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RESUMO

O tema principal abordado nesta dissertação diz respeito a estabilização não-quadrática de

sistemas não-lineares a tempo discreto descritos por modelos fuzzy Takagi-Sugeno (TS). Uma

das principais vantagens ao se usar a representação TS, além de sua capacidade de representar

diferentes classes de sistemas não-lineares, é a possibilidade de se obter condições suĄcientes

e convexas, descritas por desigualdades matriciais lineares (LMIs, do inglês Linear Matrix

Inequalities). No entanto, um grau de conservadorismo embutido em tais condições está

intimamente relacionado à escolha da função de Lyapunov candidata. Dentro do contexto de

modelos TS a tempo discreto, condições multi-parametrizadas baseadas em funções de Lyapunov

não-quadráticas com atraso têm se mostrado efetivas para redução do conservadorismo para o

projeto de controle. Contudo, essa redução é normalmente alcançada ao custo do aumento

excessivo da complexidade computacional. Portanto, os métodos propostos nesta dissertação

são tais que o conservadorismo das condições de projeto de controladores fuzzy baseados em

LMIs é reduzido sem um aumento substancial do custo computacional. As condições são

obtidas para projeto de controladores sem atraso e com atraso e são estendidas para tratar

o problema de atenuação de distúrbios. A efetividade dos métodos propostos é ilustrada por

simulações numéricas.

Palavras-chave: Estabilização não-quadrática. Modelos fuzzy Takagi-Sugeno. Desigualdades

matriciais lineares. Funções de Lyapunov não-quadráticas. Controle com atraso.



ABSTRACT

The main topic in this work is concerned to nonquadratic stabilization of discrete-time nonlinear

systems described by Takagi-Sugeno (TS) fuzzy models. One of the advantages of employing

the TS representation, besides the ability to represent different classes of nonlinear systems, is

the possibility to derive sufficient and convex conditions described as Linear Matrix Inequalities

(LMIs). However, the conservativeness of such conditions is closely related to the choice of

a Lyapunov function candidate. Within the context of discrete-time TS models, multiple-

parameterized conditions based on delayed nonquadratic Lyapunov functions have been shown

to be effective in reducing control design conservatism. Nevertheless, this reduction is usually

achieved at the cost of excessively increasing the computational complexity. Therefore, the

methods proposed in this work are such that the conservativeness of LMI-based fuzzy control

design conditions is reduced without substantially increasing the computational complexity.

The conditions are obtained to design non-delayed and delayed controllers and extended to

deal with the disturbance attenuation problem. The effectiveness of the proposed methods is

illustrated by numerical simulations.

Keywords: Nonquadratic stabilization. Takagi-Sugeno fuzzy models. Linear matrix inequalities.

Nonquadratic Lyapunov function. Delayed control.
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1 INTRODUCTION

It is well known that a number of real-world systems can be modeled by a set of nonlinear

differential equations usually derived from physical laws. These are referred to as nonlinear

systems. Throughout several years, linear control techniques such as pole placement and PID

control have been applied to stabilize nonlinear systems in industrial applications. Designers

generally adopted linear techniques because of their easy design and long history of successful

applications [1]. However, as this class of controllers are frequently designed for linear models

derived from the linearization around an operating point of interest, their validity is restricted

to a close vicinity around the operating point. Therefore, when state trajectories evolve far

from the operating point, control performance can be seriously deteriorated [2]. It can occur

when the operating range is large or the control objective is tracking time-varying references. In

addition, depending on the kind of nonlinearity present in the model, the linearization procedure

required for linear control design may not be applied. This is the case of systems with hard

nonlinearities, e.g., saturation, dead-zone, backlash and hysteresis [1].

Aiming to outperform the linear control limitations, nonlinear techniques have been

proposed. However, many of them can be difficult to be designed for engineering applications

involving complex nonlinear systems. In classical nonlinear techniques, such as feedback

linearization, this difficulty is avoided by nonlinearity cancellation, which attempt to impose

some predetermined dynamical behavior for the closed-loop system. However, as feedback

linearization-based control depends on accurate models, the closed-loop performance is sensitive

to the presence of structural uncertainties and external disturbances. Other techniques, like

passivity-based control, aim at respecting the systemŠs structure and fully exploit it in the

control, but its design is based on the solution of partial differential equations, which can be

difficult to solve [3].

Motivated by the proposal of fuzzy logic by [4], a new class of nonlinear controllers was

initiated by [5], the so-called Mamdani-type fuzzy control. They are based on a fuzzy inference

system constructed as a set of If-Then fuzzy rules whose both antecedent and consequent

parts are deĄned in terms of fuzzy relations of linguistic variables. It allows easily introducing

human knowledge on the control strategy, reducing the necessity, or even without requiring, a

possibly nonlinear model for the system. Although there are works concerned with proving the

stability of nonlinear systems in feedback with Mamdani-type controllers, algorithms of wide

applicability are still an open problem [6].

To overcome the drawbacks on stability analysis of Mamdani-type controllers, Takagi-

Sugeno (TS) fuzzy models were proposed by [7]. Differently from Mamdani inference systems,

in which the consequent part is a relation of fuzzy sets, the consequent of TS models are

deĄned by local functions. SpeciĄcally, nonlinear dynamical systems can be represented by TS
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fuzzy models deĄning the consequent parts as local linear state-space equations. Then, the

overall nonlinear dynamics is inferred by a convex summation of these simpler linear subsystems

or local models [8]. The inĆuence of each local model for the current overall inferred nonlinear

behavior is weighted by the membership degrees, which assume values within the real interval

between 0 and 1. The convexity is ensured thanks to the additional property of the sum of all

membership degrees be equal to 1.

By exploiting the convexity of TS models and Lyapunov theory [9], sufficient condi-

tions for stability analysis and control design can be formulated in terms of Linear Matrix

Inequalities (LMIs), which can be efficiently solved by existing semideĄnite optimization soft-

ware [10]. Therefore, TS fuzzy model-based control provides an interesting commitment

between effectiveness and design complexity [11].

The Ąrst approaches on TS model-based control were derived using a common quadratic

Lyapunov function and the Parallel Distributed Compensation (PDC) fuzzy control law [12].

In this approach, the stability has to be certiĄed by a unique positive deĄnite quadratic matrix,

which composes the Lyapunov function [8]. It is clear that standard quadratic stability can

be very conservative, specially in applications involving complex nonlinear systems, since in

this case a high number of local models is required for TS modeling. However, the Lyapunov

function candidate structure is not the only source of conservatism. The procedure to derive

LMI-based conditions from membership-dependent stability/stabilization conditions can also

introduce conservatism. Mainly for the continuous-time case, recent works have shown that

introducing information from membership functions can lead to less conservative designs [13].

The search for conservativeness reduction of stability/stabilization conditions has mo-

tivated a lot of investigation in the TS/LMI framework. In early efforts, additional decision

(or slack) variables were introduced to provide new degrees of freedom for the LMI optimiza-

tion [14, 15, 8, 16]. Later, Asymptotically Necessary and Sufficient (ANS) conditions based

on the PólyaŠs theorem were proposed [17, 18, 19]. The ANS approach is known to provide

progressively less conservative LMI conditions. However, both aforementioned approaches can

considerably increase the computational complexity possibly leading to numerical intractability.

When it comes to new classes of Lyapunov function candidates, one may cite piecewise

[20, 21, 22, 23] and fuzzy ones, or nonquadratic functions, combined with a non-PDC control

law. Although the latter class of Lyapunov functions has shown to be effective to reduce design

conservatism for continuous-time TS models [24, 25, 26, 27, 28], notable improvements have

been achieved in the discrete-time case [29, 30], specially with the multiple-parameterized

approach [31, 32], which has been further generalized with the multi-instant approach [33, 34].

Nevertheless, once again, the computational complexity may also quickly increases when

multiple-parameterized conditions are regarded.

Recent efforts have been directed to obtain less conservative conditions while avoiding

excessive computational burden related to the solution of LMI conditions [35], as occurs when
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additional decision variables are used, or the degree of fuzzy summations is increased on ANS

conditions, or in the multiple-parameterized approach.

Within this context, signiĄcant improvements have been obtained with delayed fuzzy

controllers and nonquadratic Lyapunov functions. Differently from the conventional PDC

and non-PDC fuzzy controllers, in which the control gains are blended by the convex sum of

membership functions evaluated at the current sample time, information on past membership

functions is introduced in delayed control, establishing new controller design possibilities that

reach a wider class of TS systems [36, 37, 38, 33, 34]. The idea of including memory in the

control/Ąltering scheme has also been successfully exploited in the works of [39] and [40].

In particular, [38] proposed general multiple-parameterized conditions based on delayed

nonquadratic Lyapunov functions and fuzzy control law. The main difference of this approach

with respect to the one in [31] is that it offers a uniĄed framework to design non-delayed

and delayed controllers. It is based on the application of the theory of multisets [41] for

collecting all delays in the multidimensional fuzzy summation of the membership-dependent

design conditions. This allows to easily construct new control laws so that several existing

conditions in the literature for both non-delayed [12, 29, 30, 31] and delayed framework [36, 37]

can be seen as particular cases of those proposed by [38].

1.1 Objectives and adopted methodology

This work tackles the problem of conservatism reduction of control design conditions for

discrete-time TS fuzzy models. The main motivation is to derive less conservative results than

those existing in the literature without excessively increasing the computational complexity.

To derive less conservative design conditions, the delayed control law and the two

delayed nonquadratic Lyapunov function candidates considered in [38] are regarded in this

work. One of these functions is mainly used to design non-delayed controllers whereas the

second is employed for delayed control. Similar to the conditions of [38], we also use the theory

of multisets to properly represent delays on multidimensional fuzzy summations. It allows to

derive conditions which can easily handle both non-delayed and delayed controllers.

It is generally agreed that great improvements in the fuzzy control area were motivated

by results on robust control. For instance, the nonquadratic framework proposed by [29] was

motivated by the matrix transformation of [42] and the multiple-parameterized approach of [32]

was based on the homogeneous polynomially parameter-dependent framework of [43]. In the

same line, motivated by the recently appeared conditions of [44, 45] in the context of LPV

systems, this work proposes new control design conditions for discrete-time TS fuzzy models.

The new conditions are derived from those of [38] by applying adequate matrix trans-

formations based on the introduction of new decision variables similar to the works of [44, 45].

It is shown that the conditions of [38] are particular cases of those proposed here. As a
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consequence, our conditions also contain several other existing in the literature.

The proposed stabilization conditions are extended to cope with the disturbance atten-

uation control problem, which is based on the minimization of the l2-gain upper-bound. It

introduces a control design performance index instead of only Ąnding a stabilizing controller.

1.2 Manuscript outline

This manuscript is organized as follows. Chapter 2 presents the literature review and

provides the theoretical background to support our contributions. More speciĄcally, the TS

fuzzy model, classical fuzzy control conditions and the main concepts on multidimensional

fuzzy summations are provided. The stabilization and l2-gain performance conditions based on

the delayed controllers of [38] are discussed in Chapter 3.

In Chapter 4, the main contributions of this work are presented. Two new stabilization

conditions are proposed and extended for l2-gain performance control. The effectiveness

of our proposed conditions is illustrated with numerical simulations on stabilization of two

physically-motivated systems recurrent in the fuzzy control literature: the inverted pendulum

and truck-trailer systems. Finally, the conclusions of this work as well as future directions and

related publications are presented in Chapter 5.
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2 UNDERSTANDING MULTIPLE FUZZY SUMMATIONS

This chapter concerns Multidimensional Fuzzy Summations (MFS), a recurrent tool

employed by recent works on relaxed stabilization conditions for discrete-time Takagi-Sugeno

fuzzy models. The MFS usually arise when either multi-parameterized Lyapunov functions and

state feedback fuzzy controllers or the PolyaŠs theorem are considered to derive less conservative

control design conditions. As MFS-based conditions depend on the membership functions,

it is presented a procedure to rewrite them in terms of a Ąnite set of LMIs, which allows to

perform controller design by using convex optimization tools. Nevertheless, obtaining these

LMIs constitutes one of the main challenges of this approach since the design conservativeness

is closely related to the considered LMI relaxation. The procedure to obtain such LMIs is also

discussed in this chapter.

2.1 Conventional control design conditions for TS models

This section describes the Takagi-Sugeno (TS) fuzzy model and introduces the discussion

on fuzzy control design. The motivation related to the inĆuence of increasing fuzzy summations

on the design is introduced by comparing two well-known fuzzy controllers: the Parallel

Distributed Compensation (PDC) and the non-PDC.

2.1.1 Discrete-time Takagi-Sugeno fuzzy models

Consider the discrete-time input-affine nonlinear system

xk+1 = f(xk) + g(xk)uk, (2.1)

where f : Ω → R
nx and g : Ω → R

nu are smooth functions in their arguments, x ∈ R
nx is the

state vector and u ∈ R
nu is the input vector. The subspace Ω ⊂ R

nx , 0 ∈ Ω, is considered

in place of the entirely R
nx to take into account difference equation solution and/or input

constraints.

The most common methods1 for representing a nonlinear system in the form of (2.1)

by a TS fuzzy model are the sector nonlinearity and the linearization approaches [8, 46]. The

former offers the possibility to exactly represent nonlinearities within a compact set Ωx ⊆ Ω,

with 0 ∈ Ωx, while the latter provides approximate representations. However, for complex

nonlinear systems, the number of fuzzy rules obtained from the sector nonlinearity approach

can be excessive due to the exponential relation with the number of premise variables. As a

consequence, conditions for stability/control design tend to be intractable for a large number of

fuzzy rules. On the other hand, the number of fuzzy rules can be reduced with the linearization
1 Details related to TS model construction methods can be found in [8] and [46].
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approach, which results in simpler models. The tensor-product model transformation technique

is another approach that can be employed to numerically obtain a TS fuzzy representation

for a system. This technique can be applied as an alternative to obtaining TS models with a

smaller number of fuzzy rules than the sector nonlinearity approach [47].

In spite of the approach employed to obtain the TS fuzzy model, it is deĄned by the

following set of IfŰThen fuzzy rules:

Model rule i :
If zk(1) is Mi

1 and . . . and zk(nz) is Mi
nz

Then xk+1 = Aixk +Biuk

, i ∈ Ir,

where Ir = ¶1, . . . , r♢, r is the number of fuzzy model rules whose antecedent is deĄned by

the premise variables zk(j) ∈ R, j ∈ Inz
, each one deĄned within a fuzzy set Mi

j, j ∈ Inz
. The

premise variables are gathered on the vector zk ∈ R
nz . The fuzzy rule consequent is a linear

state-space model with constant matrices Ai ∈ R
nx×nx and Bi ∈ R

nx×nu . The consequent of

the ith fuzzy rule can be referred as a subsystem or local model.

By employing the center-of-gravity method for defuzziĄcation, the global TS model is

inferred as follows:

xk+1 =
r
∑︂

i=1

hi(zk)
(︃

Aixk +Biuk

)︃

, (2.2)

where

hi(zk) =
wi(zk)

r
∑︁

i=1
wi(zk)

, wi(zk) =
nz
∏︂

j=1

M i
j(zk(j)), i ∈ Ir, (2.3)

being M i
j(zj(k)) ∈ [0, 1] the membership degree of zj(k) with respect to Mi

j. The normalized

membership functions hi(zk) satisfy the convex sum property:

r
∑︂

i=1

hi(zk) = 1 and hi(zk) ≥ 0, i ∈ Ir. (2.4)

Therefore, (2.2) can be viewed as a convex sum of local models weighted by the normalized

membership degrees, which in practical aspects corresponds to the blending of simple local

linear models that represent the state trajectories in different state-space partitions. Hereafter,

the sum of membership degrees will be referred as fuzzy summation. Note that the computation

of the membership degrees depend on the premise variables measurements at each sample time

k. In addition, to apply state-feedback control, the state measurement is also required. For

this reason, the following assumption is made.

Assumption 2.1. The state and premise variable vectors xk and zk, respectively, are available

for measurement at each sample time k.

The process of obtaining an exact TS representation for a nonlinear system via the

sector nonlinearity approach is illustrated in the next example. This system has been used
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in several works as a benchmark for comparing different methods in terms of conservatism

reduction, for example in [29, 30, 31, 38, 35] and so on. This TS model will be also used on

this manuscript for the same objective.

Example 2.1. Consider the discrete-time nonlinear system

xk+1(1) = xk(1) − xk(1)xk(2) + (5 + xk(1))uk

xk+1(2) = −xk(1) − 0.5xk(2) + 2xk(1)uk,
(2.5)

where xk(1) ∈ [−b, b], b > 0 ∈ R. All nonlinearities of this system are related to the state

variable xk(1), which allows one rewrite equations (2.5) as
⋃︁

⨄︁

xk+1(1)

xk+1(2)

⋂︁

⋀︁ =

⋃︁

⨄︁

1 −xk(1)

−1 −0.5

⋂︁

⋀︁

⋃︁

⨄︁

xk(1)

xk(2)

⋂︁

⋀︁+

⋃︁

⨄︁

5 + xk(1)

2xk(1)

⋂︁

⋀︁u(k). (2.6)

From the sector nonlinearity approach described in [8, Chapter 2], a TS fuzzy model can

be obtained as follows. Define the antecedent variable zk = xk(1). The parameter b is the

maximum value that xk(1) is allowed to assume within the validity domain

Ωx = ¶x ∈ R
2 : ♣xk(1)♣ ≤ b♢.

Then, zk can be described by the following convex sum:

zk = bM1
1 (zk) + (−b)M2

1 (zk), (2.7)

being M i
1 ∈ [0, 1], i ∈ ¶1, 2♢, the membership functions satisfying

M1
1 (zk) +M2

1 (zk) = 1. (2.8)

Solving the linear system gathered by (2.7) and (2.8), the obtained membership functions are

M1
1 (zk) =

zk + b

2b
and M2

1 (zk) = 1 −M1
1 (zk). (2.9)

Accordingly, the TS representation for the nonlinear system (2.5) is defined by the following

fuzzy rules:

Model rule i :
If zk(1) is Mi

1

Then xk+1 = Aixk +Biuk

, i ∈ ¶1, 2♢, (2.10)

where

A1 =

⋃︁

⨄︁

1 −b
−1 −0.5

⋂︁

⋀︁ , B1 =

⋃︁

⨄︁

5 + b

2b

⋂︁

⋀︁ , A2 =

⋃︁

⨄︁

1 b

−1 −0.5

⋂︁

⋀︁ , B2 =

⋃︁

⨄︁

5 − b

−2b

⋂︁

⋀︁ ,

and Mi
1, i ∈ ¶1, 2♢, are fuzzy sets defined by the membership functions in (2.9).

Until now, we have seen that a nonlinear system in the form (2.1) can be represented

as a TS fuzzy model by blending local linear models weighted by a fuzzy summation. However,

the main question to be answered here is: how the number of fuzzy summations grows up?

