
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Thaís Oliveira Mombach

A Comparative Study of APIs for Querying GitHub Data

Belo Horizonte

2019

Thaís Oliveira Mombach

A Comparative Study of APIs for Querying GitHub Data

Versão Final

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da Computação
da Universidade Federal de Minas Gerais,
como requisito parcial à obtenção do título
de Mestre em Ciência da Computação.

Orientador(a): Marco Tulio de Oliveira Va-
lente

Belo Horizonte

2019

Thaís Oliveira Mombach

A Comparative Study of APIs for Querying GitHub Data

Final Version

Thesis presented to the Graduate Program
in Computer Science of the Universidade
Federal de Minas Gerais Departamento de
Ciência da Computação. in partial fulfill-
ment of the requirements for the degree of
Master in Computer Science.

Advisor: Marco Tulio de Oliveira Valente

Belo Horizonte

2019

c⃝ 2019, Thaís Oliveira Mombach.
Todos os direitos reservados.

Mombach, Thaís Oliveira

M732c A Comparative Study of APIs for Querying GitHub
Data / Thaís Oliveira Mombach. — Belo Horizonte,
2019

xiii, 81 f. : il. ; 29cm

Dissertação (mestrado) — Universidade Federal de
Minas Gerais Departamento de Ciência da
Computação.

Orientador(a): Marco Tulio de Oliveira Valente

1. Computação — Teses. 2. Engenharia de software
— Teses. 3. Software gratuito — Teses. I. Orientador.
II. Título.

CDU 519.6*32(043)

Ficha catalográfica elaborada pela bibliotecária Irénquer Vismeg
Lucas Cruz - CRB 6a Região no 819

To Paulo, Edileusa, and Aline.

Acknowledgments

Primeiro de tudo, gostaria de agradecer a Deus que me abençoou e deu forças para que
eu conseguisse chegar até aqui.

Aos meus pais, Paulo e Edileusa, agradeço por sempre acreditarem em mim e
me apoiarem em todas as minhas escolhas, fazendo dos meus sonhos os deles também.
Sem todo o carinho e apoio de vocês eu não conseguiria chegar até aqui. Obrigada!

A minha irmã, Aline, agradeço por todo companheirismo e carinho que sempre
teve comigo. Obrigada pro me ouvir nos momentos difíceis, sem você a caminhada
seria muito mais difícil!

Ao Vinícius, agradeço pelo amor e carinho, sempre cuidando de mim e me ale-
grando meus dias.

Ao meu orientador, Marco Tulio, agradeço por ter me recebido e por todo o
ensinamento que me passou.

Aos meus amigos, por me ouvirem nos momentos difíceis e nos momentos felizes
comemorarem comigo.

Aos meus colegas da UFMG, agradeço pela ensinamentos e conselhos durante
esses anos de mestrado.

Ao meus colegas da SAP, agradeço pela força que me deram durante esse período
do mestrado.

“As we go through life, you will see that there is so much that we don’t understand.
And the only thing we know is things don’t always go the way we plan.”

(The Lion King)

Resumo

O GitHub é uma plataforma usada por 40 milhões de usuários para hospedar código-
fonte de mais de 100 milhões de repositórios. A plataforma é usada também por im-
portantes sistemas de código aberto (OSS) para armazenar e compartilhar seu código,
e também para organizar as contribuições de desenvolvedores de todo o mundo. Esse
fato, juntamente com o fácil acesso aos dados, explica por que o GitHub é amplamente
usado em pesquisas de Engenharia de Software. Esta dissertação de mestrado visa
fornecer uma análise comparativa e detalhada de duas APIs populares para acessar
dados do GitHub: API REST do GitHub e GHTorrent. Primeiro, realizamos um es-
tudo usando 23 consultas extraídas de artigos publicados em duas grandes conferências
de Engenharia de Software. Implementamos essas consultas para analisar as APIs em
diferentes dimensões, incluindo esforço de configuração, qualidade da documentação,
informações disponíveis, complexidade das consultas e limitações. Com base nessas
análises, foi possível comparar as duas APIs e descobrir que a API REST do GitHub
pode estar à frente do GHTorrent nos aspectos analisados. Por exemplo, ambas as
APIs fornecem documentação, mas a documentação do GHTorrent parece estar de-
satualizada. Finalmente, concluímos o trabalho principal avaliando as duas APIs em
um estudo de caso. Coletamos os 10K principais repositórios com base no número de
estrelas para responder a três perguntas de pesquisa sobre desenvolvimento de software
de código aberto em diferentes países. Com este estudo, foi possível analisar os resul-
tados recuperados usando dados de diferentes APIs. Identificamos algumas variações
nos resultados, a maioria relacionada à diferença na data de coleta dos dados das duas
APIs. Como contribuições práticas do trabalho, são apresentadas análises de cada uma
das APIs para auxiliar os pesquisadores na escolha de uma API para coleta de dados.

Palavras-chave: GitHub, API REST do GitHub, GHTorrent, desenvolvimento de
software aberto.

Abstract

GitHub is a popular platform for hosting source code with more than 100 million
repositories and 40 million users. GitHub is used by important Open Source Software
(OSS) projects to store and share their code, and also to organize the contributions from
developers around the world. This fact along with easy access to GitHub data explains
why GitHub is widely used in Software Engineering studies. This master dissertation
aims to provide a detailed comparative analysis of two popular APIs for accessing
GitHub data: GitHub REST API and GHTorrent. First, we conduct a study using
23 queries extracted from papers of two major Software Engineering conferences. We
implemented these queries to analyze the APIs under different dimensions, including
setup effort, documentation quality, data coverage, queries complexity, and limitations.
Based on these analyses we could find that GitHub REST API is ahead GHTorrent in
the analyzed aspects. For example, both APIs provide documentation, but GHTorrent
documentation seems to be out of date. Finally, we conclude the master work by
evaluating the queries technologies in a real case study. We collect the top-10K GitHub
repositories based on the number of stars to answer three research questions about open
source software development in different countries. In this study, we analyze the results
achieved by using data from different APIs. We identify some variation in the results,
although most of them can be related to the time difference in data collection of both
APIs. As practical contributions of this work, we present analyzes of each of the APIs
to assist researchers when choosing an API for data collection.

Palavras-chave: GitHub, GitHub REST API, GHTorrent, Open Source development.

List of Figures

3.0 Documentation for /search/repositories endpoint. 52
3.1 Textual description of projects table from GHTorrent dump. 54
3.2 Example query from GHTorrent documentation. 54

4.1 Popularity in terms of the number of stars using data from GitHub REST
API . 72

4.2 Popularity in terms of the number of stars using data from GHTorrent . . 72

List of Tables

2.1 Analysis of GitHub APIs. 23

3.1 Analysis of GitHub REST API, GitHub Archive, and GHTorrent usage on
the selected papers. 26

3.2 Data collected from selected paper. 27
3.3 Queries implemented using GitHub REST API and GHTorrent. If the query

was successfully implemented we mark with 3; if not, we mark with 7. . . 55
3.4 Number of endpoints and requests for each GitHub REST API query, and

number of tables and joins used to implement each query for GHTorrent. . 57
3.5 Finding from GitHub REST API and GHTorrent. 62

4.1 Top-20 countries with more repositories using GitHub REST API and
GHTorrent. 68

4.2 Top-3 language by country using GitHub REST API and GHTorrent. . . . 71

Contents

1 Introduction 14
1.1 Motivation . 14
1.2 Proposed Work . 15
1.3 Contributions . 16
1.4 Publications . 17
1.5 Outline of the Dissertation . 18

2 Background 19
2.1 GitHub REST API . 19
2.2 GitHub GraphQL . 20
2.3 GHTorrent . 21
2.4 GitHub Archive . 22
2.5 Final Remarks . 23

3 Comparison 25
3.1 Study Design . 25
3.2 Queries . 28
3.3 Discussion and Lessons Learned . 49

3.3.1 Initial Setup . 49
3.3.2 Documentation . 51
3.3.3 Data Availability . 54
3.3.4 Queries Complexity . 56
3.3.5 Limitations . 58

3.4 Limitations . 60
3.5 Final Remarks . 61

4 Case Study 63
4.1 Research Questions . 63

4.2 Study Design . 64
4.2.1 GitHub REST API . 64
4.2.2 GHTorrent . 64

4.3 Queries . 65
4.3.1 GitHub REST API . 65
4.3.2 GHTorrent . 66
4.3.3 Conclusion . 67

4.4 Results . 67
4.5 Limitations . 73
4.6 Final Remarks . 73

5 Conclusion 75
5.1 Overview . 75
5.2 Contributions . 75
5.3 Related Work . 77
5.4 Future Work . 78

Bibliography 79

14

Chapter 1

Introduction

1.1 Motivation

Nowadays, GitHub is the most popular platform for source code storage and sharing,
with more than 100 million repositories and 40 million users.1 GitHub is not only used
to store and share code but also to organize the contributions from developers around
the world. We can find popular Open Source Software (OSS) in GitHub including
Linux2, OpenOffice3, and Notepad++.4 These facts along with the friend API provided
by GitHub contribute to the platform being commonly used in Software Engineering
research [Cosentino et al., 2017]. Due to the large interest in GitHub for research, other
platforms that collect and share GitHub data were created, such as GitHub Archive5

and GHTorrent [Gousios and Spinellis, 2012]. Essentially, these systems collect data
from GitHub and make it available for further analysis.

Each one of the APIs provides GitHub data in different formats. GitHub REST
API6 is the official GitHub API that provides access to GitHub through endpoints
that returns the results in JSON format. This API provides data about repositories,
users, issues, pull requests, among others. Recently, GitHub announced a new API
version that uses a data query language called GraphQL.7 This version allows the user
to specify the data to be returned, also in a JSON format. GitHub Archive5 is a
project created by Ilya Grigorik that collects GitHub events and makes them available

1https://github.com/features
2https://github.com/torvalds/linux
3https://github.com/apache/openoffice
4https://github.com/notepad-plus-plus/notepad-plus-plus
5https://www.gharchive.org/
6https://developer.github.com/v3/
7https://developer.github.com/v4/

15

in hourly archives. Users can easily retrieve this data via an HTTP client and use it in
their work. Although GitHub Archive does not provide direct data about repositories
and users, they can be obtained through the collected events. The last project is
GHTorrent [Gousios and Spinellis, 2012] created by Georgios Gousios. This project
provides an off-line mirror of GitHub data, which is populated with data from GitHub
events and GitHub API. The data is available in structured and unstructured formats.
In the first case, the data is organized in tables on MySQL; in the latest one, the raw
data is stored in MongoDB.

When collecting GitHub data, it is important to comprehend these different APIs,
so that we can adopt the most suitable option. However, we still lack studies
about these APIs, especially studies analyzing their differences and target
audience.

1.2 Proposed Work

This master dissertation aims to provide a comparative analysis of two popular APIs
for accessing GitHub data: GitHub REST API and GHTorrent. We are not comparing
GitHub Archive because, based on the papers we analyzed to extract the queries, we
did not find studies mentioning GitHub Archive as the API used for data collection.
Also, this study does not include GitHub GraphQL API because it is a recent API not
yet widely adopted.

We first conduct a study with queries that are implemented for both APIs to
compare them under different dimensions. Finally, we analyze the APIs through a case
study about open source software development in different countries. Both of these
works are described next.
Query implementation and analysis. We implement the example queries for both
APIs to exemplify and explain their usage. These queries were extracted from papers
of two major Software Engineering conferences: International Conference on Software
Engineering (ICSE, 2017 edition) and Mining Software Repositories Conference (MSR,
2017 edition). Based on the implemented queries, we compare both APIs under differ-
ent dimensions:

1. Examples. To analyze the APIs, we propose 23 real-world queries that we
attempt to implement in this study for GitHub REST API and GHTorrent. We
not only implement each query but also explain how they work and expose the
implementation decisions.

16

2. Initial Setup. An API might require an initial configuration effort before being
ready for use. Based on our experience while implementing the queries, we explain
the process of the initial setup for both APIs, concluding with a comparison
between them.

3. Documentation. While implementing the queries, it is important to have access
to their documentation. We provide insights about the documentation of each
API, regarding its availability, organization, completeness, update status, and
examples.

4. Data. When we start a research, it is important to know which data is accessible
via each API. Based on the implemented queries, we provide insights related to
the GitHub data provided by each one.

5. Query Complexity. Users need to be able to easily build a query to the API.
Thus, based on different aspects of query implementation, we analyze and com-
pare the complexity of the queries manually implemented in this master disser-
tation.

6. Limitations. It is important to know the limitations of an API before starting
using it. Therefore, based on our experience while working with them, we present
the limitation we faced when using both APIs.

Case Study. We also compare GitHub REST API and GHTorrent implementing a
study about open source software development in different countries. We compare both
APIs under different aspects:

1. Study Design. We present the study design specific for the different APIs.

2. Queries. To analyze the case study, we implement and explain the queries for
both APIs. We conclude with a discussion about the differences between them.

3. Results. We analyze and compare the results of the proposed research questions
for each API.

1.3 Contributions

We highlight the following contributions of the studies presented in this master disser-
tation:

17

• We implement 23 real queries using GitHub REST API and 17 real queries using
GHTorrent extracted from two relevant Software Engineering conferences: ICSE,
2017 and MSR, 2017.

• We provide several insights about different dimensions for each API: initial setup,
documentation, data availability, query complexity, and limitations. We also
provide a comparative discussion of each dimension.

• We provided a detailed case study about Open Source Software development
around the world replicated using GHTorrent and GitHub REST API.

• We provide a discussion about the differences in the results of a study performed
using GitHub REST API and GHTorrent.

1.4 Publications

This master dissertation produced the following publications, and, therefore, it contains
material of them:

• Mombach, T., and Valente, M. T. (2018). GitHub REST API vs GHTorrent vs
GitHub Archive: A Comparative Study. In 6th Brazilian Workshop on Software
Visualization, Evolution and Maintenance (VEM), p. 1-8.

The following publications represent other research efforts during this masters
work:

• Ferreira, M., Mombach, T., Ferreira, K., and Valente, M. T. (2019). Algorithms
for Estimating Truck Factors: A Comparative Study. In Software Quality Jour-
nal, vol. 1, pages 1-37.

• Brito, G., Mombach, T., and Valente, M. T. (2019). Migrating to GraphQL: A
Practical Assessment. In 26th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 140-150, 2019.

