

Acknowledgments

I would first like to express my sincere gratitude to professor Takahashi whose
guidance, support and encouragement has been invaluable throughout the doc-
torate program. I thank my parents for their wisdom and continuing effort to
help their son reach this landmark. And, I wish to thank my wife Anna for her
faithful aid, reassurance and love that has helped me go on with joy. Finally,
I thank God for this wonderful privilege of being here and for all the insights
that I fully attribute to Him.

Affiliations This thesis was written when the first author I.F.D. Oliveira
(ivodavid@gmail.com) was a Ph.D. student in the the doctorate program of
the Electrical Engineering Department of the Federal University of Minas
Gerais. The first author also holds an affiliation to the Institute of Science,
Engineering and Technology of the Federal University of the Valleys of Je-
quitinhonha and Mucuri as an assistant professor; address: R. Cruzeiro, 1,
Teófilo Otoni, Minas Gerais, Brazil, 39803-371. Professor R.H.C. Takahashi
(taka@mat.ufmg.br) is a full professor of both the Mathematics Department
and the Electrical Engineering Department of the Federal University of Minas
Gerais; address Av. Pres. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais,
Brazil, 31270-901.

Funding This work was supported by Conselho Nacional de Desenvolvimento
Cient́ıfico e Tecnológico (CNPq) – Brazil.

Summary. This thesis presents a series of improvements on four different classi-
cal searching methods employed for solving different well established problems. The
methods improved on and their corresponding problems are: (i) the bisection method
for continuous root-searching problems; (ii) the binary search algorithm for discrete
list-searching; (iii) the back-tracking technique for inexact Armijo-type searching;
and (iv) the n-dimensional steepest descent method for non-linear multi-objective
optimization. Different types of improvements are aimed for in each context that pro-
duce an overall reduction in the the number of calls to the external function being
searched. However, all four improvements proposed have one thing in common: the
worst-case upper-bound of our methods either outperform the state-of-the-art, or,
where the state-of-the-art has already attained an optimal worst-case performance,
we match the performance of the optimal bound while improving on either average
performance, asymptotic performance or both. Thus, in this sense, the methods we
propose are strict improvements on classical solutions, attained with no additional
assumptions on the problems considered nor with any additional costs other than
the computation of the methods themselves. The manuscript starts with a broad
introduction which discusses the importance of the problems considered and the
classical solutions employed in several different fields. The main contributions are
given in the following four chapters; one corresponding to each problem tackled.
Each chapter corresponds to one published (or soon to be published) result inti-
mately related to the four problems considered which are augmented with original
unpublished material. Finally, in the sixth and final chapter we point to possible
ramifications of the findings hereby delineated which present potential for future
developments.

Keywords: binary searching, root searching, line searching, backtracking list search-
ing, gradient method, multi-objective optimization

Resumo. Esta tese apresenta uma série de melhorias em quatro métodos clássicos
de busca empregados para resolver quatro problemas bem estabelecidos. Os métodos
aprimorados e seus problemas correspondentes são: (i) o método da bissecção para
problemas de busca de ráızes; (ii) o algoritmo de busca binária para procura em
listas discretas; (iii) a técnica de back-tracking para buscas inexatas do tipo Armijo;
e (iv) o método de otimização utilizando a direção de maior descida para problemas
multi-objetivo. Diferentes tipos de melhorias são produzidas em cada instância que,
de forma geral, produzem uma redução no número de chamadas à função externa
que está sendo procurada. No entanto, todas as quatro melhorias propostas têm uma
coisa em comum: as garantias de pior caso dos nossos métodos sempre apresentam
uma melhoria em relação ao estado da arte e, quando o estado da arte já apresenta
um desempenho de pior caso ótimo, então, os nossos métodos apresentam um desem-
penho médio ou desempenho assintótico aprimorados em relação ao estado da arte.
Neste sentido, os métodos que propomos são melhorias estritas sobre as soluções
clássicas, obtidas sem suposições adicionais sobre os problemas considerados e nem
com custos adicionais escondidos. O manuscrito começa com uma ampla introdução
que discute a importância dos problemas considerados e as soluções clássicas empre-
gadas em vários campos diferentes. As principais contribuições são dadas no quatro
caṕıtulos subsequentes. Cada caṕıtulo corresponde a uma resultado publicado (ou
em vias de ser publicado) com a adição de material exclusivo à tese ı́ntimamente
relacionados com os quatro problemas considerados. No sexto e último caṕıtulo,
apontamos as posśıveis ramificações das descobertas aqui delineadas, que apresen-
tam potencial para desenvolvimentos futuros.

Palavras-chave: busca binária, busca de ráız, busca em linha, backtracking, busca
em lista, método do gradiente, otimização multi-objetivo

Contents

1 Introduction . 9
1.1 On binary searching . 12
1.2 On steepest-descent searching . 16
References . 20

2 The root searching problem . 22
2.1 Introduction . 23

2.1.1 Other metrics and competing strategies 25
2.2 Main results . 27

2.2.1 One interpolation based minmax strategy 30
2.2.2 Additional axiomatic support for the ITP method 33

2.3 Numerical experiments . 35
2.3.1 Comparison with other methods . 35

2.4 Discussion . 41
2.A Appendix . 43

2.A.1 Proof of Theorem 6. 43
2.A.2 A pseudocode for the ITP method . 47
2.A.3 Additional numerical experiments . 49

References . 51

3 The list searching problem . 55
3.1 Introduction . 55
3.2 Main Results . 58

3.2.1 The ITP Method . 60
3.2.2 Robustness and Limits . 64

3.3 Experimental Results . 66
3.4 Discussion . 73
3.A Appendix . 74

3.A.1 Online material . 74
References . 75

8

4 Armijo’s back-tracking problem . 77
4.1 Introduction . 78
4.2 Analysis of Traditional Backtracking . 78
4.3 Bracketing-based inexact line search . 79

4.3.1 Geometric bisection fast tracking . 80
4.3.2 Fast tracking with multi-logarithmic speed-up 82

4.4 Experiments . 83
4.5 Discussion . 84
References . 84

5 The multi-objective optimization problem . 87
5.1 Introduction . 87
5.2 The central descent direction . 90
5.3 Incremental central descent method . 98

5.3.1 Even weaker conditions for convergence 102
5.3.2 Alternative sampling and searching strategies 104

5.4 A toy experiment . 106
5.5 An improvement on single objective optimization? 106
5.6 Discussions . 112
5.A Appendix . 113

5.A.1 Proof of Lemma 3 . 113
5.A.2 Proof of Auxiliary Lemma 5 . 115

References . 116

6 Concluding Remarks . 118
References . 120

ivoda
Rectangle

1

Introduction

Searching an ordered list is one of the most fundamental tasks in computer science
(Knuth, 1998). List searching can be found anywhere from simple algorithms to
more complex computational systems, often implicit, or entailed within subroutines
of parent algorithms. In a like manner, within the literature of numerical analysis
and optimization, the task of searching for a root of a continuous function f :
R → R (or an extremum) seems to play a similar fundamental role (Nesterov,
2018). In both settings, the discrete and the continuous counterpart, the standard
approach in the literature has been to employ binary searching, also referred to as
the bisection method within the numerical analysis field. Binary searching has been
the method of choice due to it’s minmax optimality (Sikorski, 1982), i.e. it requires
the least amount of queries under worst case conditions; where, in the first setting,
consulting one entry of the list makes for one query and in the second setting one
query is the computation of the function value (or derivative) on one point. It is
due to it’s minmax performance in different settings (Sikorski, 1982; Knuth, 1998;
Vieira, Takahashi, & Saldanha, 2012; Nesterov, 2018), that binary searching is widely
regarded as an optimal procedure, and, is often a first alternative when considering
different approaches to solve searching problems.

More complex tasks in computer science, numerical analysis and optimization
that go beyond one dimensional problems are instead often described as multi-
dimensional optimization problems. Refer to Examples 1.1.1 to 1.1.3 in (Nesterov,
2018) for illustrations on how different broadly encompassing problems (continuous
and discrete) can be described in this manner. These more complex tasks are of-
ten first framed as a single objective optimization problem with objective function
defined from Rn to R and then, more generally, as the complexity of the searching
problem requirements grows, these may be augmented as searching problems for
Pareto-efficient solutions of multi-objective optimization problems with objective
functions defined from Rn to Rm; where n,m ∈ N. And, similar to how binary search-
ing strategies occupy a central role in single-dimensional searching problems, descent
direction strategies (and in particular those derived from the steepest-descent direc-
tion) play a fundamental role in the development of more efficient searching routines
for multi-variable problems. And thus, in this way both binary searching as well as
steepest descent type methods have served, to the very least, as building blocks for

ivoda
Typewritten Text
9

10

the development of more complex algorithms, and, improvements on such methods
can amount to significant time savings across applications and in different fields.

In this manuscript we consider four well known and extensively studied search-
ing problems and we propose improvements to the long-lasting solutions that have
played this fundamental building block role that binary searching and steepest de-
scent type methods have played. Some such problems tackled in this thesis are
generally considered to be solved; that is, the standard and widely known solutions
to such problems are broadly perceived as optimal procedures to which no improve-
ment can be made; and, the binary searching strategy employed in list searching is
certainly a prime example of this. The purpose of this thesis is primarily to pro-
vide long overseen improvements to such methods that, somewhat surprisingly, can
amount to significantly large time-savings (as demonstrated throughout). The four
problems we consider, which include list searching and root searching, can be rep-
resented in the following form:

Find x∗ ∈ S such that v(x∗) = 0. (1.1)

For (i) the list searching problem S is a set of indices {0, 1, 2, ..., n} and v is a sorted
list L where v(k) = Lk for k assuming any value from 0 to n. For (ii) the root-
searching problem and (iii) the inexact Armijo searching problem S is an interval
[a, b] ⊂ R and v is a continuous function v(x) = f(x) from the interval [a, b] to R.
And finally, for (iv) the multi-objective optimization problem with objective function
f : Rn → Rm, the set S is Rn and v is a continuous functional which takes f and
a point in Rn and maps to some measure of proximity to critical conditions on
R+. And, to a greater or lesser degree, the standard solutions to (i)-(iv) are closely
related to either binary searching strategies or steepest descent strategies; both of
which are discussed ahead within the following Sections.

The reason binary strategies take such a central role in many algorithms is dis-
cussed in greater detail in Section 1.1, however, the main idea is that binary strate-
gies make an efficient use of bit-wise information of the type “a solution lies within
this sub-domain” which then typically produce optimal worst case guarantees. Also,
however to a lesser degree, steepest descent type methods for multi-variable min-
imization problems have also been shown to attain optimal worst-case guarantees
for some broad classes of problems, albeit, the importance of steepest descent type
methods is perhaps not due so much to it’s worst case guarantees but rather due
to it’s simplicity when compared to other methods and it’s widespread use as a
benchmark of performance over-which other methods can improve. Hence, any ap-
proach that aims on improving such methods must also ensure that, to the very
least, the worst-case upper-bounds produced by the “new improved method” will
match those of the standard solutions and, somewhat subjectively, have a simple
intuitive form over-which other methods can build upon. Here we propose precisely
this, methods in which the worst-case upper-bounds either outperform the state-
of-the-art, or, match it when the state-of-the-art has already attained an optimal
worst-case performance. And when worst-case performance is tied, we aim at pro-
viding results that guarantee improvements on either the average performance, the
asymptotic performance or both, with strategies that can be easily built-on to serve
as fundamental building blocks for more complex computational tools.

To do this the first step is to characterize the known minmax results for the
query complexity of searching strategies.

11

Thesis organization

In this thesis, as we deal with four different problems, we summarize minmax char-
acterization results that concern one dimensional problems into overarching terms
in the following section entitled On binary searching, and, the results concerning
minmax guarantees of steepest-descent type methods for multi-variate optimization
problems in the final section of this chapter entitled On steepest-descent searching.
Since the former section introduces common concepts present in the problems ad-
dressed in Chapters 2 to 4, the definitions and propositions are exposed with less
recourse to formality to allow for more broad encompassing and introductory con-
cepts that are only formally and fully fleshed out in the respective chapters being
introduced. This section also includes an intuitive toy example to illustrate the tech-
niques used in identifying and constructing the ITP method in Chapters 2 and 3, as
well as a subsection discussing alternative competing strategies that have often been
evoked as possible substitutes to the canonical binary search strategy. In the latter
section On steepest-descent searching we point to the known minmax results on gra-
dient descent type methods in the literature as well as open questions in the field.
Hopefully, this introductory chapter substantiates the scope of the doctorate thesis
here contained, and, provides an overarching context for the following chapters.

The remainder of the thesis is structured as follows:
In Chapters 2 and 3 we describe and analyse the root-searching and the list

searching problems respectively. There we flesh out the minmax results alluded to
in Section 1.1 and find, somewhat surprisingly, that there almost always exists a
rich class of methods that, similar to binary searching strategies, attain minmax
optimality; i.e. binary searching is not uniquely minmax optimal. We evaluate both
the average performance and the asymptotic performance of the methods within
the class of minmax methods, for the respective problems, and find that binary
searching happens to attain the worst possible average performance; and thus seems
to be a poor choice when compared to other methods within the class. We then
identify and recommend one particular minmax strategy, which we name the ITP
method, and show that in the discrete list searching setting it attains an optimal av-
erage performance and in the continuous root-searching setting it attains an optimal
asymptotic performance, both of which come at no cost on the minmax performance
of the bisection method. Hence, differently from previous improvements, we find the
first viable substitute to the bisection method that comes with no cost other than
the computation of the method itself. In Chapter 4 we describe and analyse the
inexact searching problem introduced by Armijo (Armijo, 1966) and the standard
back-tracking solution employed in the literature. There we begin by characterizing
the performance guarantees that can be ensured by standard back-tracking prac-
tices often used in inexact line-searching and often present as a key component of
descent direction algorithms. And then, we show that these widespread practices
lack in terms of worst-case performance when compared to optimal lower-bounds
derived under standard assumptions on the line-searching problem. And, finally, we
propose a method that attains the minmax optimal lower-bound on the number
of calls to the objective function, lowering the query complexity by a logarithmic
factor. The method proposed is termed the geometric bisection method and, when
combined with the ITP method proposed in the previous chapters the proposed
method additionally produces multi-logarithmic speed-up in terms of asymptotic
performance. In Chapter 5 we describe and analyse the multi-objective optimiza-

12

tion problem. There we begin by proposing a new descent direction, which we name
the central descent direction, and a measure of proximity to critical conditions that
contain many advantages over the classical definitions used in the literature. The
improved descent direction is first shown to satisfy a series of robustness guaran-
tees which cannot be ensured by the classical Cauchy-definition of steepest descent,
and then, the measures of proximity are shown to have well understood geometric
interpretations which make them natural choices for first-order descent direction
type methods. Finally, we propose a new incremental-based method to approach
critical conditions with reduced computational cost. This is done by combining the
newly proposed descent direction with an anchored incremental strategy, which is
then shown to produce critical points at a reduced computational cost. Finally, in
Chapter 6 we discuss our findings and point to potential directions of research.

1.1 On binary searching

Binary searching is a divide and conquer technique (Knuth, 1998) that starts by (i)
dividing the domain of solutions S in two parts H and HC of equal size, and then
(ii) it verifies (or queries) whether a solution x∗ is located in one of the parts. These
two operations are performed alternately and selectively until an output x̂ can be
found. A satisfying output x̂ can usually be pinpointed when S is sufficiently small
(e.g. when S is left with only one element then x̂ = x∗ is easily obtained), and,
under continuous settings it is common to accept solutions x̂ such that |x̂− x∗|† is
sufficiently small, where | · |† is some given metric on the elements of S. Thus (iii)
a verification of this condition is added to the iterative process to terminate the
search. Combining these we can represent the classical binary search procedure with
the following diagram:

Fig. 1.1: Schematic diagram of the binary search strategy. Here the binary
search algorithm is displayed as a while-loop, however, under different settings
for-loops or other structures can be used to exploit computational architecture
(Cannizzo, 2018).

When S takes the form of a sorted list, the division operation splits the list
in two halves, the query Q1 takes the form of “is v(x1/2) ≤ 0?” where x1/2 is the
index of the middle term of list L, and the query Q2 takes the form of “is the
number of terms in L less than or equal to 1?”. And, of course, the assignment
operations are done virtually by keeping track of the indices of the remaining list.
Furthermore, it is easy to verify that the root-searching version of binary searching
follows an analogous structure, and, a slightly more careful analysis of the Armijo
back-tracking procedure reveals that it too follows a similar pattern (as is extensively
discussed in Chapter 4).

13

This construction finds applications in several different fields, including single
and multi-objective optimization, ranking and learning problems, game theory and
applications, artificial intelligence amongst others (Yao & Yao, 1976; Sikorski, 1982;
Knuth, 1998; Luenberger & Ye, 2018; Nesterov, 2018). However, the one dimen-
sional versions, i.e. when applied to one dimensional problems of the form (1.1), are
perhaps the most wide-spread. When dealing with the continuous setting, i.e. root-
searching problems (Sikorski, 1982), it is called the bisection method; and, when
dealing with discrete domains, i.e. of searching lists (Yao & Yao, 1976), it is called
binary searching. Chapter 2 deals with the first type and and Chapter 3 with the sec-
ond type. Both of these one dimensional versions play a key role in the construction
of more complex algorithms. And, since many multidimensional problems are of-
ten broken into several one-dimensional sub-problems (Vieira et al., 2012; Nesterov,
2018), one dimensional binary searching serves as a fundamental building block for
more complex algorithms.

As mentioned above, binary search is often the method of choice due to it’s
minmax performance under several different settings. Minmax optimality, which is
a context-dependent property, is typically a consequence of the following context-
independent feature of binary searching:

Proposition 1. Given an initial domain S0 of size |S0|†, after k iterations of the
binary search algorithm, the remaining domain Sk of possible solutions is of size less
than or equal to |S0|†/2k.

Proposition 1 guarantees that binary search performed with metric | · |† will
produce a sequence Sk such that |Sk|† converges to zero. And, under several different
settings, which include the classical root-searching and list searching problems here
considered, this is sufficient to guarantee minmax optimality. In the following, we
define ν, when considering root searching problems, as ν ≡ ∆/2ϵ where ϵ is the
target precision and ∆ ≡ b− a; and, when considering list searching ν is defined as
ν ≡ n.

Proposition 2. Given a searching task in the form (1.1), binary searching isolates a
solution x̂ with no more than n1/2 ≡ ⌈log2 ν⌉ queries to v(x). And, no other method
can provide the same guarantees with less than n1/2 queries.

Analogous guarantees as those found in Propositions 1 and 2 are often the moti-
vation behind binary searching strategies. Theorem 1.1 of Section 2.1 and Equation
(3) of Section 2.2 are examples of these results correspondingly tailored for the
searching problems considered in this thesis. Refer to (Oliveira, 2013) for an ex-
ample of these features being exploited for attaining efficiency under alternative
metrics. These are however metric dependent; i.e. different metrics | · |† will produce
correspondingly different guarantees. And, perhaps more importantly, it is neces-
sary that the measure implied by the query “is S small?” and the metric used in
the “division of the domain of solutions S into two parts H and HC of equal size”
must be the same for these guarantees to hold. As will be seen in Chapter 4, for the
inexact Armijo searching problem it seems that the literature has overseen this fact
relying on a division and a verification operation on slightly different metrics, and,
with a proper pairing of such metrics our results in Theorem 12 show that much re-
duction in computational cost is attainable. There are, however, settings when such

14

a pairing of metrics might not even be possible, and, this can potentially reduce the
global efficiency of the search.

Perhaps a good illustration of the importance of the pairing of the metric with
the division operation is obtained by considering a simple searching problem defined
on a two dimensional unit disk S ≡ {(x, y) ∈ R2 st. x2 + y2 ≤ 1}. If the goal of
the search is to produce a sufficiently small subspace of solutions S such that the
L2 distance d between each pair of solutions (x1, y1) and (x2, y2) in S satisfies
d ≡

√
(x1 − x2)2 + (y1 − y2)2 ≤ ϵ for some given ϵ > 0, then, we would expect a

consistent implementation of the classical binary searching strategy would require
that each query subdivide the domain of solutions S in producing two subsets H and
HC with half the measure of the original set. The maximum L2 distance between
two points on the unit disc is of d = 2, however, it is not difficult to see that the
unit disc S cannot be subdivided into two parts while simultaneously reducing in
half the maximum L2 distance between the points in each part H and HC . Thus,
for problems posed with this type of issue, the identification of the metrics are as
crucial as the the development of an efficient searching algorithm to accompany
it. The last problem we consider, the multi-objective optimization problem, our
contributions are precisely of this nature: we first identify a metric that properly
measures proximity to desirable solutions and then we propose an efficient method
to accompany such recommendation.

Is it possible to outperform binary searching?

We illustrate the use of Proposition 1 and possible improvements on binary searching
by analysing the following well known riddle: “A boy thinks of an integer number
between 1 and 100. How many questions must be asked to find his number given
that he will answer yes or no to any question?”. The classical answer to this riddle
is obtained by applying binary search by dividing the numbers in two groups of
equal size successively. With one question you will eliminate 50 numbers, in the
second 25 and so on and so forth. This way we find the answer “at most seven
questions are needed” since ⌈log2 100⌉ = 7. Consider now the best-case performance
of binary searching on the above mentioned riddle: the best case is attained when
the sequence of sets are of sizes 50, 25, 12, 6, 3 and finally 1. Hence, binary search
requires at least 6 iterations. Is there any method that also requires no more than 7
questions while attaining a best case performance of less than or equal to 5? If so,
then this alternative method can be seen as a strict improvement on binary search,
since it outperforms binary searching with respect to best case performance while
performing no worse than binary searching with respect to minmax performance.

A careful analysis will show that the answer to the above question is positive.
And, it gives an illustration of alternatives different than binary search that also
enjoy minmax optimality1, i.e. binary searching is not alone. Our improvements
identified in Chapters 2 and 3 build on this simple intuition to find strategies that

1 One solution is to start by subdividing the set in two groups of size 64 and 36.
If the number is in the larger set you proceed with binary search and terminate
in no more than 7 steps, and, if in the smaller set you subdivide it into two sets
of size 32 and 4. Again, if it is located in the larger set you proceed with binary
search and otherwise you finish in at most two more questions; i.e., a best case
of 4 questions in total with no more than 7 in the worst case.

15

enjoy better-than-binary-search performances under different metrics while conserv-
ing minmax optimality. Before we proceed to our description of steepest descent
methods, we discuss current alternatives to binary searching that are widely known
and available in the literature in the following.

Alternatives to binary searching

Several alternatives to binary searching are known in the literature, including linear
and grid searching (Knuth, 1998; Luenberger & Ye, 2018), interpolation strategies
(Yao & Yao, 1976; Perl & Reingold, 1977; Perl, Itai, & Avni, 1978; Argyros &
Khattri, 2013), and hybrid approaches (Brent, 1971; Bus & Dekker, 1975; Ridders,
1979; Novak & Ritter, 1993; Novak, Ritter, & Woźniakowski, 1995); all of which fall
short in terms of minmax optimality when compared to binary searching. However,
these are typically associated with alternative metrics of performance as will be
discussed ahead.

Linear and grid searching strategies are, simply put, a brute force approach to
searching. In discrete settings it is defined by a sequential read of all the entries of
the list until the list is either exhausted or the target value is found. When the given
list is unsorted or if it is sorted by frequency rather than the target feature, then no
better strategy can be followed. In the continuous setting, linear searching is done
on a finite grid over the space of alternatives, hence it is referred to as grid search.
For lists of size n, the worst case performance of linear searching is of n queries,
and, if the target value can assume any value on the list with equal probability,
then the expected query complexity is of n/2. However, if these probabilities are not
uniform, and the list is sorted by frequency in which the target value is chosen, then
the expected query complexity is of p1 +2p2 + ...+npn, where pk is the probability
that the target value be found in the k’th entry of the list. Under extremely skewed
distributions the expected query complexity of linear search will outperform binary
search, however, at a cost of an exponentially worst minmax performance. Thus,
this strategy only seems to be justified for small lists, lists sorted by frequency or
lists with unknown structure.

Interpolation based strategies are perhaps better illustrated under continuous
settings. Assuming function f : [a, b]→ R is sufficiently smooth, interpolation error
bounds guarantee tighter approximations to the root the higher the degree of the
interpolation, and, the smaller interval [a, b] is. This can then be exploited to pro-
duce sequential approximations to the root that converge at orders of convergence
above one, and hence, the query complexity of interpolation strategies are of the
order of log log 1/ϵ where ϵ is the target precision. For this reason, under the condi-
tions of tight interpolation bounds, fast convergence to the root may be guaranteed.
Classical examples of interpolation based strategies include the secant method and
Newton/quasi-Newton methods. In the discrete setting, under the assumption that
the list was generated by sorting n independent random samples from a uniform
distribution, linear interpolation also turns out to achieve an expected query com-
plexity of the order of log logn which is known to be optimal on the average (Yao &
Yao, 1976). Hence, in either setting, interpolation based strategies achieve exponen-
tially faster convergence to a solution when compared to binary searching. However,
this also comes at the cost of an exponentially worse minmax performance since
interpolation search may reduce to grid searching under misspecified conditions, i.e.