The Ąrst answer is given in the sequel, where a state-feedback fuzzy controller is considered for

TS model stabilization.
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2.1.2 Quadratic stabilization

The quadratic stabilization was the Ąrst proposed approach in the literature to design

state-feedback fuzzy controllers for TS models. The aim is to design control gains so that

the origin of the closed-loop TS model is asymptotically stable in the sense of Lyapunov (see

Appendix A). The methodology to derive control design conditions is based on a common

quadratic Lyapunov function and the PDC control law [48, 12]. Similar to the TS model, the

PDC control law is deĄned by fuzzy rules whose consequent parts are local linear state-feedback

controllers as follows:

Control rule i :
If zk(1) is Mi

1 and . . . and zk(nz) is Mi
nz

Then uk = −Fixk

, i ∈ Ir,

where Fi ∈ R
nu×nx , i ∈ Ir, are constant control gains to be designed. Following the inference

procedure previously described for the TS model, the global PDC control law is expressed as:

uk = −
r
∑︂

i=1

hi(zk)Fixk. (2.11)

Note that the PDC control law shares the membership functions with the TS model. Then,

information related to the system nonlinearities is introduced into the control scheme. Therefore,

the PDC can be viewed as a nonlinear controller.

After feeding back (2.11) into (2.2), the following closed-loop dynamics is obtained:

xk+1 =
r
∑︂

i=1

r
∑︂

j=1

hi(zk)hj(zk)
(︂

Ai −BiFj

)︂

xk. (2.12)

Closed-loop stability is based on adequately designing PDC gains such that the origin of (2.12)

is asymptotically stable. A sufficient stabilization condition for assuring that is stated in the

following theorem. The proof is presented here to illustrate the methodology employed to

derive Lyapunov-based design conditions.

Theorem 2.1 (Quadratic stabilization [8]). The origin of the closed-loop system (2.12) is

asymptotically stable if there exist matrices X = X⊤ ≻ 0 and Mj, j ∈ Ir, such that

r
∑︂

i=1

r
∑︂

j=1

hi(zk)hj(zk)

⋃︁

⨄︁

−X ⋆

AiX −BiMj −X

⋂︁

⋀︁ ≺ 0. (2.13)

If the above inequality is satisfied, the PDC gains are obtained by Fj = MjX
−1, j ∈ Ir.

Proof. Consider the following quadratic Lyapunov function candidate:

V (xk) = x⊤
k Pxk, P = P⊤ ≻ 0. (2.14)
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Taking its difference along trajectories of the closed-loop system (2.12), one has

V (xk+1) − V (xk) =
r
∑︂

i=1

r
∑︂

j=1

r
∑︂

l=1

r
∑︂

m=1

hi(zk)hj(zk)hl(zk)hm(zk)x⊤
k

[︃

(︂

Ai −BiFj

)︂⊤
P
(︂

Al −BlFm

)︂

]︃

xk − x⊤
k Pxk.

The asymptotic stability in the sense of Lyapunov is assured if

x⊤
k

⋃︁

⨄︁

r
∑︂

i=1

r
∑︂

j=1

r
∑︂

l=1

r
∑︂

m=1

hi(zk)hj(zk)hl(zk)hm(zk)
(︂

Ai −BiFj

)︂⊤
P
(︂

Al −BlFm

)︂

− P

⋂︁

⋀︁xk < 0

holds. By applying a Schur complement argument, the last inequality is equivalently fulĄlled if

r
∑︂

i=1

r
∑︂

j=1

hi(zk)hj(zk)

⋃︁

⨄︁

−P ⋆

P
(︂

Ai −BiFj

)︂

−P

⋂︁

⋀︁ ≺ 0.

By deĄning X = P−1, Mj = FjX, and applying a congruence transformation in the above

condition with diag(X,X), it results in (2.13). This completes the proof.

At this point, a suitable design condition has not been found since the negativity of

(2.13) depends on the adequate choice of the control gains so that the double fuzzy summation

be negative. The next lemma depicts LMI-based sufficient conditions to ensure negativeness of

a given double fuzzy summation.

Lemma 2.1 (Relaxation of [12]). The negativity of the double fuzzy summation

r
∑︂

i=1

r
∑︂

j=1

hi(zk)hj(zk)Γ(i,j) ≺ 0 (2.15)

is fulfilled if the following LMIs hold.

Γ(i,i) ≺ 0,

Γ(i,j) + Γ(j,i) ≺ 0, i < j,
(2.16)

for all i, j ∈ Ir.

Proof. Inequality (2.15) can be written as follows:

r
∑︂

i=1

h2
i (zk)Γ(i,i) +

r−1
∑︂

i=1

r
∑︂

j=i+1

hi(zk)hj(zk)
(︂

Γ(i,j) + Γ(j,i)

)︂

≺ 0.

Therefore, the conditions in (2.16) are sufficient to ensure the negativity of (2.15).

The procedure to obtain LMI-based conditions to ensure negativity of (2.13) using

Lemma 2.1 is illustrated in the next example.
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Example 2.2. From (2.13), define

Γ(i,j) =

⋃︁

⨄︁

−X ⋆

AiX −BiMj −X

⋂︁

⋀︁ , i, j ∈ Ir,

with Mj = FjX. By Lemma 2.1, the negativity of (2.13) is ensured if (2.16) hold. In case

of feasibility, the controller gains are obtained by Fj = MjX
−1, j ∈ Ir, and the Lyapunov

function matrix by P = X−1.

To illustrate the condition design application, consider the two-ruled TS model (2.10).

The goal is to obtain the maximum variation for parameter b such that there exists a feasible

solution, that is, there exist a state-feedback control guaranteeing the asymptotic stability for

the closed-loop TS fuzzy model. The set of LMIs to be solved in this case is

Γ(1,1) ≺ 0, Γ(1,2) + Γ(2,1) ≺ 0, Γ(2,2) ≺ 0. (2.17)

The maximum parameter b obtained solving the LMIs above is b = 1.36.

The Ąrst answer for the question of how fuzzy summations are increased was given. In

this case, a double fuzzy summation was obtained after feeding back the PDC fuzzy controller

(2.11) on the TS model (2.2). It is important to note that quadratic stabilization conditions

require a common positive deĄnite matrix to be found to ensure negativity of all LMIs in (2.16),

which leads to notable conservativeness mainly in the case of designing fuzzy controllers for TS

models derived from complex nonlinear systems. An usual approach to reduce such conservatism

is by introducing new degrees of freedom on LMIs via slack variables [14, 15, 16]. However, this

increases the computational burden. Another way to improve stability/stabilization conditions

is based on nonquadratic Lyapunov function candidates, which is discussed in the sequel.

2.1.3 Nonquadratic stabilization

The main source of conservativeness on quadratic stabilization is due to the use of

common quadratic Lyapunov functions in the form of (2.14) to derive design conditions. This

is mainly because a unique symmetric positive deĄnite matrix P should be assigned in the

optimization procedure so that the stability of all closed-loop local models be ensured. Aiming

to reduce such conservatism, new classes of Lyapunov functions have been proposed establishing

new possibilities for fuzzy control design. Here, our attention will be directed to the following

Lyapunov function candidate:

V (xk) = x⊤
k

(︄

r
∑︂

i=1

hi(zk)Pi

⎜

xk, (2.18)

where Pi = P⊤
i ≻ 0, i ∈ Ir. This is the so-called fuzzy Lyapunov function, which sometimes is

called parameterized or, in a more general nomenclature, nonquadratic Lyapunov function. It

has been applied in both continuous-time [49, 50, 51, 52, 53, 54] and discrete-time [55, 56, 57]
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cases. In contrast to (2.14), (2.18) is constructed based on the fuzzy summation of symmetric

positive deĄnite matrices Pi, which introduces more degrees of freedom for the solution of

LMI-based conditions. Based on the Lyapunov function (2.18), another useful Lyapunov

function candidate is the following:

V (xk) = x⊤
k

(︄

r
∑︂

i=1

hi(zk)Pi

⎜−1

xk, (2.19)

also with Pi = P⊤
i ≻ 0. It was applied, for instance by [58, 29, 25, 59].

The nonquadratic framework is mainly based on the work of [29], where a new fuzzy

controller called non-PDC and nonquadratic Lyapunov function candidates were proposed. The

non-PDC control law is deĄned as follows:

uk = −
(︄

r
∑︂

i=1

hi(zk)Fi

⎜(︄

r
∑︂

i=1

hi(zk)Hi

⎜−1

xk, (2.20)

where Hi ∈ R
nx×nx , i ∈ Ir. The main difference between this control law and the PDC are

the new degrees of freedom introduced by matrices Hi. For a shorthand notation, the following

deĄnitions are considered along this section.

Definition 2.1. Let Xi, i ∈ Ir, be constant matrices of arbitrary dimension. Their fuzzy

summation at sample time k is denoted as Xz =
∑︁r

i=1 hi(zk)Xi. The fuzzy summation at

time k + 1 is denoted as Xz+ =
∑︁r

i=1 hi(zk+1)Xi.

After substituting (2.20) into (2.2), the closed-loop system is:

xk+1 =
(︂

Az −BzFzH
−1
z

)︂

xk. (2.21)

To derive non-PDC design conditions so that the origin of (2.21) be asymptotically stable, the

following nonquadratic Lyapunov function candidate was also considered in the work of [29]:

V (xk) = x⊤
k H

−⊤
z PzH

−1
z xk, (2.22)

where Pi = P⊤
i ≻ 0 ∈ R

nx×nx , i ∈ Ir, and matrices Hi are the same of the non-PDC controller.

The control design condition in this case is stated in the following theorem. Its proof is shown

to illustrate the methodology to prove sufficiency of control design conditions.

Theorem 2.2 (Nonquadratic stabilization [29]). If there exist matrices Pi = P⊤
i ≻ 0, Fi and

Hi, i ∈ Ir, such that

⋃︁

⨄︁

−Pz ⋆

AzHz −BzFz Pz+ −Hz+ −H⊤
z+

⋂︁

⋀︁ ≺ 0 (2.23)

holds, the origin of (2.21) is asymptotically stable.
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Proof. The idea is to prove that if (2.23) is fulĄlled, then there exist control gains Fi and Hi,

i ∈ Ir, so that the origin of (2.21) is asymptotically stable. Assuming that (2.23) holds, then

Hz+ +H⊤
z+ ≻ Pz+ ≻ 0,

which implies that Hz+ and Hz are invertible matrices. By applying a congruence transformation

in the inequality (2.23) multiplying with diag(H−⊤
z , H−⊤

z+ ) on the left and its transpose on the

right, one has
⋃︁

⨄︁

−H−T
z PzH

−1
z ⋆

H−T
z+ (Az −BzFzH

−1
z ) H−T

z+ Pz+H
−1
z+ −H−1

z+ −H−T
z+

⋂︁

⋀︁ ≺ 0.

Multiplying the last inequality with [I Az −BzFzH
−1
z ]⊤ on the left and its transpose on the

right, leads to

(︂

Az −BzFzH
−1
z

)︂⊤
H−⊤

z+ Pz+H
−1
z+

(︂

Az −BzFzH
−1
z

)︂

−H−⊤
z PzH

−1
z ≺ 0.

By pre and post-multiplying by x⊤
k and its transpose, respectively, it implies that

V (xk+1) − V (xk) < 0.

Then, the designed control gains ensure the origin of the closed-loop system (2.21) is asymp-

totically stable. This completes the proof.

Notice that condition (2.23) involves three fuzzy summations. In comparison to (2.13),

the number of fuzzy summations was increased and new degrees of freedom introduced by

variables Pi and Hi, i ∈ Ir. However, in the same way, the condition is given in terms of

the membership functions, thus requiring a procedure to derive LMI-based conditions. This

procedure is shown in the following lemma, which is an extension of the WangŠs relaxation in

Lemma 2.1.

Lemma 2.2 (see [29]). The negativity of the triple fuzzy summation

r
∑︂

i=1

r
∑︂

j=1

r
∑︂

l=1

hi(zk)hj(zk)hl(zk+1)Γ(i,j,l) ≺ 0 (2.24)

is fulfilled if the following LMIs hold.

Γ(i,i,l) ≺ 0, i, l ∈ Ir

Γ(i,j,l) + Γ(j,i,l) ≺ 0, i, j > i, l ∈ Ir.
(2.25)

The conservativeness reduction provided by the nonquadratic framework when compared

to the quadratic one is studied in the next example.
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Example 2.3. In this example, we proceed similar to Example 2.2. From (2.23), define

Γ(i,j,l) =

⋃︁

⨄︁

−Pj ⋆

AiHj −BiFj −Hl −H⊤
l + Pl

⋂︁

⋀︁ , i, j, l ∈ Ir,

From Lemma 2.2, the negativity of (2.23) is ensured if (2.25) hold. In this case, the set of

LMIs to be solved is

Γ(1,1,1) ≺ 0, Γ(1,2,1) + Γ(2,1,1) ≺ 0, Γ(2,2,1) ≺ 0,

Γ(1,1,2) ≺ 0, Γ(1,2,2) + Γ(2,1,2) ≺ 0, Γ(2,2,2) ≺ 0.
(2.26)

Considering the maximum variation for the parameter b such that there exists a feasible solution

for Theorem 2.2, the maximum b obtained solving the above set of LMIs is b = 1.539. In

comparison to the value of b = 1.36 obtained in Example 2.2, clearly the condition based on

the nonquadratic framework is less conservative.

This section has presented the deĄnition of TS fuzzy models and a brief review on

conventional design conditions of both PDC and non-PDC fuzzy controllers for discrete-time

TS fuzzy models. The main feature of TS models is they can represent nonlinear dynamics

within a given validity region by a fuzzy summation of linear local models. When the PDC

fuzzy controller was introduced, the number of fuzzy summations was increased to 2 and a

3-dimensional fuzzy summation was obtained with the non-PDC and a nonquadratic Lyapunov

function. It can be noticed that the number of fuzzy summations is related to the introduction

of new degrees of freedom for the LMI-based conditions, which allows reducing conservatism.

This fact was illustrated with the presented numerical example.

Broadly speaking, one can expect from the previous analysis that conservativeness can

be further reduced if the fuzzy summations dimension are increased even more. This subject

is discussed in the next section, where the main approaches to derive multidimensional fuzzy

summation based conditions are introduced.

2.2 Reducing conservativeness with multiple fuzzy summation

This section introduces the two main approaches employed to increase fuzzy summation

dimension. The Ąrst is based on PolyaŠs theorem, which exploits the convexity properties of fuzzy

summations while the second is based on deĄning multiple-parameterized Lyapunov functions

and control laws, which naturally conducts to multiple fuzzy summations based conditions.

The advantages and disadvantages of each approach are discussed in this section. Before

proceeding with this discussion, some useful notations and deĄnitions on multidimensional

fuzzy summations and multi-indexes are provided in the sequel.
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2.2.1 Exploiting multiple fuzzy summations and multi-indexes

As a generalization for condition (2.15), the negativity of a p-dimensional fuzzy sum-

mation, i.e, a Multidimensional Fuzzy Summation (MFS), can be expressed as follows

r
∑︂

i1=1

r
∑︂

i2=1

. . .
r
∑︂

ip=1

hi1(zk)hi2(zk) . . . hip
(zk)Γ(i1,i2,...,ip) ≺ 0. (2.27)

Note that the particular case with p = 2 reduces condition (2.27) to (2.15). Aiming to improve

notation on MFS, we adopt the multi-index notation previously presented in [17, 18].

Definition 2.2 (Index set and multi-indexes). The index set contain all p-dimensional indexes,

or multi-indexes, and is defined as:

Ip = ¶i = (ii, i2, . . . ip) : ij ∈ Ir, j ∈ Ip♢ . (2.28)

A p-dimensional index i = (ii, i2 . . . , ip) is generically called multi-index.

Then, a MFS can be written in terms of multi-indexes as shown in DeĄnition 2.3.

Definition 2.3. The MFS of matrices Γ(i1,i2,...ip) can be defined in terms of multi-indexes as:

∑︂

i∈Ip

hi(zk)Γi =
r
∑︂

i1=1

r
∑︂

i2=1

. . .
r
∑︂

ip=1

hi1(zk)hi2(zk) . . . hip
(zk)Γ(i1,i2,...,ip)

=
r
∑︂

i1=1

r
∑︂

i2=1

. . .
r
∑︂

ip=1

p
∏︂

j=1

hij
(zk)Γ(i1,i2,...,ip). (2.29)

As has been discussed along this chapter, the main task on fuzzy controller design is

obtaining LMI-based conditions to ensure negativity of fuzzy summations. For the sake of

motivation, consider the following negativity condition of a 2-dimensional fuzzy summation

expanded for r = 2:

h2
1(zk)Γ(1,1) + h1(zk)h2(zk)

(︂

Γ(1,2) + Γ(2,1)

)︂

+ h2
2(zk)Γ(2,2) ≺ 0. (2.30)

The indexes in the above summation can be viewed as vertices coordinates of a square, as

illustrated in Figure 2.1(a). The vertices in black are called upper-triangle indexes. Notice

the LMIs in (2.17), used to ensure negativity of (2.30), are composed by the upper-triangle

indexes and its permutations.

Now, consider the following expansion for r = 2 of the negativity of a 3-dimensional

fuzzy summation:

2
∑︂

i1=1

2
∑︂

i1=1

2
∑︂

i3=1

hi1(zk)hi2(zk)hi3(zk)Γ(i1,i2,i3) =

h3
1(zk)Γ(1,1,1) + h2

1(zk)h2(zk)
(︃

Γ(1,1,2) + Γ(1,2,1) + Γ(2,1,1)

)︃

+ h1(zk)h2
2(zk)

(︃

Γ(1,2,2) + Γ(2,1,2) + Γ(2,2,1)

)︃

+ h3
2(zk)Γ(2,2,2) ≺ 0. (2.31)
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A similar geometric interpretation can be given looking for the indexes as vertices of a cube, as

shown in Figure 2.1(b). Again, LMIs to ensure negativity of (2.31) can be obtained using only

the upper-triangle indexes and its permutations. Of course, this geometric interpretation is lost

for higher dimensional summations.

(1, 1) (2, 1)

(1, 2) (2, 2)

(a) Indexes for the 2-dimensional fuzzy
summation (2.15).

(1, 1, 1)

(1, 1, 2)

(1, 2, 1)

(1, 2, 2)

(2, 1, 1)

(2, 1, 2)

(2, 2, 1)

(2, 2, 2)

(b) Indexes for the 3-dimensional fuzzy
summation (2.31).

Figure 2.1 – Geometric interpretation for the indexes on fuzzy summations. The vertices
in black represent the upper-triangle indexes.

Motivated by the aforementioned discussion, the set of upper-triangle indexes is mathe-

matically formulated in DeĄnition 2.4. This notion will be useful to derive LMI-based conditions

to ensure negativity of MFS-dependent design conditions.

Definition 2.4 (Upper-triangle index set). The set of p-dimensional upper-triangle indexes is

defined as:

I
+
p = ¶i ∈ Ip : ij ≤ ij+1, ij ∈ Ir, j ∈ Ip−1♢ . (2.32)

It is worth to mention that I+
p ⊂ Ip.

