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Resumo

O desenvolvimento e a adoção da Virtualização de Funções de Rede (NFV) permi-
tiu grandes avanços na forma como serviços de rede são implantados e gerenciados. Isso
possibilitou o projeto de infraestruturas mais capazes de responder a rápidas variações
de demanda causada pela natureza dinâmica do tráfego de rede, ao mesmo tempo que
reduziu o custo de manutenção.

Nesses cenários, há a necessidade de composição de diferentes funções de rede
de maneira sequencial para criar serviços de rede mais complexos para operarem sobre
o tráfego de entrada. Diversas abordagens para lidar com essa interconexão, também
chamada de encadeamento de funções de rede (SFC), têm sido propostas nos últimos
anos, incluindo implementações de alto desempenho usadas em ambientes de produção.

Porém, uma análise cuidadosa dessas propostas evidencia que a separação entre os
planos de serviço e de dados não tem estado entre os principais objetivos de projeto. Como
consequência, as arquiteturas de SFC existentes são feitas sob medida para ambientes e
plataformas específicas, frequentemente dependendo de dispositivos de rede especializados
ou modificados, seja em software ou hardware.

Este trabalho propõe uma nova arquitetura de SFC denominada Chaining-Box. Ela
é baseada em uma ideia simples: integrar toda a funcionalidade necessária para habilitar
SFC em cada função de rede na forma de estágios de processamento. Isso é feito de
forma completamente transparente, exigindo pouco ou nenhum suporte da infrastrutura
de rede e sem modificar as funções. Os estágios são implementados como programas BPF
rodando dentro do kernel do Linux e provêm todas as ações de SFC enquanto os pacotes
atravessam a pilha de rede.

Chaining-Box é descrita em detalhes, apresentando o seu projeto e comparando-a
a outras implementações de SFC, destacando tanto suas vantagens quanto suas desvanta-
gens. Uma análise experimental também é apresentada para demonstrar a aplicabilidade
da arquitetura e o desempenho do protótipo implementado.

Palavras-chave: BPF, Virtualização de Funções de Rede, Redes Programáveis, En-
cadeamento de Funções de Rede.



Abstract

The development and adoption of Network Function Virtualization (NFV) has
allowed great improvements in the way network services are deployed and managed by
service providers. It has enabled the design of infrastructures more capable of responding
to quick changes in demand due to the dynamic nature of traffic, while also providing
reduction in management costs.

In this setting, it is often required to compose different Service Functions (SF) in
a sequential manner to create complex network services that operate on incoming traffic.
Several approaches to handle this interconnection, also called Service Function Chaining
(SFC), have been proposed in recent years, including high-performance implementations
used in production systems.

However, a careful analysis of these proposals shows that the separation of concerns
between the service and data planes has not been among the main design objectives. As
a consequence, the existing SFC architectures are tailor-made for specific environments
and platforms, often relying on specialized or modified network devices, either in software
or in hardware.

This work proposes a new SFC architecture called Chaining-Box. It is based on
a simple idea: integrating all functionality needed to provide SFC into each SF as a set
of processing stages. This is done in a fully transparent manner, requiring little to no
support from the underlying infrastructure and without any modifications to functions.
The stages are implemented as BPF programs running inside a Linux kernel to provide
all SFC actions as the packets traverse the kernel stack.

Chaining-Box in detail, presenting its design and discussing how it compares to
other existing SFC implementations, highlighting its advantages and also the disadvan-
tages. An experimental analysis is also presented to demonstrate its applicability and the
performance of the prototype implemented.

Palavras-chave: BPF, Network Function Virtualization, Programmable Networks, Ser-
vice Function Chaining.
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Chapter 1

Introduction

Many complex network environments rely on the execution of a sequence of several
different applications, also called Service Functions (SF), to provide a complete service
for each incoming packet. For example, requests may have to go through a firewall
followed by a deep packet inspector (DPI) before accessing a database server. To fulfill
this sequence, packets must be forced to go through each function before being sent to
their final destination, an operation called Service Function Chaining (SFC).

In the past such functions used to be deployed as hardware middleboxes, and
packets were steered through them using cumbersome and inflexible network configu-
rations. This approach posed serious challenges for environments that must quickly
respond to changes in demand, such as cloud and telecommunications datacenters
[Quinn and Nadeau, 2015]. The introduction of the Network Function Virtualization
(NFV) paradigm partially tackled these problems, migrating network functions from hard-
ware middleboxes to a software-based model [Mijumbi et al., 2016].

Beyond the many challenges involved in this transition, new mechanisms
were required to provide SFC for virtualized functions, beyond what traditional
routing and switching could offer. Many organizations and research groups have
worked towards enabling this feature [Halpern and Pignataro, 2015, Qazi et al., 2013a,
Xhonneux et al., 2018], and many solutions are already in used production systems.

Early solutions used Software Defined Networking (SDN) techniques to provide
function chaining [Zhang et al., 2013, Qazi et al., 2013a, Fayazbakhsh et al., 2014], often
relying on OpenFlow-enabled switches to steer traffic through functions. With time,
more holistic approaches were proposed, like the creation of high-performance frameworks
for the development and interconnection of SFs [Martins et al., 2014, Panda et al., 2016,
Zhang et al., 2016]. Today, SFC is provided by several mainstream platforms such as
Open vSwitch (OVS) [OVS, 2020], VPP [VPP, 2020], OpenStack [Openstack, 2020] and
OpenDaylight [OpenDaylight, 2020]. However, all these proposals share the same lim-
itations: they are dependent on specialized network devices or require functions to be
re-implemented using platform-specific constructs. These cause current SFC mechanisms
to be tailor-made to the platforms or devices they were built for, and also tightly coupled
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to the underlying infrastructure.
Ideally, service functions and network infrastructure should be completely agnos-

tic to any SFC mechanisms in place, allowing greater flexibility for modifications and
reuse by different deployments, without having to re-invent the wheel. For such, a fully
transparent SFC architecture would require (1) no knowledge by service functions (2)
and network infrastructure, (3) while being generic enough to be deployed in different
environments, facilitating portability. All this without abstaining from (4) the ability for
quick reconfiguration and (5) from being easily scalable to multiple instances as current
solutions. Thus the main goal of this work is to answer the question: How to provide SFC
in a fully transparent manner while meeting all these requirements?

Those items translate directly into a set challenges, namely (1) how to operate
around a service function, without its full cooperation, (2) how to use the network for
packet steering without requiring changes to its operation, and (3) how to build the SFC
mechanism upon a common denominator readily available to most platforms.

To solve these problems and answer the question above, this work proposes
Chaining-Box, a new SFC architecture that fully decouples service and data planes, allow-
ing functions and network infrastructure to be agnostic to the SFC functionality. It uses
NSH [Quinn et al., 2018] to provide an overlay for SFC and condenses all SFC-related ac-
tions into a set of sequential stages executed as BPF [Miano et al., 2018] programs inside
the standard Linux kernel. Each program is compiled to a bytecode and run by the kernel
at several hook points, which are executed as packets flow through the system’s network
stack. This approach introduces a high level of independence between SFs, SFC architec-
ture and the underlying network, allowing on-demand modifications to the architecture’s
components with little to no disruption to SFs.

The remainder of this text exposes concepts (§2), discusses further other solutions
and their shortcomings (§3), presents a detailed view of the architecture design (§4) and
the implementation of a prototype (§5). The results of an experimental evaluation to
understand its performance and feasibility are presented (§6), and Chaining-Box’s main
benefits and drawbacks are also discussed (§7). The text is concluded with some final
remarks and future work (§8). All the code developed is available on GitHub1.

1https://github.com/mscastanho/chaining-box
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Chapter 2

Background and Concepts

Before presenting Chaining-Box, some important background and concepts that
form the basis of the architecture are presented and discussed in this chapter. Namely,
a brief introduction to Service Function Chaining (SFC) including key IETF standards
(§2.1), an original taxonomy of service function implementations (§2.2), details on Berke-
ley Packet Filter (BPF) technology (§2.3), an overview of the layers in the Linux net-
working stack (§2.4), and a brief introduction to container networking (§2.5).

2.1 Service Function Chaining (SFC)

Network Function Virtualization (NFV) is a topic that has received much atten-
tion from both academy and industry researchers in recent years. At its core, it consists
on an approach to migrate applications that were traditionally implemented in hard-
ware to virtualized infrastructures, running in commodity off-the-shelf devices. This de-
creases acquisition and management costs, while providing more flexibility and scalability
[Mijumbi et al., 2016].

Network functions can be combined into chains, an ordered list of functions to be
executed sequentially, providing composed services. Examples of such functions include
firewalls, load balancers, and deep packet inspectors. This interconnection of functions is
called Service Function Chaining (SFC).

Traditionally, SFC implementations relied on complex routing schemes to steer
traffic through network functions [Quinn and Guichard, 2014]. This made modifications
to service functions difficult, usually requiring significant changes in network configura-
tion, which is error-prone and cumbersome. Because these deployments were tightly cou-
pled to network topology, they also tended to be restricted to a specific Service Provider
(SP) domain, hardly being applicable to different scenarios. Besides, different third-party
service functions have a low level of interoperability.
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SFC has gained momentum in recent years [Xia et al., 2015, John et al., 2013,
Sahhaf et al., 2015, Kitada et al., 2014, Quinn and Guichard, 2014] causing the Internet
Engineering Task Force (IETF) to publish a problem statement for SFC defining key
areas that working groups could investigate towards new SFC solutions, in the form of
RFC 7498 [Quinn and Nadeau, 2015]. This document states the key challenges faced by
traditional service function chaining implementations and establishes focus areas to guide
workgroups to propose new protocols and solutions for those issues.

2.1.1 IETF Reference SFC Architecture

A product of such effort is RFC 7665 [Halpern and Pignataro, 2015], a standard
that proposes a reference architecture for SFC, illustrated in Figure 2.1. In this model, an
SFC encapsulation header is added to incoming packets, containing information about the
current chain being executed and the next hop in the sequence. The chaining is enabled
by the interaction of four different types of elements:

• Classifiers: packets ingressing the SFC environment are classified to determine
which chaining should be executed for them, following the insertion of the corre-
sponding SFC encapsulation;

• Service Functions: execute some kind of processing over the packet. They can be
divided into two categories: SFC-aware and SFC-unaware. The first is composed
of functions that have knowledge about the SFC encapsulation and know how to
operate on it. The second, also called legacy functions, are those not aware of the
protocol, needing the cooperation of a Proxy to be part of the SFC environment;

• Proxies: are responsible for implementing an interface between SFC unaware func-
tions and the SFC domain. They remove and re-insert the SFC encapsulation before
and after the service function has executed, respectively;

• Forwarders: at each step in the chain, a forwarder is responsible for determining
which is the next service to be executed in the chain. This decision is based on
an SFC forwarding table configured by the administrator and on the fields of the
packet’s SFC encapsulation. The forwarder is also responsible for changing the
external transport encapsulation to ensure the underlay can deliver the packet to
the next function in the chain.

As shown in Fig 2.1, packets are classified upon arrival to the network by the
Classifier. In this step a packet is matched against a set of pre-configured rules and a
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Figure 2.1: Illustration of RFC 7665 reference architecture. Adapted from
[Halpern and Pignataro, 2015].

service path is chosen, if one exists for that packet. The SFC encapsulation containing
the corresponding path information is added and the packet is sent to the next element in
the architecture: the Forwarder. This element decides which SF should be executed next
and alters the packet’s external transport encapsulation accordingly, letting the network
route it to the next hop or to its corresponding proxy, in case of an SFC-unaware function.

