
UNIVERSIDADE FEDERAL DE MINAS GERAIS
PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

Arthur Castro Cardoso

Simulation of quantum jump in qutrit photonic path system

BELO HORIZONTE
2021



Arthur Castro Cardoso

Simulation of quantum jump in qutrit photonic path
system

Tese apresentada ao Programa de Pós-
Graduação em Física do Instituto de Ciências
Exatas da Universidade Federal de Minas Ge-
rais como requisito parcial para obtenção do
título de Doutor em Ciências.

Orientador: Sebastião José Nascimento de Pádua

Belo Horizonte
2021



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Dados Internacionais de Catalogação na Publicação (CIP) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                    

 

                                                                                                                                                

 

 
 
 

 
Ficha catalográfica elaborada por Romário Martins – CRB6 3595 

Biblioteca Professor Manoel Lopes de Siqueira – Departamento de Física - UFMG 
 

 
C268s    Cardoso, Arthur Castro. 
           Simulation of quantum jump in photonic path system / Arthur Castro Cardoso.  

– 2021. 
                   97f., enc. : il. 
 
                  Orientador: Sebastião José Nascimento de Pádua. 
                  Tese (doutorado) – Universidade Federal de Minas Gerais,  

   Departamento de Física. 
                  Bibliografia: f. 81-97. 
 
 

1. Simulação quântica.  2. Sistemas quânticos.  3. Fótons.   
I. Título. II. Pádua, Sebastião José Nascimento de. III. Universidade Federal 

de Minas Gerais, Departamento de Física. 
 

 
            CDU – 530.145 (043)    

                                                                                                                    



UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIÊNCIAS EXATAS

PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

FOLHA DE APROVAÇÃO

A presente tese, in�tulada "Simula�on of quantum jump in qutrit photonic path system" de autoria de
ARTHUR CASTRO CARDOSO  subme�da  à  Comissão  Examinadora,  abaixo-assinada,  foi  aprovada  para
obtenção do grau de DOUTOR EM CIÊNCIAS, em dezenove de março de 2021.

Belo Horizonte, 19 de Março de 2021.

Prof. Sebastião José Nascimento de Pádua                     Profa. Gabriela Barreto Lemos

Orientador do estudante                                                    Instituto de Física/UFRJ

Departamento de Física/UFMG                       

Prof. Pedro Ernesto Schiavinatti Tavares                       Profa. Sandra Sampaio Vianna

Departamento de Física/UFMG                                       Departamento de Física/UFPE

Prof. Raphael Campos Drumond

Departamento de Matemática/UFMG                                       

SEI/UFMG - 0640002 - Folha de Aprovação https://sei.ufmg.br/sei/controlador.php?acao=documento_imprimir_web...

1 of 2 09/07/2021 08:35



Documento assinado eletronicamente por Pedro Ernesto Schiavina� Tavares, Professor do
Magistério Superior, em 24/03/2021, às 12:43, conforme horário oficial de Brasília, com fundamento
no art. 5º do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Sebas�ão Jose Nascimento de Padua, Membro de
comissão, em 24/03/2021, às 14:33, conforme horário oficial de Brasília, com fundamento no art. 5º
do Decreto nº 10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Sandra Sampaio Vianna, Usuário Externo, em
24/03/2021, às 15:11, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº
10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Gabriela Barreto Lemos, Usuário Externo, em
24/03/2021, às 15:40, conforme horário oficial de Brasília, com fundamento no art. 5º do Decreto nº
10.543, de 13 de novembro de 2020.

Documento assinado eletronicamente por Raphael Campos Drumond, Professor do Magistério
Superior, em 25/03/2021, às 09:21, conforme horário oficial de Brasília, com fundamento no art. 5º
do Decreto nº 10.543, de 13 de novembro de 2020.

A auten�cidade deste documento pode ser conferida no site h�ps://sei.ufmg.br
/sei/controlador_externo.php?acao=documento_conferir&id_orgao_acesso_externo=0, informando o
código verificador 0640002 e o código CRC B348CAF6.

Referência: Processo nº 23072.215643/2021-41 SEI nº 0640002

SEI/UFMG - 0640002 - Folha de Aprovação https://sei.ufmg.br/sei/controlador.php?acao=documento_imprimir_web...

2 of 2 09/07/2021 08:35



Dedico este trabalho à minha esposa, minha família
e a todos os defensores da ciência no Brasil.



Agradecimentos

Aos meus pais Humberto e Vera, ao meu irmão Eduardo e à minha esposa Samira,
pelo apoio incondicional e pelo estímulo que foram essenciais para que este trabalho fosse
realizado.

Ao meu orientador, o professor Sebastião José Nascimento de Pádua, pela orientação
com paciência, dedicação e atenção.

Ao professor Breno Marques, por propor a realização do experimento de simulação
de decaimento e me ajudar com a parte teórica.

Ao meu colega Artur Matoso, pelas dicas de alinhamento e por me ajudar com o
LATEX.

Ao professor Jader Cabral, por me ajudar na realização do experimento e no
tratamento de dados.

Ao professor Pedro Tavares, pelo apoio e por me ajudar na proposta de implemen-
tação de portas lógicas quânticas.

Ao meu colega de laboratório João Guilherme Codé, por colaborar na realização
do experimento da simulação de decaimento e pela ajuda na parte teórica.

Às secretárias da pós-graduação Ana Luiza e Marília, pela eficiência e profissiona-
lismo.

Aos órgãos de fomento a pesquisa: CNPq, CAPES, INCT e FAPEMIG, pelo auxílio
financeiro.



Resumo
Nesta tese, exploramos uma fonte de fótons atenuada ao nível de poucos fótons, cujo o
estado quântico foi preparado em uma superposição de estados de caminhos transversais.
Utilizando técnicas propostas por Baldijão et. al. [Phys. Rev. A. 97, 032329 (2017)] e
caracterizadas por Borges et. al. [Phys. Rev. A. 97, 022301 (2018)], para realizar operações
generalizadas nestes graus de liberdade, nós conseguimos gerar estados quânticos de três
caminhos (qutrits) e implementar as operações necessárias para simular o decaimento
espontâneo em um átomo de três níveis com saltos quânticos.

Utilizando grades de difração periódicas em um modulador espacial de luz, nós imple-
mentamos as operações quânticas para a simulação das dinâmicas de decaimento em
sistemas de três níveis com salto quântico em termos da decomposição de Kraus, para cada
um dos tipos de decaimento no sistema de três níveis: cascata, Λ e V . Nesta simulação
experimental, a quantidade de fótons em cada estado de caminho faz o papel da população
em cada um dos níveis de energia do átomo. As coerências entre os auto-estados de energia
estão relacionadas com as visibilidades dos padrões de interferência entre os pares de
feixes que formam a base dos estados de caminhos dos fótons. Os estados de caminho são
caracterizados a partir de medidas de imagem dos feixes de fótons com perfil transversal
Gaussianos e pelos padrões de interferência entre pares destes modos espaciais.

Também propomos teoricamente, utilizando a mesma metodologia, a realização expe-
rimental de portas lógicas quânticas e portas lógicas quânticas controladas em estados
fotônicos de caminhos. Com a montagem experimental proposta, mostramos que é possível
implementar em qubits de caminhos Gaussianos todas as portas lógicas descritas pelas
matrizes de Pauli (σx, σy e σz), além de portas lógicas de fase. O mesmo método pode ser
explorado para qutrits, ou ainda, sistemas multi-caminho de dimensões maiores.

Na simulação das dinâmicas de decaimento, obtivemos resultados satisfatórios para os
termos da diagonal e para os módulo dos termos de fora da diagonal, isto é, apesar de um
pequeno desvio, eles estão de acordo com a previsão teórica. Esta simulação nos fornece
uma melhor compreensão de como os saltos quânticos podem afetar a coerência de um
estado de três níveis. Além disso, esta implementação poder ser usada para entender como
os saltos quânticos, em sistemas de grandes dimensões, afetam protocolos quânticos devido
à decoerência.

Palavras-chave: Decaimento atômico, Operações quânticas, Portas lógicas quânticas,
Salto quântico, Simulação quântica, Sistemas de três níveis.



Abstract
In this thesis, we use as an experimental platform laser beams in Gaussian modes attenuated
to the level of a few photons. The quantum state is prepared in a superposition of transverse
Gaussian paths states. By making use o the techniques proposed by Baldijão et. al. [Phys.
Rev. A. 97, 032329 (2017)] and characterized by Borges et. al. [Phys. Rev. A. 97, 022301
(2018)], to perform generalized quantum operations in this degree of freedom. We are able
to generate three-path (qutrits) quantum states and implement the necessary operations
to simulate spontaneous decay in an tree-level atom with quantum jumps.

By using periodical diffraction phase gratings in a spatial light modulator, we implement
the quantum operations for the simulation of the decay dynamics in three-level systems with
quantum jumps in terms of the Kraus decomposition, for each one of the configurations:
cascade, Λ and V . In this experimental simulation, the average number of photons in
each path state plays the role of the population in each one of the energy levels of the
atom. The coherences between the energy eigenstates are related to the visibilities of the
interference patterns between the pair of beams that form the base of the photonic path
states. The states are characterized by image measurements of the beams with transversal
Gaussian profile an by the interference patterns between the pairs of these spatial modes.

Also we propose theoretically, making use of the same methodology, the experimental
realization of quantum logic gates and controlled quantum logic gates in photonic path
states. With the proposed experimental setup, we show that it is possible to implement in
qubits paths states, all the logic gates described by the Pauli matrices (σx, σy e σz), beyond
the phase logic gates. The same method can be explored for qutrits, or even multi-path
systems of higher dimensions.

In the simulation of the decay dynamics, we obtained satisfactory results for the diagonal
terms and for the modulus of the off-diagonal terms, that is, despite of a small deviation,
they are in agreement with the theoretical predictions. This simulation provide us a better
comprehension of how the quantum jumps can affect the coherence of a three-level state.
Moreover, this implementation may be used to understand how the quantum jumps, in
high dimension systems, affect the quantum protocols due to decoherence.

Keywords: Atomic decay, Quantum jump, Quantum logic gates, Quantum operations,
Quantum simulation, Three-level systems.
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1 Introduction

Quantum optical systems have been widely used for fundamental tests of quan-
tum mechanics and implementation of quantum information and quantum computation
protocols [1–10]. The transverse profile of optical beams at photon count level has been a
quick-rising platform for preparing discrete quantum states and for investigating quantum
information theories and protocols [11]. Photon beams have been prepared in high dimen-
sion entangled states of their optical angular momenta in Hermite and Laguerre-Gauss
modes [12–14]. Some useful optical systems explore photon transverse momentum, which
can be discretized by slits [15–17] or in different photon paths with the aid of interfero-
meters [18,19] for preparing one-, two- or four-photon quantum states in slits modes or
Gaussian modes [15,20–23].

Quantum systems are in general not isolated systems and are most of the time
subjected to uncontrolled interactions to an external quantum system and/or to its
surrounds (environment) [24–26]. The system interactions with the environment cannot
be described by unitary operations acting on the system and lead to dissipation (loss of
energy to the environment) and decoherence [27–30] (loss of state coherence), consequently
to a degradation in quantum protocols [31–34]. Different uncontrolled interactions, referred
here as noise, that affect the coherence of the quantum system state or entanglement in
bipartite or multipartite state systems have been simulated quantically, more specifically,
dephasing, amplitude damping and Pauli noise [31, 35–43]. Quantum simulation means
using a controlled quantum system to simulate complex dynamics.

Another important source of noise is the fundamental process called quantum jump,
where a quantum system evolves stochastically in an abrupt unpredictable operation. An
excited atomic system may undergo spontaneous decay through the interaction with the
vacuum state of the electromagnetic field. Quantum jumps are an essential topic in the
interpretation of quantum dynamics [44–47] and has been part of the historical debates
about the foundations of quantum mechanics [48]. his stochastic process, first proposed
by Bohr [49], had its existence contested by Schroedinger [50,51] and was quantitatively
described by Einstein through the calculation of the A and B coefficients [52]. This kind of
system typically experiences a time-dependent exponential decay, in which the probability
of an excited state |i⟩ decaying to |j⟩ in a time interval t, is given by pij = 1 − e−γijt,
where γij is the spontaneous decay rate between levels i and j. This process causes a
reduction in the population of the excited state and also decoherence. The spontaneous
decay of the state may spoil the implementation of quantum information protocols in
atomic systems [53].
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Over the last years, quantum jumps have been explored in protocols for quantum
feedback control [54, 55] and quantum error correction, for detecting and correcting errors
due to decoherence [56–58]. Observing quantum jumps is not an easy task as it requires non-
demolition measurements [59]where after the measurement, the system is in an eigenstate
of the measured observable, thus allowing repeated measurements. It is also required to
realize measurements in a time scale much faster than the lifetime of the excited state.
Despite of this, quantum jumps were observed in several quantum systems, for instance,
in a single ion [60–63], molecule [64], electron in a trap [65], in superconductors [56], in
photons in a cavity [54, 55, 58, 66, 67], and in artificial atoms [59, 68–72]. Present in the
photoelectric effect [73] and in the spontaneous decay of an atom, this process has an
important role in laser cooling [74–78]. Although in free atoms the jump occurs on the
lifetime of the excited state this time can be increased or shortened by surrounding the
atoms with a cavity [79–81]. More recently quantum jump was tracked in time by following
the population of an auxiliary level coupled to the ground state of an artificial atom [72,82].
This approach allowed the authors to perform an experiment "to catch in mid-flight"a
quantum jump and to conclude that is possible to know if a quantum jump is about to
occur.

This thesis reports an experimental simulation of decay dynamics of a three-level
system by preparing a photonic qutrit path state and letting the photon beam in the qutrit
state be modified by periodical phase modulation produced by a spatial light modulator
(SLM). The use of the spatial light modulator (SLM) in these optical systems allows
the photon state to be manipulated in different ways and can be used to implement a
wide range of quantum operations [8, 12, 16, 18, 83, 84]. One crucial advantage of these
physical quantum systems is that they are able to simulate much more complex quantum
systems [85, 86]. Several experiments explore this fact to study different kinds of quantum
system dynamics [31, 32]. The objective is to implement the spontaneous decay dynamics
of a three-level atomic system in different configurations: cascade decay, Λ decay and V

decay.

