

Remark 3.20. Assume that d > 2. From Theorem 3.7, it can be verified that
q—1
No(d@ d,q,0)— ¢ < g™ D[ —d)|,
m=1 di\m
for a and jsatisfying the hypothesis of Theorem 3.7.

Example 3.21. Let g = p" for an even positive integer n and let d = (dy, ..., ds) € [y be a
s-tuple satisfying the hypothesis of Theorem 3.7 and such that dy, ..., dy are divisors of
Vi@ —1 and dy1, ..., ds are divisors of \/q+ 1. Let A\ = aWT™/2_ By Theorem 3.7, the

number of F-rational points on the Fermat hypersface
M+ % 4 AP A =0

attains the bound in Remark 3.20.

3.5.2 Proof of Corollary 3.8

By Theorem 3.7, it follows that
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where & = (—=1)"?" A;; = 04.(a;, \ia?) and \; = o HD/2 5 @ (p/2 4+ 1) and N\, = 1
otherwise. We observe that (p” + 1)|(p™/? + 1) if and only if n/2r is odd. If n/2r is odd,
then \; = 1 for all : = 1,...,s. If n/2r is even, then \; = @ H0/2 for all § = 1,...,s

and so A, j = g (a;, aP"*TD/2H7) = A (n/211)/2+- I both cases, we have that

qg—1 s q—1 s
Ni(d,d.q,0) = ¢ +q 7y [ —d)* =g v g T e Y T[0 - d)™, (3.14)
j=1i=1 Jj=11i=1

where 6 ; := 04,(a;, 7). We observe that d;|(p” + 1) implies that d;|(,/q — €). Therefore
0ij = 0 if j = k (mod /g — ) and then the assertion of our result follows from
Equation (3.14). [

3.5.3 Preliminary Results

The first step in order to prove Theorem 3.9 is the following result.

Proposition 3.22. If d; and dy are (p,r)-admissible, then

—

Ny(@,d, q,0) = g — (g — 1)(1 — 1)@,
and
No(@,d. q,¢) = q — ex/g(1 — dy)" 2@ (1 — dy)0ea(@) _ g( /g — £)(1 — [)(er2)
for ¢ #0, where | := ged(dy,dy) and e = (—1)™/?".
Proof. For c € Fy, let

Ce={(z,y) € Fz : alxih + a2x§2 =c}

%2 — ¢. Assume ¢ = 0. A pair (z1,2,) = (o, o) is a

be the set of solutions of alxl + asTs
solution of alxl + agx = 0 if and only if o/f1 792 = = —¢2 and it is easy to verify that this
occurs if and only if 6;(a1, a2) = 1. If 6;(ay, a2) = 0, then (x1,z2) = (0,0) is the unique
solution of ;2™ + ayy®™ = 0. Otherwise, there exists an integer k& such that —Z—j = al*

and then
-1

¢=J {(o/,ozj) T = a”Tla’“} Jt.0)},

A=0

where the sets in the union are disjoint. Let Ay = {(a/,ad) : &' T 7T = T ak}. We

note that
Al = {5, 4) € Zgg—yy - 1%+ j% = A= + &k (mod ¢ —1)}].

Let (ig, jo) be integers such that z'o + Jo? d2 — 1 Foru e Zig—1y, let

QL

By :={(i,j) € Zig-1) 1 1% + j2 =u (mod g —1)}. (3.15)
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For u,v € Z,-_1), it is easy to verify that the function ¢ : B, — B, defined by ¢ : (i,7) —
(i +io(v —u),j + jo(v —u)) is a bijective function from B, to B, and so |B,| = |B,|. Since
u and v are arbitrarily taken and > |B,| = (¢ — 1)?, it follows that |B,| = ¢ — 1 for all
u € Zg—1)- In particular, |A\| = |Bxg-1)/4x] = ¢ — 1 and so |Cy| = l(¢ — 1) + 1, proving
the first part of our result for the case 6;(ay,as) = 1.

Assume ¢ # 0 and let By the set as defined in Equation 3.15. We have that

€1 i (@) oot )

bi+by=1

—or X3 ()i ()

b1+b2=11<¢;<d;—1

P ORIC NI I ORIT)

1<0;<d;—1 b1 +ba=1 1<0;<d;—1 b1 +ba=1
(f17@2)€30 (41,82)630
o ') c c . {1 c c
—o-=vi 3o (E)a () - 2 (@) (5):
1<4;<d;—1 1<¢;<d;—1
(£1,62)¢Bo (£1,62)€By

The last equality follows from Lemma 1.17 and entails that

Cl=a-evi 3 i ()i (5)reva-n 3 i (5) ()

1<6;<d;—1 1<6;<d;—1
(61,82)630

=g eVa - ) ) g1 Y (£) (2),
(1,62)EA

(3.16)
where A := ByN{(l1,0) : 1 <¥¢; <d; —1for i =1,2}. A direct computation shows that

A= {(mh, =md) 1< <1 1)

and therefore

d—1
c c m (a l—l, if Hl(al,ag): 1
S (E)E(5) = (2) = (3.17)
(€1,€2)€A m=1 _17 1f 9[((11, CLQ) = 0
Our result follows from Equations (3.16) and (3.17). [
For f € F,lx1,..., x4, we set N(f(z1,...,25) = 0) = |[Vz(f(x1,...,25) = 0)| and
Ny (f(zy,...,m5) =0) = [V, (f(z1,...,05) = 0)] where t = (n,...,n) and V and V,, are

as in Definition 3.16. The following definitions will be useful in the proof of our results.

The following result is straightforward.

Lemma 3.23. Let a,b € F, and let a be a primitive element of Fy. Let dy and dy be divisors
of q — 1. Then
(g—1)/d2
dyt- - Ny (axd1 + alyd = b N aj+id2)
1

1=
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The following lemma will be important in the proof of Theorem 3.9.

Lemma 3.24. Let ¢ € {£1} and d, dy,. .., d, be integers such that d|(\/q—¢) and d;|(\/q—¢<)
foralli=1,... s

(a) Forb € F;, we have the following relation:

Vq—¢

> (1= ad)fe’h <.

j=1

(b) Let M(a, d.q, a’) denote the right-hand expression in Equation (3.5) of Theorem 8.9.

Then

Vai—¢ s

> Ila-a)

=1 i=1

Vq—¢
Z Ms(aa d7 q, aj) = qs_l(\/a - 5 - 6 q
j=1

Proof. We observe that

= < (S (5)

Therefore, for b € Fy, it follows that

(g . Vae o o
— Z (1= d)??) = Z [Xd <?> X (7)} =0,
j=1

j=1
which proves item (a). Let S = Z‘/a "I, (1 —d;)%. For an integer s > 2, it follows that

q—¢ s

qg—e
S M@ dig.0f) = (Vi o) (¢ + et S) — el Y (- dy)e”
j=1

7j=1 i=1

Va—¢ s

= (ﬂ_g)(qs—l 4_58+1qS2 . s+1 =1 Z H (1—

7j=1 =1
-2

= ¢ (Va—¢e)—e'q? S,

proving item (b). |

From the previous results we are able to prove the main result of the section.

3.5.4 Proof of Theorem 3.9

We proceed by induction on s. We make an abuse of language using a@ and d for all
k < s; meaning that, for each k, we use only the first k entries of @ and d. The base case

of the induction is s = 2, which we prove as follows.

o7
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3.5.4.1 The case s =2
By Proposition 3.22, we only need to show that

(1— Z)Gz(a1,az) = (V7 — 5)—1 Z (1— d1)9d1(a170ﬂ)(1 _ d2)9d2(a2,oﬂ)’ (3.18)

j=1

where [ = ged(dy, ds). By the Inclusion and Exclusion Principle, the sum in Equation (3.18)

is equal to

(1= d)(1 = doJu+ Y (L= d) (Y= =) + (V= (% ) — (% ) )
= dldgu — (\/(_] — 5),

where v == {1 < j < /g —¢ : 0q(ar1,07) = 04,(az,0’) = 1}|. We split the proof for

Equation (3.18) into two cases:

e The case 6;(a1,as) = 0. Since x;(a1) # xi(az), it follows that there exists no j
such that x4, (a1) = xa,(a?) and xa,(a2) = Xa,(a?) and then w = 0. In this case,

didau — (G —¢€) = —(\/7—¢€).
e The case 6;(a;,as) = 1. Let j; and j, be integers such that a; = /' and ay = 2.

Since x;(a1) = xi(az), it follows that j; = j» (mod [) and this relation entails that

(1<j<a—e:0q(a,0))=1fori=12}= {mcm(dl,dg)ﬂgkgkn{gl—;;)}

and then u = % In this case, didyu — (\/q —¢) = (/7 —¢)(l = 1).
Altogether, we have shown that didou — (/g — €) = —(/q — €)(1 — 1)"(®2:%2) and then

Va—¢
(\/a - 5)_1 Z (1- dl)edl(ahoﬂ)(l _ d2)9d2(a270ﬂ) = —(1— l)Gz(al,tm)’

Jj=1

therefore our result follows for the case s = 2.

3.5.4.2 Induction Hypothesis

Suppose that the result holds for N,(d, d.q, b) with s <k and b € ;. We observe that
Ny (d, d q,b Z N( alxl -4 akxi’“ =c)N(b— akﬂle_ff =c)

= Z Ny(a, d, q, c)N(b— ak+1352]f11 = c).
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Along the proof, we denote Ny (@, d,q,c) by M,. Let 6 = Ody,, (arg1,b) and Cp = (1 — (1 —
di+1)?)My. Since M, = M,; if i = j (mod /g — €), it follows that

q—¢
- 7 d
Nig1(d, d,q,0) = N(b = appa )Mo+ Y M ZN —apnat = af)
j=1

= (1 (1 — diy1)’) Mo + Z ZN ak+1xk+1 =a') (3.19)

= Co+ Z(

) N (b — agpralctt = adyvie),

where the last equality follows from Lemma 3.23 and N (b — ak+1xZ’f11 = aJyvi=¢) is as in

Definition 3.16. Let M} = N; (b — akﬂxi’ff = adyv?e) for 1 < j < ,/q—e. Let B be a positive

integer such that b = o®, where B = (V@ — €)¢ + m for some non-negative integer ¢ and some
m < ,/q — €. Proposition 3.22 entails that

g—1+(1—eyg) (1 —di1)? — (7= )(1 = dpey )60 g j £y
q— 1+ (ey/q— 1)(\/6 —1)(1— dk+1)0 —e(yqg—¢e)(1— dkﬂ)edkﬂ(aj’b), if j=m

Let 0; = 04, (ad,b) for 1 < j < /g —&. Then from Equation (3.19) it follows that

Mj’.‘ =

- OV 1ds .\ .
Ni41(d,d, q,b) = Co + Z ale—HCeyBE %li VI 2) o /G~ disr)' M.

Set S; = Hle(l —d;)"@") and § = E‘/EI ‘ Hle(l — d;)%3. By the induction hypothesis and

Lemma 3.24, the last equality becomes

q—¢€
o 7 k-1 )
Nk+1(a,d, q, b) =Cy+Ci+ Ekq 2 Z Sj(l - dk+1)67 + Cs. (3.20)
j=1
(q’ﬂfl(\/a—a)—aqu:r2 s) (q—l—f—(l—a\/é)(l—dk_H)é) -
S and Cy := e,/q(1 — dyi1)? M. We recall
that the values of Mj and My are known (by the induction hypothesis and Corollary 3.8) and so

where C :=

a straightforward computation shows that Cy + Cy equals

~ k
k"2 (g +e)S (1dk+1)9<(15\/§)qk_1 ebtg"e S te quudi)"i(b)). (3.21)

=1

By Equations (3.20) and (3.21), it follows that

k Va—e
e ko1 |
Niy1(@, d, q,b) = ¢* —*q > ( (1 = dk+1) H ) — § 51— dk+1)03>

k+1 Va—€ k41
—r e (Tl a3 Tl - a0 ),
j=1 i=1
which proves the result for s = k + 1. |
Let F(k,m) be the projective Fermat type curve given by the affine equation az® 4 by™ =

As a direct consequence of Theorem 3.9, we have the number of points on F(k, m) in the case
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where k and m are (p, r)-admissible. In fact, Corollary 3.10 follows easily from Theorem 3.9 by
taking account the points at the infinity. From Example 6.3.3 in [91], it follows that the genus g

of F(k,m) is given by
(k—1)(m—1)+1—ged(k,m)
2

Corollary 3.10 provides conditions in which the number of Fy-rational points on F(k,m) attains

g= .
the Hasse-Weil bound. In fact, the characterization of maximal and minimal varieties is a problem
of interest in the last few decades because of its applications in coding theory. In Chapter 4,
we will study this problem for Fermat hypersurfaces. Before doing that, we will study Fermat

hypersurfaces whose number of F,-rational points attaining Weil’s bound in the affine space.

3.6 Further consequences for the case s = 2

As presented in Chapter 2, for a curve C over [y, we denote by M, (C) the number of rational
points of C over Fyn. For an irreducible non-singular curve C over I, the well-known Riemann
Hypothesis [57, Theorem 3.3] states that the number of rational points on a curve C over Fyn

satisfies
29
My (C)=¢"+1- szna
i=1

where g denotes the genus of C and |w;| = /q for all i. The well-known Hasse-Weil bound for the

number of F-rational points on an irreducible non-singular curve of genus g states that

M, (€)= q" = 1] < 20V, (3.22)

The curve C is called maximal over F . if its number of points attains the Hasse-Weil upper
bound, that is,
Ms(C) = ¢* + 1+ 2gq,

where g is the genus of C. Similarly, a curve is called minimal over F . if it attains the Hasse-Weil
lower bound. There exist many families of maximal curves in the literature. In particular, a
curve J with affine equation z¢ 4+ 2 = 1 yields examples of maximal and minimal curves (see
Theorem 4.2). We observe that M, (J) = Na(d, d.t.p", b) + ¢o if t1 = to = n, where ¢ is the
number of points at infinity on 7. Our aim in this section is to present a bound such as (3.22) in

the case the points on C has restricted solutions sets, replacing M, (C) by Na(d, d.t. pm, b).

Corollary 3.25. Let ¢ = p", @ = (1,1), d = (d,d) and t = (t1,ts). Assume that d is (p,r)-
admissible. Then the number N of points on the affine curve ¢ + y% +1 =0 with « € Fo20, and
y € Fo2e, satisfies

[N — A2 < (d = 1)+ (d - D" +p"),
where A == A(1,t1) N A(1,t2).
Proof. Since A(1,t;) C A(1,r) for i = 1,2, the result follows directly by Corollary 3.4. |

From here, we pose the following problem.
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Problem 3.26. Can we obtain a bound similar to Hasse- Weil’s bound for the number of F4-rational

points on affine curves with with restricted coordinates?

Another way that could be used to build interesting bounds on N (@, d.t.q, b) (or N(d, d.tq, b)
in general) is by proving that the associated zeta function has total degree bounded by a poly-
nomial in £ = (¢, ...,%,). The partial zeta function is studied in [103]. In this paper, the author

conjectures the following result.

Conjecture 3.27. [103] Let T = lem(t1,...,ts). There exist two positive constants c1 and ca
depending only on ai,...,as,b,dy,...,ds and s such that the total degree of the partial zeta

function associated to Ns(d,cZ:t_;q,b) 1s uniformly bounded by c1T°? for all positive integers

{t1,... ts}.
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CHAPTER

On maximal and minimal hypersurfaces of Fermat type

Let F, be a finite field with ¢ = p" elements, where p is a prime and n is a positive integer.
Let (a1,...,as) € Fy, (di1,...,ds) € Z5 and b € Fy, and let X C A® be an irreducible Fermat

hypersurface defined over F, given by
X . dy ds _
carxyt o Fagxy® =0, (4.1)

If [X¥(Fy)| denotes the number of Fy-rational points on A and b € Fy, then the famous Weil
bound [105] states that

12E) — | < a2 | Va[[(di 1) - (V3 - DI(dr,....ds) | . (4.2)
=1

where I(dy,...,ds) is the number of s-tuples (y1,...,ys) € Z°, with 1 < y; < d; — 1 for all
t=1,...,s, such that

U1 Ys
Z 4.4+ =0 d1). 4.3
Bt %=0 (mod1) (43)
If b = 0, then Weil’s bound implies that
[|X(F)| — "t < I(dy, ..., ds) (g — 1)q"=2/2, (4.4)

If the number of F,-rational points on X attains the upper (lower) Weil’s bound, then it is
called a maximal (minimal) hypersurface. In general, maximal hypersurfaces are of great interest
due to their wide use for applications in coding theory [5, 90]. Indeed, the problem of studying
the number of points on X has been tackled by many authors. Although the exact number of
points on X has been studied in many papers [12, 13, 109], the complete characterization of
the maximality and minimality of it with respect to Weil’s bound has not been provided. The

particular case where X is a curve has been studied by some authors [33, 97]. For example,

maximal and minimal Fermat type curves of the form 2™ + y™ = 1 were studied in [96] and [97].

The aim of this chapter is to provide necessary and sufficient conditions in which a Fermat
hypersurface is maximal or minimal. For d; = --- = d,, we study the number of [ -rational

points in order to find those Fermat hypersurfaces whose number of rational points attains Weil’s
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bound. In Theorem 4.1 we provide necessary and sufficient conditions on aq,...,as and ¢ in
which Fermat hypersurfaces are maximal or minimal. In particular, we prove that a maximal
(or minimal) Fermat hypersurfaces must satisfy the hypothesis of Theorem 3.9. Our approach
for this problem relies in the use of Lemma 4.6, which is a important result on Jacobi sums
proved by Shioda and Katsura [87]. As a direct consequence of Theorem 4.1 we obtain a complete
characterization of maximal and minimal affine curves given by az? + by? = c. It turns out that
the maximal and minimal hypersurfaces given by Equation (4.1) satisfy a natural condition,

which is being covered by a Hermitian type hypersurface defined over I, given by
Hy :C{H + .- +$§T+1 =1,

where 7 is a positive integer. The aproach used to prove Theorem 4.1 seems not to be applicable
in the general situation where di,...,d;s are distintic, so that we could not characterize the
maximality and minimality in the general setting. Our second goal in this chapter is to provide
tools that allow us to study the maximality and minimality of X in the case b # 0 for distinct
di,...,ds. Along Section 4.3 we provide a new approach to tackle this problem. The main
ingredients we use are the celebrated Hasse-Davenport Relation and a purity result for Jacobi
sums. In Theorem 4.3 we provide necessary and sufficient conditions in which the number of

[F-rational points on X attains the bound (4.2). In particular, we will prove that the condition

of being covered by the Hermitian curve remains being necessary in this more general setting.

Throughout the chapter, s > 2 is an integer, dy,...,ds are non-negative integers > 2 dividing
g—1and ay,...,as b are elements in [F,.

The main results of this chapter are summarized as follows.

Theorem 4.1. Assume that dy = --- = ds = d > 2, (s,b) # (2,0), (s,d,b) # (4,3,0) and
(s,d) # (3,3) if b # 0. The mazimality and minimality of x are set as follows.

1. If b= 0, then bound (4.4) is attained if and only if
e d is (p,r)-admissible;
o xd(a1) =--- = xa(as).

2. If b # 0, then bound (4.2) is attained if and only if
e d is (p,r)-admissible;
e n/2r is even;
e xa(a1) =+ = xalas) = xa(b).

Suppose Weil’s bound is attained. If b = 0, then x is minimal if and only if n/2r is even and s is

odd. If b # 0, then x is minimal if and only if s is even.

The case (s,b) = (2,0) is commented in Remark 4.7. The cases (s,d,b) = (4,3,0) and
(s,d) # (3,3) with b # 0 are not included in Theorem 4.1 because of a technical obstruction in

Lemma 4.6. For these cases, it still not known if the result is true. The number of [F -rational

points on Fermat hypersfaces of degree d = 2 is well-known (see Theorems 6.26 and 6.27 in [50]).

As a direct consequence of Theorem 4.1, we have a characterization for maximal and minimal

Fermat curves.
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Corollary 4.2. For a,b,c € F, and d a divisor of ¢ — 1, let C be the curve az® + by = ¢ over F,.
Then

1. C is mazimal over Fy if and only if the following hold:

® 1 1S even;
o d dwides \/q+1;
e xa(a) = xa(b) = xa(c)-
2. C is minimal over Fy if and only if the following hold:

e 4|n and there exists a divisor v of n/4 such that d divides p" + 1;
e xda(a) = xa(b) = xa(c).

Theorem 4.2 generalizes the main result of Tafazolian [96] and also generalizes Theorem 4.4
of Garcia and Tafazolian [33], where the authors study maximal curves of the form ¢ 4+ y¢ = 1.
In particular, Theorem 4.2 implies that C is maximal (or minimal) only if it is covered by a
Hermitian curve.

Now, we focus on the case b # 0.

Theorem 4.3. Assume that b € Fy, s # 3 and suppose that ged(ds, ..., ds) > 2 if s > 3. Then the
number of Fy-rational points on X attains the bound (4.2) if and only if

e cach d; is (p,r)-admissible;

n . .
® o 15 even,

o x4, (ai) = xa,(b) foralli=1,...,s.
Furthermore, X is maximal if s is odd and minimal otherwise.

It is worth mentioning that a hypersurface is maximal (or minimal) if and only the inverses
of all roots of the associated L-function are equal to —q%l and —q% (or q% and q%) In
particular, in the cases where the conditions of Theorem 4.3 are satisfied, the Zeta function
associated to X' is provided. Furthermore, our result generalizes many results in the literature,
such as the main results of [96, 97] and Theorem 4.4 of [33]. As we will see in Section 4.3,
the hypothesis imposed here are important in our approach and are difficult to ride out. For
example, a characterization for maximal and minimal Fermat hypersurfaces in case where b = 0
remains being an open problem. More results concerning the number of points on these type of

hypersurfaces can be found in [59], [63] and in the references therein.

4.1 Preparation

In this section we provide some preliminary results that will be important along the chapter.

