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RESUMO

Esta tese trata do problema de projeto simultâneo de controladores e mecanismos dinâmicos

de acionamento baseados em eventos para a classe de sistemas de controle não lineares via

rede representados por modelos politópicos quasi-LPV. O principal objetivo desta proposta

é obter condições de projeto simultâneo, via LMIs, tais que o número de eventos gerados

seja reduzido tanto quanto possível. Em particular, são estudados dois tipos de mecanismos

dinâmicos de acionamento baseados em eventos: o contínuo e o periódico. No caso de

mecanismos dinâmicos de acionamento contínuos, considera-se um controlador com ganho

escalonado e as condições de projeto simultâneo são construídas a partir da teoria de Lyapunov.

Particularmente, a nova lei de acionamento proposta é tal que é possível cancelar completamente

o efeito induzido pelo assincronismo dos parâmetros, já que os parâmetros do controlador

são calculados em termos do estado disponibilizado pelo mecanismo de acionamento via rede

de comunicação. Posto isto, a partir do tratamento adequado do efeito de assincronismo,

consideram-se relaxações adicionais para reduzir o conservadorismo das condições LMI de

projeto simultâneo. Finalmente, demonstra-se também que a estratégia proposta não produz

comportamento de Zenão. No caso de mecanismos dinâmicos de acionamento periódicos,

considerando a teoria de Lyapunov-Krasovskii, novas condições de projeto simultâneo são

obtidas para garantir estabilidade do sistema em malha fechada com um controlador linear.

Além disso, o efeito de retardo no tempo induzido pela rede é explicitamente levado em conta

no projeto. Em ambos os casos, como os projetos se baseiam na representação local quasi-LPV

da planta não linear, obtêm-se estimativas da região de atração dentro do domínio compacto

onde a representação local é válida. Simulações numéricas são apresentadas para ilustrar

a efetividade das condições de projeto simultâneo propostas em garantir a estabilidade do

sistema em malha fechada requerendo um número reduzido de eventos quando comparados a

mecanismos estáticos projetados via emulação e projeto simultâneo.

Palavras-chave: Sistemas de controle via rede. Sistemas não lineares. Controle baseado em

eventos. Desigualdades matriciais lineares. Sistemas lineares com parâmetros variantes.



ABSTRACT

This thesis concerns the co-design of controllers and dynamic event-triggering mechanisms for

the class of nonlinear networked control systems represented by polytopic quasi-LPV models.

The main objective of this proposal is to derive co-design conditions, via LMIs, such that

the number of generated events is reduced as much as possible. In particular, two dynamic

event-triggering mechanisms are studied: the continuous and the periodic. In the case of

dynamic continuous event-triggering mechanisms, a gain-scheduling control law is considered

and the co-design conditions are developed based on the Lyapunov theory. In particular, the

new proposed triggering law is such that it is possible to completely cancel out the effect of the

asynchronous parameters since the controller’s parameters are computed in terms of the state

available from the triggering mechanism via the communication network. Then, based on the

adequate treatment of the asynchronism effect, extra relaxations are considered to reduce the

conservativeness of the LMI-based co-design conditions. Finally, it is proved that the proposed

strategy does not lead to Zeno behavior. In the case of dynamic periodic event-triggering

mechanisms, a new co-design condition is developed considering the Lyapunov-Krasovskii

theory to ensure the stability of the closed-loop system with a linear control law. The effect

of network-induced time delays is explicitly taken into account in the design. In both cases,

as the design conditions are based on the locally equivalent quasi-LPV representation of the

nonlinear plant, estimates of the region of attraction are obtained inside the compact region

where the local representation is valid. Numerical simulations are presented to illustrate the

effectiveness of the proposed co-design conditions to ensure the stability of the closed-loop

system requiring a reduced number of events when compared to static triggering mechanisms

designed via emulation and co-design.

Keywords: Networked control systems. Nonlinear systems. Event-triggered control. Linear

matrix inequalities. Linear parameter varying systems.
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1 INTRODUCTION

The point-to-point protocol is commonly assumed as communication architecture in

traditional feedback control systems. In this case, the plant is connected to the controller

via wires [1], and the design is often based on assumptions of perfect data transmissions [2],

as illustrated in Figure 1.1(a). Nevertheless, with the growing use of embedded controllers,

computer, and communication technology, which allows applications in smaller and less costly

systems, the sensors and control data are often transmitted through digital communication

channels [3].

P
Plant

C
Controller

y

u

(a)

P
Plant

N
Network

C
Controller

y

û

ŷ

u

(b)

Figure 1.1 – Block diagram representations of (a) traditional control systems based on
the point-to-point protocol and (b) networked control systems.

This scenario motivated the development of networked control systems (NCS), in which

systems that may be spatially distributed are interconnected with the presence of shared digital

communication networks [4, 5], as illustrated in Figure 1.1(b). In this case, the measured

signals y and u are sampled, converted to a digital format, and transmitted over the network

as ŷ and û, respectively. In contrast to traditional feedback control systems, in which the

plant, sensors, controllers and actuators are connected regarding the point-to-point protocol,

NCS offer the possibility of employing more flexible architectures, reduced installation costs

and better maintainability [4, 6]. As a result, NCS have been considered in several engineering

applications, such as car automation [7], microgrids [8], bilateral control of teleoperators [9],

unmanned vehicles [10], among others [4, 11, 12].

In spite of several advantages of NCS over traditional control systems based on point-

to-point architecture, the presence of shared communication networks often makes the stability

analysis and controller synthesis for NCS more challenging since non-ideal network-induced

phenomena should be properly taken into account [13]. The most common phenomena are

listed as follows:

a) Variable sampling/transmission intervals:



Chapter 1. Introduction 17

Due to the presence of the shared network, instead of continuous measurements of

the output y and the control input u, as considered by traditional control systems,

in NCS, these signals are sampled, encoded in a digital format, transmitted over

the network, and then decoded for application. Data are transmitted at some

speciĄc instants tk, named transmission times. Traditionally, especially for digital

control systems, data are transmitted periodically with some pre-speciĄed sampling

period h ∈ R>0, i.e., tk = kh. However, the assumption of a Ąxed sampling

period may be strong when NCS are concerned. As a result, efforts have been

cast to compute the maximum allowable transmission interval for which the NCS

stability is ensured [14, 15, 16] in a similar way as in sampled-data control systems

[17, 18, 19, 20]. Although time-triggered communication schemes based on Ąxed

sampling periods [21] or based on maximum allowable transmission intervals are

of easy implementation, they often lead to redundant transmissions to ensure

closed-loop stability or performance.

b) Network-induced delays:

The network-induced delays may be caused by the limited bandwidth, network

traffic congestion, and the transmission protocol. Delays may appear in both sensor-

controller and controller-actuator channels [5]. Even if network-induced delays may

be time-varying and random, they are usually interval-bounded [22]. Therefore,

alternatives to deal with their effects are mainly based on the characterization of

the maximum allowable delay for which the stability of the NCS is ensured [1].

c) Packet dropouts:

Network-induced packet dropouts often result from transmission errors in physical

network links, overloaded network traffic, and transmission time outs. Although

the effect of packet dropouts can be modeled regarding stochastic theory methods,

deterministic models are also available in the literature, which are especially useful

in case of communication failures induced by malicious attacks [23]. Their effects

can also be included together with those of network-induced delays and modeled as

time-varying delays assuming a bounded number of successive packet losses [1, 22].

d) Quantization:

In control applications based on digital communication, data are usually quantized

by elements called quantizers before transmitted. Quantizers are functions that

map real-valued functions into piecewise constant ones over a Ąnite set of values.

They can be either uniform [24, 25] or logarithm [26] and there are appropriate

methods do deal with the quantization effects depending on the considered quantizer

mechanism [1, 22]. The data quantization generally induces an error between the

measured signal and its corresponding quantized representation.
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The inherent network-induced effects have conducted to efforts to cast the analysis

and synthesis problems for NCS taking them into account, but aiming to reduce the network

resources consumption while still preserving desired control performance requirements. To avoid

wasting of scarce communication resources frequently encountered in applications involving

time-triggered control, instead of purely time speciĄcations, resource-aware control techniques

have been proposed to determine the instants when transmissions should occur to preserve

stability or performance of the closed-loop system based on internal signals of the plant, such

as state or output information [27].

The resource-aware control includes event-triggered control (ETC) [28, 29, 30] and

self-triggered control [31, 32]. In self-triggered control, the mechanism computes the next

sampling instant without requiring the constant monitoring of plant information, which allows

self-triggering mechanisms to be used in an application without dedicated hardware. In ETC,

the state information can be monitored (continuously or sampled), and a feedback mechanism

is introduced into the sampling and communication process to determine the sampling instant

when the state information deviates more than a certain threshold from the last sampled

information or a desired value, offering the possibility of immediate compensation [27]. This

work focuses on ETC.

The general ETC setup considered in this work is shown in Figure 1.2, where a static

state feedback control law C is employed to stabilize the continuous-time plant P .

P
Plant

C
Controller

N
Network

Sampler

Event-triggering
mechanism

Zero-order hold

u(t) x(t) x(jh)x̂(t)

x(tk)

Figure 1.2 – Representation of an ETC control setup, where P is the continuous-time
plant, C is a static state feedback controller, N is the communication channel,
x(t) is the continuous state measurement, x(jh) is the sampled state
measurement, x(tk) is the most recently transmitted state measurement,
x̂(t) is x(tk) possibly affected by network-induced effects, u(t) is the control
input.

The sampler component is assumed to be periodically time-triggered with a Ąxed

sampling time h ∈ R>0. Then, the sampled state measurement is sent to the event-generator,

which is referred to in this work as event-triggering mechanism (ETM). The ETM determines

the appropriate instant to transmit the state, via a general purpose communication network N ,

to the zero-order hold mechanism (ZOH), which converts the discrete signal into a piecewise
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continuous one to be available to the controller C. In Figure 1.2, the dotted lines indicate that

data flow occurs only at the event times tk, k ∈ N0, appropriately determined by the ETM.

As the communication network may not be used exclusively for the control task, it may induce

time-delays or even cause data loss [33].

1.1 Event-triggered control: literature review

The idea of event-based sampling behind ETC systems naturally arises in some engi-

neering applications like: motion control, where signals of interest (as angles and positions)

are measured via encoders that transmit a pulse when one of these signals change by a speciĄc

amount [34]; and systems with pulse frequency modulation [35, 36], where the control signal

can only be either a positive or negative pulse with speciĄc size, then the controller decides

when these pulses should be applied with the correct sign. Moreover, it is interesting to mention

that the human manual control is closer to the event-driven than time-driven control, since new

human control actions are usually taken only when the measured signal deviates sufficiently

from the reference.

The ETC system theory, as regarded in this work, has been mainly developed since the

publication of the two seminal papers of Åström & Bernhardsson [34] and Åarzén [37]. Åström

& Bernhardsson [34] developed an event-based sampling scheme for Ąrst-order stochastic

systems, by comparing the proposed event-based strategy with traditional periodic sampling in

terms of closed-loop variance and sampling rate, their Ąndings showed up the better performance

achieved with the event-based sampling. Åarzén [37] proposed an event-based PID controller

aiming to ensure similar closed-loop performance as a conventional PID controller, but with

reduced CPU utilization. The simulations and laboratory results indicated that it was possible

reducing CPU usage with the event-based PID with minor performance degradation. Although

these papers are acknowledged in the literature, the results are limited to the mentioned speciĄc

classes of dynamical systems and the authors highlight the interests in developing a system

theory for ETC [37] and the need to extend the results for more general classes of dynamical

systems [34].

The approaches to formulate ETC problems can be categorized into optimization-

based and Lyapunov-based approaches. In optimization-based approaches, the ETC design is

formulated as an optimization problem whose performance is expressed as an objective function,

or cost, to be optimized [38, 39, 40, 41]. In Lyapunov-based approaches, with an appropriate

model of the event-triggered NCS, the asymptotic stability, input-to-state (ISS) stability, or

Lp-stability of the closed-loop system can be studied regarding arguments of the Lyapunov

stability theory [42].

Also, as discussed by Peng & Li [43], the main modeling tools for event-triggered NCS are:

hybrid system models [44, 45, 46, 47, 6, 48, 49, 30], perturbed models [28, 29, 50, 51, 52, 53],

and time-delay models [54, 55, 56, 1]. In the hybrid system model, the continuous and
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discrete behaviors of ETC systems are explicitly described in the model. The perturbed system

model is obtained considering the transmission error as an internal perturbation. Although the

perturbed model can be viewed as a less complex description, it provides less insights about the

discontinuous nature of ETC systems. Finally, in the time-delay approach, a delayed control

input is introduced to describe the aperiodic sampling. Also, it is an appropriate representation

to be employed for systems with network-induced delays [1].

From the analytical point-of-view, the work of Tabuada [28] is well recognized in the

ETC literature of Lyapunov-based approaches. Motivated by techniques employed to study

problems related to control under communication constraints [24, 26, 57], the author proposed

an ETM to determine the instants when control tasks should be executed whenever the

norm of the error between the current and last transmitted state information becomes large

when compared to the current state norm. The idea is developed for nonlinear systems and

particularized for linear time-invariant (LTI) systems. The following class of nonlinear systems

is considered:

ẋ(t) = f(x(t), u(t)), (1.1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input, and f : Rn × R
m → R

n satisĄes

the assumptions for existence and uniqueness of solutions. Based on the assumption that there

exists a state feedback control law

u(t) = k(x̂(t)), (1.2)

where x̂(t) represents the last state available to the controller, that ensures the perturbed

closed-loop system

ẋ(t) = f(x(t), k(x(t) + e(t))) (1.3)

to be ISS stable with respect to the transmission error e(t) = x̂(t)−x(t), ETC design conditions

are provided to ensure the closed-loop ETC system to be asymptotically stable. Another key

contribution of this paper is the characterization and the formal proof of the existence of

a positive minimum inter-event time (MIET) to avoid the existence of Zeno behavior1 and

ensures its applicability since communication networks do not have inĄnite bandwidth to support

inter-event times arbitrarily close. As a result, a crucial property to guarantee the proper ETC

implementation is the existence of a positive MIET in order to exclude Zeno behavior. Due to

the above-mentioned aspects, the work of Tabuada [28] has motivated many subsequent works

on ETC. In fact, according to the bibliometric analysis performed by Aranda-Escolástico et

al. [59], Tabuada [28] is the most cited paper in the Ąeld2.
1 Zeno behavior is a concept related to the solution of hybrid dynamical systems [58]. In the context of ETC

systems, it stands for the occurrence of an infinite number of events in a finite time, i.e., the execution
times become arbitrarily close resulting in an accumulation point [28, 6].

2 Tabuada [28] counts with 1484 citations reported by Aranda-Escolástico et al. [59] and more than 2800
citations reported by the Google Scholar database.
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1.1.1 Continuous and periodic ETC

The ETC schemes can be distinguished in terms of how the state (or output) measure-

ment is monitored by the ETM. The two main categories discussed here are continuous [28],

and periodic [60, 47].

The continuous event-triggered control (CETC) setup is illustrated in Figure 1.3.

In contrast to the setup shown in Figure 1.2, the state measurement x(t) is continuously

monitored by the ETM, since there is no sampler mechanism in this case. It leads to the

following continuous ETM [28]:

t0 = 0, tk+1 = inf¶t > tk : Γ(x(t), x̂(t)) < 0♢, ∀k ∈ N, (1.4)

where Γ(x, x̂) is an event-function which depends on the current state measurement x(t) and

the last state information available to the controller by the ETM via communication network,

x̂(t). By assuming that there is no delay induced by the network, one has x̂(t) = x(tk),∀t ∈
[tk, tk+1), where tk is the last time in which a state measurement has been transmitted.

See [61, 62, 63, 27, 64, 29, 65, 50, 53] for applications of CETC schemes.

P
Plant

C
Controller

N
Network

Event-triggering
mechanism

Zero-order hold

u(t) x(t)x̂(t)

x(tk)

Figure 1.3 – Representation of a CETC control setup, where P is the continuous-time
plant, C is a static state feedback controller, N is the communication
channel, x(t) is the continuous state measurement, x(tk) is the most
recently transmitted state measurement, x̂(t) is x(tk) possibly affected by
network-induced delays, and u(t) is the control input.

Although CETC strategies are easy to implement, they have some evident limitations.

For instance, the event-function Γ(x, x̂) requires continuous state measurement instead of a

sampled one as considered in Figure 1.2, which can be impractical for digital implementations,

since continuous sensors have to be used. Also, to ensure the existence of a positive MIET may

be not trivial, or even not possible, if the plant is subject to disturbances, or an output-based

ETM is employed. For instance, Wang & Lemmon [66] studied ETC in distributed NCS

accounting for the effects of packet loss and transmission delays regarding an input-to-output

analysis, but a positive MIET is not provided in the case of disturbances. Yu & Antsaklis [67]

studied the event-triggered output feedback control of NCS under communication delays and

signal quantization and, from a passivity-based analysis, they showed that L2-stability can be
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achieved in the presence of these network imperfections. However, it is pointed out by Borgers

& Heemels [44] that the CETC setup of Yu & Antsaklis [67] might not have a positive MIET

in the presence of external disturbances and measurement noise.

The problems of output-based CETC with guaranteed L∞-gain and decentralized

triggering were studied by [63] and [68] focusing on LTI networked control systems. Based on

an impulsive model of the event-triggered NCS, the authors provided conditions to guarantee

L∞-stability for the closed-loop system subject to disturbances and it is shown the existence

of a positive MIET (for each node of the decentralized architecture). Nevertheless, with the

proposed ETM, only practical stability is ensured in the absence of disturbance.

The effect of external disturbances and measurement noises over the MIETs of several

CETC setups [28, 61, 27, 62] has been studied in detail by Borgers & Heemels [44]. The

authors introduced different event-separation properties for ETC systems represented by hybrid

models with state and output-based event-triggered closed-loop systems and continuous event-

generators with relative, absolute, and mixed thresholds. It is shown that even if a positive

MIET is found for the system in the absence of disturbance and measurement noise, it might

not be possible to preserve it in the presence of arbitrarily small disturbances.

An effective alternative to improve robustness of CETC setups is to introduce a waiting

time, or dwell-time [69], to enforce the existence of a positive MIET. This strategy is generally

referred to as CETC with time-regularization. In this case, the continuous ETM in (1.4) is

modiĄed to:

t0 = 0, tk+1 = inf¶t > tk + T : Γ(x(t), x̂(t)) < 0♢, ∀k ∈ N, (1.5)

where T ∈ R>0 represents the waiting time and clearly avoids accumulation points. The CETC

with time-regularization has been effectively employed for both linear [70, 71, 72, 48, 73, 74, 51]

and nonlinear [75, 45, 76, 6, 46, 77] ETC systems. Another approach employed to CETC

with time-regularization is based on the formulation of the closed-loop system as a switched

time-delay model [78, 79]. In spite of the advantages of CETC with time-regularization over

standard CETC, such as the possibility to guarantee Lp-stability in the presence of disturbances

[45, 6] and to consider output-based ETMs [51, 52], the disadvantage of requiring continuous

state measurements also makes CETC with time-regularization hard to be implemented in

digital platforms.

