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Resumo

Os modelos gerais para perfis de degradação assumem que existe uma forma funcional regular
comum a todas as unidades experimentais relacionando o tempo e a degradação. Os efeitos
aleatórios do ambiente podem afetar as trajetórias de degradação dessas unidades e, conse-
quentemente, a forma funcional assumida se torna uma aproximação muito abrupta da realidade
e estimativas viciadas para os tempos de falha são obtidas. Considerando a natureza temporal
dos dados de degradação, os modelos dinâmicos surgem como uma alternativa para modelar tais
dados, uma vez que fazem uma aproximação por partes para a forma verdadeira do caminho
de degradação. A presente tese de doutorado inicia apresentando os conjuntos de dados que
motivam nosso trabalho juntamente com uma breve revisão dos modelos de degradação recor-
rentes na literatura. A introdução também traz uma descrição detalhada das contribuições dos
três modelos propostos neste texto. O primeiro deles introduz um modelo de degradação linear
dinâmico para abordar situações onde os caminhos de degradação não evoluem regularmente
ao longo do tempo. Esse modelo é uma extensão do que foi desenvolvido no meu mestrado,
por assumir a presença de um intercepto que evolui dinamicamente ao longo do tempo. O se-
gundo modelo está voltado para descrever o comportamento de dados de degradação positivos.
As medidas de degradação são modeladas de acordo com uma distribuição gama e a taxa de
degradação é dependente de duas componentes. A primeira quantifica as características físicas
de cada unidade e a outra é dinâmica e representa os efeitos aleatórios do ambiente comum. As-
sim como no primeiro modelo, o último modelo proposto assume que as medidas de degradação
são normalmente distribuidas. Estendendo a primeira proposta, este modelo assume que a taxa
de degradação se decompõe nos mesmos dois fatores conisderados no segundo modelo. No en-
tanto, assume que o efeito que quantifica as caracteristicas fisicas do dispositivo é função de
covariáveis. Esta abordagem introduz mais flexibilidade à análise uma vez que, em alguns testes
de degradação, múltiplas caracterísitcas são observadas para entender os diferentes aspectos da
confiabilidade do sistema. O texto termina trazendo um resumo compacto dos métodos e resul-
tados obtidos nos estudos desenvolvidos ao longo da tese, juntamente com tópicos relevantes
para pesquisas futuras.

Palavras-chave: Modelos de Degradação, Modelos Dinâmicos, Distribuição do Tempo
até a Falha.
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Abstract

The general degradation path models assume that there is a regular functional form common
to all experimental units relating time and degradation. The random effects of the environment
can affect the degradation trajectories of these units and, consequently, the assumed functional
form becomes a very abrupt approximation of reality and biased estimates for failure times
are obtained. Considering the temporal nature of degradation data, dynamic models emerge
as an alternative to model such data, as they make an approximation by parts for the true
form of the degradation path. The present doctoral thesis begins by presenting the datasets
that motivate our work, together with a brief review of the degradation models that recur
in the literature. The introduction also provides a detailed description of the contributions of
the three models proposed in this text. The first one introduces a dynamic linear degradation
model to address situations where degradation paths do not evolve regularly over time. This
model is an extension of what was developed in my master’s, as it assumes the presence of
an intercept that dynamically evolves over time. The second model is aimed at describing
the behavior of positive degradation data. Degradation measures are modeled according to
a gamma distribution and the degradation rate is dependent on two components. The first
quantifies the physical characteristics of each unit and the other is dynamic and represents the
random effects of the common environment. As in the first model, the last proposed model
assumes that degradation measures are normally distributed. Extending the first proposal, this
model assumes that the degradation rate breaks down into the same two factors considered in
the second model. However, it assumes that the effect that quantifies the physical characteristics
of the device is a function of covariates. This approach introduces more flexibility to the analysis
since, in some degradation tests, multiple characteristics are observed to understand different
aspects of system reliability. The text ends with a compact summary of the methods and results
obtained in the studies carried out throughout the thesis, together with relevant topics for future
research.

Keywords: Degradation Models, Dynamic Models, Failure Time Distribution.
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Chapter 1

Introduction

Much of the reliability literature deals with data in which the observed measure is the failure
time (or lifetime) of the devices and the main objective is to characterize how reliable the
products are. However, for those highly reliable systems, it is common to be faced with situations
in which few or even no failures are observed at the end of the study, resulting in a high rate
of censoring. In these cases, the costs of carrying out the experiments are high and they end
up without enough information about the lifetimes for an adequate statistical inference.

An alternative way to assess the reliability of highly reliable systems is to consider acce-
lerated life tests [Meeker and Escobar, 1998]. The units are stimulated through accelerating
variables such as temperature, pressure or voltage. These external factors aims at a fast gathe-
ring of information, because it induces the failure of the units under test to occur more quickly.
Meanwhile, even using this methodology, it is possible to face with situations in which few or
no failures occur.

Another way to approach this problem is to obtain information about the system’s reliability
through some indirect mechanism such as degradation. Given a critical degradation threshold,
it is possible to make inference for the failure time of the units under test and a future one.
In this chapter, we provide the motivating practical situations that were analyzed in this work
together with an overview of existing degradation models in the literature. In addition, we
review the properties of the linear degradation model, which serves as a comparison to our
proposed methodology. This chapter ends with a detailing of the contribution associated to
each model proposed throughout the text.

1.1 Motivating Practical Situations

A specific literature has been disseminated nowadays and makes use of degradation data to
circumvent the problem of excessive censoring as an alternative to failure time data in reliability
studies. Some pioneering and relevant works about degradation models are those of Hamada
[2005], Robinson and Crowder [2000], Lu and Meeker [1993], Lu et al. [1997] and Chiao and
Hamada [1996]. In the degradation tests, although the variable of interest is the failure time

9



1 MOTIVATING PRACTICAL SITUATIONS 10

or lifetime of the units under test, this is not observed. The degradation measures of some
characteristic taken over time compose the answer and bring information about the failure
time of the units. To conduct a test like this, it is necessary to first define a critical degradation
threshold Df when the failure occurs and, subsequently, collect the measurements of some
degradation mechanism in the units under test at different and not necessarily equidistant
inspection times.

The justification for using this approach is that many failures in practice are result of
degradation mechanisms inherent to those failures. In engineering, these mechanisms are, for
example, equipment fatigue, cracking, corrosion and oxidation. One of the advantages of this
methodology compared to using failure time data is its ability to produce satisfactory inferences
even when no unit under test fails. In this section, we highlight the datasets that motivate our
work. More details of all datasets can be obtained by considering the cited references.

1.1.1 Train Wheels Degradation Data

This study was conducted by a railway company in Belo Horizonte to assess the reliability
of train wheels [Freitas et al., 2009]. To this end, 14 trains were selected at random from 25
that were in operation. For the chosen trains, only the motor wagons were considered, since
their characteristics with respect to the mode of operation accelerate the wear of the wheels.
These are made of forged and rolled steel and have an initial diameter of 966 mm. In each
train, 13 diameter measurements were collected for each of the 8 wheel positions of the motor
wagon. The measurements were made at equally spaced inspection times given in kilometers
(km): t1 = 0 km, t2 = 50000 km, . . . , t13 = 600000 km . Figure 1.1 shows the accumulated
degradation paths obtained for the 14 wheels allocated to the MA11 position together with the
increments (how much the unit under test degraded at a given moment) for some trains.

Each path shows the evolution of the degradation of a wheel over time. The engineering team
determined that the critical reduction in diameter occurs when it reaches 889mm. Thus, the
critical degradation thresholdDf assumes a value of 77mm (996mm - 889mm). This quantity has
an important role in the modeling of degradation data because the failure is defined considering
this value. In the present dataset, a wheel is considered to have failed when its wear over the
inspection times exceeds this critical threshold. Particularly in the MA11 position, the wheels
that have failed are no longer observed.

When looking at the graph of the accumulated degradation measurements in the Figure 1.1,
the paths are approximately linear. However, observing the degradation increments, some paths
present an abrupt change at the beginning of the study. If this early change in the increments
is not taken into account, some biased conclusions can be drawn. This means that, to analyze
these data correctly, the proposed methodology needs to be adaptable to fluctuations that the
degradation trajectories may have.
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Figure 1.1: Degradation paths of train wheels degradation data of position MA11 and increments for some
units under test

1.1.2 Laser Emitters Degradation Data

The data referring to the operating current in laser emitters, presented in Meeker and Escobar
[1998], compose another recurrent dataset in the literature on degradation models. The light
intensity of laser emitters degrades over time if the standard operating current is kept constant.
For the same light intensity to be generated, the current needs to be calibrated over time. A
sample of 15 laser emitters was monitored for 4000 hours of operation and in each of them, the
percentage of increase in the standard operating current calculated in relation to the nominal
current at the beginning of the test was recorded, with an interval of 250 hours. So, there are
a total of 17 measurements of this percentage in each laser emitter and it was established that
the failure occurs if it exceeds Df = 10%. Figure 1.2 shows the graph of the degradation paths
for the 15 laser emitting units considered in the study in addition to the increments for some
units under test.

In degradation models, an important step is to estimate the failure time distribution and the
quantities of interest in reliability such as the remaining useful life. At this point in the analysis,
it becomes necessary to consider what type of information from the model fit is being carried
out so that inferential methods are constructed to estimate this distribution. The degradation
path C in Figure 1.2, which is close to failing, is an example in which there is a structural
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Figure 1.2: Degradation paths of laser emitters degradation data and increments for some units under test

break in the degradation rate throughout the study. It is noted in this laser emitter that, after
1750 hours, the degradation increments decrease until reaching its lowest value at the end of
the test. When allowing dynamic degradation rates, this allows the possibility of evaluating
the final behavior of the degradation path of this unit and making it responsible for taking the
information to estimate its failure time distribution. This is useful not only to better estimate
the reliability of the system, but also to individually predict the failure time of a specific unit
under test in a context of preventive maintenance.

1.1.3 IRLEDs Degradation Data

Infrared light-emitting diodes (IRLEDs) are an example of high-reliable devices widely used in
communication systems [Yang, 2007]. These optoeletronic devices have a wavelength of which
is 880 nm and the design operating current, 50 mA. The degradation mechanism associated
with these devices is measured mainly by the variation ratio of luminous power and a failure
occurs when this ratio is greater than 30%. In a context of accelerated degradation tests, 40
units were sampled and divided into two groups to estimate the reliability at the operating
current of 50 mA. A group of 25 units was tested at 170 mA and another one of 15 units was
tested at 320 mA.

The first group is represented in Figure 1.3. These units were inspected for luminous power
before and during testing at not equally spaced times: 0, 24, 48, 96, 155, 368, 768, 1130, 1536,
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1905, 2263, and 2550 hours. To reinforce the distinction in the behavior of these 25 degradation
paths, three of them (IRLEDs A, B and C) are highlighted on the right side of the figure
together with how much they degraded in each inspection time (increments). As in Wang et al.
[2017], a reduced threshold (Df = 20%) is used here to describe these data. Only four of the 25
units under test have failed wchich represents just 16% of the total devices. If this dataset was
analyzed from the failure time data approach, the inference would certainly be compromised.
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Figure 1.3: Degradation paths of IRLEDs data and increments for some units under test

The degradation path of IRLED C in Figure 1.3 is aproximately linear. However, the degra-
dation paths of IRLEDs A and B , for instance, may be better approximated by piecewise linear
or polynomial structures. Such variations in the degradation rates along time may be produced
by factors that sometimes are beyond our control, such as external factors, measurement errors
or system imperfections. If it is possible to obtain information about environmental factors,
they can be included into the model as time-dependent covariates and the randomness of the
degradation paths would be reduced [Hong et al., 2005].

1.1.4 Fatigue Crack-Size Data

A recurrent dataset in the literature of degradation models with non-linear trajectories is the
fatigue crack-size data, presented in Meeker and Escobar [1998]. Figure 1.4 shows the size
of fatigue cracks in inches as a function of ten thousand cycles of applied stress for 10 test
specimens, together with the behaviour of their degradation increments over time. The critical
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degradation threshold stablished is 0.7 inches and only one unit under test failed during the
study.
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Figure 1.4: Degradation paths of fatigue crack-size data and the boxplot of the degradation increments over
time

Note that the degradation increments of the units under test tend to increase over time.
Thus, it is necessary that the structure of the proposed methodology to analyze these data
incorporates the non-linear behavior so that the inference about the failure time of the units
under test is not compromised.

1.1.5 Stress Relaxation Data

Stress relaxation is the loss of stress in a component subjected to a constant strain over time.
The contacts of electrical connectors often fail due to excessive stress relaxation [Yang, 2007]. To
estimate the reliability of a type of connectors, a sample of 18 units was randomly selected and
divided into three equal groups, which were tested at 65, 85, and 100ºC. The stress relaxation
data tested at 100ºC was evaluated at non equidistant inspection times given by 46, 108, 212,
344, 446, 626, 729, 927, 1005 and 1218 hours. The degradation paths are plotted in Figure 1.5.
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Figure 1.5: Stress relaxation data tested at 100ºC

The electrical connector is said to have failed if the stress relaxation exceeds 30%. Note that
no unit under test has failed. This is not a problem for degradation models. It is enough that
the critical threshold Df is established for the inference to be well conducted for the failure
time of the units under test and for a future one. This dataset is also non-linear, but unlike
the previous dataset, the units in the stress relaxation data tend to fail less and less over time.
The remaining useful life of some units under test may be longer than the study time (1218
hours). This reinforces the need to use degradation models to analyze the data together with a
non-linear structure.

1.1.6 Scar Width Degradation Data

An experiment was conducted to test the wear resistance of a particular metal alloy [Meeker
and Escobar, 1998]. The sliding test was conducted over a range of different applied weights in
order to study the effect of weight and to gain a better understanding of the wear mechanism.
Thus, 12 units were tested and divided according to different applied weights of 0.10kg, 0.05kg
and 0.01kg. These units were monitored over 9 non-equidistant inspection times and it was
established that the critical threshold of the scar width is Df =50 microns. Figure 1.6 shows
the resulting degradation paths.
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Figure 1.6: Scar width resulting from a metal-to-metal sliding test for different applied weights

From Figure 1.6, the effect of weight on the degradation trajectories is evident. In addition,
all units have their trajectories degrading more at the beginning and showing less wear through-
out the study. It would be of interest to quantify the effect of moving from one class to another
with regard to failure time. Furthermore, as the trajectories are very similar, quantifying the
effect of the common environment on degradation rates would be of practical importance. To
analyze these data, therefore, we need a degradation model that incorporates fixed covariates
in its structure.

1.2 Degradation Models

In the literature on degradation models, it is important to highlight the basic approaches that
have become recurrent in the most recent works. In Ye and Xie [2015], the authors classify the
degradation models in three approaches: stochastic processes models, general degradation path
models and models that permeate these two classes.

1.2.1 Stochastic Processes Models

In the first class, it is assumed that degradation is a random process over time and the Wiener
process has been intensively applied to model degradation data. Doksum and Hoyland [1993]
assume that the degradation of a cable insulation follows a Wiener process and that the failure
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data can be analyzed using the Inverse Normal distribution. In Park and Padgett [2005] and
Wang et al. [2017], the same process is used to analyze fatigue data in metals and infrared light-
emitting diodes degradation data, respectively. Si et al. [2013] developed a degradation model
based on the Wiener process with a recursive filtering algorithm to estimate the remaining
useful life of products with high reliability. The first Wiener process model considering random
effects to analyze degradation data was developed in Peng and Tseng [2009] and extensions
were considered in Peng and Tseng [2013] and Wang et al. [2010].

When degradation paths are monotonic, the gamma process becomes an alternative. The
works of Bagdonavicius et al. [2010] and Lawless and Crowder [2004] use the gamma process
considering the insertion of covariates and random effects. Another common process to analyze
degradation data is the inverse Gaussian one, which appears as an alternative to the two
previous processes (Wiener and gamma) when these become inadequate for data analysis in
practice. In Wang and Xu [2010], a semi-parametric estimation procedure based on the EM
algorithm was proposed for the Inverse Gaussian process. On the other hand, in Peng et al.
[2014], Bayesian methods for the same process were developed in the context of degradation
data.

As pointed out in Ye and Xie [2015], the stochastic processes are a natural choice for
modelling the randomness in degradation processes caused by environmental factors. However,
most stochastic process models are often so complex that it is not handy to use for engineers.
Thus, not good properties can be obtained from these complex processes.

1.2.2 General Degradation Path Models

The general degradation path models are presented in Lu and Meeker [1993]. The analysis
of the degradation tests using this approach is divided in two stages. Since these data have
characteristics of longitudinal studies, in the first stage, a mixed linear or non linear model for
a continuous response variable is fitted. The adopted functional form for the degradation paths
is assumed to be the same for all population. For each specific unit, the true degradation path is
a function of time conditional on the random-effects parameters representing the units feature.
Finishing the first step, the unknown parameters of the model are estimated. The second step
of this approach is to estimate the failure time distribution. This estimation depends on the
model structure and can be obtained analytically, through Monte Carlo simulations or some
other computational procedure.

When there is a linear relationship between the degradation measurements and time, the
linear degradation model is established (Section 1.3). This model is used in Freitas et al. [2009]
and Freitas et al. [2010] to analyze the train wheels degradation data from both the classi-
cal and Bayesian perspectives. Based on different practical problems, there are other ways to
specify the functional form to which degradation paths are subject. Bae and Kvam [2004]
extend the linear model by assuming that there are two phases in the degradation process.
Shiau and Lin [1999] propose non-parametric regression methods to estimate the functional
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form and in Zhou and Gebraeel [2014], the authors estimate the functional form using a cubic
spline. Under a Bayesian perspective, Robinson and Crowder [2000] and Hamada [2005] discuss
estimation using the general degradation path models. Pan and Crispin [2011] use a Bayesian
hierarchical model to analyze an experiment with LEDs. Santos and Loschi [2020] and Yuan
and Ji [2014] consider linear degradation models to approach heterogeneous populations. They
assume a linear structure for the degradation paths and, to account for heterogeneity, mixture
of distributions are assumed to make the behaviour of the random effects (degradation rates).

According to Ye and Xie [2015], the general degradation path models are more flexible in
incorporating random effects than models by stochastic processes. However, the authors argue
that in some applications the underlying degradation path is a great simplification of the reality
and the measurement errors can be negligible.

1.3 Linear Degradation Model

In this section, we review the linear degradation model. This review is necessary, as this model
is the basis of the general degradation path models. Furthermore, the entire methodology
proposed in this doctoral dissertation was designed based on the limitations observed in this
model. Specifically, the linear degradation model is defined as follows:

Yij = D(tij, βi) + ϵij =
1

βi
tij + ϵij, i = 1, 2, · · · , n and j = 1, 2, · · · ,mi, (1.1)

where Yij is the jth degradation measurement for unit i, D(tij, βi) is the true degradation path
for the i-th unit, βi is a scalar component of random effects, tij is the jth inspection time for
unit i and ϵij is the observational error having the usual assumption that ϵij|σ2

ϵ
iid∼ N(0, σ2

ϵ ),
with unknown σ2

ϵ . The scalar βi is responsible for including the particularities of unit i in the
model and indicate the slope of the line associated with its degradation path, being interpreted
as the unit’s degradation rate. After establishing the distribution for the random effects of
the model, the Bayesian inference together with MCMC schemes can be used to estimate the
unknown parameters of interest. The true degradation path in (1.1) can also be written as
D(tij, βi) = βitij.

With the model parameters properly estimated, the next step is to make an inference about
the failure time distribution of the units under test and for a future one. As the failure occurs
when the degradation path reaches the critical threshold Df , we obtain from the equation of
the model (1.1) that Df = 1

βi
Ti ⇒ Ti = βiDf . Under a Bayesian perspective, the posterior

predictive failure time distribution FTi|Y (t|y) can be derived as FTi|Y (t|y) = Fβi|Y

(
t
Df

)
, where

Y = (Y1,Y2, · · · ,Yn)
t, in which Yi = (Yi1, Yi2, · · · , Yimi

)t.
For the inference about the failure time of a unit under test, the estimate of FTi|Y (t|y) is

obtained considering the sample of the marginal posterior distribution of βi, associated with



1 LINEAR DEGRADATION MODEL 19

i -th unit, according to the following scheme:(
β
(1)
i , β

(2)
i , . . . , β

(u)
i

)
⇒ evaluate βi|y in Ti = Dfβi ⇒

(
[Ti|βi](1) , [Ti|βi](2) , . . . , [Ti|βi](u)

)
,

where u is the posterior sample size. Then, we have that:

F̂Ti|Y (t|y) =

∑u
j=1 1

{
[Ti|βi](j) ≤ t

}
u

. (1.2)

To make inference about the failure time of a future unit, we assume the sample of the
posterior distribution of β|y as the sample of the posterior distribution of βn+1|y, as described
in Robinson and Crowder [2000]. Thus, the estimate of FTn+1|Y (t|y) is obtained according to
the following scheme:


β
(1)
1 , β

(2)
1 , . . . , β

(u)
1

β
(1)
2 , β

(2)
2 , . . . , β

(u)
2

...
... . . . ...

β
(1)
n , β

(2)
n , . . . , β

(u)
n

 ⇒ evaluate βi|y in Ti = Dfβi

⇒


[T1|β1](1) , [T1|β1](2) , . . . , [T1|β1](u)

[T2|β2](1) , [T2|β2](2) , . . . , [T2|β2](u)
...

... . . . ...
[Tn|βn](1) , [Tn|βn](2) , . . . , [Tn|βn](u)

 .

Then, we have that:

F̂Tn+1|Y (t|y) =

∑n
i

∑u
j=1 1

{
[Ti|βi](j) ≤ t

}
nu

. (1.3)

In the work of Freitas et al. [2009], the train wheel degradation data (Figure 1.1) were
analyzed from a classical perspective using the linear degradation model with the analytical,
numerical and approximate approaches. Hamada [2005] used the model (1.1) to analyze ope-
rating current data on laser emitters (Figure 1.2) considering the Weibull distribution for the
random effects. The use of more flexible distributions such as asymmetric and heavy tailed
distributions is proposed in Oliveira et al. [2017].

The functional form used in the linear degradation model does not allow for structural breaks
over time, that is, adaptations to the changes observed in the degradation trajectories are not
allowed. Another limitation of this model is the use of the normal distribution for measures
of the degradation mechanism. Finally, the linear degradation model given in 1.1 needs to be
extended to be applied to datasets that have covariates.
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1.4 Contributions to Degradation Models

In this section, we present the contributions of this doctoral dissertation to degradation models,
together with the organization of the text. In Chapter 2, we revise the dynamic linear degra-
dation model introduced by Veloso [2018]. This model assumes that the degradation rates vary
along time providing a local linear approximation for the true degradation path. To account for
limitations in this normal degradation model and motivated by the features presented by the
IRLEDs degradation data (Figure 1.3), we extend the model by assuming also an intercept that
evolves over time. The introduction of this component in the model brought new properties
and resulted in new simulation studies. Chapter 2 is the paper that was published in Reliability
Engineering & Systems Safety [Veloso and Loschi, 2021] and contains the details of the exten-
sions mentioned before, together with the analysis of train wheels degradation data (Figure
1.1), laser emitters degradation data (Figure 1.2) and IRLEDs degradation data (Figure 1.3).

In Chapter 3, we introduce a dynamic multivariate gamma model (DMGM) for degradation
data. This general degradation path model has a sequential update structure and the use of
the gamma distribution for the degradation measurements. The proposed model allows the
degradation rate to be decomposed into two components: a static component that measures
the effect of unit specific features on the degradation and a dynamic one that quantifies the
random effects of the common environment. This strategy produces a reduction in the dimension
of the parametric space if compared to other dynamic models. Furthermore, we assume that
the degradation measure relates to different functions of time, generating a more flexible model,
allowing for the analysis of datasets following different degradation paths structure. The model
identifiability is discussed and conditions are stablished for its validity. The relation between
the failure time and the model parameters is stablished and we developed a MCMC procedure
to estimate the failure time distribution for units under test and a future one. After conducting
several simulation studies to evaluate the performance of the proposed model, the DMGM is
applied to fatigue crack size data (Figure 1.4) and stress relaxation data (Figure 1.5). This
chapter is the paper submitted to an international journal and is currently under revision.

The last contribution to degradation modelling is detailed in Chapter 4. The model devel-
oped in the chapter is also a normal dynamic degradation model as assumed in the first model.
Extending this first approach, we now assume that the degradation rate is decomposed in the
same two components considered in the DMGM but now with an addictive structure. We also
assume that the effect that quantifies the specific physical features of the devices is a function
of fixed covariates. This approach introduces more flexibility to the analysis since, in some
degradation tests, multiple characteristics are observed to understand different aspects of sys-
tem reliability. Therefore, this chapter details the entire inferential procedure for the proposed
model parameters and failure times developed so far. The methodology is still under construc-
tion, but we obtained promising results in a brief simulation study and in the application of
the scar width degradation data (Figure 1.6).

Finally, Chapter 5 closes this doctoral dissertation with a brief summary of the results
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obtained in the previous chapters. In addition, we discuss interesting topics that might motivate
our future research.
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Chapter 2

Dynamic Linear Degradation Model:
Dealing with Heterogeneity in
Degradation Paths

Abstract

General path models are usually considered to model degradation data. Their popularity is mainly
due to the simplicity with which these models allow to represent different degradation mecha-
nisms. Such models assume that the functional form of the degradation path is common to all
population and, in linear degradation models, it also assumes a time-invariant degradation rates
for the units under test. This latter assumption is only reasonable if the devices constantly de-
grade over time. We introduce a dynamic linear degradation model to approach situations where
the degradation paths do not regularly evolve through time. The proposed model assumes that
degradation baselines and rates vary along time. This dynamic structure provides a local lin-
ear approximation for the true degradation path, which may assume different shapes. Inference
for the failure times considers this sequential behavior and is discussed for future and under
test units. We run a simulation study to evaluate the proposed model and to compare it to the
Weibull linear degradation model. The train wheels, laser emitters and infrared light-emitting
diodes datasets are analyzed considering this new methodology. Results show that the proposed
model is competitive and an useful approach to model degradation data that assume different
shapes for the degradation paths.

Keywords: FFBS, general path models, lifetime, random effects, reliability.
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2.1 Introduction

With technological advances, reliability assessments for highly reliable systems based on lifetime
data are cumbersome. This is a consequence of the small number of failures that occur during
the experiment. System reliability can thus be indirectly assessed through some underlying
mechanism that acts producing the failure as, for instance, the system degradation mechanism.

Degradation trials are longitudinal studies where degradation is measured over time in each
unit. To take this dependence structure into account, two classes of degradation models have
been considered [see Ye and Xie, 2015, for a more detailed discussion]. Stochastic process models
assume that the degradation paths are a realization in time of a random process [Park and
Padgett, 2005; Park, 2017; Peng and Tseng, 2013; Si et al., 2013; Wang et al., 2017]. Recently,
Liu et al. [2020] introduced a gamma process model for systems subject to multiple dependent
degradation processes and environmental influence. Copulas are used to model the dependence
among the degradation measurements. Gao et al. [2020] propose a Weiner process to model
degradation paths that abruptly change along the time. Peng and Cheng [2020] introduced a
robust degradation model defining a Student-t degradation process. Stochastic processes models
are the natural way to model the degradation caused by environmental factors that change over
time. However, as pointed out by Ye and Xie [2015], this class of models usually does not have
a clear physical justification being sometimes too complicated to be handled. Therefore, good
properties may not be obtained.

Introduced to analyze degradation data by Lu and Meeker [1993a], the general path models
account for such dependence by including random effects in the model structure [Hamada, 2005;
Lu et al., 1996, 1997]. The random effects represent the features of the individual device and
are associated with the degradation rate. In this class of models, the inference is performed in
two stages involving a longitudinal data analysis to estimate the degradation model followed
by the construction of the relationship between degradation and failure time to estimate the
system reliability and any other statistic related to the failure time [Meeker and Escobar, 1998].
Some advantage of the general degradation path models includes the ease interpretation of the
parameters in terms of degradation rate, the simplicity in its implementation and, more impor-
tantly, it permits flexible structures to incorporate random effects representing the individual
devices or unit characteristics. Ye and Xie [2015] point out that the general path degradation
models are an abrupt approximation of reality as assume a same regular functional form for
the degradation paths of all units.

Formally, the general path model assumes that the accumulated degradation Yij for the ith
unit until the inspection time tij is given by

Yij = D(tij;α,βi) + ϵij, i = 1, . . . , n, j = 1, . . . ,mi, (2.1)

in which D(·;α,β) denotes the true degradation path, α = (α1, . . . , αp)
t is a p × 1 vector

of parameters common to all units and βi = (βi1, . . . , βik)
t is the k × 1 vector of random
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effects related to unit i. The measurement error ϵij at time tij is assumed to be independent
and identically distributed (iid) with mean E(ϵij) = 0 and variance V (ϵij) = σ2

ϵ . As commonly
assumed, we consider a centered normal distribution with variance σ2

ϵ denoted by εij ∼ N(0, σ2
ϵ ).

The relationship between time and degradation given by D(·;α,β) is, in general, inspired
by the application problem to be solved and are defined taking into account the empirical
analysis of the degradation paths. Most developments in general path models, that is the focus
in this paper, assume that D(t;α,β) is a straight line (see, for instance, the works by Lu and
Meeker [1993a], Lu et al. [1996], Hamada [2005], Freitas et al. [2009], Kim [2017] and Oliveira
et al. [2018] among many others). Non-linear degradation models are presented in Robinson
and Crowder [2000a] and, more recently, in Guida et al. [2015] in which the authors proposed a
polynomial type of degradation model with an autoregressive error to accommodate degradation
paths of different shapes. Other classes of degradation models include delay time [Wang, 2012],
shock [Cha et al, 2017; Ye et al., 2011] and data driven [Peng et al., 2013; Saha et al., 2009;
Sotiris et al., 2010] models.

Different data features are introduced into the linear degradation models through the spec-
ification of the random effect distributions. Homogeneous populations are usually represented
by normal, log-normal and Weibull distributions for the random effects. Under normal and
log-normal degradations models [Freitas et al., 2010, 2009], likelihood estimators are easier to
be implemented as analytical integration of the likelihood is possible. The Weibull degradation
model is discussed by Hamada [2005] from the Bayesian point-of-view. Such a model is appeal-
ing as it accommodates different behaviors of the degradation rate. An interesting feature of
the Weibull degradation model is the invariance property which assures that the lifetime is also
Weibull distributed. This invariance property is also experienced by some models introduced
by Oliveira et al. [2018] that assume skew-elliptical and the log-skew-elliptical distributions
for the random effects. Such degradation models simultaneously accommodate skewness and
heavy-tailed degradation behaviors providing a useful tool to analyze degradation data. Be-
sides fitting skewness and heavy-tailed behavior, the finite mixture [Yuan and Ji, 2015] and the
semi-parametric [Santos and Loschi, 2020] degradation models are also appropriate to model
heterogeneous population data, that is characterized if the devices work in different conditions
over time. In these scenarios, multi-modal behavior can be observed in the degradation or life-
time distributions. Heterogeneous populations are also focused by Xiang et al. [2013] and Lim
et al. [2017].