16

when the list is not generated by sorted samples of a uniform distribution or when
the function does not provide tight interpolation bounds at initialization.

Hybrid methods attempt to alleviate the trade-off of interpolation strategies
typically by alternating between binary and interpolation steps. Good examples of
this can be found in (Brent, 1971; Bus & Dekker, 1975; Ridders, 1979; Novak et al.,
1995). State of the art solvers have often opted for hybrid approaches since they
achieve orders of convergence only slightly less than unconstrained interpolation
approaches. And, if at least one binary step is taken every k steps, they can guarantee
that the method will take no more than k times the number of iterations that binary
search would require overall. Nevertheless, binary searching will always find instances
where interpolation is not helpful, and hence, even hybrid approaches may come at
a high cost under non-smooth conditions, or, in the discrete setting, when the list is
not generated by sorting samples from a uniform distribution. The natural goal that
arises in the construction of hybrid methods is, of course, to minimize the trade-off
between the benefits of interpolation and the benefits of binary searching. What
are the fundamental trade-offs between minmax and alternative metrics (average
or asymptotic)? Can high levels of asymptotic or average performance be achieved
with little or no trade-off on minmax performance?

The answer to the above question is, once again, positive. And, in the following
chapter we will show that almost always no trade-off of minmax performance is
needed to achieve high orders of convergence and/or high average performance.
And, the ITP method described therein is one way to achieve this.

1.2 On steepest-descent searching

Descent direction methods are iterative approximation techniques that attempt to
produce near optimal solutions to single or multi objective optimization problems
(Knuth, 1998; Boyd & Vandenberghe, 2009; Nesterov, 2018). They start with an
initial estimate x in S and iteratively (i) compute a descent direction d, i.e. a
direction in which f(x + αd) is locally decreasing with respect to α > 0, and (ii)
calculate a step-size α producing a new estimate xnew ← xold + αd such that
f(xnew) < f(xold). For single objective first order methods, the computation of
the descent direction d typically involves the querying of the gradient ∇f(·) of the
objective function on the current estimate x; and, the construction of the step-size
α > 0 typically involves the implementation of a line-search technique which queries
the function value over multiple points on the line x+αd. These two operations are
performed alternately and selectively until an output x̂ can be found, and, the overall
computational cost is the combination of all gradient and function values queried
throughout the process, as well as any other higher dimensional derivative computed
by the method of choice. Here, a satisfying output x̂ can usually be pinpointed when
some pre-defined measure of proximity to optimal conditions is sufficiently small (e.g.
when ∇f(x) is less than some pre-specified tolerance ϵ > 0). Thus (iii) a verification
of this condition is added to the iterative process to terminate the search. Combining
these we can represent the classical descent direction searching methods with the
following diagram:

17

Fig. 1.2: Schematic diagram of the descent direction algorithms. Here Q1 to
Q3 represent the key computations in the algorithm where a query is typically
performed. In Q1, first order derivatives or derivatives of higher order are
computed in order to construct a descent direction, in Q2 a line search is
performed which typically involves querying the function value on multiple
points in order to find a local minima over the line or simply to find a point
that satisfies some sufficient decrease condition, and in Q3 the data collected
in Q1 and Q2 are typically evaluated to estimate whether satisfiable proximity
to a solution has been reached.

For single objective optimization, when d is defined as d = −∇f(x) then the de-
scent direction method is called the steepest descent method or simply the gradient
descent method, irrespective of how α or the stopping criteria are defined (Armijo,
1966; Fliege & Svaiter, 2000). For multi objective optimization, the steepest descent
direction defined in (Fliege & Svaiter, 2000) is a direction constructed in the in-
tersection of the negative subspaces of the gradients of all the objective functions
simultaneously. This direction is defined and discussed in detail in Chapter 5. The
computation of α in Q2, on the other hand, typically reduces to a one dimensional
searching problem (Armijo, 1966; Fliege & Svaiter, 2000; Fliege, Vaz, & Vicente,
2019; Truong & Nguyen, 2021) of the type considered in Chapter 4, thus, hopefully
this thesis provides improvements on both building blocks of the standard descent
direction approach. Finally, the stopping criteria is verified, typically by analysing
queried data obtained throughout the run in queries Q1 and Q2: this may be through
verification of stagnation of objective function, of estimated solution, or more di-
rectly by verification of the gradient value on the estimated solution. In Chapter 5,
we also propose a new and improved measure of proximity to critical conditions for
multi objective optimization problems which directly translate to natural choices for
Q3 discussed therein.

There are several reasons for the popularity of the steepest descent method and
it’s variants. Perhaps, first and foremost it has often been the method of choice
due to it’s simplicity and ease of generalization to different classes of problems,
and, to the very least has served as a benchmark of performance over which other
methods typically aim at improving on (Knuth, 1998; Nocedal & Wright, 2006; Boyd
& Vandenberghe, 2009; Nesterov, 2018). A well known fact amongst practitioners is
that higher order interpolative methods such as Newton-type methods and/or quasi-
Newton methods typically perform better than simple steepest descent strategies
(Fletcher, 1987; Conn, Gould, & Toint, 2000; Nocedal & Wright, 2006; Luenberger
& Ye, 2018), however, a perhaps more known fact amongst theoreticians is that over
broad classes of problems the gradient method actually happens to produce near
optimal performance guarantees with respect to worst case metrics (Cartis, Gould,
& Toint, 2010; Nesterov, 2018). And, in fact, Newton’s method despite accelerated
asymptotic performance in the proximity of the solution to smooth functions, the
added cost of computing second order derivatives has been shown to have no benefit

18

when the worst case performance is taken into account; see (Cartis et al., 2010) for
a proof of this fact when the objective function is assumed to be twice continuously
differentiable, bounded from below, and with bounded Lipschitz continuous gradient.

In the following we provide two worst case results from (Nesterov, 2018) which
demonstrate the near optimality of the gradient method over strongly convex func-
tions. A function f : Rn → R is said to be strongly convex, also referred to as µ−
strong convex, if it is continuously differentiable and there exists a constant µ > 0
such that for every x,y ∈ Rn we have

f(y) ≥ f(x) +∇f(x)T (y − x) + 1
2
µ||y − x||2.

And, we refer the reader to Theorems 2.1.12 and 2.1.14 in Chapter 2 of (Nesterov,
2018) for a more complete statement of the inequalities as well as the full proofs
(also of interest to the reader might be Theorems 3.2.1 and 3.2.2 where similar
inequalities are proved without strong convexity).

Theorem 1 (Lower bound for first order methods - Strong Convexity).
For any x0 ∈ S and any constants µ,L > 0 for every method in which xk ∈ x0 +
Lin{∇f(x0), ...,∇f(xk−1)} there exists an infinity differentiable µ−strong convex
function f with L−Lipschitz continuous gradients such that:

||xk − x∗|| ≥ ck||x0 − x∗||; (1.2)

where c ∈ (0, 1) is a function of µ and L, and x∗ is the global minima of f .

Theorem 2 (Upper bound for steepest descent - Strong Convexity). For
any x0 ∈ S and any µ−strongly convex function f with L−Lipschitz continuous
gradients, the steepest descent method implemented with α = 1/(L + µ) produces
estimates xk such that:

||xk − x∗|| ≤ Ck||x0 − x∗||; (1.3)

where C ∈ (0, 1) is a function of µ and L, and x∗ is the global minima of f .

Theorem 1 provides a hard limit on the worst-case speed of convergence of first order
methods, i.e. methods in which the estimates xk are produced by linear combinations
of the directions entailed by the gradients on all previously visited points xk ∈
x0+Lin{∇f(x0), ...,∇f(xk−1)}. Simultaneously, Theorem 2 shows that the gradient
descent method matches that speed of convergence up to the value of the constant C
which is greater than c. For tighter and improved first order methods that produces
a value of C that match the lower-bound c refer to the accelerated gradient methods
in (Nesterov, 2018) and the related literature.

The point of Theorems 1 and 2 is that over the class of strongly convex functions
with Lipschitz continuous gradients, the steepest descent method is near optimal
with respect to worst-case performance for first order methods. In this way, the
steepest descent method occupies a similar position that binary searching takes
amongst the class of one dimensional solvers, albeit with slightly weaker guaran-
tees. We emphasize however, that this near optimal worst-case performance of the
gradient method is dependent on both the class of functions considered, as well as
the metric of proximity adopted to quantify the distance to the desired solution. In
this thesis, specifically in Chapter 5, we assume no form of convexity on the class of

19

functions under consideration, but only that the functions are lower-bounded and
have Lipschitz continuous gradients. For this class of problems much weaker worst
case guarantees are known, and, the production of an optimal lower-bound similar
to Theorem 1 remains an open problem as pointed out by previous authors (Cartis
et al., 2010; Nesterov, 2018). To the best of our knowledge, the best worst-case guar-
antees produced by first order methods in the literature so far are again attained
by the steepest descent method, and, rather than upper-bounding the distance to
the optimal solution x∗ in decision space they upper-bound the equivalent metric in
gradient space, i.e. upper-bounding the norm of the gradient. They are of the form:

Theorem 3 (Upper bound for steepest descent - No Convexity). For any
x0 ∈ S and any function f with L−Lipschitz continuous gradients, the steepest
descent method (implemented with either Armijo-backtracking, constant step-size or
exact minimization) produces estimates xt for t = 1, ..., k such that:

min
t=1,...,k

||∇f(xt)|| ≤ C/
√
k; (1.4)

where C > 0 is a function of f,x0 and L.

And thus proximity to critical conditions are ensured at the rate of ∼ 1/
√
k. This

will translate to proximity to a desired solution x∗ if additional assumptions are
made on the objective function such as convexity or strong convexity (Zhou, 2018).
Furthermore, as shown in Theorem 1.2.4 of (Nesterov, 2018), if the function is as-
sumed to be twice continuously differentiable (in the above result it is only assumed
to be differentiable once) then the speed at which the estimate xk approaches the
solution x∗ is shown to be of the order of ∼ Ck for some C ∈ (0, 1) when x0 is initi-
ated sufficiently close to x∗, similar to the guarantee given in Theorem 2. Hence, the
guarantee in Theorem 3 seems to be the most fundamental convergence result for
multi-variate optimization from which more complex ones are derived when more
regularity assumptions on the objective function are made.

For multi-objective optimization, a similar result to Theorem 3 was first derived
in (Fliege et al., 2019), and, to the best of our knowledge, has remained the best
worst-case guarantee produced by first order methods in the multi-objective opti-
mization literature so far under equivalent assumptions on the objective functions.
The multi-objective steepest descent equivalent, first proposed in (Fliege & Svaiter,
2000) and analysed in (Fliege et al., 2019), requires computing all objective functions
in each iteration in order to iteratively produce a measure of proximity to critical
conditions similar to ||∇f(·)|| ≤ ϵ at a ∼ 1/

√
k speed. In Chapter 5, amongst other

results, we provide what we believe to be an improvement on this upper-bound for
the multi-objective optimization case; albeit making use of a new descent direction
as well as a new metric of proximity to critical conditions in gradient space which
significantly differs from the one defined in (Fliege & Svaiter, 2000) and (Fliege
et al., 2019). With our construction we provide a new worst-case guarantee which
approximates critical conditions with an incremental scheme which requires only
two gradient computations per iteration rather than computing all gradients as the
original full-batch scheme. And thus, we produce for our metric a ∼ 1/

√
k speed of

convergence as in Theorem 3, requiring only a fraction of the number of gradient
computations as the original results.

20

References

Argyros, I. K., & Khattri, S. K. (2013). On the secant method. Journal of
Complexity , 29 (6), 454-471.

Armijo, L. (1966). Minimization of functions having lipschitz continuous first
partial derivatives. Pacific Journal of Mathematics, 16 (1), 1-3.

Boyd, S., & Vandenberghe, L. (2009). Convex optimization. In (7th ed.).
Cambridge, UK: Cambridge University Press.

Brent, R. P. (1971). An algorithm with guaranteed convergence for finding
a zero of a function. The Computer Journal , 14 (4), 422–425. doi:
https://doi.org/10.1093/comjnl/14.4.422

Bus, J. C. P., & Dekker, T. J. (1975). Two efficient algorithms with guaranteed
convergence for finding a zero of a function. ACM Transactions on
Mathematical Software, 1 (4), 330–345. doi: https://doi.org/10.1145/
355656.355659

Cannizzo, F. (2018). Fast and vectorizable alternative to binary search in O(1)
applicable to a wide domain of sorted arrays of floating point numbers.
Journal of Parallel and Distributed Computing , 113 (5), 37. doi: https://
doi.org/10.1016/j.jpdc.2017.10.007

Cartis, C., Gould, N. I. M., & Toint, P. L. (2010, September). On the complex-
ity of steepest descent, newton’s and regularized newton’s methods for
nonconvex unconstrained optimization problems. SIAM Journal on Op-
timization, 20 (6), 2833-2852. doi: https://doi.org/10.1137/090774100

Conn, A. R., Gould, N. I. M., & Toint, P. L. (2000). Trust region methods.
SIAM Society for Industrial and Applied Mathematics.

Fletcher, R. (1987). Practical methods of optimization (Second ed.). New
York, NY, USA: John Wiley & Sons.

Fliege, J., & Svaiter, B. F. (2000). Steepest descent methods for multicriteria
optimization. Mathematical Methods of Operations Research, 51 , 479-
494. doi: https://doi.org/10.1007/s001860000043

Fliege, J., Vaz, A. I. F., & Vicente, L. N. (2019). Complexity of gradi-
ent descent for multiobjective optimization. Optimization Methods and
Software, 34 (5), 949-959. doi: https://doi.org/10.1080/10556788.2018
.1510928

Knuth, D. E. (1998). The art of computer programming - sorting and search-
ing. In (2nd ed., Vol. 3, chap. 6.2). Addison-Wesley.

Luenberger, D. G., & Ye, Y. (2018). Linear and nonlinear programming. In
(4th ed.). Springer International Publishing.

Nesterov, Y. (2018). Lectures on convex optimization. In (2nd ed., Vol. 137).
Springer International Publishing.

Nocedal, J., & Wright, S. J. (2006). Numerical optimization (second ed.).
New York, NY, USA: Springer.

Novak, E., & Ritter, K. (1993). Some complexity results for zero finding for
univariate functions. Journal of Complexity , 9 (1), 15-40. doi: https://
doi.org/10.1006/jcom.1993.1003

21

Novak, E., Ritter, K., & Woźniakowski, H. (1995). Average-case optimal-
ity of a hybrid secant-bisection method. Mathematics of Computation,
64 (212), 1517–1539. doi: https://doi.org/10.2307/2153369

Oliveira, I. F. D. (2013). Optimal black-box sequential searching. Mas-
ters Thesis of the Mathematics Department of the Federal Univer-
sity of Minas Gerais. Retrieved from http://hdl.handle.net/1843/

EABA-98VHPQ (Advised by Professor R.H.C. Takahashi.)
Perl, Y., Itai, A., & Avni, H. (1978). Interpolation search—a log log n

search. Communications of the ACM , 21 , 550-553. doi: https://doi.org/
10.1145/359545.359557

Perl, Y., & Reingold, E. M. (1977). Understanding the complexity of in-
terpolation search. Information Processing Letters, 6 (6), 219-222. doi:
https://doi.org/10.1016/0020-0190(77)90072-2

Ridders, C. (1979). A new algorithm for computing a single root of a real con-
tinuous function. IEEE Transactions on Circuits and Systems, 26 (11),
979–980. doi: https://doi.org/10.1109/TCS.1979.1084580

Sikorski, K. (1982). Bisection is optimal. Numerische Mathematik , 40 (1),
111-117. doi: https://doi.org/10.1007/BF01459080

Truong, T. T., & Nguyen, H. T. (2021, September). Backtracking gradient
descent method and some applications in large scale optimisation. part
2: Algorithms and experiments. Applied Mathematics & Optimization,
84 , 2557–2586. doi: https://doi.org/10.1007/s00245-020-09718-8

Vieira, D. A. G., Takahashi, R. H. C., & Saldanha, R. R. (2012). Multicriteria
optimization with a multiobjective golden section line search. Mathe-
matical Programming , 131 (1-2), 131–161. Retrieved from https://doi

.org/10.1007/s10107-010-0347-9 doi: 10.1007/s10107-010-0347-9
Yao, A. C., & Yao, F. F. (1976). The complexity of searching an ordered ran-

dom table. Proceedings of the Seventeenth Annual Symposium on Foun-
dations of Computer Science, 173-177. doi: https://doi.org/10.1109/
SFCS.1976.32

Zhou, X. (2018). On the fenchel duality between strong convexity and lipschitz
continuous gradient. arXiv Preprint arXiv:1803.06573 .

http://hdl.handle.net/1843/EABA-98VHPQ
http://hdl.handle.net/1843/EABA-98VHPQ
https://doi.org/10.1007/s10107-010-0347-9
https://doi.org/10.1007/s10107-010-0347-9

2

The root searching problem

Summary. This chapter, contained in pages 22 to 54, is based on the the paper An
enhancement of the bisection method average performance preserving minmax opti-
mality first submitted to the Transactions on Mathematical Software on the 2nd of
February of 2019 (Oliveira & Takahashi, 2020). A final revised version was accepted
for publication on the 9th of September of 2020 and can be found in the following
address: https://dl.acm.org/doi/10.1145/3423597. In the current form presented
below, minor changes are made to make for a more coherent read within the context
of this thesis, however, it is kept self contained and an independent read of Chapter
2 is possible without need of reference to external material within the thesis. Any
major content foreign to the original paper is highlighted with dark blue text, and,
the remainder, where little or no alteration is made, we present the content in plain
black text.

In this chapter we formally study the root searching problem introduced in Chapter
1. In particular we identify a class of root searching methods that surprisingly out-
perform the bisection method on the average performance while retaining minmax
optimality. The improvement on the average applies for any continuous distribu-
tional hypothesis. We also pinpoint and recommend one specific method within the
class and show that under mild initial conditions it can attain an order of conver-
gence of up to 1.618, i.e. the same as the secant method. Hence we attain both an
improved average performance and an improved order of convergence with no cost
on the minmax optimality of the bisection method. Numerical experiments were also
conducted and we find that on regular functions, the proposed method required a
number of function evaluations similar to current state-of-the-art methods, about
24% to 37% of the total evaluations required by the bisection procedure. In the
case of problems with non-regular functions, the proposed method performed signif-
icantly better than the state of the art, requiring on average about 82% of the total
evaluations required for the bisection method while the other methods were out-
performed by the minmax bound of the bisection method. In the worst case, while
current state of the art commercial solvers required between two to three times
the number of function evaluations of the bisection, our proposed method remained
within the minmax bounds of the bisection method.

https://dl.acm.org/doi/10.1145/3423597
ivoda
Typewritten Text
22

23

2.1 Introduction

The traditional root-searching problem (Brent, 1971; Bus & Dekker, 1975; Argyros
& Khattri, 2013) is stated as:

Find x∗ such that f(x∗) = 0; (2.1)

where f : R 7→ R is a continuous function over an interval [a, b] such that f(a)f(b) <
0. The Intermediate Value Theorem guarantees the existence of a solution to (2.1)
and, if furthermore f is assumed to be strictly monotone, then uniqueness can be
guaranteed. Close variants to (2.1) include searching lists (Yao & Yao, 1976), roots
of polynomials (McNamee & Pan, 2012) as well as searching for minima of univariate
functions (Kiefer, 1953).

Broadly speaking, a numerical solver for problem (2.1) is an algorithm that
evaluates function f , f ′ or any other higher order derivative on a finite number of
points and returns an estimate x̂ that satisfies |x̂ − x∗| ≤ ϵ for some pre-specified
precision ϵ > 0 (Press, Teukolsky, Vetterling, & Flannery, 2007; Chapra & Canale,
2010). Solvers are typically initiated with the values a, b, f(a), f(b) and ϵ, and dif-
ferent solvers often specify recursively how to obtain x̃k from the data collected
on previously visited points x̃0, x̃1, ..., x̃k−1, terminating when x̂ = x̃n is identified.
Methods of constructing such sequences are referred to by several different names in-
cluding root-searching methods (Gal & Miranker, 1977), non-linear equation solvers
(Nerinckx & Haegemans, 1976) and zero-finding (Le, 1985b) to mention a few.

Different methods mainly differ on (i) the type of data collected on each iteration,
(ii) the mapping from the collected data to the next point x̃k ∈ (a, b), and (iii)
the stopping criterion. Methods that require a minimal amount of function and
derivative evaluations are preferred (Traub, 1963; Nerinckx & Haegemans, 1976; Le,
1985a; Shrager, 1985; Novak, 1989; Ritter, 1994; Wu, 2005; Zhang, 2011), due to the
assumption that on average the time to evaluate the function and/or its derivative
is much more costly (or time consuming) than any other calculations involved in the
execution of the method itself. We also make use of this assumption henceforth.

Throughout, whenever we refer to problem (2.1), function f : R → R will be
assumed to be continuous and strictly monotone, however, the methods presented
in this text are suitable for dealing with a more general version of the root-searching
problem which may be stated as:

Find x∗ ∈ [a, b] such that f(x∗ − δ)f(x∗ + δ) ≤ 0 (2.2)

for some δ less than or equal to a pre-specified value ϵ > 0, given that f(a)f(b) < 0.
Function monotonicity and solution uniqueness are not assumed and, in the case of
discontinuous functions, the solution to this problem may be a point of discontinuity
in which the sign of the function changes.

Binary Search

Binary search, particularly known as the bisection method within the field, is a
cornerstone in the analysis of root-searching methods (Nerinckx & Haegemans, 1976;
Sikorski, 1982; Le, 1985a; Sikorski, 1985; Novak, Ritter, &Woźniakowski, 1995; Press
et al., 2007; Chapra & Canale, 2010). Both its historical and practical importance are

24

hard to overestimate as its use in tackling problem (2.1) is widespread, many times as
a subroutine of a parent algorithm (Eiger, Sikorski, & Stenger, 1984; Kearfott, 1987;
Vrahatis, 1988). It should be noticed that the bisection method also solves problem
(2.2). The bisection method begins with the value of a, b, ya = f(a) and yb = f(b)
and at each iteration it stores and updates lower and upper bounds for the location
of x∗. This is done by evaluating f at x̃k = (ak + bk)/2 and if f(x̃k)f(ak) > 0 then
ak+1 and bk+1 are defined as ak+1 = x̃k and bk+1 = bk; otherwise if f(x̃k)f(bk) > 0
then ak+1 = ak and bk+1 = x̃k; and if f(x̃k) = 0 then ak+1 = bk+1 = x̃k. The
bisection method stops when ∆n, defined as ∆n ≡ bn − an, satisfies ∆n ≤ 2ϵ and
then returns x̂ = (an + bn)/2. This is summarized in the following algorithm where
the indices are omitted and x̃ in line (i) is taken to be (a+ b)/2.

Algorithm 0: The Bracketing Algorithm

Input: a, b, ya, yb, f, ϵ
(i). Choose x̃ ∈ (a, b) and evaluate f(x̃);
(ii). Update a and b according to the values of f(a), f(b) and f(x̃);
(iii). If ∆ > 2ϵ return to (i), else terminate.

Output: x̂ = (a+ b)/2

Perhaps the strongest appeal to use the bisection method is in its minmax op-
timality:

Theorem 4. For any instance of problem (2.1) the bisection method requires at
most:

n1/2 =

⌈
log2

b− a

2ϵ

⌉
(2.3)

function evaluations to locate x̂ such that |x̂−x∗| ≤ ϵ. No other method can provide
the same guarantee in less than n1/2 function evaluations.

Theorem 4 has a few remarkable implications. A first and immediate conse-
quence is that the bisection method is optimal in a worst case sense over the class of
continuous and strictly monotone functions. This also happens to be true for several
other classes of functions. For more on the optimality of the bisection method and
related proofs refer to Sikorski (1982, 1985). A second implication, perhaps more
subtle, is that the upper bound (2.3) cannot be broken by any method, even if it is
allowed at each step to evaluate derivatives of f on any finite amount of points. Thus
Theorem 4 identifies the critical information to be obtained at each step, namely
the comparative value between f(x̃) and the values of f(a) and f(b).

We point out that the bisection method almost always requires n1/2 iterations,
because it can only terminate in less iterations if (luckily) it happens that f(x̃k) = 0
for some k < n1/2. The subset of points the bisection method can visit for a given
problem is always finite, thus, for any distribution over instances of (2.1) that induces
a continuous distribution D∗ over (a, b) such that x∗ ∼ D∗, the expected number of
iterations required by the bisection method will always1 be n1/2. Notice also that

1 More precisely, an early stop will occur only when any of the points of the sequence
generated by the bisection algorithm, truncated up to the machine finite precision,

25

Theorem 4 does not guarantee uniqueness of the bisection method, i.e. depending on
the initial conditions of (2.1) other choices of x̃ different than x1/2 can also bracket
the solution up to ϵ precision with n1/2 iterations. Is it possible to characterize
the class of methods that attain minmax optimality? Can any minmax method
terminate in less than n1/2 iterations without (luckily) finding f(x̃k) = 0?