In that case, the Proxy will remove the SFC encapsulation and then forward the
packet to the SF. After performing any operations on it, the SF will send the packet
back to the Proxy for reinsertion and update of the SFC encapsulation, sending it back
to the Forwarder afterwards. This process is repeated until the last SF in the chain has
executed. That is when the Forwarder finally removes the SFC encapsulation and lets the
packet follow its regular flow in the network.

2.1.2 Network Service Header (NSH)

RFC 8300 [Quinn et al., 2018] complements the architecture presented above with
the specification of the Network Service Header (NSH), an encapsulation protocol to be
used by SFC deployments. Combined, these standards are capable of providing service
chaining in practice.
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The NSH is independent of the outter transport encapsulation, but needs it to
move the packets around the network. It provides service chaining as defined by RFC
7665 by adding an extra header to the packet. This new header is added between the
outter transport encapsulation and the packet itself, as illustrated by Figure 2.2.

Transport
encapsulation

Base
Header SPH Context

Headers
Original
packet

NSH

Figure 2.2: Packet encapsulated with NSH

The NSH header is divided into three parts:

• Base Header (4 Bytes): Provides general information like protocol version, next
protocol, time to live (TTL), header length and MD Type, which determines the
kind of metadata being carried.

• Service Path Header (4 Bytes): Holds path identification and current position within
the service path.

• Context Header (Variable Length): Carries metadata to be shared between SFs.

A more detailed explanation of each field in the Base Header, the different MD
Types available and metadata definition are out of the scope of this document. For such,
please refer to the text of RFC 8300. Only MD Type 1 NSH was used throughout this
work, which consists on four 4-byte fixed fields, 16 Bytes in total.

The Service Path Header (SPH) is a 4-byte field that consists of two subfields: a
3-byte Service Path Identifier (SPI) and an 1-byte Service Index (SI). The SPI represents
an unique identifier for a service function path. This value is first set by the Classifier
and is used by the other elements to know which service path is being executed on the
packet. The SI is an index indicating the current location in the service function graph.
The Classifier initially sets this value to 255, indicating the beginning of a path.

Throughout service path execution, if there is no packet reclassification, the SPI
remains the same until the end. However, the SI is decremented by one after being
processed by each service function. For SFC-aware SFs, this is done by the function itself,
while for the SFC-unaware this is left to the Proxy.

To make the decision of what is the next hop for a given node in the graph, the
Forwarder needs to maintain a lookup table with the SPI/SI pair mappings to service
functions reachable from it. This table may also contain their respective addressing,
along with the transport encapsulation to be used. A partial representation of a possible
implementation of such table is illustrated in Table 2.1:
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Table 2.1: Example of Forwarder’s lookup table. Adapted from [Quinn et al., 2018].

SPI SI Next hop Transport Encapsulation
10 255 192.0.2.1 VXLAN-gpe
10 254 198.51.100.10 GRE
10 251 198.51.100.15 GRE
40 251 198.51.100.15 GRE
50 200 01:23:45:67:89:ab Ethernet
...

...
...

...
10 212 Null (end of path) None

Using the table above as an example, suppose the Forwarder receives a packet with
SPI=10 and SI=255. The Forwarder will check its table and know the next hop is at IP
192.0.2.1 through VXLAN-gpe. Once the packet is processed by that node it will have
its SI value decremented and will be sent back to the Forwarder, which in turn will check
the table again. This process is repeated for every service function in the chain, until the
SI becomes 212. In this case the packet has reached the end of the path, indicated by
the Null entry in the table. The packet will then be decapsulated and sent back to the
network.

2.2 Service Function Types

The implementation of software service functions can be done in different ways,
which alter the way they interface with the underlying operating system for packet pro-
cessing. An original taxonomy is provided below in order to distinguish the different
natures of implementations available and to clarify how Chaining-Box handles each one.
The following types have been identified as being the most prominent:

2.2.1 Kernel-supported (KS)

These are functions implemented as common processes running in user space. They
rely on standard mechanisms to receive packets from the network, such as system calls.
This kind of implementation heavily relies on the facilities offered by the underlying op-
erating system, which by default implements a complex network stack to handle multiple
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protocol types. However, with time this form of implementation has struggled to handle
the ever-growing traffic rates supported by modern network cards. The penalty imposed
by system interruptions and the constant switch between user and kernel modes for packet
handling has hindered the use of this kind of applications for fast packet processing .

2.2.2 Kernel-bypass (KB)

As the name implies, applications implemented with this technique perform a
complete bypass of the kernel stack and implement all packet processing functionality in
user space. They usually make use of specialized drivers in polling mode so packets can
be shared directly between network devices and user processes while avoiding additional
delays caused by the traditional packet handling model based on interruptions and system
calls. As a side effect, they have little to no dependence of the network facilities offered
by the kernel stack, so all needed packet parsing and protocol handling has to be re-
implemented in user space. Good examples of applications using this approach are those
based on libraries such as DPDK [DPDK, 2020] and NetMap [Luigi, 2020].

2.2.3 Kernel-only (KO)

This class of applications aims to offer superior performance by using the opposite
approach of KB programs: residing entirely in kernel space. Since one of the biggest per-
formance bottlenecks in packet processing is the constant crossing of the barrier between
kernel and user spaces, kernel-only functions implement all their functionality inside the
kernel.

Classic examples are Click-based applications [Kohler et al., 2000] as well as packet
processing leveraging iptables, both of which rely on the use of kernel modules, but have
not been able to keep up with higher packet rates. KO functions have been gaining more
traction in recent years [Miano et al., 2018] with the latest improvements to the BPF
mechanism inside the Linux kernel (§2.3) and new technologies such as XDP (§2.4.1).
These new technologies allow generic user-specified programs to be loaded to the kernel
on run time, effectively allowing them to alter the kernel’s network stack functionality in
a dynamic manner.
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2.3 Berkeley Packet Filter (BPF)

2.3.1 History

The Berkeley Packet Filter (BPF) [McCanne and Jacobson, 1993] was initially pro-
posed by Steven McCanne and Van Jacobson in 1992 as a solution to perform packet
filtering on the kernel of Unix BSD systems. It consisted of an instruction set and a
virtual machine (VM) for executing programs written in that language.

The bytecode of a BPF application was transferred from user space to the kernel,
where it was checked to assure security and prevent kernel crashes. After passing the
verification, the system attached the program to a socket with an associated BPF VM
and ran it on each arriving packet. The Linux kernel has supported BPF since version 2.5,
with no major changes to the BPF core code until 2011, when besides the interpreter,
the kernel gained support for a dynamic BPF translator [Dumazet, 2011]. Instead of
interpreting the BPF byte code, the kernel was now able to translate BPF programs
directly into x86 instructions.

One of the most prominent tools that use BPF is the libpcap library, used by the
tcpdump tool. When using tcpdump to capture packets, a user can set a packet filtering
expression so that only packets matching that expression are actually captured. For
example, the expression "ip and tcp" captures all IPv4 packets that contain the TCP
transport layer protocol. This expression can be reduced by a compiler to BPF bytecode.

2.3.2 Extended Berkeley Packet Filter (eBPF)

In 2013, BPF received a major upgrade with a whole set of new functionalities1.
This new proposal was made by Alexei Starovoitov and was coined extended Berkeley
Packet Filter (eBPF). With time, eBPF became the new standard and inherited the
name of its predecessor, usually being referred to as BPF, with the previous version now
being called classic BPF (cBPF). On the remaining sections in this text, the term BPF
refers to the improved version used today (eBPF).

The differences between cBPF and eBPF are considerable, starting from the num-
ber of registers available, which increased from 2 to 11. Programs can now be chained

1https://lwn.net/Articles/740157/
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in sequence using tail calls, and they have access to a whole new framework of helper
functions and tools to interact with user space and many subsystems inside the Linux
kernel. However, one of the most important is the addition of maps: key-value structures
used to store data between program executions that can also be used to exchange data
between programs and process in user space, for example. The kernel currently provides
20+ different types of maps, ranging from hash tables, arrays, stacks, queues, redirection
tables, among others.

These new features greatly improved the applicability of BPF for the implemen-
tation of generic packet processing and tracing inside the kernel. This is proven by the
growing adoption by major companies such as Facebook, Cloudflare, and Netronome
[Facebook, 2018, Bertin, 2017, Beckett et al., 2018], which have already used BPF to im-
plement network monitoring, network traffic manipulation, load balancing, and system
profiling.

2.3.3 BPF system

The BPF system is composed of a series of components to compile, verify, and
execute the source code of developed applications. The typical workflow of the BPF
system is illustrated in Figure 2.3. It is written in a high-level language, mainly a subset
of C, and compiled2 to an ELF/object code containing the BPF instructions.

This file is then passed to a loader that can then insert it into the kernel using
a special system call. During this process, the verifier analyzes the program and upon
approval the kernel performs the dynamic translation (JIT). Besides being executed by
the processor, the program can also be offloaded to specialized hardware.

Kernel

BPF
VM

C
code

LLVM /
GCC

BPF
code

User space

Figure 2.3: Typical workflow of loading BPF programs to the kernel.

To ensure the integrity and security of the operating system, the kernel uses a
verifier that performs static program analysis of BPF instructions being loaded into the

2Both LLVM and GCC provide backends for BPF, but LLVM currently has better support as it was the
compiler infrastructure adopted by the kernel community to implement most BPF-related features.
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system. Among other things, it checks if a program is larger than maximum limit allowed
(current limit is 106 instructions), whether or not the program terminates, if the memory
accesses are within the memory range allowed for the program, and how deep the execution
path is. It is called after the code has been compiled and during the process of loading
the program into the data plane [Miller, 2017].

2.4 Linux Networking Stack

On Linux, packets entering the OS are processed by several layers in the kernel, as
shown in Figure 2.4. They can be roughly divided in: socket layer, TCP stack, Netfilter,
Traffic Control (TC), the eXpress Data Path (XDP), and the NIC.

eXpress Data
Path (XDP)

Network Interface

Traffic Control (TC)

RX TX

Netfilter

TCP Stack

Socket Layer

Driver space

Offload

Kernel space

Figure 2.4: Linux kernel network stack.

Packets destined to a standard user space application go through all these layers
and can be intercepted and modified during this process by modules such as iptables,
which resides in the Netfilter layer. As explained before, BPF programs can be attached
to several places inside the kernel, enabling packet mangling and filtering.

BPF programs attached to each layer see different contexts, i.e. the input data
passed to them, and have distinct sets of helper functions available for use. For example,
programs in the XDP layer are the first to interact to incoming packets on RX and and
received a Layer-2 frame as its context. Moreover, they can call specific helper functions
only available in this layer, for altering a packet’s size, for example. Programs on the
Netfilter layer, for example, see a Layer-3 packet as their context, not being able to alter



2. Background and Concepts 25

the Ethernet header, but they have extra helper functions related to routing, checksum
calculation and tunneling, not available on the XDP. In the following subsections the two
main layers used in this work are described: XDP (§2.4.1) and TC (§2.4.2).