The basic assumption of models that considers a linear structure for D(·;α,β) is that
the degradation of the devices is constant along the time. This implies that the degradation
increment ∆ij = Yij − Yij+1, j = 1, . . . ,mi for each unit i under test does not vary over
time. Such models take this behavior into account by considering that the degradation rate
is a function of time-invariant random effects that reflect the unit characteristics. Although
some random variation in the observed increments is expected due to the measurement error,
tendencies or big variations in ∆ij bring evidence against the linearity assumed for the true
degradation path. In the laser emitters dataset previously analyzed by Meeker and Escobar
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[1998] and Hamada [2005] (see Figure 2.1), it can be noticed that the degradation increment
for some lasers emitters substantially varies along time. That is particularly observed for laser
emitter C which degradation increments are big in the initial times and small in the final times
and this unit is close to fail.
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Figure 2.1: Degradation paths of laser emitters data and increments for some units
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Figure 2.2: Degradation paths of IRLEDs data and increments for some units

Infrared light-emitting diodes (IRLEDs) dataset [Yang, 2007] exhibited in Figure 2.2 is
another example where the assumption of the time-invariant degradation rate is not appropriate.
Even for the degradation paths presenting linear behavior (e.g, IRLED C, Figure 2.2), the
degradation increments vary along time. These data also present another interesting feature
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that is not well fitted by a linear degradation model. The degradation paths of some units,
IRLED A and IRLED B in Figure 2.2, for instance, may be better approximated by piecewise
linear or polynomial structures. A possible approach to account for these data features is the
Wiener process model assumed by Wang et al. [2017]. Such variations in the degradation rate
along time may be produced by factors that sometimes are beyond our control, such as external
factors, measurement errors or system imperfections. If it is possible to obtain information about
environmental factors, they can be included into the model as time-dependent covariates and
the randomness of the degradation paths would be reduced [Hong et al., 2015]. However, in
many cases, information about factors affecting the system degradation is not available as it is
the case in laser emitters and IRLEDs datasets.

Another limitation of the general path degradation models is that the functional form of
the degradation paths D(·;α,β) is assumed to be common to all units of the population. This
may be a strong assumption in many practical situations. As illustrated in Figure 2.2, the
degradation paths for some IRLEDs may be well fitted by a linear structure. However, for some
others, the degradation paths are better represented by a logarithmic or a root structures. In
studies similar to this one, to assume a fix structure D(·;α,β) for all population may lead to
inappropriate conclusions about the lifetime distribution. One way to overcome this problem is
to consider a model with a flexible structure that is able to accommodate different shapes for
the degradation paths.

To approach situations where the devices degrade in a heterogeneous way through time,
we consider Bayesian models with dynamic structures [Petris et al., 2009; West and Harrison,
1997]. In Section 2, we introduce a dynamic linear degradation model in which the intercept
and the slope are time-variant. The assumptions under the proposed model are that both the
baseline degradations and the degradation rates are different in each measurement time. It also
assumes a Markovian dependence among the degradation rates which relate them in the time.
A similar assumption is done for the basal degradations. This time-variant linear structure
provides the local piecewise linear approximation of the true degradation path D(·;α,β) in
(2.1), which may assumes different shapes. We assume that units under test are subject to
the same dynamic structure which is inherited by the failure time as discussed in Section 3.3.
The inference is done under the Bayesian paradigm following West and Harrison [1997] and
Petris et al. [2009]. The proposed model is compared to the Weibull linear degradation model
through simulation studies (Section 2.4). These models are also fitted to analyze laser emitters
and IRLEDs datasets (Section 2.5). The Appendix finish this work bringing an application of
the proposed methodology to the train wheels degradation data [Freitas et al., 2009].

2.2 Dynamic linear degradation model

To build a dynamic general path model, we assume that characteristics related to individual
units will vary along the time, that is, we consider in (2.1) that the vector of random effects
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related to unit i will evolve through time.
Suppose that a sample of n independent units are under test. Let Yij be the degradation at

unit i, i = 1, 2, . . . , n, accumulated until the time j, j = 1, 2, . . . ,mi and mi is the number of
time intervals in which degradation is measured on unit i. Assume that all units under test are
subject to the same dynamic structure which, in a general context, is given byYij = D(tij;α,θij) + ϵij

θij = θi(j−1) + ϵ
∗
ij,

(2.2)

where the true degradation path for each unit i is locally piecewise being equal to D(tij;α,θij)

in the time interval (j − 1, j), θij, ϵij and ϵ∗ij, respectively, denote the vector of random effects
or state vector, the model errors and the vector of evolution errors related to unit i at time
j. The model in (2.2) imposes a Markovian relationship among the state vectors related to
contiguous time intervals and θi0 is the state vector for unit i in the initial instant j = 0. We
assume that the errors ϵij and ϵ∗ij, j = 1, . . . ,mi, have both distributions centered at zero with
time-invariant covariance matrix.

The function D(tij;α,θij) may assume different shapes. In the following, we focus on situ-
ations where D(tij;α,θij) is linear with slope βij and intercept λij and, there are no covariates
associated with the degradation mechanism. Hereafter, we omit the vector α to simplify the
notation and let θij = (λij, βij). The dynamic linear degradation model is hierarchically repre-
sented as 

Yij = λij + βijtij + ϵij,

λij = λi(j−1) + νij,

βij = βi(j−1) + ωij,

(2.3)

where λij and βij denote, respectively, the baseline degradation and the degradation rate for unit
i at measurement instant j, ϵij is the model error and νij and ωij are the evolution errors. The
vector θi0 = (λi0, βi0)

T is the state vector for unit i in the initial instant j = 0. We assume that,
for unit i, the errors ϵij, j = 1, . . . ,mi, are independent and identically distributed (iid) with a
distribution centered at zero with time-invariant variance. Similar assumptions are considered
for the evolution errors νij and ωij. Additionally, we consider that the errors ϵij, νij and ωij

are independent of each other. Specifically, in the following, we assume that ϵij iid∼ N(0, σ2
ϵ ),

νij iid∼ N(0, σ2
ν) and ωij iid∼ N(0, σ2

ω).
Differently of the usual linear degradation models [Hamada, 2005; Lu and Meeker, 1993a],

the model in expression (2.3) assumes that both the degradation baseline and rate for unit i
are broken down into state components that evolve along the time. This structure allows to
accommodate changes in the degradation increments not arising from the measurement error.
Another advantage of assuming that degradation rate βij and the baseline degradation λij ran-
domly evolute through time is that it allows the model to accommodate fluctuations of such
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parameters in different directions along the time. Thus, a more flexible model is obtained as it
provides a piecewise linear approximations to the the true degradation path in (2.1), accom-
modating different forms of D(·;α,β). This model also provide good inferences for situations
where such parameters do not experience changes along the time as it occurs whenever the
degradation paths are all linear. In fact, we recover the usual linear degradation model dis-
cussed, for instance, by Lu and Meeker [1993a] and Freitas et al. [2009], if for the jth state
vector θij = (λij, βij)

T of unit i, λij = 0 for all i and j and βij = βi for all j.
To facilitate the inference, following West and Harrison [1997], we consider the matrix

representation of the proposed model in (2.3). For all j ≥ 1, assume thatYj = Fjθj + ϵj ϵj ∼ Nn(0, σ
2
ϵ In×n)

θj = θj−1 + γj γj ∼ N2n(0,Γj),

where Yj = (Y1j, . . . , Ynj)
T ∈ Rn is the n-dimensional column vector composed by the degrada-

tion measurement for all units at time j, θj = (λ1j, . . . , λnj, β1j, . . . , βnj)
T , ϵj = (ϵ1j, . . . , ϵnj)

T ,
γj = (ν1j, . . . , νnj, ω1j, . . . , ωnj)

T , Γj = diag{σ2
ν , σ

2
ω} ⊗ In×n is the 2n × 2n covariance matrix,

Ip×p is the identity matrix of order p and the n× 2n regression matrix is

Fj =


1 0 · · · 0 t1j 0 · · · 0

0 1 · · · 0 0 t2j · · · 0
...

... . . . ...
...

... . . . ...
0 0 · · · 1 0 0 · · · tnj

 .

To complete the model specification, following West et al. [1985], for the state vector of
parameters θj at the initial time j = 0, we consider θ0 ∼ N2n(m0,C0), where m0 ∈ R2n

and C0 ∈ R2n × R2n are, respectively, the mean vector and the covariance matrix specified
based on the available prior information. The prior distribution for θ0 should reveal the initial
knowledge about the degradation process in the population under test. Specifically, it should
represent both the initial expectation about baseline degradation and the degradation rate
for units in this population. Assuming the normal prior distribution for θ0, there is a gain in
inferential procedure since we obtain a exact inference. However, other prior specifications may
be assumed if they better represent the prior knowledge about θ0. For the variances, we assume
ψϵ = σ−2

ϵ ∼ Gamma(a1, b1), ψν = σ−2
ν ∼ Gamma(a2, b2) and ψω = σ−2

ω ∼ Gamma(a3, b3), where
al > 0 and bl > 0, l = 1, . . . , 3.

2.2.1 Posterior inference

To perform inference in dynamic models we must combine two operations: the evolution to
build the prior distribution for θj given the available degradation data until time t− 1 and the
updating to incorporate the degradation measured at time j to obtain the posterior distribution
of θj.



2 DYNAMIC LINEAR DEGRADATION MODEL 31

Let yj = (y1j, . . . , ynj)
T ∈ Rn . Denote by y1:J = (y1,y2, . . .yJ) and θ0:J = (θ0,θ1, . . . ,θJ),

respectively, the degradation measurements and the states matrices for the n units under test
and all time intervals, where J = max{mi, i = 1, · · · , n}. If the data are unbalanced, some
imputation methods must be used to replace the unobserved values. For the proposed model
given in (2.3), we input the missing data using the approach proposed by Petris et al. [2009].

As we assume that ϵij iid∼ N(0, σ2
ϵ ), given θ0:J , ψϵ, ψν and ψω, it follows that Yij are inde-

pendent having a normal distribution with mean λij+βijtij and variance σ2
ϵ . Consequently, the

likelihood function is given by

π(y1:J |θ0:J , ψϵ, ψν , ψω) =
J∏
j=1

n∏
i=1

π(yij|λij, βij, ψϵ)

=

(√
ψϵ
2π

)Jn

exp

{
−ψϵ

2

J∑
j=1

n∑
i=1

(yij − (λij + βijtij))
2

}
. (2.4)

To sample from the posterior distributions of θ0:J , ψϵ, ψν and ψω, we mix the likelihood
function in (2.4) with the prior distributions for the parameters θ0, ψϵ, ψν and ψω that was
previously mentioned and we use the following Markov chain Monte Carlo (MCMC) scheme.
Samples of state parameter θ0:J are generated from the posterior full conditional distribution

π (θ0:J |ψϵ, ψν , ψω,y1:J) = π(θJ |ψϵ, ψν , ψω,y1:J)
J−1∏
j=0

π(θj|θj+1:J , ψϵ, ψν , ψω,y1:J), (2.5)

where π(θJ |ψϵ, ψν , ψω,y1:J) is the filtering distribution of the state vector of parameters θJ
related to the last time interval J given in expression (2.6) and π(θj|θj+1:J , ψϵ, ψν , ψω,y1:J) is
given in equation (2.7).

The filtering distribution is the inference for the state vector θJ , based on the observations
up to time interval J . For all j = 1, . . . , J , it follows that

π(θj |ψϵ, ψν , ψω,y1:j) ∼ N2n(mj,Cj), (2.6)

where mj = mj−1 + RjF
T
j Q

−1
j (Yj − Fjmj), Cj = Rj − RjF

T
j [FjRjF

′
j + Vj ]

−1FjRj

and Rj = Cj−1 + Γj .
We sample from the posterior of the dynamic parameters considering the forward filtering

backward sampling (FFBS) discussed by Carter and Kohn [1994] [see also Frühwirth-Schnatter,
1994; Shephard, 1994]. When using the normal distribution for the measures of the degradation
mechanism and for the state components, the FFBS is the widely used approach for filtering.
This method provides exact inference and is essentially the simulation of the smoothing recur-
sions. Firstly, we generate θJ from its filtering distribution π(θJ |ψϵ, ψν , ψω,y1:J) ∼ N2n(mJ , CJ)

and then, recursively, we draw samples of θj from

π(θj|θj+1:J , ψϵ, ψν , ψω,y1:J) ∼ N2n(mj +CjR
−1
j+1(θj+1 −mj+1),Cj −CjR

−1
j+1Cj), (2.7)
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for j = J− 1,J− 2, . . . , 0. Samples of ψϵ, ψν and ψω are generated via Gibbs sampler assuming
the distributions in the following.

(i) The posterior full conditional distribution of ψϵ is

π(ψϵ|ψν , ψω,θ0:J ,y1:J) ∝ π(y1:J |θ0:J , ψϵ, ψν , ψω)π(ψϵ)

∝ ψ
Jn
2
ϵ exp

{
−ψϵ

2

J∑
j=1

n∑
i=1

(yij − (λij + βijtij))
2

}
ψa1−1
ϵ exp {−b1ψϵ} ,

that is, ψϵ|ψν , ψω,θ0:J ,y1:J ∼ Gamma(a1+Jn/2, b1+1/2
∑n

i=1

∑ J
j=1 (yij − λij − βijtij)

2).

(ii) The posterior full conditional distribution of ψν is given by

π(ψν |ψϵ, ψω,θ0:J ,y1:J) ∝
J∏
j=1

n∏
i=1

π(λij|λi(j−1), ψν)π(ψν)

∝ ψ
Jn
2
ν exp

{
−ψν

2

J∑
j=1

n∑
i=1

(λij − λi(j−1))
2

}
ψa2−1
ν exp {−b2ψν} .

Consequently, ψν |ψϵ, ψω,θ0:J ,y1:J ∼ Gamma(a2+Jn/2, b2+1/2
∑n

i=1

∑J
j=1

(
λij − λi(j−1)

)2
).

(iii) The posterior full conditional distribution of ψν is given by

π(ψω|ψϵ, ψν ,θ0:J ,y1:J) ∝
J∏
j=1

n∏
i=1

π(βij|βi(j−1), ψω)π(ψω)

∝ ψ
Jn
2
ω exp

{
−ψω

2

J∑
j=1

n∑
i=1

(βij − βi(j−1))
2

}
ψa3−1
ω exp {−b3ψω} ,

thus, it follows that ψω|ψϵ, ψν ,θ0:J ,y1:J ∼ Gamma(a3+Jn/2, b3+1/2
∑n

i=1

∑J
j=1

(
βij − βi(j−1)

)2
).

The proposed model is implemented using the software R [R Development Core Team,
2018]. The FFBS step is performed using the dlm package [Petris et al., 2009].The R code is
available upon request via email from the authors.

2.3 Inference for failure time

In degradation experiments, as the system reliability is indirectly accessed, a satisfactory
analysis of it is attained even if the devices under test do no fail during the experiment. To
determine the system reliability it is assumed that a failure occurs if the degradation path
exceeds a certain predefined threshold Df . The relationship between degradation and time,
defined by the specified model, is thus taken into account to obtain the failure time distribution.
The degradation threshold Df is usually specified using the prior knowledge of the experts.
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A sequential analysis of the degradation paths is performed if the dynamic linear degra-
dation model in equation (2.3) is assumed. This sequential feature must also be considered
whenever inferring the failure time of the units. We suppose that some units under test fail
during the experiment and others fail after the maximum measurement instant J . Assume that
a unit i fails at the time interval which lower bound is γi. If unit i do not fail during the
experiment the bound γi = J , otherwise, γi < J . From the relationship between time and
degradation given by the model in expression (2.3), the time to failure for the ith unit is given
by Ti = (Df − λiγi)β

−1
iγi

, where λiγi and βiγi are the state components prior to failure for unit
i. For units that do not fail during the experiment, inference for the failure time will consider
the state vector related to the last time interval we measured the degradation [Petris et al.,
2009]. Comparing the proposed model with the linear degradation model, both predict the
non-observed degradation measurements, after time interval J , from a straight line. However,
there is a subtle difference between the models. While under the linear degradation model this
prediction is based on a non-local straight line, under the proposed model, it is based on the
local linear approximation related to the last time interval. Consequently, under the proposed
model, the posterior predictive cumulative distribution function (cdf) of the failure time of unit
i is

FTi|Yi:J
(t|yi:J) = 1−

∫ ∞

−∞
Fβiγi |y1:J

(
(Df − u)t−1|y1:J

)
fλiγi |y1:J

(u|y1:J) du, (2.8)

where Fβiγi |y1:J
(·) and fλiγi |y1:J

(·) respectively denote the cdf of βiγi and the probability density
function (pdf) of λiγi , given the observations y1:J .

We obtain a posterior sampling for the failure time of unit i as follows. Having available the
posterior sample θ(l)iγi = (λ

(l)
iγi
, β

(l)
iγi
)T of the degradation model parameters θiγi = (λiγi , βiγi)

T , we
calculate T (l)

i = (Df − λ
(l)
iγi
)(β

(l)
iγi
)−1, for l = 1, . . . L. This is made by considering the following

scheme(
λ
(1)
iγi
, λ

(2)
iγi
, . . . , λ

(L)
iγi

β
(1)
iγi
, β

(2)
iγi
, . . . , β

(L)
iγi

)
⇒ evaluate θiγi |y in Ti =

Df − λiγi
βiγi

⇒
(
Ti|θ(1)iγi , Ti|θ

(2)
iγi
, . . . , Ti|θ(L)iγi

)
The posterior predictive cdf of Ti evaluated at time t is approximated by

F̂Ti|Y1:J
(t|y1:J) =

L∑
l=1

1{T (l)
i ≤ t}/L.

.
In many practical situations, the remaining useful life (RUL) for units under test is of most

interest. The RUL for a unit i under test that has been monitored until inspection time timi

is given by RULi = E(Ti − timi
|Ti > timi

). Under the Bayesian paradigm, the estimate for the
RUL of a unit under i test, that has not failed, is given by

RULi =
L∑
l=1

T
(l)
i − timi

L
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To calculate the posterior predictive cdf for the failure time Tn+1 of a new device, we assume
that Tn+1 has the same distribution as the failure times Ti of the units under test. Following
Robinson and Crowder [2000a], we assume that a posterior sample of θ(n+1)j is obtained sam-
pling from the posterior distributions of the parameters θiγi , i = 1, . . . , n, associated with the
time intervals when unit i experienced the failure. Thus, to estimate FTn+1|Y1:J

(t|y1:J) at time
t we consider the total posterior sample of θ0:J and, for each sample θ(l)ij = (λ

(l)
iγi
, β

(l)
iγi
)T , we

calculate T (l)
n+1 = (Df − λ

(l)
iγi
)(β

(l)
iγi
)−1, i = 1, . . . , n, l = 1, . . . , L, as follows

λ
(1)
1γ1

λ
(2)
1γ1

. . . λ
(L)
1γ1

β
(1)
1γ1

β
(2)
1γ1

. . . β
(L)
1γ1

...
... . . . ...

λ
(1)
nγn λ

(2)
nγn . . . λ

(L)
nγn

β
(1)
nγn β

(2)
nγn . . . β

(L)
nγn


⇒ evaluate θiγi |y in Tn+1 =

Df − λiγi
βiγi

⇒


Ti|θ(1)1γ1

, Ti|θ(2)1γ1
, . . . , Ti|θ(L)1γ1

Ti|θ(1)2γ2
, Ti|θ(2)2γ2

, . . . , Ti|θ(L)2γ2
...

... . . . ...
Ti|θ(1)nγn , Ti|θ(2)nγn , . . . , Ti|θ(L)nγn


The posterior estimate for the predictive cdf of Tn+1 evaluated at time t is given by

F̂Tn+1|Y1:J
(t|y1:J) =

L∑
l=1

n∑
i=1

1

{
T

(l)
n+1 ≤ t

}
/nL.

2.4 Simulation studies

We run a Monte Carlo study to evaluate the performance in predicting failures of the pro-
posed dynamic linear degradation (DLD) model as well as to compare it to the well-known
Weibull linear degradation (WLD) model [Hamada, 2005]. To mimic the real datasets to be
analyzed in Section 2.5, we assume a balanced experiment in which the degradation is simul-
taneously measured in all n devices under test in m (m = 10 or 20) equally spaced times. To
define the failure times, we set up a threshold of Df = 10. Data are generated from linear
models without intercept and assuming different distributions for the degradation rate βi. In
the first scenario, we assume a time-invariant and Weibull distributed degradation rate (WLD
model). In the second simulation study, datasets are generated from the proposed model (DLD
model). In both scenarios, the errors ϵij are iid with normal distribution and time invariant-
variance σ2

ϵ . In the third scenario, our goal is to show the flexibility of our proposed model
to analyze degradation data whenever the degradation paths have different shapes. Part of the
degradation paths are generated from a linear model and the other part is generated from a
non-linear degradation model. In this case, the assumptions on which the general path models
are based are violated. A total of R = 100 replications is generated in each scenario.
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To analyze the data, in Simulations I and II, DLD and WLD models without intercept are
fitted. In Simulation III, data are also analyzed by fitting the DLD model with intercept. In
all cases, we assume a flat prior distribution for the error precision by eliciting ψϵ = σ−2

ϵ ∼
Gamma(0.01, 0.01). In WLD model, a priori, we assume that κ ∼ Gamma(0.01, 0.01) and
ϕ ∼ Gamma(0.01, 0.01), where κ and ϕ are the parameters of the Weibull distribution.. To fit
the proposed model, we assign m0 = 0 ∈ Rd and C0 = 1000Id, where Id denotes the identity
matrix of order d. For DLD models with and without random degradation intercepts, d is given
by 2n and n, respectively. We assume a flat prior distribution for the precisions parameters of the
evolution errors ωij and νij by eliciting ψω ∼ Gamma(0.01, 0.01) and ψν ∼ Gamma(0.01, 0.01)..

The models are fitted collecting 1000 MCMC iterates after discarding the first 500 as the
burn-in period and thinning by 10. For the DLD model with random degradation baseline, the
thinning used is 30. Such MCMC parameters are also assumed in the case studies discussed in
Section 2.5. The failure time for the ith unit under test, related to the rth replication, Tir, is
estimated through the posterior mean T̂ir of the predictive distribution. To evaluate the model
fitting quality, we consider the bias and the mean squared error (MSE) given, respectively, by

Bias = 1
nR

∑n
i=1

∑R
r=1

(
Tir − T̂ir

)
and MSE = 1

nR

∑n
i=1

∑R
r=1

(
Tir − T̂ir

)2
.

2.4.1 Simulation I: Analyzing Weibull data

In this scenario, data are generated from the model Yij = βitij+ϵij assuming ϵij
iid∼ N(0, σ2

ϵ =

0.22) and βi
iid∼ Weibull(κ = 4.5, λ = 2.2), i = 1, . . . , n and j = 1, . . . ,m. To evaluate the effect

of the number of degradation paths in the posterior estimates, we generate the data assuming
n = 15 and n = 30. The true failure time for the ith unit Ti is given by Dfβ

−1
i , which is known

from the beginning in non-dynamic models. Figure 2.3 shows the degradation paths for one of
the generated data sets in which we assume n = 15. It also shows how samples with m = 10 and
m = 20 measurements are obtained. In this scenario, the observed degradation paths present
a random fluctuation around a straight line which is expected whenever the true degradation
path is linear.

Table 2.1 shows the bias and MSE for the posterior mean estimates of the failure times. It
also shows the covering percentage of the 95% highest posterior density (HPD) intervals of the
failure times for the units under test provided by WLD and DLD models. On average, both
models overestimate the true failure times of the units under test. The exception occurs if we
fit the Weibull model to a scenario where there are n = 30 units under test and the degradation
was measured in m = 20 different time intervals. Biases and MSE are smaller if the Weibull
model is fitted. However, the coverage percentage of HPD intervals is below 95% under the
Weibull model. Doubling the number of degradation measurements by letting m = 20, there
is an improvement in both models’ performance with a great reduction in the bias and the
MSE. In these cases, the proposed and Weibull degradation models produce comparable point
estimates for the failure time. The impact in the accuracy of failure time estimates is less evident
if we increase the number n of sample units under test. Although there is a bias reduction, the
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Figure 2.3: Example of the generated data with n = 15 units and how samples with m = 10 and m = 20
measurements are obtained, Weibull scenario.

MSE increases in almost all cases. These findings suggest that the increase in the number of
degradation measurements should be preferred instead of increasing the number of sample units
under test to obtain better estimates in degradation tests.

Table 2.1: Bias and MSE for the posterior means and the coverage percentage (CP) of the 95% HPD intervals
for the failure time for units under test by fitting WLD and DLD models, Simulation I.

n=15 n=30

m Model Bias MSE CP Bias MSE CP
10 WLD -0.004 0.042 93.013 -0.001 0.043 93.527

DLD -0.021 0.066 96.707 -0.016 0.087 97.087
20 WLD -0.002 0.004 93.400 0.001 0.006 94.280

DLD -0.004 0.014 97.333 -0.003 0.014 98.053

2.4.2 Simulation II: Normal data under dynamic structure

In the second scenario, data are generated from the dynamic model in (2.3) assuming
λij = 0 for all i and j. We assume σ2

ϵ = 0.122 and β0i
iid∼ N(2.2, σ2

ϵ = 0.452). To evalu-
ate the effect of the evolution variability in the posterior estimates, we consider σ2

ω = 0.012,

0.022, 0.032, 0.042 and 0.052. The degradation paths are sequentially generated assuming n =

15 until they reach the degradation threshold. As the degradation measurements for a given
unit are subject to both the observational ϵij and the evolution ωij errors, more unstable degra-
dation paths are expected. Besides, differently from what is obtained for Weibull data, the
initial degradation rates do not bring direct information about the true failure time. To define
the true failure time Ti for unit i, we consider the degradation rate βiki in the time interval
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immediately before path i reaches the threshold Df . Thus, the true failure time Ti for unit i is
defined as Ti = Dfβ

−1
iki

.
Figure 2.4 presents the degradation paths for a simulated data set considering σ2

ω = 0.052.
As expected, in this scenario, at least for part of the units, the behavior of the degradation
paths changes along the time pointing out that the degradation rates for such units can not
be constant as assumed in linear models. In this scenario, it will be more difficult to correctly
estimate the real failure of these units.
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Figure 2.4: Example of the generated data with σ2
ω = 0.052 and how samples with m = 10 and m = 20

measurements are obtained, dynamic normal data.

Table 2.2 shows some summaries we obtain by fitting WLD and DLD models to analyze
these data. On average, the true failure times for the units under test are underestimated by
both models. In general, the DLD model performs better producing less biased estimates with
smaller MSE. As in the previous scenario, the posterior estimates are improved if we consider
a high number o degradation measurements (m = 20) for each device. By assuming a high
number of degradation measurements by units, estimates experience a reduction in both, the
bias and the variability, and become more precise.

The evolution variance σ2
w impacts the quality of the posterior estimates. The greater the

evolution variability, the worse the posterior estimates for the failure time are. It is worth
mention, the poor performance of WLD for large values of σ2

ω. For instance, for samples with
m = 20 and σ2

ω ≥ 0.03, the coverage percentage of the HPD interval with probability 0.95 is
higher than 74% if we fit the DLD model, and is smaller than 50% if data are analyzed using
the WLD model. In conclusion, by fitting the WLD model, which assumes that the degradation
rates do not evolute through time, we poorly estimate the failure time for the majority of the
generated samples possibly leading to wrong decisions about the system reliability.
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Table 2.2: Bias and MSE for the posterior means and the coverage percentage (CP) of the 95% HPD intervals
for the failure time for units under test by fitting WLD and DLD models, Simulation II.

Scenario m Model Bias MSE CP

σ2
w = 0.012

10 WLD 0.004 0.016 78.133
DLD 0.001 0.019 89.467

20 WLD 0.003 0.007 72.667
DLD -0.001 0.007 92.200

σ2
w = 0.022

10 WLD 0.023 0.104 54.680
DLD 0.020 0.106 69.764

20 WLD 0.021 0.067 53.401
DLD 0.011 0.062 84.714

σ2
w = 0.032

10 WLD 0.043 0.160 43.333
DLD 0.036 0.165 58.733

20 WLD 0.036 0.094 46.067
DLD 0.018 0.077 81.467

σ2
w = 0.042

10 WLD 0.063 0.323 35.102
DLD 0.050 0.317 48.707

20 WLD 0.056 0.191 41.293
DLD 0.037 0.152 78.095

σ2
w = 0.052

10 WLD 0.145 0.867 31.271
DLD 0.130 0.840 41.10

20 WLD 0.120 0.582 39.381
DLD 0.080 0.467 74.502

2.4.3 Simulation III: Heterogeneous degradation paths

This scenario was inspired by the IRLEDs degradation data presented in Figure 2.2, in which
the units degradation paths do not assume the same functional form. The goal is to show the
flexibility of the proposed model to analyze heterogeneous population where the degradation
paths assume different shapes which can be linear non-linear.

The linear paths are generated from the model Yij = βitij + ϵij where βi
iid∼ Weibull(κ =

5, λ = 2), i = 1, . . . , n and j = 1, . . . ,m. For the degradation paths that do not have linear
trajectories, the degradation paths are generated from the model Yij = βi

√
tij + ϵij where

βi
iid∼ Weibull(κ = 10, λ = 5), i = 1, . . . , n and j = 1, . . . ,m. In both cases, the observational

errors ϵij have a centered normal distribution and two values are assumed for the variance,
σ2
ϵ = 0.22 and 0.52. The true failure time for the ith unit Ti is given by Dfβ

−1
i and (Dfβ

−1
i )2 for

linear and non-linear degradation paths, respectively. The number of linear degradation paths
nl and non-linear degradation paths ns are chosen such that nl + ns = n = 15. We consider
m = 20 degradation measurements. Figure 2.5 presents the degradation paths for a simulated
data set considering σ2

ϵ = 0.22, nl = 10 and ns = 5.
To analyze the data, we fit the linear Weibull degradation model (W) and the dynamic

linear degradation models with (DI) and without (D) dynamic baseline degradation. Table 2.3
shows that, in general, all models produce better estimates for the failure time in scenarios
with few units presenting non-linear behavior. Both dynamic degradation models presented
good performance and outperform the Weibull model in all scenarios showing their flexibility
to model degradation data coming from heterogeneous populations. The DI model provide less
biased estimates for the failure time in all scenarios and the higher CP for the HPD with
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Figure 2.5: Example of a generated data with σ2
ϵ = 0.22, nl = 10 and ns = 5.

probability 0.95 whenever there is more variability in the model error (σ2
ϵ = 0.52). Although

part of the data set favors the Weibull linear degradation model, Table 2.3 shows that it has
the poorer performance providing more biased estimates, the highest MSE and the worse CP
for the HPD with probability 0.95 in all scenarios. Its performance is even worse in scenarios
with few units presenting linear behavior.