A formula for I(dy,...,ds) = 0 is presented in the following result.
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Lemma 4.4. Let dy,...,ds be positive integers and let D = lem(dy,...,ds). Then
D
I(dy,...,d (4.5)
m=1d;|m

Proof. A well-known formula for I(dy,...,ds) (see p.293 of [50]) is the following:

S

I(dy,....ds) = (=1)" + (=1)*Y (-=1)" > lcm‘(lc"lli“."‘%“di). (4.6)

r=1 1<i1 << <s
Let 41,...,% be integers such that 1 <4 < .-+ <4, <s. The product d;, - - - d;, appears in an
expansion of a product in (4.5) whenever d; |m for all j = 1,...,r, which occurs W
117 1yl

times, since 1 < m < D. Therefore the expressions in (4.5) and (4.6) coincide, proving our result.
|

Sufficient and necessary conditions in which I(dy,...,ds) = 0 were studied by Sun and Wan

[93], where the authors state the following result.

Lemma 4.5. [72, Main Result] Let s > 2 be an integer and let dy,...,ds be positive integers.
Then I(d ) =0 if and only if one of the following holds:

o for some d;, ged(d;,dy ---ds/d;) =1

o ifdi,....di, (1 <iy <---<ip <s)is the set of all even integers among {di,...,ds},
then 21t, diy/2,...,d;, /2 are pairwise coprime, and d;; is coprime to any odd number in

{di,....d}(G=1,....1).

In order to characterize the maximality and minimality of Fermat hypersurfaces, we recall

the following way to compute their number of [F-rational points:

S
XFEH = . ] [1 + xa; (a7 b)) + -+ X5 (a7 )
by+-+bs=b i=1 (@7)
=g+ Z Xdl (ay ~--Xgi(a;l)Jb(Xglla-~-7X§Z)-
0<t; <d;

In order to prove our results, we need the following result.

Lemma 4.6. [87, Proposition 3.5 and Remark 3.8] Let s > 2 be an integer, d > 3 be a divisor of
q—1 and let

Us(d) = {(1,.. . 0) €[Ld—1] by +- -+ 0, #0 (mod d)}.

If s = 3, assume that d > 3. If the Jacobi sum J(Xfll, . ,xfls) is pure for all s-tuples ({1,...,0s) €

Us(d), then d is (p,r)-admissible for some positive integer r.

4.2 The case d; = --- = d;

The aim of this section is to provide a proof for Theorem 4.1.
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Proof of Theorem 4.1: Let Us(d) be as defined in Lemma 4.6. Suppose that b =0, s > 3 and
assume that the bound (4.4) is attained. By Equation (4.7) and Proposition 1.11, we have that

XEFEN =g+ D X xG @)X (4.8)
0<t;<d
(£1,...,0s)EUE(d)

where US(d) := {(l1,...,4s) € [1,d = 1]° : £y + --- + £, =0 (mod d)}. Moreover, if (¢1,...,4,) €
US(d), then

JO(Xfll?"'?XflS) = Z Xfll(bl)XflS(bs)
bl++bs:0
=(q-1) > XG).. X (o) (4.9)
b1+-+bs—1=1

= (g - DI xS,

We recall that [US(d)| = I(d,...,d) and that we are assuming that the bound (4.4) is attained.

Furthermore, by Lemma 4.5, I(d,...,d) = 0 if and only if d = 2 and s is odd. Therefore, since
we are under the assumption d > 2, it follows from Equations (4.8) and (4.9) that

_ _ s s—
Xg @) ooxG @I oxg ) € {2

for all (¢1,...,45) € UE(d) or, equivalently, for all (¢1,...,05_1) € Us—1(d). In particular,
J(Xf;l,...,xcf ") is pure for all (¢1,...,05-1) € Us—1(d) and so, by Lemma 4.6, d is (p,7)-

admissible for some positive integer r. Then 27 is the order of p in the multiplicative group Z;.

Since ¢ = 1 (mod d), with ¢ = p”, it follows that 2r|n. In particular, n is even. Therefore we are

under the hypothesis of Theorem 3.9 and so

Vai—e s
|X(Fy)| = ¢* + 58(1%(\/{7—% £) Z H(1 — d)%,

=1 i=1

where ¢ = (—1)"?". It is direct to verify that [(=1)°(y/q — €)~ Zﬁ 6HZ (1= d)%i| =

|I(d,...,d)| if and only if yg4(a;) = --- = x4(as), proving our result. Moreover,
q—¢€ s
(—)°(va—o) ' > [ -a) =-1(d,....d)
7j=1 =1

if and only if ¢ = 1 and s is odd, which occurs if and only if n/2r is even and s is odd. The
converse follows from Theorem 3.9.
The case b # 0 can be obtained similarly to the case b = 0. |

Theorem 4.1 does not consider the case where s = 2 and b = 0. For s = 2 only the upper
bound can be attained, as it is shown in the following remark.
Remark 4.7. If s =2 and b =0, then I(d,d) =d — 1 and

0, Z'fdf (61 —I—ﬁg);
Jo(XG,x%2,0) = xa(by (—b1)"2) =
rha bzm e (0= Dxa((=1)2), ifd | (6 +62).
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Furthermore, d | (€1 + ¢2) if and only if {1 = d — by with b5 = 1,...,d — 1. Therefore, by
Equation (4.8) we have that

d—1
X(Fy)l =g+ Y xg” (a7 )xiE (a3 ) (g — Dxa((—1)%)
lo=1
d—1
=g+ (-1 ) xz% (@ Hxg(—axh)
lo=1

and then the bound (4.4) is attained if and only if Xd(—alaz_l) = 1. Therefore the bound in
Theorem 4.1 is attained only if xq4(a1) = xa(—az) and, in this case, the upper bound is attained.

4.3 The case b # 0 and distinct d, . .., d;

In this section we provide the proof of Theorem 4.3. Our strategy is to prove a result similar

to Lemma 4.6. In order to do so, the following definitions will be useful.
Definition 4.8. Let d = (dy,...,ds) € Z with d; > 2 for alli=1,...,s. We set
{(br,...4s) €Z°:0<l; <d; foralli=1,...,s};
2. Ud) ={(r,.... ;) €B() : % + -+ % £0 (mod 1)};
3. US(d) = {(tr,...,0s) €B(d): B+ -+ % =0 (mod 1)}.
For b € F;, Equation (4.7) implies that
XEN ="+ Y xXG (L) G ()T X)) (4.10)

-

(€17“'765)€B(d)

Proposition 1.11 states that
¢z, i (0, ... L) € U(d);

s—2 =

T, A (0, ... L) € U(d).

[T xe)| =

From here, we have the following direct result.

Lemma 4.9. If |X(F,)| attains the bound (4.2), then J(Xf;ll, . ,Xfi) is pure for all (¢1,...,0s) €
B(d).

In what follows, we use this fact to obtain necessary conditions for which bound (4.2) is
attained. The following lemma is a consequence of the well-known Hasse-Davenport Relation

and will be used in the main results of this section.

Lemma 4.10. Let k be a positive integer and let X\ and x be multiplicative characters of Fy such
that X\ has order m > 1. Then ‘
[T/ G(AMx)
G(Xm/d)d
where d = ged(m, k) and Q is defined as in Definition 1.185.
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Proof. We observe A\* has order ™. If y also has order @, then item (b) of Lemma 1.6 entails

d: d>’
that
. . m— m—1
[ GORY) T G(W9) [ ¢ T, NM(-1), if m is odd;

_ _ L (4.11)
G(Xm/d)d (—1)4 G()\m/?)qT2 [[;2, ¥(-1), ifmiseven,

The assertion follows from Equation (4.11) and Theorem 1.7. If d = m, then

Lot = T e =6

which proves the assertion. Now, we assume that the order of x is not 7 and d # m. It follows
from Theorem 1.7 and Corollary 5.29 of [50] that

178 G(Aky)

€Q,

and therefore our result follows by using that A\* has order T |

The following proposition is the key step of the proof of our main results.

Proposition 4.11. Let s # 3 be an integer and suppose ged(dy,...,ds) > 2 if s > 3. If
J(Xgll,...,xgz) is pure for all ({1,...,0s) € B(J), then G(szj) is pure for all ¢ € 7Z and
j=1...,s.

Proof. We will prove that G(th) is pure for all £ € Z. If £ =0 (mod d;), then the result follows
directly by item (c) of Lemma 1.6. Assume that £ # 0 (mod d;). Since ged(dy, . ..,ds) > 2 and
s # 3, it follows from Lemma 4.5 that there exists a (s — 2)-tuple (ms,...,ms) € Z*~2, with
1<m; <d;—1foralli=3,...,s, such that

ms ms
s 4Ty d1).
d3+ +ds (mod 1)

Then, by Theorem 1.9 and Lemmas 1.6 and 1.15, we have that

6iy) G 06)" 9 (i i )9 (3, W™ o™

¢ ) 2 s—2
G(xdllxdi) a2 Xdg(—=1)-xas(—1)

€N (4.12)

forall 1 </ <dy and 1 < /¥ < dy. By Lemmas 1.6, 1.15 and 4.10 and Theorem 1.7 we have
that

At eldn) T Telba®)

where A € €. In particular, it follows from Lemma 4.10 that

ﬁfdﬁﬂwﬁgAdﬁﬁz

01\ 92
cbi) * g (4.13)

G (i)

for all 1 < /¢; < d;. Now we fix an integer £ € {1,...,d; — 1} in order to prove that G(Xfl_l) is

pure. We split the proof into two cases:
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e There exists an integer v > 1 such that ¢dy = 0 (mod d;). In this case, we employ
Equation (4.13), Lemma 1.15 and item (c) of Lemma 1.6 and obtain

e There exist integer u > 0 and v > u such that ¢d§ = ¢d§ (mod d;). We employ Equa-
tion (4.13) and Lemma 1.15 in order to obtain

edy dy " _ édj dy

i _o(ef)® o a(ed)”
G<Xd1 ) - eay H Hi ay 0D € Q. (4.14)

G(xdl) = (xi )

Furthermore, Equation (4.13) and Lemma 1.15 entail that

( P ) u—1 G( Zd%>d2
Glx Xd
e L) eQ. (4.15)
g (@) ) - G+D
edy | "2 ~0 ed%""l 2
G Xdl J G Xdl

Lemma 1.15 and Equations (4.14) and (4.15) imply that G(X§1) € Q.

The cases where ¢ = 2,..., s follow similarly. |

The following theorem is one of the most important results of the section.

Theorem 4.12. Let s # 3 be an integer and suppose ged(dy, ..., ds) > 2 if s > 3. IfJ(Xgll, e ,ng)
is pure for all (¢1,...,4s) € B(d), then each d; is (p,r)-admissible.

Proof. By Theorem 1.16 and Proposition 4.11, it follows that for each ¢ = 1,..., s there exists an
positive integer 7; such that d; is (p, r;)-admissible. Since ged(dy, ..., ds) > 2 and s # 3, it follows
from Lemma 4.5 that there exists a (s — 2)-tuple (mg,...,ms) € Z°72, with 1 <m; < d; — 1 for
all t =3,...,s, such that

M 4 M (mod 1).

By Theorem 1.9, we have that

a(x)a(x2)a(xr3)..a(xms
(Xd1) (Xd2) 1(X423 ) (de ) _ J(Xflll ’ Xf{z,xgs’ o 7)(23) cQ
G(Xd1xd2)

forall 1 </¢; <dj and 1 < ¥¢5 < do and then, by Lemma 1.15 and Proposition 4.11, it follows
that

G(xix2) e (4.16)
forall 1 </¢; < dy and 1 < 5 < dy. We set D = lem(dy,d2). Let ¢1 and ¢2 be integers such that

() + (i) 2 = ged (%, 45F) = 15
tly . tlho

Claim: G(Xd1 Xd, ) = G(x%) is pure for all ¢ € Z.

Proof of the claim: If t = 0 (mod d1) or t = 0 (mod dy), then the claim follows from
Proposition 4.11. Assume that t 0 (mod d;) or t # 0 (mod ds). In this case, Equation (4.16)
states that G(ij) is pure, which completes the proof of the claim.
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We observe that the claim and Theorem 1.16 imply that there exists an integer r such that
D is (p,r)-admissible. In particular, it follows that 1 = ro = r. By using the same arguments,

we prove that 71 = --- = rg and our result follows. |

With the results obtained in this section, we are able to complete the proof of our result.

4.3.1 Proof of Theorem 4.3

Assume that the bound (4.2) is attained, then Lemma 4.9 and Theorem 4.12 state that each
d; is (p, r)-admissible. In particular, since d;|(p"™ — 1), we have that 2r|n. Therefore, we are under
the hypothesis of Theorem 3.9, which states that the bound (4.2) is attained if and only if

S S

[Tedi = 1"® =] - 1), (4.17)
i=1 i=1
where v;(b) = 04,(a;, b). Therefore, by definition of 84, (a;,b) and Equation (4.17), we have that
Xd;(@i) = xaq,(b) forall i =1,...,s.
For the converse, assume that d; is (p,r)-admissible (and then n is even) and suppose that
Xd; (ai) = xa;(b) for all i = 1,...,s. Since xq,(a;) = xq,(b), there exists ¢; € F, such that 3 = cf’i.
Therefore, we can make a change of variables by replacing ¢;z; by y; in Equation (4.1) so that

|X(Fq)| equals the number of solutions of the equation
Yyl =1

Hence, by Theorem 3.9, we have that

s—2 5 ..
X(F)| =q¢ ' - g T [ V][ -di) - (1 — ;)i
i=1 J=1 i=1
. s Va—e
=g ety (g [0 - ) - (1-d;) (4.18)
_ s 5-2 s :
_ gl e () (ﬁzH(di—1>—<¢a—e>f<d1,---vds>>7
=1

where the last equality follows from Lemma 4.4. From here, we observe that it is necessary and

sufficient that (—1)% = ¢ = 1, which it is equivalent to 5~ being even. Therefore the maximality

s+1

and minimality depend only on the sign (—1)*"", which completes the proof. |
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CHAPTER

On the number of rational points on Artin-Schreier

hypersurfaces

Let Fx be the finite field with ¢" elements, and let X C A%t! be an irreducible Artin-Schreier

hypersurface defined over F » given by

X:yq—y:almf1+--'+asazgs+b, d; > 1. (5.1)
If N denotes the number of points of X in ASt! (]Fqk:), then the famous Weil’s bound yields

IN = < (g = 1)(d = 1) (ds = 1)g*>. (5:2)

The hypersurface X is called F r-maximal (F r-minimal) if N attains the upper (lower) bound
in (5.2). While particular examples of Artin-Schreier hypersurfaces attaining (5.2) can be readily
constructed, a complete characterization of such hypersurfaces has not been provided previously.
This and other related problems, such as determining the exact number of Fx-rational points or
improving Weil’s bound under certain conditions, are compelling problems that have a number
of applications [37], [109]. In this chapter, we address all the above questions. In particular, we
provide an improvement for Weil’s bound. The extent of the improvement will depend on certain

data, but, at a minimum, bound (5.2) will be replaced by the sharp bound
IN — ¢ < ¢"(dy — 1) - (ds — 1)g**/2. (5.3)

provided Tr g, (b) # 0.
Equations of type (5.1) have been extensively studied in the case s = 1. For instance, in [109],
Wolfmann considered the Artin-Schreier curves X' : y? — y = ax® + b defined over F x. His results

provide the number of F x-rational points of X" in the following scenario:
(i) k=2t

(ii) There exists a divisor r of ¢ such that ¢" = —1 mod s.
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In [16], Cosgun, Ozbudak, and Saygi studied the number of IFx-rational points on the curves
Xyl —y = quh.u — b. Several additional results regarding the number of rational points
on Artin-Schreier curves were proved by Coulter [18], [19]. It is worth noting that despite the
strength the aforementioned results, they do not lead to the proof of the F 2.-maximality of the

curve of type (5.1) given by

2 q"+1

Vo yl —y =zt (5.4)

where n > 3 is odd. The F -maximality of }3 was first proved by Garcia and Stichtenoth as a
generalization of an example provided by Serre [30]. In [1], Abdén, Bezerra and Quoos proved the
[F2n-maximality of ), for all odd n > 3, and later in 2010, Garcia and Stichtenoth provided an
alternative proof of this general result [31]. In these three papers, the proofs use techniques that

are specific to curves and do not seem to extend to higher dimensional versions of ),, such as

¢+ 1 0"+ 1

Vs g’ —y=aiz! "+ tagmd . (5.5)

Note that the important role played by ), in the context of maximal curves (see [22], [21], [24],
[28], [29], [35]) brings additional interest to the hypersurfaces given by (5.5).
Among other matters, this chapter will characterize all hypersurfaces of type (5.1) that attain

Weil’s bound. It turns out that if X' : y? —y = ala:‘lil + -+ asxd + b is defined over F . and

q
attains Weil’s bound, then Trg /q(b) = 0 (Theorem 5.8). An immediate consequence of this will

be a proof for the F 2n-maximality of the hypersurface ), s for a; = --- = a5 = 1. In particular,
the result yields a new proof for the maximality of the curve Y, in (5.4).

Furthermore, under certain arithmetic conditions on Fx and dy, ..., ds, we provide the exact
number of F x-rationals points of &' (Corollaries 5.7 and 5.10), subsuming all such results provided
for curves in [16] and [109].

Notation

The following notation is used throughout this chapter.
e [ . is a finite field with q* = p™* elements
e For any divisor ¢ of nk, Tryk /,» denotes the trace function from For to Fe
e For divisors d of ¢* — 1, xq denotes a multiplicative character of order d of IF‘Z,c
e di,...,ds are integers greater than 1, and divisors of ¢* — 1

® aj,...,as, and b are elements in [F x

e 7 denotes a generator of the multiplicative group Fp

k_
e For an positive integer k, vy = qqfll
e U= I% and 71, ..., € F} denote coset representatives of Fy / Fp.
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5.1 Main Results

In this section, we present our main results, along with a few comments. Note that the
equations y9 —y = > 7, a;z% and y? —y = Yooy aixg':d(di’qk_l) have the same number of -
solutions. Hereafter, we will assume that d; | (¢* — 1) for i = 1,...,s. The problem of bounding
the number of Fy-rational points on a hypersurface goes back to Weil (1950). In one of his most
famous paper [105], he presented a simple bounds (bounds (4.2) and (4.4) presented in Section 4)
for the number of points on a Fermat hypersurface in terms of a constant depending on the
exponents of the monomials in the equation of the Fermat hypersurface. In this chapter, we
generalize the definition of this constant in order to provide a bound for the number of F4-rational

points on Artin-Schreier hypersurfaces.

—

Definition 5.1. For d = (di,...,ds) and an positive integer k, we let T'y(d) be the set of tuples
(J1,---,7s) €Z%, with 1 < j; < d; fori=1,...,s, such that

k; . .
¢ -1\ (71 Js\ _
<q—1><d1+ +ds>_0 (mod 1).

The cardinality of Tk (d) is denoted by Ii(d).

It is noteworthy that Il(ch coincides with the constant I(di,...,ds) defined for Fermat
hypersurfaces in Weil’s paper [105]. One of the efforts of this chapter is to present the number of
[F,-rational points on Artin-Schreier hypersurfaces in terms of Gauss sums, which allow us to
improve Weil’s bound. This improvement will naturally depend of the constant Iy (cf) and it is

stated as follows.

Theorem 5.2. Let N(b) denote the number of F x-rational points on the affine hypersurface given
byy? —y = alazfl + -+ asx® +b. Then

sk = .
sk q7(q - 1)Ik(d)7 Zf Tqu/q(b) =0
NB) = <8 w1 . (5.6)
¢TI =)~ g% (gF = 1) T(d), if Trgesy(b) #0
The extent of the improvement depend on the exponents di,...,ds, ¢ and k. One can readily

verify that 0 < Ij,(d) < [I;_; (di — 1), but is hard to give a precise estimate for Ij (d). The case
where k = 1, for example, is extensively studied in Chapter 6 of [50]. Along this chapter, we will

present necessary and sufficient conditions in which such bounds are attained (see Section 5.3).

—

As a consequence of this characterization of I;(d), we obtain the following result.

Corollary 5.3. If some do € {di,...,ds} is coprime to each element of {vk,d1,...,ds}\{da},

then the number of Fx-rational points on the affine hypersurface given by
v —y=azl + - +aad

is equal to ¢°".

-

On the other hand, we will see that the case where I;(d) is maximal yields cases where Weil’s
bound is attained. Indeed, one of our aims in this chapter is to characterize the maximal and

minimial Artin-Schreier hypersurfaces. Before doing so, we provide a family of hypersurfaces
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whose number of Fy-rational points can be explicty given. This family of hypersurfaces satisfy a
very natural condition on the exponents, which is being (p, r;)-admissible (see Chapter 1).

Note that if an integer d is (p, r)-admissible, then 2r is the order of p in (Z/dZ)*. In addition,
d | (¢* — 1) implies 2r | nk. Along the chapter, the following definition will be important.

Definition 5.4. For c € Fx, we define the integer

-1, if Trgrp(c) # 0
p—1, if Trgepp(c) =0.

Ale) =

The following result provides a formula for the number of rational points on Artin-Schreier

hypersurfaces.

Theorem 5.5. Let dy,...,ds be integers not all equal to 2, and let N(b) denote the number of

Fx-rational points on the affine hypersurface given by
X:yq—y:almf1+~--+asiﬂ§s+b~ (5.7)

Assume that d; is (p,r;)-admissible, and let u; = przl—jl(di —1). Then

N(b) = ¢* —{—q?ZAfyj Hsll— (5.8)
where g; = (—1)%‘, and
L if xa,(vjai) = &
0, if xa;(vjai) # &
Theorem 5.5 does not apply for dy = -+ = ds = 2, but the number of F-rational points in
this case will be determined in Section 5.7. Note that if Trgx /,(b) = 0, then (5.8) reads as follows

03,j =

N(b) =q¢** + (p —1q2ZH611— (5.9)

j=14i=1

In particular, this yields the following result, which also provides a new proof for the

maximality of the curve ), in (5.4).

Corollary 5.6. If k > 3 odd, then the hypersurface given by

k k
" +1 " +1
2

Vis: Yyl —y=a{" +-- 4z (5.10)
18 quk -maximal.

More generally, considering cases in Theorem 5.5 for which ¢; ; does not depend on j, we

have the following.