For making quantum computation, we need to prepare quantum states to encode
information, manipulate it and perform measurements [87,88]. Similarly to the classical
computation, a quantum computer is based on blocks of quantum circuits composed
by wires and quantum gates (QGs) which carries and transfer the information. Thus,
implementing QG with high fidelity is crucial for the engineering of an efficient quantum
computer. In classical computers, the logic gates are implemented by transistors and
others electronic devices, usually, in a irreversible fashion. On the other hand, QGs are
characterized by reversible quantum operations, since the inverse of an unitary matrix is
also unitary [87,89]. They are represented in terms of unitary operations which corresponds
to a rotation of the generalized Bloch vector, that is, they do not change the state purity.
This allow us to inverse quantum algorithms and functions as long as they contain only
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QGs. Furthermore, as the product of unitary operators is also unitary, operations which are
composed by a set of QGs are also reversible. For instance, a quantum addition algorithm
can be exploited to perform subtraction, by running it reverse [90].

QGs are explored to manipulate quantum states and can be used to generate
superposition states and entangled ones. In classical computation, the classical logic gates
manipulates classical bit states which can be "0"or "1". On the other hand, for quantum
computation we can have as input a superposition of the computational basis states, which
are frequently entangled when we have more than one Qubit state as input. So, QGs are
much more varied than the classical ones.

Over the last years, they were exploited to implement quantum communication
protocols and algorithms as in generation of entangled states [91, 92], purification and
concentration of entanglement [93], quantum error correction [94–96], quantum Fourier
transform [97], quantum teleportation [98], quantum random walk [99], Shor’s quantum
factoring algorithm [100], quantum search algorithms [101] and Deutsch algorithm [102–104].
Therefore, the implementation of QG has a crucial role in the development of quantum
computation [87,88]. The experimental implementation of QGs has been realized in several
physical quantum systems, such as, trapped ions [103, 105], superconducting charges
[106,107], nuclear spin in vacancy centres [108,109], Rydberg atoms [110], nuclear magnetic
resonance (NMR) [95,97,100,101,104,111–113] and optical systems [94,98,114,115]. In
his thesis, we propose the experimental implementation of quantum gates and controlled
quantum gates in qubits and qutrits path systems.

This thesis is divided in two parts, in Part I there is a theoretical revision about
the subjects that is are necessary for discussing the experimental applications. In Chapter
2, we studied the diffraction of a laser bean in periodical phase gratings. In Chapter 3,
we made a quick review on the theory of quantum open systems and deduced the Kraus
decomposition of the maps that represent the decay dynamics for the cascade, Λ and V

configurations. In chapter 4, we studied some quantum gates and controlled quantum
gates that we propose to implement in photonic path systems.

In Part II, we approach the experimental applications. In Chapter 5, we report the
simulation of a quantum jump in photonic path system. By exploring the periodical phase
modulation in an spatial light modulator we are able to simulate the decay dynamics for the
cascade, Λ and V configurations. In Chapter 6, we propose an experimental implementation
of quantum logic gates and controlled quantum logic gates in photonic path systems, also,
by making use of periodical phase modulation in an spatial light modulator.



Parte I

Theoretical revision
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2 Diffraction in periodical phase gratings and
manipulation of photonic path states

Studying theory of diffraction of light is crucial for the comprehension of many
phenomena in optics like the propagation of light and imaging formation process [116–118].
In this section we will approach the interaction of Gaussian beams with periodical phase
diffraction gratings (PPG). A diffraction grating is a periodical phase or amplitude
distribution imprinted in some material such that light transmitted or reflected by this
material is diffracted in different beams referred as diffraction orders. We will also review
some methods to generate and manipulate photonic Gaussian path states by exploring
diffraction in PPG’s [18,20,119]. In the experiment that we performed [120], it was necessary
to expand the Hilbert space in order to realize quantum operation in the three-level systems.
The expansion of the Hilbert space was obtained by reflecting incident Gaussian laser
beam by phase diffraction gratings. In Section 2.1.1 we calculate the response of a linear
phase grating (LPG) and in Section 2.1.2 we studied the response of a binary phase grating
(BPG).

2.1 Diffraction in periodical phase gratings
A light source is situated in a very far position, z → −∞, so that the electromagnetic

field in the plane z = 0 can be considered a plane wave, E(x′, y′). In the Fraunhofer
approximation, the scalar electric field in a distant plane E(x, y) in z, Fig.1, is related to
the field in z = 0 by [116]

E (x, y) = eikze
ik
2z (x2+y2)
iλz

∫ ∞

−∞

∫ ∞

−∞
E (x′, y′) e[i

2π
λz

(xx′+yy′)]dx′dy′, (2.1)

where k = 2π/λ is the modulus of the wave vector of the field, λ is it’s the
wavelength, 2πx′/λz and 2πy′/λz are the spatial frequencies in the direction x e y,
respectively. As it is shown in Eq.2.1, the field in the plane (x, y) is the Fourier transform
of the field in (x′, y′) multiplied by a phase factor. Suppose a generic object of phase and
amplitude, usually called "aperture", located in the plane z = 0 and illuminated by the
electric field E (x′, y′). The field in a distant plane, (x, y), will be

E (x, y) = eikze
ik
2z (x2+y2)
iλz

∫ ∞

−∞

∫ ∞

−∞
E (x′, y′) T (x′, y′) eiΦ(x′,y′)e[i

2π
λz

(xx′+yy′)]dx′dy′, (2.2)

where T and Φ ∈ R. T (x′, y′) and Φ (x′, y′) are the transmittance profile and the phase
profile, respectively, of the aperture. An ideal PPG is an aperture of transmittance profile
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Figura 1 – Representation of the fields in the planes (x, y) and (x′, y′), separated by a distance z.

T (x′, y′) = 1, with a phase profile Φ (x′, y′), being described by a periodical function.
When a Gaussian laser beam reaches a PPG it generates diffracted beams in different
orders, that are multi-path Gaussian beams displaced equally in the direction of the phase
variation [116]. Fig.2 represents a laser beam being diffracted by a PPG and generating
diffraction orders.

Figura 2 – Illustration of a Gaussian being diffracted by a PPG in the x′-direction at the plane
z = 0 and giving rise to diffraction orders, labelled as 0, 1,−1, 2 and − 2, at the
distant plane z.

Among the PPG’s, we will analyse two phase grating in detail, the linear and the
binary ones.

2.1.1 Linear diffraction grating

A linear phase diffraction grating (LPG) is a PPG in which the phase varies linearly
with the position. The graph in Fig. 3 represents the phase variation of a LPG, Φ (x′) = ϕx′

T
,

as a function of the spatial variable x′, in which ϕ is the maximum phase of the phase
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spatial distribution and T is the period. The solution of the integral in the Eq.2.2 for

0 2 0 4 0 6 0 8 0 1 0 00

1 , 5 7

3 , 1 4
Ph

as
e (

rad
)

P o s i t i o n  x '  ( a r b .  u n i t s )

 S i m u l a t i o n  o f  Φ(x ' )

Figura 3 – Graph of the phase profile of a linear phase diffraction grating as function of the
spatial variable x′, with ϕ = 3, 14 rad and T = 15arb. units.

a Gaussian laser beam, with a linear phase function is well known and details of the
calculation can be seen in the references [121, 122]. The exponential Function can be
expanded as a Fourier series,

eiΦ(x′) =
∞∑

n=−∞
cne

−i

(
2πnx′

T

)
. (2.3)

We are able to calculate each coefficient, cn, of the n Gaussian diffraction orders separated
by a distance 2πn

T
,

cn = e
i(2πn+ϕ)

2 sinc
[1
2 (2πn+ ϕ)

]
, (2.4)

where the respective coefficients cn of the diffracted orders n by the LPG at a distant
plane z from the LPG, by substituting Eq. 2.3 in Eq. 2.2. From the cn coefficients in Eq.
2.4, we are able to obtain the intensity of each diffraction order,

In = |cnF {En (x′, y′)}|2 , (2.5)

where F {En (x′, y′)} is the Fourier transform of the incident electromagnetic field in
the LPG at the plane x′, y′ (see Fig. 2). A graph with the theoretical predictions for the
intensities of the three-first diffraction orders n = 0,−1, and 1 as function of the maximum
phase of the LPG is in Fig.4. For the maximum phase ϕ = 2π, I−1 = 1, I0 = 0 e I1 = 0.
So we can use this PPG to change the path mode of the incident light [18, 20, 119]. In
this way, we are able to manipulate Gaussian photonic quantum path states and perform
quantum operations.
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Figura 4 – Intensities values of the three first diffraction orders n = 0,−1, and 1 as function of
the maximum phase of the linear periodical diffraction grating, ϕ.

2.1.2 Binary diffraction grating

Another PPG we will make is the binary phase diffraction grating (BPG), in
which the phase may assume two constant values. This PPG is composed of periodic step
functions1 of period T and a maximum phase ϕ. The phase profile of a BPG is shown in
the graph in Fig. 5 and is written as

Φ (x′) =


0, if 0 ≤ x′ < T

2 ,

ϕ, if T
2 ≤ x′ < T.

(2.6)

By expanding the exponential of the phase function in Fourier series, as shown in Eq. 2.3,
we are able to find the Fourier coefficients for the n diffraction orders [18, 119,121,122],

cn =


ei ϕ

2 cos
(

ϕ
2

)
, if n = 0,

0, if n even,

− 2
nπ
ei ϕ

2 sen
(

ϕ
2

)
, if n odd,

(2.7)

with the related intensities given by Eq. 2.5. The relative intensities of the first three
diffraction orders,n = −1, 0, 1, are plotted as function of the maximum phase in Fig.6.
As the maximum phase grows from 0 to π, the intensity of the n = 0 order decreases
from Ic0 = 1 to Ic0 = 0, while the the intensities of the orders n = ±1 go from Ic±1 = 0
to a maximum value. We will use the BPG to generate qutrit path states of transversal
Gaussian profiles.
1 Also known as Heaviside function
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Figura 5 – Graph of the phase profile of a BPG as function of the transversal direction x′ with:
ϕ = 3, 14 rad. and T = 10arb.units.

Figura 6 – Graph of the intensities of the diffraction orders, n = −1; 0; 1, generated by a binary
phase diffraction grating, as function of the maximum phase ϕ.
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2.2 The spatial light modulator, quantum states and quantum
operations
PPG’s are widely explored in quantum optics experiments and usually are generated

by making use of a spatial light modulator (SLM) [18,31,123,124]. With this device, we
are able to construct a wide range of PPG’s and implement a large amount of automated
quantum operations in photonic path states [18,119,121,122].

2.2.1 The Spatial Light Modulator

SLMs are divided in Amplitude e Phase SLMs. In this thesis, we used a Phase
SLM and we will restrict our discussion about them. A Phase SLM is constituted of a
grid of pixels in which we are able to adjust the phase acquired by the incident light in
each pixel individually (Fig.7). In this thesis, we will make use of an liquid crystal on
silicon spatial light modulator (LCOS-SLM). This device is formed by a liquid crystal
layer between two electrodes on a silicon substrate, see Fig. 7. This way, we may adjust
the difference of electric potential in each pixel [125]. Depending on the voltage applied

Figura 7 – Representation of the layers of a SLM of the type LCOS-SLM, which is an abbreviation
of liquid crystal on silicon spatial light modulator. This device is composed by a glass
substrate, over a grid of pixels of electrodes over a layer of liquid crystal. Under the
liquid crystal layer there is another grid of pixel of electrodes, with all the other layers
over a silicon substrate. Image adapted from [125].

by the electrodes in each pixel the liquid crystal birefringent molecules assume a certain
orientation, changing the refraction index in each pixel. So, the total optical path travelled
by the incoming light beam changes at an specific pixels, according to the orientation of
the liquid crystal molecules. Selecting the right voltage in each pixel we are able to use
the SLM to construct several PPG’s to diffract an incident light beam. By programming
the SLM we can construct and change the PPG’s on it’s screen quickly and automatically.
We will make use of the SLM to generate PPG’s and perform the quantum operations in
the photonic Gaussian beam modes that define our photon path states [18,119].
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2.2.2 Quantum states and quantum operations

A pure quantum state in a Hilbert space of dimension D can be written as a state
vector with the matrix representation in some orthonormal base as [126],

|Ψ⟩ =



ψ0

ψ1

ψ2
...

ψD−1


(2.8)

with ψi ∈ C, ∀ i. Taking each matrix element in its polar form, ψi = |ψi| eiϕi , we identify
the term |ψi|2 as the weight of the i-th base state in the state superposition, while phii is
the associated phase of each state coefficient. A general quantum state in a Hilbert space
of dimension D is described in terms of a DxD density matrix [117,127,128],

ρ =



ρ0,0 ρ0,1 ρ0,2 · · · ρ0,D−1

ρ1,0 ρ1,1 ρ1,2 · · · ρ1,D−1

ρ2,0 ρ2,1 ρ2,2 · · · ρ2,D−1
... ... ... . . . ...

ρD−1,0 ρD−1,1 ρD−1,2 · · · ρD−1,D−1


(2.9)

with the coefficients ρij ∈ C, ∑D−1
i=0 ρii = 1 and ρij ∈ C ∀ i and j. Analysing the matrix

elements in the polar representation, ρij = |ρij| eiϕij , we identify |ρii| as the relative
population of a d-level system by representing each level as the i-th base state, ϕij the
phase of the complex off-diagonal matrix elements. The modulus of the off-diagonal terms
|ρij| (i ̸= j) determines the coherence between the basis states |i⟩ and |j⟩. For a pure
quantum state the density operator is ρ = |Ψ⟩ ⟨Ψ|.

Like density matrix, a quantum operator is also represented in an orthonormal
base in the Hilbert space of dimension D as a DxD matrix,

A =



A0,0 A0,1 A0,2 · · · A0,D−1

A1,0 A1,1 A1,2 · · · A1,D−1

A2,0 A2,1 A2,2 · · · A2,D−1
... ... ... . . . ...