Table 2.3: Bias and MSE for the posterior means and the coverage percentage (CP) of the 95% HPD intervals
for the failure time for units under test by fitting the linear Weibull degradation model (W) and dynamic linear
degradation models with (DI) and without (D) dynamic degradation baseline Simulation III.

σ2
ϵ = 0.22 σ2

ϵ = 0.52

Model Bias MSE CP Bias MSE CP

nl = 10 and ns = 5
W 0.249 0.421 73.467 0.262 0.523 75.800
D 0.082 0.183 91.000 0.082 0.343 89.733
DI 0.054 0.152 84.533 0.057 0.222 92.667

nl = 5 and ns = 10
W 0.515 0.918 54.133 0.472 0.795 56.200
D 0.184 0.348 86.400 0.137 0.385 85.533
DI 0.101 0.358 71.667 0.125 0.428 88.733

2.5 Case Studies

In this section, we analyze the two data sets presented in the introduction: laser emitters
[Hamada, 2005; Meeker and Escobar, 1998] and IRLEDs [Yang, 2007] datasets. To analyze both
datasets, Weibull and dynamic degradation linear models without intercept are fitted assuming
the same prior specifications considered in the simulation studies. Given the non-linear feature
of IRLEDs data, this dataset is also analyzed using the dynamic model with intercept varying
along the time presented in expression (2.3). In this case, we additionally assume that, a priori,
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ψν = σ−2
ν ∼ Gamma(0.01, 0.01). To evaluate the computational times, both applications were

fitted on an Intel (R) Core (TM) i7-8550U 1.80GHz CPU with 8GB RAM
One of the main goals in reliability studies is the time-to-failure forecasting. In degrada-

tion trials, such a prediction is directly influenced by the model’s capacity of predicting new
degradation measures. In the following, we start evaluating the performance of DLD and WLD
models to forecast new degradation measures in the unit under test considering both dataset.
The Appendix brings a third study case that is an application of the proposed methodology to
the train wheels degradation data [Freitas et al., 2009].

2.5.1 Case study 1: Laser emitters data

As described in Hamada [2005], the light output of laser emitters degrades over time if
working at a fixed operating current. To have a constant light output, we need to increase the
operating current over time. The system degradation is obtained measuring the percent increase
in the operating current relative to the original operating current. The laser dataset in Figure
2.1, previously analyzed by Meeker and Escobar [1998] and Hamada [2005], corresponds to the
laser degradation observed in a sample of n = 15 laser emitters every 250 hours from 0 to 4,000
hours. A total of m = 17 degradation measures is obtained for each laser emitter. A laser fails
when its operating current (degradation path) reaches the threshold Df of 10%.

The mean squared error (MSE), the mean absolute percentage error (MAPE), and the mean
absolute deviance (MAD) for the forecasts (posterior means) for the degradation measurement
are given in Table 2.4. According to all these criteria, the DLD model provides better predictions
for the omitted observations independently of the number of observations we removed from the
dataset. As expected, forecasts many steps ahead lose in quality. Removing around 41% of the
data by selecting l = 7, the predicted value for the degradation experiences great bias and
variability. These results show the existence of a more strong dependence between the future
degradation measures and the last observed measurements in the degradation paths.

Figure 2.6 shows the forecasts and 95% HPD intervals for the omitted degradations obtained
by fitting DLD and WLD models when l = 5, for the three selected laser emitters (Lasers A, B,
and C) shown in Figure 2.1. Corroborating the findings in Table 2.4, the DLD model provides
better forecasts for the omitted degradations. Results for Lasers A and B are much better as
the true values belong to the 95% HPD intervals. Although both models poorly predict the
omitted degradation for Laser C in which the degradation increments are less compatible with
time-invariant assumption required in the usual linear models, the biases are smaller under the
DLD model. The WLD model fails in forecasting the omitted values for Lasers A and C. In
these cases, posterior distributions concentrate most of their probability mass far from the true
values. As it can be noticed, the true values do not belong to the 95% HPD intervals.
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Table 2.4: Forecasting accuracy measurements for WLD and DLD models, laser emitters data.

l 1 2 3 4 5 6 7
Model WLD DLD WLD DLD WLD DLD WLD DLD WLD DLD WLD DLD WLD DLD
MSE 0.11 0.06
MAPE 3.26 2.14
MAD 0.25 0.18
MSE 0.05 0.02 0.13 0.09
MAPE 2.74 1.56 3.65 2.73
MAD 0.19 0.12 0.27 0.22
MSE 0.05 0.01 0.07 0.03 0.15 0.11
MAPE 2.48 1.49 3.20 2.03 4.05 3.19
MAD 0.17 0.10 0.23 0.15 0.30 0.25
MSE 0.08 0.02 0.08 0.03 0.10 0.03 0.19 0.12
MAPE 3.57 1.96 3.09 1.94 3.74 2.08 4.60 3.70
MAD 0.23 0.13 0.21 0.12 0.27 0.15 0.34 0.29
MSE 0.10 0.03 0.12 0.05 0.12 0.05 0.16 0.04 0.24 0.12
MAPE 4.65 2.36 4.38 2.89 3.95 2.77 4.54 2.22 5.33 3.54
MAD 0.28 0.14 0.28 0.19 0.27 0.19 0.33 0.15 0.39 0.27
MSE 0.09 0.05 0.15 0.09 0.17 0.11 0.18 0.11 0.24 0.14 0.33 0.22
MAPE 5.15 3.41 5.79 4.15 5.21 4.06 4.93 3.90 5.68 4.35 6.16 5.16
MAD 0.28 0.19 0.34 0.25 0.33 0.27 0.34 0.27 0.41 0.32 0.46 0.39
MSE 0.05 0.02 0.13 0.09 0.19 0.15 0.21 0.17 0.23 0.19 0.31 0.24 0.42 0.37
MAPE 4.13 2.67 6.14 5.23 6.62 5.98 6.02 5.61 5.93 5.31 6.71 6.20 6.83 6.96
MAD 0.20 0.13 0.33 0.28 0.39 0.35 0.38 0.36 0.40 0.36 0.48 0.45 0.50 0.52
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Figure 2.6: Forecast for l = 5 omitted observations (white squares) considering linear Weibull (dashed line)
and dynamic (continuous line) degradation models for laser emitters A, B and C.
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Table 2.5 displays the posterior estimates for the standard deviation components of both
models. Posterior means and medians provided similar estimates under both models. The model
variability is small under DLD model. By including an evolution component in the model, the
variability associated with the measurement error has an average fall of 41.5%, going from 0.2

in the linear Weibull degradation model to 0.117 in the linear dynamic degradation model.

Table 2.5: Posterior Estimates for the standard deviation components of the fitted models, laser emitters data.

Model Parameter Mean Median St.Dev. HPD 95%
WLD σϵ 0.200 0.199 0.009 [0.183 ; 0.218]

DLD σϵ 0.117 0.117 0.009 [0.101 ; 0.134]
σω 0.054 0.054 0.005 [0.044 ; 0.065]

Figure 2.7 presents the posterior means and 95% HPD intervals for the degradation rates
of laser emitters A, B, and C provided by the DLM (continuous line) and WLD (dashed line)
models.The WLD model assumes that the degradation rate for each unit is time-invariant and
their estimates for Lasers A, B, and C, respectively, are 2.02, 1.62 and 1.67. The DLD model
points out that the degradation rate for Lasers A and B in the first time interval is smaller
than the one provided by the WDL model. Differently of what is obtained fitting the WDL
model, the DLD model indicates that Lasers A and C experience a more intense degradation
in the first six time intervals after which the degradation rate starts to decreases continuously
along the time. In the case of Laser A this rate stabilizes around 1.97 in the last three-time
intervals. The degradation rate for Laser B presents a different behavior, smoothly decreasing
until the eighth time-interval and increasing after that. Assuming the DLD model, there is more
posterior uncertainty about the degradation rates at the beginning of the study. The amplitude
of the 95% HPD intervals are much higher in the first time-intervals than the ones obtained in
the last intervals. This is explained by the small number of degradation measurements that are
available at the beginning of the trial. As new observations are obtained, the amplitudes of the
degradation rate intervals tend to decrease.
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Figure 2.7: Posterior means and 95% credibility HPD intervals for the degradation rates adjusted by WLD
(dashed line) and DLD (continuous line) models for laser emitters A to C
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At the end of the study, the degradation rates provided by DLD and WLD models are
different (see Figure 2.7). This difference influences the estimates for quantities of interest
related to the failure time. Table 2.6 shows, for instance, that the mean time to failure, RUL
and the percentiles of order 2.5%, 10.0%, 50.0% and 97.5%, for Lasers B provided by the DLD
model are smaller that obtained by WDL model. The opposite is observed for Lasers A and C.

Table 2.6: Reliability (R), mean time to failure (MTTF), RUL and percentiles (tp|Y (α|y)) of order α for
the failure time (in 103 hours) posterior predictive distribution for laser emitters A, B and C and a new unit
assuming WLD and DLD models.

Laser Model RT |Y (5000|y) RUL|y MTTF |y tp|Y (0.025|y) tp|Y (0.1|y) tp|Y (0.5|y) tp|Y (0.975|y)

A WLD —— 0.949 4.949 4.850 4.885 4.948 5.047
DLD —— 1.078 5.078 4.945 4.989 5.078 5.214

B WLD —— 2.141 6.141 5.992 6.042 6.139 6.296
DLD —— 1.683 5.683 5.518 5.573 5.681 5.862

C WLD —— 1.982 5.982 5.838 5.886 5.981 6.129
DLD —— 2.472 6.472 6.255 6.328 6.470 6.699

New WLD 0.604 —— 5.093 3.302 3.614 5.267 6.440
DLD 0.658 —— 5.131 3.367 3.535 5.273 6.546

For a new laser emitter, Table 2.6 shows that both models produce similar posterior sum-
maries for the posterior predictive distribution for the failure time being all those summaries a
little higher if the DLD model is fitted. Based on the DLD model, for instance, we conclude that
10% of the laser emitters operating on the same conditions as those in the study will degrade
beyond the threshold of 10% before 3.535 hours. Besides the estimated probability of a new
laser not presenting the fault until the time of 5000 hours is 0.604 in the model Weibull and
0.658 in the dynamic model. To fit the WLD and DLD models, the computational times were
4.24 and 44.85 seconds, respectively.

2.5.2 Case Study 2: IRLEDs data

We analyze the infrared light-emitting diodes (IRLEDs) previously considered by Yang
[2007] and Wang et al. [2017]. IRLEDs are high-reliability optoelectronic devices frequently
used in communication systems. Yang [2007] considers the GaAs/GaAs IRLEDs in which the
wavelength is 880 nm and operates under a design current of 50 mA. The variation ratio of
luminous power is used to measure the devices performances. In an accelerated design, we will
consider the sample of 25 units tested at 170 mA and an operating current of 50 mA. The test
units were inspected for luminous power at 0, 24, 48, 96, 155, 368, 768, 1130, 1536, 1905, 2263,
and 2550 hours. Figure 2.2 shows the values of the variation ratio at each inspection time. A
failure occurs if the ratio is greater than 20%.

Some degradation paths are not linear as, for instance, for IRLEDs A and B. In this case,
the usual structure of the linear degradation models is not appropriated. To analyze the data we
fit the WLD model (W) and two approaches for the DLD model defined in (2.3), one assuming
a simpler DLD model (D) where λij = 0 for all i and j and the other allowing for the dynamic
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degradation baseline λij (DI). Table 2.7 shows the MSE, the MAPE and the MAD for the
forecasts (posterior means) for the l omitted degradation measurements, l = 1, . . . , 5, if these
three models are assumed. As observed in the previous study, forecasts for many steps ahead
are more biased under all models. However, both DLD models have better performance than
the WLD model. By assuming the model DI, we obtained an upper performance mainly to
predict the degradation many steps ahead.

The posterior estimates for σϵ, σν and σω are given in Table 2.8. By assuming that all
variability is only due to the dispersion of degradation measurement around the straight line
βitij, the variance associated with the WLD model is very high and may explain the poor
performance of this model for forecasting. By considering the piecewise linear structure assumed
by the DI model, part of the variability associated with the degradation measures is explained
by the variability inherent to the baseline degradation that is reasonable to expect when facing
the polynomial structure observed in some degradation paths.

Table 2.7: Forecasting accuracy measurements for linear Weibull degradation model (W) and dynamic linear
degradation models with (DI) and without (D) dynamic degradation baseline, IRLEDs data.

l 1 2 3 4 5
Model W D DI W D DI W D DI W D DI W D DI
MSE 15.86 9.96 9.80
MAPE 20.73 13.75 13.17
MAD 3.00 2.14 2.06
MSE 11.77 6.74 6.43 24.94 9.56 6.58
MAPE 21.89 13.47 12.28 27.64 15.09 11.96
MAD 2.76 1.88 1.75 3.84 2.30 1.89
MSE 13.84 5.43 4.18 24.44 9.33 5.44 48.30 25.48 15.21
MAPE 26.01 14.95 12.89 32.37 19.11 14.40 39.78 25.14 17.93
MAD 3.12 1.89 1.63 4.01 2.47 1.85 5.59 3.67 2.63
MSE 11.73 5.92 3.78 32.19 17.96 9.39 53.71 30.56 13.69 89.64 54.58 22.96
MAPE 27.22 17.22 13.42 39.94 25.76 17.83 48.04 30.71 19.92 55.96 39.22 25.53
MAD 2.83 1.91 1.46 4.72 3.29 2.27 6.08 4.28 2.78 7.77 5.79 3.83
MSE 7.83 2.68 1.42 29.45 13.38 5.00 67.80 37.15 15.71 108.08 60.54 23.23 168.88 100.69 40.25
MAPE 30.82 15.19 11.86 44.48 26.84 17.55 60.10 39.78 25.94 69.15 47.36 31.19 78.86 55.99 36.75
MAD 2.30 1.26 0.95 4.48 2.96 1.86 6.95 4.96 3.22 8.53 6.21 4.01 10.72 8.11 5.41

Table 2.8: Posterior Estimates for the standard deviation components of the fitted models, IRLED’s data.

Model Parameter Mean Median St.Dev. HPD 95%
W σϵ 2.102 2.098 0.090 [1.933 ; 2.284]

D σϵ 0.143 0.142 0.017 [0.111 ; 0.179]
σω 1.399 1.395 0.097 [1.215 ; 1.590]

DI
σϵ 0.102 0.096 0.033 [0.047 ; 0.168]
σν 0.528 0.526 0.048 [0.438 ; 0.622]
σω 0.114 0.113 0.001 [0.098 ; 0.131]

Table 2.9 shows that the mean times to failure of IRLEDS A, B and C and of a new IRLED
provided by the model DI is higher than that obtained by fitting models D and W. For a new
IRLED operating on the same conditions as the units under test, model DI provides that the
estimated probability of not failing until the time of 5000 hours is 0.328 and is higher than that
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provided by the other two models. Except for IRLED A, in all other cases, estimates for the
percentiles of order 2.5%, 10.0%, 50.0% and 97.5% tend to be higher under dynamic models.

Table 2.9: Reliability (R),RUL , mean time to failure (MTTF) and percentiles (tp|Y (0.025|y)) of order α for
the failure time (102 hours) posterior predictive distribution for IRLEDs A, B and C and a new unit assuming
the Weibull and the dynamic models.

IRLED Model RT |Y (5000|y) RUL|y MTTF |y tp|Y (0.025|y) tp|Y (0.1|y) tp|Y (0.5|y) tp|Y (0.975|y)

A
W —— —— 16.393 15.206 15.605 16.361 17.716
D —— —— 15.584 13.609 14.232 15.507 17.990
DI —— —— 17.216 16.299 16.584 17.178 18.351

B
W —— 4.304 29.304 25.725 26.796 29.168 33.699
D —— 12.005 37.005 30.897 32.677 36.641 45.138
DI —— 23.935 48.935 41.131 42.840 47.664 64.476

C
W —— 81.967 106.967 68.978 77.154 100.438 183.609
D —— 99.392 124.392 71.026 80.698 109.925 254.324
DI —— 102.240 127.240 76.886 85.017 109.500 254.481
W 0.215 —— 39.069 15.768 17.442 32.067 100.285

New D 0.256 —— 43.658 15.270 18.511 36.272 115.543
DI 0.328 —— 46.435 15.778 19.077 40.030 118.361

Regarding the computational times to run this application, it was needed 6.25 seconds and
1.26 minutes, respectively, for the models WLD and DLD without random intercept. To ensure
low autocorrelation in the posterior samples, the DLD model with random intercept required
a longer chain taking 19.15 minutes to run.

2.6 Conclusions

Extending previous works, we introduced a dynamic general path model to handle data
which degradation rate and the baseline degradation are time-variant. The dynamic structure
of the proposed model allows accommodating different behaviors of the degradation paths
including linear and non-linear ones. Thus, the proposed model provides a solution for the
"disadvantage" of the general path models pointed out by Ye and Xie [2015], proposing a
functional form that is not regular along the time also allowing for structural breaks.

The proposed model was fitted to analyze simulated and real datasets. It was compared to
the Weibull linear degradation model introduced by Hamada [2005], a model that is frequently
used to analyze degradation data. We conclude, from the simulations, that the proposed model
has better performance than the Weibull model to analyze data which degradation rate dynam-
ically changes over time. It also shows to be a competitive model to analyze data coming from
a population where the degradation rate for each unit does not change along the time. The
analysis of real datasets showed that, by assuming a dynamic structure, the forecasts for the
degradation measurements are less biased. If we consider forecasts are done many steps ahead,
the proposed model performed much better than the Weibull model.

On the whole, our results show that to introduce "dynamic" in the linear degradation model,
allowing the degradation rate and baseline degradation to evolute along time, produced a com-
petitive model that shows to be a useful approach to model degradation data coming from
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populations with different shapes for the degradation path. Despite its good performance, in
our analysis, we only explore a dynamic model with a normal degradation rate. Possible ex-
tensions of this model may consider different distributions for this rate making the model even
more flexible. Another limitation of the proposed model is the lack of parsimony. Although in
the situations approached in the paper we did not experienced problems regarding the com-
putational cost, the lack of parsimony may lead to a high computational cost if data to be
analyzed are captured in a massive way and with high temporal resolution. To be effectively
used in practical situations like these, we must look for strategies to reduce computational time
without losing the quality in the inferences. A possible way to overcome problems related to
the computational cost is to consider a reparametrization of the model [Aktekin et al, 2018], for
instance, assuming that the degradation rate is decomposed in two components, one represent-
ing the influence of the environment and other representing the time effect on the degradation.
However, there is no guarantee that this structure will provide better inference for the fail-
ure time. This is a new approach for the same problem that demands a deep study involving
theoretical and computational aspects. These are interesting topics for future research.
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Appendix

A1 Case Study 3: Train Wheels Degradation Data

In this appendix, the linear Weibull degradation model and dynamic degradation model without
the random intercept will be used to analyze the train wheel dataset on MA11 position presented
in Freitas et al. [2009] (Figure A1). In the study, 3 wheels failed and, after reaching the critical
degradation threshold, the measurements were no longer collected in these units. Thus, at the
end of 600000 km, 3 degradation paths contain missing data. However, as mentioned in the
paper, dynamic linear models are able to accommodate this data due to their structure.

Note the degradation trajectory of three trains (A, B and C). The first train (A) is the one
that degrades the most in the study, and is no longer followed up after this event. Train B has
a change in the inclination of its trajectory and Train C was the one that degraded the least
during the study. The degradation increments of these three trains are high at the beginning
of the study, as shown in the Figure A1. It is of interest to verify whether the dynamic linear
degradation model can adapt to this oscillation and provide better estimates for the failure
times of the units under test, if compared to the usual linear Weibull degradation model.

For the fit of both models, the time was transformed so that the unit of measure is 104

Km. Initially, the performance of the linear Weibull and dynamic degradation models are com-
pared considering their predictive capacity by omitting observations from the database. In this
context, the last m observations of each degradation path were removed, with m = 1, 2, . . . , 6,
representing the omission of approximately 46% of the data. Table A1 presents the predic-
tion accuracy measures MSE, MAPE and MAD calculated for the withdrawn observations. In
all scenarios, the dynamic linear degradation model presented lower values of the predictive
accuracy measures, indicating a better capacity to accommodate the omitted observations.
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Figure A1: Degradation paths of train wheels degradation data of position MA11 and increments for some
units under test

Table A1: Predictive accuracy measures for the linear Weibull (W) and dynamic (D) degradation models (train
wheels degradation data)

m 1 2 3 4 5 6
Model W D W D W D W D W D W D
MSE 2.10 0.21
MAPE 2.45 0.56
MAD 1.03 0.25
MSE 1.57 0.11 3.17 0.45
MAPE 2.39 0.49 3.06 1.04
MAD 0.93 0.19 1.28 0.45
MSE 1.59 0.28 2.59 0.70 4.78 1.59
MAPE 2.63 0.74 3.06 1.16 3.78 1.74
MAD 0.93 0.29 1.19 0.47 1.58 0.76
MSE 1.02 0.04 2.47 0.50 3.78 1.09 6.61 2.20
MAPE 2.72 0.58 3.40 1.26 3.84 1.70 4.61 2.33
MAD 0.83 0.15 1.19 0.44 1.48 0.65 1.90 0.97
MSE 1.21 0.04 1.98 0.12 4.00 0.60 5.79 1.24 9.62 2.41
MAPE 3.03 0.72 3.74 1.23 4.42 1.91 4.86 2.35 5.70 3.02
MAD 0.89 0.19 1.16 0.33 1.55 0.64 1.87 0.87 2.35 1.21
MSE 2.08 0.52 2.79 0.64 4.28 1.23 7.48 2.95 10.25 4.64 16.11 7.54
MAPE 3.77 1.56 4.35 2.13 5.15 2.78 5.83 3.44 6.26 3.87 7.21 4.66
MAD 1.00 0.41 1.28 0.60 1.62 0.83 2.06 1.19 2.44 1.48 2.99 1.92
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Figure A2 shows the prediction for m = 5 withdrawn observations. The dashed lines repre-
sent the posterior means and the HPD intervals with 95% credibility for the fit associated to the
Weibull linear degradation model. The solid lines represent the posterior estimates associated
to the dynamic linear degradation model, together with the 95% credibility HPD intervals.
Predictions for train A are identical for both models. This result is expected, as only one ob-
servation was omitted in this case, as the train failed and the wheel was no longer observed. In
trains B and C, the prediction provided by the linear dynamic degradation model was superior
to that obtained by the linear Weibull degradation model.

Figure A2: Forecast for l = 5 omitted observations (white squares) considering linear Weibull (dashed line)
and dynamic (continuous line) degradation models for trains A, B and C.

When fitting the dynamic linear degradation model, the variability associated with the
measurement error has a drop of 56.8 %, on average, from 0.944 to 0.408, as shown in Table
A2.

Table A2: Posterior estimates of the variance components for the linear Weibull (W) and dynamic (D) degra-
dation models (train wheels degradation data)

Model Parameter Mean Mode Std. Dev. HPD 95%
W σv 0.944 0.941 0.053 0.983 1.048

D σv 0.408 0.406 0.045 0.325 0.498
σw 0.028 0.028 0.002 0.023 0.033

The degradation rates estimated by the two models are shown in Figure A3. The dashed and
continuous lines show the posterior mean estimates and 95% credibility intervals, considering
the linear Weibull and dynamic degradation models, respectively. All the train wheels have a
decay pattern of estimates, which at the end of the test are smaller than those recorded by the
linear Weibull degradation model. Due to the presence of missing data in the units under test
that failed (Train A), the degradation rates are not of interest after the failure.
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Figure A3: Posterior means and 95% credibility HPD intervals for the degradation rates adjusted by WLD
(dashed line) and DLD (continuous line) models for trains A to C

Considering the inferential methods presented in the paper, Table A3 presents a summary
of the predictive posterior distribution of the failure times for trains A, B, C and a future unit
considering the linear Weibull and dynamic degradation, respectively.

Table A3: Reliability (R), mean time to failure (MTTF), RUL and percentiles (tp|Y (α|y)) of order α for the
failure time (in 104 km) posterior predictive distribution for trains A, B and C and a new unit assuming WLD
and DLD models.

Laser Model RT |Y (300000|y) RUL|y MTTF |y tp|Y (0.025|y) tp|Y (0.1|y) tp|Y (0.5|y) tp|Y (0.975|y)

A W —— —— 35.656 35.237 35.384 35.653 36.087
D —— —— 35.774 35.440 35.556 35.772 36.111

B W —— 20.064 80.064 78.884 79.279 80.057 81.293
D —— 23.736 83.736 82.544 82.966 83.732 84.918

C W —— 160.513 229.513 219.935 223.230 229.371 239.857
D —— 174.951 234.951 226.007 229.027 234.852 244.748

New W 0.929 —— 105.716 27.537 35.599 98.661 231.299
D 0.857 —— 106.851 27.604 35.730 98.562 236.615

The MTTF estimated by the linear Weibull degradation model for trains A, B , C and a
future unit are lower than the observed in the dynamic linear degradation model. The estimated
reliability for a future unit at the distance of 300000 km has a drop from 0.929 in the Weibull
linear degradation model to 0.857 in the dynamic linear degradation model.



Chapter 3

Dynamic Multivariate Gamma Model: a
General Path Approach for Positive
Degradation Measurements

Abstract

The reliability of highly reliable systems is assessed through degradation mechanisms. Generally,
degradation measures are positive and the degradation rate is related to the conditions of use
and the quality of materials used in the devices’ production. We introduce a general path Gamma
model for degradation measures, which are related to different functions of the inspection times,
obtaining flexible forms of degradation paths. The degradation rate evolves through time and
depends of two components. One quantifying the specific features of each device and a dynamic
one, common to all devices, measuring the impact of the environment. The model is identifiable
under mild constraints. Besides producing gains regarding the interpretability of the parameters,
this decomposition generates a parsimonious model, reducing computational time. The relation
between degradation and failure time is obtained, allowing a computational approximation for
the failure time distribution. The model performance is evaluated through simulation helping to
guide the prior specifications to model identification. The proposed model is applied to analyze
fatigue crack-size and stress relaxation data. Results show that the proposed methodology is
competitive to predict failure times and to estimate the remaining useful life.

Keywords: Failure Time, Degradation rate decomposition, Model identifiability, Re-
liability

53



3 INTRODUCTION 54

3.1 Introduction

When studying highly reliable devices, a great challenge is to find summaries of the lifetime dis-
tribution, such as the quantiles or the remaining useful life (RUL). For such devices, the number
of failures is small or null, making lifetime models inapplicable to infer about the system reli-
ability. To access lifetime information, it is necessary to know the underlying mechanism that
produces the failure. Once find this mechanism, an experiment based on a repeated measure of
the degradation is performed to evaluate the evolution of the system degradation through time,
and a failure is detected if the cumulative degradation reaches a pre-defined threshold. The sys-
tem reliability is, thus, measured indirectly through data related to a degradation mechanism.

Among the main approaches for analyzing degradation data are the class of stochastic
process models [Bagdonavicius et al., 2010; Doksum and Hoyland , 1993; Law and Crowder,
2004; Sun et al., 2021; Wang et al., 2017], and the general degradation path models [Hamada,
2005; Lu and Meeker , 1993; Meeker and Escobar, 1998; Oliveira et al., 2018; Robinson and
Crowder, 2000]. An overview about these classes of models can be found in Ye and Xie [2015].

The Wiener process has become a popular approach in the class of degradation models based
on stochastic process because it has excellent mathematical properties and physical interpre-
tations. However, it is not appropriate for modeling monotonic degradation. More recently,
Wang et al. [2018] introduced a generalized Gaussian degradation process with a linear mean
and a quadratic variance which accounts for both increasing and decreasing variance. Despite
their flexibilities, Gaussian and Wiener processes are inappropriate to account for degradation
measures assuming values in the 0-1 interval. A strategy to handle data with this feature is
discussed by Ling et al. [2014] which fitted a Gamma process to the log-transformation of the
degradation measurements.

The delay time models, for example, consider that the degradation process is divided into
two phases: the detection of the defect and the deterioration until the occurrence of the failure
[Wang , 2012]. As mentioned by Wang et al. [2019] the system degradation may experience dif-
ferent phases degrading slowly in some stages and faster in others. In these cases, degradation
models assuming a single functional form to the whole deterioration process are inappropriate.
A popular approach to handle this type of degradation data is change points degradation mod-
els [Chen et al , 2021; Wang et al., 2019]. Wang et al. [2019] focused on two-stage degradation
processes and assumed a normal model where the correlation among the degradation measure-
ments after the change point presents a quadratic regularity. Chen et al [2021] developed a
two-phase Gaussian process with a time transformation where the variance structure represents
linear or nonlinear paths in both monotonic and non-monotonic dispersity situations. Another
approach to this problem is given by Wang et al. [2020] that proposed a mixed-effect model
based on the Wiener process to two-phases degradation model that simultaneously considers
phases correlation and unit heterogeneity. Kumar and Gardoni [2014] proposed a renewal
theory-based model for life-cycle analysis in deterioration systems providing the equations of
the instantaneous probability of the system being in service and age of the system in finite time
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horizon. Peng et al. [2016] addressed the problem where several different and dependent degra-
dation indicators may influence the system reliability. They also assume that these degradation
indicators are affected by non-constant external factors. The multivariate model proposed by
these authors correlates the degradation of the different indicators at the same time, and the
random unit-to-unit effect correlates the measurement at the same unit. Environmental con-
ditions (temperature, humidity, etc.) that may change during the study are included in the
model throughout covariates allowing for changes in the rate of the Wiener process and the
mean Inverse-Gaussian process. This approach allows obtaining important life-cycle variables
such as the system reliability and time lost in repair. The shock model is another way to model
damages produced by random shocks [Esary et al. , 1973; Li and Luo , 2005]. Kumar et al.
[2015] proposed a model that combines an independent shock and gradual deterioration pro-
cesses to address the problem of system failures that originate from both demand exceeding
capacity and accumulated damage exceeding a threshold. In this model structure, it is assumed
that the state variables (material, structural properties, etc.) at the time of the shock are inde-
pendent of the shock deterioration and the sequence of shocks are independent and identically
distributed. Jia and Gardoni [2018A,B, 2019] proposed different approaches for modeling dete-
rioration processes that allow identifying multiple deterioration processes and their interactions
by modeling the changes in the system state variables due to different deterioration processes.
This approach is based on a renewal theory life-cycle analysis with state-dependent stochas-
tic models. It produces more flexible models removing some strong assumptions under which
Kumar et al. [2015] model is built. Under this new structure, the change of the system state
variable (material, structural properties, etc.) is time-variant due to different deterioration pro-
cesses. Chang et al [2021] approaches dependent degradation-shock failure processes proposing
a model where the degradation rates increase with the degradation levels. In contrast, hard
failure thresholds decrease if the system degradation reaches certain critical levels.