The periodic event-triggered control (PETC) has been proposed to avoid this limitation

of CETC-based approaches [80]. It combines the simplicity of traditional periodic time-triggering

with the effectiveness of ETC in reducing the number of transmissions. The PETC setup is

illustrated in Figure 1.2 and a periodic ETM can be deĄned as follows:

t0 = 0, tk+1 = min¶t > tk : Γ(x(t), x̂(t)) < 0, t ∈ ¶jh♢, j ∈ N♢, (1.6)

where the trigger-function Γ(x, x̂) receives the state measurement only at the multiples of the

sampling time h ∈ R>0, naturally excluding Zeno behavior. PETC strategies have been mainly
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developed for linear systems [60, 55, 81, 82, 47, 83, 84, 85, 86, 87], and linear switched systems

[88], but also for nonlinear systems [89, 90, 91, 92, 93, 94, 95], polynomial systems [96], and

Takagi-Sugeno (TS) fuzzy models [97, 98, 81, 99, 2, 100, 101, 56, 102, 103, 104, 105], which

can provide exact or approximate local representations of nonlinear systems [106, 107]. Moreover,

ETC strategies for discrete-time systems [108, 109, 110, 3, 111, 112, 113, 114, 115, 116] can

also be viewed as PETC strategies, even though inter-event behavior is not explicitly taken

into account in the analysis.

1.1.2 Static, adaptive, and dynamic ETC

ETC schemes can also be distinguished in terms of the trigger-function, which can be

static, adaptive or dynamic. In static ETC, the transmission instants are determined based on

the static trigger-function Γ(x, x̂) of the current state measurement and the last transmitted

state. For instance, the three ETMs introduced before in (1.4), (1.5), and (1.6) are static.

To illustrate the static CETC operation, the strategy proposed by Tabuada [28] is briefly

discussed in the sequel. The ISS property holds for the closed-loop nonlinear system (1.3), if

there exists a continuously differentiable function V : Rn → R≥0, called ISS Lyapunov function,

such that [28]:

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥) (1.7a)

∂V

∂x
f(x, k(x+ e)) ≤ −α(∥x∥) + γ(∥e∥), (1.7b)

where α1, α2, α, γ ∈ K∞. Thus, if the event-function Γ(x, x̂) in (1.4) is selected as

Γ(x, e) = σα(∥x∥) − γ(∥e∥), (1.8)

for some σ ∈ (0, 1), while a new transmission does not occur, the inequality condition

γ(∥e∥) ≤ σα(∥x∥) is fulĄlled until the error e(t) increases until (1.4) is satisĄed again. In this

case, from (1.7b), the ETM enforces the following inequality:

∂V

∂x
f(x(t), k(x(t) + e(t))) ≤ −(1 − σ)α(∥x(t)∥) < 0, ∀t ∈ [tk, tk+1), k ∈ N,

thus ensuring that the zero equilibrium of the closed-loop system under the continuous ETM

(1.4) is asymptotically stable.

Aiming to reduce the number of transmitted events without huge modiĄcations on

the ETC setup, new improved trigger-functions have been proposed based on the inclusion of

dynamic variables. Notice that most of the references mentioned above concerns static ETC,

with a few exceptions to be mentioned in the sequel.

One of the alternatives to introduce dynamics into the trigger-function is considering a

time-varying weighting function instead of a constant weight σ. This class of ETC strategies

will be referred to as adaptive ETC and it has been mainly developed in the context of PETC
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systems [117, 118, 119, 120, 121, 122, 123, 124, 114]. More recently, [125] studied L∞

adaptive CETC with a time-regularization for linear systems subject to stochastic deception

attacks. A general form for the adaptive ETM is illustrated as follows:

t0 = 0, tk+1 = inf¶t > tk : Γ(x(t), e(t), σ(t)) < 0♢, (1.9)

where

Γ(x, e, σ) = σα(∥x∥) − γ(∥e∥),

being σ ∈ (0, 1) a threshold which evolves according to some speciĄed stable internal dynamics:

σ̇(t) = Ω(σ(t), e(t)) (1.10)

with initial condition σ(0) ∈ (0, 1). The function Ω(σ, e) is generally deĄned as:

Ω(σ, e) =
1

σ

(︃
1

σ
− σ0

)︃
γ(∥e∥),

where σ0 > 1 is a design parameter. In contrast to the static ETM in (1.4), the adaptive law

given in (1.10) allows the threshold to be dynamically adjusted. When the error e(t) approaches

to 0, then σ̇(t) → 0, enforcing σ(t) to converge to a constant value. If the initial condition is

deĄned such that σ(0) = 1/σ0, then σ̇(t) = 0, ∀t ∈ R≥0, and the adaptive ETM reduces to

the static version.

To analyze the stability of the closed-loop system (1.3) under the adaptive ETM

(1.9)Ű(1.10), consider the following Lyapunov function:

W (x, σ) = V (x) +
1

2
σ2, (1.11)

where V (x) is the ISS Lyapunov function deĄned in (1.7). The time-derivative of (1.11) along

the trajectories of (1.1) is given by

Ẇ (x(t), σ(t)) =
∂V

∂x
f(x(t), k(x(t) + e(t))) + σ(t)σ̇(t)

≤ −α(∥x(t)∥) + γ(∥e(t)∥) +

(︄
1

σ(t)
− σ0

⎜
γ(∥e(t)∥), (1.12)

where the last inequality follows from property (1.7b). While a new event is not transmitted,

the condition γ(∥x̂(t) − x(t)∥) ≤ σ(t)α(∥x(t)∥) is fulĄlled until the error x̂(t) − x(t) increases

up to condition (1.9) is satisĄed again. In this case, it follows from (1.12) that

Ẇ (x(t), σ(t)) ≤ −σ(t)(σ0 − 1)α(∥x(t)∥) < 0, ∀t ∈ [tk, tk+1), k ∈ N, (1.13)

thus ensuring that the origin of the closed-loop system (1.3) equipped with the adaptive ETM

in (1.9)Ű(1.10) is asymptotically stable.

Another approach to introducing dynamics into ETMs is the dynamic ETC [126, 29, 30].

Although dynamic ETC can also be referred to as adaptive ETC in the literature, such as in
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the work of Hu et al. [111] for discrete-time systems, the term dynamic ETC is more common

in the literature and, for this reason, it is preferred in this work.

Girard [29] has considered the same class of nonlinear systems as [28], i.e., the plant

described in (1.1) with the state feedback control law (1.2) and the same assumptions about

the ISS property or, equivalently, the existence of the function V (x) given in (1.7). The author

has proposed a dynamic CETC strategy based on the following ETM:

t0 = 0, tk+1 = inf¶t > tk : η(t) + θΓ(x(t), e(t)) < 0♢, ∀k ∈ N, (1.14)

where Γ(x, e) is deĄned as in (1.8), θ ∈ R≥0 is a design parameter and η(t) ∈ R≥0 is a dynamic

variable that evolves according to the following differential equation:

η̇(t) = −δ(η(t)) + σα(∥x(t)∥) − γ(∥e(t)∥), (1.15)

where η(0) = η0 ∈ R≥0 is the initial condition, δ ∈ K∞, σ ∈ (0, 1) and α, γ are deĄned

as in (1.7b). In this case, the solution η(t) can be viewed as a Ąltered version of the static

trigger-function (1.8). The main advantage of dynamic ETC over static ETC relies on the

possibility of ensuring the same closed-loop performance as its static counterpart but requiring

a fewer number of transmitted events, which implies in less usage of communication resources

in NCS. Indeed, an interesting result provided by [29, Proposition 2.3] is that, under the same

initial conditions, the next transmission time given by the dynamic ETM is larger than or equal

to that given by its static counterpart. As a consequence, the existence of a positive MIET

follows directly if such a MIET exists for the static version of the dynamic ETM under study,

as shown in [29, Theorem 1].

The stability of the closed-loop system (1.3) equipped with the dynamic ETM (1.14)Ű

(1.15) is studied regarding the following Lyapunov function proposed by [29]:

W (x, η) = V (x) + η, (1.16)

where V (x) is the ISS Lyapunov function deĄned in (1.7). The time-derivative of (1.16) along

the trajectories of (1.1) is given by

Ẇ (x(t), η(t)) =
∂V

∂x
f(x(t), k(x(t) + e(t))) + η̇(t). (1.17)

From inequality (1.7b) and the dynamics of η(t) given in (1.15), it follows that

Ẇ (x(t), η(t)) ≤ −(1 − σ)α(∥x(t)∥) − δ(η(t)) < 0, ∀t ∈ [tk, tk+1). (1.18)

Since η(t) is assumed to be positive, one can conclude that W (x, η) is a Lyapunov function

that ensures that the zero equilibrium of the closed-loop system (1.3) under the dynamic ETM

in (1.14)Ű(1.15) is asymptotically stable. Notice that as θ → ∞ the dynamic ETM in (1.14)

reduces to the static ETM in (1.4).
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Given the advantages of dynamic ETMs, different ETC strategies have been proposed.

For dynamic CETC [126, 30, 29, 127, 128, 129], beyond the previously discussed work in [29],

Postoyan et al. [30] studied two different dynamic ETMs for nonlinear ETC systems based on

the hybrid system theory analysis of the closed-loop system. The Ąrst dynamic ETM introduces

a dynamic threshold variable to relax the static condition Γ(x, x̂) < 0. The second approach

is based on a state-dependent clock variable that is deĄned to adapt transmissions to the

system state. This clock variable evolves according to a differential equation inspired by the

time-triggering strategy proposed by [130].

Based on the proposal of [29], Wang, Zheng & Zhang [127] studied the dynamic ETC

and dynamic self-triggered control of nonlinear stochastic systems to ensure the stochastic

stability of the closed-loop system, by proving the existence of a positive MIET. Zuo et al. [128]

developed dynamic ETC and self-triggered control schemes with anti-windup compensation

for LTI systems subject to saturation. To exclude Zeno behavior, a decaying exponential

variable is introduced into the trigger-function, preventing the existence of accumulation points.

Yi et al. [129] proposed dynamic ETC and self-triggered control schemes for consensus of

multi-agent systems modeled as single integrators. It is shown that the average consensus is

achieved exponentially without Zeno behavior. Wu et al. [131] investigated the distributed

event-triggered consensus problem for general linear multi-agent systems under a strongly

connected communication graph, providing the conditions to ensure the absence of Zeno

behavior. Finally, Wang et al. [132] tackled the problem of dynamic event-triggering fault

estimation and accommodation for the class of LTI systems with external disturbance and

subject to actuator fault. The avoidance of Zeno behavior is proved for the output-based

dynamic ETM. In all the mentioned works, the efficiency of the dynamic schemes are put

in evidence in contrast to their static versions. More recently, Huong, Huynh & Trinh [133]

tackled the problem of dynamic continuous event-triggered state observer design for a class of

nonlinear systems with Lipschitz nonlinearities subject to time delays and disturbances, Zhang

et al. [134] developed a dynamic event-triggered resilient control for linear NCS subject to

denial-of-service attacks, and the dynamic event-triggered L∞ control has been studied by Li,

Ma & Zhao [135] for linear switched affine systems under limited communication resources.

The idea of dynamic ETMs was also exploited for dynamic CETC with time-regularization

[45, 6, 136, 137, 138, 139, 140, 73, 74, 141]. Dolk, Borgers & Heemels [45] proposed a dynamic

event-triggered state feedback control strategy for nonlinear systems subject to disturbances

and, based on the hybrid systems modeling, they derived conditions to ensure the Lp-stability

of the closed-loop system and evaluated the trade-off between transmission intervals and

guaranteed performance, showing that, for a given L2-gain, the average inter-event times

obtained with the dynamic ETM are larger than those achieved with static ETM. This strategy

was employed for linear systems [136], extended for the case of output-based and decentralized

dynamic ETC of nonlinear NCS [6], for ETC of nonlinear NCS considering the effect of packet

losses [137], denial-of-service attacks [138], event-triggered quantized control of linear NCS
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with distributed output sensors [141], and applied to ETC of string-stable vehicle platooning

[139] and consensus seeking of linear multi-agent systems subject to time-varying delays [140].

Also based on the hybrid systems modeling analysis, Borgers, Dolk & Heemels [73]

have employed matrix Riccati differential equations to derive linear matrix inequality (LMI)

conditions for L2-stability analysis of linear systems subject to communication delays. In this

work, less conservative results were obtained with a piecewise quadratic Lyapunov functional.

Finally, based on a perturbed system model, LMI-based conditions for observer-based feedback

control design under a dynamic ETM with time-regularization are provided in [74].

The use of dynamic ETMs in the context of PETC was considered by Borgers, Dolk

& Heemels [47], where new dynamic event-generators were proposed for the class of linear

systems subject to disturbances. Based on the hybrid systems formalism, a Lyapunov-based

condition is derived to ensure the L2-stability of the closed-loop system with guaranteed

L2-gain. For the plant in the absence of disturbances, exponential stability with decay rate

is ensured. Liu & Yang [86] studied dynamic ETC for LTI systems subject to disturbances.

Regarding a time-delay model of the closed-loop system and an appropriate Lyapunov-Krasovskii

functional (LKF), LMI-based conditions are derived to ensure L2-stability of the closed-loop

system with guaranteed L2-gain. Also, Luo, Deng & Chen [87] proposed a dynamic PETC for

linear stochastic systems subject to communication delays ensuring the mean-square exponential

stability. For that, two approaches are concerned in this work: the Ąrst considers an impulsive

switched system approach and the stochastic stability of the impulsive switched system is

studied considering a time-dependent discretized Lyapunov function, the second is based on a

switched time-delay model of the closed-loop ETC system whose stochastic stability is studied

by means of a time-dependent LKF. The reduction on the number of transmitted events and

the consequent enlargement of inter-event times is demonstrated in all the above mentioned

works when dynamic ETMs are compared with static ones.

1.1.3 ETC design approaches

The efficacy of ETC systems depends on the appropriate design of the ETM and the

controller C, as illustrated in Figure 1.2. As extensively discussed in this section, the main

objective of ETC systems is to ensure the closed-loop system performance while reducing

the number of transmitted events aiming to increase the efficiency of the usage of network

communication resources often scarce in NCS. There are essentially two approaches to ETC

design: emulation and co-design.

Emulation-based design approaches are performed in two steps. Firstly, a controller

is designed to ensure the stability or speciĄed performance for the closed-loop system in the

absence of the ETM and communication network, i.e., by assuming point-to-point links as

illustrated in Figure 1.1(a). Then, the second step is to take into account the presence of the

ETM and the effects induced by the presence of a communication network to design the ETM
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in order to preserve the properties ensured by the previously designed controller [130, 27, 43].

As the ETM design is separated from the control design, the main advantage of this approach

is that the ETM can be designed for a wide variety of control design methods, making the

ETM design flexible. Nevertheless, this independence may limit the closed-loop performance of

the ETC system and demands more transmissions than necessary.

The co-design approach is an alternative to overcome the limitations of emulation-based

approaches by performing simultaneous design of the ETM and the control law. However, co-

design is often recognized as a challenging problem since it may involve non-convex optimization

or multi-objective optimization problems [142] due to the possible conflicting constraints related

to the closed-loop performance and the enlargement of inter-event times [48, 143]. Another

drawback of co-design is that the analysis is often limited to speciĄc classes of controllers

and ETMs.

The ETC co-design approach has been developed for the different ETC strategies. For

static CETC, it has been proposed a co-design condition to design a linear state feedback control

law for local stabilization of LTI systems subject to input saturation based on a perturbed model

of the closed-loop system [50]. Also, [144] investigated the co-design for absolute stabilization

of Lur’e systems using state feedback controllers.

For static CETC with time-regularization, [145] studied the co-design of output feedback

controllers for stabilization of linear systems. This study was extended later to L2-stabilization

of linear systems subject to disturbances [48]. The conditions of [48] has been improved by

[143], which proposed relaxed co-design conditions providing larger inter-event times. Also

based on the hybrid system formalism, a co-design condition was proposed by [49] for the same

class of systems and controllers studied by [50]. [49] derived a co-design condition to ensure

local exponential stability and LQ performance. The co-design of an observer-based feedback

control law and an output-based ETM for linear systems was studied by [72]. In the case of

nonlinear systems, [52] focused on the co-design of observer-based event-triggered control for

the class of linear systems with cone-bounded nonlinear inputs, illustrating the effectiveness

of the proposal for logarithmic quantization and saturation functions. In the case of dynamic

CETC with time-regularization, one can mention the work of [74] concerning the co-design of

observer-based controllers and output-based dynamic ETMs for stabilization of linear systems.

Also, a particular result is provided for the case when full state is available for measurement.

All these works are based on the hybrid system formalism.

Some of the early efforts to obtain ETC co-design conditions were made in the context of

static PETC. [55, 54, 81] have proposed conditions to perform the simultaneous design of state

feedback controllers and periodic ETMs for LTI systems aiming to ensure the L2-stability of the

closed-loop system represented as a time-delay model. In this case, the co-design conditions

are derived based on appropriate LKFs together with the Jensen’s integral inequality. The

reciprocally convex combination lemma [146] is employed by [54] to provide a less conservative
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result. An outstanding feature of this methodology is the possibility to easily take network-

induced delays into account. The co-design of output feedback controllers and adaptive

periodic ETMs was investigated by [124] for stabilization of linear systems. In this work, an

improved condition is obtained using an augmented LKF and the Wirtinger-based integral

inequality [147].

The idea of introducing waiting time to a static PETC scheme was recently exploited

by [88] for linear switched NCS with input saturation. The closed-loop system is formulated as

a time-delay switched system and the co-design condition was derived regarding multiple LKF

method and dwell-time technique [69].

For the class of TS fuzzy models, co-design conditions have been proposed to both

static PETC [97, 98, 99, 100, 56, 148, 103, 102, 149, 105] and adaptive PETC [117, 118, 119,

120, 121, 122, 123, 124, 150, 151, 114].

In the context of dynamic PETC, [86] derived a co-design condition for state feedback

controllers and dynamic ETMs for LTI systems subject to disturbances aiming to ensure the

L2-stability of the closed-loop time-delay model.

By exploiting the linearity of LTI systems, partial linearity of Lur’e systems or linear

systems with cone-bounded nonlinear inputs, or local linearity of TS fuzzy models, all the

aforementioned works on ETC co-design have derived numerically implementable co-design

conditions expressed in terms of LMIs, which can be efficiently solved by convex optimization

methods [152, 153].

1.2 Motivation

Gain-scheduling control techniques are recognized as effective tools to solve analysis

and synthesis problems related to nonlinear systems [154, 107, 155, 156]. In the particular

case of quasi-linear parameter varying (LPV) scheduling, a local polytopic differential inclusion

is obtained by subsuming the bounded nonlinear expressions of the plant into parameters

that compose the polytopic model. These state-dependent parameters are thus considered

to parameterize gain-scheduled control laws to stabilize the nonlinear plant. The two main

modeling approaches employed to that purpose are the quasi-LPV and TS models. The

quasi-LPV model is a particular class of LPV systems [19, 157, 158] whose parameters depend

only on endogenous signals, such as the state. References [107, 156] have discussed about

the use of the sector nonlinearity approach [159, 106, 107], a common method to obtain TS

fuzzy models, to obtain polytopic quasi-LPV models of nonlinear systems. In this sense, [107]

discuss the close relation between polytopic quasi-LPV models [160, 161, 18, 162, 163] and

TS fuzzy models [164]. However, based on optimization techniques, one can obtain TS fuzzy

models that provide only approximate representations for nonlinear systems, but in this case

the designed gain-scheduled controller may not provide the expected performance requirements
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from the design when applied to the nonlinear plant. For this reason, the class of polytopic

quasi-LPV models of nonlinear systems is preferred in this work.