Both fuzzy summations (2.15) and (2.31) depend only on membership degrees at the

current time sample k, which is different to (2.24) that depends on both the current and the

future time sample k + 1. The above deĄnitions of index sets and upper-triangle indexes are

valid only for the case of MFS whose membership degrees are in the same sample time. Then,

different index sets should be assigned to represent membership degrees evaluated at other

sample times.

Moreover, as LMI-based conditions to ensure negativity of fuzzy summations can be

obtained by the upper-triangle indexes and its permutations, it is useful to consider the following

set of index permutations.

Definition 2.5 (Set of index permutations). Given a multi-index i ∈ Ip, its set of permutations

is denoted by P(i) ⊂ Ip. This definition can be directly extended for a n-tuple of multi-indexes

(ip1 , . . . , ipn
) ∈ Ip1 × . . .× Ipn

, which is denoted by P(ip1 , . . . , ipn
).
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Example 2.4. Consider the multi-index i = (1, 1, 2). The related set of permutations is

P(i) = ¶(1, 1, 2), (1, 2, 1), (2, 1, 1)♢. Moreover, consider the 2-tuple composed by the multi-

indexes i = (1, 2) and j = 1. The permutation set is (i, j) is P(i, j) = ¶(1, 2, 1), (2, 1, 1)♢.

Based on the introduced deĄnitions, LMI-based condition to ensure negativity of a MFS

whose membership degrees are dependent on both actual and future time sample k + 1 is

stated in the next lemma.

Lemma 2.3 (see [31]). Consider the n-dimensional fuzzy summation

∑︂

i∈Ip

∑︂

j∈In−p

hi(zk)hj(zk+1)Γ(i,j) =
∑︂

k∈I
+
p

∑︂

l∈I
+
n−p

Ξ(i,j), (2.33)

where Ξ(i,j) =
∑︁

i∈P(k)

∑︁

j∈P(l) Γ(i,j). Its negativity is ensured if

Ξ(i,j) ≺ 0,

for all i ∈ I
+
p , j ∈ I

+
n−p.

Note that Lemmas 2.1 and 2.2 are particular cases of the last one. They are recovered

by setting, respectively, (n, p) = (3, 2) and (n, p) = (2, 0).

2.2.2 Dimension expansion via PolyaŠs theorem

In the last decade, several research efforts were made to reduce conservatism of LMI-

based conditions to design PDC controllers within the quadratic framework [8, 14, 15, 16]. In

summary, less conservative conditions to check negativity of fuzzy summations for assuring

asymptotic stability of the closed-loop fuzzy system were obtained by introducing extra slack

variables to the optimization problem. However, these conditions were only sufficient, which

means that their feasibility still remained subject to the system to be stabilized. This limitation

motivated the investigation of sufficient and necessary conditions.

The problem of Ąnding sufficient and necessary conditions for that purpose was addressed

later in the works of [60, 17] by applying PolyaŠs Theorem, which provide progressively less

conservative sufficient conditions obtained by increasing a complexity parameter namely m

related to the fuzzy summation dimension. This strategy is based on the evident fact that [17]:

r
∑︂

i=1

hi(zk) =

(︄

r
∑︂

i=1

hi(zk)

⎜m

=
∑︂

i∈Im

hi(zk) = 1, ∀m ∈ Z≥0, (2.34)

where Z≥0 is the set of non-negative integers. The above equality is a direct consequence of

the convexity properties in (2.4). To exploit the idea, consider the fuzzy summation in (2.15)

equivalently rewritten as follows:
(︄

r
∑︂

i=1

hi(zk)

⎜m−2
∏︁

∐︂

r
∑︂

i1=1

r
∑︂

i2=1

hi1(zk)hi2(zk)Γ(i1,i2)

∫︁

ˆ︁ =
∑︂

i∈Im

hi(zk)Γ(i1,i2) ≺ 0, (2.35)
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where m ≥ 2 ∈ Z≥0. Then, by increasing m, a 2-dimensional fuzzy summation can be

expanded to any desired dimension. Following similar arguments as those in Lemma 2.3, we

have the following sufficient condition to ensure negativity of (2.35):

Ξi =
∑︂

j∈P(i)

hj(zk)Γ(j1,j2) ≺ 0, ∀i ∈ I
+
m. (2.36)

The condition (2.36) is less conservative as n increases. Then, for a large enough dimensionality

expansion (m → ∞), condition (2.36) tend to become equivalent to (2.35) [17]. Accordingly,

the following theorem can be stated.

Theorem 2.3 (see [17]). Given matrices Γ(i1,i2) satisfying (2.15), there exists a finite m so

that (2.36) holds, i.e., (2.36) becomes necessary and sufficient for some finite m.

The application of Theorem 2.3 is illustrated in the following example.

Example 2.5. To illustrate the application of Theorem 2.3, consider the dimensionality

expansion for m = 3:

h3
1(zk)Ξ(1,1,1) + h2

1(zk)h2(zk)Ξ(1,1,2) + h1(zk)h2
2(zk)Ξ(1,2,2) + h3

2(zk)Ξ(2,2,2) ≺ 0,

where

Ξ(1,1,1) = Γ(1,1), Ξ(1,1,2) = Γ(1,1) + Γ(1,2) + Γ(2,1),

Ξ(2,2,2) = Γ(2,2), Ξ(1,2,2) = Γ(2,2) + Γ(1,2) + Γ(2,1).

In this case, the negativity is ensured solving the following set of LMIs:

Ξ(1,1,1) ≺ 0, Ξ(1,1,2) ≺ 0, Ξ(1,2,2) ≺ 0, Ξ(2,2,2) ≺ 0. (2.37)

From conditions Ξ(1,1,1) ≺ 0 and Ξ(2,2,2) ≺ 0, it follows that Γ(1,1) ≺ 0 and Γ(2,2) ≺ 0.

Therefore, introducing these terms in Ξ(1,1,2) and Ξ(1,2,2) allows to relax the inequalities

Ξ(1,1,2) ≺ 0 and Ξ(1,2,2) ≺ 0. For this reason, the above LMIs are less conservative than those

in (2.17).

In Example 2.2, the maximum b for feasibility of condition (2.17) was b = 1.36. It

corresponds to the particular case of m = 2. To evaluate the conservatism reduction achieved

with the Polya’s theorem application, we compute the maximum parameter b for different

values of m and the related number of solved LMIs. The results are summarized in Table 2.1.

Table 2.1 – Comparison among maximum b for LMI feasibility obtained with different
values of m in condition (2.36).

m = 2 m = 3 m = 4 m = 5 m = 6 m = 7 m = 8 m = 9

b 1.360 1.618 1.624 1.671 1.691 1.698 1.713 1.716
LMIs 3 4 5 6 7 8 9 10
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From the results in Table 2.1, it is clear that conservativeness can be progressively

reduced when parameter m is increased. However, this gain is achieved at the cost of increasing

the number of LMIs to be solved.

2.2.3 Multiple-parameterized approach

Although ANS conditions proposed by [60, 17] provided reduction of conservativeness

associated with the quadratic framework, these approaches are also based on a common

quadratic Lyapunov function as (2.14). This also conducts to a certain conservatism, which

can be reduced using nonquadratic, or parameter-dependent, Lyapunov functions.

This motivated a generalization for the nonquadratic framework discussed in Sec-

tion 2.1.3, the so-called Homogeneous Polynomially Nonquadratic approach [32, 31]. It is

based on generalizations for both non-PDC controller (2.20) and nonquadratic Lyapunov

functions. In spite of similarities between the works of [32] and [31], the main difference

between them is that the former adopted homogeneous polynomials notation and the latter

multi-index notation. In addition, both works considered dimensionality expansion via PolyaŠs

theorem.

Following the multi-index notation, the multiple-parameterized non-PDC control law is

given by:

uk = −
∏︁

∐︂

∑︂

i∈Il

hi(zk)Fi

∫︁

ˆ︁

∏︁

∐︂

∑︂

i∈Ip

hi(zk)Hi

∫︁

ˆ︁

−1

xk. (2.38)

The classical non-PDC control law can be recovered simply choosing l = p = 1.

The Lyapunov function candidate considered in [32] generalizes (2.19) as:

V (xk) = x⊤
k

∏︁

∐︂

∑︂

i∈Iq

hi(zk)Pi

∫︁

ˆ︁

−1

xk (2.39)

and the one of [31] generalizes (2.22) as:

V (xk) = x⊤
k

∏︁

∐︂

∑︂

i∈Ip

hi(zk)Hi

∫︁

ˆ︁

−⊤∏︁

∐︂

∑︂

i∈Iq

hi(zk)Pi

∫︁

ˆ︁

∏︁

∐︂

∑︂

i∈Ip

hi(zk)Hi

∫︁

ˆ︁

−1

xk. (2.40)

The method of [32] is not discussed in this section. Here, we focus on the condition of [31] since

it is a direct generalization of Theorem 2.2. The condition of [31] without slack variables and

extra dimensionality expansion is stated in the next theorem. Note that LMI-based conditions

to ensure (2.41) can be directly derived from Lemma 2.3.

Theorem 2.4 (adapted from [31]). Given dimensions (l, p, q), let α0 := max(l + 1, p+ 1, q)

and α1 := max(p, 1). If there exist matrices Pi = P⊤
i ≻ 0, i ∈ Iq, Fi, i ∈ Il, and Hi, i ∈ Ip,
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such that

∑︂

i∈Iα0

∑︂

j∈Iα1

hi(zk)hj(zk+1)

⋃︁

⨄︁

−P(i1,...,iq) ⋆

Ai1H(i2,...,ip+1) −Bi1F(i2,...,il+1) P(j1,...,jq) −H(j1,...,jp) −H⊤
(j1,...,jp)

⋂︁

⋀︁ ≺ 0 (2.41)

holds, then the origin of (2.21) is asymptotically stable.

Proof. The proof is omitted since it follows similar steps as Theorem 2.2.

The application of the last condition is shown in the next example.

Example 2.6. In this example, we investigate the relation of parameters (l, p, q) with the

conservatism reduction provided by Theorem 2.4. For that, consider the TS model (2.5). We

want to find the maximum b for feasibility. For simplicity, it is assumed p = l. The results for

different choices of p and q are depicted in Table 2.2.

Table 2.2 – Comparison among maximum b for LMI feasibility obtained with different
values of (q, p), p = l, in Theorem 2.4.

p = l = 1 p = l = 2 p = l = 3 p = l = 4 p = l = 5

q = 1 1.539 1.677 1.725 1.752 1.767
q = 2 1.547 1.693 1.733 1.754 1.770
q = 3 1.665 1.693 1.735 1.754 1.771
q = 4 1.684 1.719 1.736 1.754 1.771
q = 5 1.708 1.738 1.749 1.762 1.771

The maximum value of b, 1.771, is obtained with p = l = 5 and q = 3. Even increasing

q from 3 to 5, the value of b is maintained, indicating that there is a kind of limit for which

conservativeness can be reduced. However, this value is still greater than the largest in Table 2.1

obtained with dimensionality expansion via Polya’s Theorem. It illustrates that conservativeness

could be further reduced with the multiple-parameterized nonquadratic Lyapunov function and

control law.

Remark 2.1. ANS conditions based on multiple-parameterized nonquadratic Lyapunov func-

tions and non-PDC control law were derived by [18] for discrete-time TS fuzzy models, and by

[19] for continuous-time TS models. In comparison to the ANS condition presented in Section

2.2.2, in place of only multiplying the negativity condition by (
∑︁r

i=1 hi(zk))m0 , a term of the

form
(︄

r
∑︂

i=1

hi(zk)

⎜m0
(︄

r
∑︂

i=1

hi(zk+1)

⎜m1

was introduced. In the discrete-time case, it conducts to α0 = max(l + 1, p+ 1, q) +m0 and

α1 = max(p, q) +m1 in Theorem 2.4. In this case, both fuzzy summation dimensions in the

current and future sample time k + 1 can be increased.
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This section has presented the main MFS-based approaches to provide less conservative

control design conditions for discrete-time TS fuzzy models. As discussed, by expanding MFS

dimension, the number of LMIs is increased and, consequently, the related computational

burden to solve them. This conducts to a new question: how to obtain less conservative design

conditions without excessively increase the computational complexity? One answer for this

question will be given in Chapter 3, where a new approach based on the use of fuzzy controllers

and Lyapunov functions with delayed membership functions is introduced.

2.3 Conclusion

This chapter has discussed the dimensionality expansion of fuzzy summation-based

conditions. It was shown that nonlinear systems can be described by TS fuzzy models by means

of a fuzzy summation of local linear models. When a PDC control was used, the resulting

closed-loop system was represented by a 2-fuzzy summation, one due to the model and other

to the PDC control law. After this, it was shown that the number of fuzzy summations

was increased to 3 when the non-PDC controller was used. As illustrated by a numerical

example, the non-PDC conditions provided less conservative outcomes than the PDC condition,

which indicate the possibility to reduce design conservativeness as the fuzzy dimension is

increased. This fact was put in evidence with application of PolyaŠs theorem and multiple-

parameterized approach, where numerical simulations illustrated that conservativeness could be

further reduced by increasing the fuzzy summation dimension. These multidimensional fuzzy

conditions constitute the foundation of the recent fuzzy control design conditions.
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3 DELAYED CONTROL OF DISCRETE-TIME TS MODELS

This chapter presents recent control design conditions for stabilization of discrete-time

TS fuzzy models. They are based on the multiple-parameterized approach. However, differently

from conditions in Chapter 2, here, an MFS can depend on delayed membership functions. The

theory of multisets is used to represent the multiple delays present in a general MFS. Based

on that, design conditions for both non-delayed and delayed controllers can be easily designed.

As far as multisets are used, some deĄnitions and notations on this topic are provided in the

beginning of this chapter. In addition, the extension of the stabilization conditions to deal with

the disturbance attenuation problem is also addressed here.

3.1 Multiple fuzzy summations: a multiset point of view

This section introduces useful deĄnitions, notations and operations related to multisets.

A multiset (mset) is an unordered collection of elements that may appear repeated times [41].

The concept of msets can be understood as a generalization for standard sets, in which elements

are allowed to appear only one time. A general deĄnition for msets is given as follows.

Definition 3.1 (Multisets, see [41]). Let D = ¶d1, d2, . . . , dp♢ be a set. An mset GD over D

is a cardinal-valued function GD : D ↦→ N such that dj ∈ D implies a cardinal 1GD
(dj) > 0.

The value 1GD
(dj) denotes the number of times that dj occurs in GD. Here, msets will be

represented by the set of pairs as follows:

GD = ¶⟨1GD
(d1), d1⟩, . . . , ⟨1GD

(dp), dp⟩♢.

Each pair ⟨1GD
(dj), dj⟩ is defined by the multiplicity 1GD

(dj) and the corresponding dj.

Although msets have been mainly applied in the areas of mathematics and computer

science [41], recently, this representation has been shown to be useful in engineering applications.

More speciĄcally, within the context of fuzzy control, msets have been used to collect arbitrary

delays present in the membership functions of MFS. This notion was initially proposed by [38]

and later adopted in the works of [26, 27] and [61]. The representation of general MFS in

terms of msets is given as follows.

Definition 3.2. Consider an nP -dimensional MFS evaluated at the sample time k:

PGP
0

=
r
∑︂

i1=1

hi1(zk+d1) . . .
r
∑︂

inp =1

hinp
(zk+dnp

)P(i1,...,inP
).

The delays present in this MFS of matrices P(i1,...,inP
) are collected in the mset

GP
0 = ¶d1, . . . , dnP

♢,
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where the subscript “0” denotes that the MFS has been evaluated at the current sample time

k, the superscript, “P” in this case, corresponds to the matrices of the MFS and dj ∈ Z,

j ∈ InP
, are the delays in the premise variable of each sum.

If the MFS is evaluated at the sample time k+T , T ∈ Z, the mset of delays is denoted

GP
T = ¶d1 + T, . . . , dnP

+ T♢ and the corresponding MFS as PGP
T
.

Differently from the MFS in (2.29), here, each membership function can be computed

in terms of a delayed premise variable evaluated at k + di, i.e., zk+di
. Therefore, the above

deĄnition is more general than DeĄnition 2.3, since it allows representing membership functions

with arbitrary delays in a more compact and elegant way. To further exploit this idea, the

following deĄnitions on msets adopted from [41] and [38] are presented.

Definition 3.3 (Cardinality of msets). The cardinality of the mset Gd, denoted ♣Gd♣, is the

total number of possibly repeated elements in GD. It is computed as

♣GD♣ =
p
∑︂

j=1

1GD
(dj).

Definition 3.4 (Operations on msets). The main operations on msets are defined as follows:

a) The union of two msets GA and GB is the mset

GA ∪GB = ¶d ∈ GA ∪GB : 1GA∪GB
(d) = max¶1GA

(d),1GB
(d)♢♢.

b) The intersection of two msets GA and GB is the mset

GA ∩GB = ¶d ∈ GA ∩GB : 1GA∩GB
(d) = min¶1GA

(d),1GB
(d)♢♢.

c) The sum of two msets GA and GB is the mset

GA ⊕GB = ¶d ∈ GA ⊕GB : 1GA⊕GB
(d) = 1GA

(d) + 1GB
(d)♢.

In addition, aiming to link the notations on msets introduced in this section and those

of multi-indexes presented in Chapter 2, the following deĄnitions are considered.

Definition 3.5 (Index set). The index set related to the MFS PGP
0

is defined as:

IGP
0

= ¶(i1, . . . , inP
) : ij ∈ Ir, j ∈ Inp

♢,

where ♣GP
0 ♣ = np. It contains all indexes that appear in the MFS.

Definition 3.6 (Projection of a multi-index to msets). The projection of a multi-index i ∈ IGA

to the mset GB, denoted pri
GB

, is the part of i that corresponds to the delays in GA ∩GB.

The following example illustrates the deĄnitions and operations related to msets.
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Example 3.1. Consider the MFS with mset of delays GP
0 = ¶⟨2, 0⟩,−1,−2♢:

PGP
0

=
r
∑︂

i1=1

r
∑︂

i2=1

r
∑︂

i3=1

r
∑︂

i4=1

hi1(zk)hi2(zk)hi3(zk−1)hi4(zk−2)P(i1,i2,i3,i4).

At the sample time k + T , the multiset of delays is GP
T = ¶⟨2, T ⟩, T − 1, T − 2♢. The

multiplicity of the elements of GP
0 are 1GP

0
(0) = 2, 1GP

0
(−1) = 1 and 1GP

0
(−2) = 1, and the

cardinality of GP
0 is ♣GP

0 ♣ = 4.

To illustrate the operations on msets, consider also GH
0 = ¶⟨2, 0⟩, ⟨2,−1⟩♢. The union

of these msets is GP
0 ∪GH

0 = ¶⟨2, 0⟩, ⟨2,−1⟩,−2♢, the intersection is GP
0 ∩GH

0 = ¶⟨2, 0⟩,−1♢
and the sum GP

0 ⊕GH
0 = ¶⟨4, 0⟩, ⟨3,−1⟩,−2♢.