• Mombach, T., Ferreira, M., Valente, M. T., and Ferreira, K. (2017). Caracteriza-
ção do Papel Desempenhado por Desenvolvedores Responsáveis pelo Truck Factor
de Projetos de Software. In 5th Brazilian Workshop on Software Visualization,
Evolution and Maintenance (VEM), p. 1-8.

18

1.5 Outline of the Dissertation

The remaining of this dissertation is organized as follows:

• Chapter 2 provides an overview of APIs that provide access to GitHub data.
First, we present the purpose of GitHub REST API, GitHub GrpahQL API,
GHTorrent, and GitHub Archive, and how they work.

• Chapter 3 presents the queries for GitHub REST API and GHTorrent derived
from papers of two major Software Engineering conferences. First, we explain
how we selected these queries. Then, we present the implementation for each one
of the 23 queries. Finally, we describe our findings and lessons learned based on
the process of implementing the queries.

• Chapter 4 describes a case study about open source software development
around the world. We replicate this study for GitHub REST API and GHTorrent.
We present the study design, queries, and results for both APIs. We finish this
chapter comparing both APIs regarding query complexity and result equivalence.

• Chapter 5 presents the contributions of this dissertation, including related work,
limitations, and future work.

19

Chapter 2

Background

In this chapter, we provide an overview of GitHub REST API, GitHub GraphQL API,
GHTorrent, and GitHub Archive, and conclude with a comparative analysis of them. In
the master dissertation, we will refer to these system as APIs, even though GHTorrent
and GitHub Archive are datasets.

2.1 GitHub REST API

In this section, we discuss about the GitHub REST API since it is a consolidated API
used in a large amount of research studies in Software Engineering.

GitHub REST API (v3) is based on a commonly used architectural style for
implementing web applications, called Representational State Transfer (REST). As a
result, GitHub provides a set of endpoints to access different types of data available
through HTTP requests to https://api.github.com/. For example, we can perform a re-
quest to https://api.github.com/repos/:owner/:repo to retrieve data about :owner/:repo
repository. A large variety of data are accessible through GitHub REST API through
different endpoints, for example: user, team, project, pull requests, issues and so on.

The data returned by GitHub REST API endpoint is in JSON for-
mat and it might contain multiple results that can be divided into pages,
which can be retrieved using ?page and per_page parameters. By default,
each page contains 30 items, but for some endpoints this number can be in-
creased up to 100 using ?per_page parameter. For example, the request to
https://api.github.com/repos/:owner/:repo/issues?&page=2&per_page=100 re-
trieves 100 issues from the second page of results for :owner/:repo reposi-
tory. When using pagination, each response contains a link header with access
links for immediate next page (next), immediate previous page (prev), first

20

page (first) or last page of results (last). Besides pagination, it is also possi-
ble to specify parameters for some GitHub REST API requests, for example
https://api.github.com/repos/:owner/:repo/issues?&sort=comments&direction=asc
contains parameters to specify that the results will be sorted by number of comments
(sort=comments) and in ascendant order (direction=asc).

Although a large amount of public data is available through REST API endpoints,
there is a limitation regarding the amount of data that can be accessed per hour. This
limit is calculated based on the number of requests and it varies depending on the au-
thentication provided by the user: user and password, token, or key/secret. Currently,
the rate limit for authenticated and unauthenticated requests is 5,000 and 60 requests
per hour, respectively. However, this limit is different for the search endpoints, where
it is 30 requests per minute for authenticated requests and 10 for unauthenticated.

2.2 GitHub GraphQL

In September 2016, GitHub announced GitHub API v4 that uses GraphQL query
language proposed by Facebook.8 Unlike REST API, this version provides only
one endpoint where the query in the request body defines the operation to be
executed. GitHub GraphQL API is accessible through an HTTP request to
https://api.github.com/graphql. This endpoint allows requesting data using query or
update data in the server using mutation.

The GraphQL API has a schema to represent the data available through objects.
The schema specification is accessible in the documentation and through queries to the
endpoint since the API is introspective. As the name suggests, GitHub GraphQL API
has a structure similar to a graph. The objects that represent entities from GitHub are
the nodes of the graph, which can be connected by edges when an object has connections
with other objects. For example, the object Repository represents a GitHub repository,
and a repository can have stars, forks, issues and pull requests that are represented
by other objects and accessible through connections. This schema organization allows
the user to navigate through the objects and their connections to retrieve all necessary
data in a single request.

For this API, version we have two types of limits: node limit and rate limit. The
rating limit is 5,000 points per hour, which is calculated based on the number of nodes
in the query result. For the node limit, a connection can return up to 100 nodes, and
the complete query cannot exceed 500,000 nodes. To overcome this last limit, we can

8https://github.blog/2016-09-14-the-github-graphql-api/

21

use pagination to traverse through all the necessary data. For pagination, we have first
or last arguments to retrieve up to 100 results along with offset or after to traverse
through the results.

2.3 GHTorrent

GHTorrent is a project created and maintained by Georgios Gousios [Gousios and
Spinellis, 2012]. It provides an off-line mirror of GitHub data based on the events col-
lected from the events endpoint and complementing it with further requests to GitHub
REST API. GHTorrent provides access to all collected GitHub events, as well as a
structured version generated from parsing these events.

GitHub Events API provides more than 40 different event types for activities in
the website, but it is only possible to access the last 300 public events that occurred
in the last 90 days. Moreover, GitHub REST API has a limitation of 5,000 requests
per hour for authenticated requests, as mentioned in Section 2.1. These are limitations
faced by the ones that rely on GitHub REST API, and to overcome them, GHTorrent
uses donated tokens to perform more than 5,000 requests per hour. It also relies on
cache to avoid duplicate requests, and it uses distributed data collection to ensure that
no event will be lost.

GHTorrent provides the collected data in two different formats: MySQL and
MongoDB dumps. MySQL dumps are made available monthly and contain the struc-
tured data parsed from GitHub events organized into tables that represent entities
such as projects, users, organizations, commits, pull requests, issues, and watchers. In
this format, GHTorrent also provides geolocation information (city, state, and country)
about GitHub users based on free-text location available on their profiles.

MongoDB dumps are made available daily with the raw data collected from
GitHub events and their dependencies. These dumps provide a GitHub event history,
which is an information that is not provided by the official GitHub API. However,
differently from MySQL dumps, the provided data is the actual JSON returned from
the events endpoint, not a refined version.

The data provided by GHTorrent can be accessed in three different ways: MySQL
or MongoDB dumps, web service provided by GHTorrrent, or Google Big Query when
accessing from MySQL. The first option is best suited for users that need to perform
a major data analysis. The second and last options are best suited for users that
need to process a small amount of data, since, when using GHTorrent web service, the
computational resources are shared among all users. Moreover, when using Google Big

22

Query, it is only possible to process 1TB of data free of charge.
GHTorrent’s effort of collecting GitHub events started on February 2012, and

even though it helps researchers to overcome some GitHub REST API limitations,
such as API rate limit and restricted number of events, it also has some limitations
itself. GitHub REST API does not support deletion events and since GHTorrent relies
on events to generate the structured data, it may not reflects the actual GitHub state.
For example, there is an event for starring an repository, but there is no correspondent
event for unstar, so the number of stars from a repository will never decrease. Another
problem is that the data is collected using GitHub API, and this API may change
along the time, causing problems to GHTorrent which needs to adapt its code to the
new API. For example, the events were provided by the Timeline API in the past, and
then changed to Events API. Another problem is that GitHub does not provide access
to the whole event history, so any problem during event collection might cause losing
the event forever.

2.4 GitHub Archive

GitHub Archive is a project created by Ilya Gregorik to collect and store public events
from GitHub and make them available to the community. These events are collected
using the events endpoint, and the collected JSONs are made available through files
that can be downloaded from GitHub Archive9 website.

GitHub Archive started collecting GitHub events in December 02, 2011, using
the currently deprecated Timeline API. In January 01, 2015, the events started to be
collected using the Events API, which provides access to more than 20 different events
from GitHub. This data is collected in JSON format, and it is provided to the users
in hourly archives that can be downloaded using an HTTP client.

In addition to the hourly archives, the collected events are also publicly available
on Google Big Query platform, where the data is stored in tables organized by year,
month, and day, and it is also updated hourly. These tables have columns with basic
information about the repository, the author of the event, and a JSON object for the
payload that can be manipulated using native JSON functions from Google Big Query.

GitHub Archive, as well as GHTorrent, provides access to GitHub events history
that is not provided by the official GitHub API. However, GitHub Archive provides
the whole data collected only in hourly files, so it is necessary to download one by one.
This process is simplified by Google Big Query, where the data is better organized

9https://www.gharchive.org/

23

(since data is stored in tables instead of files) and there is no need to download it;
although, it is only possible to process 1 TB of data for free.

2.5 Final Remarks

GitHub REST
API V3

GitHub
GraphQL
API V4

GitHub
Archive

GHTorrent

Data Since - - 02/12/2011 2012
Data From - - GitHub REST

API Events
GitHub REST
API

Data Type GitHub Data GitHub Data GitHub Events Structured
GitHub Data

Data Update Live Live Hourly Monthly

Table 2.1: Analysis of GitHub APIs.

The first aspect that must be taken into account is the date range we want to
collect data. When using the official GitHub REST API or GitHub GraphQL API, the
information available covers all GitHub history, but this does not happen when using
GitHub Archive and GHTorrent. GitHub Archive collects events since 02/12/2011
and GHTorrent since 2012. Therefore, even though it has a large amount of data, it
does not contains the whole history of events from GitHub, since GitHub was officially
launched in April 2008.10

Another important aspect is who maintains the projects. GitHub REST API
and GraphQL API are maintained by GitHub. GHTorrent was created by Georgios
Gousios as an Open Source Project, and it is maintained by him and an open source
community. The same is true for GitHub Archive created by Ilya Grigorik. Since
GitHub Archive and GHTorrent are not maintained by GitHub, they have to access
GitHub data through GitHub APIs; indeed, both projects collect data using REST
API. GitHub Archive access the Events API directly, while GHTorrent uses other
APIs besides the Events API. To overcome the rate limit problem, GHTorrent asks for
token donations from the community.

In other words, GitHub Archive and GHTorrent store part of the data available
on GitHub and to make it easier for researchers to access this data without a rate limit.
GitHub Archive stores data from events that occurs on GitHub organized in hourly

10https://github.com/about/milestones

24

files accordingly to the time they happened. GHTorrent provides structured data as
MySQL dumps, which are monthly released.

25

Chapter 3

Comparison

3.1 Study Design

GitHub has become a fundamental source of information for Software Engineering
research due to the large amount of open source projects it hosts and to the easy data
access through its API. To properly compare the APIs usage, we decided to rely on
actual GitHub data collection queries from papers published on two relevant Software
Engineering conferences: International Conference on Software Engineering (ICSE,
2017 edition) and Mining Software Repositories Conference (MSR, 2017 edition), with
68 and 37 accepted papers, respectively.

Therefore, we analyzed a total of 105 papers using the following procedure:

1. First, we searched each paper for the keywords GitHub, GitHub REST API,
GHTorrent, and GitHub Archive.

2. When these keywords were found, we checked whether GitHub data is used in
the study by reading the papers’ abstract and analyzing the context where the
keyword was found.

After this inspection, 12 papers were selected for our study, where 3 of them are
from ICSE and 9 from MSR. For each paper, we identified the API used to collect data.
In cases where the API was not mentioned, we considered that they were using GitHub
REST API, since it is the official tool provided by GitHub to collect data and it was
already identified as the most popular tool for that purpose [Cosentino et al., 2016].
Table 3.1 contains the number of papers by conference that rely on GitHub REST API,
GHTorrent and GitHub Archive to collect data. All ICSE papers use GitHub REST

26

API to collect data, 5 MSR papers use GitHub REST API and 4 use GHTorrent, but
none of the selected papers mentioned the use of GitHub Archive for data collection.

Conference Total GitHub REST API GHTorrent GitHub Archive
ICSE 3 3 0 0
MSR 9 5 4 0

Table 3.1: Analysis of GitHub REST API, GitHub Archive, and GHTorrent usage on
the selected papers.

Once the papers were selected, we carefully read them to identify the data col-
lected. Most papers describe in the Methodology or Study Design sections how GitHub
data was collected. For example, a paper [Gharehyazie et al., 2017a] selected for the
study a list of non-fork GitHub projects implemented in Java that have at least 2 con-
tributors, more than 10 commits and that are at least 1 year old, as reported in its
Methodology section:

"We selected Java projects that had at least 2 developers, were
at least 1 year old, and had more than 10 commits. These criteria
remove smaller and younger projects, most of which have a single developer,
and usually do not contribute much to the ecosystem, and would have
skewed our results [7]. We also eliminated projects that were forked
using GitHub interfaces, as they would highly skew our findings due to
their duplicate code."

In Table 3.2, we show the excerpt about the data collected for each paper in this
study. For papers using GHTorrent, we can see that in most the cases is only being used
to identify repositories based on characteristics. Similarly, GitHub REST API is used
to collect repositories based on characteristics, but it is also used to collect issues and
pull requests. Based on this excerpts, we identified the data collected for each paper
and proposed queries to collect the required data. In addition, the queries we extracted
might be shared by more than one of the selected papers. For example, Query #18
retrieves top-x repositories implemented in language y, and it is shared by two papers
that reported to collect the top 100 C repositories [Floyd et al., 2017] and top five
most starred Java repositories on GitHub [Xiong et al., 2017]. We use these queries to
explain how to use GitHub REST API and GHTorrent through data collection using
these APIs, and compare them based on their characteristics and limitations. These
queries are not implemented for GitHub Archive because we did not find any paper
that report using it. Also, we did not include GitHub GraphQL API because it is a
recent API not widely adopted yet.

27

Paper Tool Data Collected Query

Decoding the representation
of code in the brain: an fMRI
study of code review and
expertise (ICSE 2017)

GitHub
REST
API

"A pool of candidate pull requests were selected by
considering the top 100 C repositories on GitHub as of
March 2016 and obtaining the 1,000 most recent pull
requests from each. We considered the pull requests
in a random order and filtered to consider only
those with at most two edited files and at most 10
modified lines, as well as those with non-empty
developer comments"

Query #18

Query #12

Query #13

Precise condition synthesis for
program repair (ICSE 2017)

GitHub
REST
API

"The first dataset consists of the top five most starred
Java projects on GitHub as of Jul 15th, 2016" Query #18

How do Developers Fix
Cross-project Correlated
Bugs? A case study on the
GitHub scientific Python
ecosystem (ICSE 2017)

GitHub
REST
API

"The column #devs presents the number of members
in the organizations. [...] The next four columns show
the total numbers of commits, branches, releases,
and contributors at the time of March 12th, 2016."