2.4.1 eXpress Data Path (XDP)

XDP is the lowest layer of the Linux kernel network stack. It is present only on
the RX path, inside a device’s network driver, allowing packet processing at the earliest
point in the network stack, even before memory allocation is done by the OS. It exposes
a hook to which BPF programs can be attached and executed for every received packet
[Høiland-Jørgensen et al., 2018].

In this hook, programs are capable of taking quick decisions about incoming pack-
ets and also performing arbitrary modifications on them, avoiding additional overhead
imposed by processing inside the kernel. This renders the XDP as the best hook in terms
of performance speed for applications such as mitigation of DDoS attacks.

After processing a packet, an XDP program returns an action, a value that repre-
sents the final verdict regarding what should be done to the packet after program exit.
The possible actions include dropping, passing it along the stack, sending it back to the
network or forwarding it to another interface.

XDP is designed for fast packet processing applications while also improving pro-
grammability. In addition, it is possible to add or modify these programs without mod-
ifying the kernel source code, just like with other BPF hooks. For extra performance,
programs can also be offloaded to compatible SmartNICs to be executed in hardware.

This layer can also be used to add programmability to kernel-bypass applications
that use AF_XDP sockets 3. This special socket family was designed to provide the
benefits of the XDP to applications that do not make use of the kernel’s network facilities,
but do all its execution in user space, such as those based on the DPDK set of libraries.
With them, XDP programs are executed before packets are sent to user space, combining
the the programmability offered by XDP with the extra performance provided by kernel-
bypassing.

3https://lwn.net/Articles/750293/
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2.4.2 Traffic Control (TC) Hook

Although the XDP layer is well suited for many interesting applications, it can
only process ingress traffic. The closest layer to the NIC on egress is the Traffic Control
(TC) layer, also available on ingress. It is responsible for executing traffic control policies
on Linux. In it, network administrators can configure different queuing disciplines (qdisc)
for the various packet queues present in the system, as well as add filters to deny or modify
packets.

The TC has a special queuing discipline type called clsact that exposes a hook
that allows queue processing actions to be defined by BPF programs. They receive point-
ers to Ethernet frames like on XDP, but when a packet reaches the TC on ingress, the
kernel has already parsed its headers to extract protocol metadata, hence richer context
information is passed to the BPF programs attached to it. Extra helper functions are
also available for programs on this layer compared to XDP.

2.5 Container networking

Containers are being widely used today to deploy cloud applications aa they
provide a lightweight and reproducible environment that can be used both during
development as in production. Tools like Docker [Merkel, 2014] and Kubernetes
[Burns et al., 2016] have become commonplace and are the de facto standard for ap-
plication deployment. Although a deeper discussion about container platforms is out of
the scope if this text, the way Docker manages container networking is briefly discussed,
as it was the main container technology used the main container technology used in this
work.

A container is a process supported by several additional mechanisms to provide
isolation between instances. These aim to guarantee separation in terms of networking,
file system management, memory access, and so on. When it comes to networking, Docker
provides isolation by using namespaces on Linux. Each namespace represents a separate
network environment with its own set of interfaces, routing tables and configuration, and
usually each container has its own network namespace. Although several ways to provide
connectivity between containers are supported by Docker [Marmol et al., 2015] one of the
most common is a combination of veth pairs and bridges.

Veth (virtual Ethernet) interfaces are always created in pairs and represent a direct
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link implemented in software: every packet transmitted on one side will be received by
the other. The veth interface type received support for Native XDP on kernel 4.14
[Linux, 2017]. This kind of device can be used to create a direct connection between two
containers or, more commonly, to create a link between the container and its host. This is
done by attaching one veth interface on the container’s network namespace and the other
on the host’s namespace. However, it is usually necessary to provide communication
between containers as well, in which case a bridge or virtual switch is used. In this case,
the end of the pair given to the host is connected to a virtual switch, like a Linux bridge
or Open vSwitch (OVS) [Pfaff et al., 2015], which forwards packets between containers.
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Chapter 3

Related work

This chapter presents a discussion about how Chaining-Box relates to other existing SFC
mechanisms. In summary, decoupling service and data planes has not been a primary
objective until now. And even when it has, the final implementations fall short on this
feature. Here Chaining-Box is compared to early SDN- (§3.1), platform- (§3.2), and
NSH-based approaches (§3.3), as well as others based on segment routing (§3.4). Table
3.1 presents a summary of the differences between Chaining-Box and the other proposals
discussed. Finally, other projects leveraging BPF in different ways are present to show
how this technology is being used today (§3.5).

3.1 SDN-based

Most of the initial SFC solutions relied on Software Defined Networking
(SDN) to steer packets through chains [Medhat et al., 2017]. For example, SIMPLE
[Qazi et al., 2013b] used a combination of SDN rules and tags to keep track of the cur-
rent state of execution of a chain. Middleboxes were treated as blackboxes and all SFC
functionality was implemented by network devices. Flowtags [Fayazbakhsh et al., 2014],
on the other hand, modified middleboxes to add context-related tags, which in turn were
used by switches to steer packets. Both solutions are heavily coupled to the network,
as they rely on SDN-enabled switches to operate on specific tags in order to realize the
chains.
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3.2 Platform-based

Another set of works propose complete platforms for NFV development and execu-
tion, including function interconnection. These cover a wider scope than Chaining-Box,
but are mentioned here as they provide innovative ways to implement chaining function-
ality.

NetBricks [Panda et al., 2016] provides a framework for NFV which is capable
of running functions implemented using a custom language. As all functions reside in
the same execution environment, chaining is provided in terms of function calls between
SFs, leading to low overhead. A somewhat similar approach is taken by OpenNetVM
[Zhang et al., 2016], an NFV platform that creates an abstraction layer on top of DPDK,
through which network applications can be quickly developed using the provided con-
structs. It uses an internal shared memory mechanism to move packets between functions
at low cost. Due to their holistic approach, these proposals rely on internal infrastructure
provided by the surrounding platforms, and are not suitable as generic, function-agnostic
architectures.

Polycube [Miano et al., 2019] is another software framework that allows the cre-
ation of generic service functions, this time based on BPF. Several helpers are provided
to facilitate the development of services, which are split in a fast path running as BPF
programs inside the kernel an a slow path in user space for management tasks. Just as
Chaining-Box, it also benefits from the advantages offered by BPF technology such as
low overhead and the ability to load programs on demand, but like the other frameworks
discussed requires the re-implementation of functions for this environment.

The chaining mechanism used by OpenStack [Openstack, 2020] is also worth not-
ing. OpenStack is a modular software that aims to provide management for computing,
storage and networking resources across a pool of individual servers. It is widely used to
build private clouds and provide Infrastructure as a Service (IaaS). It is implemented in
a distributed manner, being composed by several separate modules acting together, each
providing different types of services.

Neutron is the module responsible for networking. It manages the creation of net-
works, routes packets between VMs, handles access to the external world, takes care of
access control, etc. Every computing instance is attached to a virtual network through
Neutron ports. This provides a convenient way to handle service function chaining as a
service path is expressed by a list of pairs of ingress and egress Neutron ports. Service
paths also have flow classifiers, which decide what packets should be handled by each
corresponding path. Neutron uses this information to send packets from egress to ingress
ports, following the sequence in the port pair list, thus providing service function chain-
ing. Since this approach heavily relies on Neutron’s inner constructs, it is limited to the
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OpenStack platform.

3.3 NSH-based

Some implementations also rely on the NSH protocol to implement SFC. Stan-
dalone Open vSwitch (OVS) [OVS, 2020] provides support for encapsulation, decapsula-
tion and forwarding based on NSH using extensions to the OpenFlow standard. SFC can
be fully implemented using OVS as the virtual switch to connect service functions.

OpenDaylight [OpenDaylight, 2020] features among the most widely used SDN
controllers nowadays. Its SFC implementation is based on RFC 7665 and uses NSH
as the SFC encapsulation of choice. SFC element functionality is integrated into other
components, instead of being standalone entities. Classifiers are implemented in two
ways: using OpenFlow switches such as OVS or using ip(6)tables with NetFilterQueue.
During chain creation rules are added to OVS switches that will act as Forwarders and
steer packets through the network functions. SFC Proxies are treated as abstract entities,
capable of being implemented as an OVS switch, a VNF or even a physical network
function.

Fast Data (FD.io) [FDio, 2020] is a Linux Foundation’s project whose objective is
to build an universal data plane, aiming for speed, efficiency, flexibility and scalability. It
is a collection of projects and libraries to support and improve software-based packet pro-
cessing. One of its core projects is the Vector Packet Processing (VPP) library which was
open sourced by Cisco. This library enables packet processing using a graph abstraction,
allowing developers to create new graph nodes and users to compose processing graphs
built to their needs. NSH SFC is one the projects under FD.io’s umbrella, it seeks to
create the mechanisms necessary to support service chaining using NSH on VPP. The
implementation is also based on RFC 7665 and NSH, and implements each SFC element
as VPP graph nodes.

These projects are also coupled to the network as their implementation of SFC
logical elements resides in network devices used by the network, thus requires infras-
tructure support. Chaining-Box is capable of fully replacing these complex mechanisms
when it comes to providing SFC, enabling the same functionality even on top of simpler
environments, e.g. based on Linux bridges and others that do not natively support SFC.

Previous work by the author also aimed to decouple service and data planes
[Castanho et al., 2018]. PhantomSFC turns each RFC 7665 element into separate ser-
vice functions, instead of logical roles played by network devices. These special SFs run
alongside other functions, but have the sole objective of offering services needed to en-
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Name Type Unchanged
functions?

Platform-
agnostic?

Network-
agnostic?

Generic logical
topology?

SIMPLE SDN Yes No No Yes
FlowTags SDN No No No Yes
NetBricks Platform No No Yes Yes

OpenNetVM Platform No No Yes Yes
Polycube Platform No Yes Yes Yes
OpenStack Platform Yes No Yes Yes

Open vSwitch NSH Yes Yes No Yes
OpenDaylight NSH Yes No No Yes

VPP NSH Yes Yes No Yes
PhantomSFC NSH Yes Yes Yes No

Segment Routing SR No No No Yes
Chaining-Box NSH Yes Yes Yes Yes

Table 3.1: Comparison between related SFC mechanisms and Chaining-Box

able SFC (classification, proxying and forwarding). As every packet needs to go through
a Forwarder at each step of a chain, the logical topology has several star-like clusters
centered on Forwarder SFs, which become significant points of failure and performance
bottlenecks. The same problem applies to Proxies, at a lesser degree. Chaining-Box solves
these problems by splitting SFC operations into all SFs, removing the star topology and
the bottleneck of separate Forwarders.

3.4 Segment Routing

A new technique that has been used recently to enable SFC is segment routing
(SR) using IPv6 [Abdelsalam et al., 2017, Duchene et al., 2018]. In this approach, each
packet is encapsulated with a Segment Routing Header (SRH) [Filsfils et al., 2019], an
extension to the IPv6 protocol, containing a stack of IPv6 addresses of nodes in a chain,
called segments. At each hop, SR-enabled network devices execute their correspondent
service functions and pop the top-most address from the stack, rewriting the destination
IPv6 address to the next segment in the chain. Intermediate SR-unaware devices simply
operate on the regular IPv6 fields to route the packet normally.