The projection of the multi-index i = (1, 2, 3, 4), i ∈ IGP
0
, to the multiset of delays

Gc = ¶−1,−2♢ is pri
GC

= (3, 4). Note that the projection of a multi-index may be not unique,

for example, the projection of i = (1, 2, 3, 4) ∈ IGP
0

to GD = ¶0,−1♢ is either pri
GD

= (1, 3)

or pri
GC

= (2, 3).

Remark 3.1. The TS fuzzy model (2.2) can be rewritten using the notation on msets as

follows:

xk+1 = AGA
0
xk + BGB

0
uk, (3.1)

where GA
0 = GB

0 = ¶0♢.

3.2 Reducing conservativeness with delayed control

In this section, two sets of fuzzy control design conditions proposed by [38] are presented.

Firstly, the multiple-parameterized framework discussed in Section 2.2.3 is generalized by

allowing arbitrary delays. In the sequel, conditions for delayed control design are presented.

Finally, a numerical example is concerned to illustrate the conservatism reduction acquired with

the use of delayed conditions.

Here, the following control law is considered [38]:

uk = −FGF
0
H

−1
GH

0
xk, (3.2)

where FGF
0

and HGH
0

are MFS of matrices Fi ∈ R
nu×nx , i ∈ IGF

0
, and Hi ∈ R

nx×nx , i ∈ IGH
0

,

respectively. This control law generalizes the conventional fuzzy controllers presented in

Chapter 2. For instance, the PDC control law in (2.11) can be recovered choosing GF
0 = ¶0♢

and GH
0 = ¶∅♢, and the non-PDC in (2.20) by GF

0 = ¶0♢ and GH
0 = ¶0♢.

After substituting the control law (3.2) into system (3.1), the following closed-loop

system is obtained:

xk+1 =
(︃

AGA
0

− BGB
0
FGF

0
H

−1
GH

0

)︃

xk. (3.3)
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Similar to Chapter 2, the control goal here is to design gains Fi and Hi such that the origin of

the closed-loop system (3.3) be asymptotically stable in the sense of Lyapunov.

Remark 3.2. The msets GF
0 and GH

0 must not contain positive delays, since incorporating

future premise variables would conduct a non-causal closed-loop dynamics.

3.2.1 Generalized control design conditions

Here, the two design conditions proposed by [38] are presented. Each one is derived

with a different nonquadratic Lyapunov function candidate. Although both non-delayed and

delayed controllers can be designed with these conditions, the former is mainly employed for

non-delayed control design while the second stands for delayed control design. It will be shown

that designing these classes of controllers with each of these conditions allows reducing the

number of required LMIs for design.

Non-delayed conditions

The design conditions of non-delayed controllers is based on the following Lyapunov

function candidate:

V1(xk) = x⊤
k H

−⊤
GH

0
PGP

0
H

−1
GH

0
xk, (3.4)

where Pi = P⊤
i ≻ 0 ∈ R

nx×nx , i ∈ IGP
0
, and HGH

0
being the same MFS in (3.3). The control

design obtained with (3.4) is stated in the following theorem. It generalizes Theorem 2.4 in

the sense that arbitrary delays can be regarded.

Theorem 3.1 (see [38]). Given GV = GP
0 ∪GP

1 ∪ (GF
0 ⊕GB

0 ) ∪ (GH
0 ⊕GA

0 ) ∪GH
1 , the origin

of the closed-loop system (3.3) is asymptotically stable if there exist matrices PiP
j

= P⊤
iP
j

≻ 0,

iP
j = pri

GP
j

, and HiH
j

, iH
j = pri

GH
0

, j = 0, 1, and FiF
0
, iF

0 = pri
GF

0
, i ∈ IGV

, such that

⋃︁

⨄︁

−PGP
0

⋆

AGA
0
HGH

0
− BGB

0
FGF

0
−H

⊤
GH

1
− HGH

1
+ PGP

1

⋂︁

⋀︁ ≺ 0. (3.5)

Proof. Consider the Lyapunov function candidate (3.4). Taking its difference along trajectories

of the closed-loop system (3.3), results in:

V1(xk+1) − V1(xk) =

⋃︁

⨄︁

xk

xk+1

⋂︁

⋀︁

⊤ ⋃︁

⨄︁

−H
−⊤
GH

0
PGP

0
H

−1
GH

0
0

0 −H
−⊤
GH

1
PGP

1
H

−1
GH

1

⋂︁

⋀︁

⋃︁

⨄︁

xk

xk+1

⋂︁

⋀︁ .

In addition, the closed-loop system (3.3) can be rewritten as:

[︂

AGA
0

− BGB
0
FGF

0
H

−1
GH

0
−I
]︂

⋃︁

⨄︁

xk

xk+1

⋂︁

⋀︁ = 0. (3.6)
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Using the FinslerŠs Lemma, condition V1(xk+1) − V1(xk) < 0 is equivalent to

⋃︁

⨄︁

−H
−⊤
GH

0
PGP

0
H

−1
GH

0
0

0 −H
−⊤
GH

1
PGP

1
H

−1
GH

1

⋂︁

⋀︁+

⋃︁

⨄︁

0

H
−⊤
GH

1

⋂︁

⋀︁

[︂

AGA
0

− BGB
0
FGF

0
H

−1
GH

0
−I
]︂

+

⋃︁

⨄︁

A
⊤
GA

0
− H

−⊤
GH

0
F

⊤
GF

0
B

⊤
GB

0

−I

⋂︁

⋀︁

[︂

0 H
−1
GH

1

]︂

≺ 0,

which leads to
⋃︁

⨄︁

−H
−⊤
GH

0
PGP

0
H

−1
GH

0
⋆

H
−⊤
GH

1
AGA

0
− H

−⊤
GH

1
BGB

0
FGF

0
H

−1
GH

0
−H

−⊤
GH

1
PGP

1
H

−1
GH

1
− H

−⊤
GH

1
− H

−1
GH

1

⋂︁

⋀︁ ≺ 0. (3.7)

By applying congruence transformation multiplying (3.7) with

⋃︁

⨄︁

H
⊤
GH

0
0

0 H
⊤
GH

1

⋂︁

⋀︁

on the left and its transpose on the right, it results in (3.5), which completes the proof.

The classical design conditions described in Chapter 2 can be easily reconstructed

from Theorem 3.1. For example, the PDC design based on a quadratic Lyapunov function

(Theorem 2.1) is obtained choosing GF
0 = ¶0♢, GH

0 = ¶∅♢ and GP
0 = ¶∅♢. The non-PDC

design in Theorem 2.2 corresponds to GF
0 = GH

0 = ¶0♢ and GP
0 = ¶0♢. Moreover, [36,

Thm. 1] is obtained with GP
0 = ¶−1♢ and GH

0 = GF
0 = ¶0,−1♢. The last condition concerns

delayed control.

Delayed conditions

To derive the second control design condition, the following nonquadratic Lyapunov

function candidate is considered:

V2(xk) = x⊤
k P

−1
GP

0
xk, (3.8)

where Pi = P⊤
i ≻ 0 ∈ R

nx×nx , for i ∈ IGP
0
. The conditions in this case are stated in

Theorem 3.2.

Theorem 3.2 (see [38]). Given GV = GP
0 ∪ GP

1 ∪ (GF
0 ⊕ GB

0 ) ∪ (GH
0 ⊕ GA

0 ), the origin of

the closed-loop system (3.3) is asymptotically stable if there exist matrices PiP
j

= P⊤
iP
j

≻ 0,

iP
j = pri

GP
j

, j = 0, 1, FiF
0
, iF

0 = pri
GF

0
, and HiH

0
, iH

0 = pri
GH

0
, i ∈ IGV

, such that

⋃︁

⨄︁

−HGH
0

− H
⊤
GH

0
+ PGP

0
⋆

AGA
0
HGH

0
− BGB

0
FGF

0
−PGP

1

⋂︁

⋀︁ ≺ 0. (3.9)
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Proof. Consider the Lyapunov function candidate (3.8). Taking its difference along trajectories

of the closed-loop system (3.3), it results:

V2(xk+1) − V2(xk) =

⋃︁

⨄︁

xk

xk+1

⋂︁

⋀︁

⊤ ⋃︁

⨄︁

−P
−1
GP

0
0

0 P
−1
GP

1

⋂︁

⋀︁

⋃︁

⨄︁

xk

xk+1

⋂︁

⋀︁ .

From FinslerŠs Lemma, it is possible to write

⋃︁

⨄︁

−P
−1
GP

0
0

0 P
−1
GP

1

⋂︁

⋀︁+ M
[︂

AGA
0

− BGB
0
FGF

0
H

−1
GH

0
−I
]︂

+

⋃︁

⨄︁

A
⊤
GA

0
− H

−T

GH
0
F

⊤
GF

0
B

⊤
GB

0

−I

⋂︁

⋀︁M⊤ ≺ 0,

where M =

⋃︁

⨄︁

0

P
−1
GP

1

⋂︁

⋀︁. By congruence transformation with

⋃︁

⨄︁

HGH
0

0

0 PGP
1

⋂︁

⋀︁ , it leads to

⋃︁

⨄︁

−H
⊤
GH

0
P

−1
GP

0
HGH

0
⋆

AGA
0
HGH

0
− BGB

0
FGF

0
−PGP

1

⋂︁

⋀︁ ≺ 0, (3.10)

Using −H
⊤
GH

0
P

−1
GP

0
HGH

0
⪯ −HGH

0
− H

⊤
GH

0
+ PGP

0
, results in (3.9) and completes proof.

The condition in (3.9) also generalizes existing results in the literature concerning

non-delayed control. For example, [29, Thm. 4] is obtained with GP
0 = ¶0♢, GH

0 = GF
0 = ¶0♢

and HGH
0

= PGP
0

and [30, Thm. 3] with GP
0 = ¶0, 0♢ and GH

0 = GF
0 = ¶0♢. For delayed

control design, [37, Thm. 1] can be obtained with GP
0 = −1 and GF

0 = GH
0 = ¶0,−1♢.

Remark 3.3. The number of decision variables in both Theorems 3.1 and 3.4 can be computed

as:

Nd1 = r♣GP
0 ♣nx + 1

2
nx + r♣GH

0 ♣n2
x + r♣GF

0 ♣nxnu. (3.11)

The conditions (3.5) and (3.9) clearly depend on the adequate choice of the msets

of delays. In the sequel, the procedure proposed by [38] to choose the msets of delays such

that, for a Ąxed number of sums, the number of LMIs and, consequently, the computational

complexity can be reduced is discussed.

3.2.2 Choosing msets of delays

Consider GP
0 = ¶∅♢ and GF

0 = GH
0 = ¶⟨2,−1⟩♢. In this case, condition (3.9) is

⋃︁

⨄︁

−H¶−1,−1♢ − H
⊤
¶−1,−1♢ + P ⋆

A¶0♢H¶−1,−1♢ − B¶0♢F¶−1,−1♢ −P

⋂︁

⋀︁ ≺ 0,

which is equivalent to a linear control, since it has to be solved for every index [38]. To

conclude, GV should include ¶⟨2, 0⟩♢ in order to allow that LMI relaxations such as Lemma 2.1

can be applied.
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Assuming classical TS fuzzy models, the msets GA
0 = GB

0 = ¶0♢ are Ąxed. Then, it is

apparent that the terms AGA
0
HGH

0
and BGB

0
FGF

0
, which appear in both conditions (3.5) and

(3.9), play a similar role. Therefore, the convenient choice GF
0 = GH

0 can be made without

loss of generality.

Now, consider the msets GF
0 = GH

0 = ¶0,−1♢, GP
0 = ¶⟨2,−1⟩♢, which implies the

following summations:

FGF
0

=
r
∑︂

i1=1

r
∑︂

i2=1

hi1(zk)hi2(zk−1)F(i1,i2), HGH
0

=
r
∑︂

i1=1

r
∑︂

i2=1

hi1(zk)hi2(zk−1)H(i1,i2),

PGP
0

=
r
∑︂

i1=1

r
∑︂

i2=1

hi1(zk−1)hi2(zk−1)P(i1,i2).

In this case, condition (3.5) corresponds to

r
∑︂

i1=1

r
∑︂

i2=1

r
∑︂

i3=1

r
∑︂

i4=1

r
∑︂

i5=1

hi1(zk)hi2(zk)hi3(zk−1)hi4(zk−1)hi5(zk+1)

⋃︁

⨄︁

−P(i3,i4) ⋆

Ai1H(i2,i3) −Bi1F(i2,i3) −H(i1,i5) −H⊤
(i1,i5) + P(i1,i2)

⋂︁

⋀︁ ≺ 0,

and condition (3.9) to

r
∑︂

i1=1

r
∑︂

i2=1

r
∑︂

i3=1

r
∑︂

i4=1

hi1(zk)hi2(zk)hi3(zk−1)hi4(zk−1)

⋃︁

⨄︁

−H(i2,i3) −H⊤
(i2,i3) + P(i3,i4) ⋆

Ai1H(i2,i3) −Bi1F(i2,i3) −P(i1,i2)

⋂︁

⋀︁ ≺ 0.

With this choice of msets, condition (3.5) is a 5-dimensional fuzzy summation, while (3.9) is a

4-dimensional fuzzy summation. It implies that a smaller number of LMIs is required to ensure

negativity of (3.9).

Following the arguments of [38] to choose msets of delays, assume that ♣GP
0 ♣ = 1 and

GF
0 and GH

0 containing ¶0♢ in order to allow the use of relaxations. For condition (3.5), we

have
⋃︁

⨄︁

−PGP
0

⋆

A¶0♢H¶0♢ − B¶0♢H¶0♢ −H¶1♢ − H
⊤
¶1♢ + PGP

1

⋂︁

⋀︁ ≺ 0,

which has at least 3 fuzzy summations, independently of ♣GP
0 ♣. For arbitrary dimensions of

msets of delays GP
0 and GF

0 = GH
0 , it follows that it is possible to choose GP

0 = ¶⟨1GP
0

(0), 0⟩♢
and GF

0 = GH
0 = ¶⟨1GH

0
(0), 0⟩♢. For instance, consider ♣GP

0 ♣ = ♣GH
0 ♣ = ♣GF

0 ♣ = nP . This leads

to the (2nP + 1)-dimensional mset GV = ¶0, ⟨nP , 0⟩, ⟨nP , 1⟩♢. Note however that including

negative delays in this condition implies in increasing the related number of fuzzy summations,

which means that the number of LMIs is also increased.
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For condition (3.9) with ♣GP
0 ♣ = 1 and GF

0 and GH
0 containing ¶0♢, we have

⋃︁

⨄︁

−H¶0♢ − H
⊤
¶0♢ + PGP

0
⋆

A¶0♢H¶0♢ − B¶0♢H¶0♢ −PGP
1

⋂︁

⋀︁ ≺ 0,

which has at least 2 summations. To obtain 3 sums, one can choose either GP
0 = ¶0♢:

⋃︁

⨄︁

−H¶0♢ − H
⊤
¶0♢ + P¶0♢ ⋆

A¶0♢H¶0♢ − B¶0♢H¶0♢ −P¶1♢

⋂︁

⋀︁ ≺ 0,

or GP
0 = ¶−1♢:

⋃︁

⨄︁

−H¶0♢ − H
⊤
¶0♢ + P¶−1♢ ⋆

A¶0♢H¶0♢ − B¶0♢H¶0♢ −P¶0♢

⋂︁

⋀︁ ≺ 0.

Notice also that for GP
0 = ¶−1♢, another degree of freedom can be introduced in GH

0 and

GF
0 without increasing the sum dimension, so that GH

0 = GF
0 = ¶0,−1♢. Therefore, the

3-dimensional fuzzy summation is preserved but conservatism can be reduced. This is the

main advantage of delayed control when compared to the non-delayed approach. Extending

the analysis for arbitrary dimensions of GP
0 and GH

0 , we have GP
0 = ¶⟨1GP

0
(−1),−1⟩♢ and

GF
0 = GH

0 = ¶⟨1GH
0

(0), 0⟩, ⟨1GH
0

(−1),−1⟩♢. For instance, if ♣GP
0 ♣ = ♣GH

0 ♣ = ♣GF
0 ♣ = nP , the

(2nP + 1)-dimensional mset GV = ¶0, ⟨1GP
0
(0), 0⟩, ⟨1GP

0
(−1),−1⟩♢ is obtained.

The use of delayed control is more recent and allows handling new control laws that

are not possible to be designed with the previous existing conditions [38]. The advantages of

using delayed conditions for conservatism reduction are illustrated in the next example.

Example 3.2. To illustrate the conservatism reduction achieved with delayed control, we

consider again the TS model (2.5). The analysis in this example is limited to 3-dimensional

fuzzy summations in (3.9). The msets of delays are GP
0 = ¶−1♢ and GF

0 = GH
0 = ¶0,−1♢. In

this case, condition (3.9) can be written as

r
∑︂

i1=1

r
∑︂

i2=1

r
∑︂

i3=1

hi1(zk)hi2(zk)hi3(zk−1)Υ(i1,i2,i3) ≺ 0,

where

Υ(i1,i2,i3) =

⋃︁

⨄︁

−H(i2,i3) −H⊤
(i2,i3) + Pi3 ⋆

Ai1H(i2,i3) −Bi1F(i2,i3) −Pi2

⋂︁

⋀︁ ≺ 0.

By expanding the above delayed summation for r = 2, one has

h2
1(zk)h1(zk−1)Υ(1,1,1) + h2

1(zk)h2(zk−1)Υ(1,1,2)+

h1(zk)h2(zk)h1(zk−1)
(︂

Υ(1,2,1) + Υ(2,1,1)

)︂

+ h2
2(zk)h1(zk−1)Υ(2,2,1)+

h1(zk)h2(zk)h1(zk−1)
(︂

Υ(1,2,2) + Υ(2,1,2)

)︂

+ h2
2(zk)h2(zk−1)Υ(2,2,2) ≺ 0.
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LMI-based conditions to ensure negativity of this expansion can be obtained directly applying

the LMI relaxation in Lemma 2.2. Solving such LMIs, the maximum b in system (2.5) for

which LMIs are feasible is b = 1.553. In comparison to Example 2.3, the number of solved

LMIs is the same, but a greater value for b is obtained thanks to the extra degrees introduced

in HGH
0

and FGF
0
.

As shown in the last example, less conservative results can be obtained with the use

of delayed controllers when compared to the conventional non-delayed conditions. However,

LMIs were obtained only for the 3-dimensional case. In the sequel, we propose a procedure

to derive LMI-based conditions to ensure negativity of MFS with arbitrary delays, i.e., either

non-delayed or delayed membership functions.

3.2.3 Deriving LMI-based conditions from general MFS

The control design conditions discussed in this section are given as multiple fuzzy

summations possibly with delayed membership functions. It implies that their feasibility

depends on the relaxation employed to derive a Ąnite set of LMI conditions to design the

control gains. In this subsection, a novel methodology to derive LMI-based design conditions is

proposed. This approach can be viewed as a generalization of Lemma 2.3 in the sense that it

can be applied to both non-delayed and delayed MFS-based conditions with arbitrary delays.

This result is stated in the following lemma.