Based on the discussion in Section 1.1, it is evident the interests in considering ETC to

improve the efficiency of NCS due to its efficacy in reducing the required number of transmitted

data to ensure the closed-loop stability or performance, thus saving scarce communication

resources. Nevertheless, the literature review has revealed a lack on ETC of nonlinear systems,

especially considering dynamic ETC co-design approaches.

Moreover, proposers of control methodologies have become increasingly aware of

the need for providing numerically implementable design conditions, among which those of

convex optimization framework are preferred, both in linear and nonlinear contexts, in the

latter, generally based on gain-scheduling control techniques. Although there are ETC design

methodologies expressed in terms of LMIs, most part of the ETC design conditions are not

based on constructive nor numerically implementable methods, mainly when dealing with

nonlinear systems. Thus, the Ąrst motivation of this thesis is:

(i) to propose novel constructive co-design conditions, via LMIs, for nonlinear sys-

tems represented by polytopic quasi-LPV models equipped with dynamic triggering

mechanisms.

In particular, LMI formulations of PETC co-design conditions are based on the time-delay

model of the closed-loop ETC system [55, 1]. In this case, sufficient co-design conditions are

obtained by employing appropriate manipulations to rewrite the inĄnite-dimensional condition

into a Ąnite set of LMIs to be numerically solved. However, depending on the employed

manipulation, co-design conditions may present different degrees of conservativeness. One of

the sources of conservativeness is the manipulation to obtain quadratic upper-bounds to get the

LMIs. To reduce such conservativeness, it can be considered improved LKFs, Bessel-Legendre

integral inequalities, and the delay-dependent reciprocally convex lemma [165].

Nevertheless, most conditions for PETC co-design are still based on the Jensen’s

inequality together with the standard reciprocally convex lemma [146], which often lead to

more conservative conditions than results based on the Wirtinger-based integral inequality or

high-order Bessel-Legendre inequalities. However, their applications in the context of ETC

design are still limited. A few exceptions are [99, 117, 103, 121, 123], which consider the

Wirtinger-based integral inequality, but also with the standard reciprocally convex lemma. Also,

Oliveira et al. [56] proposed a co-design condition for output-based static PETC of TS fuzzy

models using the auxiliary function-based integral inequality and the standard reciprocally

convex lemma; Wang et al. [166] employed the second-order Bessel-Legendre inequality and the

delay-dependent reciprocally convex lemma [165, 167] for static PETC co-design for stabilization

of linear active vehicle suspension systems; and Yan et al. [104] proposed integral-based static

PETC co-design condition for TS fuzzy models considering the Bessel-Legendre inequality.

However, the conditions in [104] were derived regarding the Bessel-Legendre inequality proposed
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by [168] for linear time-delay systems with constant delays. The extension for systems with

time-varying delays was given later in [165]. Also, even though the conditions are given for

arbitrary order Bessel-Legendre inequality, the only numerical example is provided for the

Ąrst-order case, which reduces the application to a Jensen’s integral inequality-based condition.

The second motivation of this work is:

(ii) to employ an improved LKF together with the delay-dependent reciprocally con-

vex lemma and the Wirtinger-based integral inequality to derive PETC co-design

conditions for stabilization of nonlinear systems represented by quasi-LPV models.

Moreover, if a gain-scheduled controller is considered in the ETC setups shown in

Figures 1.2 or 1.3, as the state measurement x̂(t) is updated to the controller only at speciĄc

event times tk determined by the ETM possibly affected by the communication network

imperfections (induced delays, quantization, packet loss), the scheduling functions to compute

parameters of the gain-scheduled controller may differ from that of the polytopic quasi-LPV

model, leading to the so-called asynchronous scheduling functions or asynchronous parameters.

This is another source of conservativeness in LMI-based ETC design conditions to the class

of quasi-LPV models with gain-scheduled controllers, since in this case it is not possible to

directly employ LMI relaxations often considered in the non-networked case, as in [169, 170]. If

this asynchronous phenomenon is not properly accounted, the gain-scheduling control structure

reduces to a traditional linear control law, thus increasing conservativeness of the design

condition, possibly affecting the solution’s feasibility and the efficiency of the ETC strategy.

The existing alternatives to cope with the asynchronism often assume given bounded

deviations between the controller’s and plant’s parameters [2]. However, especially in the

case of event-based implementations, ensuring these given bounds are not violated during

operation is not an easy task and, in general, most of the works on ETC of TS fuzzy models

do not concern this issue [2]. To deal with this drawback, the approach in [98] ensures the

parameter’s deviation enforcing a maximum allowable sampling period, while the approach

in [103] introduces an extra condition into the event-triggering scheme to enforce the deviation

bounds. However, the conservativeness of the co-design conditions in these works depends on

the assumed deviation bounds, such that as long as the deviation bounds are reduced to obtain

less conservative results, more transmissions are expected, which may lead to ŞunnecessaryŤ

transmissions. The triggering strategy proposed by [171] for discrete LPV systems deals with

asynchronous parameters without assuming deviation bounds by incorporating information on

the mismatch induced by the asynchronism into the trigger rule. Unfortunately, the method

can not be directly applied to quasi-LPV systems, since no local convergence analysis is

provided. More recently, considering a CETC with a maximum allowable sampling period,

an exact discretization approach has been proposed by [172] to develop co-design conditions

for continuous-time quasi-LPV systems avoiding the mismatch between the parameters. The

enforced maximum allowable sampling period required to employ the exact discretization
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approach may also increase the number of transmissions. Thus, the third motivation of this

work is:

(iii) to propose a methodology to deal with the asynchronous phenomenon induced by

the event-based sampling without assuming any pre-speciĄed deviation bounds or

maximum allowable sampling periods.

Finally, when quasi-LPV or TS fuzzy models are employed to design gain-scheduled

controllers for local stabilization of nonlinear systems, it is of interest to obtain an estimation

of the region of attraction inside the region in which both the polytopic model and the control

law remain valid. However, the previously mentioned ETC co-design approaches for TS fuzzy

models do not provide such a characterization, which may lead to implementation issues when

the designed controller is employed to the actual nonlinear system, since there is no guarantee

that the state trajectories will not evolve outside the modeling region [21, 20, 173] (see [174]

for a deeper discussion on this topic). Moreover, in the case of network-induced delays affecting

the communication, the Ąrst data packet is delivered to the plant with some delay, and during

this time the state trajectory can also evolve outside the modeling region. In the worst case,

it may even leave the actual region of attraction of the closed-loop equilibrium. Thus, this

phenomenon should be properly addressed to estimate the region of attraction. Then, the

fourth motivation of this thesis is:

(iv) to derive local co-design conditions for nonlinear systems equipped with dynamic

ETC schemes represented by quasi-LPV models.

1.3 Objectives

Based on the aforementioned motivations, the general objective of this work is stated

as follows:

To propose dynamic event-triggered control strategies for local stabilization of

nonlinear networked control systems represented by polytopic quasi-LPV models.

As pointed out in Section 1.1, one of the crucial properties for the application of ETC

strategies is the existence of a positive MIET to exclude the occurrence of Zeno behavior.

Also, it was noticed a lack of ETC for nonlinear systems, especially concerning the co-design

approach, even more in the case of dynamic ETC strategies. In the case of ETC design

conditions formulated in the form of LMIs, it was discussed in Section 1.2 the demand for

less conservative conditions and, within the context of event-triggered gain-scheduling control,

the necessity of appropriately cope with the existing asynchronism between the scheduling

functions and, consequently, the parameters of the gain-scheduled controller and the polytopic

quasi-LPV model. Therefore, the following speciĄc objectives are regarded:

(i) To develop constructive and less conservative numerically implementable LMI-based

conditions to perform the co-design of dynamic ETC schemes;
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(ii) To provide effective solutions to cope with the asynchronous phenomenon between

the parameters of the gain-scheduled controller and the polytopic quasi-LPV model;

(iii) Whenever possible, to consider the presence of network-induced delays affecting the

communication network;

(iv) To formulate convex optimization problems to introduce performance indexes in the

ETC design aiming to reduce the number of transmissions;

(v) To derive local co-design conditions to ensure the applicability of the dynamic ETC

scheme for nonlinear systems represented by quasi-LPV models.

1.4 Thesis outline and contributions

The work’s organization and the related contributions of each chapter are described as

follows:

Chapter 2 concerns the problem of dynamic CETC of nonlinear systems represented by

quasi-LPV models. A co-design condition is proposed to perform the design of a gain-scheduled

controller and the dynamic ETM. The closed-loop system is represented as a perturbed model

and the co-design condition is obtained based on the Lyapunov stability theory aiming to ensure

the local asymptotic stability of the closed-loop system. By taking advantage of the continuous

availability of the state measurement, the trigger-function is appropriately deĄned in order to

cancel out the influence of asynchronous parameters, which allows to derive a less conservative

LMI-based co-design condition. A convex optimization problem subject to LMI constraints is

proposed to enlarge the inter-event times. For the proposed strategy, it is shown the existence

of a positive MIET that prevents the occurrence of Zeno behavior and an estimate of the region

of attraction of the closed-loop equilibrium is obtained, enabling the CETC implementation.

The results presented in this chapter have been published in Coutinho & Palhares [175].

Chapter 3 concerns dynamic PETC of nonlinear systems represented by quasi-LPV

models. By taking into account the effect of network-induced delays, the closed-loop system is

represented by a time-delay model and the co-design is formulated regarding the Lyapunov-

Krasovskii stability theory. A co-design condition is proposed to ensure the local stability of the

closed-loop system by using the Wirtinger-based integral inequality and the delay-dependent

reciprocally convex lemma, as it has been recently proposed in the PETC context by Coutinho

& Palhares [176].

In both Chapters 2 and 3, convex optimization problems subject to LMI constraints are

proposed to enlarge the inter-event times of the ETC system. Moreover, numerical simulations

are performed to illustrate the effectiveness of the proposed co-design conditions.

Finally, the main contributions of this work are summarized and concluding remarks

and suggestions for future work are provided in Chapter 4.
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2 CANCELLATION-BASED DYNAMIC CETC

This chapter investigates the co-design of gain-scheduled state-feedback controllers and

dynamic continuous ETMs for nonlinear NCS represented by quasi-LPV models. The co-design

condition is derived based on the Lyapunov stability theory aiming to ensure the asymptotic

stability of the closed-loop ETC system. To cope with the asynchronous phenomenon between

the controller and quasi-LPV model parameters induced by the action of the ETM, the trigger-

function of the dynamic CETC scheme is appropriately deĄned to cancel out the influence

of asynchronous parameters, which allows deriving a less conservative LMI-based co-design

condition. Moreover, a convex optimization problem subject to LMI constraints is proposed

to enlarge the inter-event times. Also, for the proposed CETC, it is shown the existence of

a MIET, which prevents the occurrence of Zeno behavior and enables its implementation.

Numerical examples are provided to illustrate the advantages of the proposed dynamic CETC

co-design approach over emulation-based approach and its static counterpart.

This chapter is organized as follows. The problem is formulated and stated in Section 2.1.

The cancellation-based CETC, the proof of the existence of the MIET, the proposed dynamic

CETC co-design condition, and its particularization for static CETC co-design are provided in

Section 2.2. Numerical examples concerning two physical models are presented in Section 2.3

to illustrate the proposal’s effectiveness. Finally, conclusions are presented in Section 2.4.

2.1 Problem formulation

Consider the following class of nonlinear systems

ẋ(t) = A(x(t))x(t) +B(x(t))u(t) (2.1)

where x(t) ∈ D ⊂ R
n is the state, u(t) ∈ R

m is the control input, A : D → R
n×n and

B : D → R
n×m, B(x) ̸= 0,∀x ∈ D , are continuous matrix-valued functions. The nonlinear

terms in the state-dependent coefficients of A(x) and B(x) are denoted by zj : D → R,

j ∈ N≤p, and called scheduling functions. Furthermore, D ⊂ R
n is a convex polytope

containing the origin. Notice that, without loss of generality, it is assumed that the origin is

the equilibrium point of interest.

As the scheduling functions zj(x), are continuous functions and D is a compact set,

then there exist bounds such that:

z0
j ≤ zj(x) ≤ z1

j , j ∈ N≤p. (2.2)

By following the sector-nonlinearity approach [159, 106, 107, 162], based on the bounds
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deĄned in (2.2), each scheduling function zj(x) can be equivalently written as:

zj(x) = wj
0(x)z0

j + wj
1(x)z1

j =
1∑︂

ij=0

wj
ij

(x)z
ij

j , (2.3)

where the state-dependent weighting functions are deĄned by

wj
0(x) :=

z1
j − zj(x)

z1
j − z0

j

, wj
1(x) := 1 − wj

0(x),

with 0 ≤ wj
ij

(x) ≤ 1, ij ∈ B, j ∈ N≤p. Then, for all x ∈ D , the nonlinear system (2.1) can

be equivalently described by the following polytopic quasi-LPV model:

ẋ(t) =
∑︂

i∈Bp

wi(x(t)) (Aix(t) +Biu(t)) , (2.4)

where the state-dependent parameters are deĄned by

wi(x) :=
p∏︂

j=1

wj
ij

(x), (2.5)

being i = (i1, . . . , ip) ∈ B
p. By deĄnition, notice that the convex sum property holds for the

parameters:
∑︂

i∈Bp

wi(x) = 1, 0 ≤ wi(x) ≤ 1, i ∈ B
p,

such that the matrices

Ai := A(x)♣wi(x)=1, Bi := B(x)♣wi(x)=1,

deĄne the vertices of the polytopic quasi-LPV model (2.4).

The following gain-scheduling state-feedback control law is considered to stabilize

system (2.1):

u(t) = K(x̂(t))x̂(t) =
∑︂

j∈Bp

wj(x̂(t))Kjx̂(t), (2.6)

where x̂(t) is the state information available to the controller by the ETM, and the state-

dependent matrix K : D → R
m×n is assumed to depend on the scheduling functions of (2.1)

such that a gain-scheduled controller with gains Kj = K(x̂)♣wj(x̂)=1 can be parameterized in

terms of the parameters wj(x̂).

In this chapter it is considered the setup shown in Figure 1.3, where the plant P is

the nonlinear system (2.1), the triggering mechanism is connected to the controller C, which

in this case is the gain-scheduling control law (2.6), through a general-purpose network N .

The time sequence ¶tk♢k∈N when the state measurement is transmitted to the controller is

determined online by the ETM.
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2.1.1 Perturbed model of the closed-loop system

After substituting (2.6) into (2.1), the closed-loop system becomes

ẋ(t) = A(x(t))x(t) +B(x(t))K(x̂(t))x̂(t), ∀t ∈ [tk, tk+1). (2.7)

When a data sample is transmitted at the event time tk, the state available to the controller

is updated to x̂(t) = x(tk), ∀t ∈ [tk, tk+1). As a zero-order-hold is employed, x̂(t) is kept

constant until the next event time tk+1, which induces the transmission error

e(t) = x̂(t) − x(t), ∀t ∈ [tk, tk+1).

Thus, the closed-loop system (2.7) can be equivalently rewritten in terms of the transmission

error as follows

ẋ(t) = [A(x(t)) +B(x(t))K(x(t))]x(t) +B(x(t))K(x(t))e(t)

+B(x(t)) [K(x(t) + e(t)) −K(x(t))] (x(t) + e(t)), ∀t ∈ [tk, tk+1). (2.8)

The influence of the asynchronous scheduling functions is put in evidence in the term K(x+ e)

of (2.8). The closed-loop dynamics in (2.8) can be interpreted as the composition of one

part parameterized only in terms of x, and another one which depends on the asynchronous

scheduling functions evaluated on x̂ = x+ e. The structure derived in (2.8) is exploited in the

next section to construct the proposed ETM.

Remark 2.1. If a linear state-feedback control law u(t) = Kx̂(t) was employed, the closed-loop

dynamics would be reduced to

ẋ(t) = [A(x(t)) +B(x(t))K]x(t) +B(x(t))Ke(t), ∀t ∈ [tk, tk+1).

In this case, there is no asynchronous phenomenon affecting the closed-loop system, which

makes the developments to obtain LMI-based co-design conditions amenable when compared

to the case in (2.8). Although the use of linear state-feedback controllers is attractive from

this point-of-view, it may introduce conservativeness to the design.

As far as the control law (2.6) must be designed to ensure the origin of the closed-loop

system (2.7) is asymptotically stable, it is of interest to determine the region of attraction of

the origin. However, analytically obtaining that region is not an easy task [18, 42], for this

reason, a problem of interest is to obtain an estimate of the region of attraction R ensuring

that closed-loop trajectories starting in R converge asymptotically to the origin and do not

evolve outside the domain D in which the polytopic representation (2.4) is valid. Then, the

control problem we are interested in is stated as follows.

Problem 2.1. Design a gain-scheduled controller (2.6) and a dynamic continuous ETM such

that:
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(i) the origin of the closed-loop system (2.7) is asymptotically stable;

(ii) the number of events generated by the dynamic continuous ETM is reduced as much as

possible.

2.2 Main results

This section presents the proposed dynamic ETM and the formal proof of Zeno-freeness

that allows its practical application. Then, a sufficient condition to perform the simultaneous

design of the dynamic ETM and the gain-scheduled controller (2.6) is proposed, which solves

item (i) of Problem 2.1. Finally, an optimization problem is proposed to enlarge the inter-event

times, which solves the item (ii) of Problem 2.1.

2.2.1 Proposed dynamic CETC scheme

Consider the following dynamic continuous ETM

t0 = 0, tk+1 = inf¶t > tk : η(t) + θΓ(x(t), e(t)) < 0♢, ∀k ∈ N, (2.9)

where θ ∈ R≥0 is a design parameter and the trigger function Γ(x, e) is deĄned as follows

Γ(x, e) = x⊤Ψx− e⊤Ξe− ζ(x, e), (2.10)

with

ζ(x, e) = 2x⊤PB(x) (K(x+ e) −K(x)) (x+ e),

and Ξ, Ψ, P ∈ R
n×n are symmetric positive deĄnite matrices. The term x⊤(t)Ψx(t) −

e⊤(t)Ξe(t) can be viewed as a measure of deviation between the last sampled and the current

states [51] and ζ(x, e) is introduced to cope with the influence of asynchronous scheduling

functions in the developments to derive an LMI-based co-design condition. The dynamics of

the internal variable η(t) is deĄned as follows

η̇(t) = −λη(t) + Γ(x(t), e(t)), (2.11)

where η(0) = η0 ∈ R≥0 is the initial condition and λ ∈ R>0 is a design parameter related to

the decaying rate of η(t).

The following lemma provides a result related to the positive deĄniteness of η(t). This

property will be crucial for the deĄnition of an appropriate Lyapunov function candidate.