Query #11
Query #4
Query #9
Query #8
Query #7

First, for any of the studied projects, we collected all its
closed bugs. Query #14

Exception Evolution in Long-
lived Java Systems (MSR
2017)

GitHub
REST
API

"Using the GitHub search facility, we query for reposito-
ries that are (i) written in Java, (ii) created be-
fore 1 January 2012, (iii) are starred more than 10
times and have been forked at least 10 times, (iv)
are greater than 1MB in size, and (v) have at least
one commit since 1 July 2016."

Query #21

How Open Source Projects use
Static Code Analysis Tools
in Continuous Integration
Pipelines (MSR 2017)

GitHub
REST
API

"we ranked the selected projects in terms of popu-
larity by using the GitHub APIs" Query #3

Extracting Build Changes with
BUILDDIFF (MSR 2017)

GitHub
REST
API

"We retrieved a list of Java projects ordered by their
star rating and removed projects that do not use
MAVEN as build system and projects with less than 3500
commits in the repository or rated with less than
1000 stars"

Query #22

Bug Characteristics in
Blockchain Systems: A
Large-Scale Empirical Study
(MSR 2017)

GitHub
REST
API

"We focus on closed bug reports from the issue
repositories, i.e., closed issues with tag bug. We
exclude open bug reports because they are not fixed and
may not have enough information for our analysis, or they
may not even be bugs. TABLE I shows the number of
closed bug reports for the eight blockchain projects"

Query #14
Query #15
Query #3
Query #7
Query #8
Query #1

Oops, My Tests Broke the
Build: An Explorative
Analysis of Travis CI with
GitHub (MSR 2017)

GHTorrent

"we selected all projects that are not forks themselves,
and received more than 50 stars." Query #19

"For each project, we extracted five GITHUB features from
GHTORRENT: main project language ∈ C, C++,
Java, Ruby, ..., number of watchers ∈ [51; 41,663],
number of external contributors ∈ [0; 2,986], number
of pull requests ∈ [0; 27,750], number of issues ∈ [0;
127,930] and active years of the project ∈ [0; 45]);"

Query #1
Query #3
Query #7
Query #5
Query #6
Query #2

Some From Here, Some From
There: Cross-Project Code
Reuse in GitHub (MSR 2017)

GHTorrent

"We selected Java projects that had at least 2 develop-
ers, were at least 1 year old, and had more than 10
commits. [...] We also eliminated projects that were
forked using GitHub interfaces, as they would highly skew
our findings due to their duplicate code."

Query #23

Stack Overflow in Github: Any
Snippets There? (MSR 2017) GHTorrent "... we downloaded 909k Python non-fork repositories

based on the GHTorrents metadata..." Query #17

Choosing an NLP Library for
Analyzing Software
Documentation: A Systematic
Literature Review and a Series
of Experiments (MSR 2017)

GitHub
REST
API

"we also wrote a script to facilitate the random sampling
of ReadMe files from Java related GitHub projects"

Query #10

Query #16

Structure and Evolution of
Package Dependency
Networks (MSR 2017)

GHTorrent

"For Rust, we cloned all projects listed in
GHTorrent, but for JavaScript and Ruby, we only
cloned those that either had at least one fork or at
least one star..."

Query #17

Query #20

Table 3.2: Data collected from selected paper.

28

In Section 3.2, we present and explain GitHub REST API and GHTorrent queries
to collect the desired data based on the discussion around Table 3.2. When going
through this section, it is important to have in mind that a query might be shared
by more than one paper. Consequently, the result of these queries can differ from the
results from the paper we used to extract the query.

In Section 3.3, based on our effort while constructing and explaining the queries
from Section 3.2. We present our findings about the usage of each API regarding en-
vironment setup, documentation, data availability, query construction and limitations,
and compare each API based on these dimensions.

3.2 Queries

Query #1: Main programming language of a repository

A repository on GitHub can use multiple languages, but in this query we retrieve the
programming language mostly used to implement repository example/repo.

GitHub REST API

For this query, we also use /repos/:owner/:repo endpoint since one of the properties in
the JSON result is the main programming language used by the repository (language).

https://api.github.com/repos/example/repo

GHTorrent

When using GHTorrent, this data can be directly retrieved from the language column
in projects table.

1 SELECT language FROM projects

2 WHERE url = ’https://api.github.com/repos/example/repo’

Another possibility is to retrieve the most used programming language from
project_languages table. This table stores all languages used by the repository along
with the number of bytes implemented in that language. It is possible to exist multi-
ple entries of the same language for a project, but the timestamp of when the entry
was added (created_at) can differentiate them. We did not use this approach because
requires access in two tables.

29

Query #2: Age of a repository

In this query, we calculate the age of a repository based on the creation date retrieved.

GitHub REST API

We continue to use /repos/:owner/:repo endpoint without any parameters besides the
repository name in this query. The JSON result includes the creation date of a repos-
itory (created_at). Since this endpoint does not return the age directly, it requires an
additional step to calculate the age based on the creation date.

https://api.github.com/repos/example/repo

GHTorrent

For GHTorrent, we need to query the projects table, which contains the repository
creation date in the created_at column. We use specific functions to calculate the age
based on the date in the created_at column, not requiring an additional step after the
data is collected.

1 SELECT FLOOR(DATEDIFF(CURRENT_TIMESTAMP(),created_at)/365) AS age

2 FROM projects WHERE url = ’https://api.github.com/repos/example/repo’

Query #3: Number of stars of a repository

In this query, we calculate the number of stars for example/repo repository.

GitHub REST API

The repos/:owner/:repo endpoint, which is used in the following query, fetches reposi-
tory data, including the number of stars in stargazers_count property. For this query
we use no parameters.

https://api.github.com/repos/example/repo

GHTorrent

To calculate the number of stars using GHTorrent, we need two tables: projects and
watchers. We use projects table to retrieve the repository identifier (lines 2-3), which is

30

used to fetch from watchers table the ids of the users that gave a star to the repository.
As a result, we count the number of distinct user identifiers to get the number of stars
(line 1). This is necessary because a user can appear twice in the list since they can
star and unstar a repository several times and there is not event for unstar.

1 SELECT COUNT(S.user_id) FROM (SELECT user_id FROM watchers w

2 WHERE repo_id = (SELECT id FROM projects WHERE

3 url = ’https://api.github.com/repos/example/repo’)

4 GROUP BY user_id) S

Query #4: Number of contributors of a repository

A repository contributor in GitHub is a user that did at least one commit to the
repository. Therefore, in this query, we need to retrieve the number of contributors of
example/repo.

GitHub REST API

GitHub REST API provides repo/:owner/:repo/contributors endpoint that lists all con-
tributors of a repository. Therefore, we use this endpoint along with page and per_page
to calculate the number of contributors.

When we use pagination, the response header of a request might contain a Link
property with queries to the first, next and last page of results. In this example, we
request the first page of results with only one contributor. If the repository have more
than one contributor, we retrieve, from the Link property in the response header, the
query to the last page of results to determine the total number of contributors. The
page property of the query to the last page of results is sufficient to retrieve the number
of contributors because each page contains only one result.

https://api.github.com/repos/example/repo/contributors?&page=1&per_page=1

GHTorrent

In this query for GHTorrent, we use projects, commits, and project_commits tables.
The project_commits table is used along projects table to identify the commits of a
repository (lines 4-6), since forked repositories can have shared commits. These two
tables along with commits table is used to identify the authors of commits (author_id)

31

in a repository. We count the number of distinct authors to retrieve the number of
contributors of a repository (line 1).

1 SELECT COUNT(X.author_id) AS num_contributors FROM (

2 SELECT c.author_id FROM commits c

3 INNER JOIN

4 (SELECT commit_id FROM project_commits

5 WHERE project_id = (SELECT id FROM projects

6 WHERE url = ’https://api.github.com/repos/example/repo’)) pc

7 ON c.id = pc.commit_id

8 GROUP BY c.author_id) x

Query #5: Number of commits in a repository

We retrieve the number of commits in repository example/repo with this query.

GitHub REST API

The endpoint repo/:owner/:repo/commits returns a list of commits in a repository.
Therefore, we use this endpoint along with page and per_page parameters to request
the first page containing one result. If the repository has more than one commit, we
use the query to the last page of results in the response header to calculate the number
of commits following the same approach from Query #4.

https://api.github.com/repos/example/repo/commits?&page=1&per_page=1

GHTorrent

In this query, we use projects and project_commits tables to construct a GHTorrent
query. The projects table is used to retrieve the repository identifier (lines 3-4), which
is used to count the number of commits in a repository using project_commits table
(line 1).

1 SELECT COUNT(commit_id) AS num_commits

2 FROM project_commits

3 WHERE project_id = (SELECT id FROM projects WHERE

4 url = ’https://api.github.com/repos/example/repo’)

32

Query #6: Number of pull requests of a repository

In this query, we retrieve the number of pull requests of example/repo repository.

GitHub REST API

We use the repo/:owner/:repo/pulls endpoint with page and per_page parameters to
request the first page with one result for this query. If more than one result is found,
the response header has the Link property with the query to the last page of results.
We use this query to calculate the number of pull requests; as explained in Query #4.

https://api.github.com/repos/example/repo/pulls?&page=1&per_page=1

GHTorrent

For GHTorrent, we use pull_requests table to count the number of pull requests (line
1) referring to the repository identified using the projects table (lines 2-3).

1 SELECT COUNT(pullreq_id) AS num_pull_requests FROM pull_requests

2 WHERE base_repo_id = (SELECT id FROM projects WHERE url =

3 ’https://api.github.com/repos/example/repo’)

Query #7: Number of issues from a repository

For this query, we retrieve the number of issues in example/repo.

GitHub REST API

For this query, we use two endpoints. First, we use repo/:owner/:repo/issues endpoint
with per_page and page parameters besides the repository name. The number of issues
is calculated based on the query to the last page in the Link property in the response
header; as discussed for Query #4.

https://api.github.com/repos/example/repo/issues?&page=1&per_page=1

Every pull request is an issue on GitHub, so the result of the first query returns
the number of issues plus pull requests. To retrieve only the number of issues, besides
the first query, we need to execute Query #6 to retrieve the number of pull requests.

33

Therefore, the difference between the result of these two queries is the number of issues
in a pull request.

GHTorrent

In this query, we use the issue table to identify and count the issues (line 1) from
the repository with GHTorrent identifier retrieved from projects table (lines 2-3). In
addition, since every pull request is a issue for GitHub, we filter out the pull requests
(line 4)

1 SELECT COUNT(issue_id) AS num_issues FROM issues

2 WHERE repo_id = (SELECT id FROM projects WHERE

3 url = ’https://api.github.com/repos/example/repo’)

4 AND pull_request_id IS NULL

Query #8: Number of releases of a repository

In this query, we retrieve the number of releases of example/repo repository.

GitHub REST API

The repo/:owner/:repo/releases endpoint provides access to a list of published releases
of a repository. We use this endpoint along with page and per_page parameters to
calculate the number of releases based on the Link property in the response header; as
described in Query #4.

https://api.github.com/repos/example/repo/releases?&page=1&per_page=1

GHTorrent

Although GHTorrent provides access to a large amount of data from GitHub, there is
no data related to repository releases. As a result, we are not able to implement this
query for GHTorrent.

Query #9: Number of branches of a repository

In this query, we collect the number of branches in example/repo repository. A branch
is a parallel version of a repository that does not affect the primary branch.

34

GitHub REST API

The repo/:owner/:repo/branches endpoint retrieves a list of branches from a repository,
and in this query is used along with page and per_page parameters. The number of
branches is calculated based on the Link property in the response header; as discussed
for Query #4.

https://api.github.com/repos/example/repo/branches?&page=1&per_page=1

GHTorrent

GHTorrent does not store data about branches, so it is not possible to implement a
query to retrieve the desired data.

Query #10: README of a repository

Each repository on GitHub can have a README file that is used to explain the
purpose of the project and how to use it. In this query, we want to retrieve this file for
example/repo repository.

GitHub REST API

The repo/:owner/:repo/readme endpoint from GitHub REST API retrieves data about
the repository README. From the JSON result of this request, we need the data in
the content property. The content data is encoded, so we have an additional step of
decoding it.

https://api.github.com/repos/example/repo/readme

GHTorrent

GHTorrent does not provide data about README files, so we cannot implement a
GHTorrent query to retrieve the data.

Query #11: Number of members in the organization

Besides user account, GitHub has organization accounts, which are shared accounts
managed by GitHub users identified as members. In this query, we retrieve the number
of members in an organization called example.

35

GitHub REST API

To calculate the number of members in an organization the orgs/:org/members end-
point is used along with per_page and page parameters. The result is the first page
containing only one result. If there is more than one member in the organization, the
number of members is extracted from the query to the last page of results available in
the Link property from the response header; as explained for Query #4.

https://api.github.com/orgs/example/members?&per_page=1&page=1

GHTorrent

GHTorrent stores not only information about users, but also organizations. In this
query, we use the tables users and organization_members to calculate the number of
users that are members of the organization. Particularly, we count the distinct users
(line 1) in organization_members table for the organization identified using users table
(line 3).

1 SELECT COUNT(DISTINCT user_id) as num_members

2 FROM organization_members

3 WHERE org_id = (SELECT id FROM users WHERE login = ’example’)

Query #12: X most recent pull requests from a repository

In this query, we retrieve the GitHub identifier of the 1,000 most recent pull requests
for a repository example/repo.