Lemma 3.1. The negativity condition of the multidimensional fuzzy summation:

∑︂

i1∈IGd1

. . .
∑︂

iq∈IGdq

hi1(zk+d1) . . . hiq
(zk+dq

)Γ(i1...iq) ≺ 0, (3.12)

with GV = Gd1 ⊕ . . .⊕Gdq
, Gdk

= ¶⟨1GV
(dk), dk⟩♢, for all k ∈ Iq, is fulfilled if

∑︂

i1∈P(j1)

. . .
∑︂

iq∈P(jq)

Γ(i1...iq) ≺ 0, jk ∈ I
+
Gdk

, k ∈ Iq.

Proof. Consider the negativity condition for a multiple fuzzy summation with an arbitrary

multiset of delays as (3.12):

∑︂

i1∈IGd1

. . .
∑︂

iq∈IGdq

hi1(zk+d1) . . . hiq
(zk+dq

)Γi1...iq
≺ 0.

The above condition is equivalent to

∑︂

j1∈I
+
Gd1

. . .
∑︂

jq∈I
+
Gdq

hj1(zk+d1) . . . hjq
(zk+dq

)

∏︁

∐︂

∑︂

i1∈P(j1)

. . .
∑︂

iq∈P(jq)

Γi1...iq

∫︁

ˆ︁ ≺ 0

⇔
∑︂

i1∈P(j1)

. . .
∑︂

iq∈P(jq)

Γi1...iq
≺ 0, jk ∈ I

+
Gdk

, k ∈ Iq.

This concludes the proof.
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Remark 3.4. Consider the negativity condition of an MFS with mset of delays GV =

Gd1 ⊕ . . . ⊕ Gdq
such as (3.12). The number of LMIs obtained with Lemma 3.1 can be

computed as:

q
∏︂

j=1

♣I+
Gdj

♣, where ♣I+
Gdj

♣ =
(r + ♣Gdk

♣ − 1)!

♣Gdk
♣!(r − 1)!

.

The procedure to obtain LMI-based conditions from arbitrary MFS with Lemma 3.1 is

illustrated in the following example.

Example 3.3. Consider a 4-dimensional fuzzy summation with mset of delays

GV = ¶⟨2, 0⟩, ⟨2, 1⟩♢.

Its is clear that GV = G0 ⊕ G1, with G0 = ¶⟨2, 0⟩♢, G1 = ¶⟨2, 1⟩♢. From Lemma 3.1, its

negativity is ensured if the following set of 9 LMIs hold:

Γ(1,1,1,1) ≺ 0, Γ(2,2,2,2) ≺ 0, Γ(1,1,1,2) + Γ(1,1,2,1) ≺ 0, Γ(1,1,2,2) ≺ 0,

Γ(1,2,1,1) + Γ(2,1,1,1) ≺ 0, Γ(1,2,1,2) + Γ(2,1,1,2) + Γ(1,2,2,1) + Γ(2,1,2,1) ≺ 0,

Γ(1,2,2,2) + Γ(2,1,2,2) ≺ 0, Γ(2,2,1,1) ≺ 0, Γ(2,2,1,2) + Γ(2,2,2,1) ≺ 0.

Remark 3.5. The number of LMI rows in both Theorems 3.1 and 3.2 can be computed as:

Nl = 2nx

q
∏︂

j=1

♣I+
Gdj

♣,

with Gdj
obtained from the decomposition of GV as in Lemma 3.1.

Remark 3.6. The computational complexity of interior-point-based methods, which is the

case of LMI solvers, can be estimated by log10(N
3
dNl), where Nd is the number of decision

variables and Nl is the number of LMI rows [31, 62]. This computation will be used to perform

a quantitative comparison of computational complexity among different design conditions.

Now, we are in position to apply both conditions (3.5) and (3.9) to any dimension and

delays in GV , since it is possible to derive LMIs for ensuring their negativity using Lemma 3.1.

The results related to the application of these conditions are presented in the next example.

Example 3.4. In this example, we apply conditions (3.5) and (3.9) with different choices of

msets for both control law and Lyapunov function. The aim here is to evaluate the influence of

increasing the fuzzy summation dimension in the case of both non-delayed and delayed control.

To perform such comparison, we consider again the problem of finding the maximum

value of b in system (2.5) such that the optimization problem to solve LMIs is feasible. The

results are depicted in Table 3.1.
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Table 3.1 – Comparison among maximum b for LMI problem feasibility and computational
complexity obtained with different choices of GP

0 and GF
0 = GH

0 in Theorems
3.1 and 3.2. The largest obtained value is in bold.

GP
0 GF

0 = GH
0 ♣GV ♣ b Nl Nd1 log10(N

3
d1
Nl)

Theorem 3.1 - Non-delayed control

¶0♢ ¶0♢ 3 1.539 24 18 5.1460
¶⟨2, 0⟩♢ ¶0♢ 4 1.547 36 24 5.6969
¶⟨2, 0⟩♢ ¶⟨2, 0⟩♢ 5 1.693 48 36 6.3501
¶⟨3, 0⟩♢ ¶⟨2, 0⟩♢ 6 1.693 64 48 6.8499

Therem 3.2 - Delayed control

¶−1♢ ¶0,−1♢ 3 1.553 24 30 5.8116
¶−1♢ ¶⟨2, 0⟩,−1♢ 4 1.693 36 60 6.8908
¶−1♢ ¶⟨3, 0⟩,−1♢ 5 1.735 40 102 7.6279
¶−1♢ ¶⟨4, 0⟩,−1♢ 6 1.757 48 198 8.5712

Note that some of the reported results in Table 3.1 were previously presented in this

manuscript, such as the 3-dimensional condition (♣GV ♣ = 3) of Theorem 3.1 which corresponds

to the condition of [29] studied in Example 2.2. In addition, the conditions for higher dimensions

obtained with Theorem 3.1 can be directly related to the multiple-parameterized approach

in Theorem 2.4. For example, the case of q = 2 and p = l = 1 in (2.41) is equivalent to

condition (3.5) with GP
0 = ¶⟨2, 0⟩♢ and GF

0 = GH
0 = ¶0♢. In a similar way, this equivalence

can be stated for other cases. To sum up, if none delays are introduced in Theorem 3.1, it is

equivalent to Theorem 2.4.

When it comes to delayed control design with (3.2), to obtain a 4-dimensional fuzzy

summation (♣GV ♣ = 4) we can choose either GP
0 = ¶−1♢ and GF

0 = GH
0 = ¶⟨2, 0⟩,−1♢ or

GP
0 = ¶⟨2,−1⟩♢ and GF

0 = GH
0 = ¶0, ⟨2,−1⟩♢. For simplicity, the Lyapunov fuzzy dimension

is restricted to 1. Then, to increase the fuzzy summation dimensionality, e.g., to 5, we choose

GF
0 = GH

0 = ¶⟨3, 0⟩,−1♢, and so on.

To perform the comparison in terms of computational complexity, consider the 5-

dimensional non-delayed condition, whose maximum b for feasibility is 1.693 is obtained with

computational complexity of 6.3501. Even increasing the fuzzy dimension to 6, the same value

for b is obtained with computational complexity of 6.8499. On the other hand, this value

is also obtained with only 4 fuzzy summations in the delayed condition, but with a greater

computational complexity of 6.8908.

Comparing the results obtained with Theorems 3.1 and 3.2, it is clear that, for any

fuzzy sum dimension, delayed control leads to less conservative outcomes. Furthermore, in

Table 2.2, a value for b greater than b = 1.757 is only achieved when ♣GV ♣ ≥ 9, which

corresponds to choose q = 5 and p = l = 4 or 1 ≤ q ≤ 5 and p = l = 5 in Theorem 2.4.

From the aforementioned discussion, it is possible to conclude that delayed control can provide
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less conservative results but requiring a greater computational complexity than conventional

nonquadratic framework based on non-delayed control.

3.3 Disturbance attenuation: l2-gain performance control

This section concerns the problem of l2-gain performance control for reducing the effect

of energy-bounded disturbances in the output channel of an input-affine discrete-time nonlinear

system. Consider the following TS fuzzy model representation for a discrete-time input-affine

nonlinear system subject to disturbances:

xk+1 = AGA
0
xk + BGB

0
uk + EGE

0
wk

yk = CGC
0
xk + DGD

0
uk + KGK

0
wk,

(3.13)

where yk ∈ R
ny is the output vector, wk ∈ R

nw is the vector of energy-bounded disturbances,

i.e., ∥w∥l2 < ∞. In addition, the matrices AGA
0

and BGB
0

are the same as in (3.1) and EGE
0
,

CGC
0
, DGD

0
, KGK

0
are, respectively, the ordinary fuzzy summations of matrices Ei ∈ R

nx×nw ,

Ci ∈ R
ny×nx , Di ∈ R

ny×nu , Ki ∈ R
ny×nw , i ∈ Ir, with GE

0 = GC
0 = GD

0 = GK
0 = ¶0♢.

After substituting the control law (3.2) into system (3.13), the following closed-loop

dynamics is obtained:

xk+1 =
(︃

AGA
0

− BGB
0
FGF

0
H

−1
GH

0

)︃

xk + EGE
0
wk

yk =
(︃

CGC
0

− DGD
0
FGF

0
H

−1
GH

0

)︃

xk + KGK
0
wk.

(3.14)

Similar to the H∞ control in the context of linear systems, the l2-gain performance control is

considered to reduce the effect of disturbances in the output channel of discrete-time nonlinear

systems [63] by minimizing the l2-gain. Here, to design control gains of controller (3.2) such

that the origin of the closed-loop system (3.14) is asymptotically stable and the induced l2-gain

is minimized, we consider arguments of dissipative analysis (see Appendix B).

The aim here is to derive sufficient conditions to ensure the closed-loop system (3.14)

be dissipative with respect to the supply rate

S(w, y) = −y⊤
k yk + γ2w⊤

k wk. (3.15)

The idea is to consider the Lyapunov functions (3.4) and (3.8) as storage functions for the

dissipativity analysis. With this supply rate, the conditions derived here also provide an upper-

bound for the l2-gain of system (3.14). These can thus be seen as extensions of Theorems 3.1

and 3.2 that take into account the l2-gain performance index. Such extensions are stated in

the sequel.

Non-delayed conditions

The condition for the case of Lyapunov function (3.8) considered as storage function is

stated in the following theorem.
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Theorem 3.3 (adapted from [38]). Let GV = GP
0 ∪GP

1 ∪ (GF
0 ⊕GB

0 ) ∪ (GH
0 ⊕GA

0 ) ∪GH
1 ∪

GK
0 ∪GE

0 be given. If there exist a scalar γ > 0 and matrices PiP
j

= P⊤
iP
j

≻ 0, iP
j = pri

GP
j

, HiH
j

,

iH
j = pri

GH
0

, j = 0, 1, and FiF
0
, iF

0 = pri
GF

0
, iH

0 = pri
GH

0
, i ∈ IGV

, such that

⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

−PGP
0

⋆ ⋆ ⋆

0 −γ2I ⋆ ⋆

AGA
0
HGH

0
− BGB

0
FGF

0
EGE

0
−HGH

1
− H

⊤
GH

1
+ PGP

1
⋆

CGC
0
HGH

0
− DGD

0
FGF

0
KGK

0
0 −I

⋂︁

⎥

⎥

⎥

⎥

⎥

⎥

⋀︁

≺ 0 (3.16)

holds. Then, the closed-loop system (3.14) is asymptotically stable and the l2-gain has upper

bound γ.

Proof. Assume that condition (3.16) is fulĄlled, so HGH
1

+ H
⊤
GH

1
≻ PGP

1
≻ 0, which ensure

that matrices HGH
j

, j ∈ ¶0, 1♢, are invertible. Then, it is possible to apply the congruence

transformation in the above condition with diag(H−⊤
GH

0
, I,H−⊤

GH
1
, I), which results in:

⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

−H
−⊤
GH

0
PGP

0
H

−1
GH

0
⋆ ⋆ ⋆

0 −γ2I ⋆ ⋆

H
−⊤
GH

1

(︃

AGA
0

− BGB
0
FGF

0
H

−1
GH

0

)︃

H
−⊤
GH

1
EGE

0
−H

−1
GH

1
− H

−⊤
GH

1
+ H

−⊤
GH

1
P

−1
GP

1
H

−1
GH

1
⋆

CGC
0

− DGD
0
FGF

0
H

−1
GH

0
KGK

0
0 −I

⋂︁

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⋀︁

≺ 0.

(3.17)

Multiplying the last inequality with
⋃︁

⨄︁

I 0 A
⊤
cl C

⊤
cl

0 I E
⊤
GE

0
K

⊤
GK

0

⋂︁

⋀︁ ,

on the left and its transpose on the right, where Acl = AGA
0

− BGB
0
FGF

0
H

−1
GH

0
and Ccl =

CGC
0

− DGD
0
FGF

0
H

−1
GH

0
, leads to

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

−H
−⊤
GH

0
PGP

0
H

−1
GH

0
+ A

⊤
clH

−T

GH
1
PGP

1
H

−1
GH

1
A

⊤
cl + C

⊤
clCcl ⋆

K
⊤
GK

0
Ccl + E

⊤
GE

0
H

−T

GH
1
PGP

1
H

−1
GH

1
Acl

∏︁

∐︂

−γ2I + K
⊤
GK

0
KGK

0
+

E
⊤
GE

0
H

−⊤
GH

1
PGP

1
H

−1
GH

1
EGE

0

∫︁

ˆ︁

⋂︁

⎥

⎥

⎥

⋀︁

≺ 0

By pre an post-multiplication, respectively, with
[︂

x⊤
k , w

⊤
k

]︂

and its transpose, leads to:

x⊤
k+1H

−⊤
GH

1
PGP

1
H

−1
GH

1
xk+1 − x⊤

k H
−⊤
GH

0
PGP

0
H

−1
GH

0
xk + y⊤

k yk − γ2w⊤
k wk < 0

V1(xk+1) − V1(xk) < −y⊤
k yk + γ2w⊤

k wk.

Now, we consider two cases. The Ąrst is for wk ≡ 0, for all k. It implies that ∆V1 < 0 and the

origin of the closed-loop system (3.14) is asymptotically stable. For the second case, when

wk ̸= 0, take the sum over k ∈ ¶0, . . . , τ − 1♢, τ ∈ N. It results in

V1(xτ ) < V1(x0) +
τ−1
∑︂

i=0

(︂

−y⊤
i yi + γ2w⊤

i wi

)︂

.
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This proves the closed-loop system (3.14) is strictly dissipative with respect to the supply rate

(3.15). Using the fact V (xk) > 0 and taking τ → ∞, it follows that

∞
∑︂

i=1

y⊤
i yi <

∞
∑︂

i=1

γ2w⊤
i wi + V1(x0) ⇒ ∥y∥l2 < γ∥w∥l2 +

√︂

V1(x0).

Therefore, the upper-bound for the l2-gain is γ, which completes the proof.

Note that ensuring strictly dissipativity of system (3.14) implies the origin is asymptoti-

cally stable. The proof of this fact can be found in [9, Lemma 6.7, p. 243].

Theorem 3.3 has provided a condition to ensure the asymptotic stability of (3.14) and

obtain an upper-bound for the l2-gain. However, it is of interest to minimize γ such that the

inĆuence of disturbances into the output channel be minimized. Such minimization can be

performed by the optimization problem stated in the following lemma.

Lemma 3.2. Let GV be given as in Theorem 3.3. If there exist a scalar µ = γ2 and matrices

PiP
j

= P⊤
iP
j

, iP
j = pri

GP
j

, HiH
j

, iH
j = pri

GH
0

, j = 0, 1, and FiF
0
, iF

0 = pri
GF

0
, i ∈ IGV

, such that

the optimization problem

min
P

i
P
0

,P
i
P
1

,H
i
H
0

,H
i
H
1

,F
i
F
0

µ, s.t. (3.16),

is feasible. Then, the origin of the closed-loop system (3.14) is asymptotically stable and

γ =
√
µ is the minimal upper bound for the l2-gain.

Proof. The proof is a direct consequence of Theorem 3.3.

Delayed conditions

The condition for which the Lyapunov function (3.8) is considered as storage function

is stated in the following theorem.

Theorem 3.4. Given GV = GP
0 ∪GP

1 ∪ (GF
0 ⊕GB

0 ) ∪ (GH
0 ⊕GA

0 ) ∪GK
0 ∪GE

0 , If there exist

a scalar γ > 0 and matrices PiP
j

= P⊤
iP
j

≻ 0, iP
j = pri

GP
j

, j = 0, 1, FiF
0
, iF

0 = pri
GF

0
, and HiH

0
,

iH
0 = pri

GH
0

, i ∈ IGV
, such that

⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

−HGH
0

− H
⊤
GH

0
+ PGP

0
⋆ ⋆ ⋆

0 −γ2I ⋆ ⋆

AGA
0
HGH

0
− BGB

0
FGF

0
EGE

0
−PGP

1
⋆

CGC
0
HGH

0
− DGD

0
FGF

0
KGK

0
0 −I

⋂︁

⎥

⎥

⎥

⎥

⎥

⎥

⋀︁

< 0 (3.18)

holds, then the origin of the closed-loop system (3.14) is asymptotically stable and the l2-gain

has upper bound γ.

Proof. Choosing the storage function as (3.4) and appropriate congruence transformations,

the proof follows similar steps as the one of Theorem 3.3.
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The optimization problem to minimize the upper-bound of the l2-gain using conditions

of Theorem 3.4 is stated in the following lemma.

Lemma 3.3. Let GV be given as in Theorem 3.4. If there exist a scalar µ = γ2 and matrices

PiP
j

= P⊤
iP
j

≻ 0, iP
j = pri

GP
j

, j = 0, 1, HiH
0

, iH
0 = pri

GH
0

, and FiF
0
, iF

0 = pri
GF

0
, i ∈ IGV

, such

that the optimization problem

min
P

i
P
0

,P
i
P
1

,H
i
H
0

,F
i
F
j

µ, s.t. (3.16) (3.19)

is feasible. Then, the closed-loop system (3.14) is dissipative with respect to the supply rate

(3.15) and γ =
√
µ is the minimal upper bound for the l2-gain.

Proof. The proof is consequence of Theorem 3.4.

As long as Lemmas 3.2 and 3.3 involve ensuring negativity of MFS, Lemma 3.1 is used

to derive LMI-based conditions. The application of these conditions is illustrated in the next

example.

Example 3.5 (see [38]). Consider the following TS fuzzy model:

xk+1 =
r
∑︂

i=1

hi(zk) (Aixk +Biuk + Ewk)

yk = xk,

(3.20)

where

A1 =

⋃︁

⨄︁

1 −1.4

−1 −0.5

⋂︁

⋀︁ , A2 =

⋃︁

⨄︁

1 1.4

−1 −0.5

⋂︁

⋀︁ , E =

⋃︁

⨄︁

−0.1357 0.1

−0.1 −0.039

⋂︁

⋀︁ ,

B1 =

⋃︁

⨄︁

6.4

2.8

⋂︁

⋀︁ , B2 =

⋃︁

⨄︁

3.6

−2.8

⋂︁

⋀︁ .