AD−1,0 AD−1,1 AD−1,2 · · · AD−1,D−1


(2.10)

A quantum state ρ, subject to the operation A gives rise to another quantum state ρ′,
which is described the matrix product,

ρ′ = AρA† (2.11)

where A† denotes the Hermitian conjugated of the operator A. By programming a SLM
with LPG’s and BPG’s we are able to implement a large number of quantum operations
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like the one shown in Eq.2.10. We can use a BPG to diffract a single mode laser beam in
other two paths to prepare qutrit path states of the type [18,119,121,122].

|Ψ⟩ =


a

beiϕ2

aeiϕ3

 (2.12)

with a, b and ϕi ∈ R. We are also able to realize non-diagonal operations. By using a
LPG we are able to transfer a certain amount of light from a mode to another mode and
therefore to change the relative weight of a basis state |i⟩ with respect to the basis state
|j⟩. In Chapter 5 we will show the implementation of a simulation of a quantum jump
in three-level systems (qutrits) encoded in photonic Gaussian path modes, by exploring
light diffraction by phase modulation in PPGs. In Chapter 6 we propose how to construct
quantum logic gates and controlled quantum logic gates in qubits and qutrits encoded in
photonic paths by exploiting the same techniques.
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3 Introduction to open quantum systems

In some cases the quantum systems are not perfectly isolated from their neigh-
bourhood, they interact with the external environment. This interaction leads to energy
dissipation and loss of coherence [27–30, 129]. A open quantum open system (OQS) is
a quantum system constituted by two parts: a system of interest, which we will call S,
coupled to another system E, called environment. In most of the cases, S is a small system2

in comparison with E. The interactions between them results in a change of the state
of the system and generates correlations with the environment [24,26]. The derivations
approached in this chapter until the Section 3.2.2 were adapted from the reference [24].

3.1 The Liouville-Von Neumann equation and the interaction pic-
ture

3.1.1 The Liouville-Von Neumman equation

The Schroedinger equation describes the unitary evolution, U (t, t0), of a quantum
state as function of the Hamiltonian, H(t) which acts over the system between the time t0
and t [127,128],

∂

∂t
U (t, t0) = − i

ℏ
H(t)U (t, t0) , (3.1)

The unitary operation transform,

U (t, t0) = exp
[
− i

ℏ

∫ t

t0
dt′H (t′)

]
, (3.2)

is a solution of Eq.3.5. We classify the quantum system in terms of the Hamiltoniam which
describes its dynamics [24]:

• If H(t) is a function of time, the system is closed;

• If H is time independent, U (t, t0) = e− i
ℏH(t−t0), the system is isolated.

A general quantum state like the one in Eq.2.9, can be represented by the density
operator [24, 127]

ρ (t0) =
∑

α

ωα |ψα (t0)⟩ ⟨ψα (t0)| , (3.3)

where the coefficients ωα ∈ R. The temporal evolution of the state is represented by

ρ (t) =
∑

α

ωαU (t, t0) |ψα (t0)⟩ ⟨ψα (t0)|U † (t, t0) = U (t, t0) ρ (t0)U † (t, t0) . (3.4)

2 In number of degrees of freedom.
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By differentiating both sides of Eq.3.4 in relation with the time we have,

d

dt
ρ (t) = − i

ℏ
[H(t), ρ (t)] . (3.5)

Eq.3.5 is called Liouville-Von Neumann equation. It describes the time evolution of the
density operator [24,26] and can be rewritten as,

d

dt
ρ (t) = L(t)ρ(t), (3.6)

where L(t) is called the Liouville operator: L(t)A = − i
ℏ [H(t), A], A is an generic operator,

like the one shown in Eq.2.10.

3.1.2 The interaction picture

According to the dynamics of the quantum system we can choose a different picture
for the operators. The Schrödinger picture is a formulation of quantum mechanics in which
the state operators evolve in time, but the operators that represent observables are constant
with respect to time. In the Heisenberg picture, the operators that represent observables
incorporate a dependency on time, but the state operators are time-independent. In the
interaction picture we divide the Hamiltonian in two terms: H = H0 +HI(t), where H0

is the total Hamiltonian of the whole free system and HI(t) is the Hamiltonian of the
interaction between the subsystems S e E. By the Born rule, in the Schroedinger picture,
the expected value of an operator is [127,128]

⟨A(t)⟩ = tr [A(t)ρ(t)] = tr
[
A(t)U (t, t0) ρ(t0)U † (t, t0)

]
. (3.7)

In the interaction picture, we define:

U0 (t, t0) ≡ e−iH0(t−t0) e UI (t, t0) ≡ U †
0 (t, t0)U (t, t0) , (3.8)

so the expected value of the same operator in this picture is

⟨A(t)⟩ = tr
[
U †

0 (t, t0)A(t0)U0 (t, t0)UI (t, t0) ρ(t0)U †
I (t, t0)

]
= tr [AI(t)ρI(t)] , (3.9)

where the operators in the interaction picture are

AI(t) = U †
0 (t, t0)A(t0)U0 (t, t0) e ρI(t) = UI (t, t0) ρ(t0)U †

I (t, t0) . (3.10)

In the interaction picture the operator that describes the quantum system and the operators
that represent the observables are time dependent. Differently from the Heisenberg picture,
the time evolution of the observables operators is not determined by the whole Hamiltonian,
but by the free Hamiltonian H0. Let’s analyse two cases:

• If the interaction Hamiltonian is null, ĤI(t) = 0, we have: U0 (t, t0) = U (t, t0) and
UI (t, t0) = I, i. e., the interaction picture reduces to the Heisenberg picture.
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• If the free Hamiltonian vanishes, H0 = 0, we have: U0 (t, t0) = I and UI (t, t0) =
U(t, t0), we are back to the Schroedinger picture.

The Liouville-Von Neumann equation in the interaction picture is

d

dt
ρI (t) = − i

ℏ
[HI(t), ρI(t)] , (3.11)

and by integrating Eq.3.11, we obtain the final state

ρI (t) = ρI (t0) − i

ℏ

∫ t

t0
dt′ [HI(t′), ρI (t′)] , (3.12)

where HI(t′) = U †
0 (t, t0) ĤIU0 (t, t0), is the interaction Hamiltonian in the interaction

picture. Those equations are exact and describe the dynamics of a general close system.
The treatment of an OQS below will be done in the interaction picture.

3.2 Dynamics of open quantum systems
An OQS is quantum system composed of the system of interest, S coupled to

another system, E, which we usually call environment, where the global system, S + E,
is a closed quantum system, as shown in Fig.8. The Hamiltonian which describes the

Figura 8 – Representation of an open quantum system, with the reduced system, S and the
environment, E. Figure adapted from [24].

temporal evolution of this kind of system may be written as

H(t) = HE ⊗ IS +HS ⊗ IE +HI(t), (3.13)

where HE is the free Hamiltonian of the environment, HS is the free Hamiltonian of
the reduced system (see Figure 8) and HI(t) is the interaction Hamiltonian between the
systems S and E. We usually refer to E as environment, the term reservoir is used for
an environment with infinite degrees of freedom, such that its frequency modes has a
continuous spectrum. The term bath is used for a reservoir in a quantum state in thermal
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Figura 9 – Representation of the two different approaches of an open quantum system, composed
by a reduced system, S and the environment E. trE represents the trace over the
environment, U(t) is the unitary transformation that gives the temporal evolution of
the composite system and V (t) represents the dynamical map that provides the time
evolution of the reduced system. Figure adapted from [24].

equilibrium. The approach of OQS is very useful when we deal with a composed system
for which the dynamics is very complicated and we are particularly interested only in the
reduced system. This can be done in two ways (see Fig. 9). In the first one we take the
time evolution of the whole density operator that represents the composed system, which
is given by an unitary operation, and take the partial trace over the environment. In the
second one we take the partial trace over the initial density operator of the composed
system and make the time evolution of the state of the reduced system through the
application of a dynamical map [24, 26]. The dynamical map depends on the type of
interaction between S and E and describes the time evolution of the reduced system. It is
completely characterized in terms of quantum operators of HS Hilbert space.

In the initial time, t0 = 0, the state of S and E are separable, that is, ρ(0) =
ρS(0) ⊗ ρE. As trEρ(0) = ρS(0), the Eq.3.4 and Eq.3.11 for the reduced system assume
the following form

ρS (t) = trE

[
U (t, t0) ρ(0)U † (t, t0)

]
, (3.14)

d

dt
ρS (t) = −itrE [H(t), ρ (t)] , (3.15)

according the dynamics described in Fig.8. The final state for S in both approaches is the
same, that is,

ρS (t) = V (t)ρS(0) = trE

{
U(t, 0) [ρS(0) ⊗ ρE]U †(t, 0)

}
, (3.16)

where V (t) is a completely positive trace preserving dynamical map of the Hilbert subspace
S(HS), of ρS on itself and U(t, 0) is the unitary operation shown in Eq.3.2.

3.2.1 Master equation in the Born-Markov approximation

According to the dynamics, the interaction between the system and the environment
changes the reservoir state, leading to memory effects of S in E. But if the environment,
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for instance, is a big thermal reservoir at constant temperature, those small changes will
not be preserved for a long time and will not influence the future evolutions of S. For
these types of system with a short correlation time, called as Markovian systems, we can
dismember the dynamical map as following [24,26],

V (t1 + t2) = V (t1)V (t2) . (3.17)

A dynamical map can be represented in terms of the operators of the reduced system Hilbert
space S(HS). The spectral decomposition of the density matrix ρE, which represents the
environment is

ρE =
∑

α

λα |ϕα⟩ ⟨ϕα| , (3.18)

where {|ϕα⟩} is an orthonormal basis of S(HE) and λα are non-negative real numbers that
satisfy ∑α λα = 1. From the Eq.3.16, we have the following representation for the map
V (t)

V (t)ρS =
∑
α,β

Wαβ(t)ρSW
†
αβ(t), (3.19)

where Wαβ(t) are operators from S(HS), which are defined as

Wαβ(t) =
√
λE ⟨ϕα|U(t, 0) |ϕβ⟩ . (3.20)

Moreover, it satisfies the condition
∑
α,β

Wαβ(t)W †
αβ(t) = IS, (3.21)

from which we can deduce that

trS {V (t)ρS} = trSρS = 1. (3.22)

So, the dynamical map V (t), represents a convex-linear, completely positive and trace
preserving quantum operation [130].V (t) is a specific map for a fixed time t ≥ 0. If we want
to calculate the state in a time t′ ≠ t we need a family of dynamical maps

{
V (t)

∣∣∣t ≥ 0
}
,

where V (0) is the identity. The family of maps
{
V (t)

∣∣∣t ≥ 0
}

describes the whole time
evolution of the state of the reduced system, ρS.

Under certain mathematical conditions, see reference [24], a linear map L, the
generator of a semigroup1 can be represented in the exponential form

V (t) = exp (Lt) , (3.23)

which yields the first-order differential equation for density matrix of the reduced system

d

dt
ρS = LρS, (3.24)

1 A semigroup is an algebraic structure which consists in a set with associative binary operations.
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which is called the Markovian quantum master equation or Lindblad equation. The
generator of the semigroup L, represents a super-operator and can be considered as a
generalization of the Liouville super-operator which was introduced in the subsection
3.1.1. To construct the most general generator L we consider a finite-dimensional Hilbert
space S(HS), with dimS(HS) = N . Thus, the corresponding complex Liouville space has
dimension N2. Now, we choose a complete orthonormal basis of operators Fi, i = 1, 2, ..., N2,
in this space, such that

(Fi, Fj) ,≡ trS

{
F †

i Fj

}
= δij. (3.25)

One of the basis operators is chosen to be proportional to the identity FN2 = N−1/2IS, so
that the other basis operators are traceless, trFi = 0 for i = 1, 2, ..., N2 − 1. Considering
the completeness relation of each one of the operators of Eq.3.20 we have

Wαβ(t) =
N2∑
i=1

Fi (Fi,Wαβ(t)) . (3.26)

From the representation of the dynamical map in Eq.3.19, we identify

V (t)ρS =
N2∑

i,j=1
cij(t)FiρSF

†
j , (3.27)

where
cij(t) ≡ (Fi,Wαβ(t)) (Fj,Wαβ(t))∗ . (3.28)

The coefficients matrix C = [cij] is Hermitian and positive. By the definition of the
generator L, Eq.3.23, and considering Eq.3.27, we have the limit

LρS = lim
ϵ→0

1
ϵ

{V (ϵ)ρS − ρS}

= lim
ϵ→0

 1
N

cN2N2 (ϵ) −N

ϵ
ρS + 1√

N

N2−1∑
i=1

(
ciN2 (ϵ)

ϵ
FiρS + cN2i (ϵ)

ϵ
ρSF

†
i

)

+
N2−1∑
i,j=1

cij (ϵ)
ϵ

FiρSF
†
i

 , (3.29)

from which we define the following coefficients

aN2N2 = lim
ϵ→0

cN2N2 (ϵ) −N

ϵ
, (3.30)

aiN2 = lim
ϵ→0

ciN2 (ϵ)
ϵ

, i = 1, 2, ..., N2 − 1, (3.31)

aij = lim
ϵ→0

cij (ϵ)
ϵ

, i; j = 1, 2, ..., N2 − 1, (3.32)

F = 1√
N

N2−1∑
i=1

aiN2Fi, (3.33)
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G = 1
2N aN2N2IS + 1

2
(
F † + F

)
, (3.34)

also, the Hermitian operator
H = 1

2i
(
F † − F

)
. (3.35)

Considering that the coefficients matrix C is positive and Hermitian, with these definitions,
we have:

LρS = −i [H, ρS] + {G, ρS} +
N2−1∑
i,j=1

aijFiρSF
†
j . (3.36)

Since the generator is trace preserving for any density matrix ρS

0 = trS {LρS} = trS


2G+

N2−1∑
i,j=1

aijF
†
j Fi

 ρS

 , (3.37)

we have

G = −1
2

N2−1∑
i,j=1

aijF
†
j Fi. (3.38)

Thus, from Eq.3.36, we get the first standard form of the generator

LρS = −i [H, ρS] +
N2−1∑
i,j=1

aij

(
FiρSF

†
j − 1

2
{
F †

j Fi, ρS

})
. (3.39)

Since the coefficients matrix A = [aij] is positive, it can be diagonalized with the right
unitary transformation

UAU † =


γ1 0 · · · 0
0 γ2 · · · 0
... ... . . . ...
0 0 0 γN2−1

 , (3.40)

where: U is the unitary matrix used to diagonalize A and the eigenvalues γi are non-negative.
Defining a new set of operators Λk

Fi =
N2−1∑
k=1

ukiΛk, (3.41)

we obtain the diagonal form of the generator

LρS = −i [H, ρS] +
N2−1∑
k=1

γk

(
ΛkρSΛ†

k − 1
2Λ†

kΛkρS − 1
2ρSΛ†

kΛk

)
, (3.42)

where: γk is a positive constant and Λk are the so called Lindblad operators [131]. Eq.3.42 is
a general form to obtain the density operator evolved in time from the semigroup generator
L. The first term is the unitary part of the dynamics generated by the Hamiltonian.
Eq.3.42 can also be written in terms of the so-called "dissipator"

D (ρS)) =
N2−1∑
k=1

γk

(
ΛkρSΛ†

k − 1
2Λ†

kΛkρS − 1
2ρSΛ†

kΛk

)
, (3.43)

such that Eq. 3.42 becomes

LρS = −i [H, ρS] + D (ρS) . (3.44)
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3.2.2 Kraus decomposition of the decay dynamics

3.2.2.1 Kraus decomposition for the two-level decay dynamics

An atom interacting with the vacuum state of the electromagnetic field is an
example of an OQS. This interaction causes a reduction in the population of the excited
states and decoherence [27–30,129].The deductions approached in this section was adapted
from the reference [120]. Lets consider the decay in a two-level atomic system as shown in
Figure 10.