In this chapter, we answer the above questions affirmatively. The intuition behind
our findings is that the bisection almost always produces an estimate x̂ with a
precision higher than needed, i.e. with an error less than ϵ. Hence, a careful analysis
allows one to backtrack and see how much one can deviate from the bisection while
still remaining within the bounds of Theorem 4. It turns out that the class of minmax
strategies is characterized by a neighborhood of x1/2 in each iteration (described in
Theorem 5 ahead). This class encompasses both randomized and interpolation based
strategies, and more importantly, a refined use of the available information at each
iteration allows for an improvement on the average performance as well as the order
of convergence with no risk of requiring more than n1/2 iterations (both of which
are defined ahead).

Chapter Outline.

In the remainder of this section we provide a small review of different metrics of
performance for root searching methods, namely: asymptotic order of convergence
and average performance. Then, in Section 2.2 we characterize the class of minmax
optimal root-searching methods that, as the bisection method, solve problem (2.1)
with ϵ precision in no more than n1/2 iterations. Then, we identify one specific min-
max method and show that under regularity conditions a super-linear convergence
can be attained. Finally, we test our method against several classical alternatives
to the bisection method and show both theoretical and empirical evidence that this
method is a viable substitute not only to the bisection method, but also to current
state of the art solvers. This chapter is also followed by an appendix with detailed
proofs, a line-by-line pseudo-code for ease of implementation of the main method,
and additional numerical experiments.

2.1.1 Other metrics and competing strategies

Other root-searching methods pattern similarly to the bisection method. They be-
long to a broad class of root-searching methods which we will refer to as bracketing
algorithms. Bracketing algorithms mainly differ on the choice of x̃ in line (i) of Algo-
rithm 0, though, some also differ in the stopping criterion in line (iii) as well as the
output x̂. We emphasize that many root searching algorithms belong to this class.
Below we display the choice for x̃ in line (i) for the bisection method, the regula-falsi
and Ridders’ rule:

Bisection: x1/2 =
a+ b

2
; (2.4)

Regula-Falsi: xf =
bf(a)− af(b)

f(a)− f(b)
; (2.5)

becomes equal to the value of x∗, also truncated up to the machine precision. The
probability of such an event will be negligible for any continuous distribution D∗.

26

Ridders’ Rule: xr = x1/2 ±
(b− a)f(x1/2)

2
√

f(x1/2)2 − f(a)f(b)
. (2.6)

The regula-falsi method combines linear interpolation with bracketing in an at-
tempt to attain faster convergence (Dowell & Jarratt, 1971; Novak et al., 1995). It
can be shown that, under regularity conditions, one of the end points, a or b, will
always converge to x∗, though the stopping criterion b − a ≤ 2ϵ may never be sat-
isfied. In fact, in the proximity of the root of strictly convex (or concave) functions
b− a never converges to 0. Alternatively, Ridders’ method performs an exponential
interpolation between the extremities a and b and an auxiliary point, namely x1/2.
This comes at a cost of two function evaluations per iteration to attempt faster
convergence (Ridders, 1979; Press et al., 2007) and, since both f(xr) and f(x1/2)
are evaluated once in each iteration, the method performs at most twice the amount
of function evaluations as the bisection method in order to terminate given that line
(ii) of Algorithm 0 updates the values of a and b accordingly.

Remark 1. Other popular methods, such as Brent’s method (Brent, 1971; Zhang,
2011; Stage, 2013), Muller’s method (Muller, 1956), Bus and Dekker’s method (Bus
& Dekker, 1975) etc., can often be slightly modified to keep track of upper and
lower bounds for x∗ after each function evaluation. Thus, virtually any method can
be patterned as a bracketing algorithm.

Deviation from the bisection method is often motivated by one of two reasons: to
attain a higher order of convergence (Muller, 1956; Brent, 1971; Le, 1985b, 1985a;
Norton, 1985; Shrager, 1985; Ford, 1995; Wu, 2005; Segura, 2010; Zhang, 2011;
Argyros & Khattri, 2013) or attain an improved average performance (Novak, 1989;
Ritter, 1994; Novak et al., 1995). Throughout the literature the improvements have
always come at the expense of the worst-case performance of the bisection method.
The average performance of a given method is defined as the expected number of
function evaluations required in order to locate x̂ such that |x̂ − x∗| ≤ ϵ for some
pre-specified distribution over instances of (2.1). Order of convergence, in turn, is
typically defined if there exist x̄, β ≥ 1 and α > 0 in R such that:

lim
k→∞

|x̃k+1 − x̄|
|x̃k − x̄|β = α; (2.7)

in which case we say that the sequence converges with an order of convergence β
and with an asymptotic error constant α; and thus the term order of convergence
is used interchangeably with asymptotic performance. Of course, when dealing with
methods that are guaranteed to terminate after a finite amount of iterations (such as
Ridders rule, or the Bisection Method etc.), then in order to use definition (2.7) the
finite sequence is either extended to an infinite sequence by ignoring the stopping
criteria, or simply a slightly different definition is adopted where |x̃k+1 −x̄| is written
as a function of |x̃k − x̄| decomposed in two parts: the first being α|x̃k − x̄|β and
the second containing terms of higher order.

Methods with high order of convergence are often interpreted as requiring less
function evaluations than methods with low order of convergence. If β > 1, and
if the asymptotic behavior described in (2.7) kicks in early on, then, the number
of iterations can be shown to be of the order of ∼ log2 log2(1/ϵ) with constants
that depend on ∆0, α and β. However, even when convergence is guaranteed and
conditions for a high order of convergence are met, asymptotic behavior may only

27

kick in very late in a run. Hence, order of convergence often does not translate to
number of function evaluations in a finite iteration scenario. Secondly, high order of
convergence is typically a local property that requires proximity to the solution x∗,
and finding an initial solution x0 that is sufficiently close to x∗ is, in general, as hard
as solving the original problem. Hence, upper-bounds on the worst case behavior are
critical to ensure that a high order of convergence can be attained in the first place,
and thus, even state of the art solvers that aim for high orders of convergence will
typically also ensure upper-bounds on the worst case behavior which, as mentioned
earlier, have always been weaker than bisection guarantees (Brent, 1971; Bus &
Dekker, 1975).

When compared to asymptotic results, much less literature has been produced on
the average performance of root-searching methods (Graf, Novak, & Papageorgiou,
1989; Novak, 1989; Novak & Ritter, 1993; Ritter, 1994; Novak et al., 1995). While
high order of convergence is typically dependent on local properties (as discussed
above), average results are dependent on the assumed distribution over instances
of (2.1). Under the correct distributional assumption considerable speedups can be
attained, see (Novak et al., 1995) for a nice example. However, as in the asymptotic
results, accelerated convergence has always come at the cost of a reduced worst-case
performance. And, since general purpose solvers typically operate uninformed of the
underlying distributional framework, the use of distribution specific methods can be
hard to justify in practice. Hence, similarly to asymptotic results, the state of the
art of methods crafted for high average performance are also accompanied by worst
case guarantees which, again, are weaker than bisection guarantees (Novak et al.,
1995).

In this study, we identify and test a simple and yet novel method that improves
on the bisection method by yielding a superior average and asymptotic performance
without loss on the minmax performance. This is a key difference from former stud-
ies, since any method that proposes to improve on the bisection method and yet
lacks on minmax optimality will always find situations where the traditional bisec-
tion method is preferred. Our improvements on the average applies to any distri-
bution over instances of (2.1) that induce a continuous distribution D∗ over (a, b)
where x∗ ∼ D∗, and our improvements on the order of convergence require similar
smoothness conditions as those required by traditional methods.

2.2 Main results

In this section we will show that in the neighborhood of x1/2 there almost always
exists an interval I such that any choice of x̃ ∈ I retains overall minmax optimality.
This result is precisely stated in Theorem 5 ahead, however, before the main state-
ment we will begin by showing how this can be derived quite simply for the first
iteration of Algorithm 0.

First notice that the value of n1/2 in (2.3) can be equivalently identified as the

minimal integer n ∈ N that satisfies the inequality: ∆0 ≤ ϵ2(n+1). This inequality,
and slight variations of it, will play a key role in our analysis. Assuming n1/2 ≥ 1,
after one iteration of Algorithm 0 a minmax method is left with at most n1/2 − 1
function evaluations. Thus, we find that:

∆1 ≤ ϵ2n1/2 . (2.8)

28

Notice furthermore that if ∆i+1 is not null then it can take only two possible values,
either ∆i+1 = x̃i− ai or ∆i+1 = bi− x̃i depending on the value of the sign of f(x̃i).
From this and a little algebra one can show that:

∆i+1 = ∆i/2± |x̃i − x1/2|. (2.9)

Combining (2.8) and (2.9) we find that a minmax optimal strategy must have x̃ in
the first iteration satisfying the following inequality:

|x̃− x1/2| ≤ ϵ2n1/2 − b− a

2
. (2.10)

The right hand side of equation (2.10) is null when (b− a)/ϵ = 2m for some m ∈ N
and otherwise it is equal to some positive value r < (b − a)/2. It is only in the
unlikely case when (b0 − a0)/ϵ is a power of 2 that x1/2 will turn out to be the
unique minmax strategy in step 1. In every other situation, the bisection method is
not alone. This is illustrated by Figure 2.1.

Fig. 2.1: There exists a symmetrical interval in the neighborhood of x1/2 in
which any x̃ within this set is minmax optimal. These points cut the original
interval (a, b) into two sub-intervals of lengths ∆ that are no greater than
ψ ≡ ϵ · 2n1/2 , which corresponds to the maximal interval length in which the
search is still guaranteed to finish in n1/2 − 1 iterations.

In the following we apply the same reasoning to find the equivalent of (2.10) for
further iterations beyond the first one; we find that:

Theorem 5. A bracketing strategy is minmax optimal if and only if in every itera-
tion k = 0, 1, 2... of Algorithm 0, the value of x̃ = x̃k in line (i) satisfies:

|x̃k − x1/2| ≤ ϵ2n1/2−k − bk − ak

2
; (2.11)

when n1/2 − k = ⌈log2
bk−ak

2ϵ
⌉, and, in any other case x̃k can assume any value in

(ak, bk).

Theorem 5 identifies the full class of bracketing methods that, as the bisection
method, attain minmax optimality. The bisection method is, in general, accompanied
by a broad class of minmax strategies given that (b0 − a0)/ϵ is not equal to 2m for
some m ∈ N. The value of x̃ may be chosen by means of interpolation, randomization

29

or any other means as long as x̃ remains within the neighborhood established by
Theorem 5. This result delimits a rich class of root searching strategies that, with
respect to minmax performance, are all equally viable.

One remarkable consequence of Theorem 5 is that virtually any minmax strategy
is a viable substitute to the traditional bisection method, specifically when average
performances are taken into consideration. This is so because, as mentioned earlier,
for any distribution over instances of (2.1) that induces a continuous distribution
D∗ over (a, b) with x∗ ∼ D∗ the expected number of iterations the bisection method
requires to terminate is always n1/2. A trivial consequence of Theorem 5 is that
n1/2 is an upper bound on the expected number of iterations for the entire class of
minmax strategies. Thus, amongst this class, the bisection method happens to have
the worst possible average performance over continuous distributions:

Corollary 1. For any distribution over instances of (2.1) that induces a continuous
distribution D∗ over (a, b) such that x∗ ∼ D∗ the expected number of iterations nav

of any minmax strategy satisfies:

nav ≤ n1/2. (2.12)

The inequality in Corollary 1 may, given the appropriate conditions, be strict. For
example, it is possible to show that if ⌈(b − a)/ϵ⌉ ≠ 2k for some k ∈ N, then, a
random sample over the interval defined by (2.11) suffices as a choice of x̃ to attain
a strict inequality in (2.12). Hence, even a random “blind guess” strategy within
the set identified by Theorem 5 can outperform the traditional bisection method
on average, while keeping the bound on the worst-case performance. It should be
noticed, however, that a “blind guess” strategy would still lead to an nav close
to n1/2 since a typical run of a blind guess strategy quickly degenerates (2.11) to
a very small neighbourhood around x1/2 after a few “bad guesses”. However, the
inequality in Corollary 1 may lead to a relevant difference between nav and n1/2 if
the rule for choosing x̃ is based on information that allows the choice of favorable
cuts with an increased probability. This information may be provided, for instance,
by interpolation-based guesses.

Before we proceed to the recommendation of one specific minmax method, we
discuss two natural variations of (2.11) with immediate applications in the crafting
of methods for solving (2.1). The first: if we wish to characterize the class of methods
that require at most nmax iterations with nmax > n1/2, all that is needed is to re-
place n1/2 in (2.11) with nmax. Thus, this variation of inequality (2.11) encompasses
previous methods that provided weaker than minmax guarantees (such as Ridders’
rule (Ridders, 1979), Bus and Dekker (Bus & Dekker, 1975) etc.), and, one immedi-
ate application of this inequality is that, for example, it is easy to use it to build an
“enhancement of Ridders’ method” and of others. Since (2.11) with nmax > n1/2 will
always be initiated with at least nmax−n1/2 unconstrained iterations, then this can
be done quite simply by implementing any higher-order interpolation method while
keeping track of the range described by the modified version of (2.11). Thus, we can
easily guarantee the same worst-case performance of Ridders’ Method while attain-
ing the order of convergence of the fastest known method, and, if x̃ falls outside the
bounds of the inequality then all one needs to do is to fall back to binary search. A
second variation of (2.11) is obtained by a more conservative approach. While (2.11)
alone can guarantee an upper-bound on the global iteration count, it does not avoid

30

Algorithm 0 from “wasting” free iterations gained throughout a run. While a brack-
eting strategy with x̃ ∈ (a, b) can guarantee that ∆k+1 < ∆k, it cannot guarantee
that ⌈log2(bk+1 − ak+1)/2ϵ⌉ < ⌈log2(bk − ak)/2ϵ⌉. Hence, in order to guarantee that
Algorithm 0 is “at least as good” as the bisection method in reducing the iteration
count at each step we must enforce that |x̃k−x1/2| ≤ ϵ2⌈log2(bk−ak)/2ϵ⌉− (bk−ak)/2
even when minmax optimality does not require it. This second variation of (2.11)
can be of interest in scenarios where traditional oracles (such as interpolation based
estimators) are unreliable and “wasteful” iterations are expected, but also in situa-
tions in which function f contains discontinuities or contains flat regions, which are
known to be difficult corner cases for interpolation based methods.

In summary, Theorem 5 and the variations pointed out seem to provide a rich set
of viable alternatives to the bisection method that can: (i) retain minmax optimality
and (ii) terminate on average in nav iterations with nav ≤ n1/2 for any continuous
distribution D∗. And, if we adopt the first and less restrictive variation thereof
we can easily (iii) attain orders of convergence compatible with the fastest known
methods; and, if we adopt the second and more restrictive version thereof we can
(iv) avoid “wasteful” iterations if estimators are unreliable.

2.2.1 One interpolation based minmax strategy

In this subsection we identify one specific minmax strategy that, given the appropri-
ate conditions, converges at a super-linear rate. The basic idea of the strategy hereby
delineated is to make a projection of a linear estimator onto the subset of minmax
methods described by (2.11). However, before the projection step we perform a trun-
cation on the estimator for reasons that will become clear later on. For ease of read
and implementation, we provide in the appendix a full line-by-line description of the
ITP method algorithm delineated and analysed in this section.

Interpolation, Truncation and Projection (ITP Method).

Let ϕ denote the golden ratio 1
2
(1+

√
5) and let κ1 ∈ R+ and κ2 ∈ [1, 1+ ϕ) be two

user provided constants. Now define:

σ ≡ sign(x1/2 − xf) and δ ≡ κ1|b− a|κ2 , (2.13)

where x1/2 and xf are as in (2.4) and (2.5) respectively, and define xt as

xt ≡ xf + σδ (2.14)

if δ ≤ |x1/2 − xf | and xt ≡ x1/2 otherwise. We refer to xt as the truncation of xf .
Also, in accordance with (2.11), define the minmax radius rk and interval Ik as

rk ≡ ϵ2n1/2−k − bk−ak
2

and Ik ≡
[
x1/2 − rk , x1/2 + rk

]
(2.15)

Now, in each step k the ITP method defines x̃k as the projection of xt onto Ik, i.e.

xITP ≡
{
xt if |xt − x1/2| ≤ rk;
x1/2 − σrk otherwise.

(2.16)

In the following theorem we will assume that the minmax interval I0 around
x1/2 in the first iteration k = 0 is “not too small”, i.e. that 2r0

b0−a0
is not much

31

smaller than one. This avoids the collapsing of Ik to x1/2 (in which case the ITP
method behaves identical to the bisection method), and also, as shown in the proof
of Theorem 6, in combination with the other conditions it guarantees that the steady
state with super-linear convergence can be reached within a few iterations.

Theorem 6. Assume that Algorithm 0 is implemented with x̃ equal to xITP , and
function f is C2 with x∗ a simple root. Then, if a and b are sufficiently close to x∗

and I0 is not too small, the residual ∆ converges to zero with an order of convergence
of
√
κ2, i.e. there exists κ3 > 0 such that:

∆n+1 ∼ κ3∆
√
κ2

n ; (2.17)

where κ3 = κ
1/(1+

√
κ2)

1 if κ2 > 1 and κ3 = 1/2 otherwise.

Proof. The overall structure of the proof is as follows: We begin by analyzing Algo-
rithm 0 when x̃ is taken to be equal to xt (without the projection). We will see that
if function f is in C2 and x∗ is a simple root, then Algorithm 0 with x̃ = xt produces
a residual ∆n that vanishes with an order of convergence of

√
κ2. The proof makes

use of a lemma that describes the worst case behavior of the unprojected xt. Then,
in order to prove the asymptotic behavior of the ITP method, we show that under
the conditions in which xt converges with an order of

√
κ2, if I0 is not too small,

then in each step the minmax interval described by (2.15) will increase and eventu-
ally allow that x̃ be any value within (an, bn). At this point onward the projection
step will continually be equal to xt and thus x̃ will also have an order of convergence
of
√
κ2. The detailed development of this proof is presented in the appendix. ⊓⊔

Since κ2 ∈ [1, ϕ + 1), the asymptotic order of convergence
√
κ2 in Theorem 6

can range anywhere in [1, ϕ). The upper bound, given by the golden ratio, is the
asymptotic order of convergence of the secant method. Hence, the ITP method
provides means of attaining a high order of convergence while preserving minmax
optimality.

While higher values of κ2 are associated with a higher order of convergence, as
a consequence of Lemma 1 (and the discussions within the proof of Theorem 6), a
higher order of convergence comes at a trade-off. The first and immediate trade-off
of opting for high values of κ2 is that the worst case guarantees of xt (but not
of x̃) are weakened with higher values of κ2. Thus, if Algorithm 0 has produced
“spare iterations” after several successful steps in making ∆n+1 < ∆n/2, then,
iterations that do not produce ∆n+1 ≤ ∆n/2 can more rapidly spend those “spare
iterations”. The second trade-off associated with high values of κ2 is that the super
linear convergence is only attained when the error δ is greater than the estimation
error |xf−x∗|. For low values of κ2 this steady state condition is more easily attained
than for high values, i.e. for high values of κ2, the values of a and b must be initiated
closer to x∗ in order for xt to be initiated at steady state condition. Thus, if the
estimation error is high in the first iterations, then an over-commitment with the
estimator xf associated with the choice of a high value for κ2 might come at a cost of
having (2.15) degenerating to the bisection method early on. The choice of a constant
κ1 is associated with a similar trade-off: low values for κ1 produce tighter asymptotic
behavior, and, higher values facilitate the initiation of steady state behavior of xt

attained when the truncation error δ is greater than the estimation error |xf − x∗|.

32

In the following we additionally provide two images in figures 2.2 and 2.3 to
illustrate the construction of the ITP method:

Fig. 2.2: The ITP method is constructed in three steps. In the first step
(illustrated in the left most image) a simple linear interpolation is performed;
then, in the second step (illustrated in the middle) the truncation perturbs
the linear estimate towards the mid point; and, finally, in the third step (in
the right) a verification is made of whether the point is in the minmax interval
and if so it is kept and if not the closest point in the interval is taken.

Fig. 2.3: An illustration of all three steps of the ITP method combined. The
thin blue line represents the regula-falsi linear interpolation, in red we depict
the minmax interval, and, the thick blue line represents the result of all three
operations of interpolation, truncation and projection producing the ITP es-
timate.

Remark 2. The truncation step makes xt = x1/2+σδ if δ ≤ |x1/2−xf | and xt = x1/2

otherwise. The intuition behind this operation is firstly to attempt to make ∆k+1

less than ∆k/2. Notice that this only occurs when x̃ is chosen to be some value
between x1/2 and x∗. Thus, since xf is our “best guess” for the location of x∗ the
truncation is performed from xf towards x1/2 as defined in σ and with size δ. When
δ is greater than |x1/2 − xf |, then x1/2 + σδ is no longer between the values of xf

33

and x1/2 and thus a more sensible choice is to make xt = x1/2 and wait for δ to
become sufficiently small, i.e. less than |x1/2 − xf |, in the next iteration.

Remark 3. If in (2.15) we use nmax instead of n1/2 with nmax > n1/2, then, the first
nmax − n1/2 iterations of Algorithm 0 are always free to query any value of x̃ in
(a, b). Only if the residuals do not satisfy ∆k+1 ≤ ∆k/2 for several iterations it will
occur that the constraint in (2.15) reduces the region of (a, b) available to query.
Thus, by adopting nmax greater than n1/2 a few things happen: (i) Algorithm 0 is
already initiated with x̃ = xt; and (ii) a more “forgiving” version of the ITP method
is obtained that allows for a few iterations with ∆k+1 > ∆k/2 before reducing (2.15)
to x1/2; and (iii) the first iterations of Algorithm 0, despite not being minmax, will
be accompanied by the worst-case bounds of Lemma 1. Thus, the condition “if I0
is not too small” in Theorem 6 can be dropped in exchange for relaxing minmax
optimality by adopting nmax > n1/2.

2.2.2 Additional axiomatic support for the ITP method

In this subsection we provide one additional, simple yet elegant, support for the
ITP method via an axiomatic construction similar to the one found in “Why linear
interpolation” by Pownuk 2017 (Pownuk & Kreinovich, 2017). The axiomatic con-
struction is not complete in the sense that it pin-points the ITP method uniquely,
however, it does discard other methods proposed so far in the literature. For sim-
plicity, and without loss of generality, we assume henceforth that ya = f(a) < 0 and
yb = f(b) > 0.

First we state our base premises.

P1 (Memory Limitation) The choice of x̃ is a function continuously dependent
on a, b, ya, yb and ϵ alone, i.e.: x̃ = g(a, b, ya, yb, ϵ).
P2 (Domain Translation) If the domain of f is shifted by a constant amount, so
will the choice of x̃, i.e. g(a+∆, b+∆, ya, yb, ϵ) = g(a, b, ya, yb, ϵ) +∆.
P3 (Domain Dilation) If the domain of f is expanded (or contracted) by a con-
stant amount, so will the choice of x̃, i.e. g(κa, κb, ya, yb, κϵ) = κg(a, b, ya, yb, ϵ).
P4 (Range Rescaling) The choice of x̃ is invariant to re-scaling of the range of
f , i.e. g(a, b, κya, κyb, ϵ) = g(a, b, ya, yb, ϵ).
P5 (Range Orientation) The choice of x̃ is consistent with the orientation in the
range of f , i.e. g(−1, 1, ya, yb, ϵ) = −g(−1, 1,−yb,−ya, ϵ).

Premise P1 describes the choice of x̃ as a function of the information on the
extremities a and b together with the stopping criteria ϵ. The limitation entailed in
P1 is that it does not allow for the use of auxiliary points, nor does it allow for the
use of other data, such as data collected from previous iterations or the evaluation
of derivatives of f . The main motivation for P1 is to “require no more information
than the bisection method” since by Theorem 4 no more information is needed for
worst case optimality; i.e. it can be viewed as an instance of Occam’s razor principle.
Premises P2 to P5 are scale-invariance premises. These describe the hypothesis that
no metric is assumed, and thus, the types of methods of choice of x̃ that are desirable
must be metric independent in both the domain and range of f . Before we present
the following result, we provide one definition, namely, that a function h defined
from R2 to R2 is anti-symmetric if h(−u, v) = −h(u, v) for all u, v, then:

34

Theorem 7. Assume that x̃ satisfies P1 to P5; then there exists an anti-symmetric
function h : R2 → [−1, 1] such that:

x̃ = x1/2 +
b− a

2
h

(
yb + ya
ya − yb

,
b− a

ϵ

)
. (2.18)

Proof. Using P1 and P2 we may rewrite x̃ = g(a, b, ya, yb, ϵ) as g
(
a− b−a

2
+ b−a

2
,

b− b−a
2

+ b−a
2

, ya, yb, ϵ
)
and thus

x̃ = a+b
2

+ g
(
− b−a

2
, b−a

2
, ya, yb, ϵ

)
.

Now, from P3 we obtain g
(
− b−a

2
, b−a

2
, ya, yb, ϵ

)
= b−a

2
g
(
−1, 1, ya, yb, 2ϵ

b−a

)
; and

thus
x̃ = a+b

2
+ b−a

2
g
(
−1, 1, ya, yb, 2ϵ

b−a

)
.

