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A sequential strategy was proposed to detect adulterants in milk using a mid-infrared spectroscopy and
soft independent modelling of class analogy technique. Models were set with low target levels of adul-
terations including formaldehyde (0.074 g.L�1), hydrogen peroxide (21.0 g.L�1), bicarbonate (4.0 g.L�1),
carbonate (4.0 g.L�1), chloride (5.0 g.L�1), citrate (6.5 g.L�1), hydroxide (4.0 g.L�1), hypochlorite (0.2 g.
L�1), starch (5.0 g.L�1), sucrose (5.4 g.L�1) and water (150 g.L�1). In the first step, a one-class model
was developed with unadulterated samples, providing 93.1% sensitivity. Four poorly assigned adulterants
were discarded for the following step (multi-class modelling). Then, in the second step, a multi-class
model, which considered unadulterated and formaldehyde-, hydrogen peroxide-, citrate-, hydroxide-
and starch-adulterated samples was implemented, providing 82% correct classifications, 17% inconclusive
classifications and 1% misclassifications. The proposed strategy was considered efficient as a screening
approach since it would reduce the number of samples subjected to confirmatory analysis, time, costs
and errors.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Milk fraud involves the addition of compounds that can be com-
plex organic substances, such as carbohydrates or proteins, to sim-
ple substances such as water and inorganic salts (Balabin &
Smirnov, 2011; Souza et al., 2011; Xin & Stone, 2008; Rani,
Medhe, Raj, & Srivastava, 2012). The addition of simple compounds
is still common practice to enhance the value of poor-quality milk
or simply to increase the volume and achieve profits (Tronco, 2010;
Das, Sivaramakrishna, Biswas, & Goswam, 2011). Poor milk quality
is related to microbial count, which can be reduced by adding
preservatives such as formaldehyde, hydrogen peroxide or sodium
hypochlorite. Quality problems due to high acidity levels are
related to failures in good manufacturing practices. When this
occurs, the acidity can be reduced by fraudulently adding common
neutralizers, such as bicarbonate, carbonate, hydroxide or citrate.
The milk volume can be increased by adding water, and this fraud
can be concealed by adding substances classified as thickeners,
such as sodium chloride, starch or sucrose (Tronco, 2010;
Gondim, Souza, Palhares, Junqueira, & Souza, 2015).
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The classical qualitative tests for detecting milk adulteration,
which are established as official methods by regulatory authorities
in several countries, include independent determinations of differ-
ent analytes (Brasil, 1981; Brasil, 2006; IPQ, 1979, India, 2012;
Souza et al., 2011; Silva, 2013; Gondim et al., 2015; Silva et al.,
2015). These require a largenumber of tests and reagents and a great
deal of time and generate large amounts of waste. As a result, these
procedures are being replaced by instrumental techniques that con-
sume less solvent and can detect many analytes simultaneously.
Methods based on spectroscopic techniques offer these advantages,
although they are less selective. Therefore, combining them with
multivariate chemometric techniques creates a powerful tool for
adulteration testing (DiAnibal, Ruisánchez, & Callao, 2011). Within
the field of spectroscopy, one of the most widely used techniques
in the food industry is infrared spectroscopy. Its advantages include
the analysis of samples with little or no preparation, ease of use,
rapid data collection and use as a ‘fingerprint’ technique (Karoui &
De Baerdemaeker, 2007; Santos, Pereira-Filho, & Rodriguez-Saona,
2013; López, Colomer, Ruisánchez, & Callao, 2014a).

Untargeted and targeted approaches have both been success-
fully applied to various problems of food fraud detection (López,
Colomer et al., 2014a; López, Trullols, Callao, & Ruisánchez,
2014b; Capuano, Boerrigter-Eenling, Koot, & Ruth, 2015).

The untargeted approach is commonly used in problems that
have only one class of interest. For instance, a one-class model is
established to test if a sample is adulterated or not. The targeted
approach is commonly used in cases when a specific adulterant
is expected to be present. Therefore, multi-class models are estab-
lished from unadulterated and adulterated samples (López,
Colomer et al., 2014a; López, Trullols et al., 2014b).