Figura 10 – Two level atomic system subject to decay.

The probability of decay is an exponential function of the time p = 1 − eγt, where
γ is the decay rate of the atomic system, |1⟩ and |2⟩ are the ground and excited states,
respectively. The graph in Figure 11 shows the exponential decay experienced by this kind
of atomic system. Considering the environment (electromagnetic field) on its fundamental

Figura 11 – Graph of the atomic population (N) in the excited state as function of the time (t)
for a typical exponential decay, p = 1 − e−γt.

state, the initial state of the system can be written as:

ρ(0) = ρS(0) ⊗ |0⟩E ⟨0|E , (3.45)
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where ρS is the state of the atomic system and |0⟩E ⟨0|E is the vacuum state of the
electromagnetic field. As the composite system is closed, its time evolution is always
yielded by an unitary transformation:

ρ(t) = USEρS(0) ⊗ |0⟩E ⟨0|E U
†
SE, (3.46)

where USE represents an unitary evolution which acts in HS and HE. If we want to obtain
the state of the atomic system evolved in time, ρS(t), we must make the trace over the
environment,

ρS(t) = Tr
[
USEρS(0) ⊗ |0⟩E ⟨0|E U

†
SE

]
, (3.47)

or equivalently:
ρS(t) =

∑
i

⟨i|E USEρS(0) ⊗ |0⟩E ⟨0|E U
†
SE |i⟩E , (3.48)

where: {|i⟩E} is an orthonormal basis for HE. Evaluating ⟨i|E USE |0⟩E, we obtain an
operator which acts only over HS. This way, we obtain the following representation for
the decay map:

ρS(t) = V (t)ρ(0) =
∑

i

KiρS(0)K†
i , (3.49)

where Ki are the so called Kraus operators [132]. Notice that the Kraus decomposition
of a map V (t) is not unique, as we can write the environment state in different basis,
but all the Kraus decompositions must provide the same time evolution for the density
operator [24,31,37]. The decay channels that describes the decaying system can be written
as

|1⟩S |0⟩E → |1⟩S |0⟩E ,
|2⟩S |0⟩E → √

p |1⟩S |1⟩E +
√

1 − p |2⟩S |0⟩E , (3.50)

where p is the probability of the atomic system be excited or system decay. |1⟩S and
|2⟩S are the ground and excited states of the atomic system, respectively. |0⟩E represents
the vacuum state of the electromagnetic field and |1⟩E the state of the field with one
photon. Is this case we made a mono-modal approach, for simplicity, by considering only
a single-mode in the polarization and wave-vector degrees of freedom. Thus, we have a
two-level atomic system and a two-level electromagnetic field. In the map of Eq.3.50, we
considered the initial state of the environment (electromagnetic field) in the ground state
(vacuum). Also, we considered an unidirectional flow of energy, that is, the atomic system
decays giving rise to a photon in the electromagnetic field, but the former never is excited
by the environment. In this context, the quantum operation that describes the map in
Eq.3.50 is not unitary. From the map in Eq.3.50, we are able to construct the quantum
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operator OSE that provides the time evolution of the composed system,

OSE =

⟨1|S ⟨0|E ⟨2|S ⟨0|E ⟨1|S ⟨1|E ⟨2|S ⟨1|E


|1⟩S |0⟩E 1 0 0 0
|2⟩S |0⟩E 0

√
1 − p 0 0

|1⟩S |1⟩E 0 √
p 1 0

|2⟩S |1⟩E 0 0 0 1

(3.51)

The time evolution of the atomic system is

ρS(t) =
∑

i

⟨i|E OSEρS(0) ⊗ |0⟩E ⟨0|E O
†
SE |i⟩E . (3.52)

By evaluating Ki = ⟨i|E OSE |0⟩E, we are able to obtain the Kraus operators for the
two-level decay dynamics:

K0 = ⟨0|E OSE |0⟩E =
1 0

0
√

1 − p

 and K1 = ⟨1|E OSE |0⟩E =
0 √

p

0 0

 (3.53)

3.2.2.2 Kraus decomposition for the three-level decay dynamics

In a three-level system, we consider the three configurations of spontaneous decay
dynamics: cascade decay, Λ decay and V decay, each one with a forbidden transition and
without degeneracy [120] (Fig. 12).

Figura 12 – Different configurations of spontaneous decay dynamic in a three-level system: a)
cascade decay, b) Λ decay and c) V decay. Figure taken from reference [120].

The type of decay is regulated by the selection rules, which depends on the
atomic levels involved in the transition. So, it depends specifically on the type of atomic
system and its energy levels. This kind of system typically experiences a time-dependent
exponential decay, in which the probability of an excited state |i⟩ to decay to |j⟩ is given
by pij = 1 − e−γijt, where γ is the spontaneous decay rate between levels i and j.

The time evolution of the density matrix of the system is ruled by the master
equation 3.42, where ρs is the density matrix of the system, Λk = √

γij |j⟩ ⟨i| is the Lindblad
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operator and the decay channels are labelled by k. In the theory of quantum open system,
for all these decay dynamics, the time evolution of the state ρ(t) can be obtained by the
application of a dynamical map, Eq.3.16. As an example, let’s consider the decay channels,
without excitations, for cascade configuration (Fig.12 a)):

|0, 0⟩E |1⟩S → |0, 0⟩E |1⟩S ,
|0, 0⟩E |2⟩S → √

p21 |0, 1⟩E |1⟩S +
√

1 − p21 |0, 0⟩E |2⟩S , (3.54)
|0, 0⟩E |3⟩S → √

p21p32 |1, 1⟩E |1⟩S + √
p32

√
1 − p21 |1, 0⟩E |2⟩S +

√
1 − p32 |0, 0⟩E |3⟩S

where our three-level atomic system system (environment) is represented by index S (E)
with energy levels |1⟩, |2⟩ and |3⟩ (|i, j⟩E with i, j = 0, 1). The environment is represented
by two frequencies modes, to emphasize the non-degenerate decays, where the first (second)
represent the number of photons in each frequency mode of the electromagnetic field, which
was generated from the decay channel |3⟩S → |2⟩S (|2⟩S → |1⟩S) with decay probability of
p32 (p21). The map of Eq.3.54 is represented by the following quantum operation

OSE = |1⟩S |00⟩E ⟨1|S ⟨00|E + √
p21 |1⟩S |01⟩E ⟨2|S ⟨00|E +

√
1 − p21 |2⟩S |00⟩E ⟨2|S ⟨00|E

+√
p21p32 |1⟩S |11⟩E ⟨3|S ⟨00|E + √

p32
√

1 − p21 |2⟩S |10⟩E ⟨3|S ⟨00|E
+

√
1 − p32 |3⟩S |00⟩E ⟨3|S ⟨00|E . (3.55)

By evaluating Ki = ⟨i|E OSE |0⟩E with the operator OSE from Eq.3.55, we obtain the
Kraus operators for the cascade decay dynamics in Table 1. This configuration has a
peculiarity, in comparison with the Λ and V dynamics. Despite of the direct transition
between the levels |3⟩ → |1⟩ is forbidden, we have an indirect transition |3⟩ → |2⟩ → |1⟩,
which involves both the channels |3⟩ → |2⟩ and |2⟩ → |1⟩. Because of this the cascade
dynamics has one not null Kraus operator more than the others configurations (see Table1).

Analogously to the Kraus decomposition for the two-level decay system in Section
3.2.2.1, we can use the same approach to deduce the Kraus operators for all the three-level
system decay dynamics. Tracing out the environment degrees of freedom, we can find
the Kraus decomposition that represents this dynamical map. These operators are the
solutions of Eq.3.42, for the reduced density matrix of the system. The decay channels for
Λ (Fig.12 b)) configurations can be written as following,

|0, 0⟩E |1⟩S → |0, 0⟩E |1⟩S ,
|0, 0⟩E |2⟩S → |0, 0⟩E |2⟩S , (3.56)
|0, 0⟩E |3⟩S → √

p32 |1, 0⟩E |2⟩S + √
p31 |0, 1⟩E |1⟩S +

√
1 − p32 − p31 |0, 0⟩E |3⟩S ,

where the environment is represented by two frequencies modes, to emphasize the non-
degenerate decays. The first (second) represent the number of photons in each frequency
mode of the electromagnetic field, which was generated from the decay channel |3⟩S → |2⟩S
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(|3⟩S → |1⟩S) with decay probability of p32 (p31). Analogously, the decay channels for V
(Fig.12 c)) decay are

|0, 0⟩E |1⟩S → |0, 0⟩E |1⟩S ,
|0, 0⟩E |2⟩S → √

p21 |0, 1⟩E |1⟩S +
√

1 − p21 |0, 0⟩E |2⟩S , (3.57)
|0, 0⟩E |3⟩S → √

p31 |1, 0⟩E |1⟩S +
√

1 − p31 |0, 0⟩E |3⟩S ,

where the environment is also represented by two frequencies modes, emphasizing the non-
degenerate decays. The first (second) represent the number of photons in each frequency
mode of the electromagnetic field, which was generated from the decay channel |3⟩S → |1⟩S

(|2⟩S → |1⟩S) with decay probability of p31 (p21). All the not null Kraus operators for each
configuration are presented in Table 1.

The Kraus operators satisfy the relation ∑i KiK
†
i = I (I is the identity operator).

The linear map V (t), represented by the
{
K†
}

is know as a completely positive trace
preserving (CPTP) map, i. e., it satisfies the following conditions:

1. It is linear: V (t)∑i piρi = ∑
i piV (t)ρi.

2. It is trace preserving: Tr {ρ} = Tr {V (t)ρ}.

3. It is completely positive: if ρ ≥ 0 then V (t)ρ ≥ 0.

Indeed, the third property refers to a positive map, not a completely positive one. The
completely positive condition means V (t)ρ ≥ 0 even if ρ is in a Hilbert space of larger
dimension than the one that V (t) acts on. For instance, lets consider the case that the
state ρ describes a two qubit state but the V (t) acts in a single qubit, if V (t)ρ ≥ 0 we say
the map is completely positive2. To be more precise, V (t) ⊗ Iρ ≥ 0

In Chapter 5 we will show the implementation of a simulation of a quantum open
system [120]. More specifically, we will simulate quantum jumps in three-level system
(qutrits) encoded in photonic Gaussian path modes, by exploring light diffraction by phase
modulation in periodical phase gratings programmed in a spatial light modulator, as
approached in Chapter 2.

2 There are not a lot of examples of positive maps that are not completely positive. One of them is the
transpose operation, see Box 8.2 of [87]
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Cascade Λ V

K0


1 0 0

0
√

1 − p21 0

0 0
√

1 − p32




1 0 0

0 1 0

0 0
√

1 − p32 − p31




1 0 0

0
√

1 − p21 0

0 0
√

1 − p31



K1


0 √

p21 0

0 0 0

0 0 0




0 0 0

0 0 √
p32

0 0 0




0 √

p21 0

0 0 0

0 0 0



K2


0 0 0

0 0
√
p32(1 − p21)

0 0 0




0 0 √

p31

0 0 0

0 0 0




0 0 √

p31

0 0 0

0 0 0



K3


0 0 √

p32p21

0 0 0

0 0 0



Tabela 1 – Kraus operators for cascade decay, Λ decay and V decay.
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4 Quantum gates in qubit and qutrit systems

4.1 Quantum gates for qubits

4.1.1 Single qubit quantum gates

Analogous to classical computer, most of quantum computers approaches, explores
a two-level system (qubits). The result of the implementation of a QG, represented by the
unitary operator G, on a pure state |Ψ⟩ is [87, 127]

|Ψ′⟩ = G |Ψ⟩ , (4.1)

where |Ψ′⟩ is the state after applying G. A Qubit pure state can be represented as a 2x1
matrix, with the matrix elements being the components of the qubit written in terms of
the vector states of a basis

|Ψ⟩ = 1√
2

 a

beiϕ

 , (4.2)

with a, b, ϕ ∈ R and a2 + b2 = 1. If the initial state is a mixed state it is represented by
the density operator ρ, the output state of the quantum gate will be analogous to the one
described in Eq.2.11 for general quantum transformations, i. e.:

ρ′ = GρG†. (4.3)

The Pauli matrices are examples of QGs for qubits [87,88].

σx =
0 1
1 0

 , σy =
0 −i
i 0

 e σz =
1 0
0 −1

 . (4.4)

Figure 13 shows usual the illustration of Pauli gates on quantum circuits.

Figura 13 – Representation of the Pauli gates (σx, σy and σz) in quantum circuits with its input
and output states.