In this approach, the entire sequence of instances to operate over the packet is
rendered by an initial classifier, simplifying the intermediate forwarding elements. On
the other hand, it can only be used with IPv6 or MPLS protocols, limiting its scope.
In addition, the extra packet size needed to specify the list of addresses can be big
for long chains, increasing packet size and overall header overhead. Xhonneaux et al.
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[Xhonneux et al., 2018] propose an SFC scheme using BPF programs in the Linux ker-
nel stack to implement segment routing. It resembles closely the approach taken by
Chaining-Box, with the difference being how the the underlying SFC technique used.

3.5 Projects leveraging BPF

Just like BPF is the key technology behind Chaining-Box, it has also enabled the
development of many other relevant projects in recent years. InKev [Ahmed et al., 2018]
enables to execute BPF programs on the datapath for virtual networks, targeting data
center networks. Tu et al. [Tu et al., 2017] describe the design, implementation and evalu-
ation of a BPF-based extensible datapath for OVS. To enable OpenFlow to parse arbitrary
field, Jouet et al. [Jouet et al., 2015] defined an OpenFlow Extended match filed (OXM)
to install cBPF bytecode and added a libpcap engine to Openflow software switch to
execute it [Jouet et al., 2015]. Xhonneux et al. [Xhonneux et al., 2018] utilizes BPF to
provide a programmable interface for IPv6 Segment routing, as discussed previously.

BPF is also being used in production systems. Examples include Cloudflare,
which uses programs in multiple hooks in its network stack to implement DDoS mit-
igation, load balancing, and socket filtering and dispatching [Marek Majkowski, 2019].
Facebook implemented and open-sourced an L4 load balancer based on XDP, called Ka-
tran [Facebook, 2018]. Beyond the networking field, BPF has also proven an invaluable
tool for tracing, the reason why it is being used by Netflix for performance monitoring
and system profiling [Koch et al., 2019].

Moreover, the Cilium [Cilium, 2019] open-source project uses BPF extensively to
provide networking and security for microservice applications, being aware of API-level
details beyond simple network headers. Weave Scope leverages BPF to track TCP connec-
tions on Kubernetes clusters [WeaveWorks, 2017], and Project Calico has also announced
recenty that a new data plane for container networking based on eBPF is being developed
[Pollitt, 2019].
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Chapter 4

Chaining-Box

As discussed before, existing SFC architectures are usually dependent on specialized de-
vices or limited to specific environments, making them tailor-made for a single environ-
ment and set of technologies. In order to create a more generic chaining architecture, one
that is not coupled to the network and can be applied to different scenarios, it is necessary
to move all SFC functionality from the standard data plane to a separate service plane.
This idea resembles more closely what was initially envisioned by RFC 7665 and removes
the need for underlay network devices to have knowledge about the SFC protocols and
mechanisms in use.

This chapter presents Chaining-Box, an SFC architecture that aims to provide
chaining functionality in a transparent manner, requiring little cooperation from the un-
derlay network besides forwarding packets based on standard Internet protocols. In the
following sections, its data (§4.1) and control planes (§4.2) are discussed, followed by an
architecture overview (§4.3) and a comparison with other approaches (§4.4).

4.1 Data Plane

Inspired by RFC 7665, Chaining-Box uses an extra SFC encapsulation to provide
the chaining, namely the NSH. The operations over this header are limited to only three
kinds: classification, insertion/removal, and forwarding of packets between nodes in a
chain. To fully decouple the service plane from the data plane, Chaining-Box uses a
simple approach: incorporate all SFC-related actions into the execution unit of each
service function, i.e. virtual machines or containers.

Ideally, the addition of such features should be done without the need to refactor
or modify the source code of a service function, being totally transparent to it. This
can be done in the form of processing stages run before and after the SF’s execution, as
illustrated by Figure 4.1. Together with the function per se, these stages form a single
box fully capable of forwarding packets between different SFs organized in chains, hence
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the name of the architecture. Individually, each of these boxes is called a CBox.

Dec Enc FwdSF

Figure 4.1: Example of a CBox and its processing stages

As shown above, a CBox is composed of four separate processing stages:

1. Decapsulation (Dec): upon reception of an NSH-encapsulated packet, this stage
is responsible for removing the NSH header and storing this information temporarily
for later header re-insertion by the encapsulation stage. In case of an NSH-aware
function, this stage is not needed;

2. Service Function (SF): this stage represents the actual service function, and is
not directly implemented by the architecture, but packets must be steered through
it after the decapsulation stage;

3. Encapsulation (Enc): after the packet has been processed by the service function,
the NSH is re-inserted by this stage, also decrementing the SI field. In case of an
NSH-aware function, this stage is not needed;

4. Forwarding (Fwd): this stage makes forwarding decisions based on the SI and
SPI indexes from the NSH header. It looks up an SFC forwarding table and rewrites
the packet’s transport encapsulation headers before sending it back to the network
to be forwarded to the next hop in the chain.

Dec and Enc stages implement all proxy actions, so they are only needed when
dealing with an NSH-unaware SF. For NSH-aware functions, however, no changes on
the SFC encapsulation are necessary, and thus these stages can be deactivated, hence the
dashed lines on Figure 4.1. In this case, packets sent to a CBox are directly received by the
SF stage. Since the function is agnostic of the processing stages, Chaining-Box supports
different kinds of packet matching algorithms to remove and re-insert the NSH, only
requiring modifications to how Dec and Enc stage are implemented.

One of the greatest benefits of local 1-to-1 forwarding stages instead of a centralized
1-to-many forwarding element as in RFC 7665 is that it allows functions to communicate
directly, without the need of an intermediary, greatly reducing the overhead on forwarding
components and avoiding single points of failure. This allows the architecture to assume
more generic logical topologies and a more distributed form, less centralized on individual
elements. This difference in logical topology can be observed on Figure 4.2.
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The scenario shown is composed by four service functions. Each block can be
seen as a separate execution unit, e.g. a virtual machine. Figure 4.2a shows that on
Chaining-Box, each SF is contained in a CBox with all needed SFC functionality within
it, and communication between SFs in the service plane is done directly, without a middle
element. On the other hand, RFC 7665 (Figure 4.2b) uses extra levels of indirection,
requiring that all communication goes through a Forwarder and possibly through and
additional Proxy.

Class SF2SF1IN OUT

(a) Chaining-Box

Class

SF1

FwdIN OUT

SF2

(b) RFC 7665

Figure 4.2: Example scenarios with different SFC architectures.

As all the heavy lifting is now performed by the processing stages, there are only
two tasks left for the underlying network: support packet classification and route packets
between SFs.

Note that none of the stages discussed above implement classification, but rather
expect that packets have already been classified and encapsulated with NSH before arriv-
ing to a CBox. This requires cooperation from a border router, either to classify packets
when they enter the network, or to route them to a dedicated service function imple-
menting classification that serves as an entry point for all ingress traffic. The first option
breaks the decoupling offered by Chaining-Box, while the second can be achieved through
simple routing rules on routers but may suffer from bottlenecks caused by the classifier
SF. However, this can be mitigated by using well-known load balancing techniques.

Besides that, the network is also responsible for routing the packets between each
service function. But this is done in an agnostic way, as network devices will route packets
based only on the external transport encapsulation, be it VXLAN, Geneve, GRE or any
other tunneling scheme, while the NSH will remain encapsulated in the tunnel.
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4.2 Control Plane

The same attributions of the control plane from RFC 7665 also apply to Chaining-
Box. A controller needs to setup rules on forwarding elements to specify the chains. In
Chaining-Box terms, the Fwd stage of each managed CBox needs the entries in their
forwarding tables to effectively enable the chaining. These actions are handled by the
control plane, which is divided in two separate parts: an agent running on each CBox and
a remote controller, as shown in Figure 4.3.

TCP

FwdFwdFwdFwd

Agent

Controller

CBox 1

CBox N

JSON

Chaining
Configuration

FwdFwdFwdFwd

Agent

...

Figure 4.3: Chaining-Box control plane

Besides the processing stages discussed in Section 4.1, each CBox also has an
agent that is responsible for all administrative tasks related to Chaining-Box on the
execution unit. It handles communication with the controller and installs and configures
the processing stages.

All agent-controller communication is based on a fairly simple southbound proto-
col, consisting on two types of messages: Hello and Install. As the names suggest, the
first one is used by a CBox agent to notify the controller of its existence and its availabil-
ity to participate in chains, while the second is used by the controller to send forwarding
rules to each CBox instance, which are later installed by the agent on the Fwd stage. A
third type of message to uninstall rules would also be required to fully support real-world
deployments, but is left as future work.

The job of the Chaining-Box controller consists on:

1. Parsing chaining configuration: the composition of each chain is specified
through a JSON file sent to the controller. It parses this file and generates the
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forwarding rules which need to be installed on the CBoxes to realize the desired
configuration. An example of such file is given in Section 5.6;

2. Establishing connections with CBoxes: on startup, every agent sends a Hello

message to the controller using a TCP connection, which will be kept alive as long
as the agent and the controller are running, so the controller knows which CBox are
still functional;

3. Installing rules on each CBox: after a connection is established, if the controller
has any chaining configuration addressing an specific CBox, its corresponding for-
warding rules are sent through an Install message.

4.3 Architecture

The architecture description provided until now in this chapter was only a high-
level view of the underlying principle guiding Chaining-Box’s design. In practical terms,
however, it may not be obvious how to realize the processing stages decoupled from both
the network and from service functions.

Graph- or match-action-based packet processing as supported by VPP and OVS,
respectively, could easily be used to implement the processing stages. These approaches
would be fully transparent to functions, but would be coupled to the corresponding virtual
switching technology used. A programmable-hardware-based solution also suffers from
the same limitation, such as using SmartNICs or FPGAs to implement processing stages,
since that would restrict the architecture to a few specific hardware devices.

An implementation at the service function level, using procedural programming,
for example, to implement and enforce the order of processing stages and SF is also
feasible, but requires changes to the function’s source code, or implementing it entirely
using specialized frameworks as some of the proposals discussed in Chapter 3.

Yet another option is to implement the stages as kernel modules, the alternative
offered by Click-based solutions. This can be abstracted away by both the network and
service functions, by acting completely in kernel space. Chaining-Box follows this same
path, but instead of Click modules, it uses BPF programs, which are much simpler,
have very little overhead, are native to the Linux kernel, have support from mainstream
toolchains and can be transparently loaded and modified during runtime with little system
disruption.

Figure 4.4 gives an overview of how Chaining-Box lays out physically in the sys-
tem. The SFC mechanism is entirely placed between the SFs and the underlying network
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infrastructure, be it virtual or physical. By using BPF programs in the kernel, Chaining-
Box is capable of handling different system models, be it a container, a virtual machine or
a baremetal server. All the SFC administrative tasks are handled by the control plane and
configured on the stages through the agent running in user space. Packets are processed
on their way through the network stack requiring no cooperation from network devices.
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Figure 4.4: Chaining-Box physical layout

4.4 Comparison with other approaches

The separation of concerns between service and data planes provided by Chaining-
Box becomes more evident if we put side-by-side the physical layout of different archi-
tectures such as in Figure 4.5. This figure compares Chaining-Box against two other
architectures: a standard one where the SFC functionality is all provided by a virtual
switch, e.g. OVS, and PhantomSFC. The boxes in purple highlight where the SFC mech-
anism is positioned in each architecture. All three examples implement the same chain,
going through SF1 and SF2, in that order.