Lemma 2.1. Given symmetric positive definite matrices Ξ, Ψ, P ∈ R
n×n and η0, θ ∈ R≥0,

then η(t) ≥ 0, ∀t ∈ [tk, tk+1), ∀k ∈ N.

Proof. The proof follows similar steps as [29, Lemma 2.2]. Consider the dynamic ETM (2.9).

It directly ensures that η(t) + θΓ(x, e) ≥ 0, ∀t ∈ [tk, tk+1). If θ = 0, then η(t) ≥ 0 is ensured
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from the last inequality. If θ ̸= 0, one has from (2.11) and (2.9) that η̇(t) ≥ −
(︂
λ+ 1

θ

)︂
η(t),

η(0) = η0,∀t ∈ [tk, tk+1). By the comparison lemma [42, Lemma 3.4], the solution η(t)

is greater than or equal to the solution of ˆ︁η̇ = −
(︂
λ+ 1

θ

)︂
η̂(t), with η̂(0) = η0, which is

η̂(t) = η0e
−(λ+ 1

θ )t. As η̂(t) ≥ 0, then η(t) ≥ 0, for all t ∈ [tk, tk+1), ∀k ∈ N. This concludes

the proof.

Remark 2.2. For a sufficiently large value of θ, the dynamic ETM (2.9) reduces to the

following static version which is completely independent of η(t)

t0 = 0, tk+1 = inf¶t > tk : Γ(x, e) < 0♢, ∀k ∈ N, (2.12)

with Γ(x, e) given in (2.10).

The existence of a MIET for the proposed dynamic CETC scheme is proved in the follow-

ing lemma. It excludes the existence of Zeno behavior and enable the practical implementation

of the proposed ETM.

Lemma 2.2. Consider the closed-loop nonlinear system (2.7) with the dynamic ETM (2.9)–

(2.11). Given symmetric positive definite matrices Ξ, Ψ, P ∈ R
n×n and η0, θ ∈ R≥0, there

exists a MIET τ ∈ R>0 such that tk+1 − tk ≥ τ , ∀k ∈ N.

Proof. The lemma is proved in two parts. First, by using similar arguments as [29, Prop. 2.3],

it is possible to prove that for a given x(tk) ∈ D ⊂ R
n and η(tk) ≥ 0, tsk+1 ≤ tdk+1 holds,

where tsk+1 and tdk+1 are the event instants determined by the static and dynamic rules given in

(2.12) and (2.9), respectively. Then, in the sequel we prove that tsk+1 − tsk ≥ τ , which implies

that the inter-event times given by (2.9) are also lower bounded by τ , i.e., tdk+1 − tdk ≥ τ .

By following similar arguments as [51, Theorem 3.2], consider the static triggering-

mechanism (2.12) rewritten as

G(x, e) > 1 − V(x, e),

with G(x, e) := (e⊤Ξe)/(x⊤Ψx), and V(x, e) := ζ(x, e)/(x⊤Ψx). When a sample occurs at

t = tk, one has e = 0 and G(x, e) = V(x, e) = 0. Before a new event is triggered, G(x, e)

must evolve from 0 to 1 − V(x, e), or, alternatively, new events are not transmitted while

G(x, e) ≤ 1 − V(x, e). Since G(x, e) > 0,∀t ∈ [tk, tk+1), then V(x, e) < 1 in the same time

interval. Noticing that G(x, e) ≤ Λ ∥e(t)∥2

∥x(t)∥2 , with Λ = λmax(Ξ)
λmin(Ψ)

, no event is triggered while

∥e(t)∥
∥x(t)∥ ≤ 1√

Λ

√︂
1 − V(x, e).
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By following similar steps as the proof of [28, Thm. III.1], the dynamics of ∥e∥
∥x∥ is

bounded as follows

d

dt

(︄
∥e(t)∥
∥x(t)∥

⎜
= − e⊤(t)ẋ(t)

∥e(t)∥∥x(t)∥ − x⊤(t)ẋ(t)

∥x(t)∥2

∥e(t)∥
∥x(t)∥

≤ ∥e(t)∥∥ẋ(t)∥
∥e(t)∥∥x(t)∥ +

∥x(t)∥∥ẋ(t)∥
∥x(t)∥2

∥e(t)∥
∥x(t)∥

≤
(︄

1 +
∥e(t)∥
∥x(t)∥

⎜
∥ẋ(t)∥
∥x(t)∥ . (2.13)

Since the state-dependent matrices A(x), B(x), and K(x̂) are bounded for all x, x̂ ∈ D , it is

possible to Ąnd a constant L ∈ R>0 such that

∥ẋ(t)∥ = ∥(A(x) +B(x)K(x̂))x(t) +B(x)K(x̂)e(t)∥ ≤ L (∥x(t)∥ + ∥e(t)∥) . (2.14)

It follows from (2.13) and (2.14) that

(︄
1 +

∥e(t)∥
∥x(t)∥

⎜
1

∥x(t)∥ ∥ẋ(t)∥ ≤ L

(︄
1 +

∥e(t)∥
∥x(t)∥

⎜2

. (2.15)

Then, by deĄning φ(t) = ∥e(t)∥
∥x(t)∥ , it follows from (2.13) and (2.15) the estimate

φ̇(t) ≤ L (1 + φ(t))2 , (2.16)

from which it is possible to conclude that φ(t) ≤ ψ(t, ψ0), where ψ(t, ψ0) is the solution of

the initial value problem ψ̇(t) = L (1 + ψ(t))2, with ψ(0, ψ0) = ψ0.

The following two cases are thus distinguished for the analysis:

(i) 0 ≤ V(x, e) < 1: In this case, as G(x, e) < 1, G(x, e) takes more time to evolve

from 0 to 1 − V(x, e) than ψ(t, 0) to reach 1√
Λ

√︂
1 − V(x, e) for the Ąrst time.

(ii) V(x, e) < 0: In this case, ψ(t, 0) take less time to evolve from 0 to 1√
Λ

than to
1√
Λ

√︂
1 − V(x, e), since 1 − V(x, e) > 1. Thus, after an event is triggered, G(x, e) takes more

time to evolve from 0 to 1 than ψ(t, 0) to reach 1√
Λ

.

Then, the inter-event times are bounded by the time that ψ takes to evolve from 0

to Λ√
Λ

, where Λ := min
(︃

1,
√︂

1 − V(x, e)
)︃

. It means that the inter-event times are bounded

by the solution τ ∈ R>0 of ψ(τ, 0) = Λ√
Λ

. Since the solution of the initial value problem is

ψ(τ, 0) = τL
1−τL

, which is continuous at t = 0, it implies that

τ =
Λ

L
√

Λ + LΛ
, (2.17)

which is not null and there exists ϵ ∈ R>0 such that that tsk+1 − tsk ≥ τ ≥ ϵ > 0. By invoking

[29, Prop. 2.3], one can conclude that, for the same initial condition, the MIET of the dynamic

ETM (2.9) is greater than or equal to that of the static ETM (2.12), thus excluding the

existence of Zeno behavior. This concludes the proof.
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Remark 2.3. Notice from (2.17) that the MIET, τ , has an inverse relation with Λ = λmax(Ξ)
λmin(Ψ)

.

Thus, if λmax(Ξ) is minimized and λmin(Ψ) is maximized, then Λ is reduced, possibly enlarging

the inter-event times.

2.2.2 Co-design condition

The proposed sufficient condition to co-design the dynamic CETC scheme (2.9) and

the gain-scheduled controller (2.6) is stated in the sequel.

Theorem 2.1. Given θ, η0 ∈ R≥0, and λ ∈ R>0, if there exist matrices ˜︂Kj ∈ R
m×n, j ∈ B

p,

and symmetric positive definite matrices ˜︁Ξ, ˜︁Ψ, X ∈ R
n×n, such that the following LMIs are

satisfied

∑︂

(i,j)∈P(m,n)

Υij < 0, ∀m,n ∈ B
p+, (2.18)

where

Υij :=

⋃︁
⋁︁⋁︁⋁︁⨄︁

He
(︂
AiX +Bi

˜︂Kj

)︂
Bi
˜︂Kj X

⋆ −˜︁Ξ 0

⋆ ⋆ − ˜︁Ψ

⋂︁
⎥⎥⎥⋀︁ ,

then, the origin of the closed-loop system (2.7) equipped with the dynamic CETC scheme

(2.9)–(2.11) is asymptotically stable with Kj = ˜︂KjX
−1, j ∈ B

p, Ξ = X−1˜︁ΞX−1, Ψ = ˜︁Ψ−1,

P = X−1, and Lyapunov function

W (x, η) = V (x) + η, (2.19)

with V (x) = x⊤Px. In addition, a guaranteed region of attraction is given by the bounded

region

R = ¶x ∈ R
n, η ∈ R≥0 : W (x, η) ≤ c, c ∈ R>0♢, (2.20)

where the level set given by c ≤ c∗ = maxx∈D V (x) ensures that any state trajectory x(t)

starting at

R0 = ¶x ∈ R
n : V (x) ≤ c− η0, η0 ≤ c♢ (2.21)

never leaves the region D .

Proof. Assume that the LMIs (2.18) are feasible. From convexity of the state-dependent

parameters, the LMIs in (2.18) imply [162, 21]:

∑︂

i∈Bp

∑︂

j∈Bp

wi(x)wj(x)Υij

=
∑︂

m∈Bp+

∑︂

n∈Bp+

wm(x)wn(x)

∏︁
∐︂ ∑︂

(i,j)∈P(m,n)

Υij

⎞
⎠ < 0. (2.22)
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Since X is a nonsingular matrix, (2.22) can be multiplied by diag(X−1, X−1, I) on the left

and on the right, which results in

∑︂

i∈Bp

∑︂

j∈Bp

wi(x)wj(x)

⋃︁
⋁︁⋁︁⋁︁⨄︁

Θij X−1Bi
˜︂KjX

−1 I

⋆ −X−1˜︁ΞX−1 0

⋆ ⋆ − ˜︁Ψ

⋂︁
⎥⎥⎥⋀︁ < 0, (2.23)

where Θij = He
(︂(︂
X−1Ai +X−1Bi

˜︂KjX
−1
)︂)︂

. By performing the change of variables Kj =
˜︂KjX

−1, j ∈ B
p, Ξ = X−1˜︁ΞX−1, Ψ = ˜︁Ψ−1, P = X−1, by Schur complement lemma, inequality

(2.23) is equivalent to
⋃︁
⨄︁He (PA(x) + PB(x)K(x)) + Ψ PB(x)K(x)

⋆ −Ξ

⋂︁
⋀︁ < 0. (2.24)

By multiplying (2.24) by
[︂
x⊤(t) e⊤(t)

]︂
on the left and its transpose on the right, it follows

that

2x⊤(t)P [(A(x) +B(x)K(x))x(t) +B(x)K(x)e(t)]

− e⊤(t)Ξe(t) + x⊤(t)Ψx(t) < 0. (2.25)

For some given η0, θ ∈ R≥0, and λ ∈ R>0, Lemma 2.1 ensures that η(t) ≥ 0, ∀t ∈ [tk, tk+1),

∀k ∈ N. Then, inequality (2.25) implies

2x⊤(t)P [(A(x) +B(x)K(x))x(t) +B(x)K(x)e(t)]

− e⊤(t)Ξe(t) + x⊤(t)Ψx(t) − λη(t) < 0. (2.26)

By adding the term ζ(x, e) on both sides of (2.26), one has

ẋ⊤(t)Px(t) + x⊤(t)Pẋ(t) + η̇(t) < 0, (2.27)

where ẋ(t) and η̇(t) are given in (2.8) and (2.11), respectively. Consider W (x, η) as in (2.19),

from Lemma 2.1, W (x, η) is a positive deĄnite and radially unbounded function and inequality

(2.27) ensures Ẇ (x, η) < 0. Therefore, W (x, η) is a Lyapunov function and the origin of the

closed-loop system (2.7) with the dynamic ETM (2.9)Ű(2.11) is asymptotically stable. Let

c ≤ c∗= maxx∈D V (x), R be as in (2.20) and R0 be as in (2.21). As R is bounded and

contained in D ×R≥0, then every trajectory (x, η) starting in R remains inside it and converges

asymptotically to the origin. Thus R is an estimate of the region of attraction [42, Chpt.4].

Also, taking x(0) ∈ R0, then V (x(0)) ≤ W (x(0), η0) = V (x(0)) + η0 ≤ c, and the state x(t)

never leaves D . This concludes the proof.

Corollary 2.1. If there exist matrices ˜︂Kj ∈ R
m×n, j ∈ B

p, and symmetric positive definite

matrices ˜︁Ξ, ˜︁Ψ, X ∈ R
n×n, such that the LMIs (2.18) are feasible, then the origin of the

closed-loop system (2.7) equipped with the static ETM (2.12) is asymptotically stable with

Kj = ˜︂KjX
−1, j ∈ B

p, Ξ = X−1˜︁ΞX−1, Ψ = ˜︁Ψ−1, and P = X−1, with Lyapunov function

given by V (x) = x⊤Px. Furthermore, an estimate of its region of attraction is given by the

bounded region R0 in (2.21) with η0 = 0.



Chapter 2. Cancellation-Based Dynamic CETC 42

Proof. The proof follows similar steps as the proof of Theorem 2.1 until inequality (2.25).

Then, by adding ζ(x, e) on both sides of (2.25), one has V̇ (x) < −Γ(x, e), with V (x) = x⊤Px

and Γ(x, e) given in (2.10). Since for all t ∈ [tk, tk+1), ∀k ∈ N, the triggering mechanism

(2.12) ensures Γ(x, e) ≥ 0, it implies that V̇ (x) < 0, ∀t ∈ [tk, tk+1). Also, at t = tk, one has

V̇ (x) < −x⊤(t)Ψx(t) < 0. Thus, the origin of the closed-loop system (2.7) with the static

ETM (2.12) is asymptotically stable. This concludes the proof.

Remark 2.4. If a linear state-feedback control law as u(t) = Kx̂(t) is considered, there

is no asynchronous phenomenon affecting the closed-loop system (2.8), which makes the

developments to obtain the LMI-based co-design conditions amenable when compared to the

gain-scheduled case. Although the use of linear state-feedback controllers can be attractive

from this point-of-view, it may introduce conservativeness to the co-design condition. Also

notice that the relaxation in (2.22) can only be employed because the proposed ETM (2.9)–

(2.11) can completely cancel out the influence of asynchronous scheduling functions. This

relaxation allows to properly design the gain-scheduled controller (2.6) since it avoids checking

the negativeness of the left-hand side of (2.22) for all vertices, preventing the gain-scheduled

structure from reducing to a linear one, that is, Kj = K, ∀j ∈ B
p.

2.2.3 Enlargement of inter-event times

As discussed in Remark 2.3, to obtain larger inter-event times and, consequently, reduce

the number of generated events, λmax(Ξ) should be minimized and λmin(Ψ) maximized. To

achieve this goal, by following a similar strategy to the one considered by [51, 52, 53], a convex

optimization problem subject to LMI constraints is proposed as follows:

min
Q,X,˜︁Ξ,˜︁Ψ,˜︁Kj

tr(˜︁Ξ + ˜︁Ψ +Q) (2.28)

subject to

⋃︁
⨄︁−Q I

⋆ −X

⋂︁
⋀︁ < 0 (2.29)

and LMIs in (2.18),

where Q is a symmetric positive deĄnite matrix. The objective function in (2.28) is deĄned

aiming to minimize the eigenvalues of Q, ˜︁Ξ, and ˜︁Ψ. From Schur complement lemma, one

has that (2.29) is equivalent to X−1 < Q. Then, the minimization of tr(Q) implies the

minimization of the eigenvalues of X−1. Also, since the triggering matrices are given by

Ξ = X−1˜︁ΞX−1 and Ψ = ˜︁Ψ−1, the solution of the optimization problem tends to reduce

Λ = λmax(Ξ)
λmin(Ψ)

, once λmax(Ξ) is minimized and λmin(Ψ) is maximized. From Remark 2.3, it is

possible to argue that the inter-event times of the proposed dynamic and static CETC schemes

can be enlarged.
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2.2.4 Estimate of the region of attraction

Once the optimization problem (2.28) has been solved, it is necessary to determine the

estimate of the region of attraction R given in (2.20). Consider the polytopic region X in

the half-space representation:

D = ¶x ∈ R
n : ♣b⊤

i x♣ ≤ 1, bi ∈ R
n, i ∈ N≤nf

♢, (2.30)

where nf is half of the number of faces. The largest region R is determined choosing [42,

Chpt. 8]

c∗ = max
x∈D

V (x) < min
1≤i≤nf

1

b⊤
i P

−1bi

. (2.31)

Notice that if η0 = 0, the set of initial conditions R0 in (2.21) is enlarged.

2.3 Numerical examples

In this section, two physically motivated numerical examples are provided to illustrate

the effectiveness of the proposed co-design conditions.

2.3.1 Example 1: van der Pol oscillator

Consider the forced van der Pol oscillator system [30]:

ẋ1(t) = x2(t)

ẋ2(t) = (1 − x2
1(t))x2(t) − x1(t) + u(t),

(2.32)

where it is assumed the modeling region D = ¶x ∈ R
2 : ♣xi♣ ≤ r0, i ∈ N≤2♢. The set of

differential equations (2.32) can be easily put in the format of (2.1) as follows:
⋃︁
⨄︁ẋ1(t)

ẋ2(t)

⋂︁
⋀︁ =

⋃︁
⨄︁ 0 1

−1 1 − x2
1(t)

⋂︁
⋀︁
⋃︁
⨄︁x1(t)

x2(t)

⋂︁
⋀︁+

⋃︁
⨄︁0

1

⋂︁
⋀︁u(t). (2.33)

By selecting the scheduling function z1(x) = x2
1, which is bounded within D by z0 = 0 and

z1 = r2
0, the matrices A(x) and B(x) can thus be written as:

A(x) =

⋃︁
⨄︁ 0 1

−1 1

⋂︁
⋀︁+ z1(x)

⋃︁
⨄︁0 0

0 −1

⋂︁
⋀︁ , and B(x) =

⋃︁
⨄︁0

1

⋂︁
⋀︁+ z1(x)

⋃︁
⨄︁0

0

⋂︁
⋀︁ ,

from where it is clear their affine dependence with respect to z1(x).

Then, by following the sector-nonlinearity approach, the system (2.33) can be equiva-

lently represented within D by the following polytopic quasi-LPV model as (2.4)

ẋ(t) = w0(x) (A0x(t) +B0u(t)) + w1(x) (A1x(t) +B1u(t)) ,
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where the state-dependent parameters are

w0(x) =
r2

0 − x2
1(t)

r2
0

, w1(x) = 1 − w0(x),

and the vertices matrices are

A0 =

⋃︁
⨄︁ 0 1

−1 1

⋂︁
⋀︁ , B0 =

⋃︁
⨄︁0

1

⋂︁
⋀︁ ,

A1 =

⋃︁
⨄︁ 0 1

−1 1 − r2
0

⋂︁
⋀︁ , B1 =

⋃︁
⨄︁0

1

⋂︁
⋀︁ .