General degradation path models is an approach for repeated-measures designs that assume
a random effect to correlate the degradation measures performed in the same unit. The general
path models, that is the approach adopted in this paper, assumes that the relationship between
time and degradation is given by a function D(·;β) where the random effects β account for
the correlation among the degradation measures and is related to the rate in which the devices
degrade. Different data features may be accommodated assuming different structures D(·;β) or
different distributions for the random effects β. Linear models have been discussed by Lu and
Meeker [1993], Lu et al. [1996], Hamada [2005], Kim and Bae [2017], Oliveira et al. [2018] and
many others. Non-linear degradation models are presented in Robinson and Crowder [2000] and
Guida et al. [2015], for instance. Recent developments in this field include degradation models
for devices coming from different populations. ? assumed a finite mixture of normal distributions
to model the behavior of the degradation rate in the linear degradation model. Santos and Loschi
[2020] introduced semi-parametric degradation models based on the Dirichlet process mixture
of both, normal and skew-normal distributions, for the random effects. Another approach for
heterogeneous population is considered by Wang et al. [2021] which introduced a random-
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effects Wiener process model to account for the unit-to-unit heterogeneity in the degradation.
A generalized inverse Gaussian (GIG) distribution models the unit-specific degradation rate
behavior.

We will focus on the general degradation path model that experiences non-linear or poly-
nomial structures for the trajectories like those shown in Figure 3.1. The fatigue crack size
dataset given in Figure 3.1a was analyzed by Meeker and Escobar [1998] considering a general
degradation path model adapted to convex trajectories. This figure exhibits the accumulated
size of fatigue cracks, in inches, as a function of the number of cycles for 10 test specimens.
Figure 3.1b displays the degradation paths of the stress relaxation of 6 units tested at 100ºC.
Yang [2007] and Wang et al. [2016] fitted inverse Gaussian processes to model these degradation
paths. More details and physical characteristics of the degradation data shown in Figure 3.1
can be found in the cited references.
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Figure 3.1: Fatigue crack size data (a) and Stress relaxation data (b)

General path models usually assume the same functional form for all trajectories and that
the degradation rate only depends on the individual features of the devices, such as variations in
the properties of the raw materials in the production process. It is also assumed that the units
degradation rates do not vary along time. These assumptions can be a substantial simplification
of reality. The rate at which the units degrade may evolve through time and is not only affected
by the quality of the materials. The impact of the environment, under which all units are
subjected, may affect the rate at which the devices degrade through time, producing changes
in the degradation paths. To handle time-variant degradation rates, a common approach is to
include into the model covariates evolving through time such as temperature, pressure, humidity
and others. However, in some degradation trials, such covariates are not available.

Dynamic models can be used to circumvent the imposition of a regular functional form that
controls the behavior of degradation trajectories. Such models provide a piecewise approxima-



3 INTRODUCTION 57

tion for the true degradation path, better accommodating the oscillations during the study. In
the reliability literature, dynamic approaches of general path models are not commonly used
to analyze degradation data. Jiang and Yongcang [2002] model each degradation path as a
Markovian process. The dynamic general degradation path model introduced by Hong et al.
[2015] considers individual random effects to describe degradation paths and assumes a time
series model to describe the dynamic covariate behavior influencing the degradation process.
Veloso and Loschi [2021] proposed a dynamic linear degradation path model with degradation
baselines and rates varying over time. As this dynamic structure provides a local linear ap-
proximation for the true degradation path, this model may accommodate different shapes for
the degradation paths providing a way to handle data on heterogeneous populations. All these
models consider a normal distribution for the observed degradation measures.

Considering the different factors that influence the intensity in which the process degrades
and assuming that the degradation measures are necessarily positive, we develop (Section 2)
a dynamic multivariate gamma model (DMGM) under the general path models approach. To
circumvent the absence of time-variant covariates explaining the degradation rate, we assume
that the degradation rate associated with the DMGM depends on two random effect compo-
nents: a unit-specific component measuring the effect of particular features of the devices, such
as the materials’ quality they are made of, and a dynamic component measuring the effect of
the typical environment to which all units under test are subject. The proposed model also ac-
commodates different forms of the degradation trajectories, including that shown in Figure 3.1,
as it assumes that the degradation measures are related to different functions of the inspection
times. Thus, the model developed by Aktekin et al. [2021] for positive time series is a particular
case of our approach. It also introduces a time-variant discount factor which is essential when
the degradation data have not equidistant inspection times as noted in the data given in Figure
3.1b. This assumption produces a more flexible model, as it allows controlling the amount of
information passed from one inspection time to the next, accommodating different degrees of
uncertainty about the effect of time on the degradation rate over time.

Besides the traditional time to failure analysis, the proposed approach allows for a deeper
understanding of the degradation mechanism. As in other general path degradation models,
we infer the unit-specific effect on the degradation rate. Additionally, this approach allows us
to evaluate the time influence in the devices’ degradation capturing smooth changes on the
degradation rate along the time. To the best of our knowledge, this type of decomposition
has not being previously considered in degradation studies using general path models. Another
advantage of assuming the decomposition related to the proposed degradation rate is to obtain
a parsimonious dynamic model and, consequently, more computational efficiency. However,
by doing so, the model becomes non-identifiable. Non-identifiability issues usually bring some
challenges for modeling since to estimate the model, constraints should be imposed on the
parametric space, or additional information about the parameters is required [Rothenberg,
1971]. For the proposed model, however, this is not a cumbersome problem as identifiability is
obtained by specifying an informative prior distribution for the effect on the degradation rate
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of the time of use of the devices before starting the degradation test. If all devices are new, this
prior distribution should reveal a null expected time effect. We discuss the model identifiability
in Section 3.2.1 formally presenting the constraints for its identification.

The unknown parameters of the DMGM are estimated considering a MCMC approach
discussed in Sections 3.2.2.1 and 3.2.2.2. In Section 3.3, the relation between the failure time
and the parameters of the model is established, and the inference for the failure time distribution
is conducted for future and under test units. These results are essential to access, for instance,
the RUL and the system reliability. To that end, we need to discuss forecasting procedures for
future degradation measures under the gamma model, providing another extension of Aktekin et
al. [2021]. We run simulation studies (Section 3.4) to evaluate the performance of the proposed
model in different scenarios. This study also provides some guidelines to specify the prior
distributions for parameters involved in the model identification constraints. We apply the
proposed model (Section 3.5) to analyse the fatigue crack-size [Meeker and Escobar, 1998] and
the stress relaxation [Yang, 2007] datasets. Section 3.6 closes the paper with some discussion
and main conclusions.

3.2 Dynamic Multivariate Gamma Model

Let Yij be a positive degradation measurement for the ith experimental unit accumulated
until the jth inspection time, i = 1, 2, . . . , n, j = 1, 2, . . . ,mi, where mi is the number of
degradation measures collected for unit i. Suppose that, at each inspection time interval, all
units under test are subject to the same random influence of the environment and that such
environmental effect varies over time. Denote by ψij the random component that represents the
joint effect of the i-th unit feature at the j-th measurement instant in the degradation paths.
Let Ψ = (ψ11, . . . , ψnmn) and t = (t11, . . . , tnmn) where tij is the jth inspection time for unit i.
Assume also that, given Ψ and t, the positive degradation measures for all units under test,
(y11, . . . , ynmn), are independent and subject to the same degradation structure such that

Yij|Ψ, t
ind∼ Gamma (g(tij), ψij) , i = 1, 2, . . . , n, j = 1, 2, . . . ,mi. (3.1)

where g(tij) is a positive increasing function of tij characterizing the form of the true degradation
path D(tij,Ψ). Under this assumption, the true degradation path is given by the expected of
expression (3.1), that is, D(tij,Ψ) = E(Yij|Ψ, t) =

g(tij)

ψij
. If the degradation path is linear g

should be a identity function. For degradation paths behaving as that in Figures 3.1 (a) and
3.1 (b), the function g(tij) should be equal to t2ij and

√
(tij), respectively.

The model in (3.1) is over-parameterized which can lead to a high computational time to es-
timate the parameters. Besides this parametrization does not allow us to separately distinguish
the effect of time and of the specific feature associated to each unit in its degradation. The
identification of these effects is an important tool to understand the mechanisms underlying
the degradation process.
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To obtain a parsimonious and more conveniently interpretable model, we assume that the
intensity with which devices degrade is determined by two factors: the specific features of each
unit, that does not change during the trials, such as variations in the raw materials from which
they are produced, and the environmental conditions they are exposed to, such as temperature
and pressure. To take these two features into account, we decompose ψij in a product of two
components letting ψij = λiθj where λi > 0 is the static and specific component of unit i and
θj > 0 represents the random effects that capture the common influence of environment at the
jth inspection time. Considering this new parametrization, the vector of parameters becomes
Ψ = (λ,θ), where λ = (λ1, . . . , λn), θ = (θ1, . . . , θJ) and J = max{mi, i = 1, 2, · · · , n}. If
mi < J , for some unit i, or if some degradation measures are not observed, data imputation
procedures can be considered to impute the missing observations. In dynamic models, data
imputation is easily implemented in the state components inferential process using procedures
discussed in Petris et al. [2009].

The observational equation can be rewritten as

Yij|Ψ, t
ind∼ Gamma (g(tij), λiθj) , i = 1, 2, . . . , n, j = 1, 2, . . . ,mi. (3.2)

Independence is a strong assumption whenever we deal with longitudinal data. However,
the model in (3.2) is based on a weaker assumption as independence only follows conditionally
on the parameter. Under this model structure, we consider that the degradation measures for
the ith unit under test, Yi1, Yi2, . . . , Yimi

, are independent given θ, λ and t. Similar hypoth-
esis is assumed for the degradation measures at the jth inspection time by considering that
Y1j, Y2j, . . . , Ynj are independent conditionally on θ, λ and t.

By eliciting a prior distribution for the random effect λi quantifying our prior knowledge
about the specific characteristics of the unit i. A prior distribution for the dynamic component
θj measuring the environment effect plays an important role in the model as it correlates the
degradation measurements of all units at the j-th inspection time.

Under the model in (3.2), the instantaneous degradation rate is a function of the static com-
ponent λi and the time-dependent component θj. As the true degradation path is E (Yij|λi, θj, tij) =
D(tij;λi, θj) = (λiθj)

−1g(tij) (λiθj)
−1g(tij), for any differentiable function g, the instantaneous

degradation rate at any time t ∈ [j, j + 1) is (λiθj)
−1 d

dt
g(t). If g is the identity function, the

degradation rate at any time t into the inspection time interval [j, j + 1) is constant and equal
to (λiθj)

−1. Thus, the units under test tend to fail less frequently when the values of θj and
λi are high. If g(t) = t2, the degradation rate assumes different values for any t ∈ [j, j + 1).
For instance, if both, t = 1 and t = 2, belong to the inspection time interval [j, j + 1), the
instantaneous degradation rate at time t = 2 is two times 2(λiθj)

−1 that is the degradation
rate at time t = 1. Fixing λi and θj, both the expectation and the variance of the conditional
distribution for the degradation measurements given in (3.2) increase over time. In fact, we
expect that the units under test are more prone to fail and the variability on the degradation
measures to be higher as the time of operation of the devices increases.
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Besides the gain in interpretability, as it allows to separately infer the environment and
unity-specific effects on the degradation, the decomposition strategy proposed in (3.2) greatly
facilitates the computational implementation of the model. Since θj is a scalar, there is a reduc-
tion in the dimension of the state components requiring less computational effort if compared
to usual dynamic model approach defined in (3.1).

To complete our model specification, we need to specify the prior distributions for all λi
and θj. We assume a priori that the unit-specific effects λi, i = 1, . . . , n, are independent with
the gamma distributions

λi
ind.∼ Gamma(ai, bi) for i = 1, 2, . . . , n, (3.3)

where ai > 0 and bi > 0 are hyperparameters and should be specified to represent the prior
knowledge about how the specific features of unit i affects the degradation rate. This distribution
should reveal our a priori knowledge on how, for example, the raw material the device is made
of affects how quickly the device degrades.

To model the prior uncertainty about the dynamic components θj, we will assume that they
evolve over time, allowing for changes in the degradation rates. This evolution imposes that
the dynamic component at inspection time tij is related to that observed in inspection time
ti(j−1). It is reasonable to assume that the effect of the environment is similar when measured in
close inspection times. To model the time-dependence between the parameters θj ∈ θ, following
Smith and Miller [1986] and Santos et al. [2017], we consider the Markovian evolution equation
given by

θj =
θj−1

γj
ϵj, for j = 1, 2, ..., J, (3.4)

where γj is the discount factor at each inspection time j and the error term ϵj has the following
beta distribution

ϵj|Dj−1,λ, t ∼ Beta [γjαj−1, (1− γj)αj−1] , (3.5)

where αj−1 > 0 and Dj−1 = {Dj−2, Y1,j−1, . . . , Yn,j−1, t1,j−1, . . . , tn,j−1} represents the sequential
arrival of degradation measurements and inspection times. If tij = tj for all units i, following
Santos et al. [2017], we can consider a simpler structure by assuming γj = γzj , with 0 < γ < 1

and, zj = [J(tj − t(j−1))][
∑J

j=1(tj − t(j−1))]
−11{j ≤ mi}, where 1{A} is the indicator function

assuming 1 if event A ocurrs.
At the initial measurement instant j = 0, we assume the prior distribution θ0|D0 ∼

Gamma(α0, β0), where α0 > 0 and β0 > 0 are specified to represent our prior knowledge
about the effect of the environment on the units degradation. We also assume that θ0 and each
of the parameters in λ are independent. For a discussion on how to specify the prior distribution
for θ0 see Sections 3.2.1 and 3.4.

Although the evolution equation given in (3.4) is multiplicative, if considered in the log scale
[Smith and Miller, 1986], it is a random walk. Furthermore, if the inspection times in (3.4) are
equally spaced, it follows that zj = 1 and γj = γ, recovering the discount factor specification
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of the Aktekin et al. [2021]’s model.
Differently from the approach considered by Aktekin et al. [2018] and Aktekin et al. [2021]

that assumes a common discrete discount factor, we suppose that the discount factor γj at each
inspection time j is a function of an unknown parameter γ and varies over time according to
the range of each time interval. This modification in the discount factor makes the model more
flexible controlling the amount of information passed from one inspection time to the next. If
the length of the interval between two subsequent inspection times is large (small), we have a
high (low) uncertainty imposing that the discount factor is small (large). This structure may
be more appropriate to analyze degradation data with non-equidistant inspection times, such
as the stress relaxation data (Figure 3.1b). In our model, we only consider that the discount
factor varies with the range of the interval. Other structures can be assumed for zj as discussed
in Santos et al. [2017].

3.2.1 The Model Identifiability

Although the structure for ψij assumed in equation (3.2) generates a parsimonious dynamic
model that allows for a deeper understanding of the mechanism underlying the degradation
process, the model in (3.2) is non-identifiable. For a non-identifiable model, the likelihood
function associated with the observed sample assumes the same value for a subset A composed
by several different values of the parameters Ψ = (λ,θ), which prevents us to estimate the
parameters exclusively from the observed data. The model is fully identified if the subset A of
such parameters values is empty [Gustafson , 2005].

To learn if the model is identifiable, we should evaluate the likelihood function to assess
whether the data provide enough information to estimate all model parameters Ψ. Regardless
of the paradigm underlying the adopted inferential process, the usual ways to detect an uniden-
tifiable model are to identify whether the Fisher information matrix is singular or whether the
number of independent sufficient statistics is equal to the number of parameters to be estimated
(see Rothenberg [1971] and Gustafson [2005] for more details).

Different approaches are considered to identify the model, thus allowing for its estimation.
We can impose some constraints on the parametric space so that the subset A is empty, for
instance, we can fix part of the parameters in some known values. Another approach is to get
extra information from other sources, such as validation datasets [Rothenberg, 1971]. From
the Bayesian point-of-view, model identifiability is obtained by considering information from
experts to build a prior distribution for the parameters that puts zero probability mass to the
subset A [Gustafson , 2005; Oliveira et al., 2021].

As it will be shown in the following, for the proposed model, lack of identifiability is not
a cumbersome problem. As will be proven, if we assume an informative prior distribution for
the effect on the degradation rate of the devices usage time before starting the degradation
test, then we can estimate all the parameters of the model. These theoretical aspects are not
discussed by Aktekin et al. [2021] which time series model is a particular case of our model.
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Without losing generality, in this section, we consider common inspection times for all units
doing tij = tj, for all i. This is a usual assumption in most degradation experiments. It is
noteworthy that the hyperparameter γ does not play a role in the model identifiability as the
full likelihood of DMGM is free of γ. This parameter is part of the evolution equation and is
accessed indirectly from the information about θ.

Proposition 3.2.1. The Fisher information matrix associated with the proposed DMGM given
in expression (3.2) is singular.

Proof. Considering the assumptions of model in (3.2), the log-likelihood function related to the
DMGM is

l(Y |Ψ, t) =
n∑
i=1

J∑
j=1

[g(tj) log(λiθj)− log(Γ(g(tj))) + g(tj) log(yij)− λiθjyij] , (3.6)

where Y = [Y1,Y2, · · · ,YJ ] with Yj = (Y1j, . . . , Ynj), the degradation measurements collected
at the j-th inspection time, for j = 1, 2, . . . , J . Thus, the Fisher information matrix I(Ψ) for
the DMGM is

I(Ψ) =



∑J
j=1

g(tj)

λ21
0 · · · 0 g(t1)

λ1θ1

g(t2)
λ1θ2

· · · g(tJ )
λ1θJ

0
∑J

j=1
g(tj)

λ22
· · · 0 g(t1)

λ2θ1

g(t2)
λ2θ2

· · · g(tJ )
λ2θJ

...
... . . . ...

...
... . . . ...

0 0 · · ·
∑J

j=1
g(tj)

λ2n

g(t1)
λnθ1

g(t2)
λnθ2

· · · g(tJ )
λnθJ

g(t1)
λ1θ1

g(t1)
λ2θ1

· · · g(t1)
λnθ1

ng(t1)

θ21
0 · · · 0

g(t2)
λ1θ2

g(t2)
λ2θ2

· · · g(t2)
λnθ2

0 ng(t2)

θ22
· · · 0

...
... . . . ...

...
... . . . ...

g(tJ )
λ1θJ

g(tJ )
λ2θJ

· · · g(tJ )
λnθJ

0 0 · · · ng(tJ )

θ2J


. (3.7)

Let Ck be the k-th column of I(Ψ), k = 1, 2, . . . , n + J . Considering the following trans-
formation −λk × Ck if k = 1, . . . , n and θk−n × Ck if k = n + 1, . . . , n + J it follows that
−λ1C1 − λ2C2 − · · · − λnCn + θ1Cn+1 + θ2Cn+2 + · · ·+ θJCn+J = 0. Thus, the columns in (3.7)
are linearly dependent and, consequently, I(Ψ) is a singular matrix.

According to the results obtained in Rothenberg [1971], it is impossible to ensure local
identifiability for regular points in the parametric space Ψ. As local identifiability is a necessary
condition for global identifiability, it follows from Proposition 3.2.1 that the DMGM is globally
non-identifiable.

Proposition 3.2.2. The DMGM defined in equation (3.2) is identifiable if at least one of the
parameters in Ψ is known.

Proof. Without losing generality, assume that θ1 is known. Under this assumption, the Fisher
information matrix associated with the DMGM is obtained removing the row and column
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related to θ1 from the matrix in (3.7). In the resulting Fisher information matrix I(Ψ[−θ1]), the
rows and columns associated with λi are multiplied by 1

λi
, for i = 1, 2, · · · , n and the rows and

columns with respect to θj are multiplied by g(tj)

θj
and 1

θj
, respectively, for j = 1, 2, · · · , J . Thus,

it follows from some properties of matrix algebra that the determinant of I(Ψ[−θ1]) is

|I(Ψ[−θ1])| =
∏J
j=2 g(tj)∏n

i=1 λ
2
i

∏
j ̸=1 θ

2
j

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑J
j=1 g(tj) 0 · · · 0 g(t2) · · · g(tJ)

0
∑J

j=1 g(tj) · · · 0 g(t2) · · · g(tJ)
...

...
. . .

...
...

. . .
...

0 0 · · ·
∑J

j=1 g(tj) g(t2) · · · g(tJ)

1 1 · · · 1 n · · · 0

1 1 · · · 1 0 · · · 0
...

...
. . .

...
...

. . .
...

1 1 · · · 1 0 · · · n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (3.8)

The determinant of the matrix in (3.8) can be calculated by reducing it to a triangular matrix.
For this, we swapped the first with the last row, changing the sign of the determinant. he
resulting triangular matrix is given by

1 1 · · · 1 0 0 · · · 0 n

0
∑J

j=1 g(tj) · · · 0 g(t2) g(t3) · · · g(tJ−1) g(tJ)
...

... . . . ...
...

... . . . ...
...

0 0 · · ·
∑J

j=1 g(tj) g(t2) g(t3) · · · g(tJ−1) g(tJ)

0 0 · · · 0 n 0 · · · 0 −n
0 0 · · · 0 0 n · · · 0 −n
...

... . . . ...
...

... . . . ...
...

0 0 · · · 0 0 0
... n −n

0 0 · · · 0 0 0 · · · 0 −ng(t1)



,

whose determinant is −(
∑J

j=1 g(tj))
n−1nJ−1g(t1). Consequently, the determinant of I(Ψ[−θ1])

is

|I(Ψ[−θ1])| =
nJ−1

[∏J
j=1 g(tj)

]
(
∑J

j=1 g(tj))
n−1∏n

i=1 λ
2
i

∏
j ̸=1 θ

2
j

. (3.9)

As all parameters and functions are positive, the determinant in expression (3.9) will always be
positive. More generally, the same reasoning can be used by fixing any of the other parameters.
Therefore, the resulting Fisher information matrices are non-singular. Since this model belongs
to the exponential family, from Theorem 3 in Rothenberg [1971], the DMGM with at least one
known parameter is globally identifiable.

Another way to verify the model identifiability is to examine if the number of independently
sufficient statistics is equal to the number of parameters to be estimated. The proof and tech-
nical details about this discussion are formally presented in Section S1 of the Supplementary
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Materials.
In degradation trials, it is expected that the effect of time in the device degradation at the

beginning of the experiment is small or null as the devices are usually new. Thus, the initial
degradation rates depend basically on the static component of each unit, and a better learning of
these static components is initially obtained. The random effects of the common environment
will appear during the study if it exists. In practice, it is challenging to establish a prior
knowledge about the effect of the static parameters λi, for i = 1, 2, . . . , n, in the degradation
since these components measure the impact of the devices individual features. It is common to
assume that the units under test are similar and are selected in the same population. Thus, to
identify the model, it is more feasible to place prior knowledge on the initial dynamic component
θ0. If all devices under test are new, we expect a null effect of environment on the degradation
rate at this initial instant. This null effect may be described by a prior distribution for θ0
centered around 1 as such an assumption imposes that E(ψi1) = E(λi)E(θ0) = E(λi). In this
case we may identify the model assuming that, a priori, θ0|D0 ∼ Gamma(α0, β0) such that
E(θ0|D0) = 1. If the environmental effect is expected to be positively high at the beginning
of the experiment, this reveals that prior distribution for θ0 should concentrate its probability
mass in values close to zero.

On the other hand, for example, if the model is fitted to volatility data obtained in several
countries at the same time as discussed in Aktekin et al. [2021], usually, there is available some
prior information about the influence of the more stable economy in the volatility of other
markets. Thus, it could be more natural to identify the model through the prior distribution of
this country’s static component in the evolution of the volatility.

Result in Proposition 3.2.2 provides some mathematical constraints needed to guarantee
that all parameters may be estimated from the observed data. However, even considering such
restrictions, there is no guarantee that all parameters will be well estimated. Theoretical identi-
fiability may not guarantee practical identifiability. Even for an identifiable model, large sample
sizes might be required to obtain reasonable parameter estimates in some situations. However,
some parameters might not be estimated for a nonidentifiable model, even if a large sample
size is available.

3.2.2 Posterior inference

3.2.2.1 The Filtering Distribution

One feature of the DMGM is that it allows analytically treatable sequential filtering, condi-
tioned on static parameters. To obtain the filtering distributions, assume the prior specifications
given in the introduction of Section 3.2. By assuming the distribution for ϵj given in (3.5), it
follows from the state evolution defined in (3.4) that the conditional distribution of the envi-
ronment effect θj at the jth inspection time, given such effect in the previous inspection time
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θj−1, λ, the data information Dj−1 and γ is the scaled beta distribution with density

p(θj|θj−1,D
j−1,λ, γ) =

Γ(αj−1)

Γ(γjαj−1)Γ((1− γj)αj−1)

(
γj
θj−1

)γjαj−1

θ
γjαj−1−1
j

×
(
1− γj

θj−1

θj

)(1−γj)αj−1−1

, 0 < θj <
θj−1

γj
, (3.10)

where αj−1 > 0 and γj ∈ (0, 1), for j = 1, . . . , J . This distribution plays an important role
in updating the dynamic parameters, besides being useful to find the marginal conditional
distribution associated with the degradation measurements.

Another important distribution in the updating of the dynamic components is the posterior
distribution of θj−1, given Dj−1, λ and γ. By assuming, a priori, that θ0|D0 ∼ Gamma(α0, β0)

and sequentially using the Bayes theorem, it follows by that the posterior distribution of θj−1,
given Dj−1, λ and γ, for all j = 1, . . . , J ,

θj−1|Dj−1,λ, γ ∼ Gamma(αj−1, βj−1), (3.11)

where αj−1 =
∑n

i=1 g(tij−1) + γj−1αj−2 and βj−1 =
∑n

i=1 λiyij−1 + γj−1βj−2. The prior dis-
tribution for θj is given by p(θj|Dj−1,λ, γ) =

∫
p(θj|θj−1,D

j−1,λ, γ)p(θj−1|Dj−1,λ, γ)dθj−1.

Considering the results in (3.10) and (3.11), this a priori distribution is

θj|Dj−1,λ, γ ∼ Gamma(γjαj−1, γjβj−1). (3.12)

Considering tj = (tij, t2j, . . . , tnj), the filtering density can be obtained mixing the likelihood
in (3.1) and the prior specification in (3.12) doing p(θj|Dj,λ, γ) ∝ p(Y1j, . . . , Ynj|θj,λ, tj)
p(θj|Dj−1,λ, γ). Thus, the filtering distribution for θj is

θj|Dj,λ, γ ∼ Gamma(αj, βj) (3.13)

where αj =
∑n

i=1 g(tij) + γjαj−1 and βj =
∑n

i=1 λiyij + γjβj−1. Note that the error term
associated to the markovian evolution given in expression (3.4) basically depends on tij. This
means that the inspection times play an important role also in the evolution of the random
effects associated to the common environment.

3.2.2.2 Inference on Unknown Parameters

We use MCMC techniques for sequentially estimate the static parameters λi, i = 1, . . . , n, the
dynamic components θj, j = 1, . . . , J and γ. Samples from the posterior distribution of the
parameters (θ,λ, γ) are generated using the following scheme:

i. Generate θ via p
(
θ|λ, γ,DJ

)
;

ii. Generate λ via p
(
λ|θ, γ,DJ

)
;
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iii. Generate γ via p
(
γ|λ,θ,DJ

)
.

For the first step, we use the non-Gaussian version of the forward filtering and backward
sampling (FFBS). Details on this procedure can be found in Gamerman et al. [2013], Carter and
Kohn [1994], Fruhwirth-Schnatter [1994] and Shepard [1994]. For this step we must notice that
the joint conditional density p(θ|λ, γ,DJ) = p(θJ |λ, γ,DJ)p(θJ−1|θJ ,λ, γ,DJ−1) . . . p(θ1|θ2,λ, γ,D1),

in which the first term is the filtering distribution given in (3.13) associated with the J-th in-
spection time. Using the FFBS, we first generate samples of the last state component θJ using
its filtering distribution and, samples of all other component θj−1, j = J, J − 1, . . . , 2, are
generated, retrospectively, from the following distribution

p(θj−1|θj,Dj−1,λ, γ) =
p(θj|θj−1,D

j−1,λ, γ)p(θj−1|Dj−1,λ, γ)

p(θj|Dj−1,λ, γ)

=
(θj−1 − γjθj)

(1−γj)αj−1−1β
(1−αj−1)αj−1

j−1 e−βj−1(θj−1−γjθj)

Γ((1− αj−1)αj−1)
, (3.14)

if θj−1 > γjθj. The expression in (3.14) is a particular case of the Pearson Type III distribution
[Abramowitz et al., 1988] which is the generalized gamma distribution widely used in hydrologic
frequency analysis.

In the second step, as we assume that the components of vector λ are conditionally in-
dependent, given the dynamic parameters θ and DJ , the posterior full conditional posterior
distribution (fcd) of λi is obtained using the standard procedure and is

λi|θj,DJ , γ ∼ Gamma

(
J∑
j=1

g(tij) + ai,
J∑
j=1

θjyij + bi

)
. (3.15)

To generate from the posterior distribution of γ (Step (iii)), we partially collapse the Gibbs
Sampler integrating θ out. To obtain the posterior fcd of γ free of the θ, considering equations
(3.1) and (3.12), we firstly obtain the distribution of Yij given λ and γ as

p(yij|Dj−1,λ, γ, tij) =

∫
p(yij|θj, λi, tij)p(θj|Dj−1,λ, γ)dθj

=
Γ(g(tij) + γjαj−1)

Γ(g(tij))Γ(γjαj−1)

(
γjβj−1

λi
)γjαj−1y

g(tij)−1
ij(

yij +
γjβj−1

λi

)g(tij)+γjαj−1
. (3.16)

This distribution is a particular case of the gamma-gamma distribution [Bernardo and Smith,
2009]. It is essential when inferring about the failure time of the units under test and future
ones as it allows to find the relationship between the failure time and the model parameters as
we discuss in Section 3.3.

The joint distribution of the measures at the j-th inspection time given λ and γ for all units
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is obtained considering (3.16) and the conditional independence assumptions as

p(Yj|λ,Dj−1, γ, tj) =

∫
p(yj|θj,λ, tj)p(θj|Dj−1,λ, γ)dθj

=
Γ(
∑n

i=1 g(tij) + γjαj−1)∏
i Γ(g(tij))Γ(γjαj−1)

[∏
i

λ
g(tij)
i y

g(tij)−1
ij

]
(γjβj−1)

γjαj−1

×

(
n∑
i=1

yijλi
βj−1

+ γj

)−(
∑n

i=1 g(tij)+γjαj−1)

. (3.17)

Assuming, a priori, that p(γ) ∼ Beta(p, q), q > 0, p > 0, and considering the equation
(3.17), the posterior fcd of γ is

p
(
γ|λ1, . . . , λn, θ1, . . . , θJ ,DJ

)
∝ γp−1(1− γ)q−1

J∏
j=1

p(Yj|λ,Dj−1, γ, tj). (3.18)

This distribution is unknown, and a Metropolis-Hastings step is required to sample from the
posterior of γ. In this step, the candidates are generated from the uniform distribution (0,1).