GitHub REST API

The endpoint repos/:owner/:repo/pulls provides access to a list of pull requests of a
repository based on the specified parameters. In this query, we use state parameter
to retrieve pull requests in all states, also sort and direction parameters to retrieve
the pull requests in a descendant order of the creation date. The per_page and page
parameters are used to to iterate through 10 pages, each one with 100 results. We
collect only the full_name information from each result.

https://api.github.com/repos/example/repo/pulls?&state=all&sort=created &direc-
tion=desc&page=1&per_page=100

36

GHTorrent

GHTorrent stores the data collected about pull requests in four tables. We use two of
them, pull_requests and pull_request_history, along with the projects table to imple-
ment this query. We use projects table to retrieve the GHTorrent identifier (id) of the
repository, which is used to identify its pull requests (id and pullreq_id) stored in the
pull_requests table (lines 2-5). Then, the result of this subquery is combined with the
1,000 most recent pull requests resulted from subquery of pull_request_history table
that order the results based on the creation date (created_at) of the opened event
(action) of a pull request (lines 7-10). The final results is ordered and limited to 1,000
pull requests (lines 9-10).

1 SELECT pr.pullreq_id

2 FROM (SELECT id, pullreq_id FROM pull_requests

3 WHERE base_repo_id =

4 (SELECT id FROM projects

5 WHERE url = ’https://api.github.com/repos/example/repo’)) pr

6 INNER JOIN

7 (SELECT pull_request_id, created_at FROM pull_request_history

8 WHERE action = ’opened’

9 ORDER BY created_at DESC

10 LIMIT 1000) prh

11 ON pr.id = prh.pull_request_id

12 ORDER BY prh.created_at DESC

The repository name is the concatenation of the owner’s login and repository
name. As a result, to identify a repository, we can use the users and projects tables,
that contains the owner login (login) and project name (name), respectively. However,
on the projects table, we have a url column that stores the URL used by GHTorrent to
collect repository information, and in the URL we have the complete repository name.
As a result, instead of accessing two tables, we use this url column from projects (line
5).

Query #13: Number of edited files, modified lines and

comments in a pull requests

In this query, we need to collect the number of edited files, modified lines (additions
and deletions) and comments from pull request #753 of example/repo repository.

37

GitHub REST API

The endpoint repos/:owner/:repo/pulls/:pr_number returns data about a given pull
request. For this query, we do not use any parameter . The result contains a set of data
related to the pull request, but we only need the data from properties: changed_files,
additions, deletions, and comments.

https://api.github.com/repos/example/repo/pulls/753

GHTorrent

GHTorrent provides data about pull requests, but this data is not sufficient to imple-
ment a query that retrieves the required data from pull requests. GHTorrent does not
provide data related to the number of edited files or modified lines on a pull request.

Query #14: Issues on state y and label x of a repository

In this query, we retrieve the GitHub identifier of all closed issues with label bug from
repository example/repo.

GitHub REST API

GitHub REST API provides /repos/:owner/:repo/issues endpoint to fetch issues data
of a repository according to a set of parameters. For this query, we use state and labels
parameters to filter closed issues with a label bug. From the JSON result, we need to
retrieve only the value from property id.

https://api.github.com/repos/example/repo/issues?&state=closed&labels=bug
&page=1&per_page=100

In GitHub, all pull requests are issues, so this endpoint might return both pull
requests and issues. To differentiate them, we also need to check for a pull_request
key, which appears only on pull request results.

GHTorrent

In this query, we use five tables distributed in sub-queries that are combined to retrieve
the desired result. We filter out pull request (pull_request_id) from the result using
issues table (line 14). The projects table is used to retrieve the GHTorrent identifier
for the repository (lines 2-4). After that, tables repo_labels and issue_labels are used

38

to identify issues labeled as bug (lines 5-8). In the last step, table issue_events is used
twice to identify issues with no reopened event after the close event (lines 9-13). The
result of those joins generates a list of issues from issues table that meet the specified
criteria.

1 SELECT issue_id FROM issues i

2 INNER JOIN project p

3 ON i.repo_id = p.id

4 AND p.url = ’https://api.github.com/repos/example/repo’

5 INNER JOIN issue_labels il

6 ON il.issue_id = i.id

7 INNER JOIN repo_labels rl

8 ON il.labels_id = rl.id AND rl.name = ’bug’

9 INNER JOIN issue_event ie1

10 ON i.id = ie1.issue_id AND ie1.action = ’closed’

11 LEFT JOIN issue_event ie2

12 ON ie1.issue_id = ie2.issue_id AND ie2.action = ’reopened’

13 AND ie2.created_at > ie1.created_at

14 WHERE i.pull_request_id IS NULL AND ie2.issue_id IS NULL

Query #15: Title, body and comments of an issue

In this query, we collect the title, body and comments message from issue #123 of ex-
ample/repo. For the comments, the necessary information is the body of the comment.

GitHub REST API

The /repos/:owner/:repo/issues/:issue_number endpoint returns data about an issue,
such as title and body. In this example, we use this endpoint with no parameters.

https://api.github.com/repos/example/repo/issues/123

After collecting the title and body of an issue from title and
body properties in the JSON result of the first query, we use /re-
pos/:owner/:repo/issues/:issue_number/comments endpoint to retrieve the comments
of a given issue. We add page and per_page parameters to request the first page of
results with 100 comments. For issues with more than 100 comments, the response
header has a Link property in the header that contains the next page of results.

39

Therefore, we should use this property to iterate through the complete list of
comments. From each result, we retrieve the data in the body property.

https://api.github.com/repos/example/repo/issues/123/comments?&page=1
&per_page=100

GHTorrent

Although GHTorrent stores data about issues, it is not possible to implement a query
to return all necessary data. GHTorrent does not store the title, body, or comments
messages in the existing databases.

Query #16: Repositories mainly implemented in programming

language x

In this first query, we retrieve a list of repositories names that have Java as their main
language. The repository name is a combination of the owner’s name along with the
repository name.

GitHub REST API

For this query, we use the search/repositories endpoint that provides an optimized
search service for repositories based on pre-defined criteria. In this example, the query
uses a language qualifier to retrieve only repositories whose main programming lan-
guage is Java. The fork qualifier is added because only non-forked repositories are
returned by default in this endpoint, and there is no such criteria for this query. These
two qualifiers are specified in the required parameter q that is used to specify search
keywords and qualifiers.

https://api.github.com/search/repositories?q=language:java+fork:true&page=1
&per_page=100

This search query might have multiple results, but due to a limitation in the
search endpoints, it is only possible to return 1,000 for the same search query. The
results are organized into pages, and we use per_page parameter to define up to 100
results on each page and page parameter to navigate through them. The result for this
endpoint has a set of data related to the repositories that fulfill the search criteria, but
for this query we only need the complete name stored in the property full_name.

40

GHTorrent

On GHTorrent, the projects table stores data about GitHub repositories. In this ex-
ample, we use two columns from projects table: the language column, which stores
the most used programming language of the repository, and the deleted column, which
identifies whether the repository still exists on GitHub. This table is used to identify
Java repositories that still exist on GitHub.

The result of this query is a list of URLs (line 1) of GitHub repos-
itories that fulfill the specified criteria (line 2). The URL has the format
https://api.github.com/repos/:owner_login/:repo_name. As a result, it is possible to
extract the repository name from it, but it requires an additional step. Also, it is
possible to use projects and users tables to retrieve the repository name, but we use
the url column to avoid accessing an additional table. This approach is used in all the
following queries when it is necessary to retrieve the repository name.

1 SELECT url FROM projects

2 WHERE UPPER(language) = ’JAVA’ AND deleted = 0

Query #17: Non-fork repositories mainly implemented in

programming language x

In this query, we retrieve the name of Python repositories that are not forked from
another.

GitHub REST API

In this example, we use search/repositories only with the language qualifier since
this endpoint removes forked repositories from the results by default. Also, we have
page and per_page parameters to navigate through the results that contain a set of
data about a repository. Similarly to the other queries, we need only the data from
full_name property. Due to the search endpoints limitation, it is possible to retrieve
only 1,000 results for this query.

https://api.github.com/search/repositories?q=language:python&page=1
&per_page=100

41

GHTorrent

The projects table is used in this query since it stores not only the main language
used by a repository (language), but also the id of the parent for forked repositories
(forked_from). For active repositories that fulfill the criteria (lines 1-2), we return the
URL (url) that can be used to acquire the full repository name (line 1).

1 SELECT url FROM projects WHERE deleted = 0

2 AND forked_from IS NULL AND UPPER(language) = ’PYTHON’

Query #18: Top-x repositories mainly implemented in

programming language y

The goal for this query is to retrieve the top-100 Java repositories according to the num-
ber of stars. Regarding the results, the only required information from each repository
is its complete name.

GitHub API

This query also uses the search/repositories endpoint to search for repositories that
fulfill the query specification. The language qualifier is an element of the q parameter
to filter repositories mainly implemented in Java. We use sort and order parameters
to sort the result in a descendant order according to the number of stars. Since we
need to retrieve the first 100 results of this search query, we use the page and per_page
parameters to request the first page with 100 results. For each result, we only need the
data in the full_name property.

https://api.github.com/search/repositories?q=language:java+fork:true
&sort=stars&order=desc&page=1&per_page=100

GHTorrent

In the GHTorrent query, projects and watchers tables are combined to generate the
desired result. The projects table holds repository data such as repository language
(language) and state (deleted) that are used to identify active Java GitHub repositories
(lines 2-3). The number of stars is retrieved based on data from watchers that stores
when a user (user_id) give a star to a repository (repo_id) (lines 5-6). The result for

42

this query is the URL of the first 100 selected repositories (line 9) according to the
number of stars (line 8). The URL is used to retrieve the repository name.

The watchers table is populated with data from events generated when a user
gives a star to a repository on GitHub. A user can also remove a star from a repository,
but there is no event for this action. As a result, it is not possible to remove an invalid
star from watchers table which keeps invalid data. For this query, we consider each
user once while calculating the number of stars for a repository, since a user can give
and remove a star many times.

1 SELECT p.url

2 FROM (SELECT id, url FROM projects WHERE deleted = 0

3 AND UPPER(language) = ’JAVA’) p

4 INNER JOIN

5 (SELECT repo_id, COUNT(DISTINCT user_id) AS num_watchers

6 FROM watchers GROUP BY repo_id) w

7 ON p.id = w.repo_id

8 ORDER BY w.num_watchers DESC

9 LIMIT 100

Query #19: Non-fork repositories with more than x stars

This query retrieves the name of repositories with more than 50 stars that are not fork
from another one.

GitHub REST API

The search/repositories is used only with the stars qualifier to select repositories with
more than 50 stars since this endpoint returns only non-fork repositories by default. In
addition to the qualifier parameter (q), page and per_page parameters were added to
iterate through the results. It is only possible to retrieve 1,000 results for this query,
and the only data necessary from each result is stored in the full_name property.

https://api.github.com/search/repositories?q=stars:>50&page=1 &per_page=100

GHTorrent

In the GHTorrent query, the projects table has information about the status of the
repository (deleted) and whether it is a fork (forked_from), whereas the watchers table

43

contains the relation between the user and the starred repositories. We exclude from
the results projects that were deleted from GitHub or that are forks in the subquery
with projects table (lines 2-3). Moreover, we calculate the number of stars by counting
the number of unique users for each repository in the watchers table (lines 5-6). This
is done because a GitHub user can give and remove a star several times and GitHub
REST API does not provide events for removing a star from a repository. The result of
these two subqueries are combined and repositories with 50 stars or less are excluded
(line 8).

1 SELECT p.url

2 FROM (SELECT id, url FROM projects

3 WHERE deleted = 0 AND forked_from IS NULL) p

4 INNER JOIN

5 (SELECT repo_id, COUNT(DISTINCT user_id) AS num_watchers

6 FROM watchers GROUP BY repo_id) w

7 ON p.id = w.repo_id

8 WHERE w.num_watchers > 50

Query #20: Get non-fork repositories implemented in

programming language x with at least y forks and z stars

The goal is to retrieve the name of non-fork repositories implemented in JavaScript
with at least one fork and one star.

GitHub REST API

The search/repositories endpoint allows filtering repositories based on characteristics
using qualifiers. We use language, stars, and forks qualifiers to retrieve JavaScript
repositories with at least one fork and one star, and forked repositories are excluded
from the result by default. Furthermore, we also use the per_page and page parameters
to traverse over the 10 pages of results, which returns 100 repositories each. The only
data necessary from each result is the full_name.

https://api.github.com/search/repositories?q=language:javascript+
forks:>=1+stars:>=1&page=1&per_page=100

44

GHTorrent

For the GHTorrent query, we use projects table in two subqueries. The first subquery re-
trieves non-fork repositories (forked_from) mainly developed in JavaScript (language)
that exists in GitHub (deleted) (lines 2-3). The second is used to calculate the number
of forked repositories (id) originated from another repository (forked_from) excluding
deleted forks (deleted) (lines 9-10). Also, the watchers table is used in a third subquery
to calculate the number of stars in a repository by counting the number of unique users
(user_id) that starred a repository (repo_id) (lines 5-6). The results of the three sub-
queries are combined removing repositories with less than one fork or one star from
the final result (line 12).

1 SELECT p1.url

2 FROM (SELECT id, url FROM projects WHERE forked_from IS NULL and

3 deleted = 0 AND UPPER(language) = ’JAVASCRIPT’) p1

4 INNER JOIN

5 (SELECT repo_id COUNT(DISTINCT user_id) AS num_watchers

6 FROM watchers GROUP BY repo_id) w

7 ON p1.id = w.repo_id

8 INNER JOIN

9 (SELECT forked_from, COUNT(id) AS num_forks FROM projects

10 WHERE deleted = 0 GROUP BY forked_from) p2

11 ON w.repo_id = p2.forked_from

12 WHERE p2.num_forks >= 1 AND w.num_watchers >= 1

Query #21: Non-fork repositories implemented in a specific

language with at least x contributors, more than y commits

and at least z year old

In this query, we retrieve the name of non-fork repositories implemented in Java by at
least two contributors, with more than 10 commits and at least one year old.

GitHub REST API

We continue to use the search/repositories, but together with two other endpoints:
repo/:owner/:repo_name/commits and repo/:owner/:repo_name/contributors. For
search/repositories, the language and created qualifiers are used to filter repositories

45

based on the main language and creation date, since forked repositories are filtered out
by default. In addition, we use per_page and page parameters to iterate through the
results.

https://api.github.com/search/repositories?q=language:java+created:<2018-11-04
&page=1&per_page=100

For each repository retrieved by the previous query, we calculate the number
of commits in the repository using Query #5. Finally, to calculate the number of
contributors for each repository we use Query #4.