The aim here is to compare the two l2-gain control performance methods. The comparison is

made in terms of the minimal upper-bound for the l2-gain obtained with Lemmas 3.2 and 3.3,

which correspond, respectively, to the non-delayed and delayed control design. For simplicity, it

is considered only 3-dimensional fuzzy summations conditions. Then, the msets for Lemma 3.2

are GP
0 = GF

0 = GH
0 = ¶0♢ and for Lemma 3.3 are GP

0 = ¶0♢, GF
0 = GH

0 = ¶0,−1♢. The

minimal upper-bounds for the l2-gain obtained after solving the optimization problem in theses

lemmas are depicted in Table 3.2.

The smallest γ is obtained with Lemma 3.3. As expected, delayed control has provided

less conservative results.
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Table 3.2 – Comparison of minimal upper-bounds for the l2-gain obtained with Lem-
mas 3.2 and 3.3.

γ

Lemma 3.2 1.426
Lemma 3.3 1.327

3.4 Conclusion

This chapter has presented a general framework for the design of nonquadratic conditions

for TS fuzzy models. Two methods have been presented, each one related to a Lyapunov

function candidate. The main feature of them is the ability offered by the msets notation to

easily incorporate delayed control conditions, a recent approach proposed to reduce conservatism

in the conventional nonquadratic framework. It has been shown that the presented controllers

proposed by [38] include those previous reported in the literature. In addition, based on the

dissipativity analysis of nonlinear systems, it was possible to incorporate the l2-gain performance

index to the design conditions.
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4 ENHANCED CONTROL DESIGN CONDITIONS

In this chapter, the main contributions of this manuscript are presented. Here, two new

conditions are proposed to design both non-delayed and delayed fuzzy controllers. They are

formulated for general multidimensional fuzzy summations, similar to the conditions of [38]

described in Chapter 3. The main objective here is to obtain less conservative results with

reduced computational complexity. In addition, the disturbance attenuation problem is also

regarded here. In this case, two more results are given. It is demonstrated that the conditions

of [38] for both stabilization and disturbance attenuation are particular cases of those proposed

here.

4.1 Improving existing design conditions

This section presents two new control design conditions. Motivated by the work of [44]

in the context of LPV systems, the proposed conditions are obtained from appropriate matrix

transformations based on the inclusion of new decision variables, which introduces new degrees

of freedom for the optimization problem to design the control gains. Similar to the conditions

of [38] described in Chapter 3, those proposed here are such that both non-delayed and

delayed controllers can easily be handled. It is shown that less conservative results can be

obtained without increasing the computational complexity in comparison to recent results in

the literature.

4.1.1 New control design conditions

Following the structure of Chapter 3, we consider two cases: the Ąrst is based on the

Lyapunov function candidate in (3.4) whereas the second is based on the Lyapunov function

in (3.8). In both cases, non-delayed and delayed controllers can be designed. However, to

obtain a reduced number of fuzzy summations, the Ąrst case is mainly for non-delayed control

design and the second case for delayed control.

Non-delayed conditions

The condition based on the Lyapunov function candidate (3.4) is stated in the following

theorem.

Theorem 4.1. Let GV = GP
0 ∪GP

1 ∪ (GY
0 ⊕GB

0 ) ∪ (GZ
0 ⊕GB

0 ) ∪ (GH
0 ⊕GA

0 ) ∪GH
1 be given.

If there exist matrices PiP
j

= P⊤
iP
j

≻ 0, iP
j = pri

GP
j

and HiH
j

, iH
j = pri

GH
0

, i ∈ IGV
, j = 0, 1, FiF

0
,

iF
0 = pri

GF
0
, YiY

0
, iY

0 = pri
GY

0
, and ZiZ

0
, iZ

0 = pri
GZ

0
, such that (4.1) holds. Then, the origin of
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the closed-loop system (3.3) is asymptotically stable.
⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

−PGP
0

⋆ ⋆

AGA
0
HGH

0

∏︁

∐︂

−HGH
1

− H
⊤
GH

1
+ PGP

1

− BGB
0
YGY

0
− Y

⊤
GY

0
B

⊤
GB

0

∫︁

ˆ︁ ⋆

FGF
0

−YGY
0

+ Z
⊤
GZ

0
B

⊤
GB

0
ZGZ

0
+ Z

⊤
GZ

0

⋂︁

⎥

⎥

⎥

⎥

⎥

⎥

⋀︁

≺ 0 (4.1)

Proof. Assume that condition (4.1) is fulĄlled. As a result, the following inequality holds.

−HGH
1

− H
⊤
GH

1
+ PGP

1
− BGB

0
YGY

0
− Y

⊤
GY

0
B

⊤
GB

0
≺ 0.

It is equivalent to
(︂

HGH
1

+ BGB
0
YGY

0

)︂

+
(︂

HGH
1

+ BGB
0
YGY

0

)︂⊤ ≻ PGP
1

≻ 0. It ensures that
(︂

HGH
1

+ BGB
0
YGY

0

)︂

is invertible. From the Matrix Inversion Lemma, one can conclude that

the matrices HGH
1

and, consequently, HGH
0

are also invertible.

By applying a congruence transformation in (4.1) with diag(H−⊤
GH

0
, I, I), it results

⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

−H
−⊤
GH

0
PGP

0
H

−1
GH

0
⋆ ⋆

AGA
0

∏︁

∐︂

−HGH
1

− H
⊤
GH

1
+ PGP

1

− BGB
0
YGY

0
− Y

⊤
GY

0
B

⊤
GB

0

∫︁

ˆ︁ ⋆

FGF
0
H

−1
GH

0
−YGY

0
+ Z

⊤
GZ

0
B

⊤
GB

0
ZGZ

0
+ Z

⊤
GZ

0

⋂︁

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⋀︁

≺ 0.

Multiplying the last inequality with
⋃︁

⨄︁

I 0 0

0 I −BGB
0

⋂︁

⋀︁

on the left and its transpose on the right, turns into
⋃︁

⨄︁

−H
−⊤
GH

0
PGP

0
H

−1
GH

0
⋆

AGA
0

− BGB
0
FGF

0
H

−1
GH

0
−HGH

1
− H

⊤
GH

1
+ PGP

1

⋂︁

⋀︁ ≺ 0.

By applying a congruence transformation in the above inequality with diag(I,H−⊤
GH

1
), one has

⋃︁

⨄︁

−H
−⊤
GH

0
PGP

0
H

−1
GH

0
⋆

H
−⊤
GH

1
AGA

0
− H

−⊤
GH

1
BGB

0
FGF

0
H

−1
GH

0
−H

−1
GH

1
− H

−⊤
GH

1
+ H

−⊤
GH

1
PGP

1
H

−1
GH

1

⋂︁

⋀︁ ≺ 0.

Finally, multiplying the last inequality with [I (AGA
0

− BGB
0
FGF

0
H

−1
GH

0
)⊤] on the left and its

transpose on the right leads to
(︃

A
⊤
GA

0
− H

−⊤
GH

0
F

⊤
GF

0
B

⊤
GB

0

)︃

H
−⊤
GH

1
PGP

1
H

−1
GH

1

(︃

AGA
0

− BGB
0
FGF

0
H

−1
GH

0

)︃

− H
−⊤
GH

0
PGP

0
H

−1
GH

0
≺ 0.

By pre and post-multiplying the above inequality with x⊤
k and by its transpose, respectively, it

follows that

V1(xk+1) − V1(xk) < 0.

This proves that the origin of the closed-loop system (3.3) is asymptotically stable, which

completes the proof.
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Remark 4.1. It is possible to prove the equivalence between conditions (3.5) and (4.1). To

show that, consider a sufficiently large scalar ρ > 0 such that (3.5) can be rewritten as

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

−PGP
0

⋆ ⋆

AGA
0
HGH

0
− BGB

0
FGF

0
−H

⊤
GH

1
− HGH

1
+ PGP

1
⋆

FGF
0

0 −ρI

⋂︁

⎥

⎥

⎥

⋀︁

≺ 0. (4.2)

Using similar arguments as [44], define the new variables

ZGZ
0

= −ρ

2
I and YGY

0
= −ZGZ

0
B

⊤
GB

0

such that (4.2) turns into

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

−PGP
0

⋆ ⋆

AGA
0
HGH

0
− BGB

0
FGF

0
−H

⊤
GH

1
− HGH

1
+ PGP

1
⋆

FGF
0

−YGY
0

− ZGZ
0
B

⊤
GB

0
ZGZ

0
+ Z

⊤
GZ

0

⋂︁

⎥

⎥

⎥

⋀︁

≺ 0.

Multiplying the last inequality with

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

I 0 0

0 I BGB
0

0 0 I

⋂︁

⎥

⎥

⎥

⋀︁

,

on the left and its transpose on the right, it results in (4.1).

To prove the converse, multiply (4.3) with

⋃︁

⨄︁

I 0 0

0 I −BGB
0

⋂︁

⋀︁ ,

on the left and its trasnpose on the right, which directly results in (3.5). From this result,

condition (3.5) can be viewed as a particular case of (4.1).

Delayed conditions

The proposed condition for the case of Lyapunov function candidate (3.8) is depicted

in the following theorem.

Theorem 4.2. Let GV = GP
0 ∪ GP

1 ∪ (GY
0 ⊕ GB

0 ) ∪ (GZ
0 ⊕ GB

0 ) ∪ (GH
0 ⊕ GA

0 ) be given. If

there exist matrices PiP
j

= P⊤
iP
j

≻ 0, iP
j = pri

GP
j

, j = 0, 1, FiF
0
, iF

0 = pri
GF

0
, HiH

0
, iH

0 = pri
GH

0
,

YiY
0

, iY
0 = pri

GY
0

and ZiZ
0
, iZ

0 = pri
GZ

0
, i ∈ IGV

, such that (4.3) holds. Then, the origin of the

closed-loop system (3.3) is asymptotically stable.

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

−HGH
0

− H
⊤
GH

0
+ PGP

0
⋆ ⋆

AGA
0
HGH

0
−PGP

1
− BGB

0
YGY

0
− Y

⊤
GY

0
B

⊤
GB

0
⋆

FGF
0

−YGY
0

+ Z
⊤
GZ

0
B

⊤
GB

0
ZGZ

0
+ Z

⊤
GZ

0

⋂︁

⎥

⎥

⎥

⋀︁

≺ 0. (4.3)
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Proof. Assume that condition (4.3) holds. It follows that HGH
1

+ H
⊤
GH

1
≻ PGP

1
≻ 0. From

property −H
⊤
GH

0
P

−1
GP

0
HGH

0
⪯ −HGH

0
− H

⊤
GH

0
+ PGP

0
, it results:

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

−H
⊤
GH

0
P

−1
GP

0
HGH

0
⋆ ⋆

AGA
0
HGH

0
−PGP

1
− BGB

0
YGY

0
− Y

⊤
GY

0
B

⊤
GB

0
⋆

FGF
0

−YGY
0

+ Z
⊤
GZ

0
B

⊤
GB

0
ZGZ

0
+ Z

⊤
GZ

0

⋂︁

⎥

⎥

⎥

⋀︁

≺ 0.

By applying a congruence transformation in the above inequality with diag(H−⊤
GH

0
, I, I), one has

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

−P
−1
GP

0
⋆ ⋆

AGA
0

−PGP
1

− BGB
0
YGY

0
− Y

⊤
GY

0
B

⊤
GB

0
⋆

FGF
0
H

−1
GH

0
−YGY

0
+ Z

⊤
GZ

0
B

⊤
GB

0
ZGZ

0
+ Z

⊤
GZ

0

⋂︁

⎥

⎥

⎥

⋀︁

≺ 0,

that after multiplied by
⋃︁

⨄︁

I 0 0

0 I −BGB
0

⋂︁

⋀︁

on the left and its transpose on the right leads to
⋃︁

⨄︁

−P
−1
GP

0
A

⊤
GA

0
− H

−⊤
GH

0
F

⊤
GF

0
B

⊤
GB

0

AGA
0

− BGB
0
FGF

0
H

−1
GH

0
−PGP

1

⋂︁

⋀︁ ≺ 0.

Applying a Schur complement argument in the above condition, one has

(︃

AGA
0

− BGB
0
FGF

0
H

−1
GH

0

)︃⊤

P
−1
GP

1

(︃

AGA
0

− BGB
0
FGF

0
H

−1
GH

0

)︃

− P
−1
GP

0
≺ 0.

Pre and post-multiplying with x⊤
k and by its transpose, respectively, it results that

V2(xk+1) − V2(xk) < 0.

This proves that the origin of the closed-loop system (3.3) is asymptotically stable.

Remark 4.2. It is possible to prove that (3.9) is equivalent to (4.3) following similar steps as

Remark 4.1.

Remark 4.3. The number of decision variables and LMI rows used to estimate the computa-

tional complexity of conditions in Theorems 4.1 and 4.2 are computed as follows:

Nd2 = Nd1 + r♣GY
0 ♣nxnu + r♣GZ

0 ♣n2
u,

Nl = (2nx + nu)
q
∏︂

j=1

♣I+
Gdj

♣,

where Nd1 is defined in (3.11) and corresponds to the number of decision variables involved in

Theorems 3.3 and 3.4. The term Gdj
is obtained from the decomposition of GV by applying

Lemma 3.1.
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4.1.2 Choosing msets of delays

Here, the procedure to choose msets of delays discussed in Chapter 3 for Theorems 3.1

and 3.2 is extended for Theorems 4.1 and 4.2 so that the number of LMIs in each case is not

excessively increased.

Assuming classical TS models, GA
0 = GB

0 = ¶0♢, the terms AGA
0
HGH

0
, BGB

0
YGY

0
and

BGB
0
ZGZ

0
play similar roles in both conditions (4.1) and (4.3). Therefore, without loss of

generality, the convenient choice GH
0 = GY

0 = GZ
0 can be made. It implies that GH

0 =

GY
0 = GF

0 = GZ
0 . Thus, in comparison to conditions of [38] discussed in Chapter 3, new

degrees of freedom are introduced keeping the number of fuzzy summations the same. For

motivation, consider the non-delayed condition (3.5) with the msets of delays GP
0 = ¶⟨2, 0⟩♢

and GF
0 = GH

0 = ¶⟨2, 0⟩♢, which corresponds to:

r
∑︂

i1=1

r
∑︂

i2=1

r
∑︂

i3=1

r
∑︂

i4=1

r
∑︂

i5=1

hi1(zk)hi2(zk)hi3(zk)hi4(zk+1)hi5(zk+1)

⋃︁

⨄︁

−P(i2,i3) ⋆

Ai1H(i2,i3) −Bi1F(i2,i3) −H(i4,i5) −H⊤
(i4,i5) + P(i4,i5)

⋂︁

⋀︁ ≺ 0.

If the same msets of delays are considered in condition (4.1) withGH
0 = GY

0 = GF
0 = GZ

0 ,

it follows that:

r
∑︂

i1=1

r
∑︂

i2=1

r
∑︂

i3=1

r
∑︂

i4=1

r
∑︂

i5=1

hi1(zk)hi2(zk)hi3(zk)hi4(zk+1)hi5(zk+1)

⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

−P(i2,i3) ⋆ ⋆

Ai1H(i2,i3)

∏︁

∐︂

−H(i4,i5) −H⊤
(i4,i5) + P(i4,i5)

−Bi1Y(i2,i3) − Y ⊤
(i2,i3)B

⊤
i1

∫︁

ˆ︁ ⋆

F(i2,i3) −Y(i2,i3) + Z⊤
(i2,i3)Y

⊤
i1

Z(i2,i3) + Z⊤
(i2,i3)

⋂︁

⎥

⎥

⎥

⎥

⎥

⎥

⋀︁

≺ 0.

Both conditions have the same 5-dimensional fuzzy summation. Thus, the procedure to derive

LMIs from them is the same. As a generalization, the mset of delays in Theorem 4.1 for

arbitrary dimensions can be chosen as follows: GP
0 = ¶⟨1GP

0
(0), 0⟩♢ and GF

0 = GH
0 = GY

0 =

GZ
0 = ¶⟨1GF

0
(0), 0⟩♢.

Proceeding in a similar way for the delayed condition (3.9) with msets of delays

PGP
0

= ¶⟨2,−1⟩♢ and FGF
0

= HGH
0

= ¶⟨2, 0⟩, ⟨2,−1⟩♢, it results:

r
∑︂

i1=1

r
∑︂

i2=1

r
∑︂

i3=1

r
∑︂

i4=1

r
∑︂

i5=1

hi1(zk)hi2(zk)hi3(zk)hi4(zk−1)hi5(zk−1)

⋃︁

⨄︁

−H(i2,i3,i4,i5) −H⊤
(i2,i3,i4,i5) + P(i4,i5) ⋆

Ai1H(i2,i3,i4,i5) −Bi1F(i2,i3,i4,i5) −P(i2,i3)

⋂︁

⋀︁ ≺ 0.
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Choosing GH
0 = GY

0 = GF
0 = GZ

0 for the msets of delays in (4.3):

r
∑︂

i1=1

r
∑︂

i2=1

r
∑︂

i3=1

r
∑︂

i4=1

r
∑︂

i5=1

hi1(zk)hi2(zk)hi3(zk)hi4(zk−1)hi5(zk−1)

⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

∏︁

∐︂

−H(i2,i3,i4,i5)

−H⊤
(i2,i3,i4,i5) + P(i4,i5)

∫︁

ˆ︁ ⋆ ⋆

Ai1H(i2,i3,i4,i5)

∏︁

∐︂

−P(i2,i3) −Bi1Y(i2,i3,i4,i5)

−Y ⊤
(i2,i3,i4,i5)B

⊤
i1

∫︁

ˆ︁ ⋆

F(i2,i3,i4,i5) −Y(i2,i3,i4,i5) + Z⊤
(i2,i3,i4,i5)B

⊤
i1

Z(i2,i3,i4,i5) + Z⊤
(i2,i3,i4,i5)

⋂︁

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⋀︁

≺ 0.

Then, the msets of delays in Theorem 4.2 is generalized for arbitrary dimensions choosing

GP
0 = ¶⟨1GP

0
(−1),−1⟩♢ and GF

0 = GH
0 = GY

0 = GZ
0 = ¶¶⟨1GF

0
(0), 0⟩♢, ¶⟨1GF

0
(−1),−1⟩♢♢.

With these msets of delays, it is clear that the number of fuzzy summations in conditions

(4.1) and (4.3) is not increased when compared, respectively, to conditions (3.5) and (3.9).

Moreover, Lemma 3.1 can also be applied to derive LMI-based conditions for Theorems 4.1

and 4.2.

Remark 4.4. In this section, from appropriate matrix transformations, it was shown the

equivalence between the proposed conditions and those of [38] when these are given in terms

of multidimensional fuzzy summations. However, this form is not appropriate for control design

purpose. Thus, Lemma 2.3 is applied to derive a finite set of LMIs. When conditions are

rewritten in terms of LMIs, the equivalence does not hold anymore and the proposed ones in

this work can lead to less conservative results.