Chaining-Box and the standard are very similar in terms of how many hops each
packets needs until the end of the chain. The biggest difference lies on where SFC ac-
tions are being executed in the system. While Chaining-Box confines everything to each
VM, the standard architecture has it all inside the virtual switch, coupling the chaining
mechanism to the underlying infrastructure.
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Although PhantomSFC also removes the SFC mechanism entirely from the net-
work, this comes at a high cost in terms of performance, since the Service Function
Forwarder (SFF) is fully virtualized and becomes the center of a star topology with the
other SFs. This way packets have to go back and forth to the SFF before they finally exit
the chain.
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Figure 4.5: Comparison between Chaining-Box and other architectures

Chaining-Box is able to combine the benefits of both approaches while avoiding
their pitfalls. The following chapters discuss in great detail how each component of the
architecture is implemented, and the extra benefits added by the use of BPF technology
in the dataplane.
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Chapter 5

Prototype Implementation

To implement the processing stages discussed in the previous chapter in a fully transparent
manner, Chaining-Box uses BPF programs inside the Linux kernel. The following sections
discuss the encapsulation types used (§5.1), which BPF hooks were used and how each
stage was implemented (§5.2), how Chaining-Box supports different application types
(§5.3) and environments (§5.4, possible optimizations when using containers (§5.5), and
how the control plane controller and agent were implemented (§5.6).

5.1 Additional headers

As stated before, Chaining-Box makes use of packet encapsulation to provide SFC.
Packets traveling between service functions are encapsulated with both an external trans-
port encapsulation as well as with the NSH. In the prototype built the transport encap-
sulation corresponds to an additional Ethernet header. For this reason all CBox used
in the tests are required to be in the same L2 network. The decision to use this type
of encapsulation aimed to simplify the prototype, without loss of generality. Other en-
capsulation schemes such as VXLAN or Geneve could also have been used, but are left
as future work. Simple changes to Dec and Enc changes would be sufficient to handle
different encapsulation protocols.

Currently the stages are only capable of handling MD-Type 1 NSH headers, which
have four 4-Byte metadata fields. However, for the purposes of this text, these fields don’t
have any special meaning and were just filled with zeroes. Added to the extra Ethernet
header, the NSH sums up to 38 extra bytes of overhead for each packet.
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5.2 Stages and layers

The main BPF feature leveraged by Chaining-Box is the ability to process ingress
and egress packets on their way through the network stack, without needing any coop-
eration or knowledge from the applications running in the system. Combined with the
use of the NSH, this principle allows this implementation to be transparent to both the
network and service functions. The following subsections describe the inner workings of
each stage.

5.2.1 Decapsulation (Dec)

Since the stages perform header-changing operations on the packets, ideally they
should be executed as close to the NIC as possible, to have complete power over ingress
packets seen by the kernel and egress ones seen by the network. On the RX side, this
lowest point is represented by the XDP layer, which in its native form is implemented
directly by the device driver. At this point, the OS has neither parsed incoming packet
metadata nor allocated socket buffers for it, allowing XDP programs to make arbitrary
changes to the packets without the OS’ knowledge. For these reasons, this was the layer
chosen for the Dec stage, as shown in Figure 5.1.

XDP

NIC

Dec

TC

RX TX

Userspace

Kernel

SF

Enc Fwd

Figure 5.1: Stages implemented as BPF programs inside the Linux kernel

The Dec stage is implemented in less than 100 lines of C code and can be sum-



5. Prototype Implementation 42

marized to the following actions, illustrated by the flow diagram of Figure 5.2: (1) detect
if this is the destination of the current Ethernet frame; (2) check if the packet received
contains an NSH header; (3) if so, parse it’s IP 5-tuple; (4) use it as key to save the NSH
to a temporary table implemented as a BPF hash map shared with the Enc stage; and
(5) remove the transport and NSH encapsulations. After all these steps are complete,
the packet is sent up the kernel stack for further processing. Packets that do not contain
the expected transport and NSH encapsulations are just ignored and passed along, so the
stage does not interfere with other programs and services running on the same machine.

From
network

Check dst
MAC address DropFor

me?

Has
NSH?

Save NSH
to proxy

table

Up the
stack

No

Yes

No

Remove
NSH

Get
5-tuple

Figure 5.2: Flow diagram of Dec stage

When saving NSH information to the map (proxy table) the key associated with
this value is the internal packet’s 5-tuple, ignoring the outer encapsulation, as shown in
Figure 5.3. This same key is used later by the Enc stage to match outgoing packets for
re-insertion of the NSH. Of course, this approach has limited support for SFs that change
the packet’s 5-tuple such as NAT or VPN endpoints. More complex and clever matching
algorithms can be implemented as well, requiring just implementing new Dec and Enc
stages, which can be loaded and replaced atomically by the BPF system.

IPv4 5-tuple NSH Header

13 Bytes 24 Bytes

... ...

Key Value

Figure 5.3: Proxy table shared between Dec and Enc stages.
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5.2.2 Encapsulation (Enc)

The initial envisioned use case for the XDP layer was to provide a faster way to
make early decision about incoming packets to improve the performance of firewall and
DDoS mitigation services, for example. For this reason, this layer is only present on RX,
and not on TX, rendering it unable to implement Enc and Fwd stages. Although there
seems to be plans by the community to extend the XDP to egress as well, it has not been
a priority at the moment, needing more compelling use cases and killer applications to
steer its development. Thus the last two stages are implemented on TC, which is the
lowest layer on TX side. The context seen by programs in this layer is also a Layer-2
packet, allowing fairly generic changes to the packet as well.

The Enc stage receives the packet after it has been processed by the service func-
tion. It’s actions are summarized by the flow diagram in Figure 5.4. It prepares the packet
for the Fwd stage by (1) parsing its 5-tuple; (2) using that as a key to the BPF hash map
shared with the Dec stage to retrieve the previously removed NSH header; (3) checking
whether this was the last hop in the chain; (4) re-inserting the NSH and transport en-
capsulations on the packet; (5) decrementing the SI value from the NSH; (6) sending it
to the next stage. In case the pre-lookup of the forward table in step (3) shows that this
is the last node in the chain the NSH re-insertion step is skipped and the packet is sent
directly to the network. The check consists on checking the flags field stored alongside
the next hop address. If this field is set to 1, that indicates the end of the chain.
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Insert NSH +
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Lookup
proxy
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forwarding

table

YesNo

Yes

No

Figure 5.4: Flow diagram of Enc stage.

The TC layer has support for internal chains of filters and actions (not to be
confused with SF chains), that are executed in order defined by a priority value associated
with each one. Enc and Fwd stages are implemented as filters in the same chain, with
Enc having a higher priority than Fwd, and thus executing first. Similar to the Dec stage,
packets that do not match a 5-tuple stored in the table are deemed unrelated to the SFC
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chaining, and are just passed along the stack normally, causing no interference with other
services.

If the packet is successfully re-encapsulated, Enc returns a TC_ACT_UNSPEC value,
instructing TC to execute the next filter in its internal chain, which is configured by
Chaining-Box to be the Fwd stage. This setup, however, suffers performance penalties
as these two disjoint programs will have to perform packet header parsing separately.
This design was chosen to decouple both stages and make it easier to replace each one
separately as needed, in order to provide different functionality, for example. However,
combining both stages into one is a simple matter of writing a BPF program that does
the job of both.

5.2.3 Forwarding (Fwd)

SPH (SPI,SI) Next hop MAC address + Flags

4 Bytes 6 Bytes

... ...

Key Value

...

1 Byte

Figure 5.5: Lookup table used by Fwd stage to get next hop information.

Finally, the Fwd stage receives packets already encapsulated with the NSH and uses
SPI and SI values from it to lookup the internal forwarding table (Figure 5.5), populated
by the control plane agent. This table is also implemented as a BPF hash map and uses
the SPH (SPI + SI) as the key to retrieve the address of the next hop. This address is
then written to the packet’s transport encapsulation and it is sent back to the network
to be forwarded to the next SF in the chain. All these actions are summarized by the
flow diagram in Figure 5.6. Note that packets not containing a corresponding entry in the
forwarding table are dropped, this situation indicates bogus NSH-encapsulated packets
received by the Dec stage or a misconfigured Fwd stage. In either case, this packet should
not go back to the network, so it is dropped.
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Figure 5.6: Flow diagram of Fwd stage.

5.3 Application support

The careful reader may have noticed the discussion of the SF stage was skipped
in the last section. This was intentional as it is not directly implemented by Chaining-
Box itself, but rather by other existing service function applications. The architecture
supports two kinds of applications discussed in Section 2.2: kernel-supported and kernel-
only. Figure 5.7 illustrates how the stages interact with each application type.
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Figure 5.7: Chaining-Box supports different kinds of service functions

Kernel-supported applications reside entirely in user space, and represent the sim-
plest case for Chaining-Box. As the stages are implemented as BPF programs loaded
to the kernel, all operations necessary to steer packets through chains is done without
any interaction from the application, making it totally agnostic to the SFC environment.
Packets are processed and modified by the stages on their way through the network stack.

Kernel-only functions, on the other hand, can be other BPF programs also loaded
to the kernel, or implemented by iptables rules or kernel modules. For KO apps located
above the TC layer, there is little difference from the KS case, as Chaining-Box stages
will behave as an middle-man to the network and no special treatment is needed by the
architecture. The same is true for functions implemented on the ingress TC direction, as
illustrated by 5.7 in the Kernel-only case. On TC-egress, however, a small change on how
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Type Dec? Enc? Fwd?
Kernel-supported Yes Yes Yes

Kernel-only Partial Partial Partial
Kernel-bypass Yes No No

Table 5.1: Summary of the Chaining-Box stages supported for each SF implementation
type.

the stages are attached is necessary. The SF must be placed in the same TC chain as Enc
and Fwd stages, but with a higher priority, so it is executed first. Also, it would require
a small change to it’s source code to instruct TC to keep executing the next filters, i.e. it
should return TC_ACT_UNSPEC after successfully processing a packet.

SFs implemented as XDP programs represent a tricky case not fully supported by
Chaining-Box at this moment. Since XDP does not have an internal chaining mechanism
like TC, it is currently not possible to load multiple XDP programs to the same interface
simultaneously. Although there has been recent proposals for such mechanism1, it is still
under development and it is not certain whether it will ever reach the upstream kernel.
One possible workaround is to execute the XDP application as a BPF tail call after Dec
stage execution, but has not been tested yet with Chaining-Box.

Lastly, kernel-bypass functions are not supported by Chaining-Box. Since these
applications completely bypass the kernel stack, the processing stages cannot be executed.
AF_XDP sockets represent a partial solution for this problem, supporting the execution of
XDP programs prior to sending packets directly to user space, bypassing upper layers in
the networking stack. Application built with DPDK, for example, could use the provided
AF_XDP poll mode driver (PMD) to use this socket family, which would permit the exe-
cution of the Dec stage. But since XDP is present only on RX, the egress stages Enc and
Fwd are not contemplated by this solution. Table 5.1 summarizes the support offered by
Chaining-Box to each application type.

5.4 Environment support

In this section, the word ’environment’ refers to the overall operating system en-
vironment where the service function is being executed, which can be: (1) baremetal; (2)
virtual machine; or (3) container.