GHTorrent

The projects table holds information about GitHub repositories as discussed for previ-
ous queries, and in this query we use the main language (language), fork (forked_from),
creation date (created_at), and the is deleted (deleted) information to filter reposito-
ries (lines 1-3). The project_commits table stores the relationship between repository
(project_id) and commits (commit_id) even for forked repositories, and the commits
table has the information about the author of a commit (author_id). We join these
two tables to calculate the number of commits and the number of contributors in a
repository (lines 5-9). After these subqueries are constructed, we combine the results
and filter out repositories that do not have at least 2 contributors and more than 10
commits (line 11).

1 SELECT p.url FROM (SELECT id, url FROM projects WHERE deleted = 0

2 AND forked_from IS NULL AND UPPER(language) = ’JAVA’

3 AND created_at < DATE_SUB(NOW(), INTERVAL 1 YEAR)) p

4 INNER JOIN

5 (SELECT pc.project_id, COUNT(c.id) AS num_commits,

6 COUNT(DISTINCT c.author_id) AS num_contributors

7 FROM (commits AS c1 INNER JOIN project_commits AS pc

8 ON c1.id = pc.commit_id)

9 GROUP BY pc.project_id) c

10 ON pc.project_id = c.project_id

11 WHERE pc.num_commits > 10 AND c.num_contributors > 2

46

Query #22: Repositories with more than x commits and y stars

implemented in programming language z sorted by the number

of stars

We use this query to retrieve the complete name of repositories mainly implemented
in Java, with more than 3, 500 commits and 1, 000 stars, and sorted by the number of
stars in a descendant order.

GitHub REST API

The search/repositories endpoint provides a list of qualifiers that can be used to filter
repositories based on characteristics such as language and stars. However, there is no
qualifier to filter repositories by the number of commits.

For this reason, we use multiple queries to achieve our goal. The first query
retrieves repositories mainly implemented in Java that have more than 1, 000 stars
using search/repositories endpoint. The language and stars qualifiers are used to filter
repositories, and the fork qualifier is used to include forked repositories in the results.
In addition, the per_page and page parameters are used to iterate through the result
pages, along with sort and order to sort the result by number of stars in a descendant
order.

https://api.github.com/search/repositories?q=stars:>1000+language:java+fork:true
&sort=stars&order=desc&page=1&per_page=100

Then, for each repository retrieved by the previous query, we use Query #5 to
calculate the number of commits. If the number of commits is less or equal to 3,500,
this repository is removed from the final result.

GHTorrent

In GHTorrent, the table projects stores data about the main programming language for
GitHub repositories, but not the number of stars or commits, which can be retrieved
using tables watchers and project_commits. In this query, we use projects table in
a subquery to filter existing repositories based on its main language (lines 2-3). The
number of stars is calculated in a subquery using the watchers table to count the
number of unique users (user_id) who starred a repository (repo_id) (lines 5-6). The
subquery using project_commits table is used to calculate the number of commits
(commit_id) of a repository (repo_id) (lines 9-10). The result of these subqueries are
combined keeping only repositories with more than 1,000 stars and 3,500 commits (line

47

12), and sorted in descending order according to the number of stars (lines 13). The
final result is the URL of the repositories, which can be used to retrieve its name.

1 SELECT p.url

2 FROM (SELECT id, url FROM projects

3 WHERE deleted = 0 AND UPPER(language)=’JAVA’) p

4 INNER JOIN

5 (SELECT repo_id, COUNT(DISTINCT user_id) AS num_watchers

6 FROM watchers GROUP BY repo_id) w

7 ON p.id = w.repo_id

8 INNER JOIN

9 (SELECT project_id, COUNT(commit_id) AS num_commits

10 FROM project_commits GROUP BY project_id) pc

11 ON w.repo_id = pc.project_id

12 WHERE w.num_watchers > 1000 AND pc.num_commits > 3500

13 ORDER BY w.num_watchers DESC

GHTorrent also provides a commits table that stores a link to a repository
(project_id), and one might be confused about why we are not using this table for
this query instead of project_commits. The commits table has a link between the com-
mit and the first project that GHTorrent associated with that commit, so in case of
forked projects, this table might not provide the actual number of commits. However,
in project_commits table, this problem does not occur since it stores the relationship
between repositories and commits, including forked projects.

Query #23: Repositories implemented in programming

language u, created before date v, with more than w stars, at

least x forks, size greater than y and at least one commit after

date z

The result for this query is the name of repositories created before January 01, 2012
implemented in Java, with more than 10 stars, at least 10 forks, size greater than 1MB,
and at least one commit since July 01, 2016.

GitHub REST API

For this query, we use the search/repositories endpoint with qualifiers language, stars,
forks, created, size, and pushed to filter projects by most used programming language,

48

number of stars, number of forks, creation date, size and last commit update. In
addition, we use page and per_page parameters to traverse the result pages with. For
each one of the 1,000 results, we need only the data from full_name property.

https://api.github.com/search/repositories?q=language:java+created:<2012-
01-01+pushed:>=2016-07-01+forks:>=10+stars:>10+size:>1000&page=1
&per_page=100

GHTorrent

1 SELECT p1.url FROM ((SELECT id, url, forked_from, language

2 FROM projects WHERE deleted = 0 AND UPPER(language) = ’JAVA’

3 AND created_at < ’2012-01-01’) p1

4 INNER JOIN

5 (SELECT repo_id, COUNT(DISTINCT user_id) AS num_watchers

6 FROM watchers GROUP BY repo_id) w

7 ON p1.id = w.repo_id

8 INNER JOIN

9 (SELECT forked_from, COUNT(id) AS num_forks FROM projects

10 GROUP BY forked_from) p2

11 ON w.repo_id = p2.forked_from

12 INNER JOIN

13 (SELECT project_id, SUM(bytes) FROM project_languages pl1

14 WHERE created_at = (SELECT MAX(created_at) FROM project_languages pl2

15 WHERE pl1.project_id = pl2.project_id) GROUP BY project_id) s

16 ON p2.forked_from = s.project_id

17 INNER JOIN

18 (SELECT pc.project_id, MAX(c.created_at) AS last_commit

19 FROM (commits AS c INNER JOIN project_commits AS pc

20 ON c.id = pc.commit_id)) c1

21 ON p2.forked_from = c1.project_id)

22 WHERE p2.num_forks >= 10 AND w.num_watchers > 10

23 AND c1.last_commit >= ’2016-07-01’ AND s.size > 1000000

For GHTorrent query we used five different tables to retrieve all the necessary
data to filter the repositories based on the specified criteria. We used the table projects
to retrieve repositories based on language and creation date (lines 1-3) and to calculate

49

the number of forks (lines 9-10). The table watchers was used to calculate the number
of stars of repositories (lines 5-7), and table project_languages was used to calculate
the size of repositories (lines 13-15). In addition, tables commits and project_commits
tables are used together to retrieve the date of last commit (lines 18-20). Finally,
the result of all this subqueries are merged and we filter the repositories based on
the number of forks, number of watchers, date of last commit and size to obtain the
repositories that meet the specified criteria.

3.3 Discussion and Lessons Learned

Previously in this chapter, we presented example queries for GitHub REST API and
GHTorrent. We based these examples on real data collection scenarios from two rel-
evant Software Engineering conferences. In this section, we describe our findings and
lessons learned about such APIs, based on the queries implemented in Section 3.2.
For each API, we analyze the following aspects: initial setup, query complexity, data
processing, documentation, and limitations. We end the analysis of each aspect with
a comparative evaluation of GitHub REST API and GHTorrent.

3.3.1 Initial Setup

In this section we discuss the setup process for GitHub REST API and GHTorrent
based on the effort we put to setup the APIs to construct and test the implemented
queries.

3.3.1.1 GitHub REST API

GitHub REST API provides access to its data through endpoints that can be easily
accessed using HTTP requests. As a result, the GitHub REST API requires no specific
configuration in the environment for data collection. However, it might be necessary
to use authentication to be able to request data depending on the number and type of
requests to the API. For GitHub REST API, we can authenticate via username and
password or OAuth tokens. For the implemented queries, we used OAuth tokens in
the request header to authenticate the requests.

Each GitHub user can generate multiple authentication tokens with access per-
missions based on the selected scopes.11 To generate these tokens in the GitHub web-
site, we can go to the personal access tokens section under developer settings, and,

11https://developer.github.com/apps/building-oauth-apps/understanding-scopes-for-oauth-
apps/#available-scopes

50

there we can define its identifier and scopes. After that, GitHub does not allow access
to the token again, but it is possible to update the scopes for the token or delete it
accessing the token identifier. In case of loss, it is necessary to generate a new token
that invalidates the old one. For our queries, we need to access only the public data
available on GitHub, so the token does not require any scope.

Even though we do not need any special permission to access the data required
for the implemented queries, the number of requests increases from 30 to 5,000 requests
per hour when using authentication. However, the tokens of the same user share this
limit, as it is per user, not per token.

3.3.1.2 GHTorrent

GHTorrent provides access to its data in three different manners: Web service provided
by GHTorrent, Google Big Query, and dumps. We analyze the initial setup for MySQL
dumps since it is the one used in this study.

When using MySQL dumps, a large amount of data needs to be downloaded,
stored, and processed. These dumps are a large compressed collection of CSV files.
For example, the size of the last dump available on the GHTorrent website (June 2019)
is 102,973 MB. After downloading the dump, we need to extract everything from the
compressed file before storing it in the database. This task might require significant
data processing and data storage.

After downloading and extracting the data, we have to populate the database.
Each CSV file extracted from the dump is a table in the database, and it can have
more than 100 GB. As a result, we need a machine with considerable storage space and
processing capacity to populate the database. Moreover, GHTorrent provides a script
to create all the necessary entities and to insert the data into the database. It also
provides instructions to restore individual tables. Depending on the target machine,
the complete database setup can take days or even weeks to finish. In our study, after
weeks of trying to insert the data, the database was ready to use.

3.3.1.3 Conclusion

When comparing the initial setup based on our experience, GitHub REST API requires
almost none, unlikely GHTorrent, which requires a great deal of effort. For GHTorrent,
it is necessary to download, store, and process a large amount of data before starting
using the tool. In this regard, it is much more complex to use GHTorrent since the
environment setup requires much more time and space when compared to the GitHub
REST API.

51

3.3.2 Documentation

During the process of understanding the tools and implementing queries, it is very
important to have easy access to precise and complete documentation. In this section,
we analyze these aspects regarding the documentation provided for GitHub REST API
and GHTorrent based on our perception while using them to implement the queries
presented in Section 3.2.

(a) Note and warning. (b) Parameters.

3.3.2.1 GitHub REST API

GitHub provides an official documentation page for GitHub REST API that can be
easily accessed and contains information about all endpoints present in this API.12

The documentation is divided into sections that in most cases are groups of
endpoints based on similar characteristics. For example, the search section lists all
endpoints that can be used to search for GitHub entities. For each endpoint, we have a
detailed explanation, in most cases including information about parameters and an ex-
ample. For example, for the endpoint to search for repositories (/search/repositories13),
which was widely used in Section 3.2, is a good example of this. It is first provided a
brief explanation about the purpose of the endpoint, along with notes and limitations
(Figure 3.1a). Then, we can find a detailed explanation about q, sort, and order pa-
rameters (Figure 3.1b). The last part is an example query for this endpoint along with
its response (Figure 3.0c).

Although GitHub provides precise and complete documentation about the end-
points in the REST API, the large variety of endpoints to collect the same type

12https://developer.github.com/v3/
13https://developer.github.com/v3/search/#search-repositories

52

(c) Example of result.

Figure 3.0: Documentation for /search/repositories endpoint.

53

of data can be a problem in some cases. For example, for Query #1 we can re-
trieve the main programming language of a repository using /repos/:owner/:repo
or /repos/:owner/:repo/languages endpoints. The same applies for Query #7 that
lists the issues of a repository, where it is possible to use /search/issues or /re-
pos/:owner/:repo/issues. These endpoints might return the same data, but they have
different parameters and limitations. Therefore, to select the endpoint that fits best to
the use case, it is necessary to check the parameters allowed for the endpoint, its limita-
tions, and the complete data in the response. In this case, the documentation does not
help, because sometimes the endpoints returning similar data might not even be in the
same section. For example, /search/issues and /repos/:owner/:repo/issues endpoints,
the first one is in the search section and the second in the issues section. This is not
an easy task since a slight change in your use case might impact the endpoint used to
collect data.

GitHub REST API also provides an overview section presenting basic aspects of
the API and its use. For example, there is documentation regarding authentication,
rate limit, and pagination, which is very helpful when starting to use the API.

3.3.2.2 GHTorrent

In this section, we analyze the documentation related to the MySQL database dumps
provided by GHTorrent. Since GHTorrent requires an environment setup before start-
ing using it, we first analyze the documentation about this initial step. In the downloads
page of GHTorrent, we can find that they provide a script to restore the database and
instructions on how to do use it. Also, the script and documentation are available in
the dump file. It is possible to restore the complete database using the script or restore
individual tables using the provided commands.

Besides the downloads tab, the GHTorrent web page also includes a docs tab
that provides access to documentation for MongoDB and MySQL dumps. For MySQL,
we have access to the architectural diagram containing the database schema with all
the tables, columns and their relationships.14 In addition to the database schema,
GHTorrent also provides a brief text description of the data stored on each table and
column. For example, the table projects has a brief explanation about the data that it
stores and about three out of its ten columns, as can be observed in Figure 3.1. It is
clear that not every column requires explanation, for instance, an id column. However,
an explanation for column language would be valuable for us while implementing Query
#1 since a repository can be implemented in more than one language.

14http://ghtorrent.org/files/schema.pdf

54

Figure 3.1: Textual description of projects table from GHTorrent dump.

Also, there is a difference in the database schema and the textual documentation.
The repo_milestones table in the database schema does not have a textual description.

GHTorrent also provides some example queries in the documentation. Three
along with the textual description of tables in Entities and their relationships section,
and four other examples in Example Queries section. However, these examples contain
just a statement about the data to be collected and the MySQL query implementation,
as presented in Figure 3.2.

Figure 3.2: Example query from GHTorrent documentation.

3.3.2.3 Conclusion

Both GitHub REST API and GHTorrent provide documentation about the data avail-
able, including how it is organized, how it can be accessed, and examples. Nonetheless,
based on our experience, both have issues that could be improved. Despite that,
GitHub REST API is more complete when compared to GHTorrent since GHTorrent
has a very brief textual explanation about the tables and a small number of examples.