The reduction of conservativeness provided by the proposed conditions is illustrated in

the next example.

Example 4.1. This example illustrates the application of Theorems 4.1 and 4.2 with different

msets of delays. The aim is to evaluate the conservatism reduction provided by the proposed

approach when compared to those existing in the literature and also compare them in terms of

computational complexity. For that, the system (2.5) is considered again. The maximal b for

feasibility and the numerical complexity for the proposed conditions with different msets of

delays are shown in Table 4.1.

As expected, design conservativeness is mainly reduced with delayed control. For

instance, with only 3 fuzzy summations, ♣GV ♣ = 3, the maximum b obtained with the non-

delayed approach is 1.758, while 1.786 is obtained with the delayed condition. However, both

values for b are greater than those achieved with the conditions of [38] in Table 3.1, which are

1.539 for the non-delayed case and 1.553 for the delayed. It shows that the proposed conditions

can indeed lead to less conservative results.

Following the comparison to Table 3.1, the maximum value obtained with the 6-

dimensional non-delayed condition, b = 1.693, is smaller than the one obtained with our
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Table 4.1 – Comparison among maximum b for feasibility obtained with different choices
of GP

0 and GF
0 = GH

0 = GY
0 = GZ

0 in Theorems 4.1 and 4.2. The greatest
value is in bold.

GP
0 GF

0 = GH
0 = GY

0 = GZ
0 ♣GV ♣ b Nl Nd2 log10(N

3
d2
Nl)

Theorem 4.1 - Non-delayed condition

¶0♢ ¶0♢ 3 1.758 30 24 5.6177
¶⟨2, 0⟩♢ ¶0♢ 4 1.759 45 30 6.0858
¶⟨2, 0⟩♢ ¶⟨2, 0⟩♢ 5 1.766 60 48 6.8219
¶⟨3, 0⟩♢ ¶⟨2, 0⟩♢ 6 1.768 80 60 7.2375

Therem 4.2 - Delayed condition

¶−1♢ ¶0,−1♢ 3 1.786 30 42 6.3469
¶−1♢ ¶⟨2, 0⟩,−1♢ 4 1.794 45 84 7.4261
¶−1♢ ¶⟨3, 0⟩,−1♢ 5 1.803 50 150 8.2272
¶−1♢ ¶⟨4, 0⟩,−1♢ 6 2.041 60 294 9.1832

proposal for only 3 fuzzy summations, which is b = 1.758. The same occurs in the non-delayed

case, where the maximum b obtained with condition (3.9), b = 1.757, is smaller than the

3-dimensional case of condition (4.3), b = 1.786. The proposed conditions are also compared

with other in the recent literature, as shown in Table 4.2. The value of b = 2.041 obtained

with Theorem 4.2 is greater than those reported in the recent literature and it is obtained

requiring less computational complexity.

Table 4.2 – Comparison among maximum b for feasibility and computational complexity
for different approaches in the literature.

b log10(N
3
dNl)

[64] 1.774 12.318
[65] 1.817 17.3221
[35] 1.819 13.4150
[31] 1.821 11.3152
[66] 1.823 13.691
[34] 1.828 14.2160
[33] 1.875 9.3324
Theorem 4.2 2.041 9.1832

To conclude, Figure 4.1 depicts the state trajectories of the closed-loop system (3.3)

and the control signal for the controller (3.2) designed with Theorem 4.2 for b = 2.041.

4.2 Improving l2-gain performance control

In this section, the proposed approach is extended to deal with the l2-gain performance

control problem. The aim is to obtain new conditions to design the fuzzy controller (3.2) so
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Figure 4.1 – Closed-loop trajectories of system (2.5) with b = 2.041 in feedback with
controller (3.2) designed with Theorem 4.2.

that the upper-bound for the l2-gain of system (3.14) be minimized. From the results in the last

section, it is expected that the conditions proposed here result in a more efficient disturbance

attenuation than conditions in Theorems 3.3 and 3.4. Similar to the last section, two more

conditions are proposed here, one related to the Lyapunov function candidate (3.4), which

leads to non-delayed conditions, and other to the Lyapunov candidate (3.8) that corresponds

to delayed conditions.

Non-delayed condition

The condition based on the Lyapunov function candidate (3.4) is stated in the next

theorem.

Theorem 4.3. Let GV = GP
0 ∪GP

1 ∪ (GB
0 ⊕GY

0 ) ∪ (GH
0 ⊕GA

0 ) ∪ (GZ
0 ⊕GB

0 ) ∪GH
1 ∪GK

0 ∪GE
0

be given. If there exist a scalar γ > 0 and matrices PiP
j

= P⊤
iP
j

≻ 0, iP
j = pri

GP
j

, HiH
j

,

iH
j = pri

GH
j

, j = 0, 1, FiF
0

, iF
0 = pri

GF
0

, YiY
0

, iY
0 = pri

GY
0

, WiW
0

, iW
0 = pri

GW
0

, and ZiZ
0
, iZ

0 = pri
GZ

0
,

i ∈ IGV
, such that (4.4) holds. Then, the closed-loop system (3.14) is dissipative with respect

to the supply rate (3.15) and the l2-gain has upper bound γ.
⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

−PGP
0

⋆ ⋆ ⋆ ⋆

0 −γ2I ⋆ ⋆ ⋆

AGA
0
HGH

0
EGE

0
ψ33 ⋆ ⋆

CGC
0
HGH

0
KGK

0
ψ43 ψ44 ⋆

FGF
0

0 ψ53 ψ54 ZGZ
0

+ Z
⊤
GZ

0

⋂︁

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⋀︁

≺ 0, (4.4)

where ψ43 = −DGD
0
YGY

0
− W

⊤
GW

0
B

⊤
GB

0
, ψ33 = −HGH

1
− H

⊤
GH

1
+ PGP

1
− BGB

0
YGY

0
− Y

⊤
GY

0
B

⊤
GB

0
,

ψ44 = −I − DGD
0
WGW

0
− W

⊤
GW

0
D

⊤
GD

0
, ψ53 = −YGY

0
+ Z

⊤
GZ

0
B

⊤
GB

0
, ψ54 = −WGW

0
+ Z

⊤
GZ

0
D

⊤
GD

0
.

Proof. Assume that condition (4.4) holds. Similar to the proof of Theorem 4.1, it is possible

to show that HGH
1

and HGH
0

are invertible.



Chapter 4. Enhanced control design conditions 58

Multiplying (4.4) with
⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

H
−⊤
GH

0
0 0 0 0

0 I 0 0 0

0 0 I 0 −BGB
0

0 0 0 I −DGD
0

⋂︁

⎥

⎥

⎥

⎥

⎥

⎥

⋀︁

on the left and its transpose on the right, one has
⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

−PGP
0

⋆ ⋆ ⋆

0 −γ2I ⋆ ⋆

AGA
0
HGH

0
− BGB

0
FGF

0
EGE

0
−H

T
GH

1
P

−1
GP

1
HGH

1
⋆

CGC
0
HGH

0
− DGD

0
FGF

0
KGK

0
0 −I

⋂︁

⎥

⎥

⎥

⎥

⎥

⎥

⋀︁

≺ 0.

Following the same steps as Theorem 3.3, it is possible to conclude that condition (4.4) ensures

the origin of the closed-loop system (3.14) is asymptotically stable and the l2-gain has upper

bound γ.

The optimization problem related to the l2-gain upper-bound minimization using

condition (4.4) is depicted in Lemma 4.1.

Lemma 4.1. Let GV be given as in Theorem 4.3. If there exist a scalar µ = γ2 and matrices

PiP
j

= P⊤
iP
j

≻ 0, iP
j = pri

GP
j

, HiH
j

, iH
j = pri

GH
j

, j = 0, 1, FiF
0

, iF
0 = pri

GF
0

, YiY
0

, iY
0 = pri

GY
0

, WiW
0

,

iW
0 = pri

GW
0

, and ZiZ
0
, iZ

0 = pri
GZ

0
, i ∈ IGV

, such that the optimization problem

min
P

i
P
0

,P
i
P
1

,H
i
H
0

,H
i
H
1

,F
i
F
j

,Y
i
Y
1

,W
i
W
1

,Z
i
Z
1

µ, s.t. (4.4)

is feasible. Then, the closed-loop system (3.14) is dissipative with respect to the supply rate

(3.15) and γ =
√
µ is the minimal upper-bound for the l2-gain.

Proof. The proof is consequence of Theorem 4.3.

Remark 4.5. Similar to Remark 4.1, it is possible to show that condition (3.16) is equivalent

to (4.4). Following the arguments of [45], a sufficiently large scalar ρ > 0 can be selected such

that condition (3.16) can be rewritten as
⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

−PGP
0

⋆ ⋆ ⋆ ⋆

0 −γ2I ⋆ ⋆ ⋆

AGA
0
HGH

0
− BGB

0
FGF

0
EGE

0
−HGH

1
− H

⊤
GH

1
+ PGP

1
⋆ ⋆

CGC
0
HGH

0
− DGD

0
FGF

0
KGK

0
0 −I ⋆

FGF
0

0 0 0 −ρI

⋂︁

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⋀︁

≺ 0. (4.5)

Defining the new variables

ZGZ
0

= −ρ

2
I, YGY

0
= −ZGZ

0
B

⊤
GB

0
, WGW

0
= −ZGZ

0
D

⊤
GD

0
,
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the inequality (4.5) is equivalent to
⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

−PGP
0

⋆ ⋆ ⋆ ⋆

0 −γ2I ⋆ ⋆ ⋆

ψ31 EGE
0

−HGH
1

− H
⊤
GH

1
+ PGP

1
⋆ ⋆

ψ41 KGK
0

0 −I ⋆

FGF
0

0 −YGY
0

− ZGZ
0
B

⊤
GB

0
−WGW

0
− ZGZ

0
D

⊤
GD

0
ZGZ

0
+ Z

⊤
GZ

0

⋂︁

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⋀︁

≺ 0,

where ψ31 = AGA
0
HGH

0
− BGB

0
FGF

0
and ψ41 = CGC

0
HGH

0
− DGD

0
FGF

0
. By multiplying the above

inequality with
⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

I 0 0 0 0

0 I 0 0 0

0 0 I 0 BGB
0

0 0 0 I DGD
0

0 0 0 0 I

⋂︁

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⋀︁

on the left and its transpose on the right, results in (4.4).

The converse is shown by multiplying (4.4) with
⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

I 0 0 0 0

0 I 0 0 0

0 0 I 0 −BGB
0

0 0 0 I −DGD
0

⋂︁

⎥

⎥

⎥

⎥

⎥

⎥

⋀︁

,

on the left and its transpose on the right, which results in (3.16).

Delayed condition

The condition based on the Lyapunov function candidate (3.8) as storage function is

depicted in the following theorem. This condition corresponds to the use of delayed control.

Theorem 4.4. Let GV = GP
0 ∪ GP

1 ∪ (GB
0 ⊕ GY

0 ) ∪ (GH
0 ⊕ GA

0 ) ∪ (GZ
0 ⊕ GB

0 ) ∪ GK
0 ∪ GE

0

be given. If there exist a scalar γ > 0 and matrices PiP
j

= P⊤
iP
j

≻ 0, iP
j = pri

GP
j

, j = 0, 1,

HiH
0

, iH
0 = pri

GH
0

, FiF
0
, iF

0 = pri
GF

0
, YiY

0
, iY

0 = pri
GY

0
, WiW

0
, iW

0 = pri
GW

0
, and ZiZ

0
, iZ

0 = pri
GZ

0
,

i ∈ IGV
, such that (4.6) holds. Then, the closed-loop system (3.14) is dissipative with respect

to the supply rate (3.15) and the l2-gain has upper bound γ.
⋃︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⋁︁

⨄︁

−HGH
0

− H
⊤
GH

0
+ PGP

0
⋆ ⋆ ⋆ ⋆

0 −γ2I ⋆ ⋆ ⋆

AGA
0
HGH

0
EGE

0
ψ33 ⋆ ⋆

CGC
0
HGH

0
KGK

0
ψ43 ψ44 ⋆

FGF
0

0 ψ53 ψ54 ZGZ
0

+ Z
⊤
GZ

0

⋂︁

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⋀︁

≺ 0, (4.6)

where ψ43 = −DGD
0
YGY

0
− W

⊤
GW

0
B

⊤
GB

0
, ψ33 = −PGP

1
− BGB

0
YGY

0
− Y

⊤
GY

0
B

⊤
GB

0
,

ψ44 = −I − DGD
0
WGW

0
− W

⊤
GW

0
D

⊤
GD

0
, ψ53 = −YGY

0
+ Z

⊤
GZ

0
B

⊤
GB

0
, ψ54 = −WGW

0
+ Z

⊤
GZ

0
D

⊤
GD

0
.
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Proof. The proof follows similar steps as the one of Theorem 4.3 choosing the storage function

as (3.4) and appropriate congruence transformations.

The optimization problem related to the l2-gain upper-bound minimization using

condition (4.6) is depicted in Lemma 4.2.

Lemma 4.2. Let GV be given as in Theorem 4.4. If there exist a scalar µ = γ2 and matrices

PiP
j

= P⊤
iP
j

, iP
j = pri

GP
j

, j = 0, 1, HiH
0

, iH
0 = pri

GH
0

, FiF
0
, iF

0 = pri
GF

0
, YiY

0
, iY

0 = pri
GY

0
, WiW

0
,

iW
0 = pri

GW
0

, and ZiZ
0
, iZ

0 = pri
GZ

0
, i ∈ IGV

, such that the optimization problem

min
P

i
P
0

,P
i
P
1

,H
i
H
0

,F
i
F
j

,Y
i
Y
1

,W
i
W
1

,Z
i
Z
1

µ, s.t. (4.6) (4.7)

is feasible. Then, the closed-loop system (3.14) is dissipative with respect to the supply rate

(3.15) and γ =
√
µ is the minimal upper bound for the l2-gain.

Proof. The proof is consequence of Theorem 4.4.

Remark 4.6. Using similar arguments as Remark 4.5, it is possible to show that condition

(3.18) is equivalent to (4.6).

Remark 4.7. The same conclusion presented in Remark 4.4 follows for Theorems 4.3 and 4.4.

The following example is considered to illustrate the effectiveness of proposed conditions

in providing smaller l2-gain upper-bounds than those existing.

Example 4.2 (see [38]). In this example we compare the two proposed l2-gain control

performance methods. To compare the results obtained here with those presented in Table 3.2,

the TS fuzzy model (3.20) is considered. In addition, the same delays are considered, namely,

GP
0 = GF

0 = GH
0 = ¶0♢ for Lemma 4.1 and GP

0 = ¶0♢, GF
0 = GH

0 = ¶0,−1♢ for Lemma 4.2.

The minimal upper-bound for the l2-gain obtained with theses lemmas are depicted in Table 4.3.

Table 4.3 – Comparison of l2-gain upper-bounds obtained with Lemmas 4.1 and 4.2.

γ

Lemma 4.1 0.511
Lemma 4.2 0.5061

In comparison to conditions of [38], whose results are in Table 3.2, the proposed

approach led to smaller l2-gain upper-bounds. It illustrates the effectiveness in providing less

conservatism outcomes.
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4.3 Numerical simulations

This section presents the application of the proposed control design conditions in

physically-motivated models. The aim is to illustrate the proposal effectiveness to deal with

practical control problems. For that, two systems are considered: the inverted pendulum and

the truck-trailer. In the inverted pendulum application, the msets of delays are chosen such

that Theorem 4.1 represents a new non-PDC design condition. The results are compared with

the classical non-PDC design of [29]. In the truck-trailer application, the fuzzy controller is

designed considering the l2-gain performance design in order to attenuate energy-bounded

disturbances acting on the system. In this case, the condition of Lemma 4.2 is considered for

delayed control design. The results are compared with previous methods applied to the same

problem.

4.3.1 Inverted pendulum system

The aim of this section is to apply Theorem 4.1 with the msets of delays GP
0 = ¶0♢,

GG
0 = GF

0 = GY
0 = GZ

0 = ¶0♢. It corresponds to a novel non-PDC design approach. Thus,

LMI-based conditions can be directly derived using Lemma 3.1. The results are compared with

the classical non-PDC design condition given in Theorem 2.2, or, equivalently, in Theorem 3.1

with the msets of delays GP
0 = ¶0♢, GG

0 = GF
0 = ¶0♢.

To illustrate the effectiveness of proposed approach, the state-feedback control of an

inverted pendulum controlled by a DC motor via a gear train is considered. The continuous-time

nonlinear dynamic equations which describe this system are [64]:

ẋ1(t) = x2(t)

ẋ2(t) =
g

l
sin x1(t) +

NKm

ml2
x3(t)

ẋ3(t) = −KbN

La

x2(t) − Ra

La

x3(t) +
1

La

u(t),

(4.8)

where x1 is the angular position, x2 is the angular velocity, x3 is the DC motor armature

current and u is the control input. In addition, Km is the motor constant, Kb is the back

electromotive force constant and N is the gear ratio. The considered parameters are the same

as [64]: g = 9.8 m/s2, l = 1 m, m = 1 kg, N = 10, Km = 0.1 Nm/A, Kb = 0.1 Vs/rad,

Ra = 1 Ω and La = 0.5 mH.

By employing EulerŠs discretization method in the differential equations (4.8), the

following discrete-time nonlinear equations are obtained:

xk+1(1) = xk(1) + Txk(2)

xk+1(2) = xk(2) + T (9.8 sin xk(1) + xk(3))

xk+1(3) = xk(3) + 2T (−xk(2) − xk(3) + uk),

(4.9)
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with T = 0.1 s assumed as sampling time. It is possible to derive a TS model to represent

system (4.9) by applying the sector nonlinearity approach [8]. Considering the premise variable

zk = sin xk(1) within the set Ωx = ¶x ∈ R
3 : ♣xk(1)♣ ≤ π, ∀k ∈ N♢, the obtained TS model is

based on the following membership functions [64]:

M1
1 (zk) =

⎧

⋁︂

⋁︂

⨄︂

⋁︂

⋁︂

⋃︂

sin xk(1)

xk(1)

, xk(1) ̸= 0,

1, xk(1) = 0

and M2
1 (zk) = 1 −M1

1 (zk),

and local models:

A1 =

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

1 0.1 0

0.98 1 0.1

0 −0.2 0.8

⋂︁

⎥

⎥

⎥

⋀︁

, A2 =

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

1 0.1 0

0 1 0.1

0 −0.2 0.8

⋂︁

⎥

⎥

⎥

⋀︁

, B1 = B2 =

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

0

0

0.2

⋂︁

⎥

⎥

⎥

⋀︁

.

By solving1 the LMI-based conditions derived from Theorems 4.1 and 2.2, the designed

control gains are listed as follows.