In this paper, a sequential strategy based on both untargeted and
targeted approaches was proposed to detect common adulterants
in milk, including water, thickeners, preservatives and neutralizing
agents, by the Soft IndependentModelling of Class Analogy (SIMCA)
classification technique applied to mid-infrared (MIR) data, using
the cross-validation method for the construction of the models.
2. Materials and methods

2.1. Samples

As illustrated in Fig. 1, a set of 30 raw milk samples was
obtained from the Professor Hélio Barbosa Experimental Farm of
Fig. 1. Scheme of sampling and sample preparation. UN = unadulterated samples; FO = sa
hydrogen peroxide (21.0 g.L�1); HC = samples adulterated with sodium hypochlorite (0.
adulterated with sodium bicarbonate (4.0 g.L�1); HY = samples adulterated with sodiu
ST = samples adulterated with starch (5.0 g.L�1); CH = samples adulterated with sod
WA = samples adulterated with water (150 g.L�1).
the Veterinary School of the Federal University of Minas Gerais
State (EV/UFMG). Approximately one litre of raw milk was col-
lected by hand milking from ten different animals at three different
times (waiting one week between each milking). Three animals
were classified as high-production cows and seven were classified
as medium.

After the milking, the samples were refrigerated (4–7 �C) in
polypropylene bottles for transportation to the laboratory and
maintained under this condition until the samples were formu-
lated by spiking in polypropylene microtubes.

Each of the 30 milk samples was divided into 12 fractions of
approximately 80 mL, one of which was maintained unadulterated
and the others were adulterated by the addition of standard solu-
tions of the 11 adulterant compounds, totalling 30 adulterated for-
mulations of each compound (Fig. 1). The concentration of each
adulterant added was lower than the amounts reported in real
occurrences of milk adulteration (Souza et al., 2011; Borin,
Ferrão, Mello, Maretto, & Poppi, 2006; Kartheek, Smith, Muthu, &
Manavalan, 2011): formaldehyde (0.074 g.L�1), hydrogen peroxide
(21.0 g.L�1), sodium bicarbonate (4.0 g.L�1), sodium carbonate
(4.0 g.L�1), sodium chloride (5.0 g.L�1), sodium citrate (6.5 g.L�1),
sodium hydroxide (4.0 g.L�1), sodium hypochlorite (0.2 g.L�1),
starch (5.0 g.L�1), sucrose (5.4 g.L�1) and water (150 g.L�1). After
each step of the sample preparation, the microtubes were sealed,
manually homogenized by inversion and refrigerated (4–7 �C) until
the MIR analysis. The samples were analysed randomly without
any pretreatment. The spectra collected were the average of four
scans in the MIR region from 650 to 4000 cm�1. Between each
analysis, the attenuated total reflectance (ATR) accessory was
cleaned, and a new background correction was performed.
2.2. Reagents, equipment and software

All reagents were of appropriate analytical grade. Formalde-
hyde, hydrogen peroxide and starch were supplied by Synth, Dia-
dema SP, Brazil. Sodium citrate, sodium hydroxide and sucrose
were purchased from Dinâmica Química Contemporânea, Ltd., Dia-
dema SP, Brazil. Sodium bicarbonate, sodium carbonate and
sodium chloride were obtained from Alphatec, São Bernardo do
Campo, SP, Brazil. Sodium hypochlorite solution was supplied by
Vetec Química Fina, Ltd., Rio de Janeiro, RJ, Brazil. The water used
to prepare the solutions of the analytes and to adulterate the sam-
ples was obtained from a Milli-Q Direct system, Billerica, MA, USA.
mples adulterated with formaldehyde (0.074 g.L�1); HP = samples adulterated with
2 g.L�1); CA = samples adulterated with sodium carbonate (4.0 g.L�1); BI = samples
m hydroxide (4.0 g.L�1); CI = samples adulterated with sodium citrate (6.5 g.L�1);
ium chloride (5.0 g.L�1); SU = samples adulterated with sucrose (5.4 g.L�1) and



70 C.S. Gondim et al. / Food Chemistry 230 (2017) 68–75
The experiments used materials and equipment calibrated by
laboratories with ISO/IEC 17025 accreditation. Samples were anal-
ysed using a, Spectrum One – FTIR Spectrometer, Perkin Elmer,
Waltham, MA, USA, in ATR mode, equipped with a ZnSe crystal.