Corollary 5.7. With the same notation as in Theorem 5.5, if d; | ( ) fori=1,... s, then

N(b) = ¢ = g% [T = - d)® if Trgnsq(b) # 0 (5.11)

sk s ) .
¢+ (g —1)q? [T (1 —di)%  if Trps,(b) =0,

where 0; = 0; ;.
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Note that if Trgx /q(b) = 0, then Corollary 5.7 gives sufficient conditions for having hypersur-
faces attaining Weil’s bound, and new examples thereof. The following result shows that such

conditions are necessary.

Theorem 5.8. Let N (b) denote the number of [ x -rational points on the affine hypersurface given
by y?—y = a1 +- - -+ agaxds +b. Then Weil’s bound (5.2) is attained if and only if Trgr /q(b) =0
and the following hold fori=1,... s:

. .. . k_q
(i) d; are (p,r;)-admissible divisors of qu

nku;

(i) xa,(a:) = (=1) ", where u; = P (d; — 1).

Theorem 5.8 provided the number of Fy-rational points of a wide class of Artin-Schreier

hypersurfaces in the case where Trx ,(b) = 0. Now, we turn our attention to the case Trgx /,(b) # 0.

Theorem 5.9. With the same notation and hypothesis as in Theorem 5.5, let D = lem(dy, ..., ds),

v = q;_—_ll, and T' = Ty(d). Assume that b = Tror/q(b) # 0 and a1 = -+ = a5 = a. If

M = m is (p,r)-admissible and u = LA}_I(M — 1), then

s 1+u§: ji S . s
N(b) = qsk — Q%QZ [(1 — € 1':1] qé> Hegzjz] —q k2+1€9(71)5 H(]- . di)éi’j,
=1 ;

jer

nk n

where e; = (—1)%i, e = (=1)2r, 0 = (—=1)° [, i, and

5 1, if xg,(Va™1) = evelt
0, if xa,(Wa™") # evei.

Note that if 7 be an integer such that 3- is even, and b € Fx is such that Trg ,(b) = 1, then

the number of F x-rational points of

attains bound (5.6). More generally, the following holds.
Corollary 5.10. The bound in Theorem 5.2 is attained if the following hold.
(i) ag=---=as=a
(i) xq;(b'a™) =1
(iii) d; are (p,r;)-admissible
(iv) M = m is (p,r)-admissible

(v) Ix(d) #0

. s .
(vi) 5= and % are even integers.
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5.2 First results

In this section, we provide expressions for the number of F,-rational points on a Artin-Schreier

in terms of character sums. These results play an important role in the proof of our main results.

Proposition 5.11. The number of F «-rational points on y? —y = alaz'lh + -+ asx® + b is given

by
di—1 ds—1 s

q8k+z¢cb Z ZHXd (ca;)G )

ceFy J1=1 Jjs=11=1

where G(x) denotes the Gauss sum of x.

Proof. Let N be the number of points of y¢ — y = alx‘fl + - 4 agx® + b in AST! (Fqk). Let

& = (r1,...,7s). By the orthogonality relations of characters, we have
N = Z Z w(c(alx‘fl 4+ 4+ asmgls + b))

feIF;k cely

= ¢+ > > Ple(ma -+ asl + b))

cEF; TEF3),

= ¢+ D) Y vlean) o YD v(eaal).

celFy 1 Equk xSEIFqk

It follows from Lemma 1.5 that

di—1 s
=¢"+ > (ch) Y - Z Xar (car) - - Xa. " (cas) [ [ GO,
ceFy =l js=1 i=1
which completes the proof. |

As a direct consequence of Proposition 5.11, we have the following result.

Corollary 5.12. If V' = Trge/e(b) # 0, then the number of Fx-rational points on y? —y =

alazclll + -+ aswds + b is given by

di—1 ds—1

¢+ Goxa - xa) [ e GO,
=1

a=1 =1

where G(x) denotes the Gauss sum of x over F, and G,(Xa,7' ... Xas) the Gauss sum of
Xt ... Xas over T,.

At this point, we are able to present an improvement of Weil’s bound, that is stated in
Theorem 5.2.

Proof of Theorem 5.2. Let I' and B be as in the proof of Theorem 5.9. Assume that
Trgr /4(b) = 0. By Proposition 5.11 and Lemma 1.3, it follows that

b):qSk-i-Zf[(Xdiji(al ) ZX ngs(c)

Feri=1 ceF;
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We recall that lej_(b'ai_l)] =1 for all j; and observe that j € I’ implies cCF* Xflll . Xfls (c)=0.
T q S
Therefore, Theorem 1.6 yields

IN(b) —¢* < (g — 1) ZH\W (a))]|G(x)

]EFZ 1

—

< (¢ - 1)q% Iy(d).

Now, we assume that Trgx /,(b) # 0. From Corollary 5.12, we have that

(N(b) -

If j € T, then Gy(xg,”" ... Xa.?*) = —1. If j € B\T, then Theorem 1.6 yields

di—1 ds—1

H=d 3 Goxa - xa?) [ o W HG ()
=1

Jji=1 Js=1

— — 1
|G (™ - Xa”)| = g2

Furthermore, | X] (Va7 ') =1 for all j;. Therefore, it follows from Theorem 1.6 that

di—1 ds—1

NB) =gt < YD Gela X 35|H|x DIltele% ]
J1=1 Js=1
di—1 ds—1

S
<SS eat - xa) ] ¢
=1

a=l  js=1

sk+1
<Zq2+ q 2

jer JEB\T'
<Y oF (1-g) + T

jer jeB

S
sk+1 sk 1 -
< ¢ [ -1 =% (45 —1) 1u(d),
i=1
which completes the proof. |

5.3 On bounds for Ik(cf)

In this section, we study when the constant I (cf) attains its the upper and lower bounds.

For the upper bound (J];_;(d; — 1)), we have the followin result.

Proposition 5.13. For the exponents dy,...,ds > 1, let Z = {i: d; > 2}. Then Ik(ci) =[](d;—1)
i=1
if and only if (s— | Z |)vg is even and d; divides vy for all i € T.

V)

Proof. Suppose Ij,(d) = H( — 1), that is, vg > gl—’ = 0 (mod 1) for all (j1,...,7s) € B. In
i=1 "

particular,
v il: (mod 1) and v i%—zs:l =0 (mod1)
’ =di *\da =di) ,

for all & € Z. It then follows that U’“ =0 (mod 1), that is, d, divides vy, for all & € Z. In addition,
\I

the latter condition implies vy, - *5= = 0 (mod 1), and then (s— | Z |)uvy is even. The converse is

clear. -
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Now we characterize the conditions in which [ k(a?} attains the lower bound (namely, when

—

Ii(d) = 0).

-

Proposition 5.14. I(d) = 0 if and only if one of the following holds:
o for some d;, ged(d;, vidy - - ds/d;) =1

o ifdi,....,di, (1 <1y <---<iy<s)is the set of all even integers among {di,...,ds},
then 24t, d;y /2,...,d;, /2 are pairwise coprime, and d;, is coprime to vy and to any odd
number in {dy,...,ds} (j=1,...,t).

Proof. We observe that the number of solutions (j1,...,Jjs) with 1 < j; < d; of the equation

Vg <]1+”‘+]5> =0 (mod1),

which equals the number of solutions j = (J1,..-,7s) with 1 < j; < d; of the equation
Bp 4220 (mod1), (5.12)
€1 €s
where ¢; = d;/ged(d;,vg). Let S denote the set of solutions j of Equation (5.12) and let
B={i=1,...,s:gcd(d;,vg) > 1}. For A C B, let
Sy={jeS:ji=0 (mod e) if and only if i € A}.

We can stratify the set S of solutions of Equation (5.12) as follows:

S = U Sa.

ACB

One can easily verify that

1Sal=T[ (& -1) T[] (&)Ia@),

€A i=1,...,8
idA
where €= (e1,...,es), and I 4(€) denotes the number of solutions j= (J1,---,7s), with j; =0

foralli € Aand 1 < j; <e; for i € A, of the equation

=44+ ==0 (modl).
€1 €g
Therefore,
SI=> > (E-1) > (£)kal®. (5.13)
ACBi€A i=1,...,s

igA

In sum, we have shown that I;(d) = 0 if and only if I a(€) =0 forall AC B.

Suppose I (d) = 0. Since Ij, z(€) = 0, Lemma 4.5 states that one (or both) of the followings

condition holds:
1. for some e;, ged(e;,eq---es/e;) =1

2. if ey, ..., (1 <iyp <---<iy <s)is the set of all even integers among {ey, ..., es}, then
21t,€;,/2,..., e, /2 are pairwise prime, and e;, is prime to any odd number in the set
{e1,...,est({=1,...,1).
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Assume that conditions (1) and (2) hold simultaneously and let C; = {i = 1,...,s: ged(e;, eq---es/e;) =
1} and Cy = {i1,...,it}. If BN Cy = @, then ¢;, is coprime to vy for each ¢ = 1,...,t, which
implies that the second condition the statement of our result holds. Otherwise, assume without
loss of generality that e;, € BN Cy and et A = BN CyU{e; }. Since I, 4(€) = 0, it follows from
Lemma 4.5 that there exists an integer u € {1,...,s} such that ged(d,,d; ---ds/d,) = 1 and
u ¢ B, which implies ged(dy, vidy - -+ ds/dy) =1

The cases where only one of the two conditions holds follow similarly. The converse follows

directly by employing Lemma 4.5 in Equation (5.13). [ |

Corollary 5.3 follows as a direct consequence of Theorem 5.2 and Proposition 5.14.

5.4 Expressions for the number N

In this section, we provide expressions for the number of F,-rational points on Artin-Schreier

hypersurfaces that satisfy some hypothesis on the exponents, namely, each d; is (p, r;)-admissible.

5.4.1 Proof of Theorem 5.5

From Proposition 5.11, we have that

di—1 ds—1 s

=+ 3o 3 3 [T (e Gl

ceF} ji=l  je=li=1
Since 71, ..., are coset representatives of Fy /I, it follows that
v p—1 di—1 ds—1 s ‘
N=g%+> > 0 yb) Y ) [} (e G-
j=1 ¢=1 ji=1  js=1li=1

Let u; = %(di —1). From Theorems 1.7 and 1.16,

v p—1 di—1 ds—1 s &
sk nku;j;
NURVARTED D MLUCTD SEED B) | (A CHOCE el
j=14=1 ji=1 js=11i=1

nk
where g; = (—1)2i . Let us recall that 2r; is the order of p in (Z/dZ)*. Since d;|(¢* — 1), it follows
that (p? —1)|(¢* — 1), and then (p™ + 1) ( — 1) In particular, d;| ( ) which implies that
Xd;(¢) =1 for all £ € F,,. Therefore,

v

k ' nku; \ Ji | P21
N(b)=q"*+q2 ) Hsz Z (xa vja;)(—1) 7" > > (v;b)
=1

j=1 L= 1 g5;=1

v

1
= ¢ +q7 Y H Z (Xa; (vja:)e Z¢K7j

j=1 [i=1 ji=1

Let 1, be the canonical additive character of IF,,. From Lemma 1.3,

S = -1, if Tr 0
Z%ﬁé(%’b) = Z?Z)p(fTqu/p(fyjb)) — /p( b) #

/=1 (=1 b — 17 if Tqu/p(FYJb) = 07
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and Lemma 1.4 gives
d;—1 . w;
: . T if x4, (vja:) # &
D = (X (ya)el ) = _ o g
ot L—d, if xa;(vja:) = &
Therefore,
<k v S
50 =+ 3 |[Tatt - ] A
j=1 Li=1
where
o[ itaa) =<
i = . .
07 if Xd; (V]al) 7& 8;%’
and this completes the proof. |

We observe that the hypothesis of (p, ;)-admissibility was essential in our approach. Under this

hypothesis, we can present a proof for the maximality of some particular families of hypersurfaces.

5.4.2 Proof of Corollary 5.6

Throughout this proof, for a divisor d of ¢** — 1, we let x4 be a multiplicative character of
F 2 of order d. Let d = %. We note that d is (p, )-admissible for a divisor r of nk such that
”Tk is odd. Therefore, Theorem 5.5 implies that the number N of F ar-rational points on Y s is

given by
v
N = q25k + (p - 1)qsk ZE(I - di)séj
j=1

2nk

2
— S
where € = (—1)2, v = 2= and

Ujg

L if xa, () = ¢
0. if xa, () # <1
Since ”7]“ is odd, d | qq]i—_ll and v; € Fy for all j =1,...,v, it follows that ¢ =1 and 6; = 1 for all

j=1,...,v. Then
N =¢*"+ (¢ = 1)(d - 1)°¢*,

which proves that ) s is maximal. [ |

Lemma 5.15. Let b € F, be such that Trgk /q(b) # 0, and let

A={je{l,...;v}: Trp,,(yb) # 0}.

Then /

q—4q/p
Proof. For ¢ € Fp, let Ac = {j € {1,...,0} : Trp,(cy;0) # 0}. Since ¢ € Fj, we have
that Trgk ), (cy;0) # 0 if and only if Trg,,(v;0) # 0, and then [A| = |A.]. We recall that
Tqu/p(cvjb) = Tl“q/p(C’yj TI'qk/q(b)) Since

U Ufew} =T,

cely j=1
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it follows that
U A = Hw € Fy : Trypp(w Trge o (0)} = a — a/p.
ceFy
After observing that [Ac| = [A1] = |A[ for all ¢ € F}, the result follows. [ |
q"-1

q—1
Artin-schreier hypersurfaces whose number of F,-rational points does not depend on the basis

field .

Now, assuming that d; | ( ), we are able to prove Corollary 5.7, which yields families of

5.4.3 Proof of Corollary 5.7

¢" -1
Let 8 be a primitive element of Fyx and v = 8471 . Assume that Trp ,(b) # 0. Since

d;| (flqk_—_ll), it follows that
jL=1
Xd; (Vi) =xa; | B ) =1

for all positive integer j. Therefore, Theorem 5.5 implies that

Nb) =¢" +4¢% [(p—1) (v— A — A [] &0 — )%,
=1

nk

Where A = {] -~ {1 e ,U} : T‘I'qk/p('}/]b) 75 0}7 E; = (—1)277“1’ and

Us

1, if Xdi(ai) = 61‘
0, if xq(ai) # ;"

5 =

Now, the result follows directly from Lemma 5.15. The case Trgx /4 (b) = 0 is obtained similarly. B

5.5 The Weil bound

In this section, we establish necessary and sufficient conditions for Artin-Schreier hypersurfaces
X C AST! (F,.) given by (5.1) to be maximal or minimal and present an improvement of Weil’s
bound when Tr /,(b) # 0. We recall from Definition 1.13 that

) ={z € C: there exists an integer n such that z" € R}.

For x a nontrivial multiplicative character, we note that G(x) is a pure Gauss sum if and only if
G(x) =z €.

Lemma 5.16. Let di,...,ds be divisors of ¢° — 1. If G(Xflll) . --G(ngs) € Q foralll < j; <
(di—1),...,1<js<(ds—1), then G(ngi) is pure for all j; € Z,1=1,...,s.

Proof. Let g(j1,...,7s) = G(X‘Zfl) e G(le‘ss). Fixing an integer j; € {1,...,d; — 1}, note that

g(la"'71>ji>17'"71)79(_1a"'7_17ji7_17"'7_1) €.

81



CHAPTER 5. ON THE NUMBER OF RATIONAL POINTS ON ARTIN-SCHREIER

HYPERSURFACES
From Theorem 1.6, it follows that
S
G Xili)qu(S_l) HXdl(_l) = g(lv <o 7ji7 L) 1)9(_17 v 7ji7 ) _1) € Q:
=%
which implies G(Xili) € Q, that is, G(Xf;i) is pure. [ |

5.5.1 Proof of Theorem 5.8

Let us assume that Weil’s bound is attained. Then by Proposition 5.11 we have that

di—1 ds—1 s

> ZHXM (ca;)G )G{q%,—q%}

J1=1 Js=11=1

for c € F, and j; = 1,...,d; — 1. In particular, by Lemma 5.16, if 7 € {1,...,s} is an integer
such that d; # 2, then G(Xf;i) is pure for j;, = 1,...,d; — 1, with i« = 1,...,s. Therefore, by
Theorem 1.16, it follows that there exists an integer r; such that d;|(p™ + 1). Accordingly, being
under the hypotheses of Theorem 5.5,

N@b) =g +q2ZA% ngl_

Since Weil’s bound is attained, we have that A(y;b) = p — 1 and xg, (yja;) =&} for j=1,...,v

and i =1,...,s. It can be readily verified that these conditions are equivalent to the following;:
[ Tqu/q(b) =0

- al(4)

Us

i Xdi(ai) =&

where u; = 2 T;H (d; — 1), and i = 1,...,s. The converse is straightforward. [ |

5.6 The nonzero trace case

In this section, we focus on a special case where Trx /q(b) # 0 and some suitable conditions
are satisfied. In particular, these conditions are closely related to the maximality and minimality

of the hypersurface, as we will se in Corollary 5.10.

5.6.1 Proof of Theorem 5.9

From Corollary 5.12, we have

di—1 ds—1

D) =¢"+ > > Goxa . xa) [[ o e GO,
=1

j1:1 jszl

Let u; = p (d —1) and

B={{1,...,Js) €Z°:1<j;<d;fori=1,...,s}.
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From Theorems 1.7 and 1.16, it follows that

S nku;j;
N(b) =¢° FigY ZG Xt .. [ “Dei(—1) 2 },

jEB z:l

nk

it - s i nkuij; -
where ¢; = (—=1)27, 7 = (j1,...,7s)- Set S(j) = [] [—Xéz(b’a_l)si(—l) 2ri }, and let I' = T'x(d).
i=1

Observe that ; € T if and only if Xg,7! ... Xg.’* is the trivial multiplicative character over Fy-

Therefore,

NO)=¢* +4% Y Goxa” ... xa )5 ()

]GB
= 147 Y G XS e Y G X )SG)
jEF ]GB\F
sk . . -,
=¢F 7Y S(H+a7 Y G .. xa)SE).
jer jeB\I'
Since M = m is (p, r)-admissible, it follows from Theorems 1.7 and 1.16 that
NO) =" —q% Y SG) —q"F Y ST

jer jeB\T

where & = (—=1)2r, and then

N = g™ — g% 30 (1= gd) $G) g YD S
EEF jEB

Since ; € T implies that Xg,7! ...Xga.’* is the trivial multiplicative character over F o if follows
from the definition of S(j) that

s nku;j; s . s )
N(b) = ¢*F — q%gz <1 _ ujiq%) (—1)%=1 e q% Z S(7)e iz i,

jer jeB

where 0 = (—1)*]_, €;. By the same arguments used in the proof of Theorem 5.5, we obtain
that

s . s nkuzh
N@®) = ¢* _qzez( 51+Zi=1“ﬁq%) (—1)Z= o gt 6Hell—

]El"

nk
where g; = (—1)?7 and

5 1, if xg,(Va™t) = euel
hj
0, if xg,(V'a™t) # e¥el,

which completes the proof of our assertion. |

From Theorem 5.9, we obtain some sufficient conditions for a Artin-Schreier being maximal

or minimal with respect to the bound presented in Theorem 5.2.
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5.6.2 Proof of Corollary 5.10
By Theorem 5.9, it follows that
s sk 1 s+l i T
N@) =q*—g%0> (1-¢4) =™ o1 [[0 -4,
jer i=1

nk
where g; = (—1)?% and 6 = (—1)°[[;_, &;. Therefore,
S
N(b) =g — g% [— (¢ = 1) fu(d) +¢* [ = )|,
i=1
which proves our assertion. |

We believe that the conditions presented in Corollary 5.10 are also necessary for a Artin-
Schreier hypersurface to attain the Theorem 5.2 bound, but a proof for this remains being an

open problem.

5.7 Thecased;=---=d, =2

In this section, we determine the number of F,-rational points on the hypersurface given by
(5.1) in the case where dy = --- = ds = 2. Let us recall that i denotes the imaginary unity and

the integer n is such that ¢ = p".

Theorem 5.17. Let N(b) denote the number of F x-rational points on the hypersurface y? —y =
a1x? + - +asx?+b. Lete=1i if p=3 (mod 4), and € = 1 otherwise. If either s or k is even,
then

w2 L7 OO ooy a1, Tt =0
qsk _ (71)s(nk+1) snkq > X2( Gs), if Tqu/q(b) # 0.
If both s and k are odd, then
sk ;
q*", if Trok, () =0
N(b) — 5+1 q*/q

qsk + (_1)s(nk+1)+n+1 snk—i—n k X2( .. Qg Tqu/q(b)), if Tqu/q(b) # 0.

Proof. Proposition 5.11 and Theorem 1.7 entail

() = ¢ + > w(ch) HX2 ca;)G

celFy
_ qsk + (_1)s(nk+1 S”k Z Y(eb)xs(c)x2(ar as)
ceFy
= ¢ 4 (~1)* DR T o (ay as) D leb)xs(e

ceFy

If either s or k is even, then Y3 is the trivial character over F,, and then
X2 q»

N(b) _ qsk + (_1)s(nk+1) snkq Z 1/) Cb
ceFy

¢ 4 (1D ek o (ar .. ag) (g — 1), if Trge s (b) =0
qsk - (_1)s(nk+1) snkqs2 X2( .. as), if Tqu/q<b) 7é 0.
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Let us assume that s and k are both odd, so that x5 is the quadratic character over [F,. In

this case,
N(b) = ¢ + (=1 DT yo (ar . ag) D d(eb)x(e)
ceFy
qSk, lf Tqu/q(b) =

sk

0
¢ + (—1)k D esnk gy o (ay . . ag Tqu/q(b))Gq(XQ), if Tqu/q(b) #0,

where G4(x2) is the Gauss sum of x3 over F,. The result now follows from Theorem 1.7.
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CHAPTER

Dynamics of polynomial maps over finite fields

The iteration of polynomial maps over finite fields have attracted interest of many authors
in the last few decades (for example see [36, 38, 66, 79]). The interest for these problems has
increased mainly because of their applications in cryptography, for example see [45, 106]. The
iteration of a polynomial map over a finite field yields a dynamical system, that can be related to
its functional graph, which is formally defined as follows. Let IF, be a finite field with ¢ elements
and let f € Fy[z]. The functional graph associated to the pair (f,F,) is the directed graph
G (f/F,) with vertex set V =T, and directed edges A = {(a, f(a)) : a € Fy}.