3.2.2.3 The K-step ahead forecast distributions

In general path models, the forecasting of future degradation measurements plays a vital role
in the development of methods to infer about the failure time.

Considering the proposed model defined in equations (3.1) and (3.4), the K-step ahead
forecast is obtained in two steps: we should first obtain the distribution of θJ+K , givenDJ+K−1,
λ and γ and, after that, we should calculate the distribution of yi(J+K) given DJ , λ, γ and
ti(J+K). For K = 1, such distributions are analytically obtained. The distribution for the one-
step ahead dynamic component is given by

p(θJ+1|DJ ,λ, γ) ∼ Gamma(γJαJ , γJβJ), (3.19)

where αJ , βJ and γJ are as in Equation (3.13). The one-step ahead forecast distribution for
Yi(J+1) is obtained considering the distribution in (3.19) as the mixing distribution and, for
yi(J+1) > 0, is given by

p(yi(J+1)|DJ ,λ, γ, ti(J+1)) =

∫
p(yi(J+1)|θJ+1, λi, ti(J+1))p(θJ+1|DJ ,λ, γ)dθJ+1

=
Γ(g(ti(J+1)) + γJαJ)

Γ(g(ti(J+1)))Γ(γJαJ)

(γJβJ
λi

)γJαJy
g(ti(J+1))−1

i(J+1)(
yi(J+1) +

γJβJ
λi

)g(ti(J+1))+γJαJ
, (3.20)

which is a particular case of the gamma-gamma distribution [Bernardo and Smith, 2009]. For
each unit under test, the future degradation measure one-step ahead is obtained considering
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the posterior mean of the distribution in (3.20) given by

E(Yi(J+1)|DJ ,λ, γJ , ti(J+1)) =
g(ti(J+1))γJβJ
λi(γJαJ − 1)

. (3.21)

In some practical situations, it is of interest to obtain predictions for the degradation mea-
sures K-steps ahead, K > 1 [Peng et al., 2016]. However, the prediction process is challenging
for K > 1 as it is not simple to obtain the distribution for the K-step ahead dynamic com-
ponent. An approximation for such a distribution can be found in Gamerman et al. [2013].
Although promising, in our analysis, this strategy did not provide reasonable forecasts for the
failure time (results not show), generating more biased predictions. Thus, we decided to follow
the forecasting method recommended by Gamerman et al. [2013].

To forecast degradation measures K-step ahead, K > 1, we propose to consider a sequential
analysis incorporating the forecast obtained at step J +1 to forecast the degradation measure-
ment at step J + 2 and so on, repeatedly using expressions (3.19) and (3.20). Considering K
future inspection times, the algorithm for forecasting Yi(J+K) is the following:

1. Fit the model to the observed data and calculate the predictions considering ŷi(J+1) =

[g(ti(J+1))γ̂J β̂J ][λ̂i(γ̂J α̂J − 1)]−1, where ψ̂ denotes the posterior mean of parameter ψ.

2. For k = 2, . . . , K, fit the model incorporating the previous forecast ŷi(J+k−1). Then, cal-
culate

ŷi(J+k) = Ê(Yi(J+k)|DJ+k−1,λ, γJ+k−1, ti(J+k))

= [g(ti(J+k))γ̂J+k−1β̂J+k−1][λ̂i(γ̂J+k−1α̂J+k−1 − 1)]−1. (3.22)

his algorithm is based on the forecast function, which is a conditional expectation of the
following K-step ahead predicted distribution for the i-th unit:

p(yi(J+K)|DJ+K−1,λ, γ, ti(J+K−1)) ≈

=

∫
p(yi(J+1), . . . , yi(J+K)|DJ+K−1,λ, γ, ti(J+k−1))dyi(J+1):(J+K−1)

=

∫ K∏
k=1

p(yi(J+k)|DJ+k−1,λ, γ, ti(J+k−1))dyi(J+1):(J+K−1),

where the setD is augmented adding the previous forecasts, thenDJ+K−1 = {DJ , ŷi(J+1), . . . , ŷi(J+K−1)},
for i = 1, . . . , n. To draw a sample of joint future values yi(J+1), . . . , yi(J+K) for the i-th unit,
we can sample the conditional distributions given the previous forecasts, using Monte Carlo
integration.
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3.3 Inference for Failure Time

In degradation trials, the system reliability is indirectly accessed through the degradation mech-
anism, assuming that a failure occurs if the degradation path exceeds a threshold Df that is
pre-defined based on the prior knowledge of experts. In this section, we will develop some
methods to infer about the failure time for units under test and future units.

3.3.1 Inference for Units Under Test

Consider a unit i under test that did not fail during the experimental study; that is, it fails
after the maximum measurement instant J . Let Ti be the failure time associated with a unit i
under test. The distribution of Ti is thus obtained from the relationship imposed by the model
between degradation and time. Following the methodology usually considered in linear general
path models [Freitas et al , 2010, 2009], if we assume the model in (3.2) such a relationship is
given by

D(tij,Ψ) = E(YiJ | λ,θ, t) = Df ⇒ Ti = g−1(DfλiθJ). (3.23)

To predict when the true degradation paths reach Df is a vital step for establishing the
system reliability and the remaining useful life (RUL). In dynamic linear degradation models,
the method introduced by Veloso and Loschi [2021] is appealing as it replaces the posterior
estimation for θJ in (3.23) to forecast future degradation measurements and, from that, to
estimate the failure time. The failure time forecast K-steps ahead is based on the local linear
approximation related to the last observed time interval.

If equation (3.23) is non-linear, this strategy may introduce more bias in our predictions.
To improve the time-to-failure prediction, we propose a sequential approach where the one-step
ahead forecast for the degradation measure at time J + 1 is incorporated into the analysis
to predict the degradation measure at time J + 2 and so on until the threshold Df has been
reached. Consequently, such a sequential feature is also taken into account when we infer the
failure time of the units. This proposed procedure requires the estimation of θJ+k for all k ≥ 1

until Df has been reached, which can be computationally expensive.
To reduce the computational cost, we adopt the strategy proposed by Gamerman et al. [2013]

integrating the θ out and obtaining an exact distribution to forecast degradation measurements
one-step ahead given in equation (3.20). Considering the results obtained in Section 3.2.2.3, to
estimate Ti, we propose to consider

Df = EθJ+1|DJ ,λ,γ

{
E(Yi(J+1)|λ,θ, t)

}
=

g(Ti(J+1))

λi
E(θ−1

J+1 |D
J ,λ, γ) =

g(ti(J+1))γJβJ
λi(γJαJ − 1)

.



3 INFERENCE FOR FAILURE TIME 70

If the function g(tij) is invertible, we can write Ti as

Ti = g−1
(
λiDf [E(θ

−1
J )]−1

)
= g−1

(
λiDf

(γJαJ − 1)

γJβJ

)
, (3.24)

where αJ =
∑n

i=1 g(tiJ)+ γJαJ−1 and βJ =
∑n

i=1 λiyiJ + γJβJ−1. If g(tij) is not invertible, then
numerical methods can be used to approximate Ti. Expression (3.24) highlights the important
relationship between the failure time Ti and the model parameters.

The influence of the unit-specific effect λi in the failure time is evident, but the degradation
measurements of all units, the inspection times, and other static parameters are indirectly
incorporated in the calculation of the failure time of unit i through the estimates of αJ and βJ .

Under these assumptions, the posterior predictive failure time distribution FTi|DJ (t|DJ)

associated to a unit i under test evaluated at a time t is given by

FTi|DJ (t|DJ) = P

(
g−1

(
λiDf

(γJαJ − 1)

γJβJ

)
≤ t|DJ

)
=

∫ 1

0

∫
C
fλ,γJ |DJ (λ, γJ |DJ)dλdγJ .

where C = {(λ1, . . . , λn) ∈ Rn : λi(γJαJ − 1)[γJβJ ]
−1 ≤ g(t)[Df ]

−1}.
We obtain a posterior sampling for the failure time distribution of unit i as follows. Having

available the posterior sample λ(l) and γ(l) of the model parameters λ and γ, we calculate

T
(l)
i = g−1

(
λ
(l)
i Df (γ

(l)
J α

(l)
J − 1)

γ
(l)
J β

(l)
J

)
, for l = 1, 2, · · · , L,

where L is the posterior sample size. The posterior predictive cdf of Ti evaluated at time t is
approximated by

F̂Ti|DJ (t|DJ) =

∑L
l=1 1{T

(l)
i ≤ t}

L
.

In many practical situations, the remaining useful life (RUL) for units under test is of most
interest. The RUL for a unit i under test that has been monitored until inspection time timi

is
given by RULi = E(Ti − timi

|Ti > timi
) and can then be used to compare different models in

specific scenarios of the inspection times, as in Wang et al. [2020]. Under the Bayesian paradigm,
as in Veloso and Loschi [2021], the estimate for the RUL of a unit under i test, that has not
failed, is given by RULi = [

∑L
l=1(T

(l)
i − timi

)]L−1.

3.3.2 Future Unit

Suppose that a new unit is included in the study. Assume that this unit is subject to the same
interference of the environment as the units under test. To calculate the posterior predictive cdf
for the failure time Tn+1 of this new unit FTn+1|DJ (t|DJ), we assume that Tn+1 has the same
distribution as the failure times Ti of the units under test. Following Robinson and Crowder
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[2000], we consider that the posterior sample of λ(n+1) is obtained sampling from the posterior
distributions of the parameters λi, i = 1, . . . , n. Thus, the estimation of FTn+1|DJ (t|DJ) at time
t is given by

T
(l)
n+1 = g−1

(
λ
(l)
i Df (γ

(l)
J α

(l)
J − 1)

γ
(l)
J β

(l)
J

)
, i = 1, 2, · · · , n, l = 1, 2, · · · , L.

The posterior estimate for the predictive cdf of Tn+1 evaluated at time t is given by

F̂Tn+1|DJ (t|DJ) =

∑L
l=1

∑n
i=1 1

{
T

(l)
i ≤ t

}
nL

.

3.4 Simulation Studies: The effect of the prior distributions

for θ0 and γ

Despite dynamic models being widely used in multivariate time series, degradation data cannot
be seen as just a cutout of such data types. Degradation data have certain specific features,
usually not experienced by time series. For instance, at the beginning of the test, the units are
often new and share the same degradation measure. This kind of standard brings information
about the environmental effect at the first inspection time. This information allows identifying
the model by fixing θ1 in a known value (see discussion in Section 3.2.1). Instead of adopting a
known value for θ1, we assume a weaker constraint by specifying informative prior distributions
for θ0. In this section, we evaluate the effect of such prior specification in the posterior inference
providing a sensitivity analysis to the proposed model.

We generate the degradation data from equations (3.1) and (3.4), considering g(tij) = t2ij.
A sample of n = 10 units under test is considered and we assume that degradation is measured
at mi = 10 equidistant inspection times varing from 0 to 9. The unit-specific parameters λi,
i = 1, · · · , 10, are fixed in the following values λ1 = λ2 = λ3 = λ4 = 1, λ5 = λ6 = λ7 = λ8 = 1.5

and λ9 = λ10 = 2. The parameter γ is defined to be γ = 0.25 and the initial state component
is generated from θ0 ∼ Gamma (α0 = 100, β0 = 100). A failure occurs if the degradation path
reaches the critical degradation threshold Df = 150. We consider R = 100 replications of the
data and Figure 3.2 represents one of these simulated datasets.

To assess the influence of the prior choice in the posterior inference, we consider the fol-
lowing prior distributions for θ0: (1) θ0 ∼ Gamma(0.01, 0.01), (2) θ0 ∼ Gamma(1, 1), (3)
θ0 ∼ Gamma(10, 10), (4) θ0 ∼ Gamma(100, 100) and (5) θ0 ∼ Gamma(400, 200). Priors (1)
to (4) have different variances revealing different degrees of uncertainty about the parameter
but are all centered around 1, which is the expected value of the distribution of θ0 used in
the data generation. Aiming to assess the impact of placing an informative shifted prior dis-
tribution for θ0, the distribution in (5) is centered in 2. We also assume different priors for γ:
γ ∼ Beta(1,1) and γ ∼ Beta(2.08,4.26). These distributions are centered in the means 0.5 and
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Figure 3.2: A simulated degradation dataset.

0.25 (the true value) and have variances 0.083 and 0.035, respectively. We also assume that
λi ∼ Gamma(0.001, 0.001), for all i = 1, . . . , 10.

For the MCMC algorithm, in each dataset, we collect 1, 000 iterations after discarding the
first 50, 000 as burn-in. The chain autocorrelation is weaker if we assume a more informative
prior distribution for θ0. Thus, chains of different sizes are generated in each scenario. The
algorithm was implemented using RStudio [Allaire, 2012].

Tables 3.1 and 3.2 shows the relative bias (RB) given by the average of the relative differences
between the posterior means and true parameter; the average of the posterior variances (MV);
the relative variance (RVM) calculated as the variance of the posterior means divided by the
true value of the parameters; and the coverage percentage (CP) of the highest posterior density
intervals with probability 0.95 for the DMGM parameters and failure times of the units under
test assuming priors (1) to (5) for θ0 and if, respectively, γ ∼ Beta(1,1) and γ ∼ Beta(2.08,4.26).

Assuming a uniform prior distribution for γ and considering a flat prior distribution for
θ0 by setting θ0 ∼ Gamma(0.01, 0.01), Table 3.1 shows that we obtain poor estimates for the
model parameters. In this case, the relative biases of the posterior means and the posterior
variances for parameters λi, i = 1, . . . , n, and γ are very high. As expected, the best estimates
for the environmental effects θ are obtained if the model is fitted assuming priors for θ0 that
are concentrated around the true value of θ0 = 1. Assuming θ0 ∼ Gamma(10, 10) and θ0 ∼
Gamma(100, 100) we obtain similar estimates for these parameters; however, under the first
assumption, the estimates are less biased and with small variances. Under these two priors,
we also obtained the best estimates for the unit effects λ and the prior with lower variance
obtained less biased estimates.
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Table 3.1: Summary of relative bias (RB), variances of the posterior samples (MV), relative variance of the posterior mean estimates(RMV) and coverage percentage
of the 95% credibility interval (CP) for the DMGM paramenters and failure times of the units under test considering the five prior distributions for θ0 and
γ ∼ Beta(p=1,q=1).

θ0 ∼ Gamma(0.01, 0.01) θ0 ∼ Gamma(1, 1) θ0 ∼ Gamma(10, 10) θ0 ∼ Gamma(100, 100) θ0 ∼ Gamma(400, 200)
RB MV RVM CP RB MV RVM CP RB MV RVM CP RB MV RVM CP RB MV RVM CP

θ1 32.66 11794.75 207.64 100 0.447 4.511 0.093 100 0.099 0.353 0.044 100 0.092 0.039 0.040 94 -0.455 0.005 0.010 2
θ2 32.12 13764.07 294.33 100 0.428 5.091 0.197 100 0.098 0.449 0.117 100 0.131 0.070 0.113 88 -0.425 0.012 0.030 24
θ3 31.86 16393.15 287.09 100 0.414 5.730 0.204 100 0.087 0.445 0.120 100 0.130 0.072 0.135 89 -0.422 0.012 0.038 21
θ4 32.70 24072.39 317.31 100 0.455 7.697 0.218 100 0.116 0.554 0.114 100 0.161 0.084 0.133 86 -0.405 0.014 0.038 23
θ5 31.97 15651.70 279.80 100 0.429 5.601 0.201 100 0.100 0.441 0.118 100 0.143 0.068 0.134 86 -0.415 0.011 0.037 18
θ6 31.83 18911.49 249.92 100 0.427 6.464 0.186 100 0.099 0.488 0.116 100 0.143 0.073 0.135 83 -0.415 0.012 0.038 19
θ7 31.81 17708.61 248.57 100 0.427 6.158 0.185 100 0.097 0.466 0.111 100 0.141 0.070 0.130 85 -0.416 0.011 0.037 20
θ8 31.76 16384.65 243.12 100 0.424 5.864 0.180 100 0.095 0.446 0.109 100 0.139 0.067 0.128 82 -0.417 0.011 0.036 19
θ9 31.80 14889.49 246.64 100 0.426 5.339 0.183 100 0.097 0.422 0.111 100 0.142 0.064 0.131 86 -0.416 0.010 0.037 19
θ10 31.98 15314.17 255.61 100 0.433 5.459 0.192 100 0.103 0.431 0.117 100 0.147 0.065 0.136 86 -0.413 0.010 0.038 22
λ1 7.639 550.65 2.026 100 6.029 299.24 3.328 100 0.697 8.847 0.550 100 0.043 0.104 0.103 82 0.995 0.229 0.385 30
λ2 7.490 533.16 1.807 100 5.931 291.12 3.349 100 0.676 8.866 0.563 100 0.028 0.103 0.104 84 0.967 0.227 0.387 29
λ3 7.569 542.19 1.978 100 5.995 296.11 3.556 100 0.688 8.605 0.555 100 0.037 0.104 0.107 82 0.986 0.229 0.402 27
λ4 7.564 541.22 1.984 100 5.960 292.51 3.293 100 0.675 8.357 0.523 100 0.031 0.102 0.096 85 0.974 0.225 0.362 33
λ5 7.547 1210.78 1.811 100 5.974 667.21 3.518 100 0.685 20.28 0.583 100 0.033 0.233 0.102 84 0.977 0.516 0.382 31
λ6 7.498 1201.32 1.589 100 5.945 660.32 3.438 100 0.676 19.74 0.556 100 0.028 0.231 0.101 82 0.967 0.507 0.376 32
λ7 7.597 1227.09 1.832 100 6.022 674.35 3.581 100 0.695 19.84 0.567 100 0.039 0.237 0.104 81 0.989 0.522 0.388 31
λ8 7.526 1205.77 1.747 100 5.965 660.69 3.453 100 0.680 19.49 0.546 100 0.032 0.230 0.103 84 0.976 0.512 0.388 36
λ9 7.507 2128.71 1.849 100 5.950 1175.49 3.482 100 0.674 33.33 0.529 100 0.029 0.407 0.100 84 0.969 0.911 0.373 31
λ10 7.541 2144.38 1.864 100 5.959 1174.94 3.238 100 0.682 35.68 0.555 100 0.032 0.406 0.101 84 0.976 0.897 0.382 30
γ 0.865 0.039 0.343 83 0.723 0.037 0.324 87 0.634 0.037 0.317 91 0.605 0.038 0.321 94 0.592 0.038 0.309 94
T1 0.0062 0.1022 0.0008 94 0.0056 0.1014 0.0007 94 0.0056 0.1020 0.0007 93 0.0055 0.1017 0.0007 94 0.0056 0.1016 0.0007 95
T2 -0.0014 0.1011 0.0005 98 -0.0017 0.1003 0.0005 98 -0.0018 0.0996 0.0005 100 -0.0021 0.0999 0.0005 98 -0.0019 0.1008 0.0005 99
T3 0.0027 0.1023 0.0005 100 0.0024 0.1015 0.0005 99 0.0021 0.1006 0.0005 99 0.0020 0.1009 0.0005 99 0.0021 0.1008 0.0005 100
T4 0.0021 0.1016 0.0008 93 0.0017 0.1003 0.0008 92 0.0013 0.1000 0.0008 94 0.0013 0.1002 0.0008 94 0.0015 0.1003 0.0008 94
T5 0.0017 0.1529 0.0006 97 0.0012 0.1500 0.0005 98 0.0013 0.1512 0.0005 96 0.0010 0.1512 0.0005 96 0.0011 0.1511 0.0005 97
T6 -0.0004 0.1518 0.0007 98 -0.0009 0.1492 0.0007 97 -0.0010 0.1499 0.0007 97 -0.0013 0.1482 0.0007 97 -0.0010 0.1490 0.0007 98
T7 0.0048 0.1531 0.0006 99 0.0042 0.1519 0.0006 98 0.0042 0.1515 0.0006 98 0.0040 0.1515 0.0006 98 0.0040 0.1523 0.0006 98
T8 0.0010 0.1524 0.0005 99 0.0006 0.1510 0.0005 100 0.0004 0.1515 0.0005 100 0.0003 0.1516 0.0005 99 0.0004 0.1517 0.0005 100
T9 0.0001 0.2018 0.0007 98 -0.0004 0.1997 0.0007 98 -0.0004 0.1980 0.0007 98 -0.0006 0.1983 0.0007 98 -0.0006 0.1988 0.0007 98
T10 0.0016 0.2040 0.0005 99 0.0012 0.2016 0.0005 99 0.0010 0.2023 0.0005 98 0.0009 0.2019 0.0005 99 0.0010 0.2004 0.0005 99
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Table 3.2: Summary of relative bias (RB), variances of the posterior samples (MV), relative variance of the posterior mean estimates(RMV) and coverage percentage
of the 95% credibility interval (CP) for the DMGM paramenters and failure times of the units under test considering the five prior distributions for θ0 and
γ ∼ Beta(p=2.08,q=4.26).

θ0 ∼ Gamma(0.01, 0.01) θ0 ∼ Gamma(1, 1) θ0 ∼ Gamma(10, 10) θ0 ∼ Gamma(100, 100) θ0 ∼ Gamma(400, 200)
RB MV RVM CP RB MV RVM CP RB MV RVM CP RB MV RVM CP RB MV RVM CP

θ1 37.08 12722.36 143.19 100 0.496 4.848 0.077 100 0.099 0.382 0.045 100 0.087 0.041 0.040 97 -0.457 0.005 0.010 2
θ2 36.31 14307.09 217.48 100 0.470 5.427 0.186 100 0.090 0.483 0.114 100 0.108 0.079 0.101 94 -0.436 0.013 0.027 22
θ3 35.95 16010.14 215.24 100 0.452 5.960 0.186 100 0.076 0.487 0.117 100 0.099 0.083 0.111 92 -0.438 0.014 0.030 21
θ4 36.69 20916.99 221.51 100 0.489 7.536 0.184 100 0.101 0.565 0.109 100 0.125 0.094 0.107 95 -0.425 0.016 0.030 21
θ5 36.04 15682.57 206.96 100 0.463 5.901 0.173 100 0.085 0.472 0.113 100 0.106 0.079 0.108 95 -0.435 0.013 0.029 22
θ6 35.96 18160.99 187.71 100 0.462 6.664 0.165 100 0.085 0.510 0.112 100 0.107 0.084 0.109 94 -0.434 0.014 0.030 23
θ7 35.88 16909.73 185.45 100 0.459 6.437 0.161 100 0.082 0.495 0.108 100 0.105 0.082 0.105 94 -0.435 0.013 0.029 21
θ8 35.89 16387.11 185.33 100 0.456 6.100 0.157 100 0.080 0.478 0.106 100 0.102 0.079 0.103 95 -0.437 0.013 0.028 21
θ9 35.94 14985.22 184.67 100 0.458 5.761 0.157 100 0.082 0.461 0.106 100 0.104 0.077 0.104 94 -0.436 0.013 0.028 19
θ10 36.08 15190.41 193.66 100 0.465 5.860 0.167 100 0.087 0.466 0.112 100 0.109 0.077 0.108 94 -0.433 0.013 0.030 21
λ1 7.403 535.58 1.505 100 6.726 351.51 2.439 100 0.788 8.637 0.539 100 0.080 0.126 0.098 92 1.058 0.287 0.358 33
λ2 7.266 519.98 1.308 100 6.610 342.36 2.370 100 0.761 8.506 0.536 100 0.064 0.124 0.097 92 1.027 0.282 0.353 34
λ3 7.326 524.87 1.331 100 6.674 347.15 2.479 100 0.775 8.272 0.531 100 0.074 0.126 0.101 92 1.047 0.288 0.370 32
λ4 7.315 524.16 1.342 100 6.638 344.46 2.304 100 0.767 8.345 0.523 100 0.068 0.123 0.091 94 1.035 0.281 0.332 36
λ5 7.314 1180.15 1.348 100 6.662 780.35 2.602 100 0.774 19.39 0.560 100 0.069 0.281 0.095 92 1.037 0.642 0.345 31
λ6 7.275 1172.79 1.394 100 6.630 772.63 2.542 100 0.767 19.49 0.547 100 0.065 0.278 0.096 93 1.028 0.636 0.347 38
λ7 7.369 1199.23 1.474 100 6.704 784.30 2.589 100 0.784 19.10 0.546 100 0.076 0.285 0.099 94 1.051 0.652 0.358 31
λ8 7.296 1176.95 1.315 100 6.658 781.09 2.538 100 0.768 18.66 0.531 100 0.069 0.280 0.096 94 1.037 0.635 0.351 34
λ9 7.294 2094.56 1.547 100 6.633 1372.89 2.504 100 0.764 32.20 0.517 100 0.066 0.497 0.095 93 1.031 1.133 0.344 31
λ10 7.306 2092.07 1.309 100 6.651 1383.55 2.406 100 0.773 35.33 0.542 100 0.068 0.492 0.095 95 1.037 1.126 0.350 35
γ 0.466 0.0187 0.118 98 0.373 0.018 0.106 99 0.311 0.017 0.108 99 0.280 0.017 0.106 99 0.269 0.018 0.106 99
T1 0.0058 0.0974 0.0007 94 0.0054 0.0979 0.0007 96 0.0051 0.0980 0.0007 94 0.0052 0.0977 0.0007 96 0.0050 0.0970 0.0007 96
T2 -0.0019 0.0967 0.0005 96 -0.0024 0.0967 0.0005 97 -0.0027 0.0966 0.0005 97 -0.0024 0.0973 0.0005 98 -0.0027 0.0972 0.0005 96
T3 0.0021 0.0988 0.0005 100 0.0018 0.0971 0.0005 99 0.0017 0.0969 0.0005 98 0.0017 0.0973 0.0005 100 0.0016 0.0972 0.0005 99
T4 0.0015 0.0973 0.0008 94 0.0010 0.0969 0.0007 96 0.0008 0.0960 0.0007 95 0.0010 0.0967 0.0007 94 0.0009 0.0971 0.0007 93
T5 0.0010 0.1465 0.0005 96 0.0008 0.1467 0.0005 97 0.0008 0.1446 0.0005 97 0.0004 0.1456 0.0005 97 0.0004 0.1453 0.0005 97
T6 -0.0013 0.1447 0.0006 97 -0.0013 0.1457 0.0006 98 -0.0015 0.1454 0.0006 98 -0.0014 0.1444 0.0006 97 -0.0018 0.1464 0.0006 99
T7 0.0040 0.1473 0.0005 98 0.0036 0.1465 0.0005 98 0.0037 0.1455 0.0005 98 0.0035 0.1473 0.0005 99 0.0034 0.1440 0.0005 98
T8 0.0005 0.1472 0.0005 100 0.0001 0.1456 0.0005 100 0.0001 0.1462 0.0005 99 -0.0002 0.1448 0.0005 99 -0.0002 0.1457 0.0005 100
T9 -0.0006 0.1911 0.0007 98 -0.0008 0.1912 0.0007 98 -0.0009 0.1921 0.0007 98 -0.0009 0.1918 0.0007 98 -0.0010 0.1900 0.0007 98
T10 0.0010 0.1937 0.0005 99 0.0006 0.1943 0.0005 99 0.0006 0.1928 0.0005 99 0.0003 0.1916 0.0005 99 0.0003 0.1944 0.0005 99
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The posterior variances of all parameters tend to be small if the prior uncertainty about
θ0 is small. However, the coverage percentage of the credible intervals is below 36% for the
parameters in λ and θ if a priori θ0 ∼ Gamma(400, 200), that is, if the environmental effect
at the first inspection time is a priori poorly estimated. Under this prior specification, the
environmental effects are underestimated, but, in absolute value, the relative biases are very
close to the ones obtained assuming a non-precise prior distribution θ0 ∼ Gamma(1, 1). By
eliciting the prior distribution γ ∼ Beta(2.08,4.26) that precisely estimates the discount factor
γ, there is non substantial improvement in the posterior estimates for the parameters in λ and
θ (Table 3.2). In this case, there is a smoothed reduction in the relative biases of the failure
time estimates, and we greatly improve the estimates for γ.

When making inferences for the failure times of the units under test, the prior distribution
for θ0 did not influence the estimates. As the estimates for the failure time strongly depend on
the parameters involved in the last inspection times, the prior distribution for θ0 is no longer
so influential as shown in Tables 3.1 and 3.2.

We also assess the impact of using informative prior distributions for γ and λ, showing that
it does not substantially influence the inference for the failure time. These results can be found
in Section S2 in the Supplementary Materials.

In summary, the simulation study provides some guidelines to obtain model identifiability
and shows, for instance, that flat prior distributions for θ0 should be avoided. Although the
prior distribution θ0 ∼ Gamma(0.01, 0.01) is centered around the true value of θ0, this prior is
very flat and tends to be dominated by the (non-identifiable) likelihood producing poor pos-
terior estimates for the model parameters. Having theoretical identifiability, however, may not
guarantee the practical identifiability as such constraints do not guarantee that all parameters
will be well estimated. When we elicited θ0 ∼ Gamma(400, 200), a prior distribution very con-
centrated around 2 and is a wrong value for θ0. Although, this prior identifies the model it also
leads to poor estimates for the model parameters.

It is important notice that, as pointed by Oliveira et al. [2021], large sample sizes might
be required to obtain good parameter estimates even for an identifiable model. However, if the
model is a non-identifiable, some parameters might not be estimated even with large datasets
if the identifiability constraints are not considered.

If our interest is only to predict the failure time, this simulation study also shows that the
prior for θ0 does not play an important role. However, it is also of interest to infer the model
parameters, we learn from the simulation that we should take the expert opinion into account
and build an informative prior θ0. If the expert reveals that the environment has no effect
on the degradation trajectories at the initial time, such prior should be centered in 1. This
assumption is reasonable if, for instance, all units under test are new and, therefore, there is no
previous influence of the environment on their degradation paths. If in the expert’s opinion the
environment has a positive effect on the degradation trajectories at the initial time, the prior
for θ0 should be concentrated in some positive value θ∗0 smaller than 1. In this case, a possible
way to define the prior for θ0 is to find α0 and β0 such that E(θ0) = θ∗0.
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An additional simulation study is provided in the Supplementary Materials, Section S2.3,
illustrating the performance of the DMGM to degradation forecasting K-steps ahead when K

is large.

3.5 Case Studies

The fatigue crack size [Meeker and Escobar, 1998] and the stress relaxation [Yang, 2007] datasets
shown in Figure 3.1 are analyzed considering the proposed DMGM, the Weibull linear (WLDM)
degradation model [Hamada, 2005] and the dynamic linear (DLDM) degradation model [Veloso
and Loschi , 2021]. The DMGM is fitted assuming g(tij) = t2ij and g(tij) =

√
tij for fatigue crack

size and stress relaxation data, respectively.
For both datasets, the DMGM is fitted considering the prior specifications θ0 ∼ Gamma(100, 100),

γ ∼ Beta(1, 1) and λi ∼ Gamma(0.001, 0.001), for i = 1, 2, . . . , n. For WLDM and DLDM, we
established flat priors for all parameters. These models are fitted collecting 2000 MCMC iterates
after discarding the first 50000 as the burn-in period and thinning by 100. To evaluate the com-
putational times, both applications were fitted on an Intel (R) Core (TM) i7-8550U 1.80GHz
CPU with 8GB RAM. Further details on these case studies can be found in the Supplementary
Materials, Section S3.