Furthermore, from P4 we obtain g
(
−1, 1, ya, yb, 2ϵ

b−a

)
= g

(
−1, 1, 1, yb/ya, 2ϵ

b−a

)
which gives us

x̃ = a+b
2

+ b−a
2

g
(
−1, 1, 1, yb

ya
, 2ϵ
b−a

)
.

This uniquely determines x̃ up to the function of two parameters H(z, w) =
g(−1, 1, 1, z, w), where z = yb

ya
and w = 2ϵ

b−a
. All that is left is to algebraically

rewrite yb
ya

as a function of yb+ya
ya−yb

which we omit for simplicity (as well as recognize

that 2ϵ
b−a

is a function of b−a
ϵ

). This completes the proof that

x̃ = x1/2 +
b− a

2
h

(
yb + ya
ya − yb

,
b− a

ϵ

)
.

The anti-symmetry of h(·, ·) follows imetidately from P5. ⊓⊔

Theorem 7 states that any metric-independent strategy that satisfies P1 must
be of the form (2.18). It reduces the class of functions of g that map from R4 to R to
a significantly smaller class that is completely determined up to one function h from
R2 to R. Notice that the bisection method, the regula-falsi and the ITP method
are of this form however Ridder’s method is not (and to the best of our knowledge,
neither is Brent’s method or other methods previously proposed in the literature).
However the bisection method is recovered via reduction when h(u, v) = 0 and the
Regula-falsi method is recovered when h(u, v) = u. The ITP method makes full use
of both input parameters. Theorem 7 thus provides yet one more elegant support for
the use of the ITP method as it is the only known method to satisfy all 5 premises
and be sensitive to both input parameters.

Remark 4. Notice that since h in (2.18) is anti-symmetric, it will always satisfy
h(0, v) = 0, i.e., when |ya| = |yb| then x̃ is chosen to be x1/2. This is quite intuitive,
since, when |ya| = |yb| one cannot distinguish a side, neither a nor b, that is more
likely to be closer to the root. Conversely, when |ya| < |yb|, it is intuitive to expect
a to be closer to the root than b, and thus one can expect to find that a choice
of x̃ < x1/2 is wisest (or more efficient). This property is guaranteed by the ITP
construction and also by the regula-falsi, however it is not ensured by Premises P1

to P5 alone (the bisection method does not obey this monotonicity property).

35

2.3 Numerical experiments

In this section we perform numerical experiments to compare the ITP method with
other well known strategies. Our empirical tests will assume that ya = f(a) and
yb = f(b) are given in advance and that the x axis has been scaled so that a =
−1, b = 1. With these initial conditions we adopt ϵ = 10−10. Additional experiments
are also provided in the appendix with further results.

We implement the ITP method with parameters κ1 = 0.1, κ2 = 2 and nmax =
n1/2, and use the standard stopping criterion of b−a ≤ 2ϵ. As mentioned earlier, low
values of κ1 and high values of κ2 are associated with a faster speed of convergence,
however, if a and b are not initiated sufficiently close to x∗ then the possibility of
producing ∆n+1 > ∆n/2 can make (2.11) rapidly degenerate to x1/2 forfeiting the
high speed of convergence. On the opposite end, high values of κ1 and low values of κ2

can achieve ∆n+1 ≤ ∆n/2 more easily, however with weaker asymptotic guarantees.
Given that for our initial conditions ∆0 is equal to 2, then with κ1 = 0.1 and κ2 = 2
we have that κ1∆

κ2
0 = 0.4 which corresponds to 20% of the initial interval. Hence,

the ITP method initiates quite conservatively by producing xt = x1/2 for any value
of xf within a 20% radius of x1/2, and by never producing xt within a 20% distance
of any of the extremities in the first iteration. Beyond the first iteration, the ITP
method will behave more or less conservatively according to whether ∆k+1 is greater
than or less than ∆k/2.

The bisection method will require at most n1/2 = 34 iterations to terminate
under the initial conditions considered. Moreover, the first iteration of the bi-
section method chooses x̃ = 0 and the remaining subproblem with ∆ = 1 re-
quires at most 33 function evaluations to terminate. In fact any interval (a, b)
of length in ∆ ≤ 1.7179869184 also terminates in at most 33 iterations since
ϵ234 is equal to 1.7179869184. Thus, in the first iteration, any value of x̃ ∈ I =
[−0.7179869184, 0.7179869184] is also minmax optimal, and this is precisely what
Theorem 5 produces. Suppose for the sake of argument that in the first iteration,
the projection in the ITP strategy is given by x̃ = 0.7179869184. Then, there are
two possible situations: (i) if f(x̃) > 0 then we are left with an interval of length
1.7179869184 in which case equation (2.11) will from that iteration onward reduce
to x1/2 and thus terminate in 33 iterations; (ii) if f(x̃) ≤ 0 then we are left with
an interval of length 0.2820130816 for which at most 31 iterations are necessary to
locate the root. In case (ii) we have reduced two iterations at no cost and in case
(i) nothing is lost since a minmax optimal method terminates in no more than n1/2

iterations.

2.3.1 Comparison with other methods

In the following, we present a table that shows the respective count of function
evaluations2 required by the ITP strategy with the aforementioned parameters and
several well established methods known in the literature: Ridders, Regula-Falsi, Illi-
nois, Secant and Matlab’s fzero routine3. With the exception of Matlab’s fzero and

2 The table shows the number of function evaluations and not the number of itera-
tions because the Ridders method performs two function evaluations per iteration.

3 In this experiment, we employed the Matlab’s fzero function in its Revision
1.1.12.3, from 2013/11/03. As stated in MathWork’s documentation, the algo-

36

the secant method, all routines were implemented with the standard stopping cri-
terion of b − a ≤ 2ϵ. Since the secant method does not attempt bracketing, it was
implemented with the stopping criterion of min{|f(a)|, |f(b)|} ≤ ϵ, and hence it
is displayed separately. Matlab’s fzero has by default an inbuilt hybrid stopping
criterion that evaluates relative error in x or absolute error in x according to the
working regime. Under the conditions of this experiment, all instances made use of
the absolute error criterion, i.e. it’s stopping criterion is equivalent to the remaining
methods, and hence it is displayed jointly with the remainder. For more on Matlab’s
fzero internal working see Remark 5.

The experiments are performed on twenty four functions. The first twelve func-
tions are infinitely differentiable and contain only one simple root over the domain
[−1, 1]. With the exception of the two polynomials and the Weirstrass approxima-
tion, the regular functions are also strictly monotone within the domain [−1, 1]. The
remaining twelve functions in Table 2.1 are irregular. The first four ones contain ze-
ros with multiplicity higher than one, the following four contain discontinuities, and
the last four ones contain multiple roots (some of which also contain discontinuities).
See Remark 6 for more on the irregular functions.

Remark 5. By design, Matlab’s fzero does not return x̂ = x1/2 and instead it returns
a or b depending on the values of ya or yb. There are justifiable reasons for this
choice, however, it may (if unlucky) produce a final estimate x̂ that does not satisfy
|x̂−x∗| ≤ ϵ despite b− a ≤ 2ϵ. Typically, the standard stopping criterion b− a ≤ 2ϵ
is motivated by the fact that the absolute error of x̂ = x1/2 is less than or equal to
ϵ, hence if our comparison between methods required that the estimate x̂ produced
by Matlab satisfied |x̂−x∗| ≤ ϵ, then Matlab’s reported function count in Tables 2.1
and 2.2 would increase. Thus, strictly speaking, what we provide should be treated
as a lower bound on Matlab’s function count. And therefore, to better compare
Matlab’s performance with respect to the other methods, we keep track of the final
estimate provided by Matlab and indicate if the last step’s “gamble” was successful
in producing |x̂− x∗| ≤ ϵ or not in Table 2.1. We denote with ‘*’ each unsuccessful
run.

Remark 6. We point out that function count while searching ill-behaved functions
may reflect different aspects of the overall performance of a method. For example,
when searching an interval with multiple roots, different methods need not converge
to the same solution, and hence one is not necessarily measuring only the “speed of
convergence”. Rather, what is being measured with function count is a combination
of the number of iterations a method takes to isolate one root plus the iterations
it takes in converging to the isolated root, i.e. a root-searching equivalent of the
well known trade-off between exploration versus exploitation. Previous authors have
also recognized the importance of evaluating non-linear solvers on functions with
these types of irregularities (Rice, 1969; Nerinckx & Haegemans, 1976) due to their
recurrence in applications.

rithm, created by T. Dekker, uses a combination of bisection, secant and inverse
quadratic interpolation methods. An Algol 60 version, with some improvements,
is given by R. P. Brent in “Algorithms for Minimization Without Derivatives”,
Prentice-Hall, 1973. The fzero routine is based on a Fortran version presented in
Forsythe, Malcolm and Moler, “Computer Methods for Mathematical Computa-
tions”, Prentice-Hall, 1976.

37

Table 2.1: Number of function evaluations required to solve (2.1) for various
regular (the first group of twelve functions) and non-regular functions (the
second group of twelve functions) where binary searching would require ex-
actly 34 function evaluations. We mark ‘∞’ any run that reached our cap of
104 function evaluations without solving (2.1), and, we mark with an ‘*’ the
instances where Matlab made a premature stop providing an estimate x̂ that
does not satisfy the specified condition |x̂− x∗| ≤ ϵ.

R
eg
.F
.

Illin
o
is

M
a
tla

b

R
id
d
ers

IT
P

S
eca

n
t

Well Behaved Func.
Lambert xex − 1 32 9 8 8 8 10
Trigonometric 1 tan(x− 1

10
) 47 6 7 10 8 6

Trigonometric 2 sin(x) + 1
2

11 7 6 14 8 6
Polynomial 1 4x5 + x2 + 1 ∞ 12 8 14 18 8
Polynomial 2 x+ x10 − 1 ∞ 11 10 10 16 13
Exponential πx − e 15 8 7 8 8 7
Logarithmic ln |x− 10

9
| 71 10 8 10 7 9

Posynomial 1
3
+ sign(x)|x|1/3 + x3 ∞ 15 8 24 32 10

Weierstrass 1
103

+
∑10

i=1 sin(πi3x
2

)/πi3 ∞ 11 9 16 9 11

Poly.Frac. (x+ 2
3
)/(x+ 101

100
) ∞ 13 10 14 21 ∞

Normal CDF Φ(x− 1)−
√
2/4 13 8 6 16 8 7

Normal PDF ϕ(x− 1)−
√
2/4 19 10 8 14 8 9

Ill-Behaved Func.
Non-simple Zero:
Polynomial 3 (x106 − 1)3 ∞ 144 63 62 34 33
Exp.Poly. ex(x106 − 1)3 ∞ 146 93 62 34 77
Tan.Poly. (x− 1

3
)2 tan−1(x− 1

3
) ∞ 110 95 56 34 27

Circles sign(3x+1)
(
1−
√

1−(3x+1)2/92
)
∞ 26 64 36 23 21

Discontinuous:

Step Function (x> 1−106

106
)(1+106

106
)−1 ∞ 155 36 68 34 ∞

Geometric 1
21x−1

(x ̸= 1
21
) ∞ 69 35* 46 34 46

Trunc.Poly.
(
x
2

)2
+ ⌈x

2
⌉ − 1

2
34 38 33 26 34 14

Staircase ⌈10x−1⌉+ 1
2

31 34 29* 24 31 ∞
Multiple Roots:

Noisy Line x+
sin(x106)

10
+ 1

103
25 20 18 24 19 104

Warsaw (x>−1)(1+sin(1
x+1

))−1 21 12 9 16 12 49

Sawtooth 202x−2

⌊
2x+10−2

2·10−2

⌋
− 1

10
2 2 2 6 10 2

Sawtooth Cube
(
202x−2

⌊
2x+10−2

2·10−2

⌋
− 1

10

)3
∞ 96 78 42 34 4

Global Average ∞ 40.5 27.1 26.1 20.2 ∞
Global Worst Case ∞ 155 95 68 34 ∞

38

Table 2.2: Central Tendency Metrics. An empirical measure of the mode,
the median and the mean of each convergent method is displayed. Since the
mode is non-unique in several cases, we display the mid-range of the smallest
interval with a unique maximum frequency count within the interval.

R
eg
.F
.

Illin
o
is

M
a
tla

b

R
id
d
ers

IT
P

S
eca

n
t
Well Behaved Functions -
Mode ∞ 10.5 8 14 8 8
Median 59 10 8 14 8 9.5
Mean ∞ 10.0 7.9 13.2 12.6 ∞

Ill-Behaved Functions -
Mode ∞ 145 34.5 25 34 ∞
Median ∞ 82.5 35.5 39 34 39.5
Mean ∞ 71.0 46.3 39.0 27.8 ∞

The last row of Table 2.1 summarizes the global performance of each method by
providing the empirical average and the empirical worst case over all runs. When
considering all functions a clear correlation between the global average and the global
worst can be observed since the ranking of performance with respect to average or
with respect to worst case produce identical results. The ITP method required the
least amount of function evaluations followed by Ridders, Matlab, Illinois and then
Regula Falsi respectively under both criteria. With respect to worst case Ridders
method required twice as many function evaluations than the ITP method, Matlab
required almost three times the number of function evaluations as the ITP method
and Illinois neared four and a half times the number of function evaluations as the
ITP method. The ITP method, with respect to worst case, required the same number
of iterations as the bisection method as predicted by Theorem 5. Now, with respect to
the global average Ridders method required roughly 30% more function evaluations
than the ITP method, Matlab required roughly 34% more function evaluations than
the ITP method and Illinois roughly twice the number of iterations of the ITP
method. The bisection method, when compared to the ITP method, required roughly
70% more iterations than it’s counterpart. It is worth noticing that in a multi-
objective sense only the ITP method truly outperformed the bisection method since
every other method was outperformed by the bisection method in at least 25%
of the functions considered. One possible (informal) explanation for the observed
correlation between global worst case and global average is that the fraction π of
instances of (2.1) that require interpolation based methods to fall back to their
worst case guarantees are the dominant term in the global average. This seems
to be the case for small values of ϵ when nav is of the order of nav ≈ πnworst +
(1−π)nasymptotic ≈ π(C1 log

b−a
ϵ

)+ (1−π)(C2 log log
b−a
ϵ

) as is somewhat expected
for interpolation based methods, i.e. for averages of this form we have that nav ∼
π(C1 log

b−a
ϵ

) for small values of ϵ/(b− a).
It can be observed in Table 2.1 that the behavior of the algorithms when dealing

with the regular functions is much different from their behavior when non-regular

39

functions are tackled. All algorithms present a much better performance for the reg-
ular functions. Table 2.2 provides three central tendency measures for each method
over each subset of functions: the Mean is estimated by averaging the number of
iterations required in each experiment; the Median is estimated by averaging the
two mid-values within each group; and, the Mode is estimated by taking the most
recurrent number within the experiments, and, when this is not unique we take the
mid-range of the interval which is simultaneously minimal and contains the most
amount of numbers produced by the experiment (eg. the mode of {0, 1, 1} is 1 and
of {0, 1, 1, 2, 2} is 1.5).

Well Behaved Functions

When considering only well behaved functions, Matlab and the ITP method seem
to attain similar performances (Matlab having a slight advantage if the numbers
are taken for their face value and the ITP method having a slight advantage if
Matlab’s numbers are taken as lower bound as explained in Remark 5). The ITP
and Matlab achieved the lowest mode and median simultaneously, while the mean
was minimized by Matlab alone. With respect to the mean we find that Illinois
method attained a performance between Matlab and ITP and was the next best
method under mode and mean metrics. Depending on the metric considered the
ITP method required roughly from 24% to 37% the number of function evaluations
as the bisection, and, Ridders method (the worst amongst the four methods that
converged on all instances) requires roughly from 39% to 41%. The Regula-Falsi
performed considerably worse than the other methods, and the well known fact that
the regula-falsi may never reach the stopping criterion b− a ≤ 2ϵ for locally convex
or concave functions is observed in practice quite often. Somewhat unexpectedly,
the secant method did not converge for one regular function which considerably
impaired it’s performance, however it attains a mode of 8.0 and a median of 9.5
which is close in performance to the ITP method and to Matlab’s fzero. We conclude
from this experiment on regular functions that for well behaved functions the ITP
method provides a performance that is competitive with state of the art methods
under different central tendency metrics.

Ill-Behaved Functions

For ill-behaved functions, the ITP method seems to outperform the other methods
with respect to central tendency metrics. It achieves the lowest median, which is
equal to the bisection, and the lowest mean, which is roughly twenty percent less
than bisection. Ridders method attained the lowest mode over ill-behaved functions,
however, it performed roughly 40% more iterations than the ITP method on the
average. Illinois performed very poorly under all metrics requiring more than twice
the number of iterations as the bisection on the average being followed by the secant
method and the regula falsi which did not converge on many instances. The Matlab’s
fzero and Ridders method (the second and third best in the category) required
more iterations than the bisection on most instances (roughly 60% of instances)
and Matlab performed worse than the bisection method when evaluated with any
central tendency metrics (from 1% to 36% worse than the bisection). From evaluating
the performance of methods over this subset of functions we conclude that over ill-
behaved functions the ITP method provides significant improvements in performance
when compared to state-of-the art methods under different central tendency metrics.

40

Of course, if a different set of functions had been chosen for this experiment, the
figures presented in the Table 2.1 would be different. It should be noticed that the
relative ordering of averages may be strongly modified by operations of removal of a
single row, which means that the averages should not be interpreted as if they meant
the expected average performance of the methods under some notion of distributions
over instances of (2.1). Due to the intrinsic difficulties involved in the construction
of proper samplings from distributions of functions, no attempt is developed here for
finding a numerical approximation of the average performances of the methods over
any such a distribution. In this way, the averages presented in Table 2.1 should be
interpreted only as rough proxies of the “average performances” of the algorithms.

In order to understand in greater detail the differences between the convergence
patterns of the algorithms, another set of runs is performed. As the Regula-Falsi was
found to be clearly worse than the other algorithms, it is not included in this analysis.
In first place, the convergence patterns in the case of regular functions is studied,
so the following functions that were used in the former experiment are employed
for this comparison: Lambert, Trigonometric 2, Exponential and Logarithm. Once
again, the initial (a, b) interval is set with a = −1 and b = 1. In this experiment,
all the algorithms employ an as stopping criterion the condition |x̂ − x∗| < 10−14,
in which x̂ represents the best current estimate of the solution and x∗ represents
the exact solution (which was previously recorded before the algorithm execution).
In the case of the ITP, Ridders and the Illinois algorithms, x̂ is calculated using
the expression of xf for the current interval extremes a and b. In the case of the
Secant and Matlab’s fzero, x̂ is the current solution of the method. Again, the ITP
algorithm parameters are defined as: κ1 = 0.1 and κ2 = 2. The evolution of the
indicator |x̂(k)− x∗| for all algorithms on the four functions is shown in Figure 2.4.

The results of this experiment may be sumarized as following:

• The main conclusion we make from this experiment is that, once again, most of
the algorithms considered here behave similarly in the set of regular functions
employed in this study. For instance, the number of function evaluations for
reaching error levels of 10−5, 10−10 and 10−15 are similar for most algorithms
in most problem instances.

• As noticeable exceptions, the Ridders algorithm is significantly better than the
other ones in the case of the Lambert function and significantly worse than the
other ones for Trigonometric 2 function, and the Secant algorithm is significantly
worse than the other ones in the case of Lambert function.

• A superlinear convergence trend can be inferred in all cases. Further experi-
ments, not represented in Figure 2.4, indicate that the relation |x̂(k+1)−x∗| ≈
α|x̂(k)−x∗|β fits the curves in that figure for β not smaller than 1.3, not greater
than 1.8, and nearly equal to 1.6 for most curves.

Finally, an experiment is presented in order to characterize the convergence
patterns of the ITP, in comparison with other algorithms, in the case of non-regular
functions. The Figure 2.5 presents the evolution of indicators log(|a(k) − x∗|) and
log(|b(k)−x∗|), for the algorithms ITP and Ridders, and log(|x̂−x∗|), for Matlab’s
fzero algorithm, as functions of the function evaluation count k, when the algorithms
are run on the function Polynomial 3, which has a root with multiplicity three in
the search interval. Once again, the initial (a, b) interval is set with a = −1 and
b = 1. The ITP algorithm employs the condition |b(k) − a(k)| < 10−14 as the
stopping criterion, and the other algorithms are stopped when k = 50. The ITP

41

1 2 3 4 5 6 7 8 9

-25

-20

-15

-10

-5

0 2 4 6 8 10 12

-20

-15

-10

-5

1 2 3 4 5 6 7

-20

-15

-10

-5

1 2 3 4 5 6 7 8

-15

-10

-5

0

Fig. 2.4: Evolution of log |x̂ − x∗|, for the methods: ITP (⋆), Ridders (+),
Illinois (■), Secant (▲) and Matlab’s fzero (•) in one run of each algorithm,
for the functions: “Lambert” (top left), “Trigonometric 2” (top right), “Ex-
ponential” (bottom left), “Logarithm” (bottom right). The stopping criterion
was |x̂ − x∗| < 10−14. The ITP parameters are set as κ1 = 0.1 and κ2 = 2.
The function evaluation count k is represented in the horizontal axis.

algorithm parameters are defined as: κ1 = 0.1 and κ2 = 2. The reference line
d(k) = log(2 · (1/2)k), which indicates the theoretical rate of convergence of the
bisection procedure, is also displayed in the figure.

It can be seen in Figure 2.5 that the behavior of the algorithms becomes rather
different in this case, when compared with the regular function cases. Regimes of
‘cautious steps’ appear, as the algorithms detect that interpolation information is
not reliable. In the case of ITP, this cautious regime approximately follows the same
convergence rate of the bisection method. On the other hand, the Matlab’s fzero
and the Ridders algorithms converge at much slower rates, as a consequence of the
trade-offs adopted in their design, which exchanged possible worst-case guarantees
for enhanced asymptotic performances.

2.4 Discussion

In this chapter we have identified a class of root-searching methods that outperform
the bisection method on the average performance while incurring in no additional
cost on the worst-case performance. We both characterize that class and verify,
somewhat surprisingly, that the traditional bisection method performs poorly on

42

10 20 30 40 50

-14

-12

-10

-8

-6

-4

-2

2

Fig. 2.5: Evolution of log(|a(k) − x∗|) and log(|b(k) − x∗|), for the methods
ITP (⋆) and Ridders (+), and of log |x̂ − x∗| for Matlab’s fzero (•), in one
run of each algorithm, for the function “Polynomial”. The stopping criterion
for the ITP method was |b(k) − a(k)| < 10−14, and for the other methods
k > 50 was adopted. The ITP parameters are set as κ1 = 0.1 and κ2 = 2. The
dot-dash line represents the reference line d(k) = log(2 · (1/2)k). The function
evaluation count k is represented in the horizontal axis.

the average when compared to other strategies within that class. Worst case perfor-
mance is taken over functions whose signal changes on a single point x∗ ∈ (a, b) and
the average result holds for any distribution over instances of (2.1) that induces a
continuous distribution D∗ over (a, b) such that x∗ ∼ D∗. The precise statements of
those findings are given in Theorem 5 and Corollary 1.

Following our characterization of the class of minmax strategies we then iden-
tified a specific rule, the ITP strategy, for constructing a more efficient bracketing
algorithm. As proven in Theorem 6, our method can attain an order of convergence
of up to 1.618, i.e. the same as the secant method, while retaining the minmax
optimality of the bisection method. In summary, the method is comprised of three
steps: Interpolation, Truncation and Projection, which transform the traditional
Regula-Falsi method into a minmax strategy with superlinear convergence.

Empirical results suggest that large gains can be expected, in terms of average
performance, when compared to both the traditional bisection method as well as
state of the art solvers. In the experiments presented here, the ITP required an
average of 24% to 37% of the total number of iterations required by the bisection
procedure over well behaved functions – a performance similar to that presented by
most other methods with superlinear convergence. And, for ill-behaved functions,
the average number of iterations required by ITP was roughly 82% of that required
by bisection and at most the same in the worst case – no other state of the art
method was capable of even matching the bisection method on the average. Hence,
the ITP method seems to outperform state of the art solvers in terms of empirical
performance when several metrics and regimes of operation are taken into consid-
eration. Furthermore, when taking into account the theoretical guarantees provided
by the ITP method, it seems to be a viable improvement on current practices in the

43

crafting of numerical solvers. And, since the recommended strategy makes use of
no more information than the aforementioned methods, the increase in performance
comes at no cost other than the computation of x̃ itself.

Historically, the bisection method has been the default method of choice when
little is known about the underlying function being investigated. This preference is
due to the minmax optimality of the traditional bisection method. Our results, how-
ever, show that this also has often been an inefficient choice. Here, we identified one
specific viable substitute to the bisection method, the ITP, that strictly outperforms
the traditional approach, concerning the expected number of iterations for reaching
the solution, while preserving the same minmax optimality. However, a perhaps more
important contribution of this chapter is the identification of a relatively unexplored
class of methods that cannot be outperformed in terms of worst-case performance
and thus deserves further investigation for the development of even more efficient
methods for future applications.