The spectra were imported into MATLAB software, version
7.10.0.499 – R2010a, The MathWorks, Natick, MA, USA, and anal-
ysed in PLS Toolbox, version 5.2.2, Eigenvector Technologies, Man-
son, WA, USA.
2.3. Data analysis and classification strategy

2.3.1. Pre-processing and exploratory analysis
The spectra of the unadulterated and adulterated samples were

subjected to several pre-processing techniques. Multiplicative
scatter correction (MSC) (Rinnan, Berg, & Engelsen, 2009) was
selected to correct the spectrum baselines and trends because it
provides lower values of the root mean square error of calibration
(RMSEC) and root mean square error of cross validation (RMSECV).

Principal component analysis (PCA) was used as an unsuper-
vised exploratory analysis tool to visualize the sample distribution
in the multivariate space, to identify any natural clustering in the
samples that could influence the subsequent multivariate analysis,
and to identify possible outliers (Vigni, Durante, & Cocchi, 2013).
2.3.2. Classification techniques and rules
SIMCA was the modelling technique employed in the construc-

tion of all models. This technique is based on PCA, where each class
is modelled independently from all others (Bevilacqua et al., 2013).

Due to the limited number of samples, the leave-one-out cross-
validation method was employed in the construction of the mod-
els. According to Foca et al. (2009), cross-validation can lead to
highly over-optimistic estimates of the performance of the final
model. However, when a small number of samples are available,
dividing the whole data set into training and test sets could result
in training the model on an insufficient amount of data, and using a
test set that does not contain enough samples to provide a suffi-
ciently representative estimate of the predictive capability.

The classification rules were based on boundaries built between
each class and the rest of the space by means of two statistics: the
Hotelling’s T2 and Q statistics (Rius, Callao, & Rius, 1997). Samples
are assigned by considering both statistical values.

The Hotelling’s Ti
2 test measures the information of each sample

within the SIMCA model and therefore provides a measurement of
how well each sample fits the model. It is calculated by means of
Eq. (1),

T2
i ¼ Iðxi � xmediaÞS�1ðxi � xmediaÞT ð1Þ

where I is the number of samples in the training set, xi the multi-
variate measurement of a sample i, xmedia the column mean value
of the training set and S the corresponding standard deviation.

The Qi statistic shows the amount of original information not
included in the model. It is defined as the sum of squares of the
residuals and can be calculated using Eq. (2),

Qi ¼ eieTi ð2Þ

where ei is the residual of sample i after the SIMCA model has been
applied.

The limits of the T2 and Q, (T2lim and Qlim) are calculated for the
model under construction at a specific significance level (a), usu-
ally set to 0.05. The reduced Hotelling’s T2 (Tr2) and reduced Q-
statistic (Qr) values can be calculated from the ratio between the
corresponding statistic of sample i and the corresponding limit.
To be considered as belonging to the class (model), the sample
should present values lower than or equal to 1 for both statistics.
Inadditiontothesecriteria,anotherparameterwasevaluated:the
distanceofasample fromeachclass.Thedistanceof sample i toclass j
(dij) is a combination of its reduced statistics, expressed as Eq. (3),

Dij ¼ ðQ2
r;i þ T2

r;I2 Þ
1=2 ð3Þ

This criterion is based on the fact that if a sample was assigned
to two classes and the distance from one class was clearly lower
than that from the other, it had a greater probability of belonging
to the class it was nearest to.