3.5.1 Case Study 1: Fatigue Crack Size Data

Figure 3.1a shows the size of fatigue cracks as a function of the number of cycles of applied
stress to 10 test units. The data were collected to obtain information on crack growth rates
for the alloy as reported in Meeker and Escobar [1998]. A crack with a cumulative size of 0.7
inches is considered a failure.

To evaluate the model’s performance in predicting the omitted measures for all units under
test, we remove from one to three degradation measures in the final of all degradation paths.
Table 3.3 shows the mean squared error (MSE), the mean absolute percentage error (MAPE),
and the mean absolute deviance (MAD) for the forecasts of the omitted fatigue crack sizes,
given by the posterior means.

If one or two observations are omitted, the proposed model outperforms the other models.
When the last three observations are removed, WLDM and DLDM models showed better
performance. This result may be explained by approximated linear behavior that the true
degradation paths experience at the beginning of the experiment.
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Table 3.3: Accuracy measurements(AcM) for k-step ahead forecasting, k = 1, 2, 3, under DMGM, WLDM and
DLDM for fatigue crack size data removing the last (L), the two-last (2L) and, the three-last (3L) observations
in each degradation path.

Fitted Model
Removed AcM WLDM DLDM DMGM WLDM DLDM DMGM WLDM DLDM DMGM

Obs. k = 1 k = 2 k = 3

3L
MSE 0.0013 0.0002 0.0049 0.0067 0.0031 0.0134 0.0187 0.0113 0.0296
MAPE 10.2641 3.9998 19.6575 18.4754 12.3971 26.3550 24.7480 18.9055 32.3775
MAD 0.0355 0.0138 0.0683 0.0810 0.0546 0.1148 0.1333 0.1024 0.1710

2L
MSE 0.0046 0.0017 0.0018 0.0146 0.0080 0.0067
MAPE 15.1608 8.8530 9.8624 21.7265 15.6362 15.4993
MAD 0.0666 0.0393 0.0427 0.1173 0.0852 0.0810

L
MSE 0.0095 0.0021 0.0016
MAPE 17.3832 7.7614 7.4293
MAD 0.0940 0.0425 0.0382

Graphics of the posterior estimates associated with the DMGM parameters are shown in
Figure 3. Figure 3.3a shows the boxplot of the posterior distributions effects λi of the units’
individual features on the degradation rate. This effect is an indicator of the quality of the ith
unit and may be different form unit-to-unit. A low value for λi indicates the poor quality of
device i. Comparing units 1 and 10, for instance, Figure 3.3a shows that the quality of unit 1 is
worse than that for unit 10. This indicates that these units had been produced using different
materials, came from different populations, etc. Figure 3.3a also shows that the unit-specific
effects are similar for almost all devices, indicating that the units under test originate from
populations with similar characteristics. The most significant differences are observed for unit
1 that fails during the experiment for which the unit effect is the smallest and, for Units 9 and
10, which effects are smoothly higher.

The effect of environment on degradation (Figure 3.3b) increases with time and strongly
influence the product λiθj (Figure 3.3d) and, consequently, the degradation rate. The environ-
mental effect is around one in the first inspection time, which means that the environmental
effect at the beginning of the experiment is insignificant. Their increase is expected, as the de-
vices are more prone to degrade as they are more exposed to the environment and time of use.
The observed environment effects reinforce the need for dynamic models to analyze degradation
data. The degradation rates depend on the function λiθj given in figure 3.3d. This function has
the same behavior as the dynamic parameters weighted by the specific components of the unit.
The curve below all others shows the behavior for the only unit that failed. The type of analysis
would not be possible if we do not assume the proposed decomposition of the degradation rate
as considered in other degradation path models in the literature.

The posterior distribution of the discount factor in 3.3c concentrates most of its probability
mass in the lower values of the domain, meaning that there exists a weaker dependence among
the environmental effects than it was assumed a priori. The computational time spent fitting
the DMGM to the fatigue crack size data is 59.53 seconds.
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Figure 3.3: Boxplots of the posterior samples of the static parameters λi (a) and of the dynamic components
θj (b), the posterior distribution for discount factor γ (c), and the evolution of the product λiθj (d), for fatigue
crack size data. In (a) and (b) the ◦ represents the outliers.

Table 3.4 presents the RUL (except for unit 1 that fails during the test), the MTTF, and
some percentiles of the posterior predictive distribution associated with failure times, in ten
thousand cycles, for the units under test and a new one. All these measures follow the same
standard as the posterior estimates for λiθj, assuming higher values for units 9 and 10 and
the smallest value for unit 1. The RUL and MTTF for units 2 to 7 are close, which is these
units are from similar populations. This result corroborates our findings in Figure 3.3 where
the λis for these units were also close. In all cases, the MTTF is close to the median failure
times, possibly indicating symmetrical posterior distributions for all the failure times of the
units under test. For a new unit, we conclude that, for example, 10% of the devices operating
on the same conditions as those in the study will reach a crack of size 0.7 before 9.27 × 104
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cycles.

Table 3.4: MTTF, RUL and α-percentiles (tp|Y (α)) of the posterior predictive distribution of the failure times
(104 cycles) for new and under test units, fatigue crack size data.

Failure Time MTTF RUL tp|Y (0.025) tp|Y (0.1) tp|Y (0.5) tp|Y (0.975)
T1 8.86 ——- 8.28 8.50 8.86 9.41
T2 9.83 0.83 9.22 9.41 9.82 10.47
T3 10.01 1.01 9.34 9.58 10.01 10.66
T4 10.16 1.16 9.46 9.74 10.15 10.81
T5 10.19 1.19 9.50 9.76 10.20 10.86
T6 10.30 1.30 9.60 9.87 10.32 10.97
T7 10.39 1.39 9.68 9.95 10.40 11.04
T8 10.59 1.59 9.92 10.13 10.59 11.27
T9 10.92 1.92 10.26 10.48 10.92 11.63
T10 11.25 2.25 10.49 10.77 11.25 12.00
Tn+1 10.25 ——- 8.66 9.27 10.28 11.55

The posterior means of the filtering distributions and the 95% credibility intervals in each
inspection time show that these estimates precisely recovered the true degradation measure-
ments (Figure 3.4). Using the sequential forecasting method, these posterior distributions also
provide precise forecasts for future degradation and reasonable estimates of the failure times.
Figure 3.4 shows that the predicted measurements in which the trajectories cross the degra-
dation threshold coincides with the MTTF and the filtering estimates and the forecasting for
three selected units under test.
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Figure 3.4: Degradation measure (black solid line), MTTF (black point), posterior means for the filtering
distribution (grey solid line), the sequential forecasting (grey dashed line) and the 95% credibility intervals for
three units under test, fatigue crack size data.

Table 3.5 shows theRUL by fitting DMGM, WLDM, and DLDM to analyze the fatigue crack
size data in different scenarios. The RUL was calculated considering different last inspection
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times tJ , given in ten thousand cycles, by omitting the k last observations, k = 0, 1, 2, 3. If
k = 0, then we consider all observed data and tJ = 9. If k = 3, then tJ = 6. As noticed from
Figure 3.1a, Unit 1 failed during the study between 8 and 9 ten thousand cycles. Table 3.5
shows that when considering as last inspection time tJ = 6, thus omitting k = 3 observations,
the proposed DMGM provides that the RUL for unit 1 is RUL = 2.06 and, consequently,
the predict failure time for this unit is 8.06 ten thousand cycles which belongs to the time
interval in which the failure occurred. A similar conclusion was drawn for the other values of
k. Even considering all observed degradation measurements, WLDM and DLDM overestimate
the failure time for this unit predicting it as higher than 9 ten thousand cycles.

Results in Table 3.5 also shows that under the DMGM the fewer the observed degradation
measurements, the lower is the forecast for the failure times of all units under test. An opposed
behavior is obtained by fitting the DLDM and WLDM, which provided the highest estimates
for failure times in all analyzed scenarios.

Table 3.5: RUL in ten thousand cycles obtained considering DMGM, WLDM and DLDM for fatigue crack
size data with different values of the last inspection times tJ .

Model tJ
Unit

1 2 3 4 5 6 7 8 9 10

DMGM

9 —- 0.83 1.01 1.16 1.19 1.30 1.39 1.59 1.92 2.25
8 0.73 1.61 1.80 1.92 1.97 2.06 2.18 2.36 2.66 3.03
7 1.53 2.30 2.51 2.63 2.68 2.78 2.89 3.04 3.36 3.74
6 2.06 2.81 2.99 3.06 3.06 3.15 3.29 3.50 3.81 4.17

WLDM

9 1.14 3.57 4.00 4.44 4.53 4.87 5.12 5.59 6.49 7.45
8 2.97 5.24 5.86 6.20 6.29 6.57 6.91 7.42 8.37 9.49
7 4.68 6.96 7.62 7.95 8.13 8.42 8.81 9.13 10.20 11.47
6 6.15 8.60 9.20 9.54 9.55 9.77 10.33 10.87 12.03 13.49

DLDM

9 —- 2.03 2.22 2.84 2.86 3.32 3.33 3.74 4.52 5.07
8 1.67 3.84 4.40 4.68 4.71 5.01 5.30 5.77 6.32 7.19
7 3.80 5.77 6.45 6.89 7.20 7.70 7.74 7.59 8.18 9.29
6 5.30 7.26 8.26 8.33 8.38 8.85 9.47 9.09 9.93 11.20

3.5.2 Case Study 2: Stress Relaxation Data

Stress relaxation is the loss of stress in a component subjected to a constant strain over time.
The contacts of electrical connectors often fail due to excessive stress relaxation [Yang, 2007].
An electrical connector fails if the stress relaxation exceeds 30%. Data in Figure 3.1b correspond
to the stress relaxation of 6 connectors, tested at 100oC. The unit degradation is measured at
the same non-equidistant inspection times, and no unit failed during the study.

To analyze the data, DMGM, WLDM and DLDM are fitted. DMGM is fitted letting g(tij) =√
tij. We also consider a modification of Hammada’s Weibull model (WRDM) by assuming the

following relationship between time and degradation:Yit = β
√
tij + ϵij. Analogously to the

previous case study, from one to three degradation measures in the final of all degradation
paths were removed and predicted using the models. Table 3.6 shows that the DMGM has the
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best performance providing the smallest accuracy measures in almost all cases. The exception
occurs when forecasting the first degradation measure in scenes where two observations are
removed from data. In this case, the DLDM provided a better result. As expected, the WLDM
presented the worse performance. However, an improvement is observed if we assume a non-
linear relationship between inspection time and degradation (WRDM).

Table 3.6: Accuracy measurements(AcM) for k-step ahead forecasting, k = 1, 2, 3, under DMGM, WLDM and
DLDM for stress relaxation data removing the last (L), the two-last (2L) and, the three-last (3L) observations
in each degradation path.

Fitted Models
Removed AcM WLDM WRDM DLDM DMGM WLDM WRDM DLDM DMGM WLDM WRDM DLDM DMGM

Obs. k = 1 k = 2 k = 3

3L
MSE 25.01 0.25 2.09 0.09 29.83 1.82 1.45 0.80 85.53 1.45 10.75 0.51
MAPE 26.14 2.26 7.35 1.43 26.38 6.04 5.85 3.57 41.03 4.87 14.42 2.36
MAD 4.96 0.43 1.38 0.27 5.41 1.25 1.18 0.75 9.16 1.08 3.22 0.53

2L
MSE 10.74 1.56 0.43 0.75 43.13 1.21 2.51 0.51
MAPE 15.71 5.46 2.08 3.32 29.03 4.28 6.39 2.21
MAD 3.22 1.13 0.44 0.70 6.48 0.95 1.43 0.50

L
MSE 27.93 0.65 3.49 0.23
MAPE 23.37 3.00 7.90 1.69
MAD 5.22 0.67 1.79 0.38

After fitting the DMGM to the stress relaxation data, the unit-specific effects λi for the
devices under test (Figure 3.5a) are different showing that the units 1 and 2 are similar, and
the others may originate from different populations. Differently from what was observed for the
fatigue crack size data (Figure 3.3b), the environmental effects distribution smoothly change
over time as shown in Figure 3.5b. Their posterior medians are close to one at all inspection
times indicating that the environment has few influences on the degradation rate of stress relax-
ation data. Such medians present a subtle parabolic shape which increases until the inspection
time tij ≤ 4 and decreases after that until reaching an almost constant behavior in the last
three inspection times. Although all medians are close to one at all inspection times, this subtle
fluctuation produced variations over time in the degradation rates as it is a function of λiθj.
The function of λiθj also has a parabolic shape and reaches its maximum at the 4th inspection
time (Figure 3.5d) for all units. It is noticed, however, that the unit-specific effect has a greater
influence on degradation than the time of use.

The discount factors considered in the evolution equation given by (3.4) vary according to
the amplitudes of the inspection times intervals (Figure 3.5c). The greater the interval sizes,
the lower the discount factor is. Thus, it is possible a better to control the uncertainty and
the information that is passed from one inspection time to the next when the are unbalanced.
In other words, the model assumes great (small) uncertainty for the degradation measures
belonging to time intervals with large (small) lengths. The computational time spent fitting the
DMGM to this data is 60.07 seconds.
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Figure 3.5: Boxplots of the posterior samples of the static parameters λi (a), the dynamic components θj (b)
and the discount factors γj (c) and the evolution of the product λiθj (d), for stress relaxation data. In (a), (b)
and (c) the ◦ represents the outliers.

Table 3.7 presents the MTTF, RUL, and some percentiles of the posterior predictive dis-
tribution for the failure times, in hours, for a future unit and the units under test. Units 6 and
5 show fewer resistents and present an MTTF below 2.000 hours. The RUL for the majority of
the units is below 1200 hours, the study time. Figure 3.6 shows the posterior means and the
HPD with probability 0.95 of the filtering distributions for three selected units.

As in the previous case study, this posterior distribution provides a precise forecast for future
degradation measures and a reasonable estimate for the failure time of the units under test. In
addition, the instants of the predicted degradation paths cross the degradation threshold and
coincide with the MTTF. The figure that contains the fit and forecasting for all units under
test can be found in Section S3.2 of the Supplementary Materials. Section S3.2 also presents a
comparison of the RUL by fitting DMGM, WLDM, WRDM, and DLDM in different scenarios,
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Table 3.7: MTTF, RUL and α-percentiles (tp|Y (α)) of the posterior predictive distribution of the failure times
(hours) for new and under-test units, stress relaxation data.

Failure Time MTTF RUL tp|Y (0.025) tp|Y (0.1) tp|Y (0.5) tp|Y (0.975)
T1 2877.63 1677.63 2101.24 2343.72 2866.23 3763.81
T2 2956.28 1756.28 2188.90 2418.24 2927.74 3870.24
T3 2399.49 1199.49 1756.72 1967.61 2380.43 3111.41
T4 2205.06 1005.06 1622.13 1819.39 2187.18 2876.17
T5 1866.39 666.39 1385.57 1527.68 1848.42 2476.75
T6 1685.25 485.25 1220.29 1364.75 1671.23 2248.49
Tn+1 2331.68 ——- 1392.44 1611.16 2272.19 3571.07
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Figure 3.6: Degradation measure (black solid line), MTTF (black point), posterior means for the filtering
distribution (grey solid line), the sequential forecasting (grey dashed line) and the 95% credibility intervals for
three units under test, stress relaxation data.

similar to that shown for Case Study 1.

3.6 Concluding Remarks

We introduced a new class of general gamma degradation path models that have a dynamic
functional form. To obtain a parsimonious model, for each unit, the degradation rate is a
function of two components: a static and unit-specific effect and another that measures the
environmental impact. The dynamic structure is introduced into the model through the prior
distribution for the environmental effects, which assumes a Markovian dependence among them.
Although the Gamma dynamic model has been introduced by Aktekin et al. [2021], the proposed
approach extends this previous model in several directions. Firstly, a more general structure
(not only linear) relates the inspection time and the degradation measurements allowing to
accommodate different shapes for the degradation paths. Constraints to identify the model are
theoretically derived, and a useful discussion is presented about how to these constraints may be
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specified in the contexts of time series and degradation tests. The forecast of future degradation
measurements is discussed. The crucial relationship between failure time and model parameters
is obtained, and the inference for the remaining useful life is discussed for units under test and
a future one.

The usefulness and versatility of the proposed model are illustrated by analyzing two
datasets (fatigue crack size and stress relaxation data) whose degradation paths have different
shapes. In both cases, the proposed model outperforms some well-known models. The simu-
lation studies provided some valuable guidelines to establishes the prior distributions of the
environmental effect needed to attain the model identification. These studies showed that if the
goal is to infer the failure time behavior, the prior specifications for the parameter θ0 and γ do
not play an important role. However, if the goal is to get information about the environmental
or unit-specific effects, we should obtain trustful information about θ0 allowing us to build an
informative prior for it.

Our results show that the proposed degradation model is competitive and can be a valuable
approach to model positive degradation data coming from populations with different shapes
for the degradation path. Furthermore, the individual and environmental effects’ analysis can
be separately done for degradation data.

The proposed methodology is defined only for positive degradation measures and assumes
that covariates explaining the degradation mechanism are not available. Future extensions of
the proposed approach include considering similar decomposition for the degradation rate and
developing new dynamic degradations models assuming other distributions for the degradation
measures as well as other distributions with positive support for the units effects as log-normal,
Weibull, and log-skew-elliptical distributions. These prior choices will bring some new theoret-
ical and computational challenges as these families are not conjugate with the Gamma family.
Models assuming covariates to explain the degradation rate are other interesting topic for future
research.

Supplementary Materials

Section S1 contains an alternative proof about the validation of the DMGM identifiability
considering sufficient statistics. Additional simulation studies are presented in Section S2 to
verify the impact in the estimation of the failure times and forecasting. Section S3 presents the
details associated to the DMGM fit and forecasting for all the units under test for the fatigue
crack size and stress relaxation datasets.
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Supplementary Materials
S1 Proofs and Technical Details
Another way to verify the model identifiability is through sufficient statistic theory. A model
is identifiable if the number of independent sufficient statistics is equal to the number of pa-
rameters to be estimated. We explore this approach for the proposed model in the following
proposition.

Proposition S1.1. Assume the DMGM given in (3.2) and the evolution equation defined in
(3.4). Under these assumptions it follows that

(a) The number of unknown parameters in the DMGM exceeds by one the number of linearly
independent sufficient statistics.

(b) If one of the coordinates of vector Ψ = (λ,θ) is fixed at a known value, then the num-
ber of linearly independent sufficient statistics is equal to the number of unknown model
parameters.

Proof. (a) The distribution associated with the observational equation given in (3.2) belongs to
the exponential family. Consequently, the likelihood function associated to the proposed model
can be written as

f(Y |t,λ,θ) = exp


n∑

i=1

J∑
j=1

g(tj) log(λiθj)−
n∑

i=1

J∑
j=1

log(Γ(g(tj))) +

n∑
i=1

J∑
j=1

g(tj) log(yij)−
n∑

i=1

J∑
j=1

λiθjyij

 .

(S1)

According to the factorization theorem, the sufficient statistics for the model para-meters can

be obtained from expression
n∑
i=1

J∑
j=1

λiθjyij in (S1). Expanding this equation, we have that

n∑
i=1

J∑
j=1

λiθjyij =



λ1θ1y11 + λ1θ2y12 + . . . + λ1θJy1J

+ λ2θ1y21 + λ2θ2y22 + . . . + λ2θJy2J

+ λ3θ1y31 + λ3θ2y32 + . . . + λ3θJy3J

+
... +

... +
. . . +

...
+ λnθ1yn1 + λnθ2yn2 + . . . + λnθJynJ .

(S2)

Thus, the degradation measure yij for unit i at time j is a sufficient statistic for the pair λiθj,
proving that the model is not identifiable. Considering the evolution equation (3.4), we obtain
a more parsimonious model as it follows that

θj = θ1

j∏
k=2

ϵk
γk
, j > 1. (S3)

Replacing the result in equation (S3) in equation (S2), it follows that each line i in expression
(S2) can be rewritten as

λi

J∑
j=1

θjy1j = λiθ1

(
yi1 +

J∑
j=2

yij

j∏
k=2

ϵk
γk

)
.
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Consequently, the sufficient statistic for the parameters (λ1, . . . , λn, θ1) is the vector(
y11 +

J∑
j=2

y1j

j∏
k=2

ϵk
γk
, . . . , yn1 +

J∑
j=2

ynj

j∏
k=2

ϵk
γk

)
,

which is n-dimensional proving that even assuming the relationship given by the evolution
equation (3.4), the model remains non-identifiable.

(b) Without losing generality, assume that θ1 is known thus the model parameters are
ψ = (λ1, . . . , λn). As proved in item (a), the sufficient statistic is the vector(

y11 +
J∑
j=2

y1j

j∏
k=2

ϵk
γk
, . . . , yn1 +

J∑
j=2

ynj

j∏
k=2

ϵk
γk

)
,

which have the same dimension as ψ.

S2 Additional Simulation Studies

This section presents some additional simulation scenarios. In the first two studies, (Section S2.1
and Section S2.2), new simulations are performed to assess the impact of the prior distribution
for γ and λ, respectively, on the posterior estimates for the quantities of interest in the DMGM.
In Section S2.3, we generate a degradation data with a large number of measurements and
perform predictions considering big steps to show the efficiency of our sequential prediction
procedure.

S2.1 The effect of the prior distributions for γ

In the following, two new scenarios are considered where it is assumed that γ ∼ Beta(p=9.13,q=27.35)
and γ ∼ Beta(p=24.5,q=24.5). In both distributions, V (γ) = 0.005 but the prior means are,
respectively, 0.25 (true value) and 0.5. Our goal is to verify if these specifications produce a
higher impact on the estimates of the DMGM parameters and in the failure times of the units
under test than that more flat prior assumed in the paper. Tables S1 and S2 show the relative
bias (RB); the average of the posterior variances (MV) of the parameters; the relative variance
(RVM); and the coverage percentage (CP) with probability 0.95 for the DMGM paramaters
and failure times of the units under test assuming different prior distributions for θ0 and if,
respectively, γ ∼ Beta(9.13,27.35) and γ ∼ Beta(24.5,24.5).
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Table S1: Summary of relative bias, variances of the posterior samples, relative variance of the posterior mean estimates and coverage percentage of the 95%
credibility interval for the DMGM paramenters and failure times of the units under test considering the five prior distributions for θ0 and γ ∼ Beta(p=9.13,q=27.35).

θ0 ∼ Gamma(0.01, 0.01) θ0 ∼ Gamma(1, 1) θ0 ∼ Gamma(10, 10) θ0 ∼ Gamma(100, 100) θ0 ∼ Gamma(400, 200)
RB MV RVM CP RB MV RVM CP RB MV RVM CP RB MV RVM CP RB MV RVM CP

θ1 42.97 15174.03 104.60 100 0.556 5.425 0.074 100 0.093 0.415 0.047 100 0.082 0.043 0.040 99 -0.459 0.005 0.010 2
θ2 42.12 17108.09 186.40 100 0.532 6.139 0.203 100 0.086 0.524 0.127 100 0.086 0.091 0.094 95 -0.447 0.014 0.024 22
θ3 41.31 17149.72 171.85 100 0.508 6.286 0.197 100 0.070 0.531 0.129 100 0.073 0.097 0.101 99 -0.452 0.017 0.026 23
θ4 42.27 19536.73 171.81 100 0.541 6.983 0.186 100 0.091 0.569 0.117 100 0.096 0.102 0.097 99 -0.440 0.017 0.026 23
θ5 41.38 16492.18 162.56 100 0.515 6.081 0.184 100 0.075 0.513 0.121 100 0.078 0.092 0.097 100 -0.450 0.016 0.025 23
θ6 41.39 17639.81 151.87 100 0.514 6.417 0.178 100 0.076 0.532 0.122 100 0.080 0.095 0.099 99 -0.449 0.016 0.026 24
θ7 41.33 17315.82 148.71 100 0.510 6.273 0.172 100 0.073 0.524 0.117 100 0.077 0.094 0.096 99 -0.450 0.016 0.025 22
θ8 41.24 16804.63 148.55 100 0.508 6.079 0.171 100 0.071 0.514 0.119 100 0.075 0.091 0.095 98 -0.451 0.015 0.025 24
θ9 41.36 16636.57 149.43 100 0.511 5.989 0.170 100 0.074 0.511 0.117 100 0.077 0.091 0.094 99 -0.450 0.015 0.024 23
θ10 41.51 16601.51 158.45 100 0.515 6.011 0.177 100 0.077 0.510 0.120 100 0.081 0.090 0.098 99 -0.448 0.015 0.025 23
λ1 7.206 530.51 1.511 100 7.623 414.07 1.918 100 0.871 7.141 0.429 100 0.120 0.152 0.099 95 1.123 0.357 0.345 34
λ2 7.076 513.96 1.323 100 7.486 400.21 1.803 100 0.842 7.122 0.415 100 0.103 0.148 0.097 97 1.090 0.346 0.337 37
λ3 7.153 527.14 1.439 100 7.569 408.78 2.009 100 0.857 6.903 0.419 100 0.114 0.151 0.102 95 1.111 0.352 0.357 33
λ4 7.140 524.36 1.460 100 7.561 410.70 2.026 100 0.849 7.190 0.412 100 0.107 0.148 0.092 98 1.099 0.347 0.321 40
λ5 7.125 1171.72 1.324 100 7.545 919.06 1.936 100 0.853 15.99 0.432 100 0.108 0.334 0.095 96 1.099 0.785 0.328 36
λ6 7.090 1163.85 1.303 100 7.512 910.00 2.019 100 0.849 16.27 0.438 100 0.105 0.335 0.098 97 1.092 0.780 0.334 39
λ7 7.168 1187.34 1.347 100 7.602 928.15 2.079 100 0.865 15.75 0.431 100 0.116 0.342 0.099 98 1.115 0.799 0.344 33
λ8 7.115 1172.17 1.317 100 7.546 920.04 2.007 100 0.851 15.82 0.422 100 0.109 0.337 0.098 96 1.100 0.787 0.337 36
λ9 7.110 2079.99 1.498 100 7.516 1615.22 1.952 100 0.846 27.18 0.414 100 0.105 0.594 0.096 96 1.094 1.388 0.330 36
λ10 7.115 2072.98 1.330 100 7.550 1634.04 1.969 100 0.851 29.11 0.426 100 0.108 0.593 0.095 97 1.101 1.389 0.335 39
γ 0.082 0.004 0.011 100 0.053 0.004 0.011 100 0.027 0.004 0.011 100 0.010 0.004 0.011 100 0.006 0.004 0.012 100
T1 0.0052 0.0966 0.0007 95 0.0050 0.0955 0.0007 95 0.0048 0.0959 0.0007 94 0.0047 0.0957 0.0007 96 0.0048 0.0957 0.0007 96
T2 -0.0025 0.0952 0.0005 96 -0.0025 0.0954 0.0005 97 -0.0028 0.0945 0.0005 95 -0.0028 0.0946 0.0005 95 -0.0028 0.0951 0.0005 97
T3 0.0016 0.0955 0.0005 99 0.0015 0.0963 0.0005 98 0.0015 0.0960 0.0005 98 0.0014 0.0952 0.0005 99 0.0014 0.0955 0.0005 98
T4 0.0009 0.0951 0.0007 94 0.0008 0.0952 0.0007 94 0.0007 0.0954 0.0007 95 0.0005 0.0949 0.0007 95 0.0006 0.0952 0.0007 93
T5 0.0004 0.1446 0.0005 97 0.0005 0.1436 0.0005 98 0.0003 0.1422 0.0005 98 0.0002 0.1425 0.0005 96 0.0001 0.1434 0.0005 97
T6 -0.0016 0.1408 0.0006 98 -0.0018 0.1418 0.0006 99 -0.0018 0.1417 0.0006 99 -0.0019 0.1418 0.0006 97 -0.0020 0.1421 0.0006 99
T7 0.0035 0.1443 0.0005 98 0.0034 0.1438 0.0005 98 0.0033 0.1433 0.0005 98 0.0032 0.1439 0.0005 98 0.0032 0.1430 0.0005 98
T8 0.0001 0.1428 0.0005 100 -0.0001 0.1433 0.0005 99 -0.0002 0.1442 0.0005 100 -0.0002 0.1437 0.0005 100 -0.0004 0.1424 0.0005 99
T9 -0.0010 0.1890 0.0007 98 -0.0012 0.1878 0.0006 98 -0.0013 0.1881 0.0007 98 -0.0014 0.1872 0.0007 98 -0.0013 0.1896 0.0007 98
T10 0.0004 0.1909 0.0005 99 0.0004 0.1913 0.0005 100 0.0001 0.1912 0.0005 99 0.0002 0.1912 0.0005 99 0.0001 0.1912 0.0005 99
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Table S2: Summary of relative bias, variances of the posterior samples, relative variance of the posterior mean estimates and coverage percentage of the 95%
credibility interval for the DMGM paramenters and failure times of the units under test considering the five prior distributions for θ0 and γ ∼ Beta(p=24.5,q=24.5).