The application of these QG in the state of Eq.4.2 provide us as output state:

|Ψ′⟩ = σx |Ψ⟩ =
beiϕ

a

 , (4.5)
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|Ψ′⟩ = σy |Ψ⟩ =
−ibeiϕ

ia

 , (4.6)

|Ψ′⟩ = σz |Ψ⟩ =
 a

−beiϕ

 . (4.7)

By comparing the states |Ψ⟩ and |Ψ′⟩ we observe that:

• σx inverts the components of the two computational basis states, |0⟩ and |1⟩;

• σy inverts the components of the two computational basis states, |0⟩ and |1⟩, adds a
phase, eiπ in |0⟩ and a global phase ei π

2 which does not yield observables effects;

• σz adds a phase, eiπ in the computational basis state |1⟩.

The σx QG could be thought as quantum NOT gate, the counterpart of classical NOT
gate, since it transforms the computational basis states into orthogonal ones, |0⟩ → |1⟩ and
|1⟩ → |0⟩. But if we have as input a superposition state, for instance, |ψ⟩ = 1/

√
2 (|0⟩ + |1⟩),

it will not provide as output an orthogonal state. Thus, σx does not always has as output
an orthogonal state to the input one and, therefore, can not be called NOT gate [133].

There is another useful QG, called as phase-shift gate:

S =
1 0
0 eiθ

 , (4.8)

which acting on the state 4.2, has the output

|Ψ′⟩ = S |Ψ⟩ =
 a

bei(ϕ+θ)

 . (4.9)

The S gate inserts a relative phase ϕ in the computational basis state |1⟩. Notice that, the
σz gate is a particular case of a phase-shift gate for θ = π.

4.1.2 Two qubits quantum gates

The two qubits QGs are called controlled quantum gates (CQGs), which act in a
two-particle system Hilbert space. In this approach, we will make use of a two-dimensional
system, we will explore a bipartite two-qubits state. One of them is used as control, C,
and the other one as target, T . The way the QG acts on the target qubit depends on
the state of the control qubit. The state of the qubit C indicates if the the CQG will be
implemented or not, in the T qubit part. Assume the initial state,

|Ψ⟩ = (a |0⟩C + b |1⟩C) ⊗ (c |0⟩T + d |1⟩T ) , (4.10)
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where, a, b, c and d ∈ C. By considering that the state |1⟩C means that the QG will be
implemented and the state |0⟩C that it will not be, we have, for example, the following
transformation as result of the application of CNOT gate on each one of the basis states:

|0⟩C ⊗ |0⟩T → |0⟩C ⊗ |0⟩T , |0⟩C ⊗ |1⟩T → |0⟩C ⊗ |1⟩T ,
|1⟩C ⊗ |0⟩T → |1⟩C ⊗ |1⟩T and |1⟩C ⊗ |1⟩T → |1⟩C ⊗ |0⟩T . (4.11)

These transformations can be represented by the general formula:

|A⟩C ⊗ |B⟩T → |A⟩C ⊗ |A⊕B⟩T , (4.12)

where ⊕ denotes addition modulo two. A representation of the CNOT gate on quantum
circuits in shown in Figure14.

Figura 14 – Representation of a CNOT in quantum circuits with its input and output states.
The top wire represents the input and output of the control qubit and the bottom
wire represents the input and output target qubit.

From the basis states change described in Eq. 4.11, we have the matrix representa-
tion of the CNOT gate:

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (4.13)

The application of the CNOT gate in the state of the Eq.4.10 lead us to the final state,

|Ψ′⟩ = (ac |0⟩C + bd |1⟩C) ⊗ |0⟩T + (ad |0⟩C + bc |1⟩C) ⊗ |1⟩T . (4.14)

By comparing the initial state, Eq.4.10, and the final one, Eq.4.14, we can see that the
CQG, like a CNOT, can be used to generate entangled states [91, 92]. Notice that the
input state is separable, while the output state is entangled and can not be written as
|Ψ′⟩ = |Ψ′⟩C ⊗ |Ψ′⟩T . Those types of CQG are widely used in quantum circuits to perform
operations in quantum states.

4.2 Quantum gates for qutrits

4.2.1 Single qutrit quantum gates

Some reports indicate that there are many advantages on exploiting higher-
dimensional systems (qudits) than two-level ones to implement quantum computation
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and quantum information processing [134–137]. For instance, these advantages has been
demonstrated in cryptographic schemes [138] and quantum key distribution protocols [139].
Also, it shows practical advantages for scaling up a quantum computer, improving the
flexibility in the storage and processing information [140,141]. A qudit quantum computer
makes use of a string of qudits to manipulate and transfer information, as higher the qudits
dimension the less the number of coupled information carriers it will need to perform a
quantum information process. This is a crucial advantage when realizing experimental
quantum computation based on trapped ions and spin system devices. So, implementing
QG in qudit systems with dimension d ≥ 3 can enhance the capability of quantum compu-
ters. In this section, we will show some QG for qutrit systems (d = 3), an analogous of
Pauli Eq.4.4, and the phase-shift gates, Eq.4.8. The counterpart for qutrits of the Pauli
operators are represented by [87,142–145]

σ(01)
x =


0 1 0
1 0 0
0 0 1

 , σ(01)
y =


0 −i 0
i 0 0
0 0 i

 , σ(01)
z =


1 0 0
0 −1 0
0 0 1

 , σ(02)
x =


0 0 1
0 1 0
1 0 0

 ,

σ(02)
y =


0 0 −i
0 i 0
i 0 0

 , σ(02)
z =


1 0 0
0 1 0
0 0 −1

 , σ(12)
x =


1 0 0
0 0 1
0 1 0

 , σ(12)
y =


i 0 0
0 0 −i
0 i 0

 ,

and σ(12)
z =


1 0 0
0 1 0
0 0 −1

 . (4.15)

Those operators change the initial state in an analogous way to the Pauli matrices, Eq.4.4.
As effect of their application we have:

• σ(ij)
x inverts the components of the basis states, |i⟩ and |j⟩;

• σ(ij)
y inverts the components of the basis states, |i⟩ and |j⟩, adds a relative phase,
eiπ between the basis states |i⟩ and |j⟩ and a global phase ei π

2 ;

• σ(ij)
z adds a relative phase, eiπ between the basis states |i⟩ and |j⟩.

We have also the following phase-shift gates for qutrit systems

S(0) =


eiθ 0 0
0 1 0
0 0 1

 , S(1) =


1 0 0
0 eiθ 0
0 0 1

 and S(2) =


1 0 0
0 1 0
0 0 eiθ

 . (4.16)

The application of QGs, S(i) adds a relative phase, θ to the basis state |i⟩. As the qubit
gates, the σ(ij)

z qutrit gates are particular cases for the S(i), for θ = π.
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4.3 Controlled quantum gates for hybrid-dimension systems
Controlled quantum gates can also be applied to hybrid-dimension systems. In this

case, the target and the control qudits have different dimensions, for instance, one can
have a qubit as C and a qutrit as T . This kind of hybrid-dimension approach can also be
explored to quantum computation improving its flexibility in the storage and processing of
quantum information. Also, it can helps to scale up quantum computers [136,141,146,147].
Let us build up a hybrid controlled-σ(01)

x gate, analogous to the one described in Eq.4.15,
remembering that if the control input is in the basis state |0⟩ the QG will not be applied,
if it is in the basis state |1⟩ it will be applied. The implementation of such gate provide us
the following transformations:

|0⟩C ⊗ |0⟩T → |0⟩C ⊗ |0⟩T , |0⟩C ⊗ |1⟩T → |0⟩C ⊗ |1⟩T ,
|0⟩C ⊗ |2⟩T → |0⟩C ⊗ |2⟩T , |1⟩C ⊗ |0⟩T → |1⟩C ⊗ |1⟩T ,

|1⟩C ⊗ |1⟩T → |1⟩C ⊗ |0⟩T and |1⟩C ⊗ |2⟩T → |1⟩C ⊗ |2⟩T . (4.17)

From which we have the matrix representation for the hybrid controlled-σ(01)
x gate

U
Cσ

(01)
x

=



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1


. (4.18)

In a similar manner as shown in Eq.4.18 for hybrid CQG for σ01
x , we can do the same for

all the other QG that was approached in Section 4.2.1.

In Chapter 6 we show a proposal to perform all QGs and CQGs reviewed in
Chapter 4. For this purpose, we will make use of qubit and qutrit system encoded in
photonic Gaussian path modes. This implementation can be realized by exploring light
diffraction by phase modulation in PPGs presented in Chapter 2.
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5 Simulation of a quantum jump in three-level
system

In this chapter we will approach the simulation of quantum jump in a three-level
system encoded in photonic Gaussian path modes [120], by exploiting periodical phase
modulation in PPGs, studied in Chapter 2. Making use of a SLM, we will show how to
generate and perform quantum operations in multi-path quantum systems to simulate
the cascade, Λ and V dynamics (see Figure 12). The objective is to reproduce the time
evolution of a state of decaying three-level atomic system in qutrit path modes, from t = 0
to t → ∞. The methodology exploited in this implementation was based on techniques to
perform general quantum operations on Gaussian paths systems proposed in [119, 122]
and performed in [18, 121]. The use of the SLM in optical systems allows the photon
state to be manipulated in different ways and can be used to implement a wide range of
quantum operations [8, 12, 16, 18, 83, 84]. The text and the experimental results showed in
this chapter were adapted from the publication of these results in reference [120].

5.1 Experimental setup, state preparation and state operation

5.1.1 Experimental setup and state preparation

The experimental setup used to realize the decay simulation is depicted in Figure 15.
The first step for the simulation of atomic spontaneous decay in photonic qutrit path
system is the state preparation. The initial state |ψ0⟩ is prepared in three parallel photon
paths, which are displaced relatively to each other in the x-direction and have a transverse
Gaussian electric field profile. The photon state preparation is realized by using a laser
beam that passes through a half wave-plate (HWP), a polarizer beam-splitter (PBS)
and a neutral-density filter (NDF). These three optical elements are used to attenuate
the beam to single photon regime and to filter the polarization state to the horizontal
one. After that, it reaches a phase-only reflection SLM in the region M4 as shown in
Figure 15. A picture of the SLM used to prepare the state and realize the quantum
operations is shown in Figure 16. This region is programmed with a BPG in x-direction
that diffracts the incoming light in several diffraction orders, displaced in x-direction,
as depicted in Figure 2. The three higher-intensities orders1 are filtered and labelled as
|1⟩x ⊗ |0⟩y, |2⟩x ⊗ |0⟩y and |3⟩x ⊗ |0⟩y. An illustration of the initial states generated by the
SLM is shown in Figure 17. Proceeding in this way, we are able generate photonic path
1 Orders -1, 0 and 1, see Figure 6.
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Figura 15 – Experimental setup used to prepare and to implement the operations on a qutrit
parallel Gaussian beam state. A laser beam passes through a half wave-plate (HWP),
a polarizer beam splitter (PBS) and a neutral density filter (NDF). This is necessary
for filtering the polarization state and to attenuate it to the single photon regime.
The laser beam reaches a SLM screen divided in four regions, each one with a
periodical phase diffraction grating. The attenuated laser beam is initially diffracted
by a periodical binary phase grating in the region M4 in three horizontal paths
(x-direction). A state superposition of Gaussian modes paths, |1⟩x ⊗ |0⟩y, |2⟩x ⊗ |0⟩y

and |3⟩x ⊗ |0⟩y, is considered to be our initial state. Each of the modes is reflected
back in three different regions on the SLM: M1, M2 and M3. In the second incidence
the beams are diffracted by linear phase gratings in which the first diffraction order
propagates in three possible vertical directions, depending on the phase grating
periodicity (mode paths: |i⟩x ⊗ |1⟩y, |i⟩x ⊗ |2⟩y and |i⟩x ⊗ |3⟩y, i = 1, 2 and 3). The
multi-path system passes through a cylindrical lens which transforms all |i⟩x → |2⟩x.
After a spatial filtering, only the three possible first orders diffracted after the second
incidence in the SLM reach the detection system. An intensified charged-coupled
device (ICCD) camera records the photon counts in each position.

states of the type [18,119,121,122]:

|ψ0⟩ =
(
A1e

iϕ1 |1⟩x + A2e
iϕ2 |2⟩x + A3e

iϕ3 |3⟩x

)
⊗ |0⟩y , (5.1)

where Ai and ϕi, i = 1, 2 and 3, are real numbers that depend on the maximum phase of
the BPG. The Ai coefficient is equal to the modulus of the amplitude of the laser beam at
the path i and ϕi is the phase of the state |i⟩x ⊗ |0⟩y. The state generated was considered
pure because it was prepared by selecting diffraction orders of a laser beam. We labelled
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Figura 16 – Picture of the spatial light modulator used to prepare the state and realize the
quantum operations in the experimental setup of Figure 15.

Figura 17 – Representation of the spatial light modulator generating the initial state |ψ0⟩ explored
to simulate the decay dynamics.

as |0⟩y the vertical spatial mode of the initial state field in the y-direction. The state |l⟩y

is given by:

|l⟩y =
∫ +∞

−∞
dy exp

[
−(y − ld)2

2σ2

]
|1y⟩ , (5.2)

where l = 1, 2, and 3, ld is the centre position of each horizontal spatial mode that
are displaced by d from its neighbour mode, σ is the Gaussian mode transverse width,
|1y⟩ = 1

2π2

∫∞
−∞ dq exp (−iqd) |1q⟩ is a representation of a coherence state of one photon, on

average, in the transverse position and |1q⟩ a coherence state of one photon, on average,
in the transverse momentum variable in x-direction [117,148]. We should emphasize that,
with a BPG in region M4 of the SLM, we are able to prepare some states represented by
Eq.5.1, not all of them. For instance, the states prepared by diffraction on a BPG usually
have the coefficients A1 = A3.

5.1.2 Implementation of quantum operations

These three paths are retro-reflected by a mirror to the same SLM and each
horizontal path mode is modulated by one of the three different LPGs, in which the phase
increases linearly in the y-direction. Each of these Gaussian beams, at the path i, that
defines the initial state components |i⟩x ⊗ |0⟩y strikes a specific region Mi (i = 1, 2 and 3),
see Figure 18. To implement the quantum operations (Subsection 2.2.2) we need to simulate
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Figura 18 – Picture of three path modes generated at the first incidence at the spatial light
modulator (SLM) in region M4, |i⟩x ⊗ |0⟩y, being retro-reflected and striking a
specified region Mi in the SLM (i = 1, 2 and 3).

the quantum jumps, we select only the first diffraction order2 diffracted by LPG in the
regions Mi (i = 1, 2 and 3). Our interferometer, Figure 15, has as input a three horizontal
path modes and as output three vertical ones. The type of operation implemented by the
SLM relies on two features of the LPG: periodicity and maximum phase.