When it comes to how Chaining-Box is laid out in the system, the first two envi-
ronments are the same, both have a full isolated kernel that can host the BPF processing

1https://www.spinics.net/lists/netdev/msg602065.html
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stages. Although containers share the same kernel with the host and other siblings, each
has its own network interfaces, usually one end of a veth pair or even a passthrough
physical interface. Since BPF programs on both XDP and TC are attached to an specific
interface, these programs are isolated from one another. From Chaining-Box’s point-of-
view, they behave the same as if each container had a dedicated kernel stack, enabling
the architecture to work without requiring any changes.

However, there is a possible optimization for the container case. If consecutive
containers in a chain belong to the same host, they can be interconnected directly through
a veth pair, called a direct link, instead of having to go through a virtual switch. This
brings three main performance benefits: (1) veth pairs can achieve higher throughput
rates than going through a virtual switch; (2) NSH and transport encapsulations are not
necessary, as this is a direct link; and (3) as a consequence of the lack of encapsulation,
stages Enc and Dec from the source and destination containers, respectively, can be
bypassed. More details about this optimization are discussed in the next section, while
the overall performance improvement observed is demonstrated in Section 6.7.

5.5 Containers and direct links

Figure 5.8 better illustrates how Chaining-Box can use direct links. On that sce-
nario, SF1, SF2 and SF3 are part of the same chain and are executed in sequence. Each
is hosted by a separate container, and all three containers belong to the same host. In
this case, Chaining-Box can instruct the agent to use veth pairs between each consecu-
tive SF to speedup packet steering through the chain. Fox example, the CBox hosted
in Container 1 can have its Enc and Fwd stages disabled, and forward packets directly
through the veth pair to the next hop in the chain. SF2 also has its Dec stage disabled,
since no encapsulation was used by SF1. Since SF2 and SF3 are also connected through
a veth pair, Enc and Fwd from SF2 and Dec from SF3 are also disabled. In this example,
through the use of 2 veth pairs, 5 stages were omitted, improving the end-to-end chain
latency as will be shown later in this text.

This optimization, however, introduces two corner cases that must be handled by
the controller to keep the chaining functioning correctly. They happen when the Dec stage
is omitted but Enc still has to be run. The first case is when two CBoxes that are directly
linked are followed by a another without direct link (Figures 5.9a). In this case, the
second node will have its Dec stage omitted because of the direct link connecting it to the
previous function, but will still have the Enc stage as it is needed to communicate with the
following node. The second case happen when when two directly-linked nodes terminate
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Figure 5.8: Example of use of veth pairs to simplify packet steering between SFs in
containers in the same host

a chain (5.9b). Since the last element in the chain will always have to decapsulate the
packet, it’s Enc stage cannot me omitted, but will omit Dec if packets come from a direct
link. In such cases, Enc will lookup the table for the corresponding NSH header for the
packet but no entries will be found, since no packets were decapsulated and Dec was never
executed.

However, these situations can be detected early by the controller when configuring
the chains, since it knows chain layouts and which nodes will be configured with direct
links. When one the corner cases are detected, the controller simply adds artificial entries
to the proxy table to Enc stage of the faulty node, as if they were generated by a packet
decapsulation on Dec. This has the obvious limitation of not permitting that NSH meta-
data be carried through the chain, since the controller is unable to predict the contents
of each metadata header beforehand.

5.6 Agent and controller implementation

Both the controller and agent are implemented in Golang. All code to interact
with the BPF system is written in C using libbpf and iproute2, and called from within the
Golang agent. The agents communicate with the remote controller using TCP connec-
tions, that are kept alive as long as the agent is running. The controller keeps an internal
table of all connected agents, which is used during chain configuration.

A system administrator can specify the chains to be used through a simple JSON
file. This file is parsed by the controller and the generated rules are sent to the cor-
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(b) Case 2: Two local nodes, directly linked ending a chain

Figure 5.9: Example of corner cases of direct link optimization that require special
treatment by the controller.

responding agents through their TCP connections to be installed by the agent on each
CBox. Figure 5.10 shows and example of JSON file to configure an environment with
two chains. Each chain is configured with 2 functions each. Each function must have a
tag by which it will be identified in when specifying the chains, besides the host in which
it will be deployed. The value type was used to indicate which of the implemented test
functions the controller should deploy, but should be changed to a more generic way to
specify any kind of function.

For this input file, the controller will generate one forwarding rule for each of sf1
and sf2, and two for sf3, as shown on the right side of Figure 5.10. The MAC address
of the input interface of each SF is sent to the controller when the agent sends a Hello
message, and these values are later used to configure the forwarding tables accordingly.
Since both chains end in sf3, its entries have the MAC address zeroed out and the flags
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Next hop MAC address + FlagsSPH (SPI,SI)

(100,253) ZERO

SF3 forwarding table

1

(200,253) ZERO 1

Next hop MAC address + FlagsSPH (SPI,SI)

(100,254) SF3 MAC

SF2 forwarding table

0

Next hop MAC address + FlagsSPH (SPI,SI)

(200,254) SF3 MAC

SF1 forwarding table

0

Figure 5.10: Example of JSON configuration file given to controller and the
corresponding rules generated.

field is set to 1, indicating end of the chain.
It is also worth noting that the control plane automatically determines when direct

links can be used in chains. This information can be derived from the host fields from
consecutive functions in a chain. If two SFs are hosted by the same server and are executed
in sequence in a chain, the control plane automatically connects them with a direct link.
On a full-fledged NFV environment, the JSON configuration file would represent the
output of a placement algorithm, while the controller described here would carry on the
execution and deployment of such placement.

Lastly, the choice of JSON as the format to define the chaining configuration
was due to its simplicity and builtin support in many languages, such as Golang. An
additional benefit is that files can be easily validated using JSONSchema2. The support
for other NFV-specific formats such as TOSCA [Garay et al., 2016] is desirable for better
integration with existing NFV frameworks but is left as future work.

2https://json-schema.org/
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Chapter 6

Experimental Evaluation

The performance of the prototype was evaluated considering different aspects, which are
summarized in the following sections. Besides the physical setup used (§6.1), they present
some implementation statistics (§6.2) and the overhead imposed by each stage (§6.3).
After that, the methodology used in the tests is presented (§6.4), followed by an analisys
of the architecture’s barebones performance in the absence of functions considering two
different variables: packet size (§6.5), chain length (§6.6). The performance benefits
inherited from using direct links is also shown (§6.7) and a comparison with an emulated
architecture is presented (§6.8).

6.1 Environment Setup

The logical setup used during tests consisted on two hosts communicating through
an SFC-enabled environment composed of multiple functions in a chain, as shown by
Figure 6.1. The chaining was applied in a single direction, even though host reachability
went both ways.

Host A

Ra

SF2

SF1 ... SFN

SFN-1

Host B

Rb

Figure 6.1: Logical setup used for experiments.

The physical setup consisted of a single server with an Intel Core i7-7740X CPU
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@ 4.30GHz, 16 GB of RAM and two network cards, an Intel X710 and a Netronome
Agilio CX 4400 with two 10 Gbps interfaces each. Each service function was deployed to
a separate Docker container, all connected by an Open vSwitch (OVS) bridge. The NICs
were connected back to back, one to be used by the packet generator and the other to act
as the device under test. Two different approaches to packet generation were used: pktgen-
DPDK [Wiles, 2016] for throughput tests (Figure 6.2) and two separate namespaces with
an interface each (Figure 6.3) for latency measurements. In both cases, one interface from
the generator was used for RX and the other for TX.

SFNSF1
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...

RX TX

pktgen-DPDK

TX RX
eth0 eth1

eth2 eth3

Classify

Figure 6.2: Physical setup used for throughput experiments.
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Figure 6.3: Physical setup used for latency experiments.

The OVS bridge was configured with two rules: one to provide packet classification
and insertion of the NSH header and another to forward packets as a common L2 learning
switch. Note that classification could be done in different ways, like generating pre-
classified packets or routing all traffic to a single entry-point container to act as a classifier.
We chose to use OVS because of its built-in support for NSH in recent versions and better
performance compared to the other viable options at the time of testing. All packets
arriving from the traffic generator were matched against the classification rule and if they
matched the pre-defined flow, an NSH header would be added to the packet and it was
re-circulated in the switch to match the L2 forwarding rule and be forwarded to the first
SF in the chain based on the outer transport encapsulation, an Ethernet header in this
case.

All tests used a single type of service function: a KO function implemented as a
BPF program on the TC hook that received packets from one interface and redirected
to a second one, named tc-redirect. This was chosen as the simplest SF possible,
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allowing to measure the architecture’s performance, without having to account for extra
overheads imposed by the service function. Nonetheless, this SF’s overhead proved to be
considerably higher the stages’, as is shown later in this chapter.

6.2 Program statistics

Table 6.1 shows the actual size of each BPF program used to implement the stages.
All programs were implemented in less than 400 lines of C source code, counting common
code shared by the stages and excluding header files. After being compiled and loaded to
the kernel, the biggest program (Enc stage) was 2072 Bytes in size. Even with the extra
locked memory used by the kernel to allocate the data structures to hold the program
each occupied only 4096, summing up to a mere total of 12 kB for all stages. The amount
of memory per program is constant and dependent on the bytecode generated by the
compiler and jited code generated by the kernel.

LoC BPF insns Bytecode (B) Jited (B) Locked (B)
Dec 78 117 992 637 4096
Enc 78 232 2072 1197 4096
Fwd 40 54 584 359 4096

Table 6.1: BPF program statistics

Entries Key (B) Value (B) Data (B) Locked (kB)
Source MAC 2 4 6 20 4
Proxy table 2048 13 24 75776 212
Forward table 2048 4 7 22518 164

Table 6.2: Memory footprint of tables

Besides program instructions, the kernel also needs to allocate space for the maps
used by them. Table 6.2 shows the memory footprint of the maps used by all programs.
The amount of memory needed is a function of the sizes of keys and values and the amount
of entries on each table. This number is hardcoded during map declarations on the source
code, but can easily be changed, requiring recompiling and reloading the stages. The real
number of bytes occupied in memory is represented by the locked memory reserved by
the kernel, shown in the last column. Still, the total memory required for map storage on
each node during tests was around 350 kB. Even if the proxy and forwarding tables were
configured with 1 million entries each, the total memory required by all maps would be
less than 200 MB, a modest requirement for today’s hardware.
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These numbers demonstrate that the memory footprint of Chaining-Box stages is
fairly minimal, which possibly allows for the deployment of many instances on the same
server with little problem.

6.3 Processing overhead

An important metric to understand the Chaining-Box’s performance is the pro-
cessing overhead added by each program to each packet, i.e. how much time each stage
takes to execute. For such, a single chain with 2 SFs was used. The length is important
because the last element in a chain will have lower overhead since the packet does not
have to be re-encapsulated and the Fwd stage is skipped entirely.

Each stage was instrumented to collect timestamps at the beginning and end of
its execution using a native BPF helper, which introduce approximately 20 ns of extra
delay. The average was taken over 1000 executions, and the values measured subtracted
of the extra overhead described are shown in Table 6.3.

Thus the increase in latency introduced by a single CBox is around 4.6 µs in the
worst case in which all stages need to be executed, e.g. for legacy functions. For an
NSH-aware function, for example, in both Enc and Dec stages can be omitted, the extra
latency becomes only the one introduced by the Fwd stage, around 540 ns.