Future work

Other authors have reported that the stopping criteria can play a key role in the
performance of root-searching methods (Novak, 1989). Future work may include
investigating how different stopping criteria can further improve our findings. Pre-
liminary experiments (not reported here) suggest us that the number of iterations
can be substantially improved when the ITP parameters κ1, κ2 and nmax are fine-
tuned together with stopping criteria. Also, discrete analogues of the root-searching
problem (Perl, Itai, & Avni, 1978; Laber, Milidiú, & Pessoa, 2002), i.e. searching
through sorted arrays, as well as one-dimensional maximum searching (Kiefer, 1953)
can equally benefit if analogue results were to be obtained. As reflected in our numer-
ical results, our construction of x̃ in Algorithm 0 can benefit from smooth functions
in which xf is a good predictor; however, it may be possible to improve average
performance by modeling the root-searching problem as a game theoretic model.
This can be done by finding the Nash equilibrium for a game in which the choice of
D∗is performed by an adversarial agent and the choice of the root searching strategy
by an agent that wishes to minimize the average number of iterations.

2.A Appendix

2.A.1 Proof of Theorem 6

The following lemma describes the worst case behavior of Algorithm 0 when im-
plemented with x̃ equal to xt. This lemma is used within the proof of Theorem
6.

Lemma 1. Given that x̃ is taken to be equal to xt in line (i) of Algorithm 0 with
κ2 > 1, then the residual ∆n will satisfy ∆n ≤ 2/(2κ1 + κ1(κ2− 1)(n−n0))

1/(κ2−1)

for all n ≥ n0 where n0 ≡ ⌊log2 ∆0 +
1

κ2−1
log2(2κ1)⌋+.

Proof. In each step, the worst possible reduction in bracketing error ∆n happens
when xf is (very) close to one of the endpoints a or b and the reduction in the
bracketing error ∆ is all due to the perturbation δ towards the center. Notice that

44

when the perturbation δ is greater than |x1/2 − xf | then xt is taken to be equal to
x1/2, and, if xf is close to one of the endpoints a or b this will happen only when
κ1∆

κ2
n is greater than or equal to ∆n/2. Thus, for as long as

κ1∆
κ2
n ≥ ∆n/2,

Algorithm 0 must behave identically to the bisection method. Hence, combining this
with the fact that ∆n = ∆0/2

n we find that if κ1∆
κ2
0 ≥ ∆0/2 then xt = x1/2 for

every n that satisfies:
n ≤ log2 ∆0 +

1
κ2−1

log2(2κ1);

and if κ1∆
κ2
0 < ∆0/2 then xt never coincides with x1/2 for xf near the extrem-

ities a or b. Thus, large values of κ1 and small values of κ2 might enforce sev-
eral bisection-type steps, while sufficiently small values of ∆0 can enforce that
no bisection-type steps will take place. In either case, for n ≤ n0 where n0 ≡
⌊log2 ∆0 +

1
κ2−1

log2(2κ1)⌋+ we will have that ∆n ≤ ∆0/2
n.

Now, when n > n0 and xf is near one of the extremities a or b, the perturbation
δ will produce xt that differs from x1/2. Thus we find that in the worst case, for
n > n0, we have

∆n+1 = ∆n − κ1∆
κ2
n . (2.19)

Notice that the residual ∆n can be seen as a function from N to R, in other
words ∆n = ∆(n). Consider now a continuation of ∆n on the real line, i.e. a function
∆ : R→ R such that ∆(n) = ∆n. It is easy to see that ∆ : R→ R can easily be made
continuously differentiable. Also, if∆n satisfies (2.19) then∆n is a strictly decreasing
sequence and so the function ∆(t) may also be constructed to be decreasing, and,
since ∆n ≥ 0 then we have ∆(t) ≥ 0 for all t. Notice that these two properties imply
that |∆′(t)| must vanish for increasing values of t; combining this with the fact that
in (2.19) we have that |∆n+1 − ∆n| is strictly decreasing, we may then guarantee
that the continuation ∆(t) will also have |∆′(t)| strictly decreasing. Hence we may
derive that:

−κ1∆(t)κ2 = ∆(t+ 1)−∆(t) =

∫ t+1

t

∆′(τ)dτ ≥ min
τ∈(t,t+1)

∆′(τ) = ∆′(t).

This leads to the following differential inequality:

− κ1∆(t)κ2 ≥ ∆′(t), (2.20)

that holds for t > t0 ≡ n0. Defining y = ∆ we have that:

−κ1y
κ2 ≥ dy

dt
=⇒ −dt ≥ dy

κ1yκ2

thus,∫ t

t0

−dt ≥
∫ yt

y0

dy

κ1yκ2
=⇒ −t+ t0 ≥

1

−κ1(κ2 − 1)y
(κ2−1)
t

+
1

κ1(κ2 − 1)y
(κ2−1)
0

from which we find by isolating y (and substituting y = ∆ and t = n):

∆n ≤ ∆n0 /
(
1 + κ1(κ2 − 1)∆(κ2−1)

n0
(n− n0)

)1/(κ2−1)

. (2.21)

45

Notice now that ∆n0 must be equal to ∆0/2
n0 since in the worst case we will never

have f(x̃) = 0 in any iteration, and so

∆n0 =
∆0

2⌊log2 ∆0+(log2 2κ1)/(κ2−1)⌋ ≤
2∆0

2log2 ∆0+(log2 2κ1)/(κ2−1)
=

2

(2κ1)1/(κ2−1)
;

and also,
∆n0 = ∆0/2

⌊log2 ∆0+(log2 2κ1)/(κ2−1)⌋ ≥ 1/(2κ1)
1/(κ2−1).

Combining these inequalities with (2.21) we have

∆n ≤ 2/(2κ1)
1/(κ2−1) /

(
1 + κ1(κ2 − 1)(1/(2κ1)

1/(κ2−1))(κ2−1)(n− n0)
)1/(κ2−1)

;

which simplifies to ∆n ≤ 2/(2κ1 + κ1(κ2 − 1)(n− n0))
1/(κ2−1) as desired. ⊓⊔

Proof (Proof of Theorem 6:).
The Lemma 1 has established the worst case behavior of Algorithm 0 when

x̃ = xt. Now, we will analyze the asymptotic behavior of Algorithm 0. In order to do
so we first recognize a simple property of Algorithm 0 that is a direct consequence of
Lemma 1, namely that: if x̃ = xt, then neither of the end points a or b are retained
indefinitely as the regula falsi. The proof of this claim follows immediately from
Lemma 1 since if one of the endpoints were retained, then the residual would be
lower bounded by either x∗ − a or b− x∗ depending on which endpoint is retained.
We will see that for sufficiently large n, even if one of the endpoints is retained for
several iterations, it must be updated eventually, and, for sufficiently large n the
algorithm will enter a steady state in which the order of convergence becomes

√
κ2.

It is well known that if f ∈ C2 and f ′(x∗) ̸= 0 then by linear interpolation
bounds we can guarantee that |xf − x∗| satisfies

|xf − x∗| =
∣∣∣∣ f ′′(x∗)

2f ′(x∗)
(b− x∗)(x∗ − a)

∣∣∣∣+O(b− a)3;

which for simplicity we will represent as |xf−x∗| ∼ |b−x∗||a−x∗|. Since |x̃−xf | ≤ δ
when x̃ = xt we find that:

|x̃− x∗| ∼ |b− x∗||a− x∗|+ κ1|b− a|κ2 .

Consider now a specific iteration k = n − 1 in which a and b are equal to (not
necessarily in this order) x̃n−1 and x̃n−2, i.e. an iteration without retention. On
that iteration we have:

ϵn ∼ ϵn−1ϵn−2 + κ1ϵ
κ2
n−2 ∼ ϵn−1ϵn−2 + ϵκ2

n−2. (2.22)

If there exists a real number β such that ϵn−1 ∼ ϵβn−2 then,

ϵn ∼ ϵ
β+1
β

n−1 + ϵ
κ2
β

n−1. (2.23)

If κ2 ≥ β+1 then ϵn ∼ ϵ
β+1
β

n−1 which implies that β = (β+1)/β and hence β = ϕ.
But from κ2 ≥ β + 1 we would find that κ2 ≥ ϕ+ 1, which leads to a contradiction
since κ2 was chosen to be in [1, ϕ + 1). Thus, it must be that κ2 < β + 1 and so

ϵn ∼ ϵ
κ2
β

n−1. This in turn implies that β = κ2/β and thus the order of convergence

46

must be β =
√
κ2. Furthermore, plugging β =

√
κ2 into the inequality κ2 < β + 1

we find that 0 ≤ κ2 < ϕ+1 which leads to no contradiction. Now, by combining the

fact that ϵn ∼ κ1ϵ
κ2
n−2 and that ϵn ∼ κ3ϵ

√
κ2

n−1 we then deduce that the asymptotic

error constant κ3 is equal to κ
1/(1+

√
κ2)

1 when κ2 > 1. And, if κ2 = 1 then, if (a, b)
is initiated sufficiently close to x∗, from the definition of xt we find that xt will
coincide with x1/2, and for x1/2 the asymptotic error constant is equal to 1/2.

We emphasize that we just found that if (2.22) holds, then, the dominant term
in (2.23) is the one associated with the perturbation δ instead of the estimation
error of xf , i.e. for sufficiently large n we will have that δ > |xf − x∗|. And, we
also found that under this condition the only compatible value for the order of
convergence is

√
κ2. We now verify that if (2.22) holds for one step, then it will hold

from that step onward. For this, since we have assumed that iteration n−1 was one
in which neither of the endpoints is a “retained endpoint”, assume without loss of
generality that an−1 = x̃n−2 and bn−1 = x̃n−1. Now, we will analyze three possible
regions in which x̃ may fall: (i) If x̃ ∈ (x1/2, bn−1) then a must be updated since
δ > |xf − x∗| implies that the bracketing update strategy will make a = x̃. Hence,
no retention will occur in that iteration and (2.22) will hold for the next iteration;
(ii) If x̃ ∈ (an−1, x1/2), then since the dominant term in (2.23) is the one associated
to δ (and not the estimation error from xf) we find that x∗ ≤ xf + δ = x̃ < x1/2

this shows that ϵn−2 was in fact lesser than ϵn−1, and thus in the next iteration the
error of x̃n+1 will satisfy:

|x̃n+1 − x∗| = ϵn+1 ∼ ϵnϵn−2 + ϵκ2
n−2 ≲ ϵnϵn−1 + ϵκ2

n−1;

and so, once again (2.22) holds for the following step; (iii) Finally, if x̃ = x1/2 and a
is updated then equation (2.22) must hold in the next iteration, and, if b is updated
then that shows that ϵn−2 < ϵn−1 and so as argued above, this implies that (2.22)
holds in the next step, which completes the proof that x̃ = xt produces a sequence
x̃n that converges to x∗ with an order of convergence of

√
κ2. That the residuals ∆n

vanish with the same order follows from the fact that for sufficiently high values of n,
since the truncation error δ is greater than the vanishing estimation error |xf − x∗|,
the upper and lower bounds a and b will be updated alternately; and so, the order
of convergence of ∆n is equal to the order of x̃n−1, which is of course the same as
the order of convergence of x̃n.

What is left now is to verify that, under the super-linear convergence conditions
of xt, if (2.11) is wide enough then the projection of xt onto the minmax disk will
also converge with an order of convergence of

√
κ2. To see this, we point out one

fact about the steady state behavior of xt, namely: that the truncation error δ
will eventually become and remain larger than that of the estimation error |xf −
x∗| and thus we are always left with the smallest amongst the intervals (a, xt) or
(xt, b) in each iteration. Now, since the direction of the projection always agrees
with that of the truncation step, then the same is also true of the projection of
xt onto (2.11). Hence, under the steady state conditions of xt the residuals satisfy
∆k+1 ≤ ∆k/2 and, with a little algebra, we can show that the fraction of the interval
(ak, bk) covered by (2.11), which we will denote by F (k), increases from iteration k
to iteration k + 1, i.e. that

F (k + 1) ≡ 2(ϵ2n1/2−(k+1) −∆k+1/2)

∆k+1
≥ 2(ϵ2n1/2−k −∆k/2)

∆k
≡ F (k).

47

Furthermore, if x̃ is not equal to xt, then it is the projection onto the minmax disk,
i.e. x̃k = x1/2 ± (ϵ2n1/2−k −∆k/2). In which case since ∆k+1 ≤ ∆k/2 we must have
that:

∆k+1 = ∆k − ϵ2n1/2−k;

from which we derive that the fraction of the interval (ak+1, bk+1) covered by (2.11)
is given by

F (k + 1) ≡
2(ϵ2n1/2−(k+1) − ∆k+1

2
)

∆k+1
=

2(ϵ2n1/2−k − ∆k
2
)

∆k
× 1

1− ϵ2
n1/2−k

∆k

> 2F (k).

Where the inequality follows from the fact that ϵ2n1/2−k/∆k is greater than 1/2
given that (b− a)/ϵ is not a power of two. Thus, under the steady state conditions
of xt, the fraction of the interval (ak+1, bk+1) covered by (2.11) must at least double
in each iteration if x̃ ̸= xt. Hence, if the fraction of the interval (a0, b0) covered by
(2.11) is not too small, it will take only a few iterations until x̃ can assume any value
within (a, b), and will thus coincide with xt from that iteration onward. ⊓⊔

2.A.2 A pseudocode for the ITP method

As recommended by a referee, we provide a “line-by-line” description of the ITP
method algorithm for ease of read and implementation. This particular implemen-
tation does not receive ya and yb as inputs (and thus must query f(a) and f(b) to
initiate), it adopts the relaxation of nmax = n1/2+n0 (and hence no need for the “I0
not too small” condition if n0 > 0), and returns the new values of a and b obtained
with b− a ≤ 2ϵ (instead of only one estimator x̂).

48

Algorithm 1: ITP Method(a, b, ϵ, n0, κ1, κ2, f)

Input: a, b, ϵ, n0, κ1, κ2, f
/* where: a ≤ b, 0 < ϵ, 0 ≤ n0, 0 < κ1, 1 ≤ κ2 < 1 + ϕ,

f(a) < 0 < f(b) */

1 ya = f(a);
2 yb = f(b);

3 n1/2 = ⌈log2 b−a
2ϵ
⌉ ;

4 nmax = n1/2 + n0;
5 k = 0;
6 while b− a > 2ϵ do

/* Interpolation: */

7 xf = yba−yab
yb−ya

;

/* Truncation: */

8 x1/2 = a+b
2

;
9 σ = sign(x1/2 − xf);

10 δ = κ1(b− a)κ2 ;
11 if δ ≤ |x1/2 − xf | then
12 xt = xf + σδ;
13 else
14 xt = x1/2;

/* Projection: */

15 r = ϵ2nmax−k − (b− a)/2;
16 if |xt − x1/2| ≤ r then
17 x̃ = xt;
18 else
19 x̃ = x1/2 − σr;

/* Updating: */

20 ỹ = f(x̃);
21 if ỹ > 0 then
22 b = x̃;
23 yb = ỹ;

24 else if ỹ < 0 then
25 a = x̃;
26 ya = ỹ;

27 else
28 a = x̃;
29 b = x̃;

30 k = k + 1;

Output: a, b

49

When implementing the ITP Algorithm, we point out that special care must be
put in controlling and/or mitigating numerical errors if minmax optimality is to be
attained, specifically in the computation of r in line 15 when n0 = 0. For example, if
r′, the numerical representation of r, satisfies r′ > r then the projection step in line
19 may produce a non-minmax x̃ and may come at the cost of additional iterations.
Similarly, if r′ < r, then when r = 0 we will have a negative representation r′ which
in turn may produce unpredictable behaviours in the projection step. Although this
goes beyond the scope of this chapter we point out that simple numerical error
controlling strategies (such as taking r = r − TOL for some small TOL > 0 after
line 15 to avoid r′ > r and taking r = max{r, 0} to avoid negative values for r) seem
to work fine in avoiding such instabilities. Similar issues can be pointed out in the
computation of x1/2, δ, xf and xt.

2.A.3 Additional numerical experiments

We perform another set of experiments in order to examine the theoretical prediction
of the order of convergence of ITP method, as provided by Theorem 6. The specific
results presented here are obtained for the following function:

f(x) = (x− (100 + 10π))(x− 10π) (2.24)

The root x∗ = 10π is searched within the interval defined by a = −100 and b =
100, and we assume that f(a) and f(b) are known a priori. In order to allow the
algorithm to achieve a steady-state in which the asymptotic behavior becomes clearly
identifiable, we adopt ϵ = 10−50. With such a small tolerance interval, the usual
numerical precision provided by most computational environments is not enough.
For this reason, we employ the SageMath environment, which allows computation
with a specified numerical precision. All the results reported here are obtained using
constants and variables with numerical precision of 1000 bits.

The algorithm parameters are defined as:

κ1 = 0.1 κ2 = 0.98

(
1 +

1 +
√
5

2

)
= 0.98(1 + ϕ) (2.25)

This κ2 is 0.98 times the value which leads to the instance of ITP algorithm with
the highest possible order of convergence, as predicted by Theorem 6. We employ
this value instead of (1 + ϕ) in the experiment because the exact maximum value
leads to sequences that do not reach a steady-state regime.

The definition of order of convergence is given by expression (2.7). However, as
shown in the proof of Theorem 6, the asymptotic behavior achieved by algorithm
ITP is composed of alternate updates of the interval extremes, a and b, with each of
them achieving an order of convergence β =

√
κ2. This means that their asymptotic

behavior should be measured considering the comparison of a(k) with a(k + 2)
and b(k) with b(k + 2). Notice that, as the order of convergence measured on one
iteration should be β =

√
κ2, the order of convergence measured over two consecutive

iterations must be β2 = κ2. Similarly, the asymptotic error constant α = κ
1

1+
√

κ2
1

refers to one iteration, which means that for the composition of two successive
iterations, the composite constant should be α · αβ = κ1. Therefore, we define the
indicators Da(k) and Db(k):

50

Da(k) =
|ak+2 − x∗|
|ak − x∗|κ2

Db(k) =
|bk+2 − x∗|
|bk − x∗|κ2

(2.26)

The Theorem 6 predicts the following:

lim
k→∞

Da(k) = lim
k→∞

Db(k) = κ1 (2.27)

Figure 2.6 shows the sequence of Da(k) and Db(k) over the iterations of algorithm
ITP. This figure is consistent with the predictions of Theorem 6: Da(k) and Dk(b)
are built using exponent κ2 in the denominator, and this specific exponent leads the
respective sequences to achieve a constant value in steady-state. Also, this constant
is equal to κ1.

2 4 6 8 10 12 14 16

-4

-3

-2

-1

1

Fig. 2.6: Evolution of log(Da(k)), indicated by (■), and log(Db(k)), indicated
by (×), in one run of algorithm ITP, considering function (2.24), ϵ = 10−50,
κ1 = 0.1 and κ2 = 0.98(1 + ϕ). The value of log(κ1) is indicated by the
horizontal dash-dot line. The iteration count k is represented in the horizontal
axis.

Figure 2.7 shows the evolution of indicators rule(k) and side(k), which are de-
fined as:

rule(k) =

{
1 , if xt(k) = xf + σδ ̸= x1/2

−1 , if xt(k) = x1/2
side(k) =

{
0.5 , if a(k) > a(k − 1)
−0.5 , if b(k) < b(k − 1)

(2.28)

Figure 2.7 shows that, up to iteration 7, the value of xt was given by the rule
xt = x1/2. From iteration 8 on, the rule xt = xf + σδ stops to degenerate into x1/2,
leading to non-bisection steps. From iteration 6 to 9, only the value of b was updated,
while a was kept fixed. After iteration 9, the ITP algorithm started to alternate
the updates in the values of a and b. Those are the conditions for reaching the
steady-state regime in which the sequences Da(k) and Db(k) become asymptotically
constant, as stated in the proof of Theorem 6. This is consistent with Figure 2.6,

51

2 4 6 8 10 12 14 16

-1

-0.5

0

0.5

1

Fig. 2.7: rule(k), indicated by (▲), is 1 in the steps when xt = xf +σδ ̸= x1/2
and −1 when xt = x1/2. side(k), indicated by (♦), is −0.5 in the iterations in
which a is updated, and 0.5 in the iterations when b is updated. Results from
one run of algorithm ITP, considering function (2.24), ϵ = 10−50, κ1 = 0.1
and κ2 = 0.98(1 + ϕ). The iteration count k is represented in the horizontal
axis.

which shows the values of Da(k) and Dk(b) starting to converge monotonically to
their steady-state value after iteration 9, with alternate enhancements in a and b.

It is important to mention that we conducted several similar experiments, con-
sidering different functions f(x), different values of a and b and different values of κ1

and κ2. The results of this set of experiments, when f(x) ∈ C2 and x∗ is a root with
multiplicity one, were consistent with the predictions of Theorem 6, in the sense that
always existed a sufficiently small interval [a, b] within which a steady-state regime
arose as described in the former paragraph. In those cases, the values of β (the order
of convergence) and α (the asymptotic error constant) were verified as predicted by
Theorem 6. On the other hand, when f(x) had a discontinuity on the root or when
x∗ had multiplicity greater than one, the algorithm ITP did not achieve a detectable
steady-state regime.

References

Argyros, I. K., & Khattri, S. K. (2013). On the secant method. Journal of
Complexity , 29 (6), 454-471.

Brent, R. P. (1971). An algorithm with guaranteed convergence for finding
a zero of a function. The Computer Journal , 14 (4), 422–425. doi:
https://doi.org/10.1093/comjnl/14.4.422

Bus, J. C. P., & Dekker, T. J. (1975). Two efficient algorithms with guaranteed
convergence for finding a zero of a function. ACM Transactions on
Mathematical Software, 1 (4), 330–345. doi: https://doi.org/10.1145/
355656.355659

52

Chapra, S. C., & Canale, R. P. (2010). Numerical methods for engineers. In
(6th ed. ed., p. 202-220). New York, NY: McGraw-Hill Higher Educa-
tion.

Dowell, M., & Jarratt, P. (1971, June). A modified regula falsi method for
computing the root of an equation. ACM Transactions on Mathematical
Software, 11 (2), 168-174. doi: https://doi.org/10.1007/BF01934364

Eiger, A., Sikorski, K., & Stenger, F. (1984). A bisection method for systems
of nonlinear equations. ACM Transactions on Mathematical Software,
10 (4), 367-377. doi: https://doi.org/10.1145/2701.2705

Ford, J. A. (1995). Improved algorithms of illinois-type for the numerical solu-
tion of nonlinear equations (Department of Computer Science Report).
University of Essex.

Gal, S., & Miranker, W. (1977). Optimal sequential and parallel search for
finding a root. Journal of Combinatorial Theory , 23 (1), 1-14. doi:
https://doi.org/10.1016/0097-3165(77)90074-7

Graf, S., Novak, E., & Papageorgiou, A. (1989). Bisection is not optimal
on the average. Numerische Mathematik , 55 , 481-491. doi: https://
doi.org/10.1007/BF01396051

Kearfott, R. B. (1987). Some tests of generalized bisection. ACM Transac-
tions on Mathematical Software, 13 (3), 197-220. doi: https://doi.org/
10.1145/29380.29862

Kiefer, J. (1953). Sequential minimax search for a maximum. Proceedings of
the American Mathematical Society , 4 (3), 502-506.

Laber, E. S., Milidiú, R. L., & Pessoa, A. A. (2002). On binary searching with
nonuniform costs. SIAM Journal on Computing , 31 (4), 1022-1047. doi:
https://doi.org/10.1137/S0097539700381991

Le, D. (1985a). An efficient derivative-free method for solving nonlinear
equations. ACM Transactions on Mathematical Software, 11 (3), 250-
262. doi: https://doi.org/10.1145/214408.214416

Le, D. (1985b). Three new rapidly convergent algorithms for finding a zero
of a function. SIAM Journal on Scientific and Statistical Computing ,
6 (1), 193-208. doi: https://doi.org/10.1137/0906016

McNamee, J. M., & Pan, V. Y. (2012). Efficient polynomial root-refiners: A
survey and new record efficiency estimates. Computers & Mathematics
with Applications, 63 (1), 239-254. doi: https://doi.org/10.1016/j.camwa
.2011.11.015

Muller, D. E. (1956). A method for solving algebraic equations using an auto-
matic computer. Mathematical Tables and Other Aids to Computation,
10 (56), 208-215. doi: https://doi.org/10.2307/2001916

Nerinckx, D., & Haegemans, A. (1976). A comparison of non-linear equation
solvers. Journal of Computational and Applied Mathematics, 2 (2), 145-
148. doi: https://doi.org/10.1016/0771-050X(76)90017-6

Norton, V. (1985). Algorithm 631 finding a bracketed zero by larkin’s method
of rational interpolation. ACM Transactions on Mathematical Software,
11 (2), 120-134. doi: https://doi.org/10.1145/214392.214396

53

Novak, E. (1989). Average-case results for zero finding. Journal of Complexity ,
5 (4), 489-501.