While the iteration of polynomial maps has been widely studied, a complete characterization
of their functional graphs has not been provided. Even though, many particular results in this
direction are known. For example, the functional graphs and related questions are known for the

following classes of polynomials:
(i) f(z) = 22 over prime fields [80];
(ii) f(x) =™ over prime fields [14];
(iii) Chebyshev polynomials [34] and [74];
(iv) Linearized polynomials [69].

Some other functions and problems concerning the dynamics of maps over finite structures has
been of interest [71, 73, 75, 100]. For a survey of the results in the literature, see [55]. The
chapter’s goal is to provide the functional graph associated to a class of polynomials in a general
setting. For a polynomial f(z) = x”h(a:%l) with index m, we study the dynamics of the map

a+ f(a) in order to present its functional graph G (f/F,). Throughout the chapter, we write
0 1
G (f/Fg) =G ® G .

where g}%q denotes the connected component of G (f/F,) containing 0 € F,. The aim of the

chapter is to present explicitly the two functional graphs Q}(})Fq and Qj(cl/?Fq under a natural

condition. The condition imposed along the chapter guarantees that all the trees attached to
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cyclic points of Qj(cl/?F are isomorphic. Our main results are essentially presented in two theorems:

Theorem 6.4 provides the cornponent g /B, that contains the vertex 0 and Theorem 6.7 provides

the functional graph g I/F, that contains all vertices that are not connected to the vertex 0.

For a polynomial f(z) = z™h(z"m ) the associated polynomial 1 ¢(z) = z™h(x )i S will play an
important role in the proof of our main results. In particular, the dynamics of the polynomial
f over [, is established in terms of the dynamics of the map vy over the set u,, C F; of m-th
roots of the unity. For more details, see Section 6.3.

This chapter is organized as follows. In Section 6.1 we present the terminology used along
the chapter and provide our main results. Section 6.2 presents preliminary results that will be

used throughout the chapter. The proof of our main results is provided in Section 6.3.

6.1 Terminology and main results

In this section we fix the notation used in the chapter, present our main results and provide
some major comments. We use the same terminology as in [73, 75, 76]. Let « be a generator of
the multiplicative group Fy. Along the chapter, we will make an abuse of terminology by saying
that the graphs are equal if they are isomorphic. By rooted tree, we mean a directed rooted
tree, where all the edges point towards the root. Also, we use the letter 7 to denote a rooted
tree. The tree with a single vertex is denoted by e. We use Cyc(k,7T) to denote a directed graph
composed by a cycle of length k, where every node of the cycle is the root of a tree isomorphic
to 7. The cycle Cyc(k, o) is also denoted by Cyc(k). We use & to denote the disjoint union of
graphs, and, for a graph G, k x G denotes the graph @leg. If G = @;_,T;, where Tq,...,7T;
are rooted trees, then (G) represents the rooted tree whose children are roots of rooted trees
isomorphic to T1,...,7s.

We recall that the connected components of a functional graph related to the iteration of a
function over a finite set consists of cycles where each vertex of the cyclic is the root of a rooted
tree. In this chapter, we study a class of polynomial maps whose functional associated graph has
a regularity in the trees attached to each vertex in a cycle. In order to describe such trees, we

present the well-known notation of elementary trees.

Definition 6.1. For a non increasing sequence of positive integers V.= (v1,ve,...,vp), the rooted

tree Ty is defined recursively as follows:

o,

<vk><7'k169@ (vi — Vig1) 1> for1<k<D-1,
<(vD—1 ) x TP~ lo @2 (’Uz—’UfL+]_) x T 1> and

<Uk XTk 1@@ ( UZ—H > for k> D,

where v; =1 for alli > D + 1.

<;@ < <w%

The graph Ty is called elementary tree. Elementary trees play an important role in the
study of functional graphs over finite fields, for example see [34, 69, 73, 75, 76]. Along this text,
elementary trees will appear in our main statements. Indeed all the trees attached to nonzero
vertices in cycles in the functional graphs arising from the maps we study are elementary trees.

For more details about this, see Lemmas 6.13 and 6.15.
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Throughout the chapter, we use p, to denote the m-th roots of the unity in [F,. For a positive

integer d, let

1, if d is square-free with an even number of prime factors;
pu(d) = < —1, if d is square-free with an odd number of prime factors;
0, if d has a squared prime factor.

be the Mébius function.
In order to present our main results, we will follow the notation used in [76] denoting by

ged,, (v) the iterated ged of v relative to n, that is, ged,,(v) = (vi,...,vs), where
ged(n', v)

=—=——"""fori>1
ged(ni—1 v) o=

i

and s is the least positive integer such that vy = 1. This notion was introduced in [73], where it

was called v-series. An important property of ged, (v) = (v1,...,vs) is that vy - - - v; = ged(n?, v).

This property will be used in the proof of our results. Any polynomial f € F,[z] satisfying
f(0) =0 can be written uniquely as f(z) = :B”h(wqm;l), where h(0) # 0 and m is minimal. The
number m is called the index of the polynomial f. The index of polynomials play an important
role in the study of polynomials over finite fields, for more details see [104]. Along the chapter,
f(z) = x"h(a:qv;nl) € Fy[z] is a polynomial with index m. We now present a notion that will be

used to guarantee certain regularity on the functional graph of f.

Definition 6.2. A polynomial f(x) = x”h(xqr%l) € Fy[z] with index m is said to be m-nice over

Fq if the map x — s(x) = x”h(az)q;ml is an injective map from ,um\qﬁ](fl)(O) to fm.

It is worth mentioning that (f o a:q;ml)(a) = (asq;m1 o f)(a) for all a € F,. This fact is used
along the proofs of our results. The fact that the composition of the maps 1y and f commutes
over [, play an important role in the study of permutation polynomials, for example see [2]. In
this chapter, we present the dynamics of f over I, in terms of the dynamics of 1y over p,,, that
is usually a smaller set. In what follows, we present an example of polynomial that satisfy the

notion of being nice.

Example 6.3. Let g(z) = 25h(23%) € Fig1]x], where h(z) = 982* + 6823 + 6822 — 62 — 31. Then
Yg(x) = 2¥h(x)3. By straightforward computations, one can show that us = {1,42,59,125,135}

and 2 is a primitive element of F1g1. Furthermore,
hg(59) =42, 14(42) =0, 14(125) = 125, 14(1) = 135 and 4(135) = 1.
Therefore, g(x) is 5-nice over Fig;.

Throughout the chapter, we let % = vw where w is the greatest divisor of % that is
relatively prime with n. Now we are able to present one of our main results. The following

theorem provides the functional graph Q](C%q of m-nice polynomials.

Theorem 6.4. Assume that f(z) = x"h(az%) is m-nice over F, and let d; = ged(v,n?) for
each positive integer j. For each i = 1,... . m+ 1, let r; = [{{ € pupm : @Z)ff)(f) = 0}|. Then
g(o) = Cyc(1,T), where

f/Fq
™ (-1 (¢-1)
—1)r; —1)r; 3
T= <@ < 1 md; = — qmdi+1+2> X 7s-glcdn(u)> .
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We present now an example.

Example 6.5. Let g(x) € Fig1[x] be defined as in Example 6.3 and let notation be as in Theorem 6.4.
Our goal is to apply Theorem 6.4 for the polynomial g(x). Since n = 15,m =5 and % = 36, we
have that w =4, v =9 and ged,,(v) = (3,3,1). From Ezample 6.3, it follows that r1 = ro = 1 and
r; = 0 for i > 2. Furthermore, di = ged(9,15) = 3 and d; = ged(9,15°) = 9 for i > 2. Therefore,
Theorem 6.4 states that Q;%lgl = Cyc(1,T), where

T = (X TG00y ®12X Tha1)) -
Figure 6.1 shows this functional graph.
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Figure 6.1: The connected component of G(g/F1s1) that contains the element 0 € Fyg;.

We now focus in the components of G(f/F,) that do not contain the element 0 € F,. In order
to present this graph, the following definition will be used.

Definition 6.6. For a polynomial f(x) € Fyz] with index m, we define

Vr(0) = {y € pm : 1/)501) (7) = 0 for a positive integer i}.

We note that if f(z) = z"h(z'm ) and h(z) has no roots in fip,, then ¢ *°(0) is the empty set.

Let w’ be the greatest divisor of ¢ — 1 that is relatively prime with n. In the following theorem,

we determine the graph Q%Fq under the hypothesis that f(z) is m-nice.

Theorem 6.7. Assume that f(x ) = x”h(x%l) is m-nice over Fy and let Si,...,S; C pm be sets
such that pim\th; > (0) = 51U~ U Sy and G (¢ /S;) = Cyc(k;). For eachi=1,....,t, let & € S;
and l;,r; integers such that & = a5 and ofi = H?":_Ol h(@b}(cj)(&))nkrrl

. Then
S 1) 7i(d)
dho @, (B omtemun).
t

i=1,..., u
u|0rdu:’(n"t —1) (nﬁ)
where
@i LB =), i ged (0= 1, (0% = Dm) | (6(3RS) + (™ - 1);
7i(d) =
0, otherwise.

We present now an example.
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Example 6.8. Let g(x) € Fig1]x] be defined as in Example 6.3 and let notation be as in Theorem 6.7.
Our goal is to apply Theorem 6.7 for the polynomial g(x). From Example 6.3, we can choose
Sy = {125} and So = {1,135}, so that k1 = 1 and ky = 2. Furthermore, w' = 4, ordy5_ 1)(15) =
2, ordy52 _1)(15%) =4, £y =18, Ly = 75, 71 = 3 and 19 = 0, which implies that

71(1) =2, 71(2) =4, 12(1) =0, 2(2) =0 and 72(4) = 4.
Therefore, Theorem 6.7 states that
1
g;/)@Fm =2 x Cyc(1,733,1)) ® Cyc(2, T(3,3,1)) @ Cyc(8, T3.3,1))-
Figure 6.2 shows this functional graph.
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Figure 6.2: The conneted components of G(g/F1g1) that does not contain the element
0e Flgl.

In the case where m =1 and h(x) = a, f(x) = ax” for all x € F,. Furthermore, f(z) = az”
is 1-nice, which implies that Theorems 6.7 holds. In this case, Theorems 6.7 implies the following

result.

Corollary 6.9. Let f(z) = ax™. Then

G(f/Fq) = Cyc(l) &

u|0rdw’(n -1) (TL)

<Z<><> — m)) ,

1

where o = a and

ged (¢~ Lnt — 1), if ged (g — 1, (n? — 1)) | 1)

0, otherwise.

7(d) ==

Corollary 6.9 generalizes some results obtained in [14, 73, 76]. Theorems 6.7 can be also

employed for general classes of polynomial, as we see in the next result.
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Corollary 6.10. Let f(z) = x™h(x971), where h € Fy[z] is a self-reciprocal polynomial of degree
n — 1 that has no roots in pgy1 C Fpe. For eachi=1,..
afr = h(a V"), Then

.,q+ 1, let £, be an integer such that

Y. (d
G(f/Fp) = Cyc(l) @ @ (Wd)() x Cyc (u, Tgcdn(u))> :

u
r=1,...,q+1
ulord,(, - 1y(n)

where
o B CR =D, ged =1 = o) | (- D)

0, otherwise.
We note that, in particular, Theorems 6.4 and 6.7 gives the number of connected components,
the length of the cycles and the number of fixed points of m-nice polynomials. In the case where
this condition is not satisfied, the functional graph of the polynomial is more chaotic, what makes

it difficult to use the same approach used here. In the following example we present a polynomial

that is not nice and its associated functional graph.

Example 6.11. Let g(x) = 25h(2?*?) € For[z], where h(z) = x — 1. Then ¢y(z) = 2%(x — 1)
One can show that us = {1,22,75,96}. Furthermore,

g (22) = 1,(T5) = 22, 14(96) = 96 and y(1) = 0.

Therefore, g(x) is not 4-nice over Fg7. In this case, the trees attached to cyclic vertices of G(g/Fo7)

have no reqularity. Figure 6.3 shows this functional graph.
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Figure 6.3: The functional graph G(g/Fe7).

6.2 Preparation

In this section, we provide preliminary notations and results that will be important in the
proof of our main results. Let b and ¢ be vertices in a directed graph. If a vertex b is reachable
from ¢, then c¢ is a predecessor of b and b is a successor of c¢. If a vertex b is reachable from ¢ by a
directed path containing k + 1 vertices, then we say that c is a k-distant predecessor of b. The

following notions and results are the tools we need to prove Theorems 6.4 and 6.7.
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Definition 6.12. Let G be a directed graph, V = (v1,va,...,vp) be a non increasing sequence of
positive integers and let v; = vp for all i > D. We say that G is V -reqular if for each positive

integer k, the number of k-distant predecessors of a vertexr of G is either 0 or vy - - - vg.

Lemma 6.13. Let V = (v1,va,...,vp) be a non increasing sequence of positive integers. If T is a

V -regqular rooted tree with depth k, then T is isomorphic to T‘f.

Proof. For i > D+ 1, let v; = vp. We proceed by induction on k. The case k = 0 follows directly.
Suppose that the result is true for an integer £ > 1 and T is a V-regular rooted tree with depth
k + 1. Let T be the rooted tree obtained from 7 by deleting the vertices with depth k + 1. By
induction hypothesis, T is isomorphic to T‘ﬂ“.

Let z1,...,2y,,, be the vertices of 7 with depth 1 that have at least one descendant with
depth k£ + 1 and let 2], ...

the rooted tree obtained from 7 containing all descendants of z; and let TZ¢ be the rooted tree

s 2., De the equivalent vertices in T'. For i = 1,...,vp1, let T, be
obtained from T containing all descendants of z]. Since T is V-regular, each T, is isomorphic to
7"5. Therefore, 7 can be recovered from 1" by replacing each 7),;, by T‘}“‘. The tree obtained from

these steps is isomorphic to the rooted tree T‘ﬂ”l, which completes the proof of our assertion. H

Definition 6.14. For a vertex b of a directed graph G, the graph Ry(G) is the subgraph of G

containing all predecessors of b (including b).

Lemma 6.15. Let V = (v1,v9,...,vp) be a non increasing sequence of positive integers such that
vp =1, let G be a V-reqular directed graph with depth at least D, b be a vertex of G. Assume that
Ry(G) contains a cycle. Let G be the graph obtained from Ry(G) by deleting the vertices ¢ # b
that are in the cycle. Then G is isomorphic to Ty .

Proof. It follows similarly to the proof of Lemma 6.13. |

If f(z) = x”h(x%l) is a polynomial with index m and k is a positive integer, then one can

readily prove that

k—i—1

= ' Cam
"I n (@@ (x7>> . (6.1)
i=0
This formula will be important in the proofs of the main results.

—1

Lemma 6.16. Let k be a positive integer and b € Fy. Assume that f( h(z"% ) is m-nice.

) = an
If x € Fy is a solution of the equation f®)(x) = b, then ' = ¢f (b%)

Proof. We proceed by induction on k. Let £ = 1 and let x € [F, be a solution of the equation

1

f(z) = b. Then j"(:zr:)qm;1 = :L‘q;ml”h(a:%)% = b%+ . Since f(z) is m-nice, it follows that

o= w;_l)(b%l). Suppose that the result follows for an integer £ > 1 and let x € I, be
a solution of the equation fU+D(2) = b. By induction hypothesis, f(x)qf1 = 1#]((4{”‘) (b%)
Therefore, a:qw;tl"h(a:q;l) mo= w( k)( Lml), which implies that 5 = wj(c_(kﬂ)) (qu;l), since

f(z) is m-nice. [ |

Proposition 6.17. Let a € Fy. If f(x) is m-nice, then R, (G (f/Fy)) is ged,, (v)-regular.
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Proof. Let b be a vertex of R, (G (f/F,)) and k be a positive integer. The number of k-distant

predecessors of b is equal to the number of solutions of the equation

(@) =1b (6.2)

over F,. By Lemma 6.16, a solution = € F; of Equation (6.2) must satisfy the relation ol =

w](fk) (qu;l) =: { € . Let o be a primitive element of F, and let ¢ be an integer such that

a=1 . a=1 a=1y . . _
€ = a m '. Then the equality z m = o m ¢ implies z = a/T™ for some | = 1,..., qu' Now,

Equations (6.1) and (6.2) states that

alttmon® o — b, (6.3)

k—i—1

. n
where ¢ = Hf:ol h (@b](f) ({)) and [ =1,..., %1. In order to complete the proof, we will
prove the following statement.

. . -1 . . . . .
Claim. The number of integers £ =1,..., % satisfying Equation (6.3) is equal to either 0 or
k Q;l)

ged (n )
Proof of the claim. Let u be an integer such that b/c = a*. We want to compute the number
1

of integers £ = 1,..., L= such that altFmOn® — qu that is

(t+mlnfF =u (mod g —1). (6.4)

Assume that this equation has at least one solution. Then ged(mn*, ¢ — 1) must divide u — tn*.

In this case, Equation (6.4) becomes

n* — _ u=tnF g1
gcd(nk,s)g — ged(mnk g—1) (mOd mgcd(nk,s))’
_ q—1 . nk . . . q—1 .
where s = “-=. Now, since acd(nFs) 18 relatively prime to TrEed(F s there exists exactly one

- |. Therefore, Equation (6.4) has

solution ¢ to the above equation in the interval [1, —a=
mged(nk,s)

ged(n¥, 5) solutions, which proves our claim.

By the Claim, the number of k-distant predecessors of b is either 0 or ged(n*, s), which is the
product of the & first terms of ged,, (). Since b € Fy and k were taken arbitrarily, the proof of
our assertion is complete.

We recall a classic result from Number Theory that will be used in the proof of Theorem 6.7.

Theorem 6.18. [/, Mébius Inversion Formula] Let G(u) = 3y, 9(d). Then g(u) = 3 4, p(u/d)G(d).

Now we are able to prove the main results of the chapter.

6.3 Functional graph of polynomial maps

In this section, we provide the proof of our main results. We start by proving Theorem 6.4.
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6.3.1 Proof of Theorem 6.4

Let {0, w1, ..., wy (q—1)/m} denote the set of children of 0 in G (f/F,), that consists of the

solutions of the equatlon

over F,. For each j = 1,...,(17;—17“1, let Tj = Ry, (G (f/F,)). Since f(0) = 0, the vertex 0 is

the single vertex of the cyclic part of this component and then each T} is a tree. Therefore,

gf/F = Cyc(1,T), where
ri(g=1)/m
T = < D T]> (6.5)

j=1

By Proposition 6.17 and Lemma 6.13, each T} is isomorphic to T where ¢; is the depth of

ged,, (v)?
T;. Therefore, we only need to determine the cardinality of each set

A;={je{1,...,r(q—1)/m} : T} is isomorphic to T’Cd ) }.
In order to do so, we define the set
B ={je{l,...,r1(¢ —1)/m} : T} has a vertex with depth i}.

We observe that |A;| = |B;| — |Bi+1|. Let z1,..., 2., be the elements in p,, that are solutions
of the equation h(x) = 0. By Lemma 6.16, any vertex = of T; with depth i is a solution of the

equation

) (w%)

- f J )
On the other hand, since f(z) is m-nice, any solution of the above equation must be a vertex
with depth ¢ of Tj for some j =1,...,r1(q — 1)/m. Therefore, we are interested in the number of

solutions of the equations
—1 i
o' =8 (), (6.6)

where £ =1,...,r;. Taking o5 = € € pm, Equation (6.6) becomes
§= w;_i) (2e),

that has a solution (for some /) for r; 41 distinct values £ € p,,. Therefore, the number of solutions
of Equation (6.6) is equal to 741 X %1. Since Tj is ged,, (v)-regular, the number of i-distant
predecessors of w; in T} equals either 0 or d; = ged(n, v). Therefore,
rivi(g — 1)
B)| = ————=.
‘ 'L’ mdz

Now it follows from Equation (6.5) that

T — <@ <(q_n11)d:i+1 _ (Q;;E:z;r2> v ng (V)>'

1=0

Since there exist at most m elements in p,,, the depth of sum of these tree is at most m — 1, and
therefore we may assume without loss of generality that ¢ < m — 1, which completes the proof of
our assertion. |

We are now able to prove the main result of the chapter.
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6.3.2 Proof of Theorem 6.7

We recall that each connected component of QJ(CI/?FQ is composed by a cycle and each vertex of
this cycle is a non-null element of F, that is the root of a tree. By Lemma 6.15 and Proposition 6.17,
each one of such trees is isomorphic to Tgcq (). Therefore, it only remains to determine what are
the cycles in g}l/i,q. Our goal now is to determine how many cycles there exist with length /.

By Lemma 6.16, we have that the length of a cycle is closely related to the dynamics of ¢
over (. Indeed, if f© (a) = a for a positive integer ¢, then ot = w}—e) (a%), which implies
that @/J}(cz) (a%) = aqm;l, since f is m-nice. In this case, if = S;, then k; | ¢. Furthermore,
any vertex b in the same cycle of a satisfies b € 5;. In particular, that means that the cycles

whose dynamics are related to two different sets S; and S; are not connected. Therefore, we may

determine each one of this cycles separately. For a positive integer u and a fixed i € {1,...,t}, let
Aij(u) ={aeF,: o = &, F%) (a) = a}
and

Bi(d) ={a€Fy: a'm = &, d is the least positive integer such that f(@%)(a) = a}.