The performance parameters were assessed by comparing the
assigned class of each sample with its true class membership.
The true positive (TP), true negative (TN), false positive (FP), and
false negative (FN) numbers were computed and stored in a confu-
sion matrix (Szymanska et al., 2015). From this matrix, the classi-
fication ability of each model was evaluated in terms of sensitivity
and specificity, which are quality parameters calculated for each
class (López, Callao, & Ruisánchez, 2015).

Sensitivity is the ability of a classification model to recognize its
samples. The sensitivity of class j is estimated by considering only
samples that belong to that class (Eq. (4)),

Sensitivityj ¼ TPj=n
�
Sj ð4Þ

where j indicates the class under study, TPj means true positives
(samples from class j that have been properly predicted by the
model as belonging to class j), and n�Sj is the total number of sam-
ples that really belong to class j. Therefore, the sensitivity indicates
the likelihood of recognizing truly positive samples.

Specificity is the ability of a classification model to distinguish
external samples, and the specificity for class j is estimated by con-
sidering only samples that do not belong to that class (Eq. (5)),

Specificityj ¼ TNj=n
�
Snotj ð5Þ

where TN means true negatives (samples that are not from class j
and have been predicted as not belonging to class j), and n�Snot j

means the total number of samples that really do not belong to class
j. Therefore, the specificity indicates the likelihood of recognizing
samples that are truly different from the class.

In addition to these well-known parameters, the ‘‘inconclusive
ratio” was estimated. This parameter also provides information
about the multi-classification quality model and indicates the per-
centage of samples that cannot be undoubtedly assigned to one
model (class). It considers the samples that are not assigned to
any class (i.e., if j classes have been modelled, those samples that
do not fit into any of the j established models) and the samples that
are assigned to more than one class, either their own class or
another class, named multiple assignments (e.g., samples from
class 1 that fit the models of class 2 and class 3).

The inconclusive ratio of class j is estimated by considering only
samples that belong to that class j, but it depends on the multi-
model strategy since it considers the assignments to all of the
SIMCA models (Eq. (6)),

Inconclusiveratioj ¼ ðNAj þMAÞ=n�
Sj ð6Þ

where NAj means unassigned samples (samples that are from class j
that are not assigned to either class j or any other class), MA means
multiple assignment samples (samples from class j that are assigned
to more than one class, either class j or another class); and n�Sj
means the total number of samples that really belong to class j.

2.3.3. Classification strategy
A sequential classification strategy was proposed based on

untargeted and targeted approaches. The scheme is shown in
Fig. S1 of the Supplementary material.

In the first step, a one-class model was established with the
unadulterated samples (untargeted approach). In this screening
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stage, the goal was to test if the combination of MIR analysis with
multivariate classification could determine if a sample was adul-
terated or not and which adulterants the model could differentiate
(Capuano et al., 2015; López, Colomer et al., 2014a; López, Trullols
et al., 2014b). The adulterants that presented a specificity lower
than 70% were excluded from the next step.

When an unknown sample was submitted to the one-class
SIMCA model, only two outputs (binary output) can be obtained:
either the sample fits the model (it was an unadulterated sample)
or it does not (it was not an unadulterated sample). From these
outputs, the quality parameters of the model can be calculated.

In the second step, multi-class models were established for the
unadulterated samples and for each adulterant selected in the pre-
vious step (targeted approach). Thus, in addition to determining if
a sample was adulterated or not, the objective of the multi-class
modelling was to identify which adulterant was in the sample
(López, Colomer et al., 2014a; López, Trullols et al., 2014b). To eval-
uate the model, the parameters of sensitivity, specificity and incon-
clusive ratio were estimated.

When a sample was submitted to the multi-class SIMCA model,
three outputs could be obtained: i) the sample was assigned to its
Fig. 2. Processed spectra of a) unadulterated samples, b) samples adulterated
class; ii) the sample was assigned to another class (misclassifica-
tion), or iii) the sample was assigned to more than one class or
none (inconclusive).