(2.34)

Here, the modeling region is deĄned with r0 = 5. By solving1 the optimization problem (2.28),

the following control gains and triggering matrices are obtained

K0 =
[︂
−0.559 − 3.5

]︂
, K1 =

[︂
−6.05 − 3.01

]︂
,

Ξ =

⋃︁
⨄︁1.36 1.34

1.34 6.39

⋂︁
⋀︁ ,Ψ =

⋃︁
⨄︁0.951 0.333

0.333 1.81

⋂︁
⋀︁ , P =

⋃︁
⨄︁2.08 0.41

0.41 1.83

⋂︁
⋀︁ .

(2.35)

On the other hand, for a linear state feedback control law, the optimization problem

(2.28) is feasible with

K =
[︂
−1.698 − 3.435

]︂
, P =

⋃︁
⨄︁3.22 0.253

0.253 1.46

⋂︁
⋀︁ .

Also, consider the emulation condition [177, Corollary 5.2] for sampled-data nonlinear systems

in the polytopic representation (2.4) with a linear control law u(t) = Kx(t). By solving it with

α = 0.01 and the control gain obtained, the closed-loop stability is certiĄed with a maximum

sampling interval of 0.242s.

The proposed ETC co-design approach is compared with the sampled-data emulation

approach in [177, Corollary 5.2]. Let R0,1 and R0,2 denote, respectively, the sets of state initial

conditions for the ETM system with the gain-scheduled controller and the linear controller,

both with η0 = 0; and R0,3 the set with the emulation condition in [177, Corollary 5.2]. Based

on (2.31), the largest set of initial conditions R0,1 is obtained with c∗
1 = 43.759, R0,2 is

achieved with c∗
2 = 36.039, and R0,3 with c∗

3 = 21.802. These regions are depicted in Fig. 2.1,

in which it is clearly observed that R0,1 is larger than R0,2 and R0,3, and also R0,3 ⊂ R0,2.

This illustrates the conservativeness reduction provided by the gain-scheduling structure (as

discussed in Remark 2.4) and by the proposed co-design approach when compared to an

emulation approach.

The effectiveness of the proposed co-design approach is also evaluated in terms of average

inter-event times computed2 from 60 simulations performed with the initial conditions x(0) =
1 The optimization problem is solved in MATLAB environment using the LMI parser YALMIP [153] and the

semidefinite programming solver Mosek.
2 The average inter-event time is the relation between the simulation time and the total number of events.
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Figure 2.1 – Regions of state initial conditions R0,1 (in red), R0,2 (in black), and R0,3

(in magenta) obtained with [177, Corollary 5.2]. The initial conditions are
denoted by Ś∗’.

[︂
4.28 cos

(︂
2π
60
i
)︂

4.28 sin
(︂

2π
60
i
)︂]︂⊤

, i ∈ N≤60, η0 = 0, as shown in Figure 2.1, and simulation

time of 30s. Notice that only the origin of the closed-loop system, using the gain-scheduled

controller, has the asymptotic stability ensured for these initial conditions. The proposed static

and dynamic ETC co-design approaches are compared with the static ETM proposed by [28]

designed as in [30] by following the emulation-based approach with V (x) = 0.0058679x2
1 +

0.0040791x1x2 + 0.0063684x2
2, u = −x2 − (1 − x2

1)x2, and W (e) = 2.222e2, with e = û− u.

In this case, the triggering rule is W (e) ≥ V (x). The results are presented in Table 2.1.

Table 2.1 – Mean of average inter-event times, in seconds, for the different approaches.

Static ETC
ETM [28] 0.0301
Corollary 2.1 - gain-scheduling 0.6915
Dynamic ETC λ = 0.1 λ = 0.3 λ = 0.5
Theorem 2.1 (θ = 1) 0.8540 0.7643 0.7159
Theorem 2.1 (θ = 10) 0.8671 0.8157 0.7301
Theorem 2.1 (θ = 102) 0.8842 0.8261 0.7227
Theorem 2.1 (θ = 105) 0.8290 0.7594 0.7324

Notice that the proposed static and dynamic ETMs designed with the co-design approach

provided larger average inter-event times than the emulation-based approach [28]. Moreover,

the average inter-event times of the proposed ETC approaches are larger than the maximum

sampling interval of 0.242s obtained with the time-triggered approach [177, Corollary 5.2]. It

can also be noticed that the design parameters θ and λ can be adjusted to reduce the network
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usage, in particular, it is veriĄed that the different dynamic ETC setups could provide larger

average inter-event times than the static ETC. Notice that as λ increases, η(t) tends faster

to the origin, which reduces the average inter-event times. Also, as θ increases, the average

inter-event times increases when θ = 102, then it is reduced when θ = 105 because the dynamic

ETM (2.9) tends to the static one (2.12), as stated in Remark 2.2. Thus, the reported results

illustrate that the dynamic ETC saves more communication resources when compared to its

static counterpart.

To illustrate the application of the proposed CETC co-design approach, consider the

implementation of the static CETC scheme given in (2.12) with the control gains and triggering

parameters in (2.35). Figure 2.2 depicts the simulation performed during 30 s with initial

condition is x(0) = [4.2467 1.1155]⊤. From Figure 2.2(a), it is possible to notice that the

states converge asymptotically to the equilibrium x = 0. The functions G(x, e) and 1 − V(x, e)

deĄned in the proof of the existence of a MIET in Lemma 2.2 are shown in Figure 2.2(b). The

arguments provided in Lemma 2.2 can be clearly observed since always that G(x, e) = 1−V(x, e)

a new event is transmitted, as it can be observed in Figure 2.2(c). To conclude, the control

input signal u(t) is shown in Figure 2.2(d), where it is clear the effect of the ZOH in the

compute of u(t).

(a) States (b) Functions G(x, e) and 1 − V(x, e)

(c) Inter-event times (d) Control input signal

Figure 2.2 – Simulation of the closed-loop system (2.32) with the gain-scheduling control
law (2.6) under the static ETM (2.12).

The simulation for the dynamic CETC co-deisgn approach is shown in Figure 2.3. In

particular, the time-series of the internal variable η(t) is shown in Figure 2.3(a) together with

the state x(t). Notice that η(t) is non-negative for all t, as expected from Lemma 2.1, and

it converges to the equilibrium η = 0. The effect of η(t) produces the enlargement of the

inter-event times, as shown in Figure 2.2(b), because it can be seen as a buffer that stores
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unnecessary decrease of V (x) = x⊤Px. In this case, 30 events are generated and the maximum

inter-event time is 3.421s, while the one for the static CETC is only 0.99s. The control input

signal u(t) is shown in Figure 2.2(c).

(a) States and triggering internal variable (b) Inter-event times

(c) Control input

Figure 2.3 – Simulation of the closed-loop system (2.32) with the gain-scheduling control
law (2.6) under the dynamic ETM (2.9)Ű(2.11).

2.3.2 Example 2: rotational motion of a cart with an inverted pendulum

Consider the following rotational motion of a cart with an inverted pendulum system [178]

ẋ1(t) = x2(t)

ẋ2(t) = sin (x1(t)) − x2(t) − cos (x1(t))u(t),
(2.36)

where x1(t) is the pendulum angle with respect to the vertical axis and x2(t) is the angular

velocity. As the trigonometric nonlinear terms sin (x1(t)) and cos (x1(t)) depend on the state

x1(t), one can deĄne the following modeling region D = ¶x ∈ R
2 : ♣x1♣ ≤ θ0, ♣x2♣ ≤ 2♢.

However, this system can not be put directly in the form (2.1). For that purpose, the

trigonometric function sin (x1(t)) is expanded in Maclaurin series, which results the factorization

sin (x1(t)) = z1(x)x1(t),

where

z1(x) =
∞∑︂

i=0

(−1)i

(2i+ 1)!
x2i

1 (t).

Then, (2.36) can be written as (2.1) as follows:
⋃︁
⨄︁ẋ1(t)

ẋ2(t)

⋂︁
⋀︁ =

⋃︁
⨄︁ 0 1

z1(x) −1

⋂︁
⋀︁
⋃︁
⨄︁x1(t)

x2(t)

⋂︁
⋀︁+

⋃︁
⨄︁ 0

− cos (x1(t))

⋂︁
⋀︁u(t).
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By selecting the scheduling functions z1(x) ∈ [sin (θ0)/θ0, 1] and z2(x) = cos (x1) ∈ [cos (θ0), 1],

∀x ∈ D , the matrices A(x) and B(x) can be written with an affine dependence with respect

to z1(x) and z2(x):

A(x) =

⋃︁
⨄︁ 0 1

z1(x) −1

⋂︁
⋀︁ B(x) =

⋃︁
⨄︁ 0

−z2(x)

⋂︁
⋀︁ .

Then, the polytopic quasi-LPV model (2.4) is thus deĄned by the state-dependent

parameters
w00(x) = w1

0(x)w2
0(x), w01(x) = w1

0(x)w2
1(x),

w10(x) = w1
1(x)w2

0(x), w11(x) = w1
1(x)w2

1(x),

with w1
0(x) = (1−z1(x))/

(︃
1− sin (θ0)

θ0

)︃
, w1

1(x) = 1−w1
0(x), w2

0(x) = (1−z2(x))/(1−cos (θ0)),

w2
1(x) = 1 − w2

0(x), and the following vertices

A00 = A01 =

⋃︁
⨄︁ 0 1

sin (θ0)
θ0

−1

⋂︁
⋀︁ , B00 = B10 =

⋃︁
⨄︁ 0

− cos (θ0)

⋂︁
⋀︁ ,

A10 = A11 =

⋃︁
⨄︁0 1

1 −1

⋂︁
⋀︁ , B01 = B11 =

⋃︁
⨄︁ 0

−1

⋂︁
⋀︁ .

(2.37)

Notice that this system can not be modeled as a Lur’e-type system [144] nor a system

with cone-bounded nonlinear inputs [179, 52] since both matrices A(x) and B(x) are state-

dependent. This indicates that the proposed co-design approach can be employed in a broader

class of nonlinear systems.

By solving the optimization problem (2.28) for θ0 = 4π/9, the following control gains

and triggering matrices are obtained:

K00 =
[︂
9.51 6.26

]︂
, K01 =

[︂
1.52 1.0

]︂
,

K10 =
[︂
11.1 7.28

]︂
, K11 =

[︂
2.96 1.95

]︂
,

Ξ =

⋃︁
⨄︁6.15 4.05

4.05 2.67

⋂︁
⋀︁ , Ψ =

⋃︁
⨄︁1.24 0.416

0.416 1.23

⋂︁
⋀︁ , P =

⋃︁
⨄︁2.13 1.0

1.0 1.01

⋂︁
⋀︁ .

Both the proposed static and dynamic ETC schemes are applied. The dynamic ETC parameters

are θ = 10, λ = 0.8, and η0 = 0. According to (2.31), for η0 = 0, the level set that leads to

the largest region R0 inside the modeling region is c∗ = 2.158. The region R0 ⊂ D is shown

in Fig. 2.4, where are also shown several trajectories of the closed-loop system (2.7) equipped

with the dynamic ETM (2.9)Ű(2.11) for initial conditions inside and outside the modeling

region. Notice that there are some trajectories starting inside of D that converge but evolve

outside of R0, while some others even diverge. This illustrates the importance of determining

an estimate of the region of attraction.

Here, both proposed static and dynamic ETC schemes are applied. The dynamic

ETC parameters are θ = 10, λ = 0.8, and η0 = 0. Consider the initial condition x(0) =
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Figure 2.4 – Region of state initial conditions R0 (in red) of the origin of the closed-
loop system (2.7) with the dynamic ETM (2.9)Ű(2.11). The region R0 is
contained in the polytopic region D (in black). The convergent (in blue)
and divergent (in magenta) trajectories are also depicted considering initial
conditions denoted by Ş×’.

[−0.1392 1.5903]⊤ ∈ R0 and simulation time of 15 s. The simulation for the closed-loop

system with the static CETC scheme is depicted in Figure 2.5. In particular, as shown in

Figure 2.5(b), in this example the function 1 − V(x, e) is larger than 1, illustrating the case (ii)

in the proof of Lemma 2.2. In this case, 23 events are transmitted, and the average inter-event

time is 0.6699 s.
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(a) States (b) Functions G(x, e) and 1 − V(x, e)

(c) Inter-event times (d) Control input signal

Figure 2.5 – Simulation of the closed-loop system (2.36) with the gain-scheduling control
law (2.6) equipped with the static ETC scheme (2.12).

The simulation for the closed-loop system with the dynamic CETC scheme is depicted

in Figure 2.6. In contrast to the static CETC scheme, the number of events with the dynamic

ETC is reduced to 17 and the average inter-event time is enlarged to 0.8511 s. Moreover,

the minimum and maximum inter-event times are 0.1975 s and 2.2965 s, respectively, which

illustrates the Zeno-freeness ensured by Lemma 2.2. This conĄrms the advantage of the

dynamic ETC in saving network resources over the static counterpart. It can be observed

from Figure 2.6(a) that both system state x(t) and trigger internal variable η(t) converge

asymptotically to the equilibrium (x, η) = (0, 0). However, even η(t) converging to zero, its

effect in the triggering mechanism is clearly illustrated in Figure 2.6(b), where the function

1 − V(x, e) + 1
θ

η(t)
x⊤(t)Ψx(t)

is shown instead of 1 − V(x, e) for the static case. Notice that as

x(t) converge to the origin, the function 1 − V(x, e) + 1
θ

η(t)
x⊤(t)Ψx(t)

does not converge to 1, as

the function 1 − V(x, e), which may postpone the occurrence of transmissions, as one can

observe in Figure 2.6(c).
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(a) States and triggering internal variable (b) Functions G(x, e) and 1−V(x, e)+ 1
θ

η(t)
x⊤(t)Ψx(t)

(c) Inter-event times (d) Control input

Figure 2.6 – Simulation of the closed-loop system (2.36) with the gain-scheduling control
law (2.6) equipped with the dynamic ETC scheme (2.9)Ű(2.11).

2.4 Conclusion

This chapter has investigated the co-design problem of dynamic continuous ETMs

and gain-scheduled state-feedback controllers for a class of nonlinear systems represented by

quasi-LPV models. Based on the quasi-LPV representation, a convex optimization problem

subject to LMI constraints was proposed to systematically perform the co-design and to enlarge

the inter-event times. The proposed trigger function was effective to cancel out the influence of

asynchronous scheduling functions and a less conservative LMI-based co-design condition has

been derived by means of the Lyapunov stability theory. Also, a formal proof of the existence

of a MIET was provided, which excluded the existence of Zeno solutions. Numerical examples

has been provided to illustrate the effectiveness of the proposal in providing larger average

inter-event times than an emulation-based ETC scheme and the static counterpart of the

proposed dynamic CETC. From the implementation point-of-view, the main advantage of

the dynamic scheme is the reduction of transmissions, corresponding to more communication

resources economy. On the other hand, in comparison with the static scheme, the dynamic

requires the solution of a differential equation to determine the evolution of the internal

variable.
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3 DYNAMIC PETC WITH NETWORK-INDUCED DELAYS

This chapter investigates the co-design of dynamic periodic ETMs and state feedback

controllers for nonlinear networked control systems. The considered class of nonlinear systems

is such that an equivalent local quasi-LPV model is obtained. Initially, a local stability analysis

condition is provided for general input-affine nonlinear systems. Then, an improved co-design

condition is proposed to ensure the local asymptotic stability of the closed-loop system by

using the Wirtinger-based integral inequality and the delay-dependent reciprocally convex

combination lemma. Numerical examples illustrate the advantages of the proposed dynamic

PETC co-design approach over its static counterpart.

This chapter is organized as follows. Preliminary results are revisited in Section 3.1.

The problem is formulated in Section 3.2. The proposed local stability analysis and the

dynamic PETC co-design condition are presented in Section 3.3. As a direct consequence, the

particularization of the co-design condition is derived for the static PETC case. Numerical

examples are presented in Section 3.4 to illustrate the condition’s effectiveness. Finally,

conclusions are presented in Section 3.5.

3.1 Preliminary results

This section presents useful technical lemmas for obtaining the proposed dynamic PETC

co-design conditions. The delay-dependent reciprocally convex inequality employed here has

been studied by [165, 167, 180] (not in the context of ETC) and it contains the standard

version proposed by [146] as a particular case.

Lemma 3.1. Let n ∈ N, and R1, R2 ∈ R
n×n be symmetric positive definite matrices. If there

exist symmetric matrices X1, X2 ∈ R
n×n and matrices Y1, Y2 ∈ R

n×n such that
⋃︁
⨄︁R1 0

0 R2

⋂︁
⋀︁− α

⋃︁
⨄︁X1 Y1

Y ⊤
1 0

⋂︁
⋀︁− (1 − α)

⋃︁
⨄︁ 0 Y2

Y ⊤
2 X2

⋂︁
⋀︁ ≥ 0, (3.1)

holds for α ∈ B. Then, the following inequality holds for all α ∈ (0, 1) ⊂ R:

⋃︁
⨄︁

1
α
R1 0

0 1
1−α

R2

⋂︁
⋀︁≥

⋃︁
⨄︁R1 0

0 R2

⋂︁
⋀︁+ (1 − α)

⋃︁
⨄︁X1 Y2

Y ⊤
2 0

⋂︁
⋀︁+ α

⋃︁
⨄︁ 0 Y1

Y ⊤
1 X2

⋂︁
⋀︁ .

Proof. The proof can be found in [165, 180].

Remark 3.1. As remarked by [165, 180], the improved version of the reciprocally convex

inequality lemma given in Lemma 3.1 allows deriving delay-dependent conditions due to the

dependence on the parameter α, which will be related to the time-varying network-induced

delay. Notice also that, in contrast to the standard version given by [146] and largely employed
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in the ETC literature, see [100, 101, 102, 105, 121] and references therein, Lemma 3.1 has

the additional variables X1 and X2. However, in order to reduce the number of involved

decision variables and reduce the numerical complexity, one can select X1 = R1 − Y1R
−1
2 Y ⊤

1

and X2 = R2 − Y ⊤
2 R

−1
1 Y2, which is also a valid choice for condition (3.1). Finally, notice that

the particular choices X1 = X2 = 0 and Y1 = Y2 reduce Lemma 3.1 to the standard version of

the reciprocally convex inequality [146].

To take advantage of the delay-dependent reciprocally convex inequality, the Wirtinger-

based integral inequality is employed to reduce the design conservativeness. It is stated as

follows.

Lemma 3.2 (Wirtinger-based integral inequality [147]). For any symmetric positive definite

matrix R ∈ R
n×n, the following inequality holds for all continuously differentiable function

ω ∈ [a, b] → R
n:

(b− a)
∫︂ b

a
ω̇⊤(s)Rω̇(s)ds ≥ (ω(b) − ω(a))⊤ R (ω(b) − ω(a)) + 3˜︁Ω⊤R˜︁Ω, (3.2)

where ˜︁Ω = ω(b) + ω(a) − 2
b−a

√︄ b
a ω(s)ds.

3.2 Problem formulation

The PETC setup is shown in Figure 3.1, where the state information measured from

the plant is transmitted to the controller via a multi-purpose communication network, whose

transmission instants are determined by an ETM.

P
Plant

C
Controller

N
Network

Sampler

Event-triggering
mechanism

Zero-order hold

u(t) x(t) x(jh)x̂(t)

x(tkh)

Figure 3.1 – Representation of the PETC control setup, where P is the continuous-time
plant, C is a static state feedback controller, N is the communication channel,
x(t) is the continuous state measurement, x(jh) is the sampled state
measurement, x(tkh) is the most recently transmitted state measurement,
x̂(t) is x(tkh) affected by network-induced delays, and u(t) is the control
input.