-1
In order to determine how many cycles (with vertices a such that a'm = &;)) there exist with

length dk;, we need to determine |B;(u)|. We note that an element a € A;(u) is a vertex in
a cycle whose length s divides u, then [4;(u)| = > 4, |Bi(d)|. The M&bius inversion formula
(Theorem 6.18) implies that
)| = Y ulu/d)|Ai(@)]. (6.7
du
We now compute the value |4;(d)|. In order to do so, let a € A;(d). Since a’m = & and
£l (a) = a, it follows that a = a*™*"i for some integer s € {1,..., q?} and then Equation (6.1)

states that
dk -1 ndk;—i—1

Q) H h (lb ) — oM

Since ot = Hfgol h(l/] (&))n A , the previous equations becomes

(asm-&—n‘)”dki aei(1+nki+.,.+n(d—1)ki) — ST

Looking at the exponents in this equation and doing some algebraic manipulations, it follows

that
ndki -1
nki —1
By using the same arguments used along the proof of Proposition 6.17, one can prove that that

q;l—l} of the previous equations equals

((sm +r)(n* —1) + &-) =0 (modgqg-—1). (6.8)

number of solutions s € {1,...,

@ ged (L, nh —1), it ged (¢ — 1, (0% — 1)m) | (6;(%5=E) +ri(n® —1));
7i(d) :==
0, otherwise.
On the other hand, each solution s € {1,... } of Equation (6.8) yields an element in A;(d)

and, therefore,
|Ai(d)| = 7i(d). (6.9)
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By Equations (6.7) and (6.9), it follows that

|Bi(w)] = Y p(u/d)mi(d).

dlu

Now we prove that if u is an integer for which there exist a cycle in g](%,q with length uk;, then
u | ord, g 1)(nki). In order to do so, we observe that if a = a*™*"i is an element in a cycle of

length uk;, then Equation (6.8) implies that u is the least integer such that

nuki — 1

TR 1 ((sm +r)(n* —1) + €i> =0 (modgq-—1),

which implies that u = ord . 1>(nki), where d is a divisor of ¢ — 1 coprime to n. In particular,
d | w' so that ord . _ 1)(n"'i) | ord,, . — 1)(71"”'1'), which completes the proof of our theorem. MW

We notice that the conditions of being m-nice was essential in the proof of Theorems 6.4 and
6.7. A very good question here is if we can obtain similar results for some family of polynomials

that does not satisfy that condition.
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CHAPTER

On iterations of rational functions over perfect fields

For a field K and a rational function R € K(z), we set R®(z) = z and, for n > 1,
RM(z) = R™V(R(z)). The rational function R™(z) € K(z) is the n-th iterate of R. When
R = fis a polynomial, the compositions f() (z) are also polynomials. The iterates of polynomials
have been extensively studied in the past few years [4, 7, 46, 47, 61]; in many of the cases,
the authors explore the stable polynomials. These are the polynomials f € K|[z] in which all
the iterates (™ (x),n > 1 are irreducible over K. When K is finite, the concept of stability is
naturally extended to a set {fi,..., fr} of polynomials [38]. Still in the finite field case, further
arithmetic properties of the polynomial iterates £ are studied in [36]. The authors explore the
number of distinct roots, the number of irreducible factors over K and the largest degree of an
irreducible factor of f(™ over K. In particular they prove that, under some mild conditions on f,
those three functions grow (roughly) at least linearly with respect to n.

Some results of [36] were recently improved and extended to iterates f(g(™(z)) in [79]. Most
notably, in [79] it is proved that up to some exceptional pairs (f, g), the number A,, of distinct
roots of f(g(™(z)) actually grows exponentially. More precisely, the inequality c;d” < A,, < cpd”
holds for every sufficiently large n, where c¢1,c2 > 0 and d > 1 do not depend on n. However, only
the constant d is explicitly given there, making the estimate imprecise. The exceptional pairs
(f,g) are fully described and it is direct to verify that, for such pairs, the numbers {A,, },>0 are
uniformly bounded by a constant. For more details, see Section 2 of [79]. Many other arithmetic
aspects of the iterates f(g(™ (x)) are also studied in [79], mainly motivated by Question 18.9 in
[10]; this question includes a more general setting, allowing ¢ to be a rational function.

In the context of rational functions, the iterates f(R((z)) have not been much explored,
but we can naturally extend questions and definitions from the polynomial setting. For instance,
if R, := R"™(x) = g,,/hyn with gy, hy relatively prime polynomials, we define the polynomial
f g”) = h?fg(f ) f(Ry). So we may consider the notion of R-stability, meaning that f is R-stable if
all the polynomials f](%n) (x) are irreducible for every n > 0. The R-stability of polynomials was
recently explored for a special class of rational functions R when K is finite [70].

The aim of this chapter is to refine the main result in [79], extending it to a more general
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setting. We consider K a perfect field, R € K(x) a rational function of positive degree and study
the number A, r(n) of distinct solutions of R (z) = a over the algebraic closure K of K. Our
main results, Theorems 7.2 and 7.3, not only recovers the exponential bound in [79] but also
provides a more precise estimate on A, r(n). We prove that, with the exception of some pairs
(o, R), the equality Ay g(n) = cq,r-d" +Oq r(1) holds for some 0 < cq g < 1 < d. The parameter
d is easily obtained from R and there is an implicit formula for ¢, g; in particular, we provide
estimates on ¢, p by means of simple parameters. Similarly to the polynomial case [79], the
exceptional pairs («, R) satisfy A, r(n) < 2 for every n > 0, and are fully described. However,
in contrast to the polynomial setting, we have many more pathological situations; for more
details, see Theorem 7.3. We also discuss the growth of some arithmetic functions related to
the factorization of f gl) (z) when K is finite, extending some minor results and open problems
from [79].

The main idea behind the proof of Theorems 7.2 and 7.3 is to provide an implicit formula for
A r(n), considering the number rg i of solutions of R(z) = # with § ranging over the elements
in K such that R®)(B) = « for some i > 0. With the exclusion of some exceptional R’s, we prove
that A r(n) = ca,rd" + Oq,r(1) for some 0 < ¢y r < 1 < d, where ¢4 g depends on the numbers
rg,r- We then estimate c, g by means of parameters such as the degree of the extension K(«)/K
and the degree of the Wronskian associated to R. This allows us to describe the pairs (o, R) in
which ¢, g vanishes. Along with the exceptional R’s, the latter fully describes the pathological
cases.

The chapter is organized as follows. In Section 7.1 we state our main results and provide
some important remarks. Section 7.2 provides background material and important preliminary
results. In Section 7.3 we prove our main results. Finally, in Section 7.4 we extend some open

problems and minor results from [79].

7.1 Main results

In this section we state our main results. Before doing so, we need to introduce some basic
definitions. Throughout this chapter, K denotes a perfect field of characteristic p > 0 and K
denotes its algebraic closure. It is worth mentioning the finite fields are perfect. In fact, the

most studied fields are perfect, so that this chapter studies a wide class of objects. By a rational

function R € K(z) we mean a quotient £, where g, h € K[z| are relatively prime polynomials.

For simplicity, we sometimes assume that h is monic. The degree of R is max{deg(g),deg(h)}.

Since K is perfect, if p > 0, the Frobenius map a — aP is an automorphism of K. We have the

following definition.

Definition 7.1. Let K be a perfect field of characteristic p > 0 and let R = g/h € K(z) be a rational
function of degree D > 1. If p > 0, the p-reduction of R is the unique rational function R € K(x)
such that R = Rph, h >0 and R is not of the form R{ with Ry € K(z). For convention, if p =0,
the p-reduction of R equals R itself. For each o € K, we set R™°°(a)) = Up>0{B € K| RM(B) = a},
the reversed R-orbit of . Also, o € K is R-critical if

sup Ay r(n) < 400,
n>0
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where Ay p(n) denotes the number of distinct solutions of R™ (x) = a over K.
Our main results can be stated as follows.

Theorem 7.2. Let K be a perfect field of characteristic p > 0 and let R = G/H € K(z) be a
rational function whose p-reduction R = g/h has degree d > 1. Let d' > 0 be the degree of
W = g'h — gh!, where f' denotes the formal derivative of f. Suppose that oo € K is not R-critical
and set e = [K(a) : K]. Then there exists 0 < cq,r < 1 such that

A%R(n) = Cden + Oa,R(l)'

The constant co r can be implicitly computed from the set R™*°(a) and we have the following

estimates:

1. If o is not R-periodic, then cqr > d% - d%. Moreowver,

(a) car>1—%>%ife>1;

(b) car>1-— min{dd—l,d’} _ d/_mincgi—lvd/} > d% ife=1 and R~*°(«) does not contain
an element v € K with deg(G —vH) < deg(R).

2. If a s R-periodic of period N, then cqr > ﬁ. Moreowver,
(a) ca7R21—ﬁ2%ife>2;
(b) cap > 3 — 75 if € =2.

Theorem 7.3. Let K be a perfect field of characteristic p > 0 and let R = g/h € K(x) be a rational
function of degree D whose p-reduction has degree d > 1. Fiz o € K and set e = [K(a) : K]. Then
a is R-critical if and only if one of the following holds:

1. d = 1, that is, R(x):g;:gig with ad —bec # 0 and D =1 if p =0 or D = p", h > 0,

otherwise.
2. d>1,a € K is not R-periodic and
(a) R(z) =a+ % for some X\ € K* and some h € K[z] of degree D;

(b) R(x)zﬁ-l—mforsomeﬂ,)\eﬂﬁ with B # a and A # 0.
B—a

3. d>1, a € K is R-periodic of period N and

(a) e=2,N =1 and R(z) = ale—a)p—al@—a)? " pere # « is the conjugate root of the

(z—a)P —(z—w)P >

minimal polynomial of o over K.

(b)) e=N =2 and R(x) = ale—)P—a@—@P " pore # « is the conjugate root of the

(z—a)P—(z—a)P

minimal polynomial of a over K.

(c) e=1,d=2,N =3 and R(z) = yl(x(;y_l;]f);(gyfi);$},y2)]3 , where y1 # ya are elements
of K and a € {y1,y2, %}

(d) e=1,N =2 and R(z) = Qg:z;j:f?x(f;?f7 where f € K\ {a}, A € K* and A, B are

positive integers with max{A, B} = D.
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(e) e=1,N=d=2#pand R(z) =+ T B)D)T(r; 5D for some 8 € K\ {a}.
(f) e=1, N=d=2%#p and R(x) = ﬁJr#)(JerorsomeﬁeK\{a}

(9) e=N=1and R(z) = a+ (x a for some h € K[z] and some integer A > 1 with
h(a) # 0 and max{A, deg( )} =

(h) e = N =1 and R(z) = Bg_ggzgw a;g 2 —, where f € K\ {a},A € K* and
1< A<D.

(a=p)P*!

(i) e=N=1,d=2+#p and R(x) = # T IGr=a—B) P3P for some B € K\ {a}.

In particular, if « is R-critical, the inequality A, r(n) < 2 holds for every n > 0 and the reversed
R-orbit of o, R~*°(«), is finite if and only if one of the following holds:

1. d+#1;

2. d=1 and « is R-periodic;

3. d=1 and R(x) = ggﬁig with ¢ # 0, and ¢ € R™*°(a).

Theorems 7.2 and 7.3 entail that the arithmetic function A, gr(n) is either uniformly bounded
by a constant or grows exponentially. Figure 7.1 shows the dynamics of the iteration of R in the
cases where the reversed R-orbit of « is finite. The cases are presented in the order that they

appear in Theorem 7.3.

2.a 2.b 3.a 3.b 3.c 3d 3.e 3.f 3.9 3.h 3.i

[e% « «
y1t+y2
° i : 2 [ )
«

«

Y2

&

20-13 3

o)
+
&Y

N

Figure 7.1: Cases where the reversed R-orbit of « is finite.
The following corollary is a straightforward application of Theorems 7.2 and 7.3 to the case
where R is a polynomial.

Corollary 7.4. Let K be a perfect field of characteristic p > 0, a € K with [K(a) : K] = e and let
f € K[z] be a D-degree polynomial whose p-reduction F has degree d > 1. Furthermore, assume
that f is not of the form a(x — )P 4 a for some a € K and set d’ = deg(F') < d—1. Then there

exists a constant 0 < cq,p < 1 such that
Aa,f(n) = Ca,fdn -+ Oa,f(l)-

Moreover, co,5 > 4d2 if o is f-periodic and cop > 1— % - > 1, otherwise.
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7.2 Preparation

In this section we provide some definitions and important preliminary results. Throughout
this section, unless otherwise stated, R € K(z) stands for a rational function of degree D whose

p-reduction has degree d > 1.

Definition 7.5. Let R = f/g € K(x) be a rational function of degree D > 1 and o € K.
(i) Ta,r > 0 is the number of distinct roots of g — ah over K;
(ii) « is R-trivial if the polynomial g — ah has degree at most D — 1.

(i4) o is R-periodic if there exists an integer N > 1 such that R™) (o) = a. If a is R-periodic,
the smallest integer with this property is the period of .

Definition 7.6. For a rational function R € K(x) of degree D whose p-reduction has degree d > 1,

D/d)

let o be the unique automorphism of K satisfying og(a = a for every a € K.

Remark 7.7. We observe that og is the identity map if d = D. If d # D, then K has characteristic
p >0 and or is just the inverse of a power of the Frobenius automorphism a — aP. Furthermore,
fory,a € K, we have that R(y) = a if and only if R(y) = or(c), where R is the p-reduction of
R.

The following result is straightforward.

Lemma 7.8. Let R = f/g € K(z) be a rational function and let R be its p-reduction, d = deg(R).

Then for every o € K, we have that Ta,R =T &+ In particular, ro g < d for every a € K.

JR(Q)u

Definition 7.9. Let R € K(z) and o € K. For each n > 0, set RI="(a) = { € K| R™(B) = o}
and let RI="(a)* be the set of elements 8 € RI="(a) such that no element RO (B) with 0 < i <
n — 1 is R-periodic. Moreover, we set Ay r(n) = #RI7"(a) and Ay g(n)* = #RI(a)*.

In the proof of our main results, an implicit formula for A, r(m)* is required. In this context,

the following definition is crucial.

Definition 7.10. Let R € K(x) be a rational function whose p-reduction has degree d > 1. For
each o € K and each integer j > 2, set

naj(R)= Y (d—ryr)>0.

yERM=il(a)*
For convention, we set ng1(R) = d—rqr+1 if @ is R-periodic and no1(R) = d—rq g, otherwise.
We obtain the following result.

Proposition 7.11. Let R € K(z) be a rational function whose p-reduction has degree d > 1. Then

for every m > 1 and every o € K, we have that

Agr(m)* =d™ = ngj(R)-d"7 =d™ [1-> nq (R)d
j=1 j=1
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Proof. We proceed by induction on m. The case m = 1 follows directly by the definition of
Nq,1(R). Suppose that the result holds for an integer m > 1. We observe that the elements of
RI="=1(a)* comprise the roots of R(z) = v with v € RI=™(a). The latter implies that

Aqr(Mm+1)" =dAy r(m)" — Z (d—ryRr) =dAgrR(M)" — Nams1(R),
yERI=™ (@)*

from where the result follows. [ |

In the following proposition we provide estimates on the numbers nq j(R).

Proposition 7.12. Let R € K(z) be a rational function whose p-reduction R = g/h has degree
d > 1. For each oo € K set Ka,R = ijl Na,j(R), and let 5o, r =1 or 0, according to whether a
is R-periodic or not, respectively. If d = deg(g’'h — gh'), the following hold:

(i) for distinct elements o, ..., oy € K, we have that

L L
Z Ra;,R <e+ Z 50@-,}%7
i=1 i=1
where e = d' if no set R~°°(qy;) contains an R-trivial element and € = 2d — 1, otherwise;
(ii) Kar < L +0ar if [Ka) : K] =e > 1.

Proof. From Lemma 7.8, it follows that 7, p < d. For each v € K, let T, be the degree of
g — or(y)h. We observe that the inequality 7 < d holds for at most one element v € K and, in
this case, we necessarily have that v € K.

Since R has degree d, Remark 7.7 entails that d — rv.r > 0 if and only if g — or(y)h has
(Ty — r,r) common roots with the polynomial ¢’ — or(y)h/, multiplicities counted. In particular,
g — og(y)h has (Ty — r, r) common roots with the Wronskian W = ¢'h — gh’, multiplicities
counted. From construction, the polynomials g and h are relatively prime and their formal
derivatives cannot vanish simultaneously. In particular, W does not vanish and a detailed account
on the possible degrees of g and h entails that d' = deg(W) < 2d — 2.

We prove items (i) and (ii) separately.

(i) We observe that the sets R (a;)* with j > 1 and 1 < i < ¢ are pairwise disjoint.

Therefore, from the previous remarks we obtain that

l
Y D> @ -rr <d (7.1)

i=1 j>1 ye R (a;)*
If no set R™°°(cy) contains an R-trivial element, it follows that T, = d for every v €
R™*°(a;). In this case, Equation (7.1) implies that

l

14
Z(”ai,R — 0oy,R) = ZZ Z (d—ryr) < d.

i=1 i=1 521 ye R (a;)"

Suppose that R~*°(«a;) contains an R-trivial element A € K for some 1 < i < ¢. We have
that g(z) = Ah(z) + ho(x), where deg(ho) = s with 0 < s < d. Therefore, T\ = s and a
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simple calculation yields d’ = deg(W) < d + s — 1. Since there exists at most one R-trivial

element, we have that

(’Qai,R - 6a,i,R) = (d - S) + Z (T’Y - T’y,R)
1 i=1 j21 ye R =3l (a;)*

<d-s+d <2d-1.

l
1=

L

(ii) Fix a € K with [K(a) : K] = e > 1, hence o € K. Let F be the minimal polynomial of
a over K and let . C K be the splitting field of F. Since K is a perfect field, the roots
a:=ag,...,a. € Kof F are all distinct and the extension L/K is Galois. Since the Galois
group of an irreducible polynomial acts transitively on its roots, for each 1 < ¢ < e there
exists a K-automorphism 7; :— L such that 7;(«) = ;. Since R € K(z), by extending these
automorphisms to K we conclude that Kai,R = Ko,k and 0q, r = 0o g for every 1 <i <e.
Since e > 1, no element «; lies in K. Therefore, the sets R~°°(«;) do not contain R-trivial

elements. Applying item (i) for the elements a1, ..., a., we obtain that
e e
€ - Hoz,R = ZKO‘“R S d/ + ZéaivR = d/ +e- (50[73,
i=1 i=1

from where the result follows.

7.3 Proof of the main results

Before proceeding to the proof of Theorems 7.2 and 7.3, we introduce a useful definition.

Definition 7.13. Let R € K(x) be a rational function of degree D whose p-reduction has degree
d> 1. For each o €K and j > 1, let Na,j(R) be as in Definition 7.10. If o is not R-periodic, we

set

Can=1= na;(R)d7.
j>1

If a is R-periodic and a1, ...,an = «a are the distinct R-periodic elements in the R-orbit of «,

we set

N
Coc,R: d]V—lzz_;d 1_;7/1/&1’](R)d J

Proposition 7.12 entails that the sum » j>1 N (R)d™7 contains only finitely many nonzero

terms; this fact is frequently used. We obtain the following estimate.

Proposition 7.14. Let R € K(z) be a rational function whose p-reduction @ has degree d > 1.
For every a € K, we have that

AOL,R(TL) = C%R . dn + La,R(n),

where Lo r(n) = Oq,r(1) and, in fact, Lo, r(n) = 0 if a is not periodic and n is sufficiently large.
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Proof. If a is not R-periodic we observe that, for every n > 1, we have that A, r(n) = Ay r(n)*.

Proposition 7.11 implies that the equality

Aa,R(n) = Ca,R - dny

holds for sufficiently large n. Suppose that « is R-periodic and let a7, ...,axy = a be the distinct
R-periodic elements in the R-orbit of o. By stratifying the elements 8 € RI="(a) according to
how many integers 1 < i < n satisfy R (8) = «, we obtain that

R"(a —{au}UU U B

1=1 1<m<n
N|n+i7m

where 1 < u < N and v = —n (mod N). It follows from the definition that the sets RI="(q;)*

are pairwise distinct and none of them contains «,, hence

N
n)=1+>" > Ay r(m)

1=1 1<m<n
N|n+i—m

Let M be sufficiently large such that 3, Nayj(R)d™ = Zj\il Nay,j(R)d™ for every 1 <i < N.

t

Fix an integer ¢t > M, let n > ¢ be sufficiently large with n = ¢ (mod ) and set ¢ = “%.

Therefore, for a constant C = C}, we have that

N ¢
Ag, -C= Z Z Aq, R ZZAC““ (n—Ns+1i)".

i=1 t<m<n =1 s=1
N|n+i—m

Sincen — Ns+1i>t> M for every 1 < s < q and every 1 <i < N, Proposition 7.11 entails
that Ay, r(n — Ns+1i)* = d"~Ns+i. g, with
97; =1- Znai,j(R)d_j-
i>1
We conclude that

N gq N
Ao r(n)—C =YY "dNetig, =dm- 0. " d'0,
=1

i=1 s=1

dis _

where ( = le_l + On(d™™). By the definition, cqr = dN i SN | d;, so that
Aqgr(n) = ca,r - d" + Cq py. By taking t = M +i with 1 <i < N, the error Cy g is uniformly

bounded by a constant C, g. [ |

Here we summarize the next steps in the proof of our main results. Proposition 7.14 implies
that, for d > 1, @ € K is R-critical if and only if ¢, g = 0. By employing the bounds from
Proposition 7.12, we estimate the constant c, g and detect the possible distributions of the
numbers {ng ;}gecr-oc(q) in Which ¢, g = 0. We then characterize the pairs (o, R) that yield one
of these distributions. Along with the generic critical case where d = 1, the latter fully describes

the R-critical elements.

7.3.1 Proof of Theorem 7.2

We consider the cases where a is R-periodic or not R-periodic separately.
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7.3.1.1 The case where « is not R-periodic
Recall that cop =1 —3 ;54 ne,j(R)d™. If [K(a) : K] = e > 1, Proposition 7.12 entails that
—j 1 d _ 1
Can=1= naj(R)d7 >1-d") na;(R)>1 et

j=21 j21

where in the last inequality we used the fact that e > 2 and d’ < 2d—2. Suppose that e = 1, that is,

a € K. We observe that 0 < nq,1(R) < d and Proposition 7.12 implies that >~ na,;(R) < 2d—1.

We obtain the following trivial configurations:
e nq1(R) =d;
e nq1(R)=d—1and ny2(R) =d.

In both cases, it follows that ¢, g = 0 and then « is R-critical. Suppose that o does not satisfy

none of the cases described above. If R~°°(«) contains an R-trivial element, it follows that

i _ _ _ 1 1
CaR=1=Y naj(R)d7 >1—(d=1)-d'=(d-1)-d>—1-d7 == 3
Jj=21

Otherwise, Proposition 7.12 entails that ;- na,j(R) < d’ < 2d — 2 and so

i . _ . _ 1
CaR=1=Y naj(R)d7 >1—min{d—1,d}-d" — (d —min{d - 1,d'}) - d* > =
j>1
We combine all the previous bounds and obtain that c, g > d% — d% if « is neither R-periodic

nor R-critical. This proves Theorem 7.2 for the non periodic case.