θ0 ∼ Gamma(0.01, 0.01) θ0 ∼ Gamma(1, 1) θ0 ∼ Gamma(10, 10) θ0 ∼ Gamma(100, 100) θ0 ∼ Gamma(400, 200)
RB MV RVM CP RB MV RVM CP RB MV RVM CP RB MV RVM CP RB MV RVM CP

θ1 25.18 4611.42 33.02 100 0.276 2.371 0.050 100 0.087 0.215 0.042 100 0.083 0.022 0.040 86 -0.459 0.003 0.010 0
θ2 24.81 4627.02 58.42 100 0.264 2.423 0.117 100 0.092 0.251 0.103 100 0.138 0.039 0.112 80 -0.423 0.005 0.031 17
θ3 24.52 4699.06 59.65 100 0.257 2.424 0.131 100 0.088 0.252 0.116 100 0.145 0.045 0.139 80 -0.415 0.007 0.040 19
θ4 25.02 4855.25 53.28 100 0.283 2.498 0.119 100 0.109 0.257 0.104 100 0.169 0.046 0.133 82 -0.402 0.007 0.039 19
θ5 24.80 4599.84 55.35 100 0.273 2.384 0.124 100 0.099 0.245 0.108 100 0.155 0.044 0.127 83 -0.410 0.007 0.036 18
θ6 24.75 4756.69 55.46 100 0.269 2.423 0.123 100 0.097 0.247 0.109 100 0.154 0.045 0.131 78 -0.410 0.007 0.037 19
θ7 24.68 4704.60 51.34 100 0.268 2.405 0.118 100 0.096 0.246 0.104 100 0.153 0.044 0.128 80 -0.411 0.007 0.037 20
θ8 24.66 4661.03 50.67 100 0.266 2.378 0.116 100 0.094 0.243 0.102 100 0.151 0.044 0.124 81 -0.412 0.007 0.036 19
θ9 24.70 4618.76 51.41 100 0.267 2.369 0.117 100 0.095 0.242 0.103 100 0.152 0.044 0.127 80 -0.411 0.007 0.037 18
θ10 24.86 4609.33 54.79 100 0.275 2.368 0.120 100 0.102 0.242 0.106 100 0.159 0.043 0.129 81 -0.408 0.007 0.037 21
λ1 7.598 548.64 2.113 100 5.454 250.85 1.604 100 0.339 0.910 0.151 100 0.007 0.058 0.091 81 0.953 0.136 0.390 26
λ2 7.449 527.78 1.715 100 5.348 241.87 1.486 100 0.319 0.878 0.147 100 -0.008 0.057 0.092 81 0.924 0.131 0.391 28
λ3 7.523 534.80 1.802 100 5.413 246.84 1.686 100 0.331 0.899 0.155 100 0.002 0.058 0.097 78 0.944 0.135 0.412 24
λ4 7.500 532.79 1.674 100 5.387 244.77 1.471 100 0.324 0.890 0.142 100 -0.005 0.057 0.086 83 0.931 0.132 0.366 26
λ5 7.495 1198.98 1.610 100 5.387 550.91 1.549 100 0.326 2.003 0.148 100 -0.003 0.128 0.090 79 0.934 0.299 0.389 25
λ6 7.469 1195.76 1.731 100 5.373 548.42 1.600 100 0.321 1.997 0.151 100 -0.008 0.127 0.089 84 0.925 0.297 0.381 27
λ7 7.552 1212.97 1.741 100 5.420 556.41 1.493 100 0.335 2.028 0.155 100 0.003 0.130 0.092 82 0.946 0.303 0.391 25
λ8 7.492 1195.43 1.698 100 5.379 547.19 1.517 100 0.325 1.998 0.152 100 -0.003 0.128 0.092 83 0.935 0.299 0.396 26
λ9 7.488 2141.46 1.998 100 5.375 979.43 1.608 100 0.321 3.496 0.148 100 -0.007 0.226 0.087 81 0.925 0.523 0.368 21
λ10 7.505 2136.32 1.898 100 5.393 984.89 1.600 100 0.326 3.545 0.148 100 -0.003 0.228 0.092 81 0.936 0.534 0.396 23
γ 0.925 0.005 0.013 0 0.900 0.005 0.013 1 0.888 0.005 0.013 1 0.881 0.005 0.013 1 0.878 0.005 0.013 1
T1 0.0068 0.0965 0.0008 92 0.0067 0.0970 0.0007 93 0.0069 0.0967 0.0007 94 0.0067 0.0967 0.0007 93 0.0068 0.0960 0.0007 92
T2 -0.0008 0.0949 0.0005 98 -0.0009 0.0962 0.0005 98 -0.0008 0.0951 0.0005 99 -0.0009 0.0961 0.0005 97 -0.0009 0.0958 0.0005 100
T3 0.0034 0.0966 0.0005 98 0.0034 0.0974 0.0005 100 0.0031 0.0964 0.0005 98 0.0032 0.0963 0.0005 98 0.0033 0.0966 0.0005 100
T4 0.0026 0.0953 0.0008 93 0.0027 0.0953 0.0008 92 0.0025 0.0948 0.0008 93 0.0025 0.0960 0.0008 92 0.0026 0.0952 0.0008 93
T5 0.0022 0.1436 0.0005 96 0.0022 0.1441 0.0006 97 0.0023 0.1444 0.0005 97 0.0021 0.1433 0.0005 97 0.0022 0.1437 0.0005 96
T6 0.0000 0.1411 0.0007 96 0.0003 0.1427 0.0007 96 0.0001 0.1422 0.0007 97 0.0001 0.1432 0.0007 96 0.0003 0.1432 0.0007 97
T7 0.0052 0.1431 0.0006 99 0.0053 0.1448 0.0005 98 0.0052 0.1450 0.0005 98 0.0051 0.1433 0.0005 99 0.0053 0.1448 0.0006 99
T8 0.0017 0.1441 0.0006 99 0.0018 0.1445 0.0006 97 0.0015 0.1438 0.0005 99 0.0014 0.1448 0.0005 99 0.0016 0.1436 0.0005 99
T9 0.0007 0.1900 0.0007 98 0.0007 0.1897 0.0007 98 0.0005 0.1903 0.0007 97 0.0007 0.1895 0.0007 98 0.0007 0.1896 0.0007 98
T10 0.0022 0.1930 0.0005 99 0.0022 0.1910 0.0005 99 0.0023 0.1924 0.0005 99 0.0021 0.1930 0.0005 99 0.0022 0.1910 0.0005 99
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If the prior distribution for γ is centered on the true value, the estimates for the static and
dynamic parameters are improved if compared to the ones obtained by assuming a flatter prior
shown in the paper. Also, taking that θ0 ∼ Gamma(100,100), we got a better performance
of the HPD intervals as coverage percentages increased if compared to the scenarios analyzed
previously in the paper. By shifting the prior distribution of γ to 0.5, it strongly affects the
posterior estimates of γ, but the estimates for the static and dynamic parameters are similar
to those obtained in our previous analysis (Section 4 in the paper). Concerning the estimated
failure times of the units under test, both prior distributions provide very similar estimates.
Thus, our prior specifications for γ and θ0 only smoothly influenced the posterior estimates of
the failure times associated with the units.

S2.2 The effect of the prior distributions for λi, i = 1, 2, . . . , n

To evaluate the effect of the prior distribution of λi, i = 1, 2, . . . , 10, on the posterior inference
of the DMGM parameters, we consider the following two scenarios: λi

ind.∼ Gamma(0.49, 0.35)

(Scenario 1) and λi
ind.∼ Gamma(12.88, 9.20) (Scenario 2). These prior distributions are both

centered in 1.4, the mean of the generated λi, and have variances 0.2 and 4, respectively. We
also assume θ0∼Gamma(0.01, 0.01) and γ∼Beta(1, 1). All other specifications are as for the
other simulation studies. The results of the two new scenarios of simulation are presented in
Table S3.

The posterior estimates for λ and the failure time forecasts are few biased and not greatly
influenced by the prior specifications for λ. We noticed a significant improvement in the pos-
terior estimates for the dynamic parameters compared to that shown in Table 1. For these
parameters, to consider more informative prior distributions for λ led to less biased estimates.
On the other hand, the posterior estimates for γ lost quality and experienced a higher biased
than in all different scenarios analyzed in our studies.

S2.3 Degradation forecasts K-steps ahead, K large

To evaluate the performance of DMGM in long-term forecasting of the degradation measure-
ments, we consider a simulated data set from which the last 10 measures are removed from all
units for being predicted.

Data are generated as in Section 4 but now considering mi = 31 equally spaced inspection
times starting in t = 0. The following prior distributions are assumed: θ0 ∼ Gamma(α0 =

100, β0 = 100), γ ∼ Beta(1,1) and λi ∼ Gamma(0.001, 0.001), for all i = 1, . . . , 10. The 10

removed degradation measures are predicted using the sequential procedure described in Section
2. We collected 2000 MCMC iterates after discarding the first 50000 as the burn-in period and
thinning by 100. Figure S1 shows that the DMGM forecasting procedure well recovered the
removed measurements.
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Table S3: Summary of relative bias, variances of the posterior samples, relative variance of the posterior mean
estimates and coverage percentage of the 95% credibility interval for the DMGM paramenters and failure times
of the units under test considering different priors for λi, i = 1, 2, . . . , 10.

λi
ind.∼ Gamma(0.49, 0.35) λi

ind.∼ Gamma(12.88, 9.20)
RB MV RVM CP RB MV RVM CP

θ1 0.301 0.785 0.078 100 0.049 0.098 0.053 97
θ2 0.241 0.650 0.036 100 -0.003 0.030 0.021 95
θ3 0.250 0.650 0.019 100 0.005 0.018 0.009 99
θ4 0.273 0.660 0.013 100 0.023 0.015 0.006 100
θ5 0.272 0.676 0.010 100 0.022 0.014 0.004 100
θ6 0.260 0.682 0.009 100 0.012 0.013 0.002 100
θ7 0.244 0.688 0.008 100 -0.001 0.012 0.002 100
θ8 0.242 0.709 0.007 100 -0.002 0.012 0.001 100
θ9 0.246 0.722 0.007 100 0.001 0.013 0.001 100
θ10 0.248 0.723 0.007 100 0.003 0.013 0.001 100
λ1 -0.003 0.205 0.005 100 0.006 0.010 0.002 100
λ2 0.015 0.213 0.005 100 0.024 0.011 0.003 100
λ3 -0.005 0.204 0.005 100 0.004 0.010 0.002 100
λ4 0.011 0.211 0.005 100 0.020 0.011 0.002 100
λ5 -0.001 0.463 0.004 100 -0.003 0.023 0.003 100
λ6 0.001 0.464 0.005 100 -0.001 0.023 0.003 100
λ7 0.011 0.473 0.004 100 0.009 0.023 0.002 100
λ8 0.004 0.468 0.005 100 0.002 0.023 0.002 100
λ9 -0.004 0.816 0.004 100 -0.016 0.038 0.002 100
λ10 -0.002 0.818 0.004 100 -0.015 0.039 0.002 100
γ 0.919 0.041 0.268 84 0.928 0.041 0.272 85
T1 0.003 0.123 0.001 93 -0.002 0.120 0.001 96
T2 -0.007 0.125 0.001 94 -0.011 0.122 0.001 92
T3 0.003 0.122 0.000 98 -0.001 0.119 0.000 99
T4 -0.005 0.124 0.001 97 -0.009 0.121 0.001 96
T5 0.001 0.186 0.001 93 0.002 0.178 0.001 95
T6 0.000 0.184 0.001 95 0.002 0.177 0.001 94
T7 -0.005 0.185 0.001 97 -0.003 0.180 0.001 97
T8 -0.001 0.184 0.001 96 0.000 0.178 0.001 99
T9 0.002 0.243 0.001 97 0.009 0.234 0.001 93
T10 0.002 0.244 0.001 96 0.009 0.236 0.001 94
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Figure S1: True degradation measure (black solid line), posterior means for the filtering distribution (grey
solid line) the sequential forecasting (grey dashed line) the removed observations (black solid line with squares)
and the 95% credibility intervals for the units under test, simulated degradation data.
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S3 A Closer Look at our Case Studies

This section presents some complementary material related to the analysis of the fatigue crack
size and stress relaxation datasets (Section S3.1 and Section S3.2, respectively). It includes the
point and interval posterior estimates of the DMGM parameters, additional graphics with the
fit and sequential forecasting of the degradation measures for all units and a RUL comparison
between different models.

S3.1 Fatigue Crack Size Data

For the fatigue crack size data presented in Meeker and Escobar [1998], the table S4 gives a
numerical detail for the point and interval estimates of the DMGM parameters.

Table S4: Posterior point estimates and 95% credibility interval bounds of the DMGM parameters, fatigue
crack size data.

Parameter Mean Median Mode HPD
θ1 0.89 0.87 0.87 0.41 1.44
θ2 1.1 1.06 1.07 0.5 1.7
θ3 1.45 1.41 1.32 0.77 2.18
θ4 1.8 1.75 1.69 1.06 2.7
θ5 2.12 2.06 2.03 1.2 3.14
θ6 2.37 2.29 2.24 1.29 3.41
θ7 2.59 2.52 2.47 1.51 3.8
θ8 2.71 2.62 2.63 1.6 3.99
θ9 2.79 2.7 2.52 1.64 4.09
λ1 42.71 41.28 36.36 23.77 62.19
λ2 52.31 51.07 50.15 30.34 77.61
λ3 54.31 52.65 51.59 30.67 79.93
λ4 56.37 54.83 51.79 31.82 82.77
λ5 56.4 54.94 56.01 33.77 84.07
λ6 57.86 56.11 55.95 32.73 84.08
λ7 58.68 57.1 55.35 31.43 84.19
λ8 61.03 59.62 61.98 35.93 91.54
λ9 64.78 63.06 56.26 35.81 93.19
λ10 68.77 66.55 66.84 37.66 99.06
γ 0.3 0.26 0.21 0.02 0.67

Aiming a broad look at the ten units under test, Figure S2 presents the sequential forecasting
together with the 95% credibility intervals until reaching the critical degradation threshold.
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Figure S2: Degradation measure (black solid line), MTTF (black point), posterior means for the filtering
distribution (grey solid line), the sequential forecasting (grey dashed line) and the 95% credibility intervals for
the units under test, fatigue crack size data.
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S3.2 Stress Relaxation Data

Some posterior estimates of the DMGM static and dynamic parameters applied to the data are
detailed in Table S5 and Figure S3 presents the sequential forecasting together with the 95%
credibility intervals until reaching the critical degradation threshold.

Table S5: Posterior point estimates and 95% credibility interval bounds of the DMGM parameters, stress
relaxation data.

Parameter Mean Median Mode HPD
θ1 1.00 0.99 1.00 0.78 1.19
θ2 1.00 1.00 0.99 0.78 1.21
θ3 1.02 1.02 1.01 0.78 1.24
θ4 1.03 1.03 1.03 0.78 1.27
θ5 1.03 1.03 0.97 0.78 1.27
θ6 1.03 1.02 0.96 0.78 1.28
θ7 1.02 1.01 0.99 0.79 1.28
θ8 1.01 1.00 1.00 0.78 1.26
θ9 1.00 1.00 0.95 0.75 1.24
θ10 1.00 1.00 0.97 0.75 1.25
λ1 1.81 1.79 1.77 1.32 2.29
λ2 1.83 1.82 1.80 1.39 2.35
λ3 1.65 1.64 1.77 1.25 2.10
λ4 1.58 1.57 1.55 1.20 2.02
λ5 1.46 1.44 1.39 1.07 1.85
λ6 1.39 1.37 1.23 1.00 1.76
γ 0.71 0.74 0.92 0.36 1.00
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Figure S3: Degradation measure (black solid line), MTTF (black point), posterior means for the filtering
distribution (grey solid line), the sequential forecasting (grey dashed line) and the 95% credibility intervals for
the units under test, stress relaxation data.

Table S6 shows the RUL by fitting DMGM, WLDM, WRDM and DLDM to analyze the
stress relaxation data in different scenarios. The RUL was calculated considering different last
inspection times tJ , given in hours. Specifically, for all units under test, we evaluate the RUL
from complete data in which tJ = 1218 and removing from 1 to 3 degradation measurements.
Removing the last 3 degradation measurements from the data, the final inspection time is
tJ = 729.

The RUL values for the WRDM are only slightly higher than those obtained by fitting the
DMGM, showing that these two models are comparable in predicting the remaining useful life
of the units under test. However, compared to WRDM, the DMGM provides better predictive
accuracy measures (See Table 5). The lowest RUL estimates are obtained by fitting WLDM
for all units under test. Considering the WLDM and letting tJ = 1218, the estimated RUL for
unit 6 is negative indicating erroneously that unit 6 failured before tJ = 1218 hours.
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Table S6: RUL in hours obtained considering DMGM, WLDM, WRDM and DLDM for stress relaxation data
with different values of tJ .

Model tJ
Unit

1 2 3 4 5 6

DMGM

1218 1659.63 1738.28 1181.49 987.06 648.39 467.25
1005 1914.23 2022.26 1412.73 1193.18 873.15 705.77
927 2075.17 2214.12 1561.36 1322.86 1013.82 868.85
729 2330.22 2451.12 1821.71 1557.72 1262.48 1075.80

WLDM

1218 383.09 394.01 242.89 191.14 61.73 —-
1005 490.05 528.42 364.89 315.09 189.74 135.77
927 498.04 560.51 382.21 323.39 212.91 177.03
729 576.56 631.39 484.82 411.82 317.09 277.73

WRDM

1218 1728.63 1805.78 1241.32 1051.00 687.43 495.93
1005 1959.57 2111.80 1486.50 1285.68 905.82 738.95
927 2088.65 2327.58 1623.65 1388.81 1025.29 889.81
729 2329.58 2550.36 1885.39 1596.92 1265.01 1100.04

DLDM

1218 803.12 749.73 574.13 485.68 375.27 199.11
1005 821.87 829.23 657.16 578.21 418.34 264.71
927 890.88 1044.9 712.46 647.92 498.91 418.69
729 921.68 1095.08 834.91 739.87 593.37 487.09



Chapter 4

General Path Dynamic Model for
Degradation Data with Fixed Covariates

Abstract

Degradation data provide a useful resource for obtaining reliability information for some highly
reliable products and systems. In addition to the degradation measurements, it is common to
record the system usage as a function of observed covariates that can distinctly influence the
failure times of the units under test. In this context, we propose a general path dynamic model
for degradation data with fixed covariates. This proposed methodology is able to allow the degra-
dation rate to be writen as a function of two components. The first component represents the
particularities of each unit and has a regression structure that accommodates the fixed covari-
ates. The other component represents the random effects of the common environment and evolve
over time. In addition, the inspection times are included in the model from generic functions,
allowing for different practical representations to be accommodated. After defining the proposed
model, its identifiability is investigated along with the MCMC procedure used to make the infer-
ential process. The relation of the model parameters and the failure time is found and methods
for estimating the remaining useful life for units under test and a future one are discussed. We
conduct a simulation study to verify the effectiveness of the proposed algorithm and applied the
methodology to the scar width degradation data.

Keywords: Covariates, Failure Time, Degradation rate decomposition, Model iden-
tifiability, Reliability
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4.1 Introduction

The increasing demand for highly reliable products has been posing big challenges on reliability
assessment. A major challenge for life tests of these products is how to quickly and efficiently
extract failure information to assess the remaining useful life of the devices. A degradation
model which measures the physical degradation path as a function of time can provide a direct
connection between the product failure time and the inherent degradation mechanism, and
hence improves accuracy and credibility of the predicted reliability. Most existing work in the
literature focuses on modeling and analysis of degradation data with a single characteristic.
In some degradation tests, multiple characteristics of a degradation process are measured to
understand different aspects of the reliability performance [Lu et al , 2021].

As a motivating practical situation, Figure 4.1 brings an experiment conducted to test the
wear resistance of a particular metal alloy [Meeker and Escobar, 1998]. The sliding test was
conducted over a range of different applied weights in order to study the effect of weight and
to gain a better understanding of the wear mechanism. Thus, 12 units were tested and divided
according to different applied weights of 0.10kg, 0.05kg and 0.01kg. These units were monitored
over 9 non-equidistant inspection times and it was established that the critical threshold of the
scar width is Df =50 microns. Note that the applied weights contribute to different degradation
trajectories and strongly influence the failure time of the units under test.
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Figure 4.1: Scar width resulting from a metal-to-metal sliding test for different applied weights



4 DYNAMIC DEGRADATION MODEL WITH FIXED COVARIATES 103

The literature on modeling degradation data with multiple characteristics is scarce. To
capture the influences of both accelerated conditions and material characteristics as well as
the influence of unobserved factors, Sun et al [2021] propose a degradation modeling frame-
work with mixed type covariates and latent heterogeneity. In Wang et al [2021], a multivariate
Wiener process is constructed as a baseline model, on top of which two types of models are
developed to meaningfully characterize the time-variant covariates and imperfect maintenance
effects. Hong et al [2015] use a general path model with individual random effects to describe
degradation paths and a vector time series model to describe the covariate process. Bagdon-
avicius and Nikulin [2001] model degradation by a gamma process and include possibly time-
dependent covariates. The same process is used in Lawless and Crowder [2004], where the
authors incorporate random effects and covariates in their proposed methodology. Motivated
by the photodegradation process of polymeric material, Lu et al [2021] propose a multivariate
general path model for analyzing degradation data with multiple degradation characteristics
incorporating covariates for modeling the nonlinear degradation path.

We propose a methodology capable of helping to fill this gap in the literature of degradation
models for data with covariates. The novelty is in the use of dynamic models together with
a regression structure to model the data with fixed covariates. In section 4.2, the dynamic
degradation model with fixed covariates is defined, together with the proof that it is identifiable.
This section also details the inferential procedure to estimate the parameters of interest in the
proposed model. Section 4.3 discusses the relation between the model parameters and the failure
time and presents the process of estimating the remaining useful life of the units under test and
a future one. A brief simulation study is conducted in Section 4.4 to verify the efficiency of the
proposed estimation algorithm. Section 4.5 presents the application of the model to the scar
width degradation data (Figure 4.1). Finally, Section 4.6 closes this chapter with interesting
topics for future research.

4.2 Dynamic Degradation Model with Fixed Covariates

Suppose that a sample of n independent units are under test. Let Yij be the degradation at
unit i, i = 1, 2, . . . , n, accumulated until the measurement instant j, j = 1, 2, . . . ,mi and mi is
the number of time intervals in which degradation is measured on unit i. Assume that all units
under test are subject to the same dynamic structure which, in a general context, is given by

Yij = αij + (λi + µj)g(tij) + ϵij

αij = αi(j−1) + νij

µj = µj−1 + ωj

, (4.1)

where αij is the baseline degradation, λi is a specific component associated to each unit i,
µj is the effect of the common environment at the measurement instant j, g(tij) is a positive
increasing function of the inspection times tij, ϵij is the observational error and νij and ωj are
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the evolution errors. To incorporate the fixed covariates into the proposed model, λi is defined
as

λi = exp{βXi} = exp{β0 + β1Xi1 + β2Xi2 + . . .+ βpXip}, (4.2)

where β = [β0, β1, . . . , βp]
t is the (p+1)-vector of regression parameters andXi = [X1i, X2i, . . . , Xpi]

t

is the vector of p fixed covariates. The definition of the model is added by the fact that
ϵij ind∼ N(0, σ2

ϵi), νij ind∼ N(0, σ2
νi), for i = 1, 2, . . . n, and ωj ind∼ N(0, σ2

ω), where σ2
ϵi, σ2

νi and σ2
ω

are invariant and unknown.
Note that the structure of the model given in (4.1) implies that the degradation rate of the

units under test is a function of (λi+µj). This decomposition is done by adding two effects, one
static and particular for each unit and the other dynamic representing the random effects of the
common environment. Furthermore, the proposed methodology can also be used in degradation
data that do not have fixed covariates. In this case, λi = exp{β0i}, for i = 1, 2, . . . , n.

As in Chapter 3, before starting the inferential process of the proposed model, it is necessary
to investigate the model’s identifiability. One of the ways to verify this property is to examine
if the number of independently sufficient statistics is equal to the number of parameters to be
estimated.

The model given by equation (4.1) imposes the following likelihood function
n∏
i=1

J∏
j=1

f(yij|tij, αij,β, µj, σ2
ϵi) =

=
n∏
i=1

J∏
j=1

(
1

2πσ2
ϵi

) 1
2

exp

{
− [yij − (αij + (λi + µj)g(tij))]

2

2σ2
ϵi

}

=
n∏
i=1

(
1

2πσ2
ϵi

)J
2

exp

{
−

n∑
i=1

J∑
j=1

[yij − (αij + (λi + µj)g(tij))]
2

2σ2
ϵi

}

=
n∏
i=1

(
1

2πσ2
ϵi

)J
2

exp

{
−

n∑
i=1

J∑
j=1

(αij + (λi + µj)g(tij))
2

2σ2
ϵi

−
n∑
i=1

J∑
j=1

y2ij
2σ2

ϵi

}

× exp

{
n∑
i=1

J∑
j=1

[αijyij + λig(tij)yij + µjg(tij)yij]

σ2
ϵi

}
(4.3)

Thus, by the factorization criterion,
J∑
j=1

y2ij is a sufficient statistic for each σ2
ϵi, yij is a

sufficient statistic for αij,
∑J

j=1 g(tij)yij is a sufficient statistic for λi and
∑n

i=1 g(tij)yij is a
sufficient statistic for µj.

4.2.1 Posterior Inference

Analogously to the inferential process conducted in Section 2.2.1, following West & Harrison
[1997], we consider the matrix representation of the proposed model in (4.1). Note that the
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expression λig(tij) for i = 1, 2, . . . , n and j = 1, 2, ...,mi do not depend on dynamic components.
In this way, for all j ≥ 1, assume thatY ∗

j = Fjθj + ϵj ϵj ∼ Nn(0,σ
2
ϵ In×n)

θj = θj−1 + γj γj ∼ Nn+1(0,Γj),
(4.4)

where Y ∗
j = {[(Y1j − λ1g(t1j)], . . . , [Ynj − λng(tnj)]}T ∈ Rn, θj = (α1j, . . . , αnj, µj)

T , ϵj =

(ϵ1j, . . . , ϵnj)
T , γj = (ν1j, . . . , νnj, ωj)

T , σ2
ϵ = (σ2

ϵ1, . . . , σ
2
ϵn)

T , Γj = (σ2
ν , σ

2
ω)
T I(n+1)×(n+1) is the

(n+1)× (n+1) covariance matrix, Ip×p is the identity matrix of order p, σ2
ν = (σ2

ν1, . . . , σ
2
νn)

T

and the n× (n+ 1) regression matrix is

Fj =


1 0 · · · 0 g(t1j)

0 1 · · · 0 g(t2j)
...

... . . . ...
0 0 · · · 1 g(tnj)

 .

To complete the model specification, for the state vector of parameters θj at the initial time
j = 0, we consider θ0 ∼ Nn+1(m0,C0), where m0 ∈ Rn+1 and C0 ∈ Rn+1 × Rn+1 are, respec-
tively, the mean vector and the covariance matrix specified based on the available prior informa-
tion. For the variances, we assume ψϵi = σ−2

ϵi ∼ Gamma(a1i, b1i), ψνi = σ−2
νi ∼ Gamma(a2i, b2i),

for i = 1, 2, . . . , n and ψω = σ−2
ω ∼ Gamma(a3, b3), where all the hyperparameters are bigger

than 0. The vector β of regression parameters have a prior distribution given by β ∼ N(m,V ),
where m is a vector of dimension p+1 of means and V is a (p+1)× (p+1) covariance matrix.

The posterior distributions of β, θ0:J , ψϵ, ψν and ψν , where J = max(mi), for i =

1, 2, . . . , n, ψϵ = (ψϵ1, . . . , ψϵn)
T and ψν = (ψν1, . . . , ψνn)

T , are obtained mixing the likelihood
function given in equation (4.3) with the prior distributions previously mentioned. Considering
Dj−1 = {Dj−2, Y1,j−1, . . . , Yn,j−1, t1,j−1, . . . , tn,j−1}, we have the following Markov chain Monte
Carlo (MCMC) scheme:

i Generate β via π(β|θ0:J ,ψϵ,ψν , ψω,D
J)

ii Generate θ0:J via π(θ0:J |β,ψϵ,ψν , ψω,D
J)

iii Generate ψϵ via π(ψϵ|β,θ0:J ,ψν , ψω,D
J)

iv Generate ψν via π(ψν |β,θ0:J ,ψϵ, ψω,D
J)

v Generate ψω via π(ψω|β,θ0:J ,ψϵ,ψν ,D
J)

In step (i), considering Yj = (Y1j, Y2j, . . . , Ynj) and the expression given in (4.2), the poste-
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rior conditional distribution of β is

π(β|θ,ψϵ,ψν , ψω,D
J) ∝ π(Y1:J |β,θ0:J ,ψϵ)π(β)

∝ exp

{
−

n∑
i=1

J∑
j=1

(αij + (exp{βXi}+ µj)g(tij))
2

2σ2
ϵi

}

× exp

{
−

n∑
i=1

J∑
j=1

exp{βXi}g(tij)yij
σ2
ϵi

− 1

2
(β −m)TV −1(β −m)

}
.

This distribution does not have a closed form. Thus, we use a Metropolis Hastings step, gen-
erating the candidates of β from a multivariate normal distribution with mean given by the
vector obtained in the immediately previous step and the variance is calibrated aiming at a
satisfactory acceptance percentage of the algorithm.

To generate the posterior estimates for the dynamic components θ0:J in step (ii) we consider
the forward filtering backward sampling (FFBS) discussed in Section 2.2.1. applied in the model
rewritten in expression (4.4).

In steps (iii) and (iv), the posterior conditional distribution of ψϵ and ψν can be broken
into the marginal conditional distribution of each component of both vectors. Therefore, for
i = 1, 2, . . . , n, we have that

π(ψϵi|β,θ0:J ,ψν , ψω,D
J) ∝ π(y1:J |β,θ0:J , ψϵi,ψν , ψω)π(ψϵi)

∝ ψ
J
2
ϵi exp

{
−ψϵi

2

J∑
j=1

[yij − αij − (λi + µj)g(tij)]
2

}
ψa1i−1
ϵi exp {−b1iψϵi}

and

π(ψνi|β,θ0:J ,ψϵ, ψω,D
J) ∝ π(y1:J |β,θ0:J , ψϵi,ψν , ψω)π(ψνi)

∝ ψ
J
2
ν exp

{
−ψνi

2

J∑
j=1

(αij − αi(j−1))
2

}
ψa2i−1
νi exp {−b2iψνi} .

Consequently, ψϵi|β,θ0:J ,ψν , ψω,D
J ∼ Gamma

(
a1i + J/2, b1i + 1/2

∑J
j=1[yij − (λi + µj)g(tij)]

2
)

and ψνi|β,θ0:J ,ψϵ, ψω,D
J ∼ Gamma

(
a2i + J/2, b2i + 1/2

∑J
j=1(αij − αi(j−1))

2
)
.

In step (v), the posterior conditional distribution of ψω is given by

π(ψω|β,θ0:J ,ψϵ,ψν ,D
J) ∝ π(y1:J |β,θ0:J , ψϵi,ψν , ψω)π(ψνi)

∝ ψ
J
2
ω exp

{
−ψωi

2

J∑
j=1

(µj − µ(j−1))
2

}
ψa3−1
ω exp {−b3ψω}

so that ψω|β,θ0:J ,ψϵ,ψν ,D
J ∼ Gamma

(
a3 + J/2, b3 + 1/2

∑J
j=1(µj − µj−1)

2
)
.
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4.3 Failure Time Distribution

Analogously to what was done in the Section 2.3, we suppose that some units under test fail
during the experiment and others fail after the maximum measurement instant J . Assume that
a unit i fails at the time interval which lower bound is γi. If unit i does not fail during the
experiment the bound γi = J ; otherwise, γi < J . From the relationship between time and
degradation given by the model in expression (4.1) and assuming that the function g(·) is
invertible, the failure time for the ith unit is given by

Ti = g−1

(
Df − αiγi
λi + µγi

)
, (4.5)

where αiγi and µγi are the state components prior to failure for unit i. If the function g(·) is not
invertible, then computational numerical methods can be used to approximate the relationship
obtained in (4.5). For units that do not fail during the experiment, inference for the failure
time will consider the state vector related to the last time interval we measured the degradation
[Petris et al. , 2009].