5.1.2.1 Periodicity of the linear phase grating

The period of a PPG rules the separation between the diffracted orders (see Figure
19).

Figura 19 – Representation of the distance between diffracted orders (−1, 0 and 1) as function of
the period of the periodical phase diffraction grating in the spatial light modulator.

2 Order 1, see Figure 4
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As higher the periodicity, the smaller the distance between the diffracted orders.
So, the period of the LPGs will provide the type of transition between the path states that
represents the energy levels. For instance, if we want to simulate a transition |1⟩x ⊗ |0⟩y →
|1⟩x ⊗ |1⟩y, will use a LPG of large period in the y-direction in the region M1. If the
desired transition is |1⟩x ⊗ |0⟩y → |1⟩x ⊗ |2⟩y we will make use of a medium period LPG,
for |1⟩x ⊗ |0⟩y → |1⟩x ⊗ |3⟩y we program the SLM with a small period one. The periods of
the LPGs that were used in the simulation are 10 (small), 12 (medium) and 14 (large) in
SLM pixel units (20µm x 20µm for each pixel).

5.1.2.2 Maximum phase of the linear phase grating

The intensity of light diffracted to the first diffraction order depends on the
maximum phase of the LPG (see Figure 4). In the simulation of the decay dynamics, we
make an analogy of the intensity in each vertical output path (Figure 15) and the population
of each atomic state (Figure12). So, as higher the probability of decay (pij), the more light
should be diffracted to the order n = 1, representing the transition |i⟩x ⊗ |0⟩y → |i⟩x ⊗ |j⟩y.
The probabilities pij = 1 − e−γijt are function of the decay rates and time. Since the decay
rates are fixed, the whole time evolution of the system is mapped on the probability of
decay, pij(t = 0) = 0 to pij(t → ∞) = 1. In this way, each operation performed by the
LPG in the region Mv (v = 1, 2 and 3) is given by:

OMv |v⟩x ⊗ |0⟩y = |v⟩x ⊗
(
αv |ℓ⟩y + βv |0⟩y

)
, (5.3)

where the mode |v⟩x ⊗ |l⟩y represents the spatial mode of the diffraction order n = 1 of
the LPG in the region Mv, |v⟩x ⊗ |0⟩y represents the spatial mode of the diffraction order
n = 0 of the LPG in the region Mv, (v = 1, 2 and 3). As mentioned previously, the vertical
position of the order n = 1 of the diffracted Gaussian mode, |l⟩y, relies on the periodicity of
the LPG while the coefficients α and β depends on its maximum phase. ϕv and θv are the
phases acquired by the modes |v⟩x ⊗ |l⟩y and |v⟩x ⊗ |0⟩y after the diffraction, respectively.
We would like to mention that we can program different LPGs3 in each region Mv of the
SLM, see Figure 18. In this way, we are able to implement different quantum operations
on each horizontal path reaching the SLM, |v⟩x ⊗ |0⟩y.

5.1.2.3 Pixelation effects on programming linear phase grating in the spatial light modulator

An interesting but complicating aspect of programming LPGs on the SLM is that
we are not able to realize an ideal LPG, like the one depicted in Figure 3, on the SLM. This
fact occurs because the SLM is constituted by an array of discrete pixels. In this context,
we program the SLM with a sequence of step functions4, as shown in Figure 20. This yields
a loss of efficiency on the modulation, that is, it reduces the intensity of light diffracted to
3 LPGs with different periodicity and maximum phase.
4 Also known as Heaviside function.
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Figura 20 – Representation of the "linear"diffraction phase grating that can be programmed in
the screen of a spatial light modulator.

the order n = 1. This effect was studied by Baldijão et. al. in [119,122] and Borges et. al.
in [18,121], which they called as "pixelation effect". The loss of efficiency on the modulation
relies on the periodicity of the LPG (number of pixels per period). Figure 21 shows the
intensity of the first diffraction order of two LPGs with different periodicities. The LPG

Figura 21 – Representation of the normalized intensities of the diffraction orders n = 0 and
n = 1 for two "linear" phase gratings, as function of the grey scale in the spatial light
modulator. One of them has 4 pixels per period and the other 10 pixels per period.
The first one has approximately 50% of maximum efficiency while the second one
has approximately 78% of maximum efficiency.

with 4 pixels per period has approximately 50% of maximum efficiency, i. e., it transfers
about 50% of the intensity of the incoming light to the n = 1 diffraction order. On the
other hand, the LPG with 10 pixels per period has approximately the maximum efficiency
of 78%. Therefore, the pixelation effect must be taken into account when simulating the
decay dynamics.
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5.2 Simulation of the decay dynamics

5.2.1 Implementation of the Kraus operators

We can implement a quantum operation, like the one described by Eq.5.3, in each
individual path mode. So, that after the SLM, we have a quantum state represented by:

|ψ⟩ = A1 |1⟩x ⊗
(
α1e

iϕ1 |ℓ1⟩y + β1e
iθv |0⟩y

)
+ A2 |2⟩x ⊗

(
α2e

iϕ2 |ℓ2⟩y + β2e
iθ2 |0⟩y

)
+A3 |3⟩x ⊗

(
α3e

iϕ3 |ℓ3⟩y + β3e
iθ3 |0⟩y

)
, (5.4)

where Ai are parameters from the initial state; αi, βi, ϕi and θi depend on the maximum
phase of the LPG in region Mi (i = 1, 2 and 3), while the vertical mode |l1⟩ (li = 1, 2
and 3) relies on the periodicity of the LPG in region Mi. As it is shown in Figure 15, we
use a cylindrical lens to merge all the the horizontal paths in a single one on its focus,
|i⟩x → |2⟩x. By selecting only the |1⟩y, |2⟩y and |3⟩y modes, the intensified charged couple
device camera (ICCD), which is in the focal plane of the cylindrical lens, will detect the
following state:

|ψ⟩ = |2⟩x ⊗
(
A1α1e

iϕ1 |ℓ1⟩y + A2α2e
iϕ2 |ℓ2⟩y + A3α3e

iϕ3 |ℓ3⟩y

)
. (5.5)

Figure 22 shows a picture of the ICCD camera used to perform the measurements

Figura 22 – Image of the intensified charged-coupled device (ICCD) camera used to perform the
measurements at the experimental setup, Figure 15.

The three decay dynamics in three-level systems: cascade, Λ and V were implemen-
ted in terms of their Kraus decomposition (Table 1). In this section, we will clarify how each
Kraus operator were simulated by the diffraction grating in the SLM. First, let’s consider
the identity operation. As our experimental setup has a three-path horizontal modes as
input state and a three-path vertical modes as output state, the identity is performed
by inserting LPGs in the regions M1, M2 and M3 on the SLM. Figure 23 represents the
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Figura 23 – Representation of the implementation of the identity operation in the experimental
setup (Figure 15).

implementation of the identity operation on the SLM. By using a LPG of high period in
region M1, we get the transition |1⟩x → |1⟩y, with a medium period one in region M2, we
have |2⟩x → |2⟩y, while a small period in region M3, we reach |3⟩x → |3⟩y. In this way,
we can diffract the light as shown in Figure 23. In summary, the regions illuminated of
the SLM where we insert the LPGs correspond to to the atomic eigenstates (photon path
states) in which the atom (light beam) was before the atomic decay (diffraction). The
periodicity of the LPGs rules the atomic eigenstate (photon path state) for which the
atom (light beam) is decaying (diffracting). In the focal plane of the the cylindrical lens,
the ICCD will record the three beams in the vertical direction with relative phases and
intensities that correspond to the initial photon path state in the horizontal direction, in
this way, the identity operation is implemented. To keep the ratio among the coefficients
of the initial state Ai, Eq.5.1, we need to choose the maximum phase of the LPGs such
that they have the same αi coefficients.

The identity operation is present in the three decay dynamics: cascade, Λ and V .
It is the K0 operator for pij = 0, i. e., for t = 0 (see Table 1). For example, if we want to
implement the K0 operator for the cascade dynamics for pij ̸= 0, we just need to change
the maximum phases of the LPGs in regions M2 and M3. The maximum phases of the
LPGs are chosen based on calibrations of the intensity of the diffracted light to the n = 1
order, analogous to the ones performed in Figure 21. In this way, we diffract the amount
of light corresponding to the level population at some fixed time.

In a similar way to the K0 operator, we can implement the K1 for the cascade
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dynamics, as shown in Figure 24. In this implementation, we inserted a LPG of high

Figura 24 – Representation of the implementation K1 operator for the cascade dynamics.

periodicity in region M2 to diffract light from |2⟩x → |1⟩y. The regions M1 and M3 were
programmed to have no PPG. As for K0, if we want to simulate the K1 operator with
a different probability of decay, we just need to change the maximum phase of the LPG
in region M2. In an analogous manner, we can also implement the K2 (Figure 25) and
K3 (Figure 26) operators for the cascade dynamics. For K2, we programmed a LPG of
medium periodicity in region M3 to diffract light from |3⟩x → |2⟩y, while the regions M1
and M2 were programmed to have no PPG. In the K3 implementation, we insert a LPG of
high periodicity in region M3 to diffract light from |3⟩x → |1⟩y, while the regions M1 and
M2 were programmed to have no PPG. As for the other operations, if we want to simulate
different probabilities of decay, we just need to change the maximum phase of the LPG.

All the Kraus operators were implemented by programming a frame sequence of
different LPGs at the SLM, like a film (see Figure 15). Each frame contains PPG or
constant phases in the tree Mi (i = 1, 2 and 3), as explained in the lasts paragraphs,
such that a specific Kraus operator is implemented. Its time duration was set in 100 ms
in the SLM screen. So, a complete SLM frame sequence lasts 300 ms for the Λ and V

decay dynamics and 400 ms for the cascade decay. Single photon counts that allow us
to characterize the output state were recorded by the ICCD. The camera exposure time
was set to be equal to the SLM frame sequence duration in each measurement. Figure 27
illustrates the implementation of a sequence of all Kraus operators before the cylindrical
lens for the cascade dynamics. Each one of the Kraus operators are detected in a different
time at the ICCD. Between 0 and 100 ms it detects K0, between 100 and 200 ms it detects
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Figura 25 – Representation of the implementation K2 operator for the cascade dynamics.

Figura 26 – Representation of the implementation K3 operator for the cascade dynamics.

K1, between 200 and 300 ms it detects K2 and between 300 and 400 ms it detects K3. So
that, after a 400 ms measurement it provide us a sum of all images superposed.
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Figura 27 – Representation of the implementation of the sequence of all Kraus operators for
the cascade dynamics. Each one of them are detected on a different time at the
intensified charged couple device camera.

In all the Kraus operators sequence, the BPG that generates the initial photon
path states in horizontal direction, in region M4 of the SLM was kept the same.

A clear correspondence between the parameters of the simulated atomic system
and experimental optical interferometer, is shown in Table 2. The functions on the right
column of Table 2 are the normalized intensities of the BPG orders −1, 0, 1 in the first,
second and third lines, respectively. The function in the fourth line gives the normalized
intensity of the first order of ideal LPG (for the pixelation effects in the modulation of
LPGs, see [119,122]).

An average of 64 measurements was taken for a {p32, p31, p21} set for characterizing
the decay dynamics. By varying the pij-set we are able to simulate the time evolution
for the dynamics of the three-level system decay, since the pij was parameterized by the
evolution time t, as previously mentioned. Measurements at the image plane allow us
to obtain the diagonal terms of the three-level density matrix, pii, which describes the
relative population of level |i⟩. For the complete decay dynamics characterization, we also
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Atomic system Optical system

I1
4

π2 sin
2
(

ϕB

2

)
I2 cos2

(
ϕB

2

)
I3

4
π2 sin

2
(

ϕB

2

)
pij sinc2

(
ϕj

2 − π
)

Energy level |j⟩ Period 8 + 2j (pixel units) of the LPG

Tabela 2 – Correspondence between the experimental optical parameters and the atomic variables,
where: ϕB is the maximum phase of the BPG in the region M4, ϕj is the maximum
phase of the LPG in the region Mi with i, j = 1, 2 or 3 and 0 < ϕj < π. The functions
on the right column are the non-normalized intensities of the BPG orders −1, 0, 1 in
the first, second and third lines, respectively, and the intensity of the first order of
the ideal LPG in the fourth line (for the pixelation effects in the modulation of LPGs,
see [119,122]).

have to measure the off-diagonal density matrix elements pij which give information about
the state coherence.

5.2.2 Image measurements

5.2.2.1 The probability of detection

The probability of photon detection at the detection plane z is P (r, t) = Tr(Γρ)
[117], where ρ is the density matrix of the photonic qutrit and Γ = E(−)(r, t)E(+)(r, t),
with:

E(−)(r, t) ∝ 1√
V

∑
k
â†

ke
−i(k.r−ωt) and (5.6)

E(+)(r, t) ∝ 1√
V

∑
k
âke

i(k.r−ωt), (5.7)

where E(−)(r, t) and E(+)(r, t) are the negative-frequency and positive-frequency parts
of the electric field operator at r and time t, k is the wave-vector of the filed, âk is the
annihilation operator and â†

k is the creation operator. Γ is the intensity operator, which
propagates the electromagnetic field from the SLM to the image plane. For the image
plane measurements, the probability of photon detection in a transverse position y is

P (y) =
3∑

j=1
ρjje

− (y−jd)
σ2 , (5.8)

where: d is the distance between the paths and σ is the width of the Gaussian modes. We
used Eq.5.2 and ρjj are the diagonal terms of three-level system density operator. The
diagonal terms are the relative populations in each energy eigenstate and in the optical
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simulation ρjj = Ij

IT
, with Ij being the transverse profile of the j beam (j = 1, 2 and 3)

detected at the image plane by the ICCD and IT = I1 + I2 + I3.