Control gains obtained with Theorem 2.2:

F1 =

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

0.0282

0.1319

8.1496

⋂︁

⎥

⎥

⎥

⋀︁

⊤

, F2 =

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

0.0626

0.1624

8.0471

⋂︁

⎥

⎥

⎥

⋀︁

⊤

, H1 =

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

0.0639 −0.1479 0.044

−0.1559 0.4819 −0.1638

−0.1330 −0.1594 1.9663

⋂︁

⎥

⎥

⎥

⋀︁

,

H2 =

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

0.0639 −0.1479 0.044

−0.1559 0.4819 −0.1638

−0.1330 −0.1594 1.9663

⋂︁

⎥

⎥

⎥

⋀︁

.

Control gains obtained with Theorem 4.1:

F1 =

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

0.1230

−0.0294

−0.2640

⋂︁

⎥

⎥

⎥

⋀︁

⊤

, F2 =

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

−0.1679

0.6099

0.3120

⋂︁

⎥

⎥

⎥

⋀︁

⊤

, H1 =

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

0.0381 −0.0945 −0.0222

−0.0939 0.3422 −0.3279

−0.0661 −0.2391 1.7638

⋂︁

⎥

⎥

⎥

⋀︁

,

H2 =

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

0.0362 −0.0835 −0.038

−0.0726 0.2778 −0.2981

−0.0517 −0.2815 1.7816

⋂︁

⎥

⎥

⎥

⋀︁

.

Assuming the initial state x0 = [2.5, 2,−0.24]⊤ and the above designed controllers, the time

responses of both state x1 and control input u are shown in Figure 4.2.

It can be observed in Figure 4.2 that the non-PDC designed with the proposed condition

could effectively stabilize the inverted-pendulum system.
1 The LMIs are solved in Matlab using Yalmip [10] and SeDuMi solver.
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Figure 4.2 – Closed-loop trajectories of inverted pendulum system controlled by the non-
PDC designed with Theorems 2.2 (black) and 4.1 (gray) applied to the
inverted pendulum system. (a) state x1; (b) control signal.

4.3.2 Truck-trailer system

This section presents the application of the proposed approach considering the l2-gain

control performance on the truck-trailer system. This problem has been addressed, for instance,

in the works of [67, 68, 69] and [62]. However, delayed control was not applied in this context,

which motivates this application. Instead of the model formulated by [70], the following

simpliĄed dynamics used by [69, 62] is considered:

xk+1(1) = (1 − vT/L)xk(1) + (vT/l)uk

xk+1(2) = (vT/L)xk(1) + x2(k) + 0.2wk

xk+1(3) = xk(3) + vT sin
(︂

xk(2) + (vT/2L)xk(1)

)︂

+ 0.1wk

yk = 7xk(1) − 2xx2(k) + 0.03xk(3),

(4.10)

where x1 is the difference of angles between the truck and the trailer, x2 the angle of the

trailer compared to the horizontal axis, x3 the position related to the vertical axis of the back

of the trailer, u is the steering angle applied to the front wheels of the truck, w is the angle

disturbance and T is the sampling time. The system is illustrated in Figure 4.3.

Following the same modeling procedure as in [69, 68] and [62], where the sector

nonlinearity approach was applied considering the premise variable zk = xk(2) + (vT/2L)xk(1)

within the interval ♣z♣ ≤ 179.427, the nonlinear truck-trailer model can be represented as a TS

fuzzy model with the following membership functions:

M1
1 (zk) = 1 −M2

1 (zk), and M2
1 (zk) =

⎧

⋁︂

⋁︂

⨄︂

⋁︂

⋁︂

⋃︂

zk − sin zk

zk(1 − g)
, zk ̸= 0,

1, zk = 0
,
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Figure 4.3 – Illustration of truck-trailer system. Extracted from [69].

and local models:

A1 =

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

1 − vT/L 0 0

vT/L 1 0

v2T 2/(2L) vT 1

⋂︁

⎥

⎥

⎥

⋀︁

, A2 =

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

1 − vT/L 0 0

vT/L 1 0

gv2T 2/(2L) gvT 1

⋂︁

⎥

⎥

⎥

⋀︁

, B1 = B2 =

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

vT/l

0

0

⋂︁

⎥

⎥

⎥

⋀︁

,

E1 = E2 =

⋃︁

⋁︁

⋁︁

⋁︁

⨄︁

0

0.2

0.1

⋂︁

⎥

⎥

⎥

⋀︁

, C1 = C2 =
[︂

7 −2 0.03
]︂

,

where g = 10−2/π. The model parameters are selected as l = 2.8 m, L = 5.5 m, v = −1.0 m/s

and T = 2.0 s. Considering the proposed delayed condition in (4.6) with msets of delays

GP
0 = ¶−1♢, GF

0 = GH
0 = GY

0 = GW
0 = GZ

0 = ¶0,−1♢, this choice of msets leads to a

3-dimensional fuzzy summation based condition. In order to minimize the l2-gain upper-bound,

Lemma 4.2 is applied with LMIs derived applying Lemma 2.3. Solving the optimization problem,

the obtained upper-bound is γ = 0.397.

To illustrate the effectiveness, a numerical simulation is performed considering the initial

condition x0 = [π/2, 3π/4, −10]⊤ and the following energy-bounded disturbance:

wk =

⎧

⋁︂

⨄︂

⋁︂

⋃︂

2.8, 150 ≤ k ≤ 151,

0, k < 150 or k > 151,

which corresponds to a perturbation with duration of 2 s. The state response of the closed-loop

system and the control signal are shown in Figure 4.4. It is possible to note that the state

trajectories converge to zero in the interval 1 ≤ k ≤ 150. At the sample time k = 150, when

the states are perturbed by wk, the control acts to attenuate its effect and the states converge

again to the origin until the end of the simulation.

This section has presented numerical simulations on stabilization of two physically

motivated systems. In the inverted pendulum application, the results showed the new non-PDC

design was able to stabilize the system requiring less control effort, which means less required

energy. When it comes to the truck-trailer application, the proposed delayed conditions provided
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Figure 4.4 – Closed-loop trajectories of truck-trailer system in feedback with con-
troller (2.20) designed with Lemma 4.2 applied to the truck-trailer system.
(a) states; (b) control signal.

control gains such that the inĆuence of energy-bounded disturbances are attenuated. Therefore,

the numerical simulations presented here indicate the proposal effectiveness to cope with

practical control problems.

4.4 Conclusion

The main contributions of this work have been presented in this chapter. They are

related to new conditions able to reduce fuzzy control design conservativeness without increasing

the number of fuzzy summations in comparison to the conditions of [38]. As a consequence, less

conservative results could be obtained with a reduced computational complexity. In addition,

using appropriate matrix transformations, it was shown that the conditions proposed here

can be viewed as generalizations for those of [38], which in its turn generalize other previous

existing conditions. Therefore, the proposal constitutes a new framework for model-based fuzzy

control. The effectiveness was illustrated with numerical simulations on the application to

practical systems.
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5 ENDING COMMENTS

This work has proposed new sufficient conditions to design fuzzy controllers for sta-

bilization of discrete-time nonlinear systems described by Takagi-Sugeno (TS) fuzzy models.

The proposed design conditions are based on a general multidimensional fuzzy control law

and nonquadratic Lyapunov functions, which allows easily designing both non-delayed and

delayed fuzzy controllers in a multiple-parameterized setting. Then, the proposed conditions

are obtained regarding appropriate congruence transformations based on the introduction of

new decision variables. These are extended to cope with the disturbance attenuation problem

based on the minimization of the l2-gain performance, which improves the practical usage.

However, the proposed conditions are initially written in terms of multidimensional fuzzy

summation-dependent LMI constraints that cannot be solved directly by numerical solvers.

Aiming to perform the design in an appropriate way, it was proposed a methodology to derive

a Ąnite set of LMI-based conditions to design the fuzzy controllers.

In comparison to recent related approaches for fuzzy control design, there are two

important aspects to be pointed out with respect to the conditions proposed here: (i) it was

theoretically demonstrated that they contain other conditions in the literature as particular

cases; (ii) it was shown via numerical simulations that less conservative designs can be obtained

with a reduced computational complexity.
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5.1 Future directions

Delayed control laws for stabilization of time-delayed nonlinear discrete-time systems.

In practical problems such as networked control, the inĆuence of communication

limitation in the closed-loop dynamics is generally modeled as a time-delayed state. The idea is

to evaluate the possibility to obtain less conservative designs using the delayed control laws with

multisets of delays selected in terms of the time-delay induced by communications constraints,

for example.

Deriving new fuzzy static output feedback control design conditions.

Here, matrix transformations similar to those employed to derive the proposed state-

feedback design conditions could be applied to obtain less conservative designs for fuzzy static

output feedback controllers.

5.2 Publications

The publications related to the contributions of this work are listed below.

a) P. H. S. Coutinho and R. M. Palhares. Estabilização de modelos fuzzy Takagi-

Sugeno a tempo discreto: reduzindo o conservadorismo no controle não-PDC. In

XXII Congresso Brasileiro de Automática. SBA, João Pessoa, PB, 2018.

b) P. H. S. Coutinho, J. Lauber, M. Bernal, and R. M. Palhares. Efficient LMI

conditions for enhanced stabilization of discrete-time Takagi-Sugeno models via

delayed nonquadratic Lyapunov functions. IEEE Transactions on Fuzzy Systems,

Early Access:1Ű10, 2019. DOI: 10.1109/TFUZZ.2019.2892341.
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APPENDIX A – LYAPUNOV STABILITY THEORY FOR DISCRETE-TIME

NONLINEAR SYSTEMS

This appendix regards the stability analysis of discrete-time nonlinear systems. The

study is motivated by the Lyapunov stability analysis of continuous-time nonlinear systems and

the established concepts and deĄnitions are presented focusing on the discrete-time domain.

Consider the continuous-time autonomous nonlinear system

ẋ(t) = f(t, x(t)), (A.1)

where x ∈ R
n is the vector state and f : [t0,∞) × D → R

n is a locally Lipschitz function

over a domain D ⊂ R
n with the origin is contained in D. The points at which the vector Ąeld

f(t, x(t)) vanishes for all t ≥ 0, i.e,

f(t, x̄) = 0, ∀t ≥ t0, (A.2)

are called equilibrium points of (A.1). The main goal in this section is decide about the stability

of a given equilibrium point x̄. Without loss of generality, the origin (x = 0) may be considered

as equilibrium point for stability analysis; this is not restrictive because it is possible to translate

the state space origin to the equilibrium point of interest [71]. Furthermore, as the stability is

a property of the equilibrium point, it is not affected by geometrical transformations.

The stability of equilibrium points of nonlinear systems is frequently studied based on

the concepts developed by Lyapunov in 1892 [72, 9]. The stability in the sense of Lyapunov is

deĄned as follows.

Definition A.1 ([9]). The equilibrium point x = 0 of (A.1) is stable if, for each ε > 0 and

any t0 there is δ(ε, t0) > 0 such that

∥x(t0)∥ < δ ⇒ ∥x(t)∥ < ε, ∀t ≥ t0. (A.3)

By the above deĄnition, trajectories starting in a given initial condition, say x(t0) =

x0 ∈ Bδ, with Bδ = ¶x ∈ R
n ♣ ∥x(t)∥ < δ♢, will never leave Bε = ¶x ∈ R

n ♣ ∥x(t)∥ < ε♢ for

all t ≥ t0, as illustrated in Figure A.1. In other words, trajectories starting sufficiently close

to the equilibrium point (origin, in this case) remains close to it. In view of DeĄnition A.1,

the equilibrium point is unstable if it is not stable. If the nonlinear system is autonomous,

i.e, ẋ = f(x), then the stability condition does not depend on time t, implying that for each

ε > 0 there exists δ(ε) > 0 so that (A.3) is satisĄed independently of t0, this is called uniform

stability. In addition, if δ could be chosen such that

∥x(t0)∥ < δ ⇒ lim
t→∞

∥x(t)∥ = 0, (A.4)
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x = 0

Bε
ε

Bδ δ
x0

x(t)

Figure A.1 – Illustration of the stability concept in the sense of Lyapunov.

x = 0

Bε
ε

Bδ δ

x0

x(t)

Figure A.2 – Illustration of asymptotic stability in the sense of Lyapunov.

then the equilibrium point is said asymptotically stable; it is illustrated in Figure A.2. In a

similar way, if the system is autonomous, the equilibrium is uniformly asymptotically stable.

Notice the above deĄnitions concludes about the local stability of equilibrium points

since the assumptions are valid in a domain D ⊂ R
n. When these conditions hold for all

x(t0) ∈ R
n, the stability is global. Nonlinear systems generally present multiple equilibrium

points (stable or unstable), conducting to local stability analysis. In contrast, linear systems of

the form ẋ = Ax have a unique isolated equilibrium point at the origin; thus conclusions of its

stability are global.

Until now, discussions have been concerned about stability analysis of continuous-time

nonlinear systems. From now on, the focus will be on the stability analysis of discrete-time

nonlinear systems, in special, autonomous discrete-time nonlinear systems of the form

xk+1 = f(xk), (A.5)

where k is the sample time, f : D → R
n is continuous in D ⊂ R

n and 0 ∈ D. With these

assumptions about f , all the stability deĄnitions previously presented in the continuous-time

domain are valid for equilibrium points of discrete-time nonlinear systems. It is summarized in

the following deĄnition.
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Definition A.2. The equilibrium point x = 0 of (A.5) is

(i) stable if, for each ε > 0 there is δ(ε) such that

∥x0∥ < δ ⇒ ∥xk∥ < ε, ∀k ≥ 0;

(ii) unstable if it is not stable;

(iii) asymptotically stable if it is stable and δ can be chosen such that

∥x0∥ < δ ⇒ lim
k→∞

∥xk∥ = 0.

Similar to the continuous-time case, it was considered (without loss of generality)

the origin as equilibrium point whose stability one wants to study. However, in both cases,

conclusions about stability requires the solution of the system equations, which can be quite

difficult for general nonlinear systems.

Another approach to study the stability of equilibrium points is the second method

of Lyapunov, also called LyapunovŠs direct method. This method enables one to determine

the stability of an equilibrium point without explicitly obtaining trajectories of the system by

employing what can be viewed as a generalization of energy dissipation concept [71]. The main

idea is to consider a (locally) energy-like function of the state, V (x), called Lyapunov function

candidate and evaluate if it monotonically decreases to zero as the time passes. This implies

the Ştotal energyŤ tends to zero and trajectories tends to equilibrium. In the continuous-time

domain, the decreasing of such function is veriĄed if V̇ (x) < 0 and in the discrete-time domain

if V (xk+1) − V (xk) < 0. If such conditions hold the equilibrium is asymptotically stable.

LyapunovŠs direct method for discrete-time nonlinear systems can be stated as follows:

Theorem A.1 (adapted from [73, 9, Chapter 4]). Let x = 0 be an equilibrium point for (A.5)

and D ⊂ R
n be a domain containing the origin x = 0 and V : D → R be a continuous

function such that

V (0) = 0 and V (x) > 0, ∀x ∈ D − ¶0♢ (A.6)

V (f(x)) − V (x) ≤ 0, ∀x ∈ D, (A.7)

then the equilibrium is stable. Moreover if

V (f(x)) − V (x) < 0, ∀x ∈ D − ¶0♢, (A.8)

then the equilibrium is asymptotically stable.

Definition A.3. If a continuous function V : D → R satisfies (A.6), it is called a Lyapunov

function candidate; if it also satisfies (A.7), then it is called Lyapunov function.

The stability analysis using the LyapunovŠs second method requires appropriately

choosing a Lyapunov function candidate. This is the main task of this approach since there is
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no general methodology for that. Frequently, quadratic functions are considered as Lyapunov

function candidates for studying the stability of equilibrium points of nonlinear systems because

of their simplicity of construction. In particular, there are powerful results on linear systems

theory in which sufficient and necessary stability conditions can be obtained using quadratic

Lyapunov functions for both continuous and discrete-time domains.
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APPENDIX B – DISSIPATIVITY ANALYSIS OF DISCRETE-TIME NONLINEAR

SYSTEMS

This appendix presents the main concepts on dissipativity analysis of nonlinear discrete-

time systems. The discussion presented here are mainly adopted from [74, 75].

Consider the following class of input-affine nonlinear discrete-time systems:

xk+1 = f(xk) + g(xk)uk

yk = h(xk) + j(xk)uk,
(B.1)

where xk ∈ Ω ⊆ R
nx , uk ∈ U ⊆ R

nu , yk ∈ R
ny and the functions f(·), g(·), h(·) and j(·) are

smooth mappings. It is assumed that f(0) = 0 and h(0) = 0.

Definition B.1 (see [74]). The system (B.1) is dissipative with respect to the supply rate

S(u, y) if the dissipation inequality

0 ≤
k−1
∑︂

i=k0

S(ui, yi) (B.2)

is satisfied for all k − 1 ≥ k0 and all u ∈ U with xk0 = 0 along trajectories of (B.1). The

system is lossless with respect to the supply rate S(u, y) if it is dissipative with respect to

the supply rate S(u, y) and the dissipation inequality (B.2) is satisfied as an equality for all

k − 1 ≥ k0 and all u ∈ U with xk0 = xk = 0 along trajectories of the system.

The available storage Va(x0) of the discrete-time nonlinear dynamical system (B.2) if

deĄned by

Va(x0) = − inf
u(·),K≥0

K−1
∑︂

k=0

S(uk, yk)

= sup
u(·),K≥0

⎟

−
K−1
∑︂

k=0

S(uk, yk)

⟨︂

, (B.3)

where xk, k ≥ k0, is the solution to (B.1) with admissible input u ∈ U . Note that Va(x) ≥ 0

for all x ∈ D.

Definition B.2 ([74]). Consider the system (B.1). A continuous nonnegative function

Vs : D → R satisfying Vs(0) = 0 and

Vs(xk) ≤ Vs(xk0) +
k−1
∑︂

i=k0

S(ui, yi), k − 1 ≥ k0, (B.4)

for all k0, k ∈ Z+, where xk, k ∈ Z+, is the solution of (B.1) with u ∈ U , is called a storage

function for (B.1).
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The function Vs can be viewed as a generalized energy function for a dissipative system.

Therefore, inequality (B.4) represents the internal energy stored by the system so that the

variation Vs(xk+1) − Vs(xk) should be less or equal to the supplied energy. It conducts to the

following deĄnition of dissipative systems [76].

Theorem B.1 (see [74]). Consider the system (B.1). The system is dissipative with respect

to the supply rate S(u, y) if and only if the available system storage Va(x0) given by (B.2) is

finite for all x0 ∈ D and Va(0) = 0. Moreover, if Va(0) = 0 and Va(x0) is finite for all x0 ∈ D,

then Va(x), x ∈ D is a storage function for the system. All storage functions Vs(x) satisfy

0 ≤ Va(x) ≤ Vs(x), x ∈ D. (B.5)

The system (B.1) is passive if it is dissipative with respect to the supply rate S(u, y) =

u⊤y. It is strictly passive if Vs(xk+1) − Vs(xk) < u⊤y for all admissible inputs u ∈ U unless

xk ≡ 0, ∀ k ∈ Z+. In addition, the system is said lossless if Vs(xk+1) − Vs(xk) = u⊤y for all

admissible inputs u ∈ U and all k [75].