Consider the plant given by the following class of continuous-time nonlinear systems:

ẋ(t) = f(x(t)) + g(x(t))u(t), x(0) = x0 given, (3.3)
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where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control input, f : D → R
n, with f(0) = 0, is a

continuously differentiable function, g : D → R
n×m, with g(x) ̸= 0, ∀x ∈ D , is a continuous

function. The region D ⊂ R
n is assumed to be a convex polytope containing the origin x = 0

and it admits the following half-space representation:

D = ¶x ∈ R
n : b⊤

j x ≤ 1,∀j ∈ N≤nf
♢, (3.4)

where bj ∈ R
n, ∀j ∈ N≤nf

, deĄne the hyperplanes.

The following state feedback control law is considered:

u(t) = k(x̂(t)), (3.5)

where x̂ ∈ D is the most recent state information available to the controller, k : D → R
m,

with k(0) = 0, is a continuously differentiable function, and u(t) = 0, ∀t < 0.

In the PETC setup in Figure 3.1, the sampled state measurement x(jh) is available to

the ETM to determine the next transmission instant, where the periodic sampling sequence

S = ¶sj♢j∈N0
, with sj = jh, is determined with a Ąxed sampling time h ∈ R>0. After a

transmission instant is determined, the discrete signal is converted by the ZOH mechanism

into a piecewise constant signal to be available to the controller. The dotted lines indicate that

data are transmitted only at the transmission instants ¶tkh♢k∈N, tk ∈ N0, determined by the

ETM, which is a sub-sequence of the sampling sequence S. As the communication network

may not be used exclusively for the control task, it is considered that bounded time-varying

delays are induced during transmission [33]. Then, the information of x(t) available to the

controller is

x̂(t) = x(tkh), t ∈ [tkh+ τk, tk+1h+ τk+1), (3.6)

where τk is a bounded delay induced at t = tkh.

By assuming the sampling sequence is initiated at t = 0 as s0 = 0, the sequence of

event times ¶tkh♢k∈N satisĄes to

t0h = 0, (tk+1 − tk)h ≥ h, ∀k ∈ N, (3.7)

which directly enforces an MIET of h time units and it ensures the exclusion of Zeno behavior.

To reduce the use of communication resources, the following dynamic periodic ETM is proposed

to determine the event times:

tk+1h = min¶t > tkh : η(t) + θΓ(x(t), x(tkh)) ≤ 0, t ∈ S♢, (3.8)

where θ ∈ R≥0 is a design parameter,

Γ(x, x̂) := σα(∥x∥) − γ(∥x̂− x∥), (3.9)
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with α, γ ∈ K∞, σ ∈ (0, 1) ⊂ R, and η(t) ∈ R≥0 is the internal variable of the dynamic

periodic ETM which evolves according to the following dynamics:

η̇(t) = −λη(t) + Γ(x(sj), x(tkh)), t ∈ [sj, sj+1), (3.10)

where η(0) = η0 ∈ R≥0 is the initial condition, and λ ∈ R>0 is a design parameter related to

the decaying rate of η(t).

Lemma 3.3. Let α, γ ∈ K∞, σ ∈ (0, 1) ⊂ R η0 ∈ R≥0. If θ ≥ 1
λ
(eλh − 1), then η(t) > 0,

∀t ∈ [sj, sj+1), ∀j ∈ N.

Proof. The proof follows similar steps as [87, Lemma 2] and [176]. Consider the dynamic

periodic ETM (3.8). The solution of the differential equation (3.10) with initial condition η(sj)

is

η(t) = e−λ(t−sj)η(sj) +
1

λ

(︂
1 − e−λ(t−sj)

)︂
Γ(x(sj), x(tkh)), ∀t ∈ [sj, sj+1). (3.11)

From the dynamic ETM in (3.8), one has Γ(x(t), x(tkh)) > −1
θ
η(sj). Given that η(s0) =

η0 > 0, the solution of (3.10) in (3.11) implies η(t) > [e−λ(t−s0) − 1
θλ

(1 − e−λ(t−s0))]η(s0).

Also, since sj+1 − sj=h, it follows that

η(t) >
(︃
e−λh − 1

θλ
(1 − e−λh)

)︃
η(s0).

Therefore, by taking θ ≥ 1
λ
(eλh − 1), it ensures that η(t) > 0 for all t ∈ [s0, s1). From

continuity of η(t), one has η(s1) > 0. Finally, by induction, one can conclude that η(t) > 0,

for all t ∈ R≥0.

Remark 3.2. Notice that the continuous counterpart of the PETC in (3.8) is obtained by

taking h → 0. In this case, the condition of Lemma 3.3 is satisfied for any θ ∈ R≥0, as in [29],

which ensures the positive definiteness of η for any θ ∈ R≥0.

Remark 3.3. For sufficiently large values of θ the dynamic periodic ETM (3.8) is independent

of η(t), which reduces it to the following static counterpart

t0h = 0, tk+1h = min¶t > tkh : Γ(x(t), x(tkh)) ≤ 0, t ∈ S♢. (3.12)

with Γ(x, x̂) given in (3.9).

3.2.1 Perturbed time-delay model of PETC systems

To ensure that each data packet arrives the controller node before a new event is

transmitted, similar to [6], the following assumption is made.

Assumption 3.1. The transmission delays induced by the network satisfy to 0 ≤ τk ≤ τ̄ ≤ h,

k ∈ N0, where τ̄ ∈ R≥0 is the maximum allowable delay and h ∈ R>0 is the sampling period.
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Similar as in [176], since the network-induced delays are bounded, there exists a scalar

δ ∈ N such that

tkh+ δh+ τ̄ < tk+1h+ τk+1 ≤ tkh+ δh+ h+ τ̄ . (3.13)

Then, by deĄning the intervals

Ii =

⎧
⋁︂⋁︂⋁︂⋁︂⨄︂
⋁︂⋁︂⋁︂⋁︂⎩

[tkh+ τk, tkh+ h+ τ̄), i = 0,

[tkh+ ih+ τ̄ , tkh+ ih+ h+ τ̄), i ∈ N≤δ−1,

[tkh+ δh+ τ̄ , tk+1h+ τk+1), i = δ

the transmission interval can be partitioned as follows

[tkh+ τk, tk+1h+ τk+1) =
δ⋃︂

i=0

Ii.

Then, by deĄning the artiĄcial delay

τ(t) := t− tkh− ih, ∀t ∈ Ii, i ∈ ¶0, . . . , δ♢,

such that
⎧
⋁︂⨄︂
⋁︂⎩
τk ≤ τ(t) ≤ h+ τ̄ , ∀t ∈ I0,

τk ≤ τ̄ ≤ τ(t) ≤ h+ τ̄ , ∀t ∈ Ii, i ∈ N≤δ,

it follows that τ(t) is a bounded time-varying delay

0 ≤ τk ≤ τ(t) ≤ h+ τ̄ = d, ∀t ∈ [tkh+ τk, tk+1h+ τk+1), (3.14)

satisfying to τ̇(t) = 1 for all t ̸= tkh. Thus, the transmission error is deĄned as follows:

e(t) := x(tkh) − x(tkh+ ih) (3.15)

= x̂(t) − x(t− τ(t)), ∀t ∈ Ii, i ∈ ¶0, . . . , δ♢. (3.16)

As far as it is assumed that u(t) = 0, ∀t < 0, due to the network-induced delay, the state

information transmitted at t0 = 0, that is x(0) = x0, will be available to the controller

whenever t− τ0 ≥ 0, otherwise the control input signal u(t) is set to zero. In particular, since

the input delay at t = 0 is bounded by τ0 ≤ τ̄ , there exists a unique time t∗0 ≤ τ̄ such that

t−τ0 < 0, ∀t ∈ [0, t∗0), and t−τ0 ≥ 0, ∀t ≥ t∗0. Then, it can be noticed that u(t) = 0, ∀t < t∗0,

and the system operates in open-loop in the time interval t ∈ [0, t∗0). Thus, the closed-loop

dynamic PETC system can be rewritten as follows:

ẋ(t) =

⎧
⋁︂⨄︂
⋁︂⎩
f(x(t)), t ∈ [0, t∗0)

f(x(t)) + g(x(t))k(xτ (t) + e(t)), t ≥ t∗0

(3.17a)

η̇(t) =

⎧
⋁︂⨄︂
⋁︂⎩

−λη(t) + Γ(xτ (t), 0), t ∈ [0, t∗0)

−λη(t) + Γ(xτ (t), e(t)), t ≥ t∗0

(3.17b)

x(0) = x0, η(0) = η0 given,
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where xτ (t) := x(t− τ(t)). As within the time interval t ∈ [0, t∗0) the system (3.17a) operates

in open-loop, it is necessary to explicitly take into account the system’s behavior at that interval,

especially when the equilibrium x = 0 of the unforced system is unstable, since in this case the

trajectories starting at x0 can move away from the equilibrium point, eventually leaving the

region of attraction of the closed-loop equilibrium before the control input starts to be applied

at t = t∗0. To properly address this behavior, similar as the local stability characterization of

equilibrium points of input-delayed nonlinear systems proposed by [181], the following deĄnition

is considered in this work.

Definition 3.1. Consider the nonlinear system in (3.3), a given stabilizing state feedback

control law (3.5), and the dynamic periodic ETM in (3.8)–(3.10). The equilibrium point x = 0

of the plant (3.3) is locally asymptotically stable if there exist two compact sets R0 and R

satisfying R0 ⊂ R ⊂ D , with R0 containing x = 0, such that for any x0 ∈ R0, the state

trajectory x(t) remains confined in R, for all t ≥ 0, and x(t) → 0 as t → +∞.

3.3 Main results

The main results of this chapter are presented here. First, based on an appropriate

LKF candidate, a local stability analysis condition is proposed for the closed-loop system (3.17)

equipped with the dynamic PETC in (3.8). In the sequel, by employing the delay-dependent

reciprocally convex combination lemma and the Wirtinger-based integral inequality, a delay-

dependent co-design condition is derived to perform the co-design for a class of quasi-LPV

models of the nonlinear plant (3.3).

3.3.1 Local analysis of dynamic PETC systems

This section presents an extension of the approaches proposed in [181, 182] for input-

delayed systems to the case of dynamic PETC systems represented by a time-delay system as

in (3.17). More speciĄcally, the following problem is addressed here.

Problem 3.1. Given a stabilizing control law (3.5) for the nonlinear plant (3.3), determine

conditions to ensure that the origin of the closed-loop system (3.17) equipped with the dynamic

periodic ETM in (3.8)–(3.10) is locally asymptotically stable in the sense of Definition 3.1.

The conditions are derived based on the following LKF candidate:

W (xt, ẋt, η) = V (xt, ẋt) + η(t), (3.18)

where xt ∈ Cn
[−d,0] is a segment of the function xt(s) = x(t+ s),∀s ∈ [−d, 0],

V (xt, ẋt) = V1(xt) + V2(xt) + V3(ẋt) (3.19)
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with

V1(xt) =

⋃︁
⨄︁ x(t)
√︄ t

t−d x(s)ds

⋂︁
⋀︁

⊤ ⋃︁
⨄︁ P M

M⊤ S

⋂︁
⋀︁
⋃︁
⨄︁ x(t)
√︄ t

t−d x(s)ds

⋂︁
⋀︁

V2(xt) =
∫︂ t

t−d
x⊤(s)Qx(s)ds

V3(ẋt) = d
∫︂ 0

−d

∫︂ t

t+s
ẋ⊤(v)Rẋ(v)dvds,

being P,Q,R, S symmetric matrices and M is a full matrix, all belonging to R
n.

Theorem 3.1. Consider the closed-loop system (3.17) and the LKF candidate given in (3.18).

Let the sets

R0 = ¶x ∈ R
n : V0(x) ≤ c− η0/β♢, (3.20)

R = ¶x ∈ R
n : V0(x) ≤ c∗♢, (3.21)

with

V0(x) = x⊤Px, (3.22)

and the scalars σ ∈ (0, 1), d, µ, λ, ρ ∈ R>0, η0 ∈ R≥0. If the following conditions hold:

⋃︁
⨄︁ P M

M⊤ S

⋂︁
⋀︁ > 0, Q > 0, R > 0, (3.23)

and

V̇ (xt, ẋt) < −σα(∥xτ (t)∥) + γ(∥e(t)∥), ∀xt ∈ Da, t ≥ t∗0 (3.24)

V̇ 0(x(t)) − 2ρV0(x(t)) ≤ 0, ∀x ∈ D , t ∈ [0, t∗0) (3.25)

V̇ (xt, ẋt) ≤ −σα(∥xτ (t)∥) + 2ρV0(x(t)),∀xt ∈ Da, t ∈ [0, t∗0) (3.26)

µP − d2S − d(Q+M +M⊤) ≥ 0 (3.27)

R ⊂ D , with c∗ = cβ, β = µ+ e2ρτ̄ , c ≤ c̄−η0/β, (3.28)

where c̄ = maxx∈D
1
β
V0(x), and

Da = ¶ϕ ∈ Cn
[−d,0] : ϕ(s) ∈ D ,∀s ∈ [−d, 0]♢. (3.29)

Then, for every initial condition x0 ∈ R0, the state trajectory (x(t), η(t)) converges asymptoti-

cally to the origin and remains confined in the region

˜︂R = ¶xt ∈ Cn
[−d,0), η ∈ R≥0 : W (xt, ẋt, η) ≤ c∗♢ (3.30)

and x(t) is confined in R ⊂ D , for all t ≥ 0.
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Proof. Consider the LKF candidate in (3.18). From condition (3.23), it is possible to conclude

that the functional V (xt, ẋt) is positive deĄnite for all xt ∈ Da \ ¶0♢. Since Lemma 3.3 ensures

that η(t) is positive deĄnite for all t ∈ R≥0 for a given η0 ∈ R>0, then the functional (3.18) is

positive deĄnite.

Consider the time-derivative of the functional (3.18) along the trajectories of the

closed-loop system (3.17):

Ẇ (xt, ẋt, η) = V̇ (xt, ẋt) + η̇(t)

= V̇ (xt, ẋt) + σα(∥xτ (t)∥) − γ(∥e(t)∥) − λη(t).

From condition (3.24), one has that

Ẇ (xt, ẋt, η) < 0, ∀t ≥ t∗0,

which ensures the asymptotic stability of the origin of the closed-loop system (3.17) for all

t ∈ R≥0, provided that the state trajectory (x(t), η(t)), for any t ∈ [0, t∗0), is conĄned in

the region ˜︂R deĄned in (3.30) for some c∗ ∈ R>0 and ˜︂R ⊂ Da × R≥0. In the sequel it is

shown that conditions (3.25)Ű(3.27) ensure that any state trajectory x(t) lies inside the region

R ⊂ D , with c∗ given by (3.28), for all t ∈ [0, t∗0).

Based on the Comparison Lemma [42, Chapter 3], the condition (3.25) implies

V0(x(t)) ≤ e2ρtV0(x0), ∀t ∈ [0, t∗0). (3.31)

For all t ∈ [0, t∗0), the time-derivative of the functional (3.18) is

Ẇ (xt, ẋt, η) − 2ρV0(x(t)) = V̇ (xt, ẋt) + σα(∥xτ (t)∥) − λη(t) − 2ρV0(x(t)).

From condition (3.26), it follows that

Ẇ (xt, ẋt, η) − 2ρV0(x(t)) ≤ 0, ∀xt ∈ Da, t ∈ [0, t∗0),

which implies

W (t) ≤ W (0) + 2ρ
∫︂ t

0
V0(x(s)) ds , ∀t ∈ [0, t∗0),

where W (t) := W (xt, ẋt, η) is deĄned to simplify the notation. Thus, it follows from (3.31)

that

W (t) ≤ W (0) + V0(x0)
(︂
e2ρt−1

)︂
, ∀t ∈ [0, t∗0). (3.32)

Now, an upper bound is derived to W (0) based on (3.18). By assuming that x(s) = x0,∀s ∈
[−d, 0], the solution of (3.17) does not depend on x(s) for s ∈ [−d, 0). Thus, the following
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relation is obtained:

W (0) =

⋃︁
⨄︁ x0
√︄ 0

−d x(s) ds

⋂︁
⋀︁

⊤ ⋃︁
⨄︁ P M

M⊤ S

⋂︁
⋀︁
⋃︁
⨄︁ x0
√︄ 0

−d x(s) ds

⋂︁
⋀︁

+
∫︂ 0

−d
x⊤

0 Qx0 ds+ η0

= x⊤
0

[︂
P + d2S + d(Q+M +M⊤)

]︂
x0 + η0, (3.33)

for x(s) = x0, ∀s ∈ [d, 0], and η(0) = η0 given. From (3.32), (3.33), and the condition

in (3.27), one has that:

W (xt, ẋt, η) ≤
(︂
µ+ e2ρt

)︂
x⊤

0 Px0 + η0, ∀t ∈ [0, t∗0).

Thus, if x0 ∈ R0 and since t∗0 ≤ τ̄ , it follows that:

W (xt, ẋt, η) ≤ c∗, ∀t ∈ [0, t∗0), (3.34)

with c∗ = cβ, β = µ+ e2ρτ̄ . Since from (3.18) one has W (xt, ẋt, η) ≥ V0(x), then:

V0(x) ≤ W (xt, ẋt, η) ≤ c∗, ∀t ∈ [0, t∗0). (3.35)

Given that x0 ∈ R0, with R0 given as in (3.20), inequality (3.35) ensures that x(t) ∈ R for all

t ∈ [0, t∗0), with R given as in (3.21), and hence V0(x(t)) ≤ W (t) ≤ W (t∗0) ≤ c∗, for all t ≥ t∗0.

Finally, from condition (3.28), if c is taken such that c ≤ c̄, where c̄ = maxx∈D
1
β
V0(x), then

R ⊂ D and the state trajectory (xt, η) remains conĄned in ˜︂R ⊂ Da ×R≥0 for all t ∈ R≥0 and

thus xt ∈ Da, which ensures that (x(t), η(t)) → 0 as t → +∞. This concludes the proof.