Novak, E., & Ritter, K. (1993). Some complexity results for zero finding for
univariate functions. Journal of Complexity , 9 (1), 15-40. doi: https://
doi.org/10.1006/jcom.1993.1003

Novak, E., Ritter, K., & Woźniakowski, H. (1995). Average-case optimal-
ity of a hybrid secant-bisection method. Mathematics of Computation,
64 (212), 1517–1539. doi: https://doi.org/10.2307/2153369

Oliveira, I. F. D., & Takahashi, R. H. C. (2020). An enhancement of the
bisection method average performance preserving minmax optimality.
ACM Transactions on Mathematical Software.

Perl, Y., Itai, A., & Avni, H. (1978). Interpolation search—a log log n
search. Communications of the ACM , 21 , 550-553. doi: https://doi.org/
10.1145/359545.359557

Pownuk, A., & Kreinovich, V. (2017). Why linear interpolation? Mathematical
Structures and Modeling , 3 (43), 43-49.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007).
Numerical recipes: the art of scientific computing. In (6th ed. ed., p. 442-
486). Cambridge, UK: Cambridge University Press.

Rice, J. R. (1969). A set of 74 test functions for nonlinear equation solvers
(Department of Computer Science Report No. 64-034). Purdue Univer-
sity.

Ridders, C. (1979). A new algorithm for computing a single root of a real con-
tinuous function. IEEE Transactions on Circuits and Systems, 26 (11),
979–980. doi: https://doi.org/10.1109/TCS.1979.1084580

Ritter, K. (1994). Average errors for zero finding: lower bounds for smooth
or monotone functions. Aequationes Mathematicae, 48 (2), 194-219. doi:
https://doi.org/10.1007/BF01832985

Segura, J. (2010). Reliable computation of the zeros of solutions of second
order linear odes using a fourth order method. SIAM Journal on Numer-
ical Analysis, 48 (2), 452-469. doi: https://doi.org/10.1137/090747762

Shrager, R. I. (1985). A rapid robust rootfinder. Mathematics of Computation,
44 (169), 151-165. doi: https://doi.org/10.2307/2007799

Sikorski, K. (1982). Bisection is optimal. Numerische Mathematik , 40 (1),
111-117. doi: https://doi.org/10.1007/BF01459080

Sikorski, K. (1985). Optimal solution of nonlinear equations. Journal of
Complexity , 1 (2), 197-209. doi: https://doi.org/10.1016/0885-064X(85)
90011-1

Stage, S. A. (2013). Comments on an improvement to the brent’s method.
International Journal of Experimental Algorithms, 4 (1), 1-16.

Traub, J. F. (1963). Iterative methods for the solution of equations. Bell
Telephone Laboratories, 8 (4), 550-551.

Vrahatis, M. N. (1988). Algorithm 666 chabis: A mathematical software
package for locating and evaluating roots of systems of nonlinear equa-

54

tions. ACM Transactions on Mathematical Software, 14 (4), 330-336.
doi: https://doi.org/10.1145/50063.51906

Wu, X. (2005). Improved muller method and bisection method with global
and asymptotic superlinear convergence of both point and interval for
solving nonlinear equations. Applied Mathematics and Computation,
166 (2), 299-311. doi: https://doi.org/10.1016/j.amc.2004.04.120

Yao, A. C., & Yao, F. F. (1976). The complexity of searching an ordered ran-
dom table. Proceedings of the Seventeenth Annual Symposium on Foun-
dations of Computer Science, 173-177. doi: https://doi.org/10.1109/
SFCS.1976.32

Zhang, Z. (2011). An improvement to the brent’s method. International
Journal of Experimental Algorithms, 2 (1).

3

The list searching problem

Summary. This chapter, contained in pages 55 to 76, is based on the the pa-
per Minmax-optimal list searching with O(log2 log2 n) average cost which was
first submitted for consideration by a scientific journal on the 14th of September
of 2020; and, as of the day of the submission of this thesis is currently under
consideration for publication. The latest version of this paper (Oliveira & Taka-
hashi, 2020b) can be found in the pre-print repository in the following address:
https://arxiv.org/abs/2105.11919. In the current form presented below, minor
changes are made to make for a more coherent read within the context of this thesis,
however, it is kept self contained and an independent read of Chapter 3 is possible
without need of reference to external material within the thesis. Any major content
foreign to the original paper is highlighted with dark blue text, and, the remainder,
where little or no alteration is made, we present the content in plain black text.

In this chapter we formally study the list searching problem introduced in Chapter
1. In particular we find a searching method on ordered lists that surprisingly out-
performs binary searching with respect to average query complexity while retaining
minmax optimality. The method is shown to require O(log2 log2 n) queries on aver-
age while never exceeding ⌈log2 n⌉ queries in the worst case, i.e. the minmax bound
of binary searching. Our average results assume a uniform distribution hypothesis
similar to those of previous authors under which the expected query complexity of
interpolation search of O(log2 log2 n) is known to be optimal. Hence our method
turns out to be optimal with respect to both minmax and average performance.
We further provide robustness guarantees and perform several numerical experi-
ments with both artificial and real data. Our results suggest that time savings range
roughly from a constant factor of 10% to 50% to a logarithmic factor spanning orders
of magnitude when different metrics are considered.

3.1 Introduction

Given a sorted list v and a target value z, the problem of searching sorted lists is
typically stated as:

Find k∗ such that vk∗ ≤ z < vk∗+1; (3.1)

https://arxiv.org/abs/2105.11919
ivoda
Typewritten Text
55

56

where v is of size n+1 with entries in [0, 1] and v0 = 0, vn = 1 and z a scalar in (0, 1).
This problem is ubiquitous in computer science with applications spanning several
different fields of computer programming, engineering and mathematics. Variations
of (3.1) include searching unbounded lists (Bentley & Yao, 1976), tables (Knuth,
1998), searching continuous functions for a zero (Oliveira & Takahashi, 2020a), as
well as the construction of insertions and deletion procedures in canonical data-
structures (Bentley & Sedgewick, 1997).

The standard approach to solve (3.1), commonly known as binary search (Knuth,
1998), begins with and updates upper and lower bounds a = 0 and b = n for the
location of the desired index k∗. At each step this is done by recursively probing the
index k1/2 which is defined by rounding

x1/2 ≡
a+ b

2
(3.2)

arbitrarily to the nearest integer, and, by comparing vk1/2
and z it updates a and

b accordingly, i.e. if vk1/2
> z then b is updated to b = k1/2 if vk1/2

< z then a is
updated to a = k1/2 and if vk1/2

= z then a and b are updated to a = k1/2 and
b = k1/2 + 1. The algorithm terminates when the tolerance ∆ ≡ b − a is equal to
one. For convenience we display below the general structure of the binary searching
algorithm as a while-loop; however, binary searching also admits for-loop formula-
tions and other formulations that exploit computer architecture (Schlegel, Gemulla,
& Lehner, 2009; Cannizzo, 2018) to improve computational speed. Here, a and b are
initiated at a = 0, b = n, and, in line (1) k̃ is taken to be equal to k1/2.

57

Algorithm 0: The Bracketing Algorithm

Input: v and z

while (b− a > 1), do:

(1). Choose k̃ ∈ (a, b) and evaluate vk̃;

(2). Update a and b according to the values of va, vb, vk̃ and z;
Output: k∗ = a

The key feature of binary search is it’s minmax optimality. That is, it requires
at most

N1/2 = ⌈log2 n⌉ (3.3)

queries to locate k∗ while no other method can provide the same guarantee in less
than N1/2 queries. This property is specifically of interest when the computational
cost of one query is known to be much higher than the computation of the search
procedure itself. This assumption is often made implicitly in the literature, and for
the sake of clarity, it is assumed henceforth.

While binary search is optimal with respect to the worst case metric, interpo-
lation search turns out to be a more efficient alternative with respect to expected
query complexity if a uniform distribution is assumed, see (Yao & Yao, 1976; Perl &
Reingold, 1977; Perl, Itai, & Avni, 1978). Interpolation search is a bracketing algo-
rithm with k̃ in line (1) of Algorithm 0 defined as the linear interpolation between
the points (a, va) and (b, vb). More precisely k̃ is taken to be equal to kf where kf
is defined as the integer closest to

xf ≡
b · (va − z)− a · (vb − z)

va − vb
, (3.4)

that lies in between xf and x1/2. The key feature of interpolation search is that if
the entries of v and z are sorted samples of a uniform distribution over [0, 1], then,
interpolation search is optimal with respect to expected query complexity (Yao &
Yao, 1976) and the expected number of queries E(N) to solve (3.1) is

E(N) = O(log2 log2 n), (3.5)

which considerably improves on the expected query complexity of binary search.
Although interpolation search enjoys an improved average performance, the im-

provement comes at the cost of requiring up to n queries to terminate in the worst
case. Furthermore, the guarantees on the expected query complexity of interpolation
search do not hold if the distributional hypothesis is misspecified. Thus, choosing
interpolation search over binary search may come at a high cost since interpolation
search may also require a full series of n queries to terminate on the average under
different distributions. Is it possible to simultaneously enjoy the benefits of inter-
polation search with no costs on the minmax peformance of binary search? And
furthermore, is it possible to enjoy such benefits without trading off performance
under misspecified conditions?

In this chapter we answer the above questions affirmatively. To answer the first
question we begin by identifying the necessary and sufficient conditions for a search-
ing method to be minmax optimal. Then, we pin-point one specific minmax method,

58

which we name the Interpolation, Truncation and Projection Method, or simply the
ITP Method. We show that this method attains the expected query complexity
of O(log2 log2 n) queries under similar assumptions as those required by interpola-
tion search; and, it requires no more iterations than the upperbound of ⌈log2 n⌉ of
binary searching. Hence, it is both optimal with respect to minmax and average
performance at no cost other than the computation of the method itself. To answer
the second question, we find lower bounds on the average performance of binary
searching under very broad distributional hypothesis and show that the bisection
method can never outperform the ITP method on the average performance by any
significant margin. Hence, opting for the ITP method instead of binary searching
comes at (almost) no cost even if the distribution is misspecified.

It is worth pointing out that our findings bear close resemblance with those
of (Oliveira & Takahashi, 2020a) for the continuous version of Problem (3.1), i.e.
searching the zero of a continuous function. However, despite the resemblance, our
findings here are brand new and do not stem from previously known results. In
fact, the methods for analysing the discrete searching problem in this chapter are
much more closely related to those developed in (Perl & Reingold, 1977) than those
developed in the literature of numerical analysis. Perhaps more importantly, we
believe that our findings here might be of more significance and repercussion than
previous results due to the fundamental role that Problem (3.1) and Algorithm 0
plays in the field of computer science, serving as a basis for a much of algorithmic
theory and practice.

Chapter Outline

The following section, entitled Main Results, is divided into three parts. The section
begins by characterizing necessary and sufficient conditions for Algorithm 0 to be
minmax optimal, putting forward results analogous to Theorem 2.1 of (Oliveira &
Takahashi, 2020a) which were previously unknown in the discrete case. Then, in
Subsection 3.2.1 we describe our main contribution: the ITP method for search-
ing sorted lists with minmax and expected query complexity results in Theorem
9. These results show that under mild conditions the ITP method can attain an
expected query complexity of the same order of interpolation search while retain-
ing the minmax optimality of binary search. In Subsection 3.2.2, we calculate lower
bounds on the expected query complexity of binary searching under very broad
distributional assumptions, and as a consequence we find that our method cannot
be outperformed on the average by binary search by more than one or two itera-
tions. Thus, we provide brand new robustness guarantees that cannot be provided
by interpolation search. In Section 3.3 we perform extensive experiments on both
artificial and real data from which we find that the expected query complexity of
the ITP method can be orders of magnitude lower than interpolation search and
binary search alike. Finally, in Section 3.4 we summarize and discuss the relevance
of our findings and point out applications and future directions of research.

3.2 Main Results

Given a sorted list v and a target value z, at each iteration j of Algorithm 0 define
∆j as ∆j ≡ bj − aj and x1/2 ≡ (aj + bj)/2. Then,

59

Theorem 8. Algorithm 0 requires at most N1/2 iterations to terminate if and only
if at each iteration j we have

|k̃j − x1/2| ≤ 2N1/2−j−1 − 1
2
∆j . (3.6)

Proof. Given any instance of (3.1), we may calculate the maximum number of itera-
tions N1/2 required by any minmax strategy using equation (3.3). After the first iter-
ation one is left with N1/2−1 queries and so, from (3.3) we have that ⌈log2(b1−a1)⌉
must be at most N1/2 − 1, thus b1 − a1 can be at most 2N1/2−1. Combining this

with the fact that b1 − a1 is less than or equal to b0 − k̃0 and k̃0 − a0 it follows that
as long as k̃0 is chosen in such a way that both b0 − k̃0 and k̃0 − a0 are less than
or equal to 2N1/2−1, then, from that step onward, Algorithm 0 can still guarantee
termination in N1/2 iterations. Requiring that both b0− k̃0 and k̃0− a0 be less than

or equal to 2N1/2−1 is equivalent to enforcing |k̃0 − x1/2| ≤ 2N1/2−1 − 1
2
∆0. This

proves Theorem 8 for iteration j = 0.
For higher values of j the reasoning is very similar. After steps 0, 1, ..., j − 1,

Algorithm 0 is left with N1/2 − j iterations. Thus, on step j, as long as bj+1 − aj+1

is less than or equal to 2N1/2−j , Algorithm 0 can guarantee termination in at most
N1/2−j iterations. Thus, we find similarly that bj+1−aj+1 ≤ 2N1/2−j is guaranteed

when |k̃j − x1/2| ≤ 2N1/2−j−1 − 1
2
∆j , and, this completes the proof. ⊓⊔

Theorem 8 identifies the class of strategies that, similar to binary searching,
enjoy minmax optimality. In most situations the set of strategies that satisfy the
conditions of Theorem 8 can be quite large. However, when n is equal to 2T for some
T ∈ N then we will find that 2N1/2−j−1 − 1

2
∆j must be null for j = 0, 1, 2... and

thus the class naturally reduces to binary searching. In every other situation k̃ may
be chosen by means of interpolation, randomization or any other technique as long
as the distance of kj to x1/2 remains within the ranges established by Theorem 8.
Figure 3.1 depicts two search trees with n = 17 that have depth N1/2 = 5. Both
of these trees have the same minimal depth of binary searching, however they do
not subdivide the nodes in half in each query as binary searching would. Given that
n = 17 is not a power of 2 then several such trees with depth N1/2 = 5 exist.

Fig. 3.1: Two searching trees with 17 nodes and minimal depth of 5, none of
which correspond to binary searching.

Before we proceed in displaying our main algorithm we point out two variations
of Theorem 8 that may be of interest in different circumstances, one less conservative
and one more conservative. Both variations are motivated by the fact that minmax

60

optimality alone does not avoid certain types of inefficiencies. The first of type
arises from the fact that (3.6) may, at times, be too restrictive and degenerate to
bisection steps too early in a run. This may happen if (3.6) is initiated too small, or,
if Algorithm 0 unluckily makes too many “bad guesses” with x̃ producing ∆j+1 >
∆j/2 for several iterations. To avoid this and produce a variation of (3.6) that is
more “forgiving” of bad iterations one may upperbound the maximum number of
iterations by Nmax instead of N1/2 with Nmax ≥ N1/2 + 1. This is attained if and
only if in each iteration j we have

|k̃j − x1/2| ≤ 2Nmax−j−1 − 1
2
∆j . (3.7)

The second type of inefficiency that may be present is of opposite nature. Min-
max optimality may allow for too much freedom. For example, it is possible that
Algorithm 0 after a few iterations reduces ∆ to a sufficiently small size that it could
be tackled with a few binary steps. However, minmax optimality allows Algorithm 0
to waste “spare iterations” produced in the beginning of the run. One way to avoid
this is to require that after each iteration, the new subproblem with bj − aj = ∆j

would take no more iterations than binary search would, i.e. that at most ⌈log2 ∆j⌉
queries would be used from step j onward. This is obtained by enforcing

|k̃j − x1/2| ≤ 2⌈log2 ∆j⌉−1 − 1
2
∆j (3.8)

in every iteration instead of equation (3.6).
All three versions of (3.6) may be of interest to software development. If prob-

lem (3.1) is generated by a known distribution that allows for the construction of
reliable estimators for the location of k∗, as exemplified in the next section, then
perhaps the original form (3.6) might be chosen. If (3.6) is too small, then the re-
laxation in (3.7) might be an appropriate alternative. In fact allowing for as little
as one additional iteration with Nmax = N1/2 + 1 we have that equation (3.7) will
encompass the entirety of (a, b) in the first iterations. Finally, equation (3.8) might
be preferred if the underlying distribution does not allow for the construction of
reliable estimators for the location of k∗, or, if the underlying distribution is un-
known. In any case, the classes of methods here identified by (3.6) to (3.8) offer
a rich collection of alternatives to traditional binary searching that simultaneously
retain minmax optimality and allow for enough freedom to incorporate interpolation
and/or randomized strategies. In the following subsection we will see that even the
“unaltered” minmax optimality condition in (3.6) can allow for an improved average
performance under standard uniform distribution hypothesis.

3.2.1 The ITP Method

Let κ1 ∈ R+ and κ2 ∈ (1
2
, 1) be two user provided constants1. Now define σ and δ

as
σ ≡ sign(x1/2 − xf) and δ ≡ κ1|b− a|κ2 , (3.9)

1 Notice that κ2 is defined here to be between 1/2 and 1, whereas in (Oliveira &
Takahashi, 2020a) it is defined to be between 1 and (1+

√
5)/2. This difference is

key and arises from the fact that in continuous settings one is typically interested
in vanishing residuals ∆ that are less than or equal to 1, whereas in discrete
scenarios ∆ is always greater than 1.

61

where x1/2 and xf are as in (3.2) and (3.4) respectively. Also, define xt as

xt ≡ xf + σδ (3.10)

if δ ≤ |x1/2 − xf | and xt = x1/2 otherwise. Now define the minmax radius rk and
interval Ik as

rj ≡ 2N1/2−j−1 − bk−ak
2

and Ij ≡
[
x1/2 − rj , x1/2 + rj

]
(3.11)

Now, in each step j define xITP as the projection of xt onto Ij , i.e.

xITP ≡
{
xt if |xt − x1/2| ≤ rj ;
x1/2 − σrj otherwise.

(3.12)

The ITP method then takes k̃ to be equal to kITP defined as the closest integer to
xITP that lies between xITP and x1/2.

In the following theorem we will assume that v is constructed by sorting n
independent samples of a uniformly distributed variable in [0, 1]. And, that the
minmax interval I0 around x1/2 in the first iteration j = 0 is “not too small”, i.e.
that 2r0/n is not much smaller than one. This avoids the collapsing of Ik to x1/2

(in which case the ITP method behaves identical to binary searching), and also,
as shown in the proof of Theorem 9, in combination with the other conditions it
guarantees that with high probability a steady state condition with super-linear
convergence can be reached within a few iterations.

Theorem 9. If n is sufficiently large and I0 is not too small, the number of itera-
tions N for Algorithm 0 to terminate satisfies

N ≤ N1/2 and E(N) ≤ κ3 log2 log2 n (3.13)

for some constant κ3 ∈ R that depends on κ1 and κ2 but not on n.

Proof. The structure of the proof is as follows: We begin by analysing Algorithm
0 for k̃ = kt where kt is the closest integer to xt that lies between xt and x1/2,
i.e. without the projection onto Ij . We will see that for sufficiently large n we have
that kt produces an expected query complexity of the order of log2 log2 n. Then,
we include the projection step and verify that, if I0 is not too small, then with
high probability the minmax range Ij will at least double in each iteration and in
a few iterations the full interval (a, b) will be encompassed by Ij . After that point,
Algorithm 0 will behave as if there were no projection step, and thus, the same
expected query complexity of kt is attained.

Before we proceed with the proof, we point out that no attempt is made here to
obtain the tightest bounds nor to optimize our choice of κ1, κ2 or any other meta-
parameter. Instead, whenever possible we opted for the simplest and shortest path
to obtain our results, and, overall aim for a proof that is accessible to a university
level advanced algorithms course.

In order to calculate the expected query complexity of Algorithm 0 implemented
with k̃ = kt we first calculate the expected number of iterations Nδ ∈ R that
Algorithm 0 requires to reduce an interval of length ∆ to a new interval with length
less than or equal to 8δ = 8κ1∆

κ2 . For this we will use a few facts. First notice that
the distance between kt and k∗ can be upper-bounded by:

62

|kt − k∗| ≤ |xf − k∗|+ κ1∆
κ2 + 1. (3.14)

We refer to the first term |xf − k∗| as the estimation error, the second term κ1∆
κ2

as the truncation error, and the third term “+1” is the round-off error.
We say that an iteration j is successful when∆j+1 ≤ ∆j/2, and, it is unsuccessful

when ∆j+1 > ∆j/2. Notice that if v is built by sorting n independent samples
from a uniform distribution over [0, 1], then the probability of an iteration j with
k̃ = kt being successful is equal to the probability that kt is between k∗ and x1/2.
Without loss of generality we may assume that kt ≤ x1/2, and thus the probability
of a successful iteration is equal to the probability that k∗ ≤ kt. Now the index
k∗ is equal to the number of entries vj of v that satisfy vj ≤ z, and since each
entry is sampled from a uniform distribution over [0, 1], then, in problem (3.1) the
variable k∗ follows a binomial distribution with expected value of µ = n · z and with
variance ς2 = nz(1 − z) ≤ n/4. During a run of Algorithm 0, given all the data
collected up to iteration j, by using scaling arguments we find that the conditional
distribution of k∗ will also follow a translated binomial between aj and bj , with mean
µ = xf and with variance ς2 ≤ ∆/4. Thus, from (3.14) and Chebyshev’s inequality
P(|y − µ| ≥ t) ≤ ς2/t2 we find that:

P(unsuccessful iteration) ≤ P(|k∗ − xf | ≥ δ) ≤ 1

4κ2
1∆

2κ2−1
. (3.15)

And thus, since κ2 > 1/2, the probability of an unsuccessful iteration vanishes with
larger values of ∆. We will denote by Ps and Pu the probabilities of successful and
unsuccessful iterations respectively.

Now, from (3.15) we have that for large values of ∆ the estimation error is
smaller than the truncation error with high probability. The same is true of the
round-off error. Thus we deduce that

|kt − k∗| ≤ 3κ1∆
κ2 (3.16)

with high probability for large values of ∆.
Now let us analyse two different scenarios: (i) when k∗ is near extremity a or b;

and (ii) when it is somewhere in the middle. Or, formally: (i) when k∗ − a ≤ κ1∆
κ2

or b− k∗ ≤ κ1∆
κ2 ; (ii) every other case. It is easy to see that in case (i), with high

probability, one successful iteration will suffice to reduce ∆ to less than or equal to
4κ1∆

κ2 . This is a direct consequence of equation (3.16) and (3.15). Similarly, notice
that case (ii) after one iteration will produce k∗ − a ≤ 4κ1∆

κ2 or b− k∗ ≤ 4κ1∆
κ2

with high probability. Thus, after two successful iterations case (ii) will reduce ∆ to
less than or equal to 7κ1∆

κ2 . Hence, with high probability, it suffices to obtain two
successful iterations in order to reduce ∆ to less than or equal to 8κ1∆

κ2 , and, the
expected number of iterations required to obtain two successes is given by

E(# iterations to obtain two successes) = (2 · 1)P 2
s + (3 · 2)PuP

2
s + (4 · 3)P 2

uP
2
s ...

which, by using the relation Ps + Pu = 1 simplifies to

E(# iterations to obtain two successes) = 2/Ps
∆→∞−−−−→ 2.

Thus we find that Nδ approaches 2 as ∆ goes to infinity, and hence for ∆ greater
than or equal to some constant κ4 (that depends on κ1 and κ2 alone) we have Nδ

less than or equal to 3. This implies that for large ∆ we have:

63

E(N |∆) ≤ 3 + E(N |8κ1∆
κ2), (3.17)

where E(N |Z) is the expected number of iterations given that there are Z elements
in [a, b]. Thus applying (3.17) recursively we find that

E(N |∆) ≤ 3 + 3 + E(N |8κ1(8κ1∆
κ2)κ2)

and repeating this process m times we find

E(N |∆) ≤ m× 3 + E(N |(8κ1)
κm
2 −1

κ2−1 ∆κm
2).

Thus, the value of m such that (8κ1)
κm
2 −1

κ2−1 ∆κm
2 is less than a κ4 will give us the

expected query complexity of Algorithm 0 implemented with k̃ = kt. This, of course,
reduces to

m ≤ C1 + C2 log2 log2 ∆

for some C1 and C2 that depend on κ1 and on κ2 but not on ∆. This completes the
deduction of the expected query complexity of Algorithm 0 implemented with kt.