5.2.2.2 Cascade dynamics

In the cascade dynamics we have the initial state generated by the binary diffraction
grating in the x-direction, shown in the Fig. 28 (a). With a MATLAB program we make a
sum over the intensity in the columns and obtained a normalized integrated transverse
optical profile (ITOP), plotted in Fig. 28 (b). With an image characterization of our

Figura 28 – (a) Image measurement of the initial state for the cascade dynamics. (b) Normalized
integrated transversal optical profile (ITOP) of the initial state for the cascade
dynamics fitted by a multi-peak Gaussian function.

initial state we may proceed to the implementation of the dynamics. By inserting all the
diffraction gratings that simulate the Kraus operators in a film at the SLM, we measure the
image of the three vertical path Gaussian states. Fig. 29 illustrates the image obtained by
the implementation of the operator for some values of p32 = p21 = p, while its normalized
integrated transversal optical profile (ITOPs) are shown in Fig. 30. We proceed with the
image measurements for several values of p, from p = 0 to p = 1 with steps of 0.125. The
theoretical prediction for the density matrix is obtained from Eq.3.49, with the Kraus
operator from Table1. So, for the cascade dynamics, the density matrix that represents
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Figura 29 – Image measurements of the implementation of the cascade dynamics for different
probabilities of decay (p = 1 − e−γt): (a) p=0, (b) p=0.5, (c) p=0.75 and (d) p=1.
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Figura 30 – Normalized integrated transverse optical profile of the image measurements of
the implementation of the cascade dynamics for different probabilities of decay
p = 1 − e−γt, where γ32 = γ21 = γ for: (a) p=0, (b) p=0.5, (c) p=0.75 and (d) p=1,
fitted by a multi-peak Gaussian.
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the state evolved in time is:

ρC = 1
IT


I1 + I2p21 + I3p32p21

√
I1I2

√
1 − p21

√
I1I3

√
1 − p32√

I1I2
√

1 − p21 I2(1 − p21) + I3p32(1 − p21)
√
I2I3

√
1 − p21

√
1 − p32√

I1I3
√

1 − p32
√
I2I3

√
1 − p21

√
1 − p32 I3(1 − p32)

 .

(5.9)
As the initial state was generated by a laser beam, we assumed to be a pure state and equal
to |ψ0⟩ = 1

IT

(√
I1 |1⟩ +

√
I2 |2⟩ +

√
I3 |3⟩

)
. With all the image measurements provided

by the detections we get to reconstruct the time evolution of the diagonal elements of
the density matrix. Figure 31 shows the time evolution of the diagonal elements for the
cascade dynamics.

0 . 0 0 0 . 2 5 0 . 5 0 0 . 7 5 1 . 0 0
0 . 0 0
0 . 2 5
0 . 5 0
0 . 7 5
1 . 0 0

ρ ii(t)

p
Figura 31 – Measured values (symbols) and theoretical prediction (lines) of the time evolution

of the diagonal elements for the cascade dynamics, as function of the probability
of decay p = 1 − e−γt. The black points and the black curve are the experimental
and theoretical ρ11(t), the red points and the red curve are the experimental and
theoretical ρ22(t) and the blue points and the blue curve are the experimental and
theoretical ρ33(t).

5.2.2.3 Λ dynamics

For the Λ dynamics we proceeded in an analogous way to simulate the dynamics.
After an image characterization of the three horizontal path initial pure state, we obtained
the images of the three vertical output photon paths in Gaussian modes and the interference
patterns between then, two by two. For this dynamics we made γ31 = 2γ32, so that we
have different values of p31 and p32 for t ̸= 0. The theoretical prediction for the density
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matrix is obtained from Eq.3.49, with the Kraus operator from Table 1, which yields:

ρΛ(t) = 1
IT


I1 + I3p31

√
I1I2

√
I1I3

√
1 − p31 − p32√

I1I2 I1 + I3p32
√
I2I3

√
1 − p31 − p32√

I1I3
√

1 − p31 − p32
√
I2I3

√
1 − p31 − p32 I3(1 − p32 − p31)

 , (5.10)

where we assumed the initial state to be pure and equal to |ψ0⟩ = 1
IT

(√
I1 |1⟩ +

√
I2 |2⟩ +

√
I3 |3⟩

)
.

We characterized the state for p31 = 0 and p32 = 0 to the end of the dynamics, i. e.,
p31 + p32 = 0. The results for the time evolution of the diagonal terms for density state
matrix for the Λ dynamics are depicted in Figure 32.
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Figura 32 – Measured values (symbols) and theoretical prediction (lines) of the time evolution of

the diagonal elements for the Λ dynamics as function of the probability if decay p31 =
1 − e−γ31t. The black points and the black curve are the experimental and theoretical
ρ11(t), the red points and the red curve are the experimental and theoretical ρ22(t)
and the blue points and the blue curve are the experimental and theoretical ρ33(t).

5.2.2.4 V dynamics

Finally for the V dynamics, we followed the same steps for the other two. We
made an image characterization of the three horizontal path initial pure state, after we
obtained the images of the three vertical output photon paths in Gaussian modes and the
interference patterns between then, two by two. For this dynamics we made γ21 = 2γ31,
so that we also have different values of p21 and p31 for t ≠ 0. We characterized the state
from t = 0 to t → ∞, with increments for p21 of 0.125. Like for the other dynamics, the
theoretical prediction for density matrix that represents the time evolved state is calculated
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from Eq.3.49, with the Kraus operator from Table 1, which provides:

ρV (t) = 1
IT


I1 + I2p21 + I3p31

√
I1I2

√
1 − p21

√
I1I3

√
1 − p31√

I1I2
√

1 − p21 I2(1 − p21)
√
I2I3

√
1 − p21

√
1 − p31√

I1I3
√

1 − p31
√
I2I3

√
1 − p21

√
1 − p31 I3(1 − p31)

 ,

(5.11)
where we assumed the initial state to be pure and equal to |ψ0⟩ = 1

IT

(√
I1 |1⟩ +

√
I2 |2⟩ +

√
I3 |3⟩

)
.

The results for the time evolution of the diagonal terms are shown in Figure 33
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Figura 33 – Measured values (symbols) and theoretical prediction (lines) of the time evolution

of the diagonal elements for the V dynamics as function of the probability of
decay p21 = 1 − e−γ21t. The black points and the black curve are the experimental
and theoretical ρ11(t), the red points and the red curve are the experimental and
theoretical ρ22(t) and the blue points and the blue curve are the experimental and
theoretical ρ33(t).

5.2.3 Interference measurements

5.2.3.1 The probability of detection

For a complete characterization of the state including the decoherence that occurs
during the process of decay, we also measure the visibility of the interference patterns
between the paths, two by two, for the same probabilities values. It was made by inserting
another cylindrical lens that focus the beams in the vertical direction in the CCD plane
(Figure 15). Blocking one of the three beams that represent the photon path qutrit state is
equivalent to perform a projection on the unblocked path states. For instance, by blocking
the |3⟩ path from the cascade state of Eq.5.9, the resulting state will be the projection
over |1⟩ and |2⟩, which will provide us the following renormalized density matrix that
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represents the state:

σ(t) = 1
Ir


I1 + I2p+ I3p

2 √
I1I2

√
1 − p 0

√
I1I2

√
1 − p I2(1 − p) + I3p(1 − p) 0

0 0 0

 . (5.12)

The probability of detection on the ICCD plane is P (r, t) = Tr(Γ′σ(t)), where Γ′

is the Fourier transform of Γ operator and propagates the electromagnetic field from the
SLM to the Fourier plane [15]. Thus, the interference patterns of the state 5.12 are:

Tr
(
Γ′

yσ
)

= e
− −σk2y2

f2

[
1 + 2 |σij| cos

(
kyd

f
+ ϕij

)]
, (5.13)

where f is the focal length of the lens, k is the modulus of the wave vector and σij = |σij| eiϕij

is the off diagonal element ij of the density matrix shown in Eq.5.12. Thus the visibility of
the interference pattern between the paths |i⟩ and |j⟩ becomes Vij = 2 |σij(t)| [117,149,150].

5.2.3.2 Cascade dynamics

By performing all the interference pattern measurements for the same values of
p that was performed the image measurements, we are able to obtain all the moduli of
all the off-diagonal elements of the density matrix from the visibilities of the interference
patterns. Some of the patterns measured are shown in Figure 34 and its ITOPs are in
Figure 35

The theoretical predictions and the measured values of time evolution of the off-
diagonal elements of the density matrix for the cascade dynamics are shown in Figure 36.

5.2.3.3 Λ dynamics

As shown for the cascade dynamics, we performed all the interference measurements
for the same pair of values of p31 and p32 that were performed the image measurements. So,
we obtained all the modulus of all the off-diagonal elements of the density matrix from the
visibilities of the interference patterns. The theoretical predictions and the measured values
of time evolution of the off-diagonal elements of the density matrix for the Λ dynamics
are shown in Figure 37.

5.2.3.4 V dynamics

Finally, for the V dynamics, we performed all the interference measurements for
the same pair of values of p31 and p21 that were performed the image measurements. So,
we obtained all the modulus of all the off-diagonal elements of the density matrix from the
visibilities of the interference patterns. The theoretical predictions and the measured values
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Figura 34 – Interference patterns between the path states |1⟩ and |2⟩, for the cascade dynamics
for different probabilities of decay p = 1 − eγt. (a) p = 0, (b) p = 0.25, (c) p = 0.5
and (d) p = 0, 75.

of time evolution of the off-diagonal elements of the density matrix for the V dynamics
are shown Figure 38.

Although we have used an attenuated laser beam to the single photon regime, the
same experimental results shown here can be obtained by using a high intensity light
source given that all the operations used are based on linear optical interference. If the
intense coherent light source replaces the single photon source, an CCD (Charge-Coupled
Device) or CMOS (Complementary Metal Oxide Semiconductor) camera will substitute
the single photon camera in the experiment we will obtain similar results. On the other
hand, since we are simulating a three-level atomic system is convenient to use the quantum
description.

In our simulation we are able to measure the time evolution of the diagonal and
off-diagonal elements of the density matrix of a generic three-level system. We have the
flexibility of changing the decay probabilities and then mimic different atomic systems
with different decay dynamics (cascade, Λ and V ). The procedure used to implement the
simulations is general and it can be extended to multi-level systems with the number of
levels higher than three. The only technical restrictions in our experimental setup, for
this extension, are the sizes of the pixels arrays in the SLM and in the ICCD camera,
which must fit all the Gaussian paths representing the higher dimension atomic system.
For instance, we need to have a minimum number of periods of the PPGs inside the laser
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Figura 35 – ITOP of the interference pattern between the path states |1⟩ and |2⟩ for the cascade
dynamics as function of the ICCD pixel for different probabilities of decay p = 1−e−γt.
(a) p = 0, (b) p = 0, 25, (c) p = 0, 5 and (d) p = 0, 75.

beam transverse profile so that it can be diffracted.
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Figura 36 – Measured values (symbols) and theoretical prediction (lines) of the time evolution

of the off-diagonal elements for the cascade dynamics as function of the probability
of decay p = 1 − e−γt. The black points and the black curve are the experimental
and theoretical |ρ12(t)|, the red points and the red curve are the experimental and
theoretical |ρ13(t)| and the blue points and the blue curve are the experimental and
theoretical |ρ23(t)|.
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Figura 37 – Measured values (symbols) and theoretical prediction (lines) of the time evolution

of the off-diagonal elements for the Λ dynamics as function of the probability of
decay p31 = 1 − e−γ31t. The black points and the black curve are the experimental
and theoretical |ρ12(t)|, the red points and the red curve are the experimental and
theoretical |ρ13(t)| and the blue points and the blue curve are the experimental and
theoretical |ρ23(t)|.
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Figura 38 – Measured values (symbols) and theoretical prediction (lines) of the time evolution

of the off-diagonal elements for the V dynamics as function of the probability of
decay p21 = 1 − e−γ21t. The black points and the black curve are the experimental
and theoretical |ρ12(t)|, the red points and the red curve are the experimental and
theoretical |ρ13(t)| and the blue points and the blue curve are the experimental and
theoretical |ρ23(t)|.



65

6 Proposal for implementation of quantum
gates in photonic path system

6.1 Experimental setup, state preparation and operation

6.1.1 Experimental setup and state preparation

In this chapter, we propose the implementation of quantum gates (QG) and
controlled quantum gates (CQG) in photonic path systems. As in the simulation of
quantum jumps in three-level systems, Chapter 5, the methodology used for this proposal
is inspired in the techniques used to perform general quantum operations on Gaussian
paths systems proposed in [119,122] and performed in [18,121]. The state preparation and
experimental setup are analogous to the simulation implementation, as shown in Figure 39.
The initial state is prepared by diffraction of the laser beam in the BPG in region M4 is

|ψ0⟩ = A1e
iϕ1 |1⟩ + A2e

iϕ2 |2⟩ + A3e
iϕ3 |3⟩ , (6.1)

where Ai and ϕi are real numbers which relies on the maximum phase of the BPG in region
M4, and |i⟩ is the label of the path mode generated (i = 1, 2 and 3). The initial state was
considered to be pure as it was produced by diffracting a laser beam. The three beams
are reflected by a mirror back to the SLM 1. The SLM 1 screen is divided in four regions,
each one with a periodical phase diffraction grating (LPG). The mode |1⟩ reaches the
region M1, |2⟩ reaches region M2, |3⟩ region M3, while region M4 was used to generate
the three-path state, Eq.6.1.