Samples not assigned to a class or assigned to more than one
should undergo a confirmatory analysis. Before this, in the case
of multiple assignments, the distance of the sample from each of
the assigned class models was studied to confirm (if possible) the
final assignment. For those cases with distances greater than 0.6,
the distances from each class were compared. If the ratio between
the distance from one class (i.e., class 1, di,1) and the distance from
another class (i.e., class 2, di,2) was greater than 1.5 (Eq. (7)), then
the sample was assigned to the class with the shortest distance (Eq.
(3)). If it was not, then the doubt cannot be solved, and the sample
remains as a multiple classification.

di;1=di;2 > 1:5 ð7Þ
3. Results and discussion

Fig. 2 shows the processed spectra of randomly selected
unadulterated and adulterated milk samples. The absorbance val-
with hydrogen peroxide and c) samples adulterated with formaldehyde.
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ues were very high for frequencies below 950 cm�1, so this region
was excluded (not shown). Comparing the spectra, no significant
differences could be visually noted, except in the region from
1500 to 950 cm�1 and at approximately 3000 cm�1. The two peaks
observed, one between 3400 and 3000 cm�1 and a smaller peak
between 1700 and 1500 cm�1, correspond to the OAH stretching
and OAH bending regions, respectively, both of which are related
to the presence of water in the milk samples (Kohler, Afseth,
Jørgensen, Randby, & Martens, 2010). An absorption peak at
approximately 1700 cm�1 is attributed to amides I and II and
Fig. 3. PCA score plots of a) unadulterated samples, b) samples adulterated w
related to the protein content and lipid interactions (Kohler et al.,
2010; Botelho, Reis, Oliveira, & Sena, 2015).

The scatter and spectral derivative corrections were examined
by different treatments, and MSC followed by mean centring was
applied since they provided better classification errors, as previ-
ously mentioned in Section 2.3.1. Fig. 3 shows the PCA score plots
of randomly selected milk samples (unadulterated and adulter-
ated). The PCA score plot for the unadulterated samples (Fig. 3a)
explains 90.9% of the total variance for the first two principal com-
ponents. It can be seen that one of the samples is clearly at some
ith hydrogen peroxide and (c) samples adulterated with formaldehyde.



Table 1
Specificity values of SIMCA one-class model (unadulterated sam-
ples) obtained predicting samples containing one of the milk
common adulterants.

Samples Specificity* (%)

Formaldehyde 96.7
Hydrogen peroxide 100.0
Sodium bicarbonate 69.0
Sodium carbonate 80.0
Sodium chloride 69.0
Sodium citrate 90.0
Sodium hydroxide 73.3
Sodium hypochlorite 56.7
Starch 75.9
Sucrose 80.0
Water 56.7

* Suitable specificity values (�70%) in bold.

C.S. Gondim et al. / Food Chemistry 230 (2017) 68–75 73
distance from the others (high positive values for PC1 and PC2), so
it was removed from the data set. It can also be seen that a sub-
group of six samples is slightly separate from the main block, but
no reason for this had been identified (it was not due to the ani-
mal’s yield, for example).

The PCA plots for the adulterated samples show two trends.
Fig. 3b shows an example of a score plot where one sample adul-
terated with hydrogen peroxide was identified as an outlier follow-
ing the criteria described above. Similar behaviour was observed
for one sample adulterated with starch (not shown). The score
plots of the remaining adulterated samples showed no specific
trends between samples. As an example, Fig. 3c shows the PCA
score plot of samples adulterated with formaldehyde.

The first step of the proposed screening methodology was to
examine whether the milk samples were adulterated with one of
the eleven adulterants. To do so, a one-class SIMCA model was
built with the 29 corrected MIR spectra of the unadulterated sam-
ples by leave-one-out cross-validation. The selected SIMCA model
retained the first six PCs, explaining 98.3% of the total variance.