7.3.1.2 The case where « is R-periodic

Let a1,...,any = « be the distinct R-periodic elements in the R-orbit of @ and, for each 1 <
i <N, set 0;=1-3 . na,;(R)d. It follows from the definition that cqr = x— Y1y d'0;
Moreover, R~>°(«a;) = R™*°(a) for every 1 < i < N. Proposition 7.11 entails that each 6; is
nonnegative, hence c, g > 0 unless all the elements ¢; vanish. Proposition 7.12 provides the
bound

N
> naj(R) <e+N, (7.2)
i=1 j>1

where ¢ = d’ if no set R~°°(«) contains an R-trivial element and ¢ = 2d — 1, otherwise. Set

e = [K(a) : K]. We split the proof into cases.

(i) Suppose that e > 1. It is direct to verify that K(«;) = K(a) for every 1 < i < N and so
[K(e;) : K] = e. In particular, no set R~°°(«;) contains an R-trivial element. Since each «;
is R-periodic, ng, 1(R) > 1 for every 1 < ¢ < N. In particular, Proposition 7.12 implies
that 1 <375 na,,j(R) < d'/e+ 1. For e > 2, it follows that

Ca,R > dN Zdl 1—d*12nai,j(R

Jj=1

1 ; d 1 d 1
> d1-L )1 4 52
_dN—I; < de d) (d—1)e = 3’
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(i)

since e > 2 and d' < 2(d —1). If e = 2 < N, Equation (7.2) implies that

1-— Z”%J d_i

7>1

9

N—-2
1 . 1 aVv-2_1 1 1
> d{1-=)|="——>—- — —.
_dN—liz; < d> dv -1 T a2 &3

It remains to consider the cases where e = 2 and N = 1,2. Equation (7.2) and the bound

> j>1Nas,j(R) < d'/e+1 < dyield the following trivial configurations:

e e=2 N =1and nqi(R) =d;
e e=2N =2and ng, 1(R) =na1(R) =d.

In both cases, it follows that ¢, g = 0 and so « is R-critical. Suppose that a does not
satisfy none of the cases described above. For N = 1, the inequality nq1(R) < d implies

that
g, _d(l-(d-1)-d"'—-1-d7%) 1 1

1
d—17~ d—1 d=d2 &

For N = 2, recall that we are under the condition (nq, 1(R), na,,1(R)) # (d, d). In particular,

>

Ca,R =

from the argument employed in the case N = 1, the inequality 6; > < 1 holds for at least
one index i € {1,2}. Therefore,

d—1 2
dy +dp d-‘p +d°-0 1 1 1

CRTTR 1 ST @#-1  dd+rl) - & B

Suppose that e = 1. Since R~°°(«) can contain an R-trivial element, Equation (7.2) implies
that
N
> ) na(R)<2d—1+N. (7.3)
i=1 j>1

We recall that n, 1(R) > 1. For N > 3, it follows that

o > Zdz L=d™' Y naiy(R)

i>1
dV2(d—-1)—-d 1
i N—-2 -
_dN—1<Zd —d ) ddv =1 A

provided that d > 2 if N = 3. If (d, N) = (2,3), Equation (7.2) yields the trivial config-
uration nq, 1(R) = Nay,1(R) = Nas,1(R) = 2, in which ¢, g = 0 and so « is R-critical. If
(d,N) = (2,3) and « is not R-critical, then n,, 1(R) =1 for at least one index i € {1, 2, 3}.
In particular, 6; > (1 — 27! —272) = 1 for at least one index i € {1,2,3} and so

291+402+893>2&+4-0+8-0_i> 1
7 - 7 147 4.227

Ca,R =
For N = 2, Equation (7.3) yields the following trivial configurations:

® €= 17”&1,1(R) = no@,l(R) = d;
e e=1,d=2,n4,1(R) =2, ng, 1(R) =1 and ng, 2(R) = 2;
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e e=1,d=2,ng,1(R) =1, ngy2(R) =2 and ne, 1(R) = 2.

In these cases, it follows that c,,g = 0 and so « is R-critical. Suppose that a does not
satisfy none of the cases described above. For d > 2, we employ the same argument used
in the case e = N = 2 and obtain that

>d(1—(d—1)d—1—2d—2)_ d—2 b
Co.R = 21 T A1) " 4d®

For d = 2 we have that 6; > (1 —271 —272 - 273) = % for at least one index ¢ € {1, 2},

hence
201 +40; 2 5+4:0 1 1

3 - 3 12 422
For N =1, Equation (7.3) yields the following trivial configurations:

Ca,R =

e e=1,n41(R) =d;
=d

e e=1,n,1(R) — 1 and nq2(R) =d.

In both cases, it follows that ¢, g = 0 and so a is R-critical. If a does not satisfy any of
the cases described above, then either ny1(R) < d or ne1(R) = d and ny2(R) < d. In
particular, Equation (7.3) implies that

df, >d(l—d*l(d—l)—d*Z(d—l)—2d*3)_ d—2 >L
d—17~ d—1 Cd2(d—1) T 4d%’

Ca,R =

whenever d > 2. For d = 2, Equation (7.3) yields the trivial configuration nq1(R) =
na2(R) =1 and ne3(R) = 2, in which ¢, g = 0 and so « is R-critical. If a is not R-critical,

then
1 1

Car=201>21—-2"1—-272 9273 974 = T

We combine all the previous bounds and obtain that if o is R-periodic and not R-critical, then

Ca,R = #. This completes the proof of Theorem 7.2.

7.3.2 Proof of Theorem 7.3

Let R = g/h be a rational function of degree D whose p-reduction has degree d > 1. If d =1

it is direct to verify that R(x) = ggﬁig with ad — bc # 0 and either D = 1 or K has characteristic

p > 0 and D is a power of p. Hence for every n > 0 we have that R(")(x) = %,LIS", where

an, by Cn, dy € K with and, — by, # 0. Since K is perfect it follows that for every o € K and

every n > 0, the equation R (z) = o has at most 1 solution in K. Hence every a € K is
R-critical and R™°°(«) is finite if and only if o is R-periodic or ¢ # 0 and R™°°(«) contains the
R-trivial element = ¢.

For d > 1, Proposition 7.14 entails that o is R-critical if and only if ¢, g = 0. From the proof
of Theorem 7.2, we list the possible numerical configurations that yields co, g = 0. As follows, we

present them in the order that they appear.

I. « is not R-periodic and

(a) ne1(R) = d;
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(b) na,1(R) =d—1 and ny2(R) =d.

II. a = ay is R-periodic with period N and

)
)
)
)

() e=1,N=2,d=2,ngy1(R) =2, ng,1(R) =1 and nq, 2(R) = 2;
(f) e=1, N=2,d=2,ngy1(R) =1, ng,2(R) =2 and ne, 1(R) = 2;
)

)

)

Remark 7.15. If 8 € K is not an R-periodic element, then ng1(R) = d if and only if B is the
R-critical element and deg(g — Sh) = 0. In this case, 5 € K and there exists X € K* such that

g(z) =

Bh(z) + A.

We characterize the pairs (a, R) satisfying the numerical conditions above and explicitly

exhibit the set R™°°(«) in the corresponding case. In order to simplify calculations, we frequently

use the fact that ¢ = 27 for every a € K.

L.

II.

(a) Since rq.g = d—nq,1(R) =0 and « is not R-periodic, it follows that g(z) — ah(z) = A
for some A € K*. Therefore, R(z) = a + % for some h € K[z] of degree D. In this
case, R~®°(«a) = {a}.

(b) Since rq,r = d —nq,1(R) =1 and ny2(R) = d, Remark 7.15 entails that

g(x) — ah(z) = (z - B)";
g(x) — Bh(z) = X,

for some € K\ {a} and some A € K*. By solving this system of equations, we

obtain that R(z) = 8+ W' In this case, R~>°(«a) = {«, 8}.
z— ey

(a) Since e = 2, av is not an R-critical element. Since 7 p =d+1—1nq1 =1 and N =1,
we obtain that g(z) —ah(z) = (z—a)P. If 7 is the unique non trivial K-automorphism
of K(a), it follows that g(z) — @h(z) = (r — @) with @ = 7(«). We conclude that

D

a(z—a)P —a(z—a)P —00
R(z) = =528 and R™(a) = {a}.

(b) Since e = 2, ais not an R-critical element. Since N = 2 and ro, g = Nq,,1—d+1 = 1 for
i = 1,2, we obtain that g(z) —a1h(z) = (r—a2)? and g(x) —ash(z) = Az —ay)? for
some \ € K. Arguing similarly to item II-(a), we necessarily have that (a1, az) = (@, «)
and A = 1. The latter implies that R(z) = alz—a)P-a@-mP 4 g, R°(a) ={a,a}.

(@—a)P—(@-a)P
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Let R = §/h be the p-reduction of R. We observe that 7, g = 2+ 1 — 14, 1(R) = 1
for i € {1,2,3}. Following the proof of item (i) in Proposition 7.12, the latter entails

that one of the elements «; is R-critical and

g() = or(y)h(z) = (x — y2)%;

9(x) — or(y2)h(x) = v(z — y3)%;
9(z) — or(ys)h(z) = Mz — 1),

where v, A € K* and {y1,y2,y3} is a permutation of {aq, ag, asz}. The system above

or(y2)—or(ys) _
or(n)—or(ys) 20d A=

If K has characteristic 2 we have that yo = y3, a contradiction. Hence K does not

_ Y2+ys
= ol

and after some calculations we obtain that
R(r) = or(y2)(x — y2)? — or(y2 + y3)(x — y3)*
(z —y2)? — 2(z — y3)?
Since R = RP/? and either D/2 = 1 or K has characteristic p > 0 and D/2 = p", it

follows from the definition of o that

implies that 2y; = y2 + y3, v =

have characteristic 2 and so y; v = 2. We return to the initial equations,

_ yo (@ — y2)P — (2 + y3) (@ — y3)”
(x—y2)P —2(x —y3)P?

Moreover, a € {y2,ys, %} = R™>(a).

R(x)

Similarly to the case II-(b) we have that if (o, a2) = (8, a), then g(z) — fh(z) =
(z — a)4 and g(x) — ah(z) = Az — B)B for some X\ € K* and some integers A, B > 1
with max{A, B} = D. The latter implies that R(x) = agz:zgiif()‘gﬁ(fg)@l? and so
R™>(a) = {a, B}

Set n = . Since rq g =d+1—nq1(R) =1and r, g =d+ 1 —ng, 1(R) = 2, there

exists an element [ that is not R-periodic with R(/3) = n. Moreover, we have that

rg,r = 0 and then

§(z) — or(a)h(z) = (x — )%
3(x) — or()h(z) = v(z — a)(z — B);
§(z) — or(B)h(z) = A,

for some A,y € K*, where R = g/ h is the p-reduction of R. These equations imply
that 205(1) = or(a) +or(B), ¥ = FEG=7rE and 7 + T2 = 0. T K has
characteristic 2 the latter entails that o = 3, a contradiction. Hence K does not have
characteristic 2 and so n = O‘TJ“B, v = % and A\ = —%. We return to the initial

equations, and after some calculations we obtain that

o) — o (5) 4 (@ B (on(e) — on()
2z —a—B)2+ (a—p)?

Since R = RP/? and either D/2 = 1 or K has characteristic p > 0 and D/2 = p", it

follows from the definition of o that

(a _ 5)D+1
2z —a—B)P + (a—p)P’

In this case, R~>°(a) = {«a, S, a—gﬁ}

R(z) =05+

(or(y2) — or(Y3))(2y2 — 2y3).
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(f) This case is entirely similar to item II-(e). We conclude that K does not have

characteristic 2 and
2(@ o /3)D+1

(z = )P + (o= B>

R(x) =05+
Moreover, R~*°(«) = {a, 8,2a — 5}.

(g) Since ro g =d+1—ne1(R)=1and N = 1, it follows that g(z) — ah(z) = (z — a)?
for some 1 < A < D. We conclude that R(z) = a + (xh_(;‘))A for some h € K[z] with
h(a) # 0 and max{deg(h), A} = D. Moreover, R~*°(a)) = {a}.

(h) Since rqr = d+ 1 —nq1(R) = 2 and ny2(R) = d, there exists § € K\ {a} such
that R(B) = a and rg g = 0. Therefore, g(z) — ah(z) = (z — B)*(z — a)P~4 and
g(z) — Bh(xz) = X for some A € K* and some integer 1 < A < D. The latter implies

that R(xz) = ﬁgz:g;zg:z;g::i/\. Moreover, R~*°(a) = {a, 8}.

(i) This case is entirely similar to item II-(¢). We conclude that K does not have

characteristic 2 and

a+p (o= B)P*!
> T ir—a—p)P —20a—pB)P

Moreover, R~*°(a) = {«, B, #}

R(z) =

In particular, if o is R-critical, then A, r(n) < 2 for every n > 0. Moreover, for d > 1, we
have verified that the set R~°°(«) is finite. The proof of Theorem 7.3 is complete.

7.4 Further results in the finite field setting

Throughout this section, F, denotes the finite field of ¢ elements, where ¢ is a prime power.

Let M, be the set of monic polynomials f € F,[z] of positive degree, without any root in F,,.

Definition 7.16. Given a rational function R = g/h € Fy(z) of degree D > 1 and f € M, we set
fr = hdeslf) . f (%) For each n > 0, the n-th R-transform of f is the polynomial fl(_zn) defined by
fl(%o) = f and fl(%n) = (fl(%n_l))R if n > 1. Moreover, let

f](%n) (x> = pl,n<$)el’" .. .erhn(x)eNn,n,
be the irreducible factorization of fl(%") in Fqlxz]. We define the following arithmetic functions
(a) 07 r(n) =deg(pin(x): - pNn,n(T)) is the degree of the squarefree part of fgb) ;

(b) My r(n)=  max deg(pin(x)) is the largest degree of an irreducible factor of fl(%n) over Fy;

(¢c) Nt r(n) = N, is the number of distinct irreducible factors of fl(%n) over Fy;

(d) Afgr(n) = % is the average degree of the distinct irreducible factors of fén) over IFy.

The above naturally extends Definition 1.2 in [79], where R = g is a polynomial. In [79] the
author explores the growth (linear, polynomial, exponential) of the functions above, among some
others. Our aim here is to discuss the growth of these arithmetic functions in the context of
rational functions. For functions F,G : N — R+, we write F > G if there exists ¢ > 0 such that
c¢-F(n) > G(n) for every n sufficiently large. We also write F ~ G if F > G and G > F. We

have the following result.
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Lemma 7.17. Given a rational function R = g/h € Fy(x) of degree D > 1. Then for every
f € My, the polynomials f}(%n) and fpmy have the same roots. In particular, if aq,..., 0 € F,
are the distinct roots of f, we have that

S

0pr(n) =) Aa,r(n).

i=1

Proof. It suffices to prove the first statement. We proceed by induction on n. The cases n = 0,1

follow directly by the definition. Suppose that the result holds for some n > 1 and let N =n + 1.

We observe that, for every k > 0 and every F' € M,, the roots of Fpx) comprise the solutions of
the equations R(k)(x) = « with a running over the roots of F'. In particular, if 8 € Fq is a root of
fr~), then R(f) is a root of fpm. From induction hypothesis, R(f) is a root of fgl), hence § is
a root of (f gl)) rR=1Ff gv). This proves that every root of fpw) is also a root of f gl). The converse

follows in a similar way, proving the result. |

Combining Lemma 7.17 with Theorems 7.2 and 7.3, we obtain the following result.

Corollary 7.18. Let R € Fy(x) be a rational function whose p-reduction has degree d > 1. If
[ € Mg has at least one root o that is not R-critical, then there exists a constant 0 < ¢y p < deg(f)
such that

(5f7R(n) =CfR" d™ + Of}R(l).
In this case, My r(n) > n. In particular, any f € Mgy having at least one root in the set F, \Fje

satisfies the above.

Proof. Pick n large such that 67z > 0. Let m,, = My r(n), hence the roots of fZ all lie in the

set Uy <j<m,, Fgs- Therefore,

Mn
Srr(n) <Y ¢f <qm™

j=1
and so m,, > % — 1> n since 5 g > d" and d > 1. Moreover, from Theorem 7.3, we
have that any R-critical element lies in [F 2 if the p-reduction of R has degree d > 1. [ |

Corollary 7.18 entails that under mild conditions on (f, R), the arithmetic function My p(n)
grows at least linearly with respect to n. When R = g is a polynomial, we recover Lemma 4.4
n [79]. According to [79], this lower bound is optimal on the growth type. More precisely, if
[ € Fy[z] has positive degree, for infinitely many polynomials g we have that My ,(n), As4(n) = n.
The family of polynomials g taken there comprise linearized polynomials Zﬁ:o aixqi. For more
details, see Proposition 5.18 in [79]. As follows, we prove that this bound is also optimal for
rational functions that are not polynomials. Our main idea is to conjugate a polynomial with
a Mé6bius map in a way that the resulting rational function is not a polynomial. We need the

following technical lemmas.

b _
Lemma 7.19 ([92]). For [A] € PGL(2,q) with A = (Z d> ,a € Fg\Fy and f € Fylz] of degree

k> 1, set [A]o f(z) = (bx+d)*f (gﬁig) and [A]xa = _dl?‘ajfa. Then for f € My, the polynomial

[A] o f has degree k and, if a € Fy\ Fy, we have that f(a) =0 < ([4] o f)([4] x ) = 0.
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Lemma 7.20. For [A] € PGL(2,q) with A = (a = gt

c
This defines an action of PGL(2,q) on the set Fy(x) \ F,. If g € Fy[x] has degree k > 1 and
gA(z) == [A] e (g([A" ] e z)) € Fy(x), then for every n > 1 and every f € Mg, we have that

b _
d) and R € Fy(z) \ Ty, set [A] @ R = aftc,

Frga(n) = Flajor,g(n),

where F is any of the four arithmetic functions in Definition 7.16. Moreover, for b =0, g* €

Fy(z) \ Fylx] is a rational function of degree k.

Proof. It is direct to verify that, for every [A], [B] € PGL(2,q) and every g € F,[z] \ F,, we have
that [A] e g € Fy(z) \F, and [A] e ([B] ® g) = [AB] e g. In particular, PGL(2, ¢) acts on F,(z) \ F,
via the compositions [A] e g. Pick f € Mg, let n > 0 be an integer and let I';, I'y be the set of
distinct roots of fg(z) and ([A4] o f )gn)’ respectively. Since f € Mg, we have that I'y NF, = (. We
observe that the n-fold composition (g4)™ equals (¢(™)4. Moreover, [A] x o = [A]~! &  for
every a € F, \ F,. In particular, Lemmas 7.17 and 7.19 imply that

Flz{[A]OIB|,BEF2}qu\Fq.

Lemma 7.19 entails that the minimal polynomials of v and [A] e v over F,; have the same degree
for every v € Fq \ [F,. Moreover, the map y — y¢ commutes with the map y — [A] @y. From these
observations, we conclude that Fy4(n) = Fiao,44(n), where F is any of the four arithmetic
functions defined in Definition 7.16.

It follows from the definition that ¢4 (x) = Zg(([[:]}:ll:z))i; = Z:[[j:ll}]z‘gq((‘,f))i;g:zgz
if b = 0, the rational function g** € F,(x) is not a polynomial and has degree k. [ |

. In particular,

Combining Lemma 7.20 with Theorem 2.6 of [79], we obtain the following result.

Theorem 7.21. For each f € Mg, the following hold:

(i) there exist infinitely many rational functions R € Fy(x) \ Fylx] such that My r(n) ~n;

(i1) for each integer t > 0, there exist infinitely many rational functions R € Fq(x) \ Fy[z] such
that N r(n) = n' and My p(n) ~ deg(R)".

From Proposition 5.18 of [79], we can also extend item (i) of the previous theorem to the

function Ay r(n).
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CHAPTER

Rank metric codes arising from linearized polynomials

For a field K, let M,,x»(K) be the set of m x n matrices over K. A rank metric code C
is a subset of M,;,x,(K) equipped with the distance function d(A, B) = rank(A — B). The
rank metric codes were introduced by Delsarte in [20]. The minimun distance of C is given by
d(C) = ming pec,axp{d(A, B)}. The particular case where K is a finite field has been studied

over the last few decades, since there exist many interesting properties involving these codes.

Let IF; denote a finite field with ¢ = p* elements, where p is a prime number and \ is a positive
integer. A code C C M, (F,) that attains the Singleton-like bound

0] < qrstmanH(mingmn}~d(©)+1)

is called mazimum rank distance code (MRD code for short). The first MRD codes over F, have
been constructed by Delsarte [20] and Gabidulin [25]. Currently, these codes are often called

generalized Gabidulin codes. A matrix A € My,»,(F4) can be represented by a polynomial in

y4
Ly qlx] = {Z a;z? : integer £ >0 and a; € ]Fqn} ,
i=0

the set of linearized polynomials over F,». We note that (£, 4[], o) equipped with composition
is an algebra. In this chapter, we will use the language of linearized polynomials over F, (see
definition in Section 8.1) in order to prove our main results. Throughout the chapter, we also
use the bijection between My, (F,) and %, ,[z] := L, 4[z]/(z?" — ). Using the language of

linearized polynomials, the generalized Gabidulin code Gy s can be seen as the set

1

s s(k—1)
{a0$ +arx? + -+ ak_ll'q ta; € ]Fqn},

where s is relatively prime to n. The number of elements in Gy, 5 is ¢"™* and each polynomial in it
has at most ¢"~!
is an MRD code.

In the last few years, many authors have presented important contributions to the general

theory of MRD codes (e.g see [20, 25, 26, 52, 58, 77]). Sheekey [84] proposed the study of the

roots, which means that its minimum distance is d = n — k 4 1. Therefore, Gy,
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generalized twisted Gabidulin codes

Hi,s(L1, La) = {L1(ap)z + arx? + -+ Lg(ao)quk ca; € Fon},
where L1 and Lo are linearized polynomials over Fg» and s is an integer relatively prime to n. Let
Ngn/q(a) = aq;l%ll be the norm function from Fyn to F, and let Fy. = Fy»\{0}. By Proposition
8.3, Hp,s(L1(x), La(x)) is an MRD code if Nyn /g (L1(a)) # (—1)™ Nyn /q(La(a)) for all a € F..