What is left now is to verify the effect of the projection step on the behaviour
of Algorithm 0. We start by pointing out that for high values of ∆, due to (3.15),
Algorithm 0 implemented with kt generates successful iterations with high probabil-
ity. The same is true for the projection of kt onto Ij , since, if kt lies between k∗ and
x1/2 then so will the projection of kt onto Ij . Thus, with high probability we are left

with the smallest amongst the intervals (a, k̃) and (k̃, b) after each iteration. This
implies that ∆j+1 ≤ ∆j/2 and, with a little algebra, we can show that the fraction
of the interval (aj , bj) covered by Ij , which we will denote by F (j), increases from
iteration j to iteration j + 1, i.e. that

F (j + 1) ≡ 2(2N1/2−(j+1)−1 −∆j+1/2)

∆j+1
≥ 2(2N1/2−j−1 −∆j/2)

∆j
≡ F (j).

Furthermore, if k̃ is not equal to kt, then it is the projection onto the minmax disk.
Thus, (ignoring rounding effects) we find that k̃j = x1/2 ± (2N1/2−j−1 −∆j/2). In
which case since ∆j+1 ≤ ∆j/2 we must have that:

∆j+1 = ∆j − 2N1/2−j−1;

from which we derive that the fraction of the interval (aj+1, bj+1) covered by Ij is
given by

F (j + 1) ≡

2(2N1/2−(j+1)−1 −∆j+1/2)

∆j+1
=

2(2N1/2−j−1 −∆j/2)

∆j
× 1

1− 2N1/2−j−1/∆j

,

and thus F (j + 1) > 2F (j) since 2N1/2−j−1/∆j is greater than 1/2 given that
∆j is not a power of two. Thus, with high probability the fraction of the interval
(aj+1, bj+1) covered by Ij must at least double in each iteration if k̃ ̸= kt. Hence, if
the fraction of the interval (a0, b0) covered by I0 is not too small, it will take only
a few iterations until k̃ can assume any value within (a, b), and will thus coincide
with kt from that iteration onward. ⊓⊔

64

Theorem 9 shows that the ITP method is both minmax optimal and can attain
as low as log2 log2 n expected query complexity given that I0 is not too small. This
last condition, as mentioned earlier, can be dropped if minmax optimality is relaxed.
In fact it suffices to allow for just one iteration more than N1/2 and the “not too
small” condition is satisfied. Also, it is worth mentioning that one may calculate the
expected number of “gained” iterations per query and find that it is greater than or
equal to one for sufficiently large n. Thus, even though Ij can collapse into binary
searching after a few rounds of unsuccessful iterations, this will only happen with
low probability since in an average run, the ITP method it will typically accumulate
“spare iterations” and can afford a few misses quite early in the run. Also, from
(3.15) we may deduce that the first iterations have the highest probability of being
successful since these have the biggest intervals ∆, and hence, the iterations in which
Algorithm 0 has less “spare iterations” are the ones less likely to blunder and produce
unsuccessfull/wastefull iterations. By the time it has narrowed down the search to
smaller intervals, several “spare” iterations will be available, and thus it will take
many more unsuccessfully iterations for Ij to degenerate to binary searching.

3.2.2 Robustness and Limits

It is well known that the expected query complexity of interpolation search is of
the order of log2 log2 n and binary search is of the order of log2 n under the uniform
distribution assumption, i.e. interpolation search considerably outperforms binary
search under the standard hypothesis. However, it is also well known that if the dis-
tribution is misspecified, then, the expected query complexity of interpolation search
can reach up to n queries while binary search remains upper bounded by ⌈log2 n⌉,
i.e. interpolation search is considerably outperformed by binary search under mis-
specified conditions. In this section we will verify whether the ITP method suffers
from the same drawback or whether it is robust to such changes, i.e. can the ITP
method be outperformed by binary searching with respect to average performance2?

We will answer this question by analysing two large classes of distributions over
instances of (3.1). The first class , which we will denote by C1, encompasses all
distributions over instances of (3.1) that produce z ̸= vk∗ with no restriction on how
z and v are generated. The second class, denoted C2, encompasses a large collection
of distributions over instances of (3.1) that do produce z = vk∗ . In particular,
the second class includes any distribution that does not limit k∗ nor favours any
particular j between 1 and n, i.e. it assumes only that k∗ can assume any value from
1 to n with a uniform probability.

If Problem (3.1) is generated by a distribution from class C1, then since the
distribution does not produce z = vk∗ , binary search must require at least N1/2 − 1
iterations to terminate. To see this, first notice that ∆j ≥ 1

2
(∆j−1 − 1), for any

value of ∆j = bj − aj (whether odd or even). By recursion, we find that ∆j ≥
2 In the continuous setting this question was answered in Corollary 2.2 of (Oliveira
& Takahashi, 2020a). There, since the bisection method has a fixed expected query
complexity of N1/2 for any continuous distribution, the worst-case guarantees of
the ITP method already ensure that the expected query complexity of the ITP
method cannot be outperformed by the bisection method. However, unlike the
continuous setting, the expected query complexity of binary searching over lists
does depend on the underlying distribution.

65

1
2j
∆0− 1

2
− 1

4
−...− 1

2j
which in turn is greater than 1

2j
∆0−1. Hence, in order for ∆ to

be less than or equal to 1 the number of iterations N must satisfy: N ≥ ⌈log2 ∆0⌉−1.
Thus

Corollary 2. If the distribution over instances of (3.1) is such that z ̸= vk∗ then
the expected query complexity of binary searching satisfies:

E(N) ≥ N1/2 − 1. (3.18)

The second class of distributions does allow for Problem (3.1) to admit a solution
with z = vk∗ . The class C2 assumes nothing on how v or z is constructed other
than the fact that the solution k∗ can assume any value within the range from 1
to n with a uniform probability3. In this second case it is useful to consider the
graph constructed by placing the first index visited on the root, and, successively
branching left with the indices probed in case of z < vk and branching right when
vk < z. Figure 3.2 illustrates one such construction. The depth of the resulting tree

Fig. 3.2: The binary search tree associated with Algorithm 0. Each node of
the tree represents an index k of vector v visited by Algorithm 0, the height
of the tree represents the worst-case complexity of the searching strategy and
the average depth of the tree Nav is represents the expected query complexity
of the searching strategy.

measures the maximum number of iterations required for Algorithm 0 to terminate,
and, the average depth of the graph measures the average number of iterations.
We will denote the average depth by Nav and we decompose n into two factors as
n = 2N1/2−1 + q for some q ∈ {1, .., 2N1/2−1}. This way we find that

3 This second constraint is added since otherwise it is easy to construct distributions
that can arbitrarily lower the expected query complexity of virtually any method.
Taking binary search as an example, if the distribution trivially produces vk1/2

=
z then the expected query complexity can be as low as one iteration. Thus to
exclude trivial cases and arbitrary biases we assume that k∗ is equally likely to
assume any value between 1 to n.

66

Corollary 3. If the distribution over instances of (3.1) is such that z = vk∗ and
k∗ is equally likely to assume any value between 1 to n then the expected query

complexity of binary searching is equal to Nav = N1/2− 1− δ where δ =
n−N1/2−2q

n−1
,

and satisfies
E(N) ≥ N1/2 − 2. (3.19)

Corollary 3 is well known and it’s proof is thus omitted for simplicity 4. Now
combining the above corollaries with the fact that the ITP method requires no more
than N1/2 iterations to terminate we find that for the classes of distributions in C1
and C2 described above:

Theorem 10. The expected query complexity of binary searching can outperform
that of the ITP method by at most two iterations.

Hence, unlike interpolation search, even under very broad misspecified condi-
tions the ITP method cannot be outperformed by binary searching by any significant
margin. Thus, Theorems 9 and 10 combined show that by choosing the ITP method
over binary searching, not only will Algorithm 0 enjoy the benefits associated with
interpolation search (the log2 log2 n complexity over the uniform distribution as-
sumption), but it will also not suffer the drawbacks associated with interpolation
search (being outperformed by binary searching under misspecified conditions).

3.3 Experimental Results

In this section we empirically test the ITP strategy on three experiments and com-
pare it with traditional binary searching and interpolation search. In the first exper-
iment we test the minmax ITP method with varying values of κ1 and κ2 in order to
find the values of κ1 and κ2 that minimize the expected number of queries under a
uniform distribution assumption. The second and third experiments use the values
of κ1 and κ2 found on the first experiment and compare the minmax ITP method
with the relaxed version where Nmax = N1/2 +1 and interpolation search over both
artificial and real data.

Artificial Data 1

In our first experiment, we search for the values of κ1 and κ2 that minimize the
expected number of iterations required by the minmax ITP method over lists of size
n = 2 × 105. As seen in the proof of Theorem 9, the behaviour of the ITP method
quickly mimics the behaviour of kt which depends solely on the values of κ1 and κ2.
We performed 104 Monte Carlo simulations by generating the list v by sorting n
independent samples from a uniform distribution over [0, 1]. The target value z was
also sampled from a uniform distribution over [0, 1]. Table 3.1 shows the empirical
average obtained by varying κ1 between 0.01 and 0.78, and, varying κ2 between 0.51
and 0.99.

4 For completeness sake we point to Prof. PhD Steven Pigeon’s proof an anal-
ysis of Corollary 3 in Average node depth in a Full Tree that can be found
in https://hbfs.wordpress.com/2013/05/14/average-node-depth-in-a-full

-tree/, published in 2013.

https://hbfs.wordpress.com/2013/05/14/average-node-depth-in-a-full-tree/
https://hbfs.wordpress.com/2013/05/14/average-node-depth-in-a-full-tree/

67

Table 3.1: Average number of iterations of 104 Monte Carlo simulations of
searches in lists of size n = 2×105 and z sampled from a uniform distribution
between 0 and 1. Each column shows the performance of the ITP method
with a given value of κ1 and each line a fixed value of κ2.

κ1 :
0.01 0.12 0.23 0.34 0.45 0.56 0.67 0.78

0.51 7.44 7.35 7.68 8.02 8.40 8.76 9.09 9.38
0.56 7.39 7.37 7.79 8.30 8.85 9.35 9.78 10.16
0.62 7.31 7.43 8.08 8.87 9.57 10.17 10.66 11.07
0.67 7.20 7.63 8.66 9.63 10.46 11.13 11.68 12.13

κ2 : 0.72 7.08 8.05 9.38 10.54 11.51 12.25 12.81 13.32
0.78 6.95 8.64 10.26 11.66 12.73 13.52 14.09 14.51
0.83 6.87 9.35 11.40 13.00 14.09 14.73 15.19 15.57
0.88 6.93 10.27 12.78 14.42 15.23 15.60 15.93 16.30
0.94 7.21 11.45 14.39 14.95 15.94 16.77 17.24 17.51
0.99 7.51 13.03 14.55 16.53 17.49 17.69 17.69 17.69

As can be seen in Table 3.1, the empirical average was minimized at κ1 = 0.01
and κ2 = 0.83. We highlighted the cell located on the first column and on the seventh
row to show the number of iterations attained with these values of κ1 and κ2 which
are significantly lower than N1/2 = ⌈log2 2× 105⌉ = 18. It should also be noted that
the average number of iterations remains below N1/2 for any value of κ1 and κ2 as
predicted by Theorem 8.

Artificial Data 2

In our second experiment we compare the empirical performance of two versions
of the ITP method against interpolation search on lists of various sizes. The first
version of the ITP method used is the minmax version analysed in Theorem 9 and
the second version is the one that makes use of the relaxation Nmax = N1/2+1. The
average number of iterations required by each method was calculated by averaging
the results of 500 Monte Carlo simulations on lists of sizes ranging from n = 1 to
n = 218 generated by sorting n independent samples from predetermined distribu-
tions. The maximum number of iterations required by interpolation search is also
reported for comparison with the worst case performance of the ITP method. In
Figure 3.3 we plot the number of iterations as a function of the size of the list for
lists generated from the uniform distribution and Figure 3.4 show the results under
different distributions, namely: when the elements of v are samples of (i) a Gaus-
sian distribution, (ii) an exponential distribution, (iii) a triangular distribution and
(iv) a step function distribution (two overlapped uniform distributions over different
intervals). The Gaussian in (i) was generated in each run with a random mean µ
sampled from a uniform distribution over [0, 1] and a fixed variance with σ = 0.01;
the exponential in (ii) was constructed with a parameter of λ = 1; the triangular
distribution was obtained by taking the square root of a uniformly distributed vari-
able; and the step function distribution in (iv) was obtained by sampling from a
distribution that is uniform over the intervals A = [0, 0.75) and B = [0.75, 1) with
interval A concentrating half of the cumulative probability and B the other half.

68

Fig. 3.3: The average of 500 Monte Carlo simulations comparing two versions
of the ITP method and interpolation search for increasing values of n on data
with uniform distribution. In the background, the bar plot in gray displays
the average number of iterations required by the minmax version of the ITP
method. The lower curve in black shows the average number of iterations
required by interpolation search; the dark blue curve above it the average
number of iterations required by the ITP method with Nmax = N1/2 + 1;
and, the light blue curve shows the maximum number of iterations used by
interpolation search over all 500 runs.

69

In Figure 3.3, the background bar plot shows the behaviour of the minmax
version of the ITP method. As predicted by Theorems 8 and 9, for values of n in
which (3.6) is not too small, i.e. most of the range, the growth of E(N) is linear with
respect to log2 log2 n similar to interpolation search. The bar plot shows eighteen
peaks which correspond to the values of n that are equal to 2T for some T ∈ N;
and thus, for those values of n the number of iterations is linear with log2 n and
not log2 log2 n. The relaxation of the minmax ITP method with Nmax = N1/2 + 1
displayed in dark blue reduces the peaks and obtains a curve that grows linearly
with log2 log2 n in it’s entirety just as interpolation search displayed right below it
in black. The average performance of the ITP method with Nmax = N1/2 + 1 when
compared with interpolation search, attains an almost identical linear growth with
respect to log2 log2 n that exceeds the number of iterations required by interpolation
search by approximately one iteration throughout the range investigated, i.e. the ITP
method with Nmax = N1/2 + 1 has a nearly identical expected query complexity as
interpolation search under the uniform distribution hypothesis. However, the worst
case behaviour of interpolation search is upper-bounded by n, i.e. both versions of
the ITP method depicted have much better worst case guarantees than interpolation
search. The light blue curve overarching the graph depicts the maximum number of
iterations required by interpolation search in the 500 runs; and, as can be noticed it

exceeded log2 n for values of n less than or equal to 22
3.3

which is approximately 103.
Of course, with more runs, interpolation search will demand much more iterations
in the worst case.

When different distributions are considered then the robustness of the ITP
method becomes an interesting feature. As can be seen in Figure 3.4, the aver-
age number of iterations of the ITP method with Nmax = N1/2 + 1 remained below
log2 n under all distributions considered. Interpolation search performed much worse
than log2 n for both the Gaussian distribution and the exponential distribution, and
displayed an average performance that seems to be close to log2 n under the step
function and the triangular distribution considered. The worst case behaviour of
interpolation search showed to be much worse than log2 n under the four distinct
distributions. As depicted in Figure 3.4, under these distributions and others still,
interpolation search may have both an average and a worst case performance that
require much more iterations than the ITP method by several orders of magnitude.
Thus, these experiments show that the ITP method seems to be a much better al-
ternative than both binary searching and interpolation searching when both worst
case and average performances are taken into account.

Real Data

In our third experiment we collect a wide variety of real data from publicly available
lists of varying sizes and different origins which are specified in the appendix section.
To name a few, we have included a list of full names of all public employees of the
Brazilian government, a dataset of genome sizes of fungal species, atomic weights,
zip codes and others. For each list we calculate the empirical average of the number
of iterations required by both the ITP method with Nmax = N1/2+1 and interpola-
tion search. In each run we sample z between v0 and vn with a uniform probability
and perform the search with both methods. Four of the twelve lists considered were
composed of names rather then numbers, specifically the NASDAQ Acronyms, the
English Dictionary, the Family Names and Full Names. These were converted into

70

Fig. 3.4: The average of 500 Monte Carlo simulations comparing the ITP
method and interpolation search for increasing values of n. The light blue
dashed line provides for reference the value of log2 n. The lower curve in
black shows the average number of iterations required by the ITP method
with Nmax = N1/2 + 1; the dark blue curve the average number of iterations
required by interpolation search; and, the green curve shows the maximum
number of iterations used by interpolation search over all 500 runs.

71

numerical lists by taking a base-27 read of each digit and sorting them accordingly.
Other natural approaches that could be used are the ASCII standard conversion
or even a Morse code mapping onto binary numbers. Clearly, the average perfor-
mance of the ITP method is sensitive to this mapping and hence there is space
for improvement. However, this goes beyond the scope of this chapter and thus we
opted to display only the results for the first approach considered, i.e. the base 27
conversion. Table 3.2 reports the empirical average of 103 runs of the described
procedures.

Table 3.2: Average number of iterations required by the ITP method and
Interpolation Search. The averages are taken over 103 searches for a target z
sampled from a uniform distribution between v0 and vn. We also report the
empirical maximum number of iterations required by Interpolation Search
over this sample. The simulation capped out the count when more than 1000
iterations were required, and thus when 1000 iterations are reached we indicate
with a sub-index the number of runs where this cap occurred. Also, since the
ITP method was implemented with Nmax = N1/2 + 1, in the second column
under the title “ITP Search” we provide the value of N1/2+1. On the bottom
lines, the estimates of the mean and the median are displayed in units of N1/2.

ITP Search Interp Search

mean max mean max N1/2 n

Thermodynamics Table 3.6 7 3.1 5 6 49
Atomic Weights 3.3 7 2.8 7 6 54
Fluid Dynamics Chart 5.8 11 5.8 11 10 600
Fibonacci Sequence 8.2 11 19.8 553 10 700
Genome Sizes 9.6 13 8.9 27 12 2352
NASDAQ Acronyms 10.6 15 28.8 100018 14 8203
Zip Codes 10.5 18 9.8 69 17 81831
Family Names 16.5 18 90.0 100014 17 88799
English Dictionary 19.0 20 247.4 1000103 19 370103
Full Names 20.6 21 751.3 1000667 20 660276
Prime Numbers 7.2 21 6.0 10 20 664579
Harmonic Series 22.3 25 79.7 189 24 107

Central Tendency Metrics:

Mean 0.75N1/2 5.53N1/2

Median 0.78N1/2 1.36N1/2

Table 3.2 displays the average number of iterations required by the ITP method
side by side with the number of iterations required by interpolation search. The ITP
method seems to have a better performance when compared to interpolation search
under both the average query complexity criteria and the worst case query com-
plexity criteria. In all instances where interpolation search outperformed the ITP
method on the average, it did so by less than 1.21 iterations, and when the ITP
method outperformed interpolation search it did so by up to 730.75 iterations which

72

is more than 36 times the number of of iterations required by the ITP method. On
the average the ITP method required 25% less iterations when compared to binary
searching whereas interpolation search required on average more than five times the
number of iterations as binary searching across all twelve lists. We point out that
even if outliers were excluded from the list (the two most difficult cases for inter-
polation search for example) interpolation search still attains an empirical average
worse than binary search, i.e. interpolation search does not seem to perform well in
real data. One possible explanation for this might be the fact that real world data is
not generated from uniformly distributed variables, and hence, the robustness guar-
antees provided by the ITP method seem to be vital for outperforming binary search
in real world applications. By analysing the median metric a similar conclusion is
reached, i.e. interpolation search performs poorly and the ITP method outperforms
binary search.

Remark 7. The experiment reported in Table 3.2 by construction produces many
unsuccessful searches. This in turn produces slightly longer iteration counts on all
ITP, interpolation search and binary searching strategies because successful searches
terminate before the exhaustive bracketing of the indices is complete. An analogous
experiment where only successful searches are performed was also carried out in
order to measure the comparative performance of the three methods considered
under more favourable conditions. This was done by sampling the elements from the
list with a uniform probability and performing a search for the sampled element.
We opted however to omit this experiment due to the very similar findings obtained
in the unsuccessful case. Furthermore, this similar behaviour is already somewhat
to be expected due to the result in Corollary 3 which shows that binary searching
does not (significantly) benefit from successful searches on the average; and, similar
arguments can be made to show that both the ITP method and interpolation search
should also not be expected significantly reduce iteration count.

When considering the worst case performances, since the ITP method in display
made use of the relaxation Nmax = N1/2 + 1, then the ITP method never required
more than one iteration above N1/2, but due to the O(log2 log2 n) expected query
complexity, under favorable conditions it performed less than half the number of
iterations of binary searching. On the other hand, interpolation search not only
averaged higher iteration counts but it also maxed out the number of iterations
with several unsuccessful searches, and hence, it seems to be the least interesting
alternative amongst the three when both metrics are taken into consideration.

General Recommendations

Throughout our experiments (including an extensive number of experiments not
reported here) the performance of the ITP method with the relaxation Nmax > N1/2

seems to give the best results overall. With the relaxation, the ITP method is less
sensitive to the value of n but also less sensitive to the choice of κ1 and κ2. As a rule
of thumb we recommend the ITP method with κ1 = 0.01 and κ2 = 0.83 and with the
relaxation5 of Nmax = N1/2 + 0.99, however, if prior knowledge on the distribution

5 By adopting a non integer value for Nmax, the maximum number of iterations of
Algorithm 0 is of ⌈Nmax⌉. Furthermore, the projection step of the ITP method

73

over instances of (3.1) is available, or, if there is availability of a training set, then
the values of κ1, κ2 and Nmax can be tested and chosen accordingly.

In Experiment 2, both interpolation search and the ITP method were imple-
mented under four misspecified conditions when the non-uniform distributions were
used to generate v. If prior knowledge of the underlying distribution is available,
then the behaviour of Algorithm 0 depicted in Figure 3.3 can be obtained for differ-
ent distributions by implementing Algorithm 0 on the transformation of vj by the
cumulative distribution.

Remark 8. It is a difficult task to select a representative collection of instances that
can cover the range of applications in which (3.1) emerges. Several lists tend to
be labeled by (nearly) equally spaced points; specifically, engineering applications,
physics and chemistry charts tend to fall into this category. We opted to hold out
these examples since in these cases kf is almost always “on-the-spot”. In doing so
we have biased our sample in a conservative way and so we expect that time savings
should be closer to the upper quantile (about 30%) instead the reported 13.7% and
15.5%.

Remark 9. Also, it is worth noticing that even before searching is performed on a
sorted list, other data manipulation operations can enjoy of immediate time savings
when an improved searching strategy is employed. For example, in order to produce
the sorted list, sorting algorithms are often used in order to organize data in as-
cending order; see chapters “Internal Sorting” and “Optimum Sorting” in (Knuth,
1998). Classical sorting strategies are known to require at most n logn comparisons
in order to sort n elements; and, this is attained by binary insertion sort, merge sort
amongst others. Notice that by substituting binary searching by the ITP method
we may trivially construct an ITP insertion sort strategy improving on binary in-
sertion sort thus obtaining an expected n log log n comparisons while requiring no
more than n logn in the worst case. Hence, even though we report the above time
savings on the search operation, in practice much more time can be saved since
the list being searched could, potentially, be produced by means of binary-search
dependent sorting strategies.

3.4 Discussion

In this chapter we have identified a novel and yet simple searching method, which
we refer to as the ITP method, that attains an expected query complexity of
O(log2 log2 n) iterations and a worst case query complexity of ⌈log2 n⌉; i.e. it is
optimal with respect to both average and worst case metrics. Furthermore, we also
prove robustness guarantees that show that binary search cannot outperform the
ITP method by more than a constant factor even if the distributional hypothesis is
misspecified. Hence, the ITP method enjoys the benefits of interpolation search (the

projects to the interior of Ij instead of the border, avoiding numerical errors
associated to edge cases. Our experiments were performed with Nmax = N1/2+1,
however for practitioners we recommend a non integer Nmax such as Nmax =
N1/2 + 0.99 instead.

74

improved expected query complexity of log2 log2 n) without the drawbacks associ-
ated with it (a lower than binary search expected query complexity when distribution
is misspecified). We perform extensive testing on artificial and real data and we find
that the ITP method can considerably outperform both the classical binary search
method as well as interpolation search. We reach time-savings that range roughly
from 25% to 75%, depending on the experiment, when compared to binary search-
ing; an overall much better performance than interpolation search when compared
across experiments.

Binary searching is a fundamental tool in the field of computer science and has
continually been the choice for applications, specifically due to its minmax opti-
mality. Our results show that this preference for binary search, or alternatively for
interpolation search, has often been an inefficient one. The improvements highlighted
here have both practical and theoretical implications that directly translate to sig-
nificant time savings, specifically when the cost of a query is much greater than the
time to compute the procedure itself. In short, the ITP method is our recommended
improvement to the traditional approach. However, the identified minmax class of
methods, which is largely unexplored, is potentially a more significant contribution
that may lead to further improvements and the identification of even more efficient
methods.

Future work

The problem of searching sorted tables and/or other multidimensional variants are
natural instances that may benefit if equivalent results as the ones developed here
are found. Another relatively unexplored variation studied in (Bentley & Yao, 1976)
is searching through infinite lists. Also, assuming multiple instances of (3.1) to be
solved sequentially and generated under one common distribution, one may ask
how to adapt and improve the solvers in between each resolution to obtain an
adaptive/self-improving method. Finally, the cost of one query is typically assumed
to be significantly greater than that of the computation of the searching procedure
itself; several interesting questions arise when this assumption is modified.