The sensitivity of this one-class model was 93.1%, which means
that the model could properly recognize its samples. The specificity
was evaluated by predicting the adulterated milk samples by the
one-class model (Table 1). The specificity values were high (over
90%) for the samples adulterated with formaldehyde, hydrogen
peroxide and sodium citrate. The success was significant (speci-
ficity values between 70 and 90%) for the samples adulterated with
sodium carbonate, sodium hydroxide, starch and sucrose. In the
case of sodium bicarbonate, sodium chloride, sodium hypochlorite
and water, the chances of success were low (specificity values
lower than 70%), which means that the samples adulterated with
those four adulterants cannot be effectively differentiated from
unadulterated samples. Therefore, these four adulterants were
not considered further in this study, and alternative techniques
will have to be used to investigate their presence.
Table 2
Number of samples predicted for each multi-class strategy: first multi-class establishes ei

Sample Samples number First multi-class model predictions

Own class Other class Multiple class

Unadulterated 29 19 1 9
Formaldehyde 30 26 0 0
Hydrogen peroxide 28 23 0 0
Sodium carbonate 30 16 2 9
Sodium citrate 30 24 1 2
Starch 29 20 0 7
Sodium hidroxide 30 11 0 17
Sucrose 30 11 3 15
The results obtained were somewhat expected since there is no
literature reporting the use of spectroscopic techniques in the
detection of sodium carbonate, sodium chloride or sodium
hypochlorite in milk, although they are commonly used in milk
fraud (Silva et al., 2015; Souza et al., 2011). The presence of chlo-
ride ions in milk in native concentrations of approximately 1 g.
L�1 (Tronco, 2010) may have affected their detection.

The next step in the sequential proposed strategy consisted of
the establishment of a SIMCA multi-class model that included
modelling the adulterated milk samples. A multi-class model was
followed by matching class 1 to the unadulterated samples and
classes 2 to 8 to each one of the adulterants considered (the seven
adulterants with specificity values higher than 70% in the previous
step of the strategy – the SIMCA one-class model). Therefore, in the
end, eight class models were established using SIMCA as the clas-
sification technique.

Table 2 shows the assignments of the first SIMCA multi-class
model for the samples that were unadulterated and adulterated
with seven different compounds. The samples adulterated with
sodium hydroxide and sucrose were poorly recognized by their
own class models (sensitivity <40%) and they also had the highest
inconclusive assignments (63% and 53%, respectively), mainly due
to multiple class assignments. An in-depth study of the multiple
assignment showed that the sodium hydroxide samples were mul-
tiply assigned to their class and to the sucrose or starch class, while
the sucrose samples were multiply assigned to their class and to
the starch class. As far as the other multiple assignments were con-
cerned, the unadulterated samples and the samples adulterated
with sodium carbonate and starch were multiply assigned to their
class and the sucrose class. Considering the specificity values of the
one-class model (step 1 of the proposed screening strategy), it
could be observed that all four mentioned adulterants had quite
low specificity values relative to the unadulterated class (Table 1).

The samples adulterated with sodium hydroxide and sucrose,
which could not be properly recognized by the first multi-class
model, were not further considered in this multi-class study and,
as previously mentioned, alternative techniques are required to
determine their presence.

Table 2 also shows the results of the second SIMCA multi-class
model established. It can be observed that there was a significant
reduction in the number of multiple assignments of samples that
were unadulterated and adulterated with sodium carbonate
when the sucrose and sodium hydroxide models were not consid-
ered in the multi-class model, which agrees with the discussion
above.

Table 3 shows the quality parameters (sensitivity and speci-
ficity) that characterize the multi-class model developed for the
unadulterated samples and the remaining five types of adulterated
samples. For almost all classes, the specificity was 100%. Only 6.7%
of the sodium carbonate samples were wrongly assigned as
unadulterated, and 3.4% of the unadulterated samples were
wrongly assigned as adulterated with starch.
ght class models and second multi-class six class models.

Second multi-class model predictions

Not in any class Own class Other class Multiple class Not in any class

0 27 1 1 0
4 26 0 0 4
5 23 0 0 5
3 21 2 4 3
3 24 0 3 3
2 22 0 5 2
2 – – – –
1 – – – –



Table 3
Sensitivities*, specificities and inconclusive ratios of each class established in the second multi-class SIMCA model.