These codes have been used by many authors in order to present new classes of MRD codes.

Some of the known MRD codes are the following (see survey in [85]):

Name Ly(x) Ly(x) Conditions Reference
TG x nxqf Nyn/q(n) # (=1)™ and s = 1 84]
GTG T nxq} Nyng(n) # (=1)™ [53, 84]
AGTG T na? Ny p(n) # (=1)™F 68]

/2 n even,
TZ | gqq? | N@—2T7) Ny /q(n) is not a quadratic residue in F, [99]
0 and 0 € Fgn\F /2 and 6> € F

Table 8.1: TG=Twisted Gabidulin, GTG=Generalized Twisted Gabidulin,
AGTG=Additive Generalized Twisted Gabidulin, TZ = Trombetti-Zhou

In a recent work, Sheekey [86] studied a new construction for MRD codes by using skew

polynomial rings and obtained the following result.

Theorem 8.1. [86, Theorem 7] Let L be a finite field, o an automorphism of L with fized field K,

and p an automorphism of L over some field K' < K. Let R = L[x;0], let F be an irreducible

polynomial in Kly| of degree s, Ep = (ﬁf([g%) and Rp = %. Then the set

Sn,s,k(na P, F) = {CL + RF('T”) : deg(a) < kSa Aks = 77@8}

defines a K'-linear MRD code in Rp ~ My x,(Er) with minimum distance n — k + 1 for any
n € such that Ny g (n) NK/K/((—l)Sk("_l)Fé“) # 1.

We say that two codes C and C’ are equivalent if there exist ¢ € £, 4[], two bijective
linearized polynomials ¢1, g2 € £, 4[x] and ¢ € Aut(Fyn) such that

C'={pr1of?opa+v:feC}

where f% = Zf:o o(a;)z? for f = Zf:o a;z? . When C and C' are both additive, it is not difficult
to show that we can suppose ¥ = 0. It is always a difficult task to show that a new family of
MRD codes is inequivalent to another family already known. Lunardon, Trombetti and Zhou [53]
characterized the equivalence of generalized twisted Gabidulin codes and presented their Delsarte
dual and adjoint codes. In Section 8.2 we fully characterize the equivalence between codes of the
form My, (L1, L), generalizing the results obtained in [53, 99] for the codes in the Table 8.1.

In Section 8.3 we restrict ourselves to the codes of the form Hy(z, L(z)), where we fully
describe their nuclei, Delsarte dual codes and adjoint codes (see definitions in Section 8.1). Most
of the codes in Table 8.1 (namely TG, GTG, AGTG) are covered by our results.

Lastly, in Section 8.4 we characterize the automorphism group of Hy(z, L(x)) and compute
its number of elements. In particular, the automorphism groups of TG, GTG, AGTG codes are

obtained for k satisfying 2 < k <n — 2.
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8.1 Background

In this section we introduce concepts that will be useful throughout this chapter. For an

integer m > 0 and ao, ..., an € Fgn with a,, # 0, a polynomial of the form
ap® + a1z + - amad’

is called a linearized polynomial over Fy» and its g-degree is m . Since a?" =aforall a € Fyn, we
can consider only polynomials with g-degree smaller than n. To this end we will use the elements
in &, 4[x]. The following result is an immediate consequence of the Lagrange interpolation

formula for polynomials over Fn.
Lemma 8.2. Let L(z) € 4, 4[z]. If L(a) =0 for all a € Fygn, then L(z) = 0.
The following result, proved by Sheekey, present a family of MRD codes.

Proposition 8.3. Let Ly and Ly be linearized polynomials over Fgn and k < n—1. If Ngn /4(L1(a)) #
(—1)kn Ngn/q(L2(a)) for all a € Fyn, then Hy 1(La, L2) is an MRD code.

There exist several invariants for rank metric codes that can be used to decide when two
codes are equivalent to another already known. Next, we present some of these invariants. The
left and right invariant of MRD-codes were introduced in [54]. We define the middle nucleus N,

and right nucleus N, for a rank metric code C as
Nin(C) ={g(z) € ZLn4lz] : fogeC forall feC}

and

N (C) ={g(x) € Lh4lx] :go feCforall feC}.

Middle and right nucleus were already known as left and right idealizers and have originally been

introduced to study automorphism and equivalence of Gabidulin codes in [51]. The nuclei of TG

and GTG codes can be found in [53]. In [99] the authors present the nuclei of the TZ codes. Let

Trgnjq(z) =2+ 294 + 29" be the trace function from Fyn to IFy. The adjoint of a linearized
n—1

polynomial f=>""", a;z?" is given by

n—1 (i)
“ s(n—1 s(n—1)
/= E al x4

1=0

and the adjoint code of a rank metric code C is C = {f : f € C}. For the codes which we are

interested in this chapter, it is easy to verify that the following result holds.
Proposition 8.4. The adjoint code of Hy, (L1, L2) is equivalent to ank,s(Lng, Ly).
Another useful invariant is the dual of a code. The Delsarte dual code of a code C is given by
C*t = {g(x) € L 4lz] : b(f,g) = 0 for all feC},

where b(f,g) = >0~ Trgn /q(aib;) for f(z) = S a;z9 and g(z) = S bt
It is not difficult to show that two additive codes C and C’ are equivalent if and only if the

codes C*+ and C'* are equivalent. Delsarte [20] proved the following result.
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Lemma 8.5. Let C be a F,-linear code. Then C is an MRD code if and only if its Delsarte dual
Ct is an MRD code.

An important relation between these invariants are the adjoint and Delsarte dual operation,
given by

~

N (CY) = Ny(C) = Nin(C)

and

~

Non(C1) = Nn(C) = N, (©).

These relations were stated in Proposition 4.2 of [54].

8.2 Equivalence

We say that a code is additive if the sum of two of its elements is also an element of the
code. For Ly, Ly € £, 4], it is direct to verify that Hy (L1, L2) is an additive code. Hence, the
equivalence between the codes My, s(L1, L2) and Hy, (M, Ms) is given by the existence of two
bijective linearized polynomials ¢1, ¢2 € £, 4[z] and ¢ € Aut(Fyn) such that

Hyr (M1, M) = {10 fPo¢a: [ € Hys(L1,L2)}

In this case, we say that (¢1, ¢2, @) is an equivalence map between Hy, (L1, L2) and Hy, (M, Ma).

It is well-known that Aut(Fy») is a cyclic group generated by o, where o(c) := ¢ is the Frobenius
automorphism of [Fyn fixing F), and p is the characteristic of Fy». Hereafter, ¢ denotes an element
in Aut(Fyn) and p = p¥ is the integer such that ¢(c) = ¢” for all ¢ € Fyn. Throughout this
chapter, r, s and k are positive integers such that £ <n — 1 and ged(r,n) = ged(s,n) = 1. From
now on, Ly, Ly, My, My, L, M will denote linearized polynomials in %, 4[z]\{0}. The main result
of this section presents conditions on r,s, Ly, Ly, M; and M, for which the codes Hy, (L1, L2)
and Hy, (M, M) are equivalent and provides the equivalence maps. In order to describe these

conditions, it will be useful to introduce the following definition.

Definition 8.6. Let Z,, denote the ring of integers modulo n and, for an integer a, let a denote

the class of a in Z,,. For integers r,s, k,n with 2 < k <n — 2, we define
Dyspn={tr—ts€Zy,: 1<i<k—-1landk+1<t<n-1}

Remark 8.7. For integers r,s,k,n, we have that |U'y sk n| = |Tn_rsknl In order to verify this

statement, we observe that the function ¢ : Uy g ppn — Up_p s kn defined by

tr—is— (—t+n+k)(n—r)—is
18 one-to-one.
In order to prove the main result of this section, we present the following technical result.

Lemma 8.8. Let r,s,k and n > 4 be positive integers such that ged(n,r) = ged(n,s) = 1,
2<k<n—-—2andl <r;s <n. For a integer a, let @ denote the class of a in Z,. Then the
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following hold:

Z,\{—s, 0, 5}, if r = s;

Zo\{—s(k — 1), —sk, —s(k + 1)}, ifr=n —s;
Zo\{=s,—s+r,—s+2r}, if k=2;
Zy\{=r,—r+s,—r+2s}, ifk+1=n—1.

Fr,s,k,n =

\

Furthermore, if k & {2,n — 2} and r & {s,n — s}, then

Z,\{—2r}, if k=4 and 5 = 2r;

Z\{6r}, if k=4 and s = —2r;
Zo\{—r,—2r}, if k=3 and 5 = 2r;
Z,\{5r,4r}, if k =3 and s = —2r;
Z,\{-3r}, if k=3 and 5 = 3r;

Z,\{6r}, if k =3 and s = —3r;

Drskn =9 Z\{-2s}, if k+1=n—3 and 7 = 2s;
Z\{6s}, if k+1=n—3 and 7 = —2s;
Zo\{=s,—2s}, ifk+1=n—2 and 7 = 2s;
Z,\{5s,4s}, ifk+1=n—2 and T = —2s;
Zo\{=3s}, ifk+1=n—2 and T = 3s;
Zo\{6s}, if k+1=n—2 andT = —3s;

L., otherwise.
\

Proof. Initially, we prove the last case of our assertion. Suppose k£ > 7. Since gcd(s,n) = 1,
there exists a positive integer z < n such that 52 = 7 and, for this element, it follows that
Ty s.ken| = |T21,kn|- Therefore, we only need to prove the result for I', 1 4 .

n

We can also assume that z < § replacing z by n — z if it is necessary and then using
Remark 8.7. We note that for each ¢ satisfying k +2 < ¢ < n — 1, we have that

Sp={(t-1)z,(t—1)z+1,.... 0z =1} CTo1kn

since k — 1 > z. We also have that

Spr1 ={(k+1)z—k+1,(k+1)z—k+2,...,(k+1)z—=1} C .1 4.

Then )
( U S@> C otk (8.1)
l=k+1
Furthermore,
n—1
U 8¢ =min{n, (n—2—-k)z+ (k- 1)}. (8.2)
{=k+1

We have that min{n, (n —2 — k)z + (k — 1)} < n only if one of the following holds:

e k+1=n-—1;
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o z=1;
e (n—k,z)€{(3,2),(3,3),(4,2)}.

The last case of our lemma is the case where none of these conditions are satisfied, so that

min{n, (n —2—k)z+ (k — 1)} = n. Therefore, Equations (8.1) and (8.2) entail that I', 1 . », = Zj,.

The last case is obtained in a similar way for k < § by changing the role of r and s. The first

cases of our lemma can be obtained by straightforward computations. |

In the following result, let r and s be integers satisfying 0 <r <n and 0 < s < n.

Definition 8.9. A pair (Li, L2) satisfies the condition (H) if there exists no v € Fyn and integer
>0 such that Ly(c) = 'ng(c)ql for all c € Fyn.

Theorem 8.10. Suppose n > 4. Let (¢1, ¢2, ) be an equivalence map between Hy, (L1, L2) and
Hir (M, Ma). If 2 < k < n — 2, then the following hold:

1. eitherr=s orr=mn—s;

2. if r = s, then there exist elements o, B € Fgn and an integer | satisfying 0 <1 <n —1 such

n—l1

that ¢1(z) = ax?’ and ¢o(x) = Bt ;

3. if r =n — s, then there exist elements o, 8 € Fgn and an integer | satisfying 0 <1 <n—1
such that ¢1(z) = az? " and do(z) = B2?" .

Furthermore, if (L1, La) and (M, M) satisfy the condition (H), then (1), (2) and (3) hold for
k=2andk=n—2.

Proof. For all y € Fy» and integers i satisfying 1 <1i < k — 1 we have that ¢ o y”qui o@g €
Hypr (M, M) Tf ¢y (x) = Y71 ama?™ and ¢o(z) = >z 5 bjz? | then

m=0

n—1
37 s j+si
$1 0 ypxqéz opo =1 | v Z b;l 207

and therefore

n—1

sit+m j+si+m si+m tr
b1 0yP20" oy = E amypq E bq x? :E E amy”l" bq z? .

t=0 | si+j+m=tr

Hereafter, we consider the indexes of a; and b; modulo n, which means that a,, := a; and
bm := b; for every m = j (mod n). Since ¢y 0 y?z?" o ¢po € Hy (M1, M>), we must have
m ., oSttm
Ti(y?) == Z amy”t b§ =0 (8.3)
si+j+m=tr

forallk+1<t<n—-1,y€Fp and 1 <i<k—1. We can rewrite Ti+(y”) as

sz+m
E :am btr m— szy

We note that Tj(x) € £, 4[x], then the Equation (8.3) and Lemma 8.2 together imply that

ambir—m—si = 0 (84)
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foral0<m<n—-1,k+1<t<n—1land1<i<k—1. Wesuppose r =s. By Equation (8.4)

and Lemma 8.8, if a; # 0 for some integer [, then b; = 0 for every j ¢ {n —s—I,n—1,n+s—1}.

Using this argument with [ running over all integers [ = 0,...,n — 1, it follows that there exists

a non-negative integer | < n — 1 for which one of the following holds:
1. aj =0 for every j #land bj =0 forevery j ¢ {n —s—Il,n—l,n+s—1}
2. bj =0 for every j # [ and a; =0 for every j ¢ {n —s—Il,n—l,n+s—};

3. aj =0 for every j ¢ {l,l + s} and b; = 0 for every j ¢ {n —s—1,n—(}.

Since ¢1 and ¢2 can be switched, we may assume without loss of generality that (a) or (c¢)
holds. Let us compute the image of L1 (c)z + La(c)z?" under the equivalence map (¢1, d2, ). In
the case (a), we have that ¢; o (L1(c)?z + La(c)Pz?™") o ¢ equals

ar(La (@) (b0 0wt )4 Do) (0@ e b e
Since ¢1 o (L1(c)Px + Lg(c)pquk) o ¢2 € Hyr(My, Ms) (and under the condition (H) in the case
k =2 and k = n — 2), it follows that b,_s_; = 0 and b, s_; = 0. Then our result is shown in this
case.

In the case (c¢), we have that ¢; o (L1(c)?z + Lg(c)p:nqSk) o ¢y equals

n—s sk—s

l ! ) ! s
a (Ll(c)pql (bl 2t b x) + Lg(c)pql (O A S k))

s l+s sk

S_las + bfllilsxqs) + LZ(C)qu (b?z—l 9 + bililsxqsﬂs)).

I+

s (a0

Since ¢y o (Li(c)Px + La(c)Pz1™) 0 ¢y € Hpr (M1, Mz) (and under the condition (H) in the case
k=2and k =n —2), it follows that a;L1(c)*"b?___, = 0 and arysLa(c)?? b2, = 0. Then
a; =0 and b,_; =0 (or aj4s = 0 and b,,_s_; = 0) and our result follows. The case r = n — s can
be obtained in the same way.

Now assume that K =n —2 and r # £s (mod n). Under the condition (H), it follows (by the
same argument employed in the case n = s) that there exist elements «, 5 € Fgn and an integer
[ satisfying 0 <[ < n — 1 such that ¢;(x) = ar? and po(z) = pat . We recall that each
element f(z) = oz + npz? € Hir(My, M) is such that ng = Mi(c) and n, = Ma(c) for some

n—Il+s—r

c€Fyn. Since r —s #0 (mod n), r — s # ks (mod n) and r — s # —s (mod n), we must have

r—s+l1

¢ oy’ o gy = ay’l B9 x € Hyr (M, Ms)

for all y € Fgn, which is a contradiction since My (x) # 0. Therefore Hy, (L1, L2) is not equivalent
to Hpy» (M, My) in this case.
Suppose k = 2 and r # +s (mod n). By Equation (8.4) and Lemma 8.8 there exists a

non-negative integer [ < n — 1 for which one of following holds:
1. a; =0 for every j # 1 and b; =0 for every j ¢ {—s —1,—s+r—1,—s+2r —1};
2. bj=0for every j # 1 and aj =0 for every j ¢ {—s—1,—s+7r —1,—s+2r —};

3. aj =0forevery j ¢ {l,l+r} and b; =0 for every j ¢ {—s—1,—s+r —1}.
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Since ¢1 0 yPx?" o ¢g € Hyr(My, M) and condition (H) holds, it is direct to verify that each
one of the cases (a), (b), and (c) implies that there exist elements o, 8 € F» and an integer
[ satisfying 0 < I < n — 1 such that ¢1(z) = az? and ¢o(z) = B2?" "
same argument used in the case k = n — 2, we conclude that #Hj (L1, L2) is not equivalent to
Hi,r(Mi, Mz) in this case.

For the remaining possible values of r and s (namely r # +s (mod n), k # 2 and k # n — 2),

. By employing the

the Equation (8.4) and Lemma 8.8 imply that if a,, # 0 for some m, then b;_,, = 0 for all
J € Zy\I'y s - It is straightforward to compute that if ¢1 o f¥ o g9 € Hy (M1, M) for all
f € Hy,s(L1, La), then bj = 0 for every j =0,...,n, which is a contradiction. |

The following lemma is a trivial result from linear algebra and it will be used in the next

theorem.

Lemma 8.11. Let M (x), L(z) € £, ¢[z]. If Im(M) = Im(L), then there exists a bijective linearized
polynomial T'(x) € £, 4[x] such that M (z) = L(T(x)).

Theorem 8.12. Let n > 4 and let k be an integer satisfying 2 < k < n—2. If k. = 2 or

k =mn—2, assume that (L1, La) and (M, Ms) satisfy the condition (H). The codes Hy, s(L1, L2)

and Hy, s(Mi, My) are equivalent if and only if there exist ¢,d € Fy, ¢ € Aut(Fgn), an integer |

satisfying 0 < 1 < n — 1 and a bijective linearized polynomial T € 2, p[x] such that M;(z) =
ql . qSk ql

abp (L1(T(x)))? and Ma(x) = ab? ¢ (Lo(T(x)))? .

Proof. The necessity follows immediately from Theorem 8.10. Let us prove the converse. Let | <
n — 1 be an integer, ¢1(z) = ax?, gy = b1 gd"
o(c) = P forall ¢ € Fyn. Since Hy (L1, Lo) = (Ll(ag)x—i—Lg(ao)quk,alxqs, ooy ap—1x
we only need to prove that the set of images of these elements under the equivalence map is a

basis of Hy, s(Mi, Ms). For 1 <i < k — 1, we have that

and an automorphism ¢ € Aut(IFg») such that
s(k—1)
)

$1 0 af:chi 0 g = aafql = Hi,s(My, M)
for all a; € Fy. For ag € [Fy,
¢1 0 (L1(ag)Px + Lg(ao)pquk) oy = abLl(ao)pqlx + aqukLg(ag)pqlquk € Hy s(My, Ms)
where p = p” for an integer v > 0. Since we need
(abLl(ao)”qu + abQSkLQ(ao)pqlquk,aafql quil‘qSi)lgigk—l,aiqun = Hp, s (M1, Ma),
our result follows from Lemma 8.11. |

A very similar result can be obtained for the case » = n — s, where the role of L; and Lo
is changed. As a consequence of Theorem 8.12; one can easily show Theorems 11,12 and 13 of
Trombetti-Zhou [99].

Corollary 8.13. Let k and n be integers satisfying the hypothesis of Theorem 8.12. If k =2 or
k =n —2, assume that (x, L(z)) and (z, H(x)) satisfy the condition (H). Then Hy s(x, L(x)) is
equivalent to Hy, s(x, M (x)) if and only if there exist a,b € Fgn, an automorphism ¢ € Aut(Fyn)
and an integer | satisfying 0 <1 <n —1 such that M(x) = aqukH@(L(go_l(x/abql)qnfl))ql.

a;€Fgn >
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Remark 8.14. For 2 < k < n—2, Corollary 8.18 generalizes Theorem 4.4 of Lunardon, Trombetti
and Zhou [53] for the case L(x) = nxz®’ and M(x) = 029" . However, our result do not cover
the case k = 2 and k = n — 2 studied in [53], since the condition (H) does not hold for
Generalized Twisted Gabidulin Codes. In particular, the cases n =4 and n =5 are not covered
by Corollary 8.13.

8.3 Codes of the form H; ,(x, L(x))

Throughout this section, we let L = Z?_ol qu” denote a linearized polynomial in .Z, ,[z].

In this section, we fully characterize the invariants of the codes Hy s(x, L(x)). The following

lemma is a well-known fact on adjoint codes.

Lemma 8.15. For a,b € Fyn, we have that
Tryn g (bL(a)) = Trgn sy (aL (b)),
where L is the adjoint of L.

Theorem 8.16. The Delsarte dual of Hy, s(x, L(x)) is equivalent to Hy_j s(x, —L(z)), where L is
the adjoint of L.

A

Proof. We note that H,,_j s(z, —L(z)) is equivalent to

n—1
J = {—ﬁ(bk) + Z bix?" b € Fqn} )
i=k

Since the dimension of the code J over [, is n—k, we only need to show that J C Hy, s(z, L(z))*.
If g(z) = S0, bzt € J and f(x) = S apz?” € Hy, o(x, L(x)), then

n—1
b(f,9) =Y Trgnjqlaib) = Trgnq (rL(ao)) — Trgnsq (a0L(br))
i=0
and our result follows from Lemma 8.15. [ |

This result was already established earlier by Lunardon, Trombetti and Zhou [53, Proposition
4.2] for the case where L(x) = nzt".

Lemma 8.17. Assume that L(z) = > 1", a;x?", where a; € Fyn and m is a positive integer and
eo < e1 < ...< ey are non-negative integers. Let d = ged(eo, . .. em,n). Then L(ax) = aL(zx) if
and only if o € Fa.

Proof. Suppose that L(ax) = aL(x). We have that

m m m
« Z a;c? — Z ai(oe)? = Z ailo— ]t =0
=0 =0 1=0

for all ¢ € Fyn, then a?’ = o from Lemma 8.2, which implies that o € F,a. The converse is
trivial. |
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Theorem 8.18. Let n > 3. Assume L(x) = Y 7" ne,z?"", where ne, € Fin and m is a positive
integer and ey < e1 < ... < ey < n are non-negative integers. Let d = ged(eq, ..., em,n). The

right nucleus of My, s(x, L(x)) is
N;r(Hys(w, L(z))) = {ax : a € Fa}.
The middle nucleus of Hy, s(z, L(x)) is

Nim(Hs(z, L(z))) = {ax : a € Fpa}.