Compared to the time spent to redirect the packets on the SF used, the overhead
added by the stages is minimal. The CPU usage of each BPF program was measured
using perf when generating packets at 10 Gbps with pktgen. The percentage values
shown in Table 6.4 are related to the time the system spent running only BPF programs,
including the SF (listed below as tc-redirect). The remaining 0.5% corresponds to
administrative tasks executed by the kernel to run the programs. Overall, BPF program
execution corresponded to 16% of CPU load during the test, which also had processes for
OVS and pktgen running in parallel on the same server.

The high overhead imposed by a simple function such as tc-redirect can be
explained by its use of the bpf_redirect helper, which redirects packets to another

Avg. Latency (ns)
Dec 2208.55
Enc 1840.60

Enc (end of chain) 1197.08
Fwd 540.66

Table 6.3: Additional processing time introduced by each program.
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BPF CPU time (%)
Dec 0.23
Enc 0.25
Fwd 0.09

tc-redirect 98.93

Table 6.4: CPU usage of each program during stress test.

output interface and is an expensive operation. An optimized version for this function
called bpf_redirect_map tries to reduce the its cost by performing operations in batches,
providing superior performance than the previous alternative, but is only available in the
XDP layer.

Together with the memory requirements shown in the previous section, the very low
CPU overhead imposed by the processing stages indicates that Chaining-Box is scalable,
potentially allowing many CBox to be deployed on the same physical server.

6.4 Test Methodology

The subsequent sections present summarized results of several measurements on
the prototype discussed in the previous chapter. All performance tests were based on
two important metrics for networked systems: throughput and latency. The two different
setups used for each type of measurement were discussed in the previous section.

The throughput values reported on all graphs were calculated as such:

Throughput =
packets received
packets sent

· Tgen (6.1)

The inputs to the formula were the results of sending packets uninterruptedly for
10 seconds at a generated rate (Tgen) of 10 Gbps. In addition, all SFs used in this type of
tests consisted of the default tc-redirect.

The maximum packet size in all tests was restricted to 1462, which corresponds
to the default MTU minus the overhead of the encapsulation used by the Chaining-
Box prototype. When not stated otherwise, this was the size used to generate packets
during the tests.

Latency tests used ping to generate and measure latency in terms of the round
trip time (RTT) of packets. As only the traffic coming out of the traffic generator was
classified by OVS, changes to the RTT for different chain configurations represented the
actual extra latency added by Chaining-Box.
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All latency results are a median of 120 repetitions with the top 10 and bottom
10 outliers removed, totaling 100 samples. When present, error bars represent standard
deviation.

Due to resource limitations, the entire test setup was reduced to a single server,
and had to rely on default OVS for packet switching. This configuration has its own
performance issues, not being capable of reaching peak performance for every packet size
at 10 Gbps, as shown in the next section. Our baseline consists of communicating between
the two endpoints without any chaining, only forwarding by OVS. The default baseline
latency measurement was around 0.5 ms.

6.5 Packet size

At high throughput rates, smaller packets tend to represent higher stress for net-
working systems as the number of packets to handle increases substantially, so packet
drops are common. The impact of the packet size on both the throughput and latency of
chains provided by Chaining-Box was measured and is shown on Figure 6.4.

For both throughput and latency measurements, the tests were repeated for chains
without direct links and of varying length, from 1 up to 10, besides the baseline. Note that
the throughput in Gbps decreases substantially as the packet size gets smaller (Figure
6.4a - left). This can be explained by the fact that the underlying OVS bridge is not
able to handle the high number of packets being forwarded through it. Also for a given
packet size, the throughput also decreases as the chain length grows, which is expected
since each packet has to go back and forth between the SFs and the bridge more times
for a longer chain, increasing the effective number of input packets on the bridge.

This explanation is backed by the same results plotted using a different unit,
packets per second (Figure 6.4a - right). Except for 64 B packets, the rate in Mpps
is stable for each chain length even with different packet sizes, suggesting that the actual
limit imposed by the underlying infrastructure is indeed bound to the number of packets,
instead of the actual number of bytes being forwarded. Since everything is being run on the
same server, many events are triggered once a packet is received from the packet generator.
Interruptions generated by the NIC, rule processing by OVS, BPF program execution
for each stage and the service function are just some examples. These added to the
poor performance of the service function used accounts for the performance degradation
observed.

The outlier seen for 64-Byte packets can only be explained as a fluctuation on
process scheduling and resource contention that favored the results at the time of the
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test. This hypothesis is derived from the fact that many other executions of the same test
did not yield this outlier.

Another important information derived from these results is the low throughput
of our baseline for small packets, indicated by the blue bars in Figure 6.4a. As noted
previously, our baseline already suffered from limitations of the test setup used during
experiments. Thus, part of the lack of performance observed on all tests is not purely due
to Chaining-Box’s mechanism, but mainly to the underlying test environment.
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Figure 6.4: Measurements of the impact of packet size on Chaining-Box performance

In terms of latency, the impact of the packet size is minimum, as shown in Figure
6.4b. Only the results for chain lengths 1 (minimum) and 10 (maximum used in tests)
are shown, however the trend remains the same for all other lengths. This plateau is due
to the fact that the stages only operate on the packet headers, and the SF used in the
tests does not modify the payload either. Thus, the packet size has little to no effect
over latency at the accuracy used during measurements. Of course, the longer packets
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require extra processing time to be transmited by the NIC and OVS, but this difference
is small compared to the fluctuations caused by process scheduling, context switching,
and other operating system events that happen simultaneously, which end up masking
out that extra delay.

6.6 Chain length

The impact of the length of the chain on the throughput is similar to what was
discussed in the previous section regarding the packet size. As the chain gets bigger, the
underlying switch has to process more and more packets, which overloads the system and
causes a acute performance degradation, as shown in Figure 6.5a.

In terms of latency, Figure 6.5b shows that latency grows linearly with each addi-
tional SF. A linear regression model of the measurements, also show in the graph, has a
derivative of 16.5 µs, which represents the extra delay incurred by each extra SF in the
chain, out of which only 4.6 µs are due to Chaining-Box processing stages as shown in
Section 6.3. The remaining portion of this delay can be attributed to OVS’ match-action
algorithm and packet transport in and out of the system.
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Figure 6.5: Measurements of the impact of chain length on Chaining-Box performance
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6.7 Benefit of Direct Links

Figures 6.6a and 6.6b show the performance results demonstrating the actual bene-
fits of using direct links to connect local containers as dicussed in Section 5.4. With direct
links, some Chaining-Box stages and OVS can be avoided altogether as the containers are
directly connected by veth pairs. This reflects into the observed end to end throughput
which is higher for the case with direct links and also into the latency, which is lower in
that case. While the latency without direct links increases by 16.5 µs for each new SF,
with direct links this increment comes down to 3.9 µs, or approximately 23.6% of the
former.

1 2 3 4 5 6 7 8 9 10
Chain length (# SFs)

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 (G

bp
s)

w/ direct links
w/o direct links

(a) Throughput

1 2 3 4 5 6 7 8 9 10
Chain Length (# SFs)

0.0

0.2

0.4

0.6

0.8

1.0
La

te
nc

y 
(m

s)
Baseline
w/ direct links
w/o direct links

(b) Latency

Figure 6.6: Evaluation of improvement provided by use of direct links.

6.8 Comparison with standard architecture

As stated before, few other SFC architectures aim to decouple service and data
planes as Chaining-Box, PhantomSFC [Castanho et al., 2018] being one of the exceptions.
For this reason, we try to make a qualitative comparison between both by emulating
PhantomSFC’s behavior of relying on a centralized (but decoupled) forwarder by creating
a chain that forces packets to be processed by the same SF at every step in the chain, as
illustrated in Figure 6.7 for a chain of length 2.

Having a centralized forwarder is similar to having one SF that is visited at the
beginning, end and at every hop of a chain, clearly, this forces packets to visit more SFs
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Figure 6.7: Example of how a PhantomSFC-like architecture is emulated with
Chaining-Box for experiment the experiment.

before exiting the chain if compared to chains implemented with Chaining-Box, in which
functions are able to communicate directly. For a chain of length N , a corresponding
chain in the emulated architecture has 2N + 1 nodes.
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Figure 6.8: Latency comparison between Chaining-Box and an emulated
PhantomSFC-like architecture.

Since all experiments were done locally, the latency values measured all fall in the
range of hundreds of microseconds, which is too subject to interference from fluctuations
caused by the OS, which can mask the actual latency variations that we are trying to
measure. For this reason, this test used a variation of the tc-redirect SF discussed
before, which included an extra processing delay simulating the time an actual SF would
spend performing some operation on the packet, named tc-redirect-delay. The delay
consisted on an empty for loop with 10000 iterations.

Clearly Chaining-Box will yield better performance, since longer chains incur per-
formance degradation as demonstrated previously on Section 6.6. Figure 6.8 shows a
comparison of the latency observed for packets traversing chains of growing lengths in the
emulated scenario and standard Chaining-Box chains. Latency increases at much higher
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rate for the emulated chain than for Chaining-Box, an example of how the proposed
architecture benefits from direct communication between functions.
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Chapter 7

Discussion

In face of the architectural design and the experimental evaluation discussed before, this
chapter discusses some of the advantages (§7.1) and disadvantages (§7.2 of Chaining-
Box compared to other architectures. Afterwards, challenges and limitations of current
technology faced while developing Chaining-Box are presented (§7.3).

7.1 Advantages

The advantages of Chaining-Box can be split in two categories: the ones derived
directly from the architectural concept proposed (§7.1.1) and others that stem from the
choice of using BPF as the technology to implement the processing stages (§7.1.2). These
are discussed in the following sections.

7.1.1 Benefits offered by the architecture

Transparency to both SFs and underlay network: by moving all SFC func-
tionality to the SF’s executing unit, the need for NSH support by the network infras-
tructure and the service function are lifted. In case the function is NSH-aware, this
transparency is not needed, so both Enc and Dec stages can be disabled, improving func-
tion performance. However, the facilities offered by Chaining-Box’s processing stages
allow legacy functions, i.e. NSH-unaware, to be part of a chain without any changes to
its source code.

Flexible support for different proxy operations: in the architecture proposed
by RFC 7665, packet matching done by the proxies is not a trivial task. These elements
need to match incoming and outgoing packets to re-insert the SFC encapsulation, or
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perform re-classification to add a new NSH header. However, the architecture does not
impose any kind of restriction on the kind of changes on the packet allowed to service
functions. These can go from header and payload modification to insertion and deletion
of information and even creation of extra new packets. This generic nature turns packet
matching into a challenging task, often requiring complex algorithms [Qazi et al., 2013b],
that although functional are not fully precise. By moving these actions to the SF’s
execution unit’s kernel, for example, they are executed on the same software domain, i.e.,
the same operating system.

Although beyond the scope of this work, in this setting packet matching could be
facilitated by the use of structures offered by the OS itself. For example, if a zero-copy
mode for packet handling is employed, matching single incoming and outgoing packets
out become trivial, as matching packets would correspond to the same memory address.
Other possibility would be to use packet metadata created by the kernel to identify packets
and support correspondence between them.