3.3.2 Delay-dependent co-design condition

Consider the following class of nonlinear systems:

ẋ(t) = A(x(t))x(t) +B(x(t))u(t), (3.36)

where A : D → R
n×n, B : D → R

n×m, B(x) ̸= 0, ∀x ∈ D , are continuous mappings. The

following linear state feedback control law is considered:

u(t) = Kx̂(t), (3.37)

where K ∈ R
m×n is a control gain to be designed and u(t) = 0,∀t < 0. The nonlinear terms

in the coefficients of the state-dependent matrices A(x) and B(x) are denoted as zj : D → R,

j ∈ N≤p, and called scheduling functions. As D is a compact set, by deĄnition, and the

scheduling functions zj(x), j ∈ N≤p, are continuous, then there exist bounds z0
j , z

1
j ∈ R,

j ∈ N≤p, such that

z0
j ≤ zj(x) ≤ z1

j , ∀x ∈ D , ∀j ∈ N≤p. (3.38)
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From the bounds in (3.38), each scheduling function can be equivalently written as zj(x) =

z0
jw

j
0(x) + z1

jw
j
1(x), where

wj
0(x) =

z1
j − zj(x)

z1
j − z0

j

, wj
1(x) = 1 − wj

0(x),

Then, the nonlinear system (3.36) can be equivalently written as the following polytopic

quasi-LPV model:

ẋ(t) =
∑︂

i∈Bp

wi(x(t)) (Aix(t) +Biu(t)) , (3.39)

where

wi(x) =
p∏︂

j=1

wj
ij

(x), ij ∈ B, j ∈ N≤p,

are parameters that satisfy to the following properties:

∑︂

i∈Bp

wi(x) = 1, wi(x) ≥ 0,∀i ∈ B
p. (3.40)

Remark 3.4. Given a nonlinear system as in (3.3), there exists a possibly non-unique factor-

ization such that (3.3) can be written as (3.36) [183]. Then, based on the sector nonlinearity

approach [106], it is possible to properly select scheduling functions from the state-dependent

coefficient matrices to obtain locally equivalent quasi-LPV representations as in (3.39) for

(3.36) or, alternatively, for (3.3).

To reduce the number of transmissions, the following trigger function is considered for

the dynamic ETM deĄned in (3.8), (3.10):

Γ(xτ (t), e(t)) := x⊤(t− τ(t))Θx(t− τ(t)) − e⊤(t)Ξe(t), (3.41)

where Θ,Ξ ∈ R
n×n are symmetric positive deĄnite matrices. The trigger function (3.41) can

be viewed as the weighted deviation between the current state measurement x(t− τ(t)) and

the latest transmitted state x(tkh).

Based on the transmission error deĄned in (3.15), the closed-loop system (3.17) for

(3.36) with the control law (3.37) can be written as:

ẋ(t) =

⎧
⋁︂⨄︂
⋁︂⎩
A(x(t))x(t), t ∈ [0, t∗0)

A(x(t))x(t)+B(x(t))K(xτ (t)+e(t)), t ≥ t∗0

(3.42a)

η̇(t) =

⎧
⋁︂⨄︂
⋁︂⎩

−λη(t) + Γ(xτ (t), 0), t ∈ [0, t∗0)

−λη(t) + Γ(xτ (t), e(t)), t ≥ t∗0

(3.42b)

with x(0) = x0, η(0) = η0 given, and Γ(xτ , e) given in (3.41).
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Problem 3.2. Consider the nonlinear plant (3.36) equipped with the dynamic periodic ETM

defined in (3.8), (3.10) with the trigger function (3.41). Based on a local quasi-LPV repre-

sentation as in (3.39), determine constructive co-design conditions to design the stabilizing

control law (3.37) and the parameters of the dynamic periodic ETM rule (3.41) such that the

following requirements are fulfilled:

(i) the time-delay closed-loop system (3.42a)-(3.42b) is asymptotically stable;

(ii) the number of events generated by the dynamic periodic ETM is reduced as much as

possible.

Before stating the solution to Problem 3.2, two auxiliary results are introduced. First, the

following lemma introduces a constructive condition to check condition (3.24) of Theorem 3.1

for the closed-loop system (3.42a)Ű(3.42b).

Lemma 3.4. Consider the system (3.42) and let scalars h, ϵ ∈ R>0, η0, τ̄ ∈ R≥0, τ̄ ≤ h, and

d = h+ τ̄ be given. If there exist symmetric matrices ˜︁P , ˜︁S, ˜︁Q, ˜︁R, ˜︁Ξ, ˜︁Θ ∈ R
n×n, and matrices

˜︂K ∈ R
m×n, ˜︂M,X ∈ R

n×n, ˜︁Y1, ˜︁Y2 ∈ R
2n×2n, such that the following inequalities hold

˜︁P > 0 (3.43a)

˜︁Q > 0, ˜︁R > 0, ˜︁Ξ > 0 (3.43b)

˜︁Υi(0) =

⋃︁
⋁︁⋁︁⋁︁⨄︁

˜︁Φi(0) − Ω⊤ ˜︁Ψ(0)Ω ⋆ ⋆[︂
˜︁Y ⊤

1 0
]︂

Ω −˜︂R ⋆

Xv3 0 − ˜︁Θ

⋂︁
⎥⎥⎥⋀︁ < 0, (3.43c)

˜︁Υi(d) =

⋃︁
⋁︁⋁︁⋁︁⨄︁

˜︁Φi(d) − Ω⊤ ˜︁Ψ(d)Ω ⋆ ⋆[︂
0 ˜︁Y2

]︂
Ω −˜︂R ⋆

Xv3 0 − ˜︁Θ

⋂︁
⎥⎥⎥⋀︁ < 0, (3.43d)

for all i ∈ B
p, where

˜︁Φi(τ) = He(G⊤
1 (τ) ˜︁PG0) + v⊤

1
˜︁Qv1 − v⊤

4
˜︁Qv4 + d2v⊤

2
˜︁Rv2 − v⊤

7
˜︁Ξv7 + He(˜︂X ˜︁Fi),

˜︁Ψ(τ) =

⋃︁
⨄︁
˜︂R 0

0 ˜︂R

⋂︁
⋀︁+

d− τ

d

⋃︁
⨄︁
˜︂R ˜︁Y2

˜︁Y ⊤
2 0

⋂︁
⋀︁+

τ

d

⋃︁
⨄︁ 0 ˜︁Y1

˜︁Y ⊤
1

˜︂R

⋂︁
⋀︁ ,

G0 =

⋃︁
⨄︁ v2

v1 − v4

⋂︁
⋀︁ , G1(τ) =

⋃︁
⨄︁ v1

τv5 + (d− τ)v6

⋂︁
⋀︁ ,
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G2 =

⋃︁
⨄︁ v1 − v3

v1 + v3 − 2v5

⋂︁
⋀︁ , G3 =

⋃︁
⨄︁ v3 − v4

v3 + v4 − 2v6

⋂︁
⋀︁ , Ω =

⋃︁
⨄︁G2

G3

⋂︁
⋀︁ ,

˜︂X = v⊤
1 + ϵv⊤

2 + ϵv⊤
3 ,

˜︁Fi = AiXv1 −Xv2 +Bi
˜︂Kv3 +Bi

˜︂Kv7,

˜︂R =

⋃︁
⨄︁
˜︁R 0

0 3 ˜︁R

⋂︁
⋀︁ , ˜︁P =

⋃︁
⨄︁
˜︁P ˜︂M
˜︂M⊤ ˜︁S

⋂︁
⋀︁ ,

vi =
[︂
0n×(i−1)n In 0n×(7−i)n

]︂
.

Then, the time-derivative of the functional (3.19) along the trajectories of the closed-loop

system (3.42) satisfies

V̇ (xt, ẋt) ≤ −Γ(xτ (t), e(t)), ∀xt ∈ Da, t ≥ t∗0, (3.44)

where Da is defined in (3.29) and Γ(xτ , e) is given in (3.41) with

P = X−⊤ ˜︁PX−1, M = X−⊤ ˜︂MX−1, S = X−⊤ ˜︁SX−1,

Q = X−⊤ ˜︁QX−1, R = X−⊤ ˜︁RX−1, K = ˜︂KX−1,

Ξ = X−⊤ΞX−1, Θ = ˜︁Θ−1.

(3.45)

Proof. Assume that conditions (3.43a)Ű(3.43d) hold. By pre-multiplying inequality (3.43a) by

I2⊗X−⊤ and post-multiplying it by its transpose, it ensures that P > 0, where

P =

⋃︁
⨄︁ P M

M⊤ S

⋂︁
⋀︁ . (3.46)

Moreover, by pre-multiplying inequalities (3.43b) by X−⊤ and post-multiplying them by its

transpose, it ensures that Q > 0, R > 0, and Ξ > 0. These inequalities ensure the positive-

deĄniteness of the functional (3.19).

From Schur complement, inequalities (3.43c)-(3.43d) imply
⋃︁
⨄︁
˜︁Φi(0) − Ω⊤ ˜︁Ψ(0)Ω + v⊤

3 X
⊤ ˜︁Θ−1Xv3 ⋆[︂

˜︁Y ⊤
1 0

]︂
Ω −˜︂R

⋂︁
⋀︁ < 0, (3.47a)

⋃︁
⨄︁
˜︁Φi(d) − Ω⊤ ˜︁Ψ(d)Ω + v⊤

3 X
⊤ ˜︁Θ−1Xv3 ⋆[︂

0 ˜︁Y2

]︂
Ω −˜︂R

⋂︁
⋀︁ < 0, (3.47b)

for all i ∈ B
p. By pre-multiplying the inequalities in (3.47a)Ű(3.47b) by I9⊗X−⊤ and post-

multiplying them by its transpose, it results

Υi(0) =

⋃︁
⨄︁Φi(0) − Ω⊤Ψ(0)Ω + v⊤

3 Θv3 ⋆[︂
Y ⊤

1 0
]︂

Ω −R

⋂︁
⋀︁ < 0, (3.48a)

Υi(d) =

⋃︁
⨄︁Φi(d) − Ω⊤Ψ(d)Ω + v⊤

3 Θv3 ⋆[︂
0 Y2

]︂
Ω −R

⋂︁
⋀︁ < 0, (3.48b)
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for all i ∈ B
p, where

Φi(τ) = He(G⊤
1 (τ)PG0) + v⊤

1 Qv1 − v⊤
4 Qv4 + d2v⊤

2 Rv2 − v⊤
7 Ξv7 + He(XFi),

Ψ(τ) =

⋃︁
⨄︁R 0

0 R

⋂︁
⋀︁+

d− τ

d

⋃︁
⨄︁ R Y2

Y ⊤
2 0

⋂︁
⋀︁+

τ

d

⋃︁
⨄︁ 0 Y1

Y ⊤
1 R

⋂︁
⋀︁ ,

X = v⊤
1 X

−⊤ + ϵv⊤
2 X

−⊤ + ϵv⊤
3 X

−⊤,

Fi = Aiv1 −Xv2 +BiKv3 +BiKv7,

R =

⋃︁
⨄︁R 0

0 3R

⋂︁
⋀︁ , Yi = (I2⊗X−⊤) ˜︁Yi(I2⊗X−1), i ∈ N≤2,

(3.49)

and matrices P , M , S, Q, R, K, Ξ, and Θ deĄned in (3.45). From convexity property of the

state-dependent parameters in (3.40), it implies that

Υ(x, τ) =
∑︂

i∈Bp

wi(x)Υi(τ) < 0, τ ∈ ¶0, d♢. (3.50)

Thus, it follows from (3.48a)Ű(3.48b) and (3.50) that

Φ(x, τ) + v⊤
3 Θv3 − Ω⊤ (Ψ(τ) − Ψ0(τ)) Ω < 0, (3.51)

where

Ψ0(τ) =

⋃︁
⨄︁

d−τ
d
Y1R−1Y ⊤

1 0

0 τ
d
Y ⊤

2 R−1Y2

⋂︁
⋀︁ .

By deĄning α(t) = τ(t)/d ∈ [0, 1], regarding the delay-dependent reciprocally convex combina-

tion lemma (see Lemma 3.1), it implies from (3.50) that

Φ(x(t), τ(t)) + v⊤
3 Θv3 − Ω⊤ ˆ︁Ψ(τ(t))Ω < 0, (3.52)

where

ˆ︁Ψ(τ) =

⋃︁
⨄︁

1
α(t)

R 0

0 1
1−α(t)

R

⋂︁
⋀︁ .

By deĄning the augmented vector

ξ(t) =

⋃︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁

x(t)

ẋ(t)

x(t− τ(t))

x(t− d)
1

τ(t)

√︄ t
t−τ(t) x(s) ds

1
d−τ(t)

√︄ t−τ(t)
t−d x(s) ds

e(t)

⋂︁
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⋀︁

,

the inequality in (3.52) implies that

ξ⊤(t)
(︂
Φ(x(t), τ(t)) + v⊤

3 Θv3 − Ω⊤ ˆ︁Ψ(τ(t))Ω
)︂
ξ(t) < 0. (3.53)

Given that 2ξ⊤(t)XF (x(t))ξ(t) = 0 and considering the Wirtinger-based integral inequality

(see Lemma 3.2), condition (3.53) ensures that (3.44) holds. This concludes the proof.



Chapter 3. Dynamic PETC with Network-Induced Delays 65

The following lemma introduces a constructive condition to check condition (3.26) of

Theorem 3.1 for the closed-loop system (3.42a)Ű(3.42b).

Lemma 3.5. Consider the system (3.42) and let scalars h, ϵ, ρ ∈ R>0, τ̄ ∈ R≥0, τ̄ ≤ h,

and d = h+ τ̄ be given. If there exist symmetric matrices ˜︁P , ˜︁S, ˜︁Q, ˜︁R ∈ R
n×n, and matrices

˜︂M ∈ R
n×n, X ∈ R

n×n, such that (3.43a)–(3.43b) and the following inequalities hold

˜︁Πi =

⋃︁
⨄︁
˜︁Λi ℓ⊤

3 X
⊤

Xℓ3 − ˜︁Θ

⋂︁
⋀︁ < 0, ∀i ∈ B

p, (3.54)

where

˜︁Λi = He(H⊤
1
˜︁PH0) + ℓ⊤

1
˜︁Qℓ1 − ℓ⊤

3
˜︁Qℓ3 + d2ℓ⊤

4
˜︁Rℓ4 −H⊤

2
˜︂RH2 + He( ˜︁Z ˜︁Ji) − 2ρℓ⊤

1
˜︁Pℓ1,

H0 =

⋃︁
⨄︁ ℓ2

ℓ1 − ℓ3

⋂︁
⋀︁ , H1 =

⋃︁
⨄︁ ℓ1

dℓ4

⋂︁
⋀︁ , H2 =

⋃︁
⨄︁ ℓ1 − ℓ3

ℓ1 + ℓ3 − 2ℓ4

⋂︁
⋀︁ ,

˜︁Z = ℓ⊤
1 + ϵℓ⊤

2 + ϵℓ⊤
3 ,

˜︁Ji = AiXℓ1 −Xℓ2,

ℓi =
[︂
0n×(i−1)n In 0n×(4−i)n

]︂
,

˜︁P, ˜︂R, and ˜︁Θ defined as in (3.43). Then, the time-derivative of the functional (3.19) along

the trajectories of the closed-loop system (3.42) satisfies

V̇ (xt, ẋt) ≤ −Γ(xτ (t), 0) + 2ρV0(x(t)), ∀xt ∈ Da, t ∈ [0, t∗0), (3.55)

where Γ(xτ , e) is given in (3.41), Da in (3.29), and matrices P , M , S, Q, R, and Θ are

defined as in (3.45).

Proof. From conditions (3.43a)Ű(3.43b), similar as the arguments employed in the proof of

Lemma 3.4, the positive-deĄniteness of the functional (3.19) is ensured. Then, assume that

inequalities (3.54) hold. From Schur complement, these inequalities imply

˜︁Λi + ℓ⊤
3 X

⊤ ˜︁Θ−1Xℓ3 < 0, ∀i ∈ B
p. (3.56)

By pre-multiplying the inequalities in (3.56) by I4⊗X−⊤ and post-multiplying them by its

transpose, it results

Λi + ℓ⊤
3 Θℓ3 < 0, ∀i ∈ B

p, (3.57)

where

Λi = He(H⊤
1 PH0) + ℓ⊤

1 Qℓ1 − ℓ⊤
3 Qℓ3 + d2ℓ⊤

4 Rℓ4 −H⊤
2 RH2 + He(ZJi) − 2ρℓ⊤

1 Pℓ1,

Z = ℓ⊤
1 X

⊤ + ϵℓ⊤
2 X

⊤ + ϵℓ⊤
3 X

⊤,

Ji = Aiℓ1 − ℓ2,
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with P and R given in (3.46) and (3.49), respectively, and matrices P , M , S, Q, R, and Θ

deĄned in (3.45). From convexity property of the state-dependent parameters in (3.40), it

implies that

Λ(x) =
∑︂

i∈Bp

wi(x)Λi < 0, (3.58)

then, conditions in (3.57) and (3.58) imply

Λ(x) + ℓ⊤
3 Θℓ3 < 0. (3.59)

By deĄning the augmented vector

ζ(t) =

⋃︁
⋁︁⋁︁⋁︁⋁︁⋁︁⋁︁⨄︁

x(t)

ẋ(t)

x0

1
d−τ(t)

√︄ t
t−d x(s) ds

⋂︁
⎥⎥⎥⎥⎥⎥⋀︁
,

the inequality in (3.59) implies that

ζ⊤(t)
(︂
Λ(x) + ℓ⊤

3 Θℓ3

)︂
ζ(t) < 0. (3.60)

Given that 2ζ⊤(t)ZJ(x)ζ(t) = 0 and considering the Wirtinger-based integral inequality (see

Lemma 3.2), condition (3.60) ensures that (3.55) holds. This concludes the proof.

Theorem 3.2. Consider the system (3.42) and let scalars h, ϵ, µ, ρ, λ ∈ R>0, η0, τ̄ ∈ R≥0,

τ̄ ≤ h, and d = h+ τ̄ be given. If there exist symmetric matrices ˜︁P , ˜︁S, ˜︁Q, ˜︁R, ˜︁Ξ, ˜︁Θ ∈ R
n×n,

and matrices ˜︂K ∈ R
m×n, ˜︂M,X ∈ R

n×n, ˜︁Y1, ˜︁Y2 ∈ R
2n×2n, such that (3.43a)–(3.43b) and the

following inequalities hold

˜︁Υi(0) < 0, ˜︁Υi(d) < 0, ∀i ∈ B
p, (3.61)

⋃︁
⨄︁−2ρ ˜︁P + He(AiX) ⋆
˜︁P −X⊤ + ϵAiX −ϵHe(X)

⋂︁
⋀︁ < 0, (3.62)

˜︁Πi < 0, ∀i ∈ B
p, (3.63)

µ ˜︁P − d2 ˜︁S − d( ˜︁Q+ ˜︂M + ˜︂M⊤) ≥ 0, (3.64)

where ˜︁Υi(τ), ∀i ∈ B
p, τ ∈ ¶0, d♢, are defined in (3.43c)–(3.43d) and ˜︁Πi, ∀i ∈ B

p, are defined

in (3.54). Then, for every initial condition x0 ∈ R0 defined as in (3.20), with the level sets c∗

and c selected satisfying to (3.28) with

c̄ = min
1≤j≤nf

1

βb⊤
j P

−1bj

, (3.65)

where β = µ + e2ρτ̄ , P , M , S, Q, R, Θ, and Ξ defined as in (3.45), the state trajectory

(x(t), η(t)), for all t ≥ 0, converges asymptotically to the origin and it remains confined in the

region ˜︂R, defined in (3.30), and x(t) is confined in R ⊂ D , defined in (3.21), for all t ≥ 0.
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Proof. From conditions (3.43a)Ű(3.43b) and given η0 ∈ R>0, similar as the arguments in

Lemma 3.4 and Theorem 3.1, the positive-deĄniteness of the functional (3.18) is ensured.