3.3.3 Data Availability

Based on the proposed queries from Section 3.2, we discuss about the data available
for GitHub REST API and GHTorrent.

55

Query GitHub REST API GHTorrent
Query #1 3 3

Query #2 3 3

Query #3 3 3

Query #4 3 3

Query #5 3 3

Query #6 3 3

Query #7 3 3

Query #8 3 7

Query #9 3 7

Query #10 3 7

Query #11 3 3

Query #12 3 3

Query #13 3 7

Query #14 3 3

Query #15 3 7

Query #16 3 3

Query #17 3 3

Query #18 3 3

Query #19 3 3

Query #20 3 3

Query #21 3 3

Query #22 3 3

Query #23 3 3

Table 3.3: Queries implemented using GitHub REST API and GHTorrent. If the query
was successfully implemented we mark with 3; if not, we mark with 7.

3.3.3.1 Github REST API

GitHub REST API is the official API provided by GitHub to access public GitHub
data through endpoints. As presented in Table 3.3, we were able to implement all the
proposed queries using these endpoints. As a result, based on the data collection for
this study, there is no limitation regarding data availability for GitHub REST API.

3.3.3.2 GHTorrent

GHTorrent consumes data from GitHub REST API to create the monthly MySQL
dumps. However, GHTorrent does not retrieve and store all the data available through
the GitHub REST API. As a result, not all GitHub REST API queries can be imple-
mented using GHTorrent. For GHTorrent, we were not able to implement 5 out of the
23 proposed queries (21.7%), as listed in Table 3.3. Based on these five queries, we
identify some of the data that is not available in GHTorrent. Regarding Query #13,
although GHTorrent stores data about pull requests, there is no data related to the

56

number of edited files and modified lines for a pull request. From these two queries,
we conclude that GHTorrent does not include data about files stored in GitHub. In
Query #15, we need to recover the title, body, and comments of an issue, but issues
and issue_comments tables do not store these type of data. For Queries #8 and #9,
we could not retrieve the number of branches and releases, respectively, because not
all GitHub entities are present in GHTorrent dumps. In Query #10, we need access
to the README file present in GitHub repositories, but there is no file from GitHub
stored since this is not the purpose of GHTorrent.

3.3.3.3 Conclusion

GitHub REST API, which is the official API to collect data from GitHub, provides
access to every GitHub public data we need to access for queries in Section 3.2. More-
over, GHTorrent provides a partial offline mirror of GitHub public data since we could
not implement all proposed queries for GHTorrent. Based on the queries that we could
not implement for GHTorrent, we can conclude that it does not store data about files
and some GitHub entities. We can conclude that GHTorrent stores information about
the relationship between important GitHub objects, but not actual data.

Finally, it is import to highlight that GHTorrent provides access to historical data
through its monthly dumps. Using GitHub REST API we cannot access the state of
GitHub in previous months as we can do with GHTorrent dumps.

3.3.4 Queries Complexity

In this section, we evaluate the complexity of implementing the queries from Section
3.2. For GitHub REST API, we analyze the number of endpoints and requests, and,
for GHTorrent, the number of tables and joins in the query. We use these metrics of
complexity because the more endpoints and tables we have to use, the more data we
need to understand and process to get to the desired result.

3.3.4.1 GitHub REST API

GitHub REST API queries have a low complexity regarding the number of endpoints
as 19 of them (82%) use only one endpoint, as presented in Table 3.4. When analyzing
the number of requests, it varies according to the number of results since it is only
possible to request up to 100 results per page. According to Table 3.4 most queries
(52%) execute only one request since for a considerable number of requests we just
need to retrieve a single result or use the data in the response header. For example,

57

Query GitHub REST API GHTorrent
#endpoints #requests #tables #joins

Query #1 1 1 1 0
Query #2 1 1 1 0
Query #3 1 1 2 0
Query #4 1 1 3 1
Query #5 1 1 2 0
Query #6 1 1 2 0
Query #7 2 2 2 0
Query #8 1 1 N/A N/A
Query #9 1 1 N/A N/A
Query #10 1 1 N/A N/A
Query #11 1 1 2 0
Query #12 1 * 3 1
Query #13 1 1 N/A N/A
Query #14 1 * 5 5
Query #15 2 * N/A N/A
Query #16 1 10 1 0
Query #17 1 10 1 0
Query #18 1 1 2 1
Query #19 1 10 2 1
Query #20 1 10 2 2
Query #21 3 * 3 2
Query #22 2 * 3 2
Query #23 1 10 5 5

Table 3.4: Number of endpoints and requests for each GitHub REST API query, and
number of tables and joins used to implement each query for GHTorrent.

Query #13 that retrieves pull request data and Query #4 that calculates the number
of contributors of a repository. We also identify a considerable number of queries
executing 10 and * requests, where * is a number that depends on the number of
results for the query.

In these cases where the result is divided into pages, we need to use pagination and
a new request to each new page we need to collect data. This increases the complexity
since we have to understand and handle correctly the access to the result pages. The
complexity also increases when a query uses more than one endpoint. However, for
most queries the number of endpoints and request is one, so the overall complexity is
low.

58

3.3.4.2 GHTorrent

When analyzing the complexity of constructing the queries for GHTorrent, we take
into account the number of unique tables and the joins we used to gather the result.
For the number of tables, most of the queries use two tables (44%), as a large number
of queries in our study retrieve data specific to a repository. Therefore, they first need
to retrieve the repository id to query other tables that have the data. For example, to
calculate the number of stars on Query #3, we first need to access the projects table to
retrieve the repository id, and, then, count the number of stars using table watchers.
There are queries implemented that are not using two tables, we have four queries using
one table, and another four queries using only three tables, and two query using five
tables, as presented in Table 3.4. As a result, the complexity to build a query using
GHTorrent is acceptable as in half of the cases we need only two tables.

We also analyze the number of joins, since it adds extra complexity to the queries.
There are nine queries that need joins (50%), and the queries with more than one table
are using subqueries. For the queries with joins, 44% of them have just one join, 33%
have two joins, and 22% have 5 joins as listed in Table 3.4.

As a result, we conclude that the overall complexity for GHTorrent is low since
most queries require up to two tables and no joins.

3.3.4.3 Conclusion

When analyzing the query complexity for GitHub REST API, we used the number of
endpoints and requests as metrics. We found that in most cases we could retrieve all
the necessary data using only one endpoint and requests. As a result, we conclude that
the complexity of these proposed queries is low.

For GHTorrent, we analyzed the queries regarding the number of tables and joins.
In most cases, it was used two tables without joins to retrieve the results. From 18
queries, we used joins in nine of them, and the number of joins varies between one
and five. Therefore, we can conclude that the overall complexity is low. However,
when comparing the number of endpoints and the number of tables, we can see that
we complexity of GHTorrent is slightly higher.

3.3.5 Limitations

In this section, we present the limitations faced while implementing the proposed
queries.

59

3.3.5.1 GitHub REST API

GitHub REST API can be used to access a large amount of data. However, we faced
some limitations to retrieve the data due to the limit of requests to the API. For search
endpoints, the limit is 30 requests per minute and for other endpoints, it is 5,000
requests per hour when using authentication.

The search endpoints have a limitation which they can only return up to 1,000
results for the same search query, even though the query might contain more results
specified in total_count field in the response body. For queries that allow sorting the
result, it is possible to overcome this limitation by changing the requests to sort and
retrieve the results in parts using different search queries. For example, when searching
for repositories, specify that the result should be ordered by the number of stars and
the range for the number of stars of a repository. Moreover, we can update this range
to create a new search query to retrieve another 1,000 results. The downside is that
it adds additional complexity because we need to handle not only pagination but also
the range value of the search query. Another limitation for search endpoints is that the
responses might not be complete, due to timeouts while processing the results. In such
cases, GitHub returns what was found before the timeout. Also, the incomplete_results
property in the result is set to true to indicate to the users that the result might be
incomplete.

Another limitation around GitHub REST API, it does not provide access to
historical data, i. e., it is not possible to access a previous state of GitHub. For
example, it is not possible to retrieve the number of stars of a repository from a year
ago, because we do not have access to the date when the star was given, and also to
the stars that were removed.

3.3.5.2 GHTorrent

When implementing the queries for GHTorrent, the first limitation we faced was the
documentation. Although GHTorrent provides documentation, it is not detailed, com-
plete and up to date, since the last documentation update reported on the website was
from 2015.

When discussing the dumps, it is important to remember that they are made
available monthly, so they might not be an up to date mirror of GitHub REST API.
Moreover, updating the database with new dumps can be very costly.

Since GHTorrent provides monthly dumps and the older ones are still accessible,
GHTorrent provides historical data from GitHub by month, different from GitHub
REST API, where we can only access the current state of GitHub. However, these

60

dumps started to be available in 2012, so there is no historical data from previous
years of GitHub.

Regarding the data provided, although GHTorrent aims to be an offline mirror of
data provided by the Github REST API, as presented in its official web page, not all
data available in this API is available on GHTorrent. There are some cases where this
is perfectly understandable. For example, there are endpoints in GitHub REST API
that we can use to query files that are stored in GitHub, as we discuss in query #10.
However, there are examples where it is not possible to find data about specific entities
using GHTorrent. For example, about branches and releases for queries #8 and #9.

3.3.5.3 Conclusion

In this section, we presented some specific limitations regarding GitHub REST API
and GHTorrent based on our experience while constructing queries. We could see that
both APIs have limitations but in different aspects. This information is very important
when choosing an API for a study.

3.4 Limitations

The study presented in this section has the following limitations:

• To compare GitHub REST API and GHTorrent, we implemented queries based
on a set of papers collected from two Software Engineering conferences in 2017.
We identified papers that collected data from GitHub. In some cases, the API
used was reported by the paper, but for the papers that did not report the tool,
we assumed they were using GitHub REST API. We chose GitHub REST API
as default API because studies had pointed out that GitHub REST API was the
most used tool. However, this limitation does not have a large impact on the
result, because all requests are implemented for both GitHub REST API and
GHTorrent.

• The queries presented in Chapter 3 were proposed based on the data collected
by each paper selected for this study. As a result, we did not replicate the study
from each paper. Instead, we provided queries that could be used to collect the
data they reported to be using.

• The queries we presented in Chapter 3 for GitHub REST API and GHTorrent
were implemented after long research and experiments using GitHub REST API

61

and GHTorrent. However, it is possible to have other queries or more efficient
ones different from the ones we implemented to retrieve the data for each proposed
query.

3.5 Final Remarks

In this chapter, we described the method used to implement actual GitHub data col-
lection queries from papers published on ICSE and MSR conferences. Based on the
data collected for the analyzed papers, we proposed 23 queries that were implemented
using GitHub REST API and GHTorrent. With these queries, we explained how to
use these APIs, how to implement queries, and the particularities of each one of them.

Based on the implementation of these queries for each one of the APIs, we had
some interesting insights regarding the initial setup, documentation, data availability,
query complexity, and limitations. For the initial setup, it was revealed that GitHub
REST API requires almost no initial setup, except for the authentication token. On
the other hand, GHTorrent requires a complex initial setup, and very time and space
consuming. When analyzing the documentation, we observed that both APIs provide
documentation about initial setup, data provided, and examples. However, in our
experience, the GitHub REST API is more complete when compared to GHTorrent.
Regarding the data availability, we revealed that GHTorrent uses GitHub REST API
to collect its data, so every query available for GHTorrent is also available for GitHub
REST API. Nevertheless, the opposite is not true because GHTorrent does not collect
all data from GitHub REST API. Also, we analyzed the complexity of implement-
ing queries for GitHub REST API and GHTorrent. For GitHub REST API we use
the number of endpoints and requests to measure the complexity of queries, and for
GHTorrent we used the number of tables and number of joins. The overall complexity
of both APIs was acceptable and very similar. In the last section of the results, we
presented an analysis of the limitations we faced while using GitHub REST API and
GHTorrent. All the main findings are summarized in Table 3.5.

62

GitHub REST API GHTorrent
Initial Setup Requires no specific configura-

tion in the environment. How-
ever, according to the number
of requests it might be neces-
sary to create an authentica-
tion token.

Complex process since a large
dump of the database needs to
be downloaded and restored to
a MySQL database.

Documentation Complete documentation or-
ganized in sections of related
endpoints. For each endpoint,
we have a detailed explana-
tion, in most cases including
information about parameters
and an example.

Architectural diagram of the
database and some examples
are provided in the documen-
tation. However, the tex-
tual explanation of tables and
columns is very brief.

Data Availability All public data from GitHub
is accessible through its API.

GHTorrent provides a par-
tial offline mirror of GitHub
REST API.

Query Complexity Low query complexity when
analyzing number of end-
points and number os re-
quests. In most cases, the
number of endpoints is one
and the number of request is
at most two.

Low query complexity when
analyzing the number of ta-
bles and joins. In most cases,
the number of tables is at
most 2 and joins are only used
for 6 queries.

Limitations Both APIs have limitations regarding different aspects.

Table 3.5: Finding from GitHub REST API and GHTorrent.

63

Chapter 4

Case Study

In this chapter, we present a case study using GitHub REST API and GHTorrent
to collect data about open source projects from GitHub. We gather data about the
top-10K repositories, to provide a study about OSS development around the world.
Our goal is to expose and discuss our findings in a study that resembles a real-world
application that depends on GitHub data. In this study, we assess not only query
complexity and data availability but we also compare the results and study design.

4.1 Research Questions

We retrieve information about the top-10K GitHub repositories according to the num-
ber of stars to answer the following research questions about open source software:

1. How is the distribution of open source software around the world? We retrieve
the number of OSS repositories per country. For GitHub REST API, we were
able to identify a country for 5,881 repositories, and for GHTorrent, 6,564 had
a country. We identify the top-20 countries based on the number of repositories
and use in the remaining research questions.

2. What are the three most used languages for each country? We identified the
top-3 most popular languages for each country in the top-20. We identified these
languages based on the most used language of each repository.

3. How does the popularity of repositories vary per country? Since we retrieve the
top-10K GitHub repositories, we analyze how the number of stars varies for
repositories from countries in the top-20.

64

4.2 Study Design

We focus on popular repositories selecting the top-10K open-source projects on GitHub
by the number of stars. GitHub stars are similar to likes in other social networks and
they are considered a reliable proxy for the popularity of GitHub repositories [Borges
et al., 2016b]. For each repository, we collected the number of stars, the primary
language, and the location.