Chaining-Box can be extended to support different types of functions by imple-
menting function-specific Dec and Enc stages. Since they can be easily modified and
reloaded to the kernel, one could apply different packet matching techniques based on
prior knowledge on a specific function, i.e. about its behavior. In this case, different
version of Dec and Enc stages would be loaded depending on what kind of function was
being used. These changes would be limited to the service plane, not requiring changes
to functions, keeping Chaining-Box’s primary goal of being transparent.

Greater resilience to failure: as discussed in chapter 4, since Chaining-Box pro-
poses a better distribution of SFC actions, there is a reduction on single points of failure
that were concentrated on the Forwarders on the proposal of RFC 7665. That architecture
relied on several interconnected star-like groups centered on Forwarders, with the conse-
quence that a failure on one of the central points would affect all functions connected to
it and the chains they belonged to. Chaining-Box allows the service plane to use more
generic logical topologies, removing the centralized nodes. In this case, the failure of a
single node disturbs only the chains that particular instance is part of.

Smaller forwarding tables: an extra consequence of each SF instance having
its own dedicated Fwd stage is that the tables used by it for SFC forwarding will have
less entries, as only the ones concerning the associated instance will be needed. This
contrasts with the forwarding tables used by Forwarders in RFC 7665, which needed
entries for several different instances attached to that particular element.
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7.1.2 Benefits offered by BPF

Programmable stages: by nature BPF programs can be installed atomically
by the kernel and have their functionality modified at any moment during run time. Its
language is also generic enough to implement a wide range of programs. This makes
the processing stages highly flexible and programmable. For example, a different packet
matching technique can be implemented as a new pair of Dec and Enc stages and loaded
instead of the standard programs, without knowledge from network and service function.
The same could be applied to use new SFC or transport encapsulations or even change
how the Fwd stage implements the forwarding functionality.

Offload to programmable devices: there are devices capable of executing BPF
programs in hardware [Kicinski and Viljoen, 2016, Pacífico et al., 2018], and also native
driver support offered by Linux to offload programs to them. This allows even better
performance than what is obtained when running the programs inside the kernel.

Low resource usage: as shown previously, different from DPDK, which requires
dedicated resources to execute at high speeds, BPF programs on XDP and TC allow
similar performance at a considerable lesser memory and processor footprint.

7.2 Disadvantages

The remaining need for a classifier: even though the architecture is trans-
parent to network and SFs, it still relies on a classifier to add the NSH header to each
packet ingressing the SFC Domain, which will require some cooperation from the under-
lying network to either direct all packets to a few hosts running a software Classifier or
implement such functionality on a border router, for example. Even with this remain-
ing restriction, Chaining-Box represents a significant improvement towards a completely
infrastructure-independent SFC architecture.

Dependence on encapsulation: the use of an extra encapsulation for SFC has a
performance penalty caused by the constant encapsulation and decapsulation operations
when using NSH-unaware functions. This may also cause fragmentation issues. However,
this proposal aims for deployment on environments where an administrator has full power
over the entire infrastructure, such as inside service provider datacenter networks. On
such situations, the provider can configure the MTU of intermediate devices to a proper
value considering the additional encapsulation, in order to avoid problems with packet
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fragmentation.
Implementation restricted to Linux: the proposed implementation based on

BPF has the disadvantage of being limited to Linux environments, as the recent changes to
BPF system are only available on that platform. The FreeBSD community has discussed
about supporting the improvements offered by eBPF 1, but at the time of writing this has
not been fully implemented yet. However, this is a minor restriction since most cloud and
datacenter environments are Linux-based, thus able to support Chaining-Box if a more
recent kernel version is used.

Lack of support for KB type functions: as discussed in §5.3 Chaining-Box cur-
rently does not support kernel-bypass functions, even if using AF_XDP sockets. An al-
ternative approach would be to implement a BPF VM apart from the kernel, which could
be used to create ingress and egress hooks for DPDK applications, for example, to which
the processing stages could be loaded. Standalone implementations like this already exist,
such as the BPF library on DPDK and the ubpf project [ubpf, 2019].

Packet matching: since the architecture is based on an external encapsulation, it
requires matching packets, which is a difficult task. On the prototype implemented, this
is done by performing an exact match on the packet’s 5-tuple. This approach restricts
the range of supported applications to only those that do not alter the packet’s 5-tuple.
However, as the stages are fully-programmable, other techniques can be used to implement
Dec and Enc stages and change such behavior.

7.3 Other issues

The following items represent existing pain points caused by the lack of feature
support by existing technologies, and are not directly caused by Chaining-Box’s design
choices.

No XDP on TX: the lack of an XDP hook on the egress direction of network
interfaces hinders Chaining-Box in two ways. First, it forces Enc and Fwd stages be
implemented on TC-egress. If not properly configured, other TC filters and actions can
be executed after these stages, potentially affecting SFC functionality. By using an XDP
hook, it would be more likely that these two last processing stages were some of the last
pieces of code operating on the outgoing packet. The second consequence is that no BPF
programs can be executed on egress packets from AF_XDP sockets, thus kernel-bypass
functions are not supported by Chaining-Box.

No chained XDP execution: currently XDP programs cannot be executed in
1https://www.bsdcan.org/2018/schedule/track/Hacking/963.en.html
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sequence, as is supported for TC programs using priorities and chains, for example. Thus
each interface can only have a single XDP program attached to it. Chained execution
can be emulated by the use of tail calls, but requires some changes to programs. Thus
Chaining-Box currently cannot operate with service functions running on the XDP layer
without changes to their source code.

Blackbox service functions: some existing service functions are implemented
as black boxes, not allowing changes to its execution unit (be it VMs or containers).
This makes it impossible to load the BPF processing stages, requiring the use a different
technology for implementing the architecture.
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Chapter 8

Conclusion

The main inquiry surrounding this work was How to provide SFC in a fully transpar-
ent manner while also meeting portability, reconfigurability and scalability requirements.
We proposed Chaining-Box, an SFC architecture fulling these requirements while also
providing extra benefits.

It is capable of operating in a fully transparent manner by placing all SFC function-
ality inside the Linux kernel in the form of BPF programs, not requiring any cooperation
or knowledge from neither the service functions nor from the network infrastructure. The
use of NSH encapsulation to create a service overlay further decouples it from the network,
using the latter solely for packet forwarding based on well established protocols.

The use of BPF technology allows Chaining-Box to be readily deployable to any
server with a recent Linux kernel, and leverages the kernel’s support for runtime loading of
BPF programs to be flexible to possible changes in chaining configuration and demand. All
this with very low overhead, allowing Chaining-Box to be scalable to many CBox instances
deployed on the same physical server.

The feasibility and different performance aspects of such approach have been evalu-
ated, showing that although not yet on par with existing kernel-bypass or hardware-based
alternatives, it is a promising solution providing a greater level of flexibility and indepen-
dence from the network infrastructure.

8.1 Future Work

There are many aspects of the architecture still to be explored. For example,
tests with actual service functions were out of the scope of this work, but are important
demonstrations of how Chaining-Box can handle real applications and should be done in
the future. Also different proxy strategies used by Dec and Enc stages could allow it to
lift the restriction of supporting only functions that do not alter packet headers.

Another existing limitation is that Chaining-Box is currently only capable of han-
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dling linear chains. Support for branches and parallel execution with merging is also left
as future work.

Furthermore, the overall performance could be improved by combining Enc and
Fwd stages to avoid the extra table lookups and also offloading the stages to a pro-
grammable SmartNIC to be executed in hardware.

Lastly, new performance tests with less overhead inherent to the underlying setup
would help understanding the architecture’s own overheads, possibly helping optimizing
it to better handle higher traffic loads.

8.2 Publications

During the development of this thesis, the author published a paper on the prede-
cessor of Chaining-Box [Castanho et al., 2019], and was a key contributor to tutorials on
how to use eBPF and XDP for fast packet processing, in order the share the learnings ob-
tained from this work with the wider community [Vieira et al., 2019, Vieira et al., 2020].
He also helped developing a BPF loader and driver to interact with an FPGA-based
serverless platform leveraging BPF [Pacífico et al., 2020].
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Appendix A

Configuration file structure

As briefly discussed in Section 5.6, the configuration file given as input to the controller
is expressed in JSON format. This file must contain two mandatory fields, as discussed
in the following sections.

A.1 chains

This field is an array of chain objects representing all the chains that should be
configured. Each element in the array is an object with two mandatory fields: id and
nodes. The first is a simple integer indicating the SPI for that specific chain, while
the second comprises of an array of strings with the names (tags) of the functions that
compose the chain.

Note that the names listed on the nodes field of each chain object must have a
corresponding object with that tag in the functions array field discussed in the next
section. Otherwise, the controller rejects the configuration file as it cannot properly
configure the given list of chains.

A.2 functions

This field is an array of function objects used to tell the controller of all the SFs
that will be part of the chains listed on the chains field. Each function object is composed
of three mandatory fields:

• tag: this is the name by which this SF should be referred to by the controller. It is
used to uniquely identify this instance among all others.
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• type: this is an implementation-specific detail of the current prototype. It is used
to indicate which of a set of known service functions should run on that specific
node. On a more generic implementation, this should point to some way to deploy
that specific function on the corresponding host.

• host: this field indicates the name of host on which this SF is hosted. It is mainly
used by the controller to determine if direct links can be used. When two consecutive
nodes in a chain are deployed to the same host, they are automatically connected
by direct links.

A.3 Example

Listing A.1 gives yet another example of a valid Chaining-Box configuration file:

Listing A.1: Example of JSON configuration file
1 {
2 "chains": [
3 {
4 "id": 7892,
5 "nodes": ["sf1"]
6 },
7 {
8 "id": 1234,
9 "nodes": ["sf1","sf2"]

10 }
11 ],
12 "functions": [
13 {
14 "tag": "sf1",
15 "type": "tc-redirect",
16 "host": "server1"
17 },
18 {
19 "tag": "sf2",
20 "type": "tc-redirect-delay",
21 "host": "server2"
22 }
23 ]
24 }
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A.4 JSON Schema

The JSON Schema shown in Listing A.2 formalizes the structure of the file.

Listing A.2: JSON Schema of chaining configuration file
1 {
2 "definitions": {
3 "Configfile": {
4 "type": "object",
5 "additionalProperties": false,
6 "properties": {
7 "chains": {
8 "type": "array",
9 "items": {

10 "$ref": "#/definitions/Chain"
11 }
12 },
13 "functions": {
14 "type": "array",
15 "items": {
16 "$ref": "#/definitions/Function"
17 }
18 }
19 },
20 "required": [
21 "chains",
22 "functions"
23 ],
24 "title": "Configfile"
25 },
26 "Chain": {
27 "type": "object",
28 "additionalProperties": false,
29 "properties": {
30 "id": {
31 "type": "integer"
32 },
33 "nodes": {
34 "type": "array",
35 "items": {
36 "type": "string"
37 }
38 }
39 },
40 "required": [
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41 "id",
42 "nodes"
43 ],
44 "title": "Chain"
45 },
46 "Function": {
47 "type": "object",
48 "additionalProperties": false,
49 "properties": {
50 "tag": {
51 "type": "string"
52 },
53 "type": {
54 "type": "string"
55 },
56 "host": {
57 "type": "string"
58 }
59 },
60 "required": [
61 "host",
62 "tag",
63 "type"
64 ],
65 "title": "Function"
66 }
67 }
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