6.1.2 Implementation of quantum operations

Each one of the beams that compose the three-path state is manipulated individually
by programming a LPG on its region. By controlling the periodicities of the LPDG (see
Figure 19), we can transfer light from a basis state to the other. For transitions to the
nearest state, |1⟩ → |2⟩, |2⟩ → |1⟩, |2⟩ → |3⟩ and |3⟩ → |2⟩, we use a LPDG with high
period. The diagram representing these transition are in Figure 40 and Figure 41. For the
other transitions, |1⟩ → |3⟩ and |3⟩ → |1⟩ we will use a LPDG with low period. A depiction
of these transition is in Figure 42. The maximum phase of the LPDGs are adjusted keep
the relative intensities of the components of each state like the ones of the initial state, by
taking into account the pixelation effect, approached in Section 5.1.2.3. Considering just
the n = 1 diffraction order (Figure 4), all these permutation operations [18,119,121,122]
can be represented by:

OMv |v⟩ = αv |v⟩ + αℓ |ℓ⟩ , (6.2)
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Figura 39 – Experimental setup used to prepare and to implement the operations on a qutrit
parallel Gaussian beam state. A laser beam passes through a half wave-plate (HWP),
a polarizer beam splitter (PBS) and a neutral density filter (NDF). This is necessary
for filtering the polarization state and to attenuate it to the single photon regime.
The laser beam reaches a SLM which the screen is divided in four regions, each one
with a periodical phase diffraction grating. The attenuated laser beam is initially
diffracted by a periodical binary phase grating in the region M4 in three horizontal
paths (x-direction). A state superposition of Gaussian modes paths, |1⟩, |2⟩ and |3⟩,
is considered to be our initial state. Each of the modes is reflected back in three
different regions on the SLM: M1, M2 and M3. In the second incidence the beams
may be diffracted by linear phase gratings in SLM 1, which the first diffraction order
propagates in the horizontal direction, depending on the phase grating periodicity.
The SLM 2 is a transmission spatial light modulator which can insert a relative
phase to each one of the paths |1⟩, |2⟩ and |3⟩, that reach the regions M1, M2 and
M3, respectively. An intensified charged-coupled device (ICCD) camera records the
photon counts in each position.

where αv and αℓ depends on the maximum phase of the LPG, and |ℓ⟩ is ruled by the
periodicity of the LPG, with (v,ℓ = 1, 2 and 3).

6.2 Proposal for implementation of quantum gates

6.2.1 Implementation of single qutrit quantum gates

The single qutrit QG will be implemented by exploring the permutation quantum
operation approached in Section 6.1.2. With the experimental setup proposed for this
purpose, Figure 39, we are able to implement all the qutrit QG discussed in Section 4.2.1.
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Figura 40 – Representation of transitions between the modes |1⟩ and |2⟩. To transfer light from
|1⟩ → |2⟩, we program the region M1 of the SLM 1 with a LPG with phase increasing
in the +x-direction and high periodicity. If we want transfer light from |2⟩ → |1⟩,
we program the region M2 of the SLM 1 with a LPG with phase increasing in the
−x-direction and high periodicity.

Figura 41 – Representation of transitions between the modes |2⟩ and |3⟩. To transfer light from
|2⟩ → |3⟩, we program the region M2 of the SLM 1 with a LPG with phase increasing
in the +x-direction and high periodicity. If we want transfer light from |3⟩ → |2⟩,
we program the region M3 of the SLM 1 with a LPG with phase increasing in the
−x-direction and high periodicity.

Figura 42 – Representation of transitions between the modes |1⟩ and |3⟩. To transfer light from
|1⟩ → |3⟩, we program the region M1 of the SLM 1 with a LPG with phase increasing
in the +x-direction and low periodicity. If we want transfer light from |3⟩ → |1⟩,
we program the region M3 of the SLM 1 with a LPG with phase increasing in the
−x-direction and low periodicity.

The initial state is generated by the first incidence at the SLM1 and the second
incidence on it is used to implement the permutation operations. A second SLM, SLM2
in Figure 39, is placed at the path of the three reflected Gaussian beams by SLM1. The
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screen of SLM2 is divided in three regions, M1, M2, and M3, which the three beams,
represented by the states |1⟩, |2⟩ and |3⟩passes through, respectively. Each one of these
regions in programmed to add an individual phase to each one of the reflected beams by
SLM1, if necessary. Notice that all QG operation are implemented in spatial modes in the
horizontal direction only. It is not necessary to diffract the incident beams in the vertical
direction as in the case of the simulation of quantum jump in three-level systems.

The σ(ij)
x will be implemented by performing the permutation operation between

the path states |i⟩ and |j⟩. For σ(ij)
y , we will need to perform the permutation operation

between the path states |i⟩ and |j⟩ in the SLM 1 and insert a phase eiπ on the state |i⟩, by
programming it in the region Mi on the SLM 2. Finally, σ(ij)

z and S(i) will be implemented
by adding a phase factor eiπ and eiθ, respectively, to the mode |i⟩. For the case of these
two operators, the phases can be added by SLM 1 or SLM 2. Due to the pixelation effects,
we cannot transfer the incoming mode representing a component of the initial state to
an outgoing mode representing the permuted state with the same initial mode amplitude
modulus. We will use then a spatial filter to block unwanted remaining light which was
not diffracted in the desired output mode. After SLM 2, the three-path is reflected by a
mirror to an ICCD camera.

Like in the simulation performed in Chapter 5, the output state will be characterized
by the image measurements by projecting the image of SLM2 at the ICCD plane and
interference ones, by inserting a lens with focus on the detection plane (Figure 39). In this
way, we have a complete characterization of the intensity in each mode, the coherence and
relative phase between the path states. We are then able to construct the density matrix
of the output state. By performing the same measurements for the initial state, we can
compare the input and output states and verify the implementation of the QGs.

We would like to remark that this methodology can also be used for qubits, so with
the same setup and techniques we can also implement all the quantum gates presented
in Section 4.1.1. These operations can be generalized for higher-dimension systems with
number of paths higher than three. As in the case of the simulation, the only technical
restrictions in our experimental setup are the sizes of the pixels arrays in the SLM and in
the ICCD.

6.2.2 Implementation of hybrid controlled quantum gates

To implement the CQG approached in Section 4.3, we will explore two degrees
of freedom of a same particle instead of a two-particle system to implement the hybrid
CQGs. The SLM only modulates the incoming light with horizontal polarization, so, the
idea is to use the polarization as control qubit and the path modes as target qutrit. The
experimental setup and the state preparation used for this purpose is almost the same
one used for the implementation of a QG (Figure 39). After the first incidence, the state



Capítulo 6. Proposal for implementation of quantum gates in photonic path system 69

produced by a BPG in region M4 is:

|ψ0⟩ =
(
A1e

iϕ1 |1⟩ + A2e
iϕ2 |2⟩ + A3e

iϕ3 |3⟩
)

⊗ |H⟩ , (6.3)

where Ai and ϕi are real numbers which relies on the maximum phase of the BPG in
region M4, |i⟩ are the label of the path mode generated (i = 1, 2 and 3) and |H⟩ represents
the horizontal polarization state of the beams. The initial state was considered to be pure
as it was produced by diffracting a laser beam. Between the first and second incidence
on the SLM 1, we will insert a HWP, which will change the polarization of the generated
state, Eq.6.3, according the orientation of it optical axis. For instance, if the optical axis
of the HPW has a 22, 5◦ orientation to the horizontal, after it we have the following state:

|ψ0⟩ =
(
A1e

iϕ1 |1⟩ + A2e
iϕ2 |2⟩ + A3e

iϕ3 |3⟩
)

⊗ 1√
2

(|H⟩ + |V ⟩) , (6.4)

where |V ⟩ represents the vertical polarization state.

In the implementation of the hybrid CQG, we will explore the same permutation
operations that were studied in Section 6.1.2. But, because of the fact that the SLM only
modulates the horizontal polarization, they will be implemented only in the |H⟩ mode.
After the HWP, the state is reflected back to the SLM 1, where the |i⟩ mode reaches the
Mi region (i = 1, 2 and 3), which are programmed to have LPG that can implement the
permutation operations. Each one of these operations can be represented by:

OMv |v⟩ ⊗ (|H⟩ + |V ⟩) = (αv |v⟩ + αℓ |ℓ⟩) ⊗ |H⟩ + |v⟩ ⊗ |V ⟩ , (6.5)

The control σ(ij)
x hybrid QG will be implemented by performing the permutation

operation between the path states |i⟩ and |j⟩. For control hybrid σ(ij)
y , we will need to

perform the permutation operation between the path states |i⟩ and |j⟩ in the SLM 1. Also,
we will insert a phase eiπ on the state |i⟩, by programming it in the region Mi on the SLM
2. Finally, control hybrid σ(ij)

z and S(i) will be implemented by adding a phase eiπ and
eiθ, respectively, to the mode |i⟩. Due to the pixelation effects, we cannot transfer the
whole incoming light from the initial mode representing the input state to the other mode
representing the output state. Then, we will use a spatial filter to block the unwanted
remaining light which was not diffracted, described by the first term of the state in Eq.6.5.
After SLM 2, the three-path is reflected by a mirror to an ICCD camera.

As shown in the simulation performed in Chapter 5 and in the proposal in Section
6.2.1, the output state will be characterized by image measurements at the image plane by
using a spherical lens between the SLM2 and the ICCD, and interference ones, by inserting
a lens with focus on the detection plane (Figure 39). Also, with a polariser (which is not in
Figure 39) near the ICCD camera, we will perform projection over the polarization state
to characterize the |H⟩ and |V ⟩ outputs. In this way, we have a complete characterization
of the intensity in each mode, the coherence and relative phase between the path states.
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We are able to construct the density matrix of the output state. By performing the same
measurements for the initial state, we can compare the input and output states and verify
the implementation of the hybrid CQGs.

We would like to emphasize that this methodology can also be used for qubit path
states, thus, we can implement CQGs like the ones studied in Section 4.1.2. Also, it can
be performed for higher-dimensions system with number of path higher than three. The
only technical restrictions in our experimental setup are the sizes of the pixels arrays in
the SLM and in the ICCD.
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7 Conclusion

The main objective of this work is to implement a quantum simulation of quantum
jump dynamics in three-level systems on photonic path systems by using attenuated laser
beams as three-paths photonic states for mimic an atomic three-level state subject to
quantum jump. By exploring periodical phase modulation in a spatial light modulator,
we are able to prepare the qutrit Gaussian paths modes states and implement general
operation on them. This enables us to implement the Kraus operators for each one of the
decay configurations: cascade, Λ and V .

In Chapter 2, we reviewed light diffraction theory. We focused on the theory of
diffraction by periodical phase gratings (PPGs), more precisely, in linear diffraction gratings
(LPG) and binary diffraction gratings(BPG). We approached the relative intensities of the
diffraction orders generated on the distant plane of the PPGs. These techniques allow us to
perform quantum general operations on path Gaussian modes that define the photon path
states. By using BPGs we can prepare a superposition of three-path states and exploring
LPGs we can implement quantum operations on them. Also, we made a quick study about
the SLM and how it works. In the final section of the chapter, we realized a quick review
of quantum states and how the quantum operations modify a quantum state.

In Chapter 3, we made a basic review on the theory of quantum open systems.
We started from Liouville-Von Neumann equation, and the interaction picture. After, we
defined closed and quantum open systems and remarked their differences. We defined
a dynamical map, which provide us the time evolution of an OQS and we reached the
quantum master equation in the Born-Markov approximation in terms of the Lindblad
operators. Finally, we deduced the Kraus decomposition of the maps that represent the
spontaneous decay dynamics for a two-level system and deduced the same decomposition
for the decay in three-level systems for the cascade, Λ and V configurations. Moreover, we
emphasized that all the deduced Kraus decompositions represent a linear CPTP dynamical
map.

In chapter 4, we introduced some quantum gates and controlled quantum gates that
we propose to implement in photonic path systems. In the first section, we reviewed the
Pauli QG and the phase QG for a single qubit, we studied the effects of the implementation
of each one of the gates in an input state. Also, we proposed the same QG for two qubits,
establishing the control and target one, and how they can be used to generate entangled
states. A version Pauli QG for a single qutrit systems and Phase QG for a three-level
systems are also described. In the last section of the chapter, we focused on the hybrid
CQGs, these types of CQGs have target and control qudits of different dimensions.
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In Chapter 5, we reported the simulation of quantum jump in atomic three-level
systems by using photonic path state systems. We detailed how the initial three-beam
modes were prepared by the BPGs as photonic three path states. We explained how the
quantum jumps were simulated by the LPGs. Also, we approached how, each one of the
Kraus operators are programmed at the SLM. We showed the results for the diagonal
terms of the density matrix, which were obtained from the image measurements, with
their theoretical predictions. Also, by the measuring the interference path of the beams
two-by-two, we obtained the modulus of the off-diagonal terms of the density matrix. The
results provided by the simulation of all the three-level decay dynamics, were compared
with the theoretical predictions.

Finally, in Chapter 6, we proposed an experimental implementation of QG and
CQG in photonic path state systems making use of periodical phase modulation in a
spatial light modulator. With an experimental setup analogous to the one used in the
simulation of quantum jump, we are able to implement all the QGs and CQGs approached
in Chapter 4. For the implementation of the two qubits CQG and hybrids CQG, we
proposed to explore the path degree of freedom as target and the polarization degree of
freedom as control. We detailed how each one of the QGs and CQG can be implemented
in terms of the permutation operations and phase change operations by using two SLMs.
The first SLM will be programmed with a LPG to perform the permutation, while the
second one will be programmed to add a relative phase to each one of the QGs.

We simulated the three-level atomic system dynamics by using photonic three-path
state. By exploring periodical phase modulation in a SLM, we were able to implement
the Kraus operators for all the three-level decay dynamics: cascade, Λ and V . The
experimental characterizations of the density matrix for the output state are in agreement
to the theoretical predictions despite a small deviation. With a precise periodical phase
modulation of the photonic attenuated laser beams, we are able to implement a large
number of operations and simulate the different dynamics of decay in a three-level system.
This simulation gives us a better comprehension of how quantum jump affects the coherence
of a three-level system. Moreover, this implementation can be used for understanding
how quantum jumps in high dimension systems affect quantum protocols due to the state
decoherence.

The quantity of achievable quantum operations with this apparatus makes it a
good choice for other implementations. For instance, an atomic system being excited by an
external electromagnetic field, not only the decaying, could be simulated. A large number
of QG and CQG can also be realized, by using the same methodology, as proposed in
Chapter 6. Also, we can test the behaviour of a quantum channel subjected to this kind
of noise or even the behaviour of a quantum information protocol in a noisy quantum
channel.
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The procedure exploited in the simulation of decay dynamics and in the proposal
of implementation of QGs is general and it can be extended to multilevel systems, with
the number of levels higher than three. The only technical restrictions in our experimental
setup, for this extension, are the sizes of the pixels arrays in the SLM and in the ICCD
camera, which must fit all the Gaussian paths representing the higher dimension atomic
system. For instance, we need to have a minimum number of periods of the diffraction
periodical gratings inside the laser beam transverse profile so that it can be diffracted.
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