GitHub does not directly provide the geographic location of a project. However,
location is a meta-data of GitHub accounts. For example, suppose the project aserg-
ufmg/jscity. The owner of this project is aserg-ufmg, which is an organizational account
on GitHub. In aserg-ufmg’s profile, it is informed that this organization is located
in Belo Horizonte, Brazil.15 Therefore, we consider aserg-ufmg/jscity as a Brazilian
project. The location is provided as a free text format. In the following sections, we
discuss how we collect these data and identify the country for the two APIs studied in
this master dissertation.

4.2.1 GitHub REST API

For GitHub REST API, we executed in August 2018 a script implemented to retrieve
the data from search/repositories to retrieve the top-10K repositories and their informa-
tion. Based on the location data, this script also attempts to match a project location
to a list of country and city names in English; we were successful for 4,216 reposito-
ries (42%). Finally, we inspected the location of the remaining repositories, aiming to
manually associate them to countries, which was possible in the case of other 1,665
repositories (29%). The remaining 4,119 repositories (41%) include empty location
fields, locations which are not countries (e.g., The Earth) or locations mentioning more
than one country (e.g., Canada & France).

After following these steps, we were able to retrieve data from 10,000 repositories
and identify the country of 5,881 (59%). This repositories are used to answer the
research questions of this study.

4.2.2 GHTorrent

For GHTorrent, we first attempted to use our local MySQL dump from February
2018. However, we tried to retrieve a newer dump for this study. We investigated the
possibility of using an online provider of GHTorrent, and we could only access these
data in Google Big Query, but the most recent dump is from April 2018. We decided to

15GitHub repositories have a unique owner, but contributors can be of different countries.

65

proceed with the dump from April 2018, even though we had a time difference between
the data collected using both APIs. The main reason is that the process of restoring
the database from a GHTorrent dump is very time and resource consuming.

GHTorrent provides data about users in the users table, and it contains a location
column to store the location provided by the user to GitHub. According to a docu-
mentation update from November 2015 about MySQL dumps, five new columns were
added to the users table to store geographic information: city, state, country_code,
lat, and long. This geographic data is retrieved by GHTorrent using Open Street Maps
API, but only for users with non-empty location information. In this study we use data
from country_code column from users table to identify the country of a repository.

Using the data geographic data provided by GHTorrent, we were able to identify
the country of 6,564 projects (65%) that are used to answer the research questions.

4.3 Queries

In this section, we present the queries we used for GHTorrent and GitHub REST API to
collect the data described in Section 4.2. For this study, we remove forked repositories
to avoid repositories with similar characteristics.

4.3.1 GitHub REST API

https://api.github.com/search/repositories?q=stars:1..*&sort=stars&order=desc
&page=1&per_page=100

To retrieve the top-10K non-fork repositories and the required information about
each one of them, we use the search/repositories endpoint. As explained in previous
sections, this endpoint allows sorting and searching for repositories based on predefined
criteria and removes forked repositories from the result by default. Also, a search
query can only return up to 1,000 results for the same search query. However, we need
10,000 repositories for this study. As a result, to overcome this limitation, we filter
the repositories based on the number of stars and order the result based on the same
characteristics, so we can change the range of the number of stars to produce a new
query that retrieves another 1,000 repositories. For example, we retrieve repositories
with the number of stars from 1 to * in this first query, i.e., all repositories with at least
one star. Considering the result is ordered according to the number of stars, we can
get the lowest number of stars from the top-1,000 repositories, x, to create a new query
that retrieves repositories with 1 to x stars. We follow this process until retrieving all

66

top-10K repositories, with a cost of not only have to iterate through the result pages
but also update the query.

Each result from this request contains data about the number of stars, main
language and repository owner of the repository. However, it does not include the
owner’s location that is retrieved by an additional query.

https://api.github.com/users/:owner_login

For each repository retrieved by the previous query, we perform a request to the
users endpoint to collect data about its owner. Among the data returned, we have the
location property to store the location of the user. We use this data in an additional
step to obtain the country of each repository.

Analyzing the number of endpoints, the complexity of this query is acceptable
since we use two endpoints to retrieve all the necessary data. However, we also have to
consider the number of requests that we need to execute to retrieve the complete result.
In the best case scenario, we do at least 100 requests to collect all repositories, but it
might require more since we need to handle duplicated repositories due to the change
in the query. Also, we execute 10,000 additional requests to retrieve the location of
the repository owner. We also have an additional complexity of update not only on
the page number but also on the search query to be able to retrieve more than 10,000
repositories using the search endpoint.

4.3.2 GHTorrent

To retrieve all the necessary data using GHTorrent, we combine results from different
subqueries. The first subquery uses projects table to collect the repository names and
main language of existing non-fork repositories (lines 3-5). The number of stars is
calculated using watchers table (lines 7-8). The result of these two subqueries are
merged, and we sort this partial result according to the number of stars and retrieve
only the first 10,000 repositories (lines 10-11). The top-10K repositories based on the
number of stars along with their main language is merged with users table to retrieve
the user login and country for the owner of each repository in the partial result (lines
13-14) and generate the final result.

67

1 SELECT u.login, pw.name, u.country_code, pw.num_stars, pw.language

2 FROM (SELECT p.name, p.owner_id, p.language, w.num_watchers

3 FROM (SELECT id, name, owner_id, language

4 FROM projects WHERE deleted = 0

5 AND forked_from IS NULL) p

6 INNER JOIN

7 (SELECT repo_id, COUNT(DISTINCT user_id) AS num_watchers

8 FROM watchers GROUP BY repo_id) w

9 ON p.id = w.repo_id

10 ORDER BY w.num_watchers DESC

11 LIMIT 10000) pw

12 INNER JOIN

13 (SELECT id AS user_id, login, country_code

14 FROM users) u

15 ON u.user_id = pw.owner_id

Regarding the complexity related to GHTorrent query, we use three different
tables to retrieve the complete result, and these tables are combined using two nested
joins. To reduce the number of rows that are joined, we first join the necessary column
from projects with the number of stars calculated for every repository using watchers
and select only the top-10K repositories. In this way, we can join only the selected
repositories with their owners in the users table. However, the overall complexity is
considerable, due to the number of tables, joins, and filters necessary for this query.

4.3.3 Conclusion

Both APIs have considerable complexity when implementing the queries necessary to
retrieve the desired data. GitHub REST API had the additional complexity of not
only handle pagination but also updating the search query to overcome the limitation
of 1,000 results for search endpoints. GHTorrent provides all the data organized into
tables. Therefore, for this query, we used three tables, and we had to handle the joins
and filters to calculate the result.

4.4 Results

In this section, we discuss the results for each research question presented in Section
4.1, based on the data collected using GitHub REST API and GHTorrent. Also, we

68

present a comparative analysis of each research question.

RQ1: How is the distribution of open source software around

the world?

GitHub REST API GHTorrent
Country #repositories Country #repositories

United States 2,353 United States 2,453
China 1,012 China 884

United Kingdom 350 United Kingdom 325
Germany 294 Germany 270
Canada 202 Canada 182
France 170 France 174
Japan 118 Russia 149
India 92 Japan 117

Netherlands 88 India 99
Australia 86 Australia 90
Sweden 84 Netherlands 88
Spain 81 Sweden 84
Russia 70 Spain 81
Italy 64 Ukraine 63

Ukraine 59 Italy 59
Poland 57 Poland 59
Brazil 52 Austria 51

Switzerland 51 Switzerland 49
Austria 42 Brazil 48
Finland 38 Norway 36

Table 4.1: Top-20 countries with more repositories using GitHub REST API and
GHTorrent.

GitHub REST API

To answer this research question, we considered 5,881 projects out of the 10,000 projects
(59%) selected because not all of them have valid geographic data. These projects are
distributed over 83 countries, as presented in Table 4.1, where the United States has
the largest number of projects (2,353 projects, 40%), which is more than two times
greater than the second country (China), with 1,012 projects (17%). The difference is
even greater between the second and third countries. For the remaining countries in
the top-20, the number decreases in an acceptable amount.

69

GHTorrent

To answer this research question, we considered 6,564 projects out of the 10,000 projects
(66%) selected at first because not all of them have valid geographic data. When using
GHTorrent, these projects are distributed over 87 countries, as also presented in Table
4.1. The United States has the largest number of projects (2,453 projects, 37%), which
is almost three times greater than the second country (China), with 884 projects (13%).
From the second to the third country, the difference continues elevated, but it decreases
between the remaining countries.

Comparison

When comparing both results, the first aspect to highlight is the number of countries
we identified having repositories in the top-10K. Using GHTorrent, we classified repos-
itories to 87 different countries, while using GitHub REST API we identified 83. Using
GitHub REST API, we were not able to identify 8 countries identified by GHTorrent.
Also, for GHTorrent we could not find repositories for 5 countries present in the result
for GitHub REST API.

When comparing the top-20 countries, Table 4.1, we have almost the same coun-
tries in both lists, except the last one that is Finland for GitHub REST API and
Norway for GHTorrent. For most countries, the number of repositories varies 15%
from GHTorrent to GitHub REST API. However, we found a significant difference in
the number of repositories identified as from Russia. This value decreases around 50%
from GHTorrent to GitHub REST API study.

Evaluating these differences, we found that the time difference between the data
collection using one API and the other can impact the result. For example, fares-
soft/terminalizer repository, retrieved in the top-10,000 repositories using GitHub
REST API, is from Jordan, but it is not present in the list retrieved from GHTor-
rent, probably because in the collection date it did not have the necessary number of
stars to be in the top repositories. Also, another problem we found that contributes
to these differences was the wrong mapping from location to a country. An example is
repositories with invalid location The Web, which were identified to be from Ethiopia
when using GHTorrent data, but was identified as invalid data for GitHub REST API.
Also, we identified repositories from Costa Rica that were not identified by GHTorrent
because locations such as San Jose, CA were wrongly mapped to Costa Rica instead
of USA for GitHub REST API. These problems with the country mapping from both
APIs explains the considerable difference in the number of Russian repositories for both
APIs, at least 50 invalid locations that were identified as from Russia using GHTorrent.

70

Overall, the results from the two APIs are similar, except when analyzing the
results from Russia, where we detect an issue with the country information provided
by GHTorrent.

RQ2: What are the three most used languages for each

country?

GitHub REST API

When analyzing the results from GitHub REST API, Table 4.2, JavaScript is the top-3
most used languages for all countries. Furthermore, it is the most used language in 16
countries. For the remaining countries, the most used programming language is Java,
except for Italy that has Swift as the most used language.

GHTorrent

For the GHTorrent study, JavaScript is also in the top-3 most used language of all
countries, and the most used language in 14 of them. Java is the most used language
in four countries. For the two remaining countries, Italy and India, the most used
language are Swift and Python, respectively.

Comparison

When comparing the results for the top-3 languages, we do not consider Finland and
Norway, since they are not in the results of both APIs. For the other 19 remaining
countries, we observe that the most used language is the same for 17 countries (89%).
The top-3 has the same languages for 12 countries (63%), having the languages in the
same order for eight of them (42%). For six other countries (32%), the top-3 from
both APIs has two languages in common. The remaining country (5%) has only one
language in common in both results. Therefore, the results from both APIs are very
similar. Probably, the differences in the result are related to different repositories
collected by the APIs, due to the time difference in data collection. Also, the fact
that the number of repositories for each language does not diverge much contributes
to these differences.

71

Country GitHub REST API GHTorrent

United States
JavaScript (691) JavaScript (677)

Python (234) Python (204)
Java (163) Java (175)

China
Java (285) Java (197)

JavaScript (180) JavaScript (114)
Objective-C (91) Objective-C (63)

United Kingdom
JavaScript (107) JavaScript (105)

Java (39) Java (32)
Ruby (28) Objective-C (25)

Germany
JavaScript (69) JavaScript (54)

PHP (29) PHP (29)
Java (28) Java (23)

Canada
JavaScript (71) JavaScript (61)

Pyhton (22) Python (15)
Go (13) Go (14)

France
JavaScript (50) JavaScript (48)

Java (22) Java (18)
Python (18) Python (13)

Japan
JavaScript (19) Java (22)

Java (16) Swift (18)
Swift (16) JavaScript (14)

India
JavaScript (25) Python (14)

Java (25) JavaScript (13)
Python (13) Java (10)

Netherlands
JavaScript (28) JavaScript (27)

PHP (11) Python (10)
Java (7) Objective-C (7)

Australia
JavaScript (25) JavaScript (29)

Java (7) Swift (7)
Ruby (6) Ruby (7)

Sweden
JavaScript (28) JavaScript (25)

Python (8) Swift (7)
Swift (8) Java (6)

Spain
Java (20) Java (21)

JavaScript (19) JavaScript (14)
Swift (7) Swift (6)

Russia
JavaScript (18) JavaScript (43)

Go (8) PHP (21)
Python (8) Python (10)

Italy
Swift (14) Swift (9)

JavaScript (11) JavaScript (7)
C (9) Java (7)

Ukraine
Java (23) Java (20)

JavaScript (11) JavaScript (10)
Swift (9) Swift (7)

Poland
JavaScript (17) JavaScript (13)

Java (11) Swift (12)
Swift (9) Java (10)

Brazil
JavaScript (15) JavaScript (9)

Python (5) Objective-C (4)
Ruby (4) Ruby (3)

Switzerland
JavaScript (13) JavaScript (9)
Objective-C (5) C (5)

PHP (3) Objective-C (4)

Austria
JavaScript (11) JavaScript (13)

Java (8) Python (9)
Python (7) Java (7)

Finland
JavaScript (18) -

Java (3) -
Python (3) -

Norway
- JavaScript (10)
- Swift (5)
- Java (3)

Table 4.2: Top-3 language by country using GitHub REST API and GHTorrent.

72

RQ3: How does the popularity of repositories vary per country?

GitHub REST API

Figure 4.1 presents the distribution of the number of stars for the projects in each
studied country according to the data collected using GitHub REST API. If we focus
on the median values for each country, there are no major differences. The median
values range from 2,116.5 stars (Switzerland) to 2,935 stars (Russia).

Figure 4.1: Popularity in terms of the number of stars using data from GitHub REST
API

GHTorrent

Figure 4.2: Popularity in terms of the number of stars using data from GHTorrent

For GHTorrent, Figure 4.2 presents the distribution of the number of stars for
the projects in each studied country. If we focus on the median values for each country,
there are no major differences. The median values range from 1,755 stars (Switzerland)
to 2,595.5 stars (Russia).