Class Sensitivity and specificity (%) Inconclusive ratio (%)

Unadulterated Formaldehyde Hydrogen peroxide Sodium carbonate Sodium citrate Starch

Unadulterated 93.1 100.0 100.0 93.3 100.0 100.0 3.4
Formaldehyde 100.0 86.7 100.0 100.0 100.0 100.0 13.3
Hydrogen peroxide 100.0 100.0 82.1 100.0 100.0 100.0 17.8
Sodium carbonate 100.0 100.0 100.0 70.0 100.0 100.0 23.3
Sodium citrate 100.0 100.0 100.0 100.0 80.0 100.0 20.0
Starch 96.6 100.0 100.0 100.0 100.0 75.9 24.1

Suitable parameters: sensitivity and specificity values �70%.
* Sensitivity values are the values highlighted on the main diagonal of the table.
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The sensitivities are indicated on the diagonals of Table 3.
Values between 90% and 70% were obtained for the five adulterant
classes, with the highest value (93.1%) obtained for the unadulter-
ated samples. The inconclusive ratio values are shown in the last
column of Table 3 as additional quality parameters for the multi-
class model. The values were roughly between 15% and 25% for
the adulterated classes and significantly lower (3.4%) for the
unadulterated class.

For some classes, the percentage of inconclusive assignments
can be quite high, as is the case for starch (25%). From the view-
point of a screening strategy, all samples classified as positive
(adulterated) are subjected to confirmatory analysis. In the pro-
posed strategy, the criteria were designed to make a stricter classi-
fication in which only inconclusive samples should be confirmed.
Thus, in the case of samples adulterated with starch, either they
were recognized as such (76%) or submitted to a confirmatory
analysis. However, no wrong assignments (assigned to another
class) resulted.

Considering the three quality parameters, all six classes were
well characterized by the multi-class model. The class that was
the best modelled was the unadulterated class, followed by the
formaldehyde and hydrogen peroxide classes.

In the literature, there are methods using IR (MIR, FT-IR) spec-
troscopy coupled with chemometric techniques for detecting some
of the adulterants studied in this work, and they exhibit similar or
slightly better performance parameters (Botelho et al., 2015;
Cassoli, Sartori, & Machado, 2011; Durante, Becari, Lima, & Peres,
2016; Santos & Pereira-Filho, 2013; Santos, Pereira-Filho, &
Colnago, 2016; Santos et al., 2013). However, it is important to note
that those authors often used samples adulterated at concentration
levels higher than those employed in real cases of milk fraud (Borin
et al., 2006; Cassoli et al., 2011; Kartheek et al., 2011; Souza et al.,
2011).
4. Conclusions

A strategy based on MIR spectroscopy coupled with the SIMCA
technique was developed to determine whether samples of
raw milk had been adulterated with any of eleven common
adulterants.

It has been proven that the one-class model strategy from
unadulterated samples is a good approach as a first screening step
to determine whether an adulterant is recognizable by MIR and if a
sample is unadulterated or not. In this stage, four adulterants
(sodium bicarbonate, sodium chloride, sodium hypochlorite and
water) were identified as inappropriate for the multi-class model
(the targeted approach).

The multi-class model step required discarding two additional
adulterants (sucrose and sodium hydroxide) due to their low sen-
sitivity and high percentage of inconclusive samples. A total of five
classes were properly modelled: the hydrogen peroxide, sodium
citrate, sodium carbonate, formaldehyde and starch classes.
When the samples were analysed by MIR coupled with the sec-
ond multi-class model, approximately 82% were properly classified
into their respective classes and only 1% were wrongly assigned.
Approximately 17% were classified as inconclusive, i.e., as belong
to no class or more than one class. In this proposed strategy, only
the inconclusive samples should be subjected to a confirmatory
analysis. In addition, multiple assignments had advantages over
no assignments, as only two or three sample type possibilities
would then need to be considered in the confirmatory analysis.

The proposed strategy was demonstrated to be highly efficient,
particularly if numerous samples need to be analysed, because it
can considerably reduce the experimentation time with a very
low risk of error. It can also be applied to other signals, samples
and/or adulterants.
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