Proof. We will compute only the right nucleus, since the middle nucleus can be computed in
a similar way by doing the needed changes. By the duality presented in Theorem 8.16 and the
Delsarte dual operation, we can suppose without loss of generality that k < 5. We can write
L(z) as Z;‘L:_ol njquj by setting 7; = 0 if j & {e; i =0,...,m}. Now let g(z) = 0" bizt" €
Ny (s (2, ().

Claim 1. b; =b;_ p=0foralli=k+1,...,n— 1.

Proof of the Claim 1. For every c € Fyn, we have that

n—1
g(cx + L(c)quk) = Z 7" (bicqm + bi,kL(c)qS(l_k)> € Hps(z, L(x)).
i=0

By Lemma 8.2, for i satisfying k + 1 < i < n — 1, we have that the linearized polynomial

bichi + bi_kL(c)qs(i_k) is identically null. In particular, bi_kngs(iik) =0 for all j # k. Since m > 1,
s(i—
there exists an integer § # k such that ns # 0, then bi,kng Y 0 implies that b;_; = 0. Besides
s(i—
that, since b; + b7} Y- 0 we have b; = 0, proving the claim.

Claim 2. If 2 < k <n—2,then b, =0foralli=2,...,n— 2.

Proof of the Claim 2. For j satisfying 1 < j < k — 1, we have that g(quj) = Z?:_ol bi_jxqm’.

Therefore b;_; = 0 for all = k +1,...,n — 1, proving the claim.
The claims 1 and 2 together imply that b; = 0 for all i # 0. Now we consider g(x) = bpx €
Ny (R s(z, L(z))). Since
bocx + bgL(c)quk € My s(x, L(x)),

we must have L(boc) = boL(c) for all ¢ € Fyn and our result follows from Lemma 8.17. [ |

8.4 The automorphism group

Let (£, [x],0) denote the group of elements in .%;, 4[x] that are invertible with respect to

the usual composition of maps. The automorphism group of an additive code C C .Z, 4[] is the

set of semi-linear rank-metric-equivalence maps f such that f(C) = C (For more details, see [58]).

Each one of these maps can be represented by an element in the group G(C) := {(¢1, ¢2,¢) €
Lzl x L [x] X Aut(Fgn) : ¢10C% 0 g9 = C}, but there is not only one representative for each
map. Indeed, one can verify that the group action * : G(C) x C — C, defined by

((¢17¢27§0)>f) = ¢1 of¢0¢2,

is not faithful, fact that was already studied by Morrison [58]. Consequently, we have that

Aut(C) = G(C)/N(C), (8.5)
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where N(C) is the kernel of the group action *. Sheekey computed the automorphism group of
Gabidulin codes (Theorem 4 of [84]) and Twisted Gabidulin codes (Theorem 7 of [84]). Throughout
this section, k is an integer with 2 < k < n — 2. With Theorem 8.12, we are able to describe the
automorphism group of My, s(x, L(x)). For aset Z C [0,n —1],let D(Z) ={i—j:4,j € Z,i > j}
be the set of distinct differences in Z. Let i1, ..., 14, be the elements of D(Z). In order to present

the automorphism group of My, s(x, L(z)), we define the function
Kgn(Z) = god(g™" —1,..., " = 1,¢" — 1) = g&iwm) — 1,

Along the proof of the following result, we will extensively use the well-known fact that ged(g* —
1,¢/ —1)= q&°d(9) — 1 for positive integers 7, j and ¢. From now on, for a divisor d of ¢" — 1,
let xq be a multiplicative character of Fy. of order d. For convenience, we extend x4 to Fgn
by setting xq(0) = 0. In order to present the cardinality of Aut (Hy (2, L(z))), we need the

following result.

Lemma 8.19. Suppose that L(x) is not a monomial if k =2 or k =n — 2. Then
N(Hy,s(z, L(x))) = {(amql,a_lanfl,:cpk(nfl)) :0<l<nacF;}.

Therefore, |N(Hs(z, L(x)))| = n(q — 1).

Proof. Let (¢1,¢2,¢) € N(Hys(z, L(z))). By Theorem 8.10, we have that

n—l1

G(Hp,s(z, L(z))) C {(amql,bxq ,xpy): a,b€F,0<l<n,0<v< )\n} .

Therefore, (¢1,¢2,) = (amql,ban_l,wpy) for some integers [,v such that 0 < [ < n and

0 <v < Anand a,b € Fyn. For all y € Fyn, we have that ¢1 o ¢(y)r o g2 = yx, so that
abqupwua: = yx. Therefore, v = A(n — [) and ab? = 1. In the same way, we have that
abql+squs =yxd for ally € Fgn, which implies that ab? " = 1. Therefore b7 ~! = 1 and then,
since ged(s,n) = 1, we have that b € F;. We conclude the proof by observing that ab? =ab=1
implies that b = a ™. |

Theorem 8.20. Let Z C [0,n — 1] be a nonempty set and d = ged(q® — 1,¢" — 1) = ¢eedkn) _ 1,
Suppose L(x) = Z?:_()l nizd where n; # 0 if i € T and 1; = 0 otherwise. Assume that || > 1 if
k=2 ork=mn-—2. Let gcd(Z) denote the greatest common divisor of the elements in the set
ZU{n}. The group G(Hps(z, L(z))) is given by

_ v vl Ly i
{(amql,bxq" l,xp ):a,bEFZn,O§l<n,O§ v < An and n! q'-1_ Z?;Q:k for all i GI}.

Furthermore, if |Z| > 2, then

[ At <Hk,s<w,L<x>>>\—n<qul> w1y e OF € Far sueh that xalof)

and nfyql_l = aﬁqi forallieT

125



CHAPTER 8. RANK METRIC CODES ARISING FROM LINEARIZED
POLYNOMIALS 126

Proof. By Theorem 8.10, we can assume that an element of G(Hy,s(z, L(x))) is of the form
(aqu, banil, gp) where a,b € Fyn, ¢ € Aut(Fyn) and [ and v are integers satisfying 0 <1 <n —1
and ¢(c) = c?” for all ¢ € Fyn. By Theorem 8.12, we have that

q _ qsk+l q n)\ v n p q . qsk+l pl/ql q»L'
EZnﬂr ab?™ " L(w/ab P ™S e
=0
The first part of our result follows from Lemma 8.2. Now let
Ay =A{(a,p) € an : nfyql_l = aﬁqi for all i € Z}.

Claim 1. For each pair (o, §) € A, the following hold:

L. 1f xa(aB) = 1, then there exist exactly d pairs (a,b) € Fg. such that (aqu, bt ) €
G(Hps(z,L(x))), 8 = ab? and a1 = ab?
2 If xa(af) # 1, then there eXistS no pair (a,b) € F2, such that (az?,bz?" ' p) €

l+sk

G (Hp,s(z, L(x))), B = ab? and a~! = ab?

Proof of the Claim 1. Let (v,l) € B and assume that there exist «, 5 € [Fgn such that
nfyql_l = apB? for alli € T. If (amql,bxq ¢) € G(Hps(z, L(z))), 8 = ab? and o~ ! = ab? ",

then a straightforward computation shows that

n—l1

skl

b? = (af)™ 1 " and a=pb7.

Therefore x4(afB) = 1. Furthermore, for each ( there exist d elements b € F,» such that
patt-1 — (aﬁ)—q"#. Then for each pair (o, 3) € A, there exist d pairs (a,b) € an such that
(aqu, bad" ¢) € G(Hp,s(x, L(x))), proving the claim.

Now we let

=1, B) € Fin : nfuqlfl = aB? for all i € T and xd(aB) = 1}.

vl —

Claim 2. For each pair (v,1) € B, we have that the value |A] )| equals either 0 or ged <I§an (D), W#) .
Proof of the Claim 2. Let (o1, £1) and (aw, f2) be two elements (distinct or not) in A! ;. For

i > j elements in Z, we have that

i g vgl—1 —(p’q'—1) i g
pI=T = pp ]( :ng

and then it follows that 8; = §f2 where § is a (¢&°4=7") — 1)-th root of unity in Fyn. Since i
and j were taken arbitrarily, it follows that Sy = {81 where £ is a kgn(Z)-th root of unity in Fyn
and then

L CE a1, €161) 0 < i < rige (D)}

for £ a primitive kqn (Z)-th root of unity and j € Z. We observe that
Xa(€7 an€'81) = xa(€07) xa(araz) = xa(€0-1)),
so that (£~ zqﬂa1 £p1) e Al " if and only if i(1— qﬂ)g =0 (mod kg (Z)). Since gcd(nqn(I)7qj_

1) = ¢&d@D — 1, we have that (£77 oy, &8y € A}, if and only if i(qeed® — l)qnd_1 =0
(mod kgn(Z)). Therefore

K n(I) gcd(T) "
A l’ N ,;in(z) = ged (nqn(z), %) ,

(qgcdml)(q”n)
d

ged (an @),
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proving the claim.
We observe that

G (Mp,s(z, L(z))) = U U {(aqu,ban_l,xpu) B=ab? ot = aquSk} (8.6)

(r)EB (a,B)EA),

and the sets in this union are disjoint by definition. Our assertion follows from Equations (8.6)

and (8.5) by applying Claims 1 and 2 and Lemma 8.19.

As an immediate consequence we have the following result.

Corollary 8.21. Let L be a linearized polynomial and n,k and let k be integers under the same
conditions as Theorem 8.20. Let T C [0,n — 1] be a set with |Z| > 2. Then
rAn(q8dEn) 1) gAn(geedtn) — 1)

‘Aut (Hp,s(, L(:U)))} = (D=1 < —1 )

where
7(L) = min {m\)\n‘ﬂa,ﬁ € Fyn such that xq4(af) =1 and nfmfl =aB? forallie I} .
Proof. Let
A= {m|xn:3a,p € F} such that xg(af) = L and n" ' = a7 for all i € T}.

We only need to show that if mi,my € A, then ged(mi,m2) € A, since for each m € A, it is
easy to note that Im € A for any integer [. For m;, mg and m = ged(my,ma), let a and b be
integers such that a(p™ — 1) 4+ b(p™? — 1) = p™ — 1. Suppose that a1, az, f1, B2 € Fy. are such

that nfml_l = al,B‘fz and nfMZ_l = a26gi for all i € Z. Then

m mq _ mo 7 i b '3
g =R = (a080) (0088 ) = (aSab) (818" for all i € T.

Our result follows from Theorem 8.20 by observing that x4(a161) = 1 and xg4(azf2) = 1 imply
that xa(afadpiss) = 1. u

In particular, in the case where there exist a, 8 € Fy. such that x4(af) =1 and n; = af? for

all 7 € Z, the integers v and [ can be arbitrarily chosen. Then

rAn(ggedtn) 1)

|Aut (H,s(z, L(z)))| = ¢—1

The remaining case is L(x) = nth. For this case, let g be a primitive element of Fy» and let

n = g“, where u is an integer.

Corollary 8.22. Assume that 2 < k < n —2. If n = g* € Fygn and d = ¢8edmhsk=h) 1 —
qgcd(mhyk) — 1, then

A ndA(q" —
|Aut (s, ma)) | = T(gu,(hq)(q_l)l)’

where

7(g%, h) = min {m|An : d divides (u(p™ —1))}.
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Proof. Let A = {m|\n : (qged(mhosk=h) _ 1) divides (u(p™ — 1)) }. By Theorem 8.20, if (aqu,ba:qnil,go) €
G(Hk,s(x,nmqh)) then

L. h
u\pY l—l o (abq )q o h—l l(,h_ sk o h—l l+h 1— sk—h
(gh)P'a T = b = ad —1pe (@' —=a™) — ja"—1pa " (1—g )

Set dy = ¢" —1,dy =1 — ¢** " and d = ged(¢™ — 1,dy,ds). We have that

n

(QU(p”qlfl))qT_ - (ad1bql+hd2)qT_ —1

and then d|(u(p”q! — 1)). In particular, (v 4+ Al) € A. Hence, if a = ¢g' and b4 " = g7, then
g gt = g e D), (8.7)

The number solutions (4, j) of the Equation (8.7) with 0 <i,j < ¢" — 1 is equal to d? multiplied
by the number of pairs (7, 7) with 0 <14,j < % satisfying the equation

i(%)+5 (%) =240 (mod £71), (8.8)

which is a Diophantine equation over Zgn_1),q. For a pair (i, ), let f(i,j) =i ( ) + 7 ( )
Let (o, jo) € Zgn_1)/a satisfying f(io, jo) = e with e := ged(d1/d, da/d). We recall that e is an
unity in Zgn_1)/q, then e le Lgn-1y- For A € Zgn_1)/q, let

) (8.9)

be the set of solutions of f(i,j) = A and let ng = |Y 4|. It is direct to verify that ) , n4 < (#‘l_l)2
and (i, ja) := (igpe A, joe ' A) € T 4. Furthermore, if (tat,jAr) is given by G4 =i4 + t%? and

Ta={(j)€ Z%qn_n/d fi ) =A (

JAL =JA — t%l with t € Lign-1)/ds then (ia4,ja:) € Ta. Then
= {(ia+t%,a—t%) 0<t< S Ty (8.10)

Set d} = gcd(u, %1) and d, = gcd(qn*1 d2) We observe that iAt =iy if and only if ¢t = ¢/
(mod £ dd, LY. Furthermore, jar = jap if and only if ¢t = ¢/ (mod £ dd, ), so that (ia¢,jat) =
(iaw,jay) if and only if ¢ = ¢ (mod lem ( dd,l, qsc;l)). Since lem (4~ d_l, %1, %2) =1, it follows
that lem ( dd_,ll, qu_él) =1 _1 and then |Y/,| = d . Therefore ny > % by the inclusion

in (8.19). Since ZAEz( n1yq A < (%) and n4 > #;1, we must have ngq = q%l for all
A € Zgn_1)/q- In particular, Ty = _1 for ¢ = @#_1) and then the number of solutions of
Equation (8.7) is quT =d(q" —1). More generally, we have that the number of pairs (a,b) for
which (az:ql, bad" ©) € G('Hk,S(ZL',’Ol‘qh)) equals d(¢" — 1) provided (v + Al) € A and then we
only need to compute the number of such pairs (v,1).

It is direct to verify the number of pairs (v,l) such that (v + Al) € A is exactly n - |A|.

Similarly to the proof of the previous result, we can show that
A= {lT(g",h) 0<l< h)}
and then |A| = 7) from where our result follows. [ |

In particular, Corollary 8.22 gives us the number of automorphisms of Generalized Twisted

Gabidulin codes in the cases where k satisfies 2 < k <n — 2.
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Example 8.23. Let g be a primitive element of Fgn and let h be a positive integer. Let k be a

integer such that 2 < k < n — 2. For an integer u such that ged(u,d) = 1, the number of elements

of the automorphism group of the code Hk7s(x,g“th) equals %, since we have that
7(g%, h) = Aged(n, h, k).



CHAPTER 9. CONCLUSION AND FUTURE WORK

This thesis compiles works on finite fields in different themes. In this chapter, we summarize
the results obtained in the thesis and provide comments on future research work that arise from

the present thesis. We separate the topics according to the order of corresponding chapters.

Conclusion and future work

9.1 Rational points on curves of low degree

In Chapter 2 we related the number of F,-rational points of curves given by an equation of

CHAPTER

the form y¢ = f(x) for the following positive integers d and polynomials f(z):

d f(z) Conditions Result

2| (az® +bx*+cx+d)(z+e) a#0 Theorem 2.18
2 ax® + bzt 4+ cx? +d a#0 Theorem 2.20
2 art +bx® + ¢ a#0 Theorem 2.22
2 | (ax? 4+ bx + ¢)(Az* + Br + C) | V? # dac and B* # 4AC | Corollary 2.26
3 (z + a)(Az* + Bz + C) A # 0 and Aa* # Ba — C | Theorem 2.28
3 (z + a)*(Az? + Bx + C)? A # 0 and Aa® # Ba — C | Theorem 2.28
3 ax’ +b a+#0 Theorem 2.30
3 ar® +b a#0and b#0 Theorem 2.2
4 az +br* +c a#0and ¢g=1 (mod 4) | Theorem 2.4
4 az* + bz +c a# 0and p=3 (mod 4) | Corollary 2.35

We observe that for d = 2 the single remaining case is when f is an irreducible polynomial

over Fy. In our future works we intend to study wild families of curves in order to present a more

general result.
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9.2 Hypersurfaces of Fermat type

Chapter 3 provided a counting on the number of F,-rational points on Fermat hypersurfaces
given by an equation of the form ala?‘lil + -+ agx® = b with z; € [, satisfying conditions on
the exponents, namely d; is (p, r;)-admissible. The cases t; # n for some i had never been studied
using our approach. Indeed, there were not explicit formulas for restricted solution sets’ case in
the literature. We can go further our results and look for the roots of the partial zeta function
associated to the number of solutions of Equation (3.1). From here, we pose the following general

problem.

Problem 9.1. Assuming that d; is (p,r;)-admissible, present the inverse of the roots of the

polynomials associated to the partial zeta function of the number of solution of (3.1).

Ift1 =-.- =ts = n, then it is direct to compute the inverse of the roots, that are essentially
Jacobi Sums. If d; is (p, r;)-admissible, then the value of these Jacobi Sums is known (see Theorem
1 of [23]). Our counting results for t; = --- = t; = n extend the main result of [109] and some
results of [13]. In the general situation where no conditions are imposed under the exponents, an
explicit general formula for such number is unknown. Indeed, the problem of counting the number
of F,-rational points on Fermat hypersurfaces in a general setting is still an open problem. Many
authors have studied particular cases in the last few years. From here, we pose the following

open problem.

Problem 9.2. Find an explicit formula for Ny(@,d,t,q,b) (with b # 0) without assuming d; is
(p, ri)-admissible.

There exist some few articles in this direction (e.g. see [8, 56]). In fact, the difficult of
the general situation comes from the fact that we can not say so much about the value of

Jb(xgll, e Xfi)’ which is well known if d; is (p, r;)-admissible (e.g. see [3, 23]).

9.3 On maximal and minimal hypersurfaces of Fermat
type

In Chapter 4 we provide results characterizing Fermat hypersurfaces whose number of points
are maximal or minimal with respect to Weil’s bound. The approach used here is completely new
and consist in the use of the well celebrated Hasse-Davenport Relation. Our effort in this chapter

yields a characterization of maximal and minimal Fermat hypersurfaces in the following cases:

b S Exponents Additional condition Result
b=0|s>3|d1=---=ds=d>2 (s,d) # (4,3) Theorem 4.1
b£0|s>2|dy=---=dy=d>2 (s,d) # (3,3) Theorem 4.1
b#0|s=2 d; > 2 none Theorem 4.3
b#£0|s>4 d; > 2 ged(dy,...,ds) > 1 | Theorem 4.3

The conditions appearing here comes from technical obstructions in the proof of the theorems.

We actually do not known if similar results holds in these cases. The next step is to study these
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cases in order to find conditions for maximality and minimality of such hypersurfaces, that to

date remains being open problems.

9.4 On the number of rational points on Artin-Schreier

hypersurfaces

Chapter 5 provides a broad study of the number of rational points on Artin-Schreier hyper-
surfaces. As well as in Chapter 3, the condition that the exponents are admissible was necessary
in order to obtain a formula for the number of points (Theorem 5.5). The next step in this
direction consists in find a formula without assuming the the exponents satisfy this condition. In
this chapter we provided bounds for the number of rational points that improve Weil’s bound
(Theorem 5.2) and presented conditions for Weil’s bound to be attained. In particular, our results
yields conditions in which our bounds in Theorem 5.2 are attained in the case Tryn/,(b) = 0. A

good question here is to find similar conditions for the case Tryn /,(b) # 0.

9.5 Dynamics of polynomial maps over finite fields

In Chapter 6 we study the functional graph associated to polynomials f € F,[x] whose
polynomial associated vy satisfies a property of injectivity on the set ji,,,. An interesting problem
here is to use the same approach for other similar conditions that guarantee some kind of
regularity in the graph associated to a function f as soon as it is provided some special structure

in the functional graph associated to the function f on some subset U C F,.

9.6 On iterations of rational functions over perfect fields

Section 7 studies the number A, g(n) of solutions of the equation R (z) = a over F,. We
prove that the growth of A, r(n) is exponential in d if « is not R-critical (Theorem 7.2). The
R-critical case is also studied (see Theorem 7.3). From here, we present some open problems
that are proposed in [79]. In what follows, R € F,(z) is a rational function and f € Fy[z] is a
polynomial of positive degree with at least one root that is not R-critical. Theorem 7.21 implies
that My r may have linear or exponential growth if f € M,. We believe that these are the only

possible cases.
Problem 9.3. Prove or disprove: either My r(n) ~n orlog My r(n) > n.

We observe that My r(n) - N¢r(n) > dfr(n) for every n > 0. In particular, there exists
do > 1 such that for every n > 1, either My p(n) > di or Ny r(n) > dij. However, this is not
sufficient to conclude that at least one of these functions have exponential growth. Motivated by

these observations, we propose the following problem.
Problem 9.4. Prove or disprove: either log My g(n) > n or log Ny g(n) > n.

Since My r(n)- Ny r(n) > ¢ r(n), a positive answer to Problem 9.3 implies a positive answer
to Problem 9.4.
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Problem 9.5. Prove or disprove: Af p(n) > n.

We have seen that Ay r(n) ~ n for infinitely many rational functions R. In particular, Positive

answer to Problem 9.5 implies that the bound Ay r(n) > n is sharp on the growth type.

9.7 Rank metric codes arising from linearized polynomials

In Section 8 we studied when two twisted Gabidulin codes are equivalent (Theorem 8.10).

The next step here is to find new families of MRD-codes and then use Theorem 8.10 to prove that
these new families are not equivalent to the known families of MRD twisted Gabidulin codes. In
our second important result of the chapter, namely Theorem 8.20, we provided the automorphism
group of the code Hy, s(x, L(z)), which allowed us to present the number of automorphisms for
some special polynomials L. We can go further this problem by expanding the class of codes

studied and finding their automorphism group and/or its cardinality.
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