73

4.4.0.1 Comparison

When analyzing Figure 4.1 generated from GitHub REST API data, and Figure 4.2
generated from GHTorrent data, we can see that the results are very similar. Switzer-
land has the lowest median value in both APIs and Russia has the highest median
value for both APIs. These median values increase from GHTorrent to GitHub REST
API around 4% to 28%. Also, for most countries, the graph has the same shape which
means that the repositories have the same distribution regarding the number of stars
for both APIs. Overall, this difference is acceptable, since GHTorrent data is from
April 2018 and GitHub REST API data is from August 2018.

4.5 Limitations

For this case study, we collected data from GitHub REST API in August 2018 and
used the dump from April 2018 available in Google Big Query. We tried to reproduce
this study recently, but we were not able to find an up to date dump of GHTorrent
in Google Big Query or on the online provider of GHTorrent, and the latest dump for
download in GHTorrent platform is from June 2019. Since the process of restoring
the database from the downloaded dump is time and resource consuming, we decided
to maintain the results for these two data collection dates, despite the four months of
difference.

4.6 Final Remarks

In this chapter, we presented a case study using data from the GitHub REST API
and GHTorrent. The goal was to investigate in detail the similarities and differences
of usage for both APIs. In this study, we analyzed not only the complexity of queries
or setup but also the results from each API.

When comparing both APIs, the initial setup for GitHub REST API continues to
be just the creation of an authentication token. For GHTorrent, different from Chapter
3, we did not download a dump and restore it to execute the queries. Instead, we used
a dump available in Google Big Query, which greatly improved the initial setup and
the response time. Using Google tool, we have the limitation of processing only 1TB
free of charges, but this limit was not a problem because we were not processing a large
volume of data. As a result, the GitHub REST API initial setup continues to be less
costly than GHTorrent, because for the latter we still have to set up our Google Big
Query account to access GHTorrent dumps.

74

The queries for both APIs had considerable complexity. For GHTorrent, the
complexity was increased by the combination of data from three different tables to
retrieve the desired result. The complexity of the GitHub REST API query is related
to the limitation of 1,000 results per search query since we had to handle pagination
and search query implementations to retrieve 10,000 repositories. Also, for every result
from the search endpoint, we had an additional request to the users endpoint to retrieve
the location.

The last aspect analyzed was the results. In RQ1, we retrieved the number of
repositories in the top-10K from each country and constructed the top-20 countries
based on the number of repositories. This raking is almost the same for both APIs
with small changes in the country’s position since the number of repositories from
each country is very similar. Expect for Russia, that had a major difference in the
top-20 countries position when comparing GHTorrent and GitHub REST API results,
due to a limitation in the country’s inference from GHTorrent. In RQ2, we analyzed
the top-3 languages for each country in the top-20 based on the most used language
of each repository. The results from both APIs for the 19 shared countries are very
similar, i.e, 12 countries (63%) have the same languages in the top-3, and the most
used programming language is the same for 17 countries (89%). The divergence in the
results is due to the slight difference in the number of repositories for each language,
aligned to the time difference of data collection from both APIs. The last RQ is the
most sensitive to time differences because we are analyzing the number of stars. This
number is in constant change, and we can see in the result that we had a uniform growth
in the number of stars when comparing the median values provided by GHTorrent and
GitHub REST API. In other words, the changes in the number of stars can be explained
by the difference in data acquisition, and it did not have a large impact on the result.
As a result, we can conclude that the results are equivalent based on our comparative
analysis of each research question.

75

Chapter 5

Conclusion

5.1 Overview

In this study, we analyzed and compared two widely used APIs: GitHub REST API and
GHTorrent. We implemented 23 query examples based on the data collection reports
from papers of two relevant Software Engineering conferences in 2017: MSR and ICSE.
Based on these queries we could provide insights about initial setup, documentation
quality, data availability, query complexity, and limitations for the two APIs. We
concluded this master dissertation by presenting a case study that investigates open
source software development in different countries. This study was implemented for
both APIs, and a comparative discussion analyzed the study design, queries, and results
for both APIs.

From the first study, we concluded that GitHub REST API is ahead GHTorrent
in the analyzed dimensions. Besides, we found that there are some differences when
comparing the results obtained using GitHub REST API and GHTorrent, most related
to the time difference in the data acquisition from each API. All these results will be
discussed in details in Section 5.2

5.2 Contributions

This master dissertation contributes to the following aspects:

• Real query examples. We identified data collected using GitHub REST API
and GHTorrent for papers from two major Software Engineering conferences.
Based on these real scenarios, we implemented example queries to collect the
desired data and discussed them in detail.

76

• API analysis. Based on the effort spent on the queries implementation, we
provide some sights about different dimensions of each API:

– Initial Setup. In this aspect, we concluded that the complexity is higher
for GHTorrent. When evaluating GitHub REST API, the only required
initial setup is to retrieve an authentication token to increase the number of
requests that can be made. On the other hand, to access GHTorrent data
it is necessary to download and store a large amount of data, which is not
a viable option in some cases. Thus, if the goal is to retrieve a small set of
data, it is preferable to use GitHub REST API or some online provider of
GHTorrent data.

– Documentation. Both APIs provide documentation about the data they
provide and the methods to access it. However, Github REST API is more
complete and updated when compared to GHTorrent. Regardless, the basic
necessary information is available in the documentation of both APIs.

– Data availability. GitHub REST API is the official API provided by
GitHub to access its public data. Although GHTorrent aims to be an of-
fline mirror of GitHub, not all data available through GitHub REST API
is available on GHTorrent. By contrast, it is important to highlight that
GHTorrent provides access to historical data, which is not possible through
GitHub REST API. For all these reasons, it is important to analyze the
necessary data to be collected to decide which API is more suitable.

– Query Complexity. The query complexity was analyzed regarding differ-
ent aspects from GHTorrent and GitHub REST API. For GHTorrent, we
considered the number of tables and joins, and for GitHub REST API we
verified the number of endpoints and requests. We concluded the complexity
for GHTorrent is a bit higher than for GitHub REST API.

– Limitations. Both APIs have limitations, but regarding different aspects.
For example, GitHub REST API has a limitation in the number of results
that can be returned by the search endpoint. On the other hand, GHTorrent
has a limitation in the data available in their dumps. In the end, we could not
find a workaround for all limitations; therefore, it important to understand
them before start using these APIs.

• Results analysis. Based on the case study we provided about open source
software development in different countries, we were able to compare both APIs
regarding the results they provide. We found some differences, but most of them

77

related to the time difference in data acquisition. Overall, the results achieved
by collecting data from both APIs are very similar. This fact implies that the
results of the study should not be heavily affected by the chosen API.

5.3 Related Work

GitHub data has been widely used in Software Engineering Research; as a result, it is
important to investigate the reliability of this data and the potential threats that might
appear when using the data mined from GitHub. Kalliamvakou et al. [2014] identified
two benefits and nine potential threats related to GitHub data. Moreover, the authors
proposed a set of recommendations to avoid threats. For example, a peril is that two
thirds of projects from GitHub are personal, so to overcome this limitation we should
consider the number of contributors when retrieving projects from GitHub. This work
differs from ours because we are not analyzing the quality of the data collected from
GitHub. Instead, we are analyzing and comparing two APIs that provide access to
that data.

Another study investigates how the GHTorrent dataset is used on empirical stud-
ies and how much data is consumed [Borges et al., 2016a]. For this study, the authors
collected papers that cite two studies about GHTorrent and selected only the ones that
were collecting data. Based on the analysis of these papers, the authors concluded that
the data related to repositories and users are the most used data from GHTorrent. Re-
garding the amount of data consumed, the number of queried repository data varies
from 7 to 34,6 million, and for users this number ranges from 150 to 13.2 million.

Cosentino et al. [2016] studied how researchers mine GitHub, analyzing the em-
pirical methods employed, used datasets, and reported limitations. For that analysis,
they collected papers containing GitHub (or variations) in the title, abstract, author
keywords or index terms, and also checked their related work to find more papers. From
these papers, the author only selected the ones that indeed use GitHub data. Based
on these papers, the authors concluded that the most used empirical method employed
was direct observation of GitHub metadata. Also, they found that in most cases the
data was collected using GitHub REST API followed by GHTorrent. For limitations
regarding data collection, the limit in the number of requests was mentioned by papers
using GitHub REST API. In the case of GHTorrent, the limitations are related to
dataset size and data freshness.

Even though we have some papers about GitHub REST API and GHTorrent, to
the best of our knowledge, this is the first work that compares both of them, using real

78

world examples and a case study.

5.4 Future Work

In this dissertation, we performed a comparison of two APIs used to collect data from
GitHub: GitHub REST API and GHTorrent. We plan as an extension of this work:

• GitHub GraphQL API. GitHub provides now a new API to collect data:
GraphQL API. We did not discuss this API in this study, therefore a suggestion
for future work is to include this new API in the study.

• Case Study. We provided a case study that uses data about repositories. As a
result, we could only analyze the results related to repository data. In this way,
as future work, we suggest to analyze the results for other entities from GitHub,
for example: pull requests, issues, and commits.

79

Bibliography

Al Omran, F. N. A. and Treude, C. (2017). Choosing an nlp library for analyzing
software documentation: a systematic literature review and a series of experiments.
In 14th International Conference on Mining Software Repositories (MSR), pages
187--197.

Beller, M., Gousios, G., and Zaidman, A. (2017). Oops, my tests broke the build: An
explorative analysis of travis ci with github. In 14th International Conference on
Mining Software Repositories (MSR), pages 356--367.

Borges, H., Coelho, J., Carvalho, P., Fernandes, M., and Valente, M. T. (2016a). Como
pesquisadores usam o dataset GHTorrent? In 5th Brazilian Workshop on Software
Visualization, Evolution and Maintenance (VEM), pages 1--8.

Borges, H., Hora, A., and Valente, M. T. (2016b). Understanding the factors that
impact the popularity of GitHub repositories. In 32nd International Conference on
Software Maintenance and Evolution (ICSME), pages 334--344.

Cosentino, V., Izquierdo, J. L. C., and Cabot, J. (2016). Findings from GitHub:
methods, datasets and limitations. In 13th International Conference on Mining
Software Repositories (MSR), pages 137--141.

Cosentino, V., Izquierdo, J. L. C., and Cabot, J. (2017). A systematic mapping study
of software development with GitHub. IEEE Access, 5:7173--7192.

Floyd, B., Santander, T., and Weimer, W. (2017). Decoding the representation of
code in the brain: an fmri study of code review and expertise. In 39th International
Conference on Software Engineering (ICSE), pages 175--186.

Gharehyazie, M., Ray, B., and Filkov, V. (2017a). Some from here, some from there:
Cross-project code reuse in github. In 14th International Conference on Mining
Software Repositories (MSR), pages 291--301.

80

Gharehyazie, M., Ray, B., and Filkov, V. (2017b). Some from here, some from there:
Cross-project code reuse in github. In 14th International Conference on Mining
Software Repositories (MSR), pages 291--301.

Gousios, G. and Spinellis, D. (2012). GHTorrent: GitHub’s data from a firehose. pages
12--21. ISSN 2160-1852.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L., German, D. M., and Damian, D.
(2014). The promises and perils of mining GitHub. In 11th International Conference
on Mining Software Repositories (MSR), pages 92--101.

Kikas, R., Gousios, G., Dumas, M., and Pfahl, D. (2017). Structure and evolution of
package dependency networks. In 14th International Conference on Mining Software
Repositories (MSR), pages 102--112.

Ma, W., Chen, L., Zhang, X., Zhou, Y., and Xu, B. (2017). How do developers fix
cross-project correlated bugs? a case study on the github scientific python ecosystem.
In 39th International Conference on Software Engineering (ICSE), pages 381--392.

Macho, C., McIntosh, S., and Pinzger, M. (2017). Extracting build changes with
builddiff. In 14th International Conference on Mining Software Repositories (MSR),
pages 368--378.

Osman, H., Chis, A., Corrodi, C., Ghafari, M., and Nierstrasz, O. (2017). Exception
evolution in long-lived java systems. In 14th International Conference on Mining
Software Repositories (MSR), pages 302--311.

Wan, Z., Lo, D., Xia, X., and Cai, L. (2017). Bug characteristics in blockchain systems:
a large-scale empirical study. In 14th International Conference on Mining Software
Repositories (MSR), pages 413--424.

Xiong, Y., Wang, J., Yan, R., Zhang, J., Han, S., Huang, G., and Zhang, L. (2017).
Precise condition synthesis for program repair. In 39th International Conference on
Software Engineering (ICSE), pages 416--426.

Yang, D., Martins, P., Saini, V., and Lopes, C. (2017). Stack overflow in github: any
snippets there? In 14th International Conference on Mining Software Repositories
(MSR), pages 280--290.

Zampetti, F., Scalabrino, S., Oliveto, R., Canfora, G., and Di Penta, M. (2017). How
open source projects use static code analysis tools in continuous integration pipelines.

81

In 14th International Conference on Mining Software Repositories (MSR), pages 334-
-344.

	1 Introduction
	1.1 Motivation
	1.2 Proposed Work
	1.3 Contributions
	1.4 Publications
	1.5 Outline of the Dissertation

	2 Background
	2.1 GitHub REST API
	2.2 GitHub GraphQL
	2.3 GHTorrent
	2.4 GitHub Archive
	2.5 Final Remarks

	3 Comparison
	3.1 Study Design
	3.2 Queries
	3.3 Discussion and Lessons Learned
	3.3.1 Initial Setup
	3.3.2 Documentation
	3.3.3 Data Availability
	3.3.4 Queries Complexity
	3.3.5 Limitations

	3.4 Limitations
	3.5 Final Remarks

	4 Case Study
	4.1 Research Questions
	4.2 Study Design
	4.2.1 GitHub REST API
	4.2.2 GHTorrent

	4.3 Queries
	4.3.1 GitHub REST API
	4.3.2 GHTorrent
	4.3.3 Conclusion

	4.4 Results
	4.5 Limitations
	4.6 Final Remarks

	5 Conclusion
	5.1 Overview
	5.2 Contributions
	5.3 Related Work
	5.4 Future Work

	Bibliography