If the inequalities in (3.61) hold, Lemma 3.4 ensures that condition (3.55) holds, which

means that (3.24) in Theorem 3.1 holds with V (xt, ẋt) deĄned in (3.19) and Γ(xt, e) given

in (3.41) along the trajectories of the closed-loop system (3.42), with matrices deĄning the

functional (3.18) and the trigger function (3.41) as in (3.45).

If (3.62) holds, by pre-multiplying it by I2⊗X−⊤ and post-multiplying it by its transpose,

it leads to
⋃︁
⨄︁−2ρP + He(X−⊤Ai) ⋆

P −X−1 + ϵX−⊤Ai −ϵHe(X−1)

⋂︁
⋀︁ < 0, ∀i ∈ B

p, (3.66)

where P is deĄned as in (3.45). Then, by pre-multiplying (3.66) by [I −A⊤
i ] and post-

multiplying it by its transpose, yields

A⊤
i P + PAi − 2ρP < 0, ∀i ∈ B

p,

which follows from the convexity property of the state-dependent parameters in (3.40) that

A⊤(x(t))P + PA(x(t)) < 2ρP,

which after pre-multiplied by x⊤(t) and post-multiplied by x(t), it implies that (3.25) in

Theorem 3.1 holds with V0(x) given as in (3.22) along the trajectories of (3.42).

If (3.63) holds, Lemma 3.5 ensures that condition (3.55) holds, which means that

(3.26) in Theorem 3.1 holds with V (xt, ẋt) deĄned in (3.19) with Γ(xτ , e) given in (3.41)

along the trajectories of (3.42).

If condition (3.64) holds, by pre-multiplying it by X−⊤ and post-multiplying it by X−1,

it ensures that condition (3.27) in Theorem 3.1 holds.

Finally, if conditions (3.61)Ű(3.64) hold, a matrix P is determined as in (3.45) and the

largest level set that ensures that R ⊂ D , given by c̄ = maxx∈D
1
β
V0(x), is determined based

on (3.65) [42, Chapter 8]. Then, condition (3.28) in Theorem 3.1 holds.

Thus, the closed-loop trajectory (xt, η) of (3.42) remains conĄned in ˜︂R ⊂ Da × R≥0

for all t ∈ R≥0 and then x(t) ∈ R, ∀t ∈ R≥0, and (x(t), η(t)) → (0, 0) as t → +∞. This

concludes the proof.

The next result states a co-design condition for static PETC and it can be readily

deduced from Theorem 3.2.

Corollary 3.1. Consider the system (3.42a) equipped with the static PETC in (3.12) and let

scalars h, ϵ, µ, ρ ∈ R>0, τ̄ ∈ R≥0, τ̄ ≤ h, and d = h + τ̄ be given. If there exist symmetric

matrices ˜︁P , ˜︁S, ˜︁Q, ˜︁R, ˜︁Ξ, ˜︁Θ ∈ R
n×n, and matrices ˜︂K ∈ R

m×n, ˜︂M,X ∈ R
n×n, ˜︁Y1, ˜︁Y2 ∈ R

2n×2n,
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such that (3.43a)–(3.43b) and the inequalities (3.61)–(3.64) in Theorem 3.2 hold. Then, for

every initial condition x0 ∈ R0 defined as in (3.20) with η0 = 0, the state trajectory x(t), for

all t ≥ 0, converges asymptotically to the origin and it remains confined in the region R ⊂ D

defined as in (3.21) with η0 = 0, for all t ≥ 0.

Proof. Considering the LKF candidate given in (3.19), the proof follows similar steps as the

proof of Theorem 3.2

3.3.3 Enlargement of inter-event times

This section describes a criterion considered to enlarge the inter-event times provided

by the PETC scheme. To address this problem, from the trigger rule in (3.8) with the trigger

function (3.41), new transmissions are triggered when:

λmin(Θ)∥xτ (t)∥2 − λmax(Ξ)∥e(t)∥2 +
1

θ
η(t) ≤ 0,

which, in the worst case, it implies that

G(xτ (t), e(t)) ≤ 1 + V(xτ (t), η(t)),

where

G(xt, e) =
λmax(Ξ)∥e∥2

λmin(Θ)∥xt∥2
, V(xt, η) =

1

θ

η(t)

λmin(Θ)∥xt∥2
.

Thus, the idea is maximizing the eigenvalues of Θ and minimizing the eigenvalues of Ξ such

that the minimum time required for G(xt, e) to evolve from 0 to 1 + V(xt, η) is enlarged. For

that, similar to [51], the following optimization problem is considered:

minimize βtr(˜︁Ξ + ˜︁Θ)

subject to (3.43a)–(3.43b), (3.61)–(3.64),

˜︁P ≥ I

(3.67)

The minimization of tr(˜︁Ξ + ˜︁Θ) tends to maximize the eigenvalues of Θ and to minimize

the eigenvalues of Ξ, which tends to enlarge the inter-event times. The last constraint is

introduced for well conditioning purposes. Notice that the given scalar β = µ+ e2ρτ̄ is related

to the size of the set of admissible initial conditions R0 such that as the parameters ρ or τ̄

increase, R0 tends to reduce. Thus, β is included into the objective function to introduce

a trade-off between the size of the set of admissible of initial conditions and the number of

inter-event times. Hence, if the optimization problem in (3.67) is feasible, the condition (3.65)

of Theorem 3.2 is directly applied to obtain the largest estimate of the region of attraction.

3.4 Numerical examples

Numerical examples are presented in this section to illustrate the effectiveness of the

proposed delay-dependent co-design condition.
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3.4.1 Example 1: van der Pol oscillator

Consider the van der Pol oscillator system described in (2.32). For r0 = 2, the vertices

of the quasi-LPV model (3.39) can be obtained as in (2.34) and the validity region is given

by D = ¶x ∈ R
n : ♣x1♣ ≤ 2, ♣x2♣ ≤ 2♢. Initially, the influence of parameters ρ and ϵ over

the solution of the optimization problem (3.67) is evaluated. For that, consider µ = 0.01 and

h = τ̄ = 0.15, which leads to d = h + τ̄ = 0.30. The behavior of the objective function

of (3.67) with respect to ρ for different values of ϵ is illustrated in Figure 3.2.

Figure 3.2 – Objective function βtr(˜︁Ξ + ˜︁Θ) of (3.67) with respect to ρ for different
values of ϵ.

For all the considered values of ϵ, as ρ increases, the objective function decreases up to

achieve a minimum then it tends to increase again due to the exponential relation of β with

respect to ρ. On the other hand, the values of the objective function with respect to ρ are

bigger for smaller values of ϵ, as ϵ increases, a minimum is achieved and then the objective

function tends to increase again as ϵ increases. By employing a grid search algorithm1, the

minimum value of βtr(˜︁Ξ + ˜︁Θ) has been achieved with ϵ = 1.39 and ρ = 1.15, as illustrated in

Figure 3.2.

Another aspect evaluated here is the feasibility of the optimization problem (3.67) for

different values of the delay d. For µ = 10−5 and a Ąxed τ̄ = 0.1s, the optimization problem

is solved for different values of h and the grid search algorithm is employed to determine the

values of ρ = ρ∗ and ϵ = ϵ∗ that minimize the cost of (3.67). The results are presented in
1 The Box’s evolutionary optimization method [184, Section 3.3.1] has been employed to perform the grid

search in the space (ϵ, ρ).
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Table 3.1. Notice that the value of the cost increases as the delay d = h+ τ̄ increases, which

indicates that more transmissions are required to ensure the closed-loop stability for larger

values of delay.

Table 3.1 – Minimum objective function βtr(˜︁Ξ + ˜︁Θ) and the related values of ϵ∗ and ρ∗

for different values of h in seconds.

h (s) 0.1 0.15 0.2 0.25 0.3 0.33
βtr(˜︁Ξ + ˜︁Θ) 3.148 4.634 7.465 14.538 49.206 1010.8
ϵ∗ 2.815 1.960 1.335 1.005 0.780 0.805
ρ∗ 1.475 1.300 1.175 1.125 1.10 1.375

For h = τ̄ = 0.15s, that is d = 0.30s, and µ = 10−5, the values of ρ = 1.15 and

ϵ = 1.41 obtained from the grid search algorithm lead to the minimum cost of the optimization

problem in (3.67). The obtained solution is:

K =
[︂
0.4340 −1.6720

]︂
, P =

⋃︁
⨄︁28.8593 −2.1502

−2.1502 25.1086

⋂︁
⋀︁ ,

Θ =

⋃︁
⨄︁ 1.2428 −0.2049

−0.2049 1.7569

⋂︁
⋀︁ , Ξ =

⋃︁
⨄︁ 6.5483 −25.2249

−25.2249 97.1732

⋂︁
⋀︁ .

In this case, the condition (3.65) in Theorem 3.2 provides c̄ = 70.675. For η0 = 0, λ = 0.5,

θ = 1
λ
(eλh − 1) and a simulation time of 10s, simulations are performed regarding closed-loop

trajectories with initial conditions at the border of R0. In the conducted simulations, the delay

induced during communication is given by τk = τ̄
2
(1 + cos (πtkh)), notice that at t = t0h = 0,

the delay is maximum, since τ0 = τ̄ = t∗0. The sets R0 and R, given in (3.20) and (3.21),

respectively, and the closed-loop trajectories initiating in R0 are shown in Figure 3.3. It can

be noticed that for t ∈ [0, t∗0), when u(t) = 0, some of the trajectories leave the region R0

due to the unstable behavior of the unforced equilibrium, but they remain inside the region R

and converge to the equilibrium when the control signal starts to be applied at t = t∗0 = τ̄ . It

illustrates the effectiveness of the proposed local co-design condition.

3.4.2 Example 2: rotational motion of a cart with an inverted pendulum

Consider the rotational motion of a cart with an inverted pendulum system described in

(2.32). For θ0 = π
3
, the vertices of the quasi-LPV model (3.39) can be obtained as in (2.37)

and the validity region is given by D = ¶x ∈ R
n : ♣x1♣ ≤ π

3
, ♣x2♣ ≤ 2. For h = τ̄ = 0.20s,

which leads to d = 0.40s, and µ = 10−5, the values of ρ = 1.025 and ϵ = 5.875 are obtained

from the grid search algorithm. In this case, the optimization problem in (3.67) leads to:

K =
[︂
2.4912 1.5451

]︂
, P =

⋃︁
⨄︁227.9599 129.9538

129.9538 89.1168

⋂︁
⋀︁ ,

Θ =

⋃︁
⨄︁5.9399 0.2186

0.2186 8.8055

⋂︁
⋀︁ , Ξ =

⋃︁
⨄︁293.8745 182.2648

182.2648 113.0430

⋂︁
⋀︁ .
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Figure 3.3 – Sets R0 (in black) and R (in red) and convergent closed-loop trajectories
(in blue) initiating in R0.

Based on condition (3.65) in Theorem 3.2, c̄ = 27.987 is obtained. For η0 = 0, λ = 0.1,

θ = 10, τk = τ̄
2
(1 + cos (π

2
tkh)) and a simulation time of 15s, the simulations are performed

regarding several closed-loop trajectories initiating inside and outside of D . The sets R0 and

R, and the closed-loop trajectories are shown in Figure 3.4.

Notice that there are some trajectories initiating inside of the convex set D that diverge

while some others converge but evolve outside of D before approaching to the equilibrium.

It illustrates the importance of determining an estimate of the region of attraction for the

closed-loop equilibrium. The average number of events for the trajectories initiating inside

of R0 is 11, while for the same initial conditions the average number of events obtained

from the static counterpart (3.12) is 39.31. This corresponds to an economy provided by

the dynamic PETC scheme of 72.02% with respect to the static PETC and 85.33% with

respect to a standard periodic time-triggered scheme. In particular, for the initial condition

x0 = (0.7057,−1.3440), the simulation results are shown in Figure 3.5.

In this simulation, 9 events are generated with the dynamic PETC scheme while 48

events are generated with the static counterpart. From Figures 3.5(a) and 3.5(b), it can be

noticed the asymptotic convergence of the pair (x, η) to the zero equilibrium. In particular,

from Figure 3.5(c), it is possible to observe that the control input u(t) is set to zero until the

state information starts to be transmitted to the controller at t = t∗0 = 0.20s. The inter event

times are shown in Figure 3.5(d).
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Figure 3.4 – Sets R0 (in black) and R (in red) and convergent (starting at points Ş∗Ť)
and divergent (starting at points Ş◦Ť) closed-loop trajectories (in blue).

(a) States (b) Internal variable of the PETC scheme

(c) Control input (d) Inter-event times

Figure 3.5 – Simulation of the closed-loop system (2.36) with the control law (3.37)
equipped with the dynamic PETC scheme (3.8), (3.10), (3.41).
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3.5 Conclusion

This chapter has addressed the co-design of dynamic periodic ETM and state feedback

controllers for nonlinear systems represented by a polytopic quasi-LPV model. An improved

co-design condition has been derived by employing the Wirtinger-based integral inequality and

the delay-dependent reciprocally convex combination lemma. To ensure the application of the

proposed method, an estimate of the region of attraction has been obtained, ensuring the

convergence in the presence of network-induced delays. Numerical examples illustrated the

effectiveness of the proposed dynamic ETM in ensuring local stability of the closed-loop system

requiring fewer events than its static counterpart, which is largely employed in the related

literature.
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4 CONCLUDING REMARKS

This thesis has addressed the dynamic ETC of nonlinear systems represented by quasi-

LPV models. By following the co-design approach, the controller and the parameters of the

dynamic ETM have been simultaneously designed. In contrast to emulation-based approaches,

in which the controller and the ETM are designed in a two-step procedure that may limit the

effectiveness of the ETC implementation, co-design approaches can increase the efficiency of

ETC reducing the number of transmissions and consequently saving communication resources

in NCS. Regarding Lyapunov-based stability techniques, constructive and numerically imple-

mentable co-design conditions have been derived in terms of sufficient LMI-based conditions.

Moreover, to ensure the applicability of the ETC design, estimates of the region of attraction

have been obtained inside the modeling region in which the quasi-LPV is built.

More precisely, the main results of this thesis are listed as follows:

a) Chapter 2 focused on dynamic CETC co-design for nonlinear systems represented by

quasi-LPV models. From an appropriate formulation of the perturbed closed-loop

ETC system, a novel dynamic CETC scheme has been proposed and the formal proof

of the existence of a positive MIET has been provided to ensure the applicability of

the CETC. The proposed trigger-function has been deĄned such that the influence

of asynchronous parameters in the gain-scheduling control law was completely

canceled from the Lyapunov analysis to derive LMI-based co-design conditions. As

a result, an effective LMI relaxation often employed in the context of traditional

gain-scheduling control synthesis could be applied. Also, a convex optimization

problem has been deĄned aiming to enlarge the inter-execution times provided by

the proposed CETC strategy.

b) Chapter 3 focused on dynamic PETC co-design for nonlinear systems represented

by quasi-LPV models. The closed-loop ETC system subject to network-induced

delays is represented by a time-delay model. As far as a PETC strategy is concerned,

Zeno behavior is naturally excluded. Based on the use of Wirtinger-based integral

inequality and the delay-dependent reciprocally convex lemma, an improved co-

design condition has been proposed to provide a less conservative co-design condition.

Finally, a convex optimization problem has been formulated to enlarge the inter-event

times provided by the proposed PETC strategy.

c) In both Chapters 2 and 3, estimates of the region of attraction have been obtained

to ensure the applicability of both the dynamic CETC and dynamic PETC schemes,

respectively. Finally, the applicability of the proposed dynamic ETC schemes has

been illustrated considering two physically-motivated examples and their effectiveness

over emulation-based and static ETC strategies have been demonstrated since it
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was shown that the proposed dynamic ETC methods were able to reduce the

usage of communication resources due to the reduction of data transmissions. One

aspect that can be improved in the proposed approaches is the introduction of

the parameters λ and θ of the dynamic event-triggering scheme into the co-design

conditions. It might be helpful to further reducing the number of transmissions.

4.1 Future research

Some suggestions of possible next steps for this doctoral research are discussed in this

section. They are based on the further development of the main objective of this thesis: to

propose dynamic event-triggered control strategies for local stabilization of nonlinear networked

control systems represented by polytopic quasi-LPV models. The further steps are listed as

follows:

a) To improve robustness of continuous event-triggered control strategies with time-

regularization:

The inclusion of a positive waiting (or dwell-)time is an effective alternative to improve

the robustness of CETC schemes, leading to the CETC with time-regularization. In

this case, Zeno behavior is naturally excluded because the MIET is ensured by the

enforced waiting time. As a result, asymptotic stability and Lp stability conditions

[6] can be derived for this event-based strategy. Co-design approaches for CETC

with time-regularization strategies have been mainly developed for linear systems

[145, 48, 143, 49, 50, 72, 74] and speciĄc classes of nonlinear systems [52]. Thus,

further investigations on co-design approaches for CETC with time-regularization of

nonlinear systems represented by quasi-LPV models are recommended considering a

looped-functional approach as in [185].

b) Conservativeness reduction of the proposed local dynamic PETC strategy:

The use of Bessel-Legendre inequalities has been proved to be effective to provide

less conservative results in the context of dynamic PETC of quasi-LPV models

[176]. However, the condition in [176] does not provide estimates of the region of

attraction of the closed-loop equilibrium, which may lead to implementation issues,

as discussed in Chapter 3. Motivated by the developments proposed in Chapter 3,

local PETC co-design conditions can be derived considering the Bessel-Legendre

inequality together with the delay-dependent reciprocally convex lemma.

c) Output-based and decentralized event-triggering control strategies:

In practical applications, frequently only output information is available instead of

full state measurement. For this reason, it is recommended to develop output-based

event-triggering gain-scheduling control co-design strategies [68, 63, 72, 6, 179, 52].

One of the main challenges in this case is that the scheduling functions may depend
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on unmeasured states. As a result, it is necessary to develop appropriate strategies

to deal with such unmeasured scheduling functions by indirect estimation via state

observers [186, 187, 188].

Moreover, in NCS data may be transmitted over multiple networks that operate

asynchronously and independently. In this case, due to the unavailability of global

information for each node, decentralized [189, 75, 6, 84] ETC strategies might be

developed.

d) To consider more effects of network-induced phenomena into the analysis:

In most of ETC strategies, only part of the network-induced phenomena is considered

[13], such as network-induced time-delays, as addressed in Chapter 3. However,

in practical applications, more than one network-induced phenomenon may appear

simultaneously. For this reason, it is recommended to derive co-design conditions

considering other phenomena, such as packet dropouts [137] and quantization effects

[52].
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f) PEIXOTO, M. L. C.; COUTINHO, P. H. S.; PALHARES, R. M. Improved

robust gain-scheduling static output-feedback control for discrete-time LPV systems.

European Journal of Control, v. 58, p. 11-16, 2021.

doi: <https://doi.org/10.1016/j.ejcon.2020.12.006>

g) ARAÚJO, R. F.; COUTINHO, P. H. S.; NGUYEN, A.-T.; PALHARES, R. M..
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fuzzy models. Information Sciences, v. 563, p. 59-69, 2021.

doi: <https://doi.org/10.1016/j.ins.2021.01.007>

h) COUTINHO, P. H. S.; ARAÚJO, R. F.; NGUYEN, A.-T.; PALHARES, R. M.
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doi: <https://doi.org/10.1016/j.ins.2019.08.008>
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