We obtain a posterior sampling for the failure time of unit i as follows. Having available the
posterior sample of θ(l)iγi = (α

(l)
iγi
, µ

(l)
γi )

T and λ(l)i associated to the degradation model parameters

θiγi = (αiγi , βiγi)
T and λi, we calculate Ti = g−1

(
Df−α

(l)
iγi

λ
(l)
i +µ

(l)
γi

)
, for l = 1, . . . L, where L is the

posterior sample size. This is made by considering the following schemeα
(1)
iγi
, α

(2)
iγi
, . . . , α

(L)
iγi

µ
(1)
γi , µ

(2)
γi , . . . , µ

(L)
γi

λ
(1)
i , λ

(2)
i , . . . , λ

(L)
i

 ⇒ evaluate θiγi , λi|DJ in Ti = g−1

(
Df − αiγi
λi + µγi

)

⇒
(
T

(1)
i |θ(1)iγiλ

(1)
i , T

(2)
i |θ(2)iγiλ

(2)
i , . . . , T

(L)
i |θ(L)iγi

λ
(L)
i

)
The posterior predictive cdf of Ti evaluated at time t is approximated by

F̂Ti|DJ (t|DJ) =
L∑
l=1

1{T (l)
i |θ(l)iγiλ

(l)
i ≤ t}

L
.

To calculate the posterior predictive cdf for the failure time Tn+1 of a new device, we
assume that Tn+1 has the same distribution as the failure times Ti of the units under test.
Following Robinson and Crowder [2000], we assume that a posterior sample of θ(n+1)γn+1

and λn+1 is obtained sampling from the posterior distributions of the parameters θiγi and
λi, for i = 1, . . . , n, associated with the time intervals when unit i experienced the fail-
ure. Thus, to estimate FTn+1|DJ (t|DJ) at time t we consider the total posterior sample of
θ0:J and λ = (λ1, λ2, . . . , λn)

T . For each sample θ(l)ij = (α
(l)
iγi
, µ

(l)
γi )

T and λ
(l)
i , we calculate
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Tn+1 = g−1

(
Df−α

(l)
iγi

λ
(l)
i +µ

(l)
γi

)
,, i = 1, . . . , n, l = 1, . . . , L, as follows



α
(1)
1γ1

α
(2)
1γ1

. . . α
(L)
1γ1

µ
(1)
γ1 µ

(2)
γ1 . . . µ

(L)
γ1

λ
(1)
1 λ

(2)
1 . . . λ

(L)
1

...
... . . . ...

α
(1)
nγn α

(2)
nγn . . . α

(L)
nγn

µ
(1)
γn µ

(2)
γn . . . µ

(L)
γn

λ
(1)
n λ

(2)
n . . . λ

(L)
n


⇒ evaluate θiγi , λi|DJ in Tn+1 = g−1

(
Df − αiγi
λi + µγi

)

⇒


T

(1)
n+1|θ

(1)
1γ1
λ
(1)
1 , T

(2)
n+1|θ

(2)
1γ1
λ
(2)
1 , . . . , T

(L)
n+1|θ

(L)
1γ1
λ
(L)
1

T
(1)
n+1|θ

(1)
2γ2
λ
(1)
2 , T

(2)
n+1|θ

(2)
2γ2
λ
(2)
2 , . . . , T

(L)
n+1|θ

(L)
2γ2
λ
(L)
2

...
... . . . ...

T
(1)
n+1|θ

(1)
nγnλ

(1)
n , T

(2)
n+1|θ

(2)
nγnλ

(2)
n , . . . , T

(L)
n+1|θ

(L)
nγnλ

(L)
n


The posterior estimate for the predictive cdf of Tn+1 evaluated at time t is given by

F̂Tn+1|DJ (t|DJ) =
L∑
l=1

n∑
i=1

1

{
T

(l)
n+1|θ

(l)
iγi
λ
(l)
i ≤ t

}
nL

.

4.4 Simulation Study

In this section, we investigate the model’s performance in a simulated degradation test similar
to the data from scar width degradation data (Figure 4.1). The simulated data, therefore, has 12
units under test monitored at the non equidistant inspection times 2, 5, 10, 20, 50, 100, 200 and
500 cycles. A continuous variable X, divides the units in three groups of same size: X = 0.1kg,
X=0.05kg or X=0.01kg. The regression structure adopted is λi = exp β1Xi, for i = 1, 2, . . . , 12

and β1 = 15. Consequently, λ1 = λ2 = λ3 = λ4 = 1.16, λ5 = λ6 = λ7 = λ8 = 2.12 and
λ9 = λ10 = λ11 = λ12 = 4.48. For simplification, we will denote λ0.01 = 1.16, λ0.05 = 2.12 and
λ0.1 = 4.48. The standard deviations associated to the observational error of each unit under test
are given by σϵ1 = σϵ2 = 0.15, σϵ3 = σϵ4 = 0.25, σϵ5 = σϵ6 = 0.5, σϵ7 = σϵ8 = 0.7, σϵ9 = σϵ10 = 0.9

and σϵ11 = σϵ12 = 0.8. The standard deviations associated to the evolution errors of the baseline
degradation are established as σν1 = σν2 = 0.2, σν3 = σν4 = 0.3, σν5 = σν6 = 0.5, σν7 = σν8 =

0.6, σν9 = σν10 = 0.7 and σν11 = σν12 = 0.8. The real values of the standard deviations of the
model errors is finalized considering that σω = 0.15. Each dynamic component present in θ0
is generated from the distribution N(1.2, 0.452). The function of the inspection times adopted
here is g(tij) = log(tij), for i = 1, 2, . . . , 12 and j = 1, 2, . . . , 8. Figure shows one degradation
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data generated considering the specifications cited before and the model (4.1):
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Figure 4.2: A simulated degradation data with covariates

To estimate the model parameters and compare to the real values, we used the follow-
ing prior distributions: β1 ∼ N(0, 102), θ0 ∼ N13(0, 1000 I13×13), ψω ∼ Gamma(0.01, 0.01),
ψϵiiid∼ Gamma(0.01, 0.01) and ψνiiid∼ Gamma(0.01, 0.01), for i = 1, 2, . . . , 12. The proposed method-
ology is fitted collecting 1000 MCMC iterates after discarding the first 50000 as the burn-in
period and thinning by 200. Table 4.1 provides a summary of the posterior estimates, along
with the 95% HPD credibility interval for some model parameters, considering the data from
Figure 4.2.

The posterior mean obtained for the regression parameter β1 is practically equal to the sim-
ulated real value and, consequently, the estimates for λ0.01, λ0.05 and λ0.10 also show the same
behavior, with respect to the real values of these parameters. The posterior point estimates
for the dynamic parameters µj, for j = 1, 2, . . . , 8, underestimated most of the real values, but
the 95% HPD credibility covered the simulated values of these parameters. All the parameters
mentioned before have the posterior means very close to the posterior medians, being a strong
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Table 4.1: Posterior point estimates and 95% credibility interval bounds of some model parameters, simulated
degradation test (Figure 4.2)

Parameter True Mean Median St. Dev 95% HPD
β1 15.000 14.986 15.016 0.522 13.983 16.065
λ0.01 1.162 1.162 1.162 0.006 1.150 1.174
λ0.05 2.117 2.116 2.119 0.055 2.012 2.233
λ0.10 4.482 4.481 4.489 0.233 4.006 4.941
µ1 1.619 1.516 1.518 0.345 0.876 2.237
µ2 1.601 1.548 1.543 0.200 1.147 1.932
µ3 1.611 1.463 1.460 0.151 1.181 1.743
µ4 1.363 1.314 1.314 0.121 1.074 1.540
µ5 1.390 1.351 1.350 0.096 1.173 1.539
µ6 1.539 1.553 1.552 0.081 1.409 1.721
µ7 1.514 1.497 1.495 0.074 1.357 1.648
µ8 1.292 1.305 1.306 0.067 1.170 1.430
σϵ1 0.150 0.247 0.224 0.136 0.051 0.499
σϵ2 0.150 0.169 0.148 0.086 0.051 0.335
σϵ3 0.250 0.174 0.156 0.086 0.046 0.349
σϵ4 0.250 0.193 0.164 0.117 0.056 0.412
σϵ5 0.500 0.676 0.635 0.436 0.058 1.489
σϵ6 0.500 0.299 0.266 0.177 0.064 0.589
σϵ7 0.700 0.635 0.619 0.384 0.062 1.281
σϵ8 0.700 0.356 0.334 0.174 0.061 0.679
σϵ9 0.900 0.422 0.342 0.303 0.057 1.014
σϵ10 0.900 0.491 0.400 0.368 0.053 1.230
σϵ11 0.800 0.616 0.424 0.554 0.058 1.749
σϵ12 0.800 0.309 0.242 0.221 0.057 0.741
σν1 0.150 0.317 0.292 0.172 0.062 0.643
σν2 0.200 0.175 0.155 0.090 0.053 0.353
σν3 0.200 0.187 0.165 0.102 0.044 0.375
σν4 0.300 0.307 0.286 0.138 0.095 0.596
σν5 0.300 0.839 0.797 0.508 0.052 1.732
σν6 0.500 0.323 0.288 0.182 0.055 0.676
σν7 0.500 0.676 0.601 0.463 0.060 1.502
σν8 0.600 0.328 0.270 0.225 0.060 0.780
σν9 0.600 0.674 0.646 0.371 0.081 1.406
σν10 0.700 0.732 0.694 0.419 0.060 1.473
σν11 0.700 1.355 1.322 0.556 0.298 2.459
σν12 0.800 0.665 0.609 0.328 0.130 1.267
σω 0.800 0.179 0.162 0.074 0.089 0.324
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indication of symmetric posterior distributions. With respect to the standard deviations asso-
ciated with the model errors, the posterior point estimates were satisfactory, compared to the
real values. There are two standard deviations (σϵ8 and σϵ12) whose 95% HPD intervals did
not recover the simulated values. In all cases, the posterior means obtained were greater than
the posterior median values, indicating asymmetry of the posterior distributions associated to
standard deviations of the model errors.

The behavior of the mean posterior estimates for the 96 baseline degradations with respect
to the simulated values is represented in Figure 4.3. The points in this figure are randomly
arranged around the line, indicating that the posterior samples of the baseline degradations
were able to recover regions close to the simulated real values of these parameters.
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Figure 4.3: Real values of all the 96 baseline degradations versus the posterior means obtained for these
parameters, simulated degradation test (Figure 4.2)
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For a better visualization, Figures 4.4, 4.5 and 4.6 show the boxplots of the posterior samples
of all the model parameters together with the simulated real values (in red). With an algorithm
acceptance rate of 25%, the posterior samples for β1, λ0.01, λ0.05 e λ0.10 have little variability and
are centered on the simulated real values, as shown in the Figures 4.4a e 4.4b. The simulated
values for µj, for j = 1, 2, . . . , 8, did not show a specific pattern and oscillated during the study
until reaching its lowest value in the last inspection time (Figure 4.4c). The variability of the
posterior sample associated to these parameters decreased over time, while the precision of the
estimates increased. Furthermore, it is important to emphasize that the simulated values, as
well as the posterior samples, are positive and far from 0. Thus, considering the model given in
equation (4.1) and knowing that λi > 0, for all i, the random effects of the common environment
in this simulated data contributed to a increase in the degradation rates.

With respect to the standard deviations associated with the observational errors (Figure
4.5a), the estimates obtained for the first group (X = 0.01) were more accurate. However, for
the other groups, the posterior means were more distant from the simulated real values. This
may be a particular issue found in this dataset. To verify whether there is a global problem in
the estimates obtained for these standard deviations, it would be necessary to conduct a Monte
Carlo study generating more replicas of the data in Figure 4.2. For the standard deviations
associated with the evolution errors (Figure 4.5b), the posterior samples are more close to
the real values. The highlight in this figure is the posterior sample of σϵ, which captured the
simulated real value of this parameter, allowing a correct understanding of the evolution of
random effects in the common environment.

The behavior of the posterior samples for the 96 baseline degradations are in Figure 4.6.
Note that the simulated real values of these parameters were well recovered and there is no
pattern observed for these parameters on all units under test. There are posterior samples
with a tendency to grow (units 4 and 12), decrease (unit 11) and stability ( units 1,2,3,8,9
and 10 ). Differently from the evolution parameters associated with the random effects of the
common environment (Figure 4.4c), the posterior samples of the baseline degradations did not
show smaller variability over time. In most units under test this variability remained stable or
increased slightly.

The fit of the proposed model in this simulated data is shown in Figure 4.7, containing
the posterior means for the filtering distribution with the 95% credibility intervals for the
units under test. As the data does not show much oscillation, the entire trajectory observed
was captured by the posterior means of the filtering distribution, together with the interval
amplitudes of the 95% credibility intervals. Also, note that the 95% credibility amplitudes are
smaller for the group where X = 0.01 and larger for the group where X = 0.10. This can be
easily explained by noting the difference in the scale of the degradation observed in each group.
Such difference in scale is common in degradation data with fixed covariates and motivated us
to bring standard deviations associated with model errors varying according to each unit i.
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Figure 4.4: Boxplot of the posterior samples associated to β1, λ0.01, λ0.05, λ0.10 and µj , for j = 1, 2, . . . , 8,
together with the real values (in red), simulated degradation test (Figure 4.2)
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Figure 4.5: Boxplot of the posterior samples associated to the model errors, together with the real values (in
red), simulated degradation test (Figure 4.2)
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Figure 4.7: Degradation measure (black solid line), posterior means for the filtering distribution (red solid line) with the 95% credibility intervals for the units
under test, simulated degradation data (Figure 4.2)
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4.5 Case Study: Scar Width Degradation Data

In this section, the proposed methodology is applied to the scar width degradation data pre-
sented in Figure 4.1 [Meeker and Escobar, 1998]. The specifications of the prior distributions for
the parameters are the same as in the simulation study depicted in the previous section. Only
in the algorithm specifications, the lag went from 200 to 125. To evaluate the computational
time, the application was fitted on an Intel (R) Core (TM) i7-8550U 1.80GHz CPU with 8GB
RAM.

The posterior inference for the model parameters is detailed in Table 4.2 and Figures 4.8,
4.9 and 4.10. With an acceptance rate of 29%, the posterior mean estimate for the regression
parameter β1 is 15.58. This estimate makes the posterior mean of the specific rate associated
to the third group λ0.10 to be almost 4 times greater than the estimated rate for the first group
λ0.01 (Table 4.2). Also in this table, The posterior point estimates for µj, with i = 1, 2, . . . , 8,
are all negative, indicating that, for the scar width degradation data, the random effects of the
common environment are unfavorable to the degradation of the units. Furthermore, the only
95% credibility interval of these parameters that include 0 is the one associated with µ1, whose
posterior sample has the greatest variability.

As in the simulated study discussed in the last section, the variability of the posterior
samples for µj, with j = 1, 2, . . . , 8, decreases over time (Figure 4.8c). The estimates for these
parameters decrease until the measurement instant j = 4, where the most unfavorable scenario
of the common environment occurs, and grow again until reaching its highest value at the end
of the study.

The posterior estimates for the standard deviations associated with the observational errors
and evolution errors from baseline degradations are smaller for the group in which X = 0.01kg
(Figures 4.9a and 4.9b). The last group X = 0.10 kg, on the other hand, presents the greatest
posterior variability. These results reinforce the need to consider different standard deviations
for each unit. The posterior median obtained for σϵ is 0.13. This result explains the little
oscillation obtained in the evolution of the µj, for j = 1, 2, . . . , 8.

The posterior estimates for the baseline degradations are all positive, with the exception of
unit 3 (Figure 4.10). As they vary according to being far from 0, the estimates reinforce the
need to include a random intercept in the model. The more the unit degraded in the study, the
higher the estimates obtained for the baseline degradations.

The fit of the proposed model in the scar width degradation data is shown in Figure 4.11,
containing the posterior means for the filtering distribution with the 95% credibility intervals
for the 12 units under test. As in the simulation study discussed before, these data do not have
much oscillation and the amplitude of the 95% HPD credibility interval is strongly influenced
by the numerical scale observed in each category of the covariate. The time taken to fit the
proposed methodology to the scard width degradation data was 10.33 minutes.
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Table 4.2: Posterior point estimates and 95% credibility interval bounds of some model parameters, scar widh
degradation data

Parameter Mean Median St. Dev 95% HPD
β1 15.579 15.586 0.502 14.601 16.530
λ0.01 1.169 1.169 0.006 1.157 1.180
λ0.05 2.180 2.180 0.055 2.075 2.285
λ0.10 4.755 4.752 0.239 4.307 5.222
µ1 -0.349 -0.354 0.292 -0.892 0.263
µ2 -0.366 -0.362 0.179 -0.756 -0.047
µ3 -0.418 -0.413 0.132 -0.664 -0.154
µ4 -0.522 -0.520 0.104 -0.709 -0.317
µ5 -0.385 -0.380 0.084 -0.545 -0.215
µ6 -0.324 -0.324 0.077 -0.475 -0.181
µ7 -0.293 -0.289 0.070 -0.427 -0.155
µ8 -0.130 -0.127 0.064 -0.273 -0.017
σϵ1 0.145 0.125 0.074 0.048 0.287
σϵ2 0.212 0.190 0.103 0.063 0.415
σϵ3 0.267 0.230 0.156 0.060 0.559
σϵ4 0.143 0.126 0.074 0.052 0.281
σϵ5 0.551 0.379 0.494 0.060 1.622
σϵ6 0.478 0.397 0.352 0.063 1.174
σϵ7 0.726 0.680 0.304 0.079 1.323
σϵ8 0.671 0.650 0.324 0.074 1.268
σϵ9 0.931 0.869 0.606 0.062 2.046
σϵ10 0.597 0.490 0.415 0.055 1.399
σϵ11 1.168 1.149 0.667 0.090 2.385
σϵ12 0.891 0.626 0.775 0.062 2.469
σν1 0.182 0.160 0.096 0.062 0.371
σν2 0.219 0.186 0.128 0.046 0.458
σν3 0.346 0.310 0.174 0.079 0.681
σν4 0.156 0.139 0.081 0.042 0.305
σν5 1.118 1.084 0.524 0.074 1.966
σν6 0.742 0.696 0.364 0.075 1.385
σν7 0.420 0.293 0.361 0.053 1.157
σν8 0.602 0.482 0.448 0.066 1.394
σν9 1.009 0.923 0.690 0.075 2.309
σν10 0.898 0.851 0.502 0.100 1.853
σν11 0.910 0.681 0.749 0.056 2.302
σν12 1.535 1.516 0.800 0.065 2.801
σω 0.142 0.131 0.052 0.065 0.245
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Figure 4.8: Boxplot of the posterior samples associated to β1, λ0.01, λ0.05, λ0.10 and µj , for j = 1, 2, . . . , 8,
scar width degradation data
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Figure 4.9: Boxplot of the posterior samples associated to the model errors, scar width degradation data
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Figure 4.10: Boxplot of the posterior samples associated to the baseline degradation parameters, scar width degradation data
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Figure 4.11: Degradation measure (black solid line), posterior means for the filtering distribution (red solid line) with the 95% credibility intervals for the units
under test, scar width degradation data
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As in the work of Meeker and Escobar [1998], the failure times of the units under test and
a future one for the scar width degradation data will also be handled on the log scale. That is,
we did not use the inverse function g−1(tij) = exp{tij} for i = 1, 2, . . . , 12 and j = 1, 2, . . . , 8 in
expression (4.5). Considering the degradation trajectories in the Figure 4.1, many cycles will
be required for the units under test to reach the critical degradation threshold, especially those
that are subject to a weight of 0.001 kg.

After conduction the inferential procedure described in Section 4.3, Table 4.3 brings the
mean time to failure (MTTF) and α-percentiles (tp|Y (α)) of the posterior predictive distribution
of the failure times (log scale) for the 12 units under test considering the scar width degradation
data. As expected, the estimates obtained for failure times of the units under test belonging
to the same group are similar. Furthermore, both MTTF and tp|DJ (0.5) were very close in all
estimates, indicating possibly symmetric posterior distributions for these parameters.

Table 4.3: MTTF and α-percentiles (tp|Y (α)) of the posterior predictive distribution of the failure times (log
scale) for the units under test, scar width degradation data.

Failure time MTTF |DJ tp|DJ (0.025) tp|DJ (0.1) tp|DJ (0.5) tp|DJ (0.975)
T1 45.53 41.24 42.74 45.35 50.78
T2 46.70 42.25 43.76 46.44 52.28
T3 48.11 43.44 45.05 47.94 53.78
T4 46.51 42.07 43.64 46.25 52.16
T5 23.21 21.78 22.29 23.21 24.57
T6 20.80 19.73 20.09 20.79 21.95
T7 21.80 20.55 21.01 21.80 23.15
T8 20.75 19.65 20.01 20.72 22.11
T9 9.03 8.55 8.68 8.99 9.70
T10 9.15 8.75 8.89 9.14 9.65
T11 8.72 8.21 8.38 8.70 9.30
T12 8.90 8.44 8.56 8.85 9.66

The procedure to obtain estimates for the time to failure of a future unit was performed
for each category of the covariate weight. Table 4.4 brings the result containing the MTTF
and α-percentiles (tp|Y (α)) of the posterior predictive distribution of the failure times (log
scale) for a future unit according to the applied weight, considering the scar width degradation
data. According to the scale used, note that MTTF when the applied weight is 0.001 kg is
approximately 5 times bigger than the MTTF observed in the applied weight of 0.10 kg.

Table 4.4: MTTF and α-percentiles (tp|Y (α)) of the posterior predictive distribution of the failure times (log
scale) for a future unit according to the applied weight, scar width degradation data.

Weight MTTF |DJ tp|DJ (0.025) tp|DJ (0.1) tp|DJ (0.5) tp|DJ (0.975)
0.01 kg 46.71 41.93 43.49 46.49 52.75
0.05 kg 21.64 19.84 20.28 21.38 24.19
0.10 kg 8.95 8.36 8.54 8.94 9.63
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4.6 Future Research

The results obtained by fitting the dynamic degradation model with covariates in the simulated
data (Figure 4.2) and in the scar width degradation data (Figure 4.1) are promising, but as we
said in the introduction of this doctoral dissertation, the model is still under construction. For
future research, we want to discuss the model identifiability, develop a Monte Carlo simulation
study to better understand the properties of the model, in addition to verifying if there is any
pattern in the estimates obtained for the parameters. This study may also include simulations
involving failure times of the units under test, focusing on the predictive capacity of the model.
Another object of future research is to verify the performance of the proposed model in a context
without fixed covariates and compare it with usual models in the literature. Furthermore, there
are two new applications of interest that we want to apply the proposed methodology. This
step is important to make the model as generic as possible, being adaptable to the greatest
possible number of practical representations found in the literature. The two new datasets are
detailed in the next subsection.

4.6.1 New Motivating Practical Situations

Here, we present two new datasets with fixed covariates that will be studied for future research.
The first one corresponds to the light emitting diodes degradation data, presented in Chaluvadi
[2008]. The complete train wheels degradation data is presented in sequence. The Figure 1.1
shows only the degradation obtained in a position among 8 existing in the original dataset.

4.6.1.1 Light Emitting Diodes Degradation Data

As a solid-state lighting source, the light emitting diodes (LEDs) have been increasingly used in
display backlighting, communications, medical services, signage, and general illumination. The
light intensity of a LED decreases over time, leading to a soft failure when its light intensity
drops below a critical threshold level. We use the dataset presented in Chaluvadi [2008] for an
illustrative purpose. A sample of 24 units are put into test under constant accelerated levels of
electric current, which are 35 mA and 40 mA. The degradation level of each unit was measured
every 50 hours until 250 hours, totalizing 6 measures. The degradation data are depicted in
Figure 4.12. More details of the degradation data can be found in Chaluvadi [2008]. Following
the engineering routine, the failure threshold level is set as 50%. The effect of the electric
current variable on the degradation paths is evident. In the work of Tang et al [2014], the data
in Figure 4.12 is analyzed considering a nonlinear Wiener process with random effects.
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Figure 4.12: Degradation paths of LED monitored at 35mA and 40mA

4.6.1.2 The Complete Train Wheels Degradation Data

For a better understanding the complete train wheel degradation data, remember that 14
trains were monitored at 13 equally spaced inspection times: t0 = 0km; t1 = 50000km;
t2 = 100000km,. . ., t13 = 600000km. At each inspection time, was collected the diameter mea-
surements of the wheels, given in mm. Physically, a train consists of a locomotive (to provide
power) and 3 (three) unpowered vehicles (cars) attached to it. Each car (either a locomotive
or an unpowered car) has two trucks; each truck has two axles with two wheels each (Fig-
ure 4.13). The wheels are labeled according to their working positions in a given car using a
three-dimension indicator vector, representing in this order position (side) within an axle (left
= 0; right = 1), truck position (front = 0; back = 1) and axle position within a truck (outer
= 0; inner = 1). The data used here refer to the diameter measurements of the wheels of the
locomotive cars only (8 wheels for each of the 14 locomotives). More details can be found in
Ferreira et al [2012].
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Figure 4.13: The location of the wheels: side, axles and trucks within a car and their corresponding labels.

The nominal diameter of a new wheel is 966mm. When the diameter reaches 889mm, the
wheel is replaced by a new one. Figure 4.14 presents the degradation paths of the 112 wheels
under study. The points on each plot are the amount of wear (in mm), at each inspection time
(distance in km). The event “failure” occurs when the degradation (wear) reaches the threshold
level Df = 77mm = (966mm - 889mm).

The goal of this work is to try to answer some specific engineering questions such as (1) Do
the different working positions have (statistically) significant effect on the wheel wear? (2) If
this is the case, what is the time-to-failure distribution of wheels in different working positions?
In addition, it is important to get estimates of key reliability summary figures, such as the
MTTF (mean time to failure or, more specifically, mean distance to failure) and some quantiles
of the time-to-failure distribution (e.g. 0.01, 0.10 and the median, 0.50).
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Figure 4.14: Wheel degradation paths by working position.
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Chapter 5

Final Discussion and Future Work
Directions

Over the years, components and systems have become more and more reliable, mainly because
of the increased demand for this type of product. One of the challenges in reliability that arises
in this context lies in the development of models that can be useful in decision-making and in
predicting failures that often generate a high cost and can be catastrophic for both the customer
and the supplier.

Methodologies that use degradation data have been widely used to make inferences about
highly reliable systems. All degradation models developed in this doctoral dissertation belong
to the approach of general degradation path models. Therefore, all three models built have in
common two steps that this approach needs. In the first stage, a mixed linear or non linear model
for a continuous response variable is fitted. The adopted functional form for the degradation
paths is assumed to be the same for all population. For each specific unit, the true degradation
path is a function of time conditional on the random-effects parameters representing the units
feature. Finishing the first step, the unknown parameters of the model are estimated. The second
step of this approach is to estimate the failure time distribution. This estimation depends on
the model structure and can be obtained analytically, through Monte Carlo simulations or
some other computational procedure. Another similarity between all the models developed
here is the incorporation of a dynamic structure in the modeling. This structure allows a local
approximation to the true degradation path and is able to adapt to the oscillations of the
trajectories observed throughout the inspection times.

In Chapter 2, we introduced a dynamic general path model to handle data which degrada-
tion rate and the baseline degradation are time-variant. The dynamic structure of this model
allows accommodating different behaviors of the degradation paths including linear and non-
linear ones. Therefore, the model provides a solution for the "disadvantage" of the general path
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models, proposing a functional form that is not regular along the time also allowing for struc-
tural breaks. The model was compared to the Weibull linear degradation model, a model that
is frequently used to analyze degradation data. We conclude, from the simulations, that the
dynamic linear degradation model has better performance than the Weibull model to analyze
data which degradation rate dynamically changes over time. It also shows to be a compet-
itive model to analyze data coming from a population where the degradation rate for each
unit does not change along the time. The train wheel and laser emitters degradation data are
commonly analyzed by the Weibul linear degradation model. By assuming a dynamic structure
in fitting these data, the forecasts for the degradation measurements are less biased than the
observed in the linear degradation model. If we consider forecasts are done many steps ahead,
the proposed model performed much better than the linear degradation model. Despite its good
performance, in our analysis, we only explore a dynamic model with a normal degradation rate.
Possible extensions of this model may consider different distributions for this rate making the
model even more flexible. Another limitation of the proposed model is the lack of parsimony.
Although in the situations approached in the paper we did not experienced problems regarding
the computational cost, the lack of parsimony may lead to a high computational cost if data to
be analyzed are captured in a massive way and with high temporal resolution. To be effectively
used in practical situations like these, we must look for strategies to reduce computational time
without losing the quality in the inferences.

The limitations observed in the model built in Chapter 2 motivated the development of the
model discussed in the following chapter. We introduced a new class of general gamma degra-
dation path models that have a dynamic functional form. To obtain a parsimonious model, for
each unit, the degradation rate is a function of two components: a static and unit-specific effect
and another that measures the environmental impact. The dynamic structure is introduced
into the model through the prior distribution for the environmental effects, which assumes a
Markovian dependence among them. A more general structure (not only linear) relates the
inspection time and the degradation measurements allowing to accommodate different shapes
for the degradation paths. Constraints to identify the model were theoretically derived, and a
useful discussion is presented about how to these constraints may be specified in the contexts
of time series and degradation tests. The forecast of future degradation measurements is dis-
cussed. The crucial relationship between failure time and model parameters is obtained, and
the inference for the remaining useful life is discussed for units under test and a future one. The
simulation studies provided some valuable guidelines to establishes the prior distributions of
the environmental effect needed to attain the model identification. These studies showed that if
the goal is to infer the failure time behavior, the prior specifications for the parameter θ0 and γ
do not play an important role. However, if the goal is to get information about the environmen-
tal or unit-specific effects, we should obtain trustful information about θ0 allowing us to build
an informative prior for it. The usefulness and versatility of the this model are illustrated by
analyzing two datasets (fatigue crack size and stress relaxation data) whose degradation paths
have different shapes. In both cases, the proposed model outperforms some well-known models.
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The proposed methodology is defined only for positive degradation measures and assumes that
covariates explaining the degradation mechanism are not available.

This last limitation motivates the model constructed in Chapter 4. The model developed
in this chapter is also a normal dynamic degradation model as assumed in the first model.
Extending this first approach, we now assume that the degradation rate is decomposed in
the same two components considered in the DMGM but now with an addictive structure. We
also assume that the effect that quantifies the specific physical features of the devices is a
function of fixed covariates. This approach introduces more flexibility to the analysis since, in
some degradation tests, multiple characteristics are observed to understand different aspects of
system reliability. Therefore, this chapter detailed the entire inferential procedure for the model
parameters and failure times developed so far. The methodology is still under construction, but
we obtained promising results in a brief simulation study and in the application of the scar
width degradation data.

Future extensions of the proposed models include considering similar decompositions for the
degradation rate and developing new dynamic degradations models assuming other distributions
for the degradation measures as well as other distributions with positive support for the units
effects as log-normal, Weibull, and log-skew-elliptical distributions. These prior choices will
bring some new theoretical and computational challenges as these families are not conjugate
with the Gamma family. Another interesting future work is the construction of a model that
incorporates time-dependent covariates.
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