3.A Appendix

3.A.1 Online material

Table 3.3 contains the sources of the twelve lists used in the second experiment. The
texts were converted into numerals as explained in the end of Section 3.3 and any
additional symbols such as “*.!;” and others were ignored. Several of the files found
in the above links contain multiple columns, specifically the fluid dynamics chart,
the genome sizes, the atomic weights and the thermodynamics table. When this is
the case we selected one column arbitrarily and performed all simulations on the
selected column.

75

Table 3.3: The source of the data collected on the fifth of June of 2019.

NASDAQ Acronyms
ftp://ftp.nasdaqtrader.com/symboldirectory

Prime Numbers
(self generated)
Atomic Weights
https://www.qmul.ac.uk/sbcs/iupac/AtWt/

Zip Codes
http://federalgovernmentzipcodes.us

Fluid Dynamics Chart
https://engineering.purdue.edu/~wassgren/notes/CompressibleFlowTables.xls

Genome Sizes
http://www.zbi.ee/fungal-genomesize/index.php?q

Fibonacci Sequence
(self generated)
Thermodynamics Table
https://www.ohio.edu/mechanical/thermo/property tables/H2O/H2O TempSat.xls

English Dictionary
https://github.com/dwyl/english-words

Family Names
https://www.census.gov/topics/population/genealogy/data/2010 surnames.html

Harmonic Series
(self generated)
Full Names
http://www.portaltransparencia.gov.br/servidores

References

Bentley, J. L., & Sedgewick, R. (1997, January). Fast algorithms for sorting
and searching strings. SODA ’97: Proceedings of the eighth annual ACM-
SIAM symposium on Discrete algorithms, 360–369.

Bentley, J. L., & Yao, A. C. (1976). An almost optimal algorithm for un-
bounded searching. Information Processing Letters, 5 (3), 82-87. doi:
https://doi.org/10.1016/0020-0190(76)90071-5

Cannizzo, F. (2018). Fast and vectorizable alternative to binary search in O(1)
applicable to a wide domain of sorted arrays of floating point numbers.
Journal of Parallel and Distributed Computing , 113 (5), 37. doi: https://
doi.org/10.1016/j.jpdc.2017.10.007

Knuth, D. E. (1998). The art of computer programming - sorting and search-
ing. In (2nd ed., Vol. 3, chap. 6.2). Addison-Wesley.

Oliveira, I. F. D., & Takahashi, R. H. C. (2020a). An enhancement of the
bisection method average performance preserving minmax optimality.
ACM Transactions on Mathematical Software.

Oliveira, I. F. D., & Takahashi, R. H. C. (2020b). Minmax-optimal list
searching with O(log2 log2 n) average cost. Under consideration by the

ftp://ftp.nasdaqtrader.com/symboldirectory
https://www.qmul.ac.uk/sbcs/iupac/AtWt/
http://federalgovernmentzipcodes.us
https://engineering.purdue.edu/~wassgren/notes/CompressibleFlowTables.xls
http://www.zbi.ee/fungal-genomesize/index.php?q
https://www.ohio.edu/mechanical/thermo/property_tables/H2O/H2O_TempSat.xls
https://github.com/dwyl/english-words
https://www.census.gov/topics/population/genealogy/data/2010_surnames.html
http://www.portaltransparencia.gov.br/servidores

76

Journal of Computer and System Sciences, Elsevier . (Pre-print available
at https://arxiv.org/abs/2105.11919)

Perl, Y., Itai, A., & Avni, H. (1978). Interpolation search—a log log n
search. Communications of the ACM , 21 , 550-553. doi: https://doi.org/
10.1145/359545.359557

Perl, Y., & Reingold, E. M. (1977). Understanding the complexity of in-
terpolation search. Information Processing Letters, 6 (6), 219-222. doi:
https://doi.org/10.1016/0020-0190(77)90072-2

Schlegel, B., Gemulla, R., & Lehner, W. (2009). k-ary search on modern
processors. Proceedings of the Fifth International Workshop on Data
Management on New Hardware, 52-60.

Yao, A. C., & Yao, F. F. (1976). The complexity of searching an ordered ran-
dom table. Proceedings of the Seventeenth Annual Symposium on Foun-
dations of Computer Science, 173-177. doi: https://doi.org/10.1109/
SFCS.1976.32

https://arxiv.org/abs/2105.11919

4

Armijo’s back-tracking problem

Summary. This chapter, contained in pages 77 to 86, is based on the the paper Ef-
ficient inexact line searching first submitted for consideration by a scientific journal
on the 28th of January of 2021; and, as of the day of the submission of this thesis,
much work has been added to this paper (after recommendations by the Editor-
in-Chief) and a re-submission should be under way within the following months.
The latest version of this paper (Oliveira & Takahashi, 2021) can be found in the
pre-print repository in the following address: https://arxiv.org/abs/2110.14072.
In the current form presented below, minor changes are made to make for a more
coherent read within the context of this thesis, however, it is kept self contained
and an independent read of Chapter 4 is possible without need of reference to ex-
ternal material within the thesis. Any major content foreign to the original paper is
highlighted with dark blue text, and, the remainder, where little or no alteration is
made, we present the content in plain black text.

In this chapter we formally study the inexact Armijo-type searching problem in-
troduced in Chapter 1 and in particular the ubiquitously employed backtracking
procedure used in solving it. Backtracking is an inexact line search procedure that
selects the first value in a sequence x0, x0β, x0β

2... that satisfies g(x) ≤ 0 on R+ with
g(x) ≤ 0 iff x ≤ x∗. This procedure is widely used in descent direction optimiza-
tion algorithms with Armijo-type conditions. It both returns an estimate in (βx∗, x∗]
and enjoys an upper-bound ⌈logβ ϵ/x0⌉ on the number of function evaluations to ter-
minate, with ϵ a lower bound on x∗. The basic bracketing mechanism employed in
several root-searching methods is adapted here for the purpose of performing inexact
line searches, leading to a new class of inexact line search procedures. The traditional
bisection algorithm for root-searching is transposed into a very simple method that
completes the same inexact line search in at most ⌈log2 logβ ϵ/x0⌉ function evalua-
tions. A recent bracketing algorithm for root-searching which presents both minmax
function evaluation cost (as the bisection algorithm) and superlinear convergence is
also transposed, asymptotically requiring ∼ log log log ϵ/x0 function evaluations for
sufficiently smooth functions. Other bracketing algorithms for root-searching can be
adapted in the same way. Numerical experiments suggest time savings of 50% to
80% in each call to the inexact search procedure.

https://arxiv.org/abs/2110.14072
ivoda
Typewritten Text
77

78

4.1 Introduction

Backtracking is an inexact line search technique typically used in the context of de-
scent direction algorithms for solving non-linear optimization problems (Gill, Mur-
ray, & Wright, 1997; Boyd & Vandenberghe, 2009; Luenberger & Ye, 2018). After a
descent direction is computed, a step size must be chosen by solving an inexact line
searching problem that can be written as

Find x̂ ∈ R+ such that g(x̂) ≤ 0; (4.1)

for some g : R+ → R such that g(x) ≤ 0 for all x less than or equal to an unknown
turning point x∗ ∈ R+ and g(x) > 0 otherwise. The condition g(x) ≤ 0 expresses
some acceptable criteria for a descent method to attain desired convergence prop-
erties, such as the well known Armijo’s condition (Armijo, 1966), Wolfe’s condition
(Wolfe, 1969), amongst others (Burachik, Drummond, Iusem, & Svaiter, 1995; Shi
& Shen, 2005; Boukis, Mandic, Constantinides, & Polymenakos, 2010; Calatroni &
Chambolle, 2017; Vaswani et al., 2019; Truong & Nguyen, 2021). The backtracking
procedure, initiated with some pre-specified values of x0 ≥ x∗ and β ∈ (0, 1), se-
quentially verifies and returns x̂ as the first value of the sequence x0, x0β, x0β

2, ...
that satisfies the inequality in (4.1), i.e. it usually takes no more than three lines
(within a larger routine) as described in Algorithm 2.

Algorithm 2: Backtracking

1 x̃← x0;
2 while g(x̃) > 0 do
3 x̃← βx̃;

Notwithstanding the relevance of Algorithm 2 as a component of a large variety
of nonlinear optimization algorithms, the literature has not focused on its study yet.
The working principles of the traditional backtracking algorithm are examined here,
and a new class of methods for inexact line search with enhanced performance is
proposed.

It is shown that the traditional backtracking delivers a ⌈logβ ϵ/x0⌉ upper-bound
on the number of function evaluations to terminate, where ϵ is a lower bound on x∗.
The simplest method belonging to the class proposed here, which is based on the
traditional bisection algorithm for root-searching, completes the same task with at
most ⌈log2 logβ ϵ/x0⌉ function evaluations. The same upper bound is provided by an-
other method based on a recent bracketing algorithm for root-searching (Oliveira &
Takahashi, 2020), which requires asymptotically only∼ log log log ϵ/x0 function eval-
uations in the case of sufficiently smooth functions. Other root-searching bracketing
algorithms can be adapted similarly for performing inexact line searches efficiently.

Numerical experiments are provided, suggesting 50% to 80% of function evalu-
ation savings in each call to the inexact search procedure.

4.2 Analysis of Traditional Backtracking

The procedure described in Algorithm 2 enjoys the following guarantees:

79

Theorem 11. Assume that x∗ > ϵ > 0, β ∈ (0, 1), x0 > x∗, and g(x) > 0 iff
x > x∗. Then, the backtracking algorithm finds a solution x̂ such that g(x̂) ≤ 0 in at
most ⌈logβ ϵ/x0⌉ iterations, and the solution x̂ satisfies βx∗ < x̂ ≤ x∗.

Theorem 11 is often an unstated and implicit motivation to employ backtracking,
since it both guarantees a finite termination in ⌈logβ ϵ/x0⌉ iterations1 and gives a
guarantee on the location of x̂. The more the value of β approximates 1.0 the closer
x̂ is guaranteed to be to x∗, which is the maximum possible step-size within the
guarantees associated with g(x) ≤ 0. The property that βx∗ < x̂ ≤ x∗ is often
key in ensuring that the parent algorithm “makes the most out of” each descent
direction expensively computed throughout its iterations. Of course, arbitrarily fast
procedures could easily be devised that find g(x) ≤ 0 by taking faster converging
sequences to 0 if this requirement were to be dropped. Hence implicit to applications
that make use of backtracking is the requirement that the solution to problem (4.1)
must be “not too far from x∗”.

Of a similar nature to the requirement that x̂ is “not too far from x∗” is the
requirement that x∗ is “not too close to zero”. Without this, the algorithm could
take arbitrarily long to find x̂ the closer x∗ is to zero. This second requirement is,
again, implicit in the formulation of backtracking procedures and, at times, it is
even entailed by the construction of the parent algorithm. For example, assume the
stopping criteria of the parent algorithm verifies stagnation in the domain of the
objective function f(·). Then, by construction, when the parent algorithm finds one
instance of (4.1) such that “x∗ is too close to zero”, it terminates. Thus, with the
exception of the very last iteration, every other iteration will satisfy x∗ ≥ ϵ.

In practice, any backtracking procedure should include a stopping condition that
is activated when the iteration count i becomes greater than an allowed maximum
imax, in order to guarantee its termination. This is equivalent to the condition
x0β

i < ϵ for ϵ = x0β
imax . Hence, the assumption that x∗ ≥ ϵ for some pre-specified

ϵ seems to be a hypothesis on (4.1) that applications that make use of backtracking
must assume, either explicitly or implicitly.

Both of these requirements, extracted from Theorem 11 and found implicitly or
explicitly in the literature, are now stated formally for the sake of clarity. We require
that:

Condition 1. For some pre-specified β in (0, 1), the solution x̂ to problem (4.1)
must satisfy βx∗ < x̂.
Condition 2. For some pre-specified ϵ > 0, the turning point x∗ of problem (4.1)
satisfies ϵ < x∗.

4.3 Bracketing-based inexact line search

The following general algorithm is proposed here:

1 The exact number of iterations can be more precisely expressed as a function of
x∗ with the relation n = ⌈logβ x∗/x0⌉. The solution-independent bound requires
x∗ to be bounded away from zero, since otherwise, backtracking may require
arbitrarily many iterations the closer x∗ is to zero.

80

Algorithm 3: Fast-tracking

1 a← ϵ;
2 b← x0;
3 while a ≤ βb do
4 chose x̃ in (a, b) and evaluate g(x̃);
5 update (a, b) according to (4.2);

6 return x̂ = a;

The update rule in line 5 is defined by:
a← x̃ if g(x̃) < 0

b← x̃ if g(x̃) > 0

a← x̃ and b← x̃ if g(x̃) = 0

(4.2)

Algorithm 3 defines a class of bracketing-based methods for inexact line search
because both the turning point x∗ and the final solution x̂ are kept inside the interval
[a, b] throughout the iterations. Different instances of this algorithm are defined by
different choices of x̃ in line 4.

4.3.1 Geometric bisection fast tracking

Consider the instance of Algorithm 3 with the choice of x̃ in line 4 performed ac-
cording to the choice rule (4.3):

x̃ ≡
√
ab (4.3)

This procedure enjoys the following guarantees:

Theorem 12. Fast-tracking with x̃ given by (4.3) finds a solution x̂ such that g(x̂) ≤
0 in at most ⌈log2 logβ ϵ/x0⌉ iterations and the solution x̂ satisfies βx∗ < x̂ ≤ x∗.

Proof. The proof follows from the fact that the inequalities βx∗ < x̂ ≤ x∗ are
equivalent to log2 β < log2 x̂ − log2 x

∗ ≤ 0, which in turn implies that | log2 β| >
| log2 x̂− log2 x

∗|. Therefore, to produce an estimate x̂ to x∗ with relative precision
of at least β, is equivalent to searching for an estimate X̂ = log2 x̂ of X∗ = log2 x

∗

with an absolute error of at most − log2 β. Under this logarithmic scale, the bi-
section method is guaranteed to perform the search task with minmax optimality
guarantees. What remains is, quite simply, to translate the bisection method from
the logarithmic to the standard scale. This is done as follows: Define A = log2 a and
B = log2 b; thus, if the bisection method takes the midpoint X1/2 = (A + B)/2 in
each iteration on the logarithmic scale, then, in the standard scale this translates to
X1/2 = (log2 a + log2 b)/2 = (log2 ab)/2 = log2(ab)

1/2. Thus, we have that x̃ must

be taken to be equal to
√
ab in the standard scale.

We now verify that when B − A ≤ − log2 β, the lower estimate produced by
A = log2 a satisfies Condition 1, i.e. that for any value of x∗ in (a, b) we must have
that βx∗ < a. For this, notice that B − A ≤ − log2 β =⇒ log2 b/a ≤ log2 β

−1 =⇒
b/a ≤ β−1 which in turn implies that βb ≤ a. And, since x∗ is less than b the
inequality in Condition 1 holds. In fact, we express the condition B −A ≤ − log2 β
as a ≤ βb in the standard scale. What is left now is to verify the number of iterations
required by the bisection method over the logarithmic scale.

81

The bisection method requires at most n1/2 ≡ ⌈log2(B0 − A0)/δ⌉ iterations
to reduce the interval (A,B) to one of length B − A ≤ δ. Thus, given that
A0 = log2 ϵ and that B0 = log2 x0 and δ = − log2 β we find that n1/2 is equal
to ⌈(log2(B0 −A0)/ log2 β)⌉ = ⌈log2 ((log2 x0 − log2 ϵ)/ log2 β)⌉ = ⌈log2 logβ x0/ϵ⌉.
⊓⊔

Thus, an immediate consequence of Theorem 12 is that naive backtracking pro-
cedures unnecessarily fall short in terms of worst case performance. They require
exponentially more iterations on the worst case when compared to simple binary
searching applied to the logarithmic scale. Of course, the ⌈logβ ϵ/x0⌉ upper-bound of
standard backtracking can, and often is, carefully minimized by choosing x0 as “near
as possible” to x∗ by means of interpolation bounds. However, the same procedures
that minimize ⌈logβ ϵ/x0⌉ can also be used to minimize the tighter ⌈log logβ ϵ/x0⌉
upper-bound of geometric bisection fast-tracking. Notice that backtracking for an
estimate with relative precision β is equivalent to grid searching with a fixed step
size on the logarithmic scale: the relative inefficiencies of grid searching when com-
pared to binary searching are well documented in the literature (Press, Teukolsky,
Vetterling, & Flannery, 2007). Thus, this improvement is attained with no appeal
to additional assumptions on the conditions of Problem (4.1), nor on the use of
additional function or derivative evaluations. It is attained solely at the cost of com-
puting the method itself, which for choice rule (4.3) is the additional computation
of one square-root per iteration.

The application of the bisection method on the logarithmic scale seems to be
an often forgotten technique within the different communities that make use of nu-
merical solvers, and it is certainly under-represented in the literature. We surveyed
popular numerical analysis and optimization textbooks, including (Gill et al., 1997;
Press et al., 2007; Boyd & Vandenberghe, 2009; Chapra & Canale, 2010; Luen-
berger & Ye, 2018), and found no reference to this technique, despite the existence
of scattered references in computational forums 2 and other isolated references to
“geometric bisection” in the context of eigenvalue computation (Ralha, 2012, 2018).
In fact, it is easy to find textbook examples that recommend the use of relative
error stopping criteria in conjunction with bisection method on a linear scale (see
pseudo-code in Figure 5.11 of (Chapra & Canale, 2010) and chapter 9.1 of (Press
et al., 2007)). This gives rise to the same inefficiency as the one caused by the use
of naive backtracking. Similar remarks can be made concerning the use of golden-
section searching / Fibonacci-searching for a minimum using relative error stopping
criteria. Of course, the underlying metric behind floating point arithmetic most cer-
tainly prioritizes relative over absolute error in numerical representations (Press et
al., 2007; Chapra & Canale, 2010), hence it is natural to recommend upper-bounding
relative errors and, for the same reasons, the proper logarithmic scaling should be
recommended before the use of bisection type methods, specifically when the initial
interval (a, b) can span several orders of magnitude.

A noticeable exception to the “inefficiency gap” between the use of arithmetic
and geometric averages in the bisection method, is when the search is already ini-

2 Some early external references to “geometric bisection” can be found in
codeforces.com/blog/entry/49189, math.stackexchange.com/questions/

3877202/bisection-method-with-geometric-mean and github.com/

SimpleArt/solver/wiki/Binary-Search

codeforces.com/blog/entry/49189
math.stackexchange.com/questions/3877202/bisection-method-with-geometric-mean
math.stackexchange.com/questions/3877202/bisection-method-with-geometric-mean
github.com/SimpleArt/solver/wiki/Binary-Search
github.com/SimpleArt/solver/wiki/Binary-Search

82

tiated with a small interval (a, b) with3 a, b > 0 and with b − a ≪ a, and thus
a value of β close to 1. However, standard conditions under which backtracking
is used can hardly be expected to satisfy this condition since the further into the
run of a descent direction algorithm, the closer x∗ is expected to be to zero, and
hence, quite the opposite is expected. That is, we find that throughout the run of
a standard descent direction algorithm b − a = x0 − ϵ tends to be much greater
than a = ϵ. Furthermore, the choice of β near one defeats the purpose of employing
inexact searching, since it is often intended as a reduction to the computational cost
of exact searching. Instead of choosing β near one, in this case one might as well
employ exact one dimensional minimization techniques to dictate the step-size.

4.3.2 Fast tracking with multi-logarithmic speed-up

Asymptotic bounds are also improved when the proper scale is adopted. This is
shown in the following by making explicit the estimated number of iterations when
a hybrid technique for the construction of x̃ is used. The exact construction of x̃ is a
straightforward application of the ITP root-searching method, described in (Oliveira
& Takahashi, 2020), on the logarithmic scale, and is omitted for brevity.

Corollary 4. If x̃ in line 4 of Algorithm 3 is taken as the ITP estimate on the
logarithmic scale (instead of the bisection method), then, the same guarantees as
Theorem 12 hold; and, if furthermore g(x) is C1 with x∗ a simple root, then asymp-
totically the number of iterations is of the order of ∼ log log logβ ϵ/x0.

Proof. Follows immediately from the properties of the ITP method (Oliveira &
Takahashi, 2020). ⊓⊔

Corollary 4 makes use of standard assumptions on the smoothness of g, un-
der which even faster convergence can be guaranteed. The ITP method mentioned
therein is an efficient first order root-searching method that in the likes of Ridders’
rule, Brent’s method or Dekker’s method, attains a superlinear order of convergence
when employed to solve one dimensional root searching problems. However, unlike
the aforementioned methods it is the only one known to retain the minmax optimal
performance of the bisection method. The exact inner-workings of the ITP method
are beyond the scope of this chapter. A reader more familiar with other hybrid
methods (such as Ridders’, Brent’s or Dekker’s method) may substitute the ITP
method for the solver of preference, albeit with weaker worst case guarantees. The
point being thatmulti-logarithmic speed-ups can be attained with interpolation based
strategies while retaining the logarithmic speed-up on the worst case performance.

3 This way, if the standard bisection method runs till βb ≤ a for some β near one, it
will take a number of iterations n1/2 of the order of ∼ log2(b0−a0)/[a0(1−β)] =
log2(b0 − a0)/a0 − log2(1− β), and since ∆/x ≈ log2(x+∆)− log x, we find that
n1/2 is of the order of ≈ log2(log2 b0− log2 a0)+ log2(1−β)/β = log2 log2 b0/a0+
log2 log2 β which simplifies to ≈ log2 logβ b0/a0, the complexity of the bisection
method applied to the logarithmic scale.

83

4.4 Experiments

Quick numerical comparisons between standard backtracking and fast-tracking are
performed here under the optimization set-up in which inexact searching is typi-
cally employed. For this we implement a standard gradient descent algorithm with
Armijo’s condition, from which the corresponding function g(x) is derived, to mini-
mize ten different loss functions f : R10 7→ R described in Table 4.1. Both methods
were initiated at x = [1, 1, ...1]T with β = 0.8, ϵ = 10−10, x0 = 1 and were com-
pared after twenty gradient descent iterations. All functions chosen contain at least
one local minimum not too far from the initial guess, and thus both implemen-
tations produced approximately the same path, hence ensuring the comparison is
made on as-similar-as-possible conditions. We report here the results using a fixed
upper-bound step value for x0 that does not depend on the size of the gradient, i.e.
our standard backtracking sequentially searches for the first term in the sequence
{x + βk∇f(x)/∥∇f(x)∥ for k = 1, 2, ...}, and fast-tracking calls an external root-
searching solver on the logarithmic scale. We use the ITP method4, however other
non-linear solvers could have been used with slightly weaker guarantees. Under the
conditions here considered the simple “geometric average” bisection method would
require exactly 7 function evaluations in each iteration if exact arithmetic were used,
hence we use this number as a reference point to which standard backtracking and
fast-tracking are compared.

Figure 4.1 focuses on the first function considered, and displays the evolution of
the number of iterations required by each inexact searching procedure as a function
of the gradient-descent iteration. And, as can be seen, fast-tracking tends to reduce
the number of iterations the further into the run while backtracking increases the
number of iterations the further into the run. This is because interpolation guaran-
tees of the ITP method are improved with the progression of the gradient run (since
it is initialized closer to the final solution), while standard backtracking will require
more iterations as the ratio of x∗/x0 is reduced the further into the run. In fact,
we observe this pattern of progression of both backtracking and of fast-tracking in
most runs.

As can be seen in Table 4.1, fast-tracking vastly improves on standard back-
tracking under both average and worst-case performance. The global average of
fast-tracking is roughly 50% that of the minmax guarantee of 7 iterations, and,
since the ITP solver called made use of the 0.99 slack variable, the worst case per-
formance over the test set is at most ⌈0.99⌉ = 1 iteration more than the minmax
guarantee, i.e. at most 7 + 1 = 8 iterations. Standard backtracking only attained a
number of iterations equal to the minmax on one instance, and was outperformed
by vanilla “geometric average” binary searching on every other instance.

Furthermore, by varying the values of β and the initial estimate x, we verify that
the differences in performance are affected too. Our preliminary estimates suggest
that for values of β near 0.5 backtracking performs much worse than fast-tracking
than what is reported in Table 4.1, multiplying by a factor of 10 the difference in
average iteration count at it’s peak value. For β near 0 or 1 the differences are kept
roughly in the range of the ones reported in Table 4.1. Concerning the effect of

4 The ITP parameters used were of κ1 = 0.1;κ2 = 2; and, a slack parameter of
N0 = 0.99 applied on the rescaled root-searching problem made to satisfy b−a ≤ 1
in order to benefit of the guarantees of (Oliveira & Takahashi, 2020).

84

Fig. 4.1: Evolution of number of iterations after each gradient calclation

the initial estimate for x, our experiments suggest that the the closer the initial
estimate is to the stationary point x∗ to which the gradient method converges, the
greater the benefit of fast-tracking over backtracking, and when initiated far from
x∗ the difference in performance is reduced, but not reversed. Finally, analogous
experiments were also performed providing the solvers with additional interpolation
information and different values of x0 and found no significant difference in the
comparative performance reported above. Thus, these results have been kept out
for brevity.

4.5 Discussion

The emphasis of “backtracking papers” does not typically lie on the three lines that
construct and verify which point in the sequence x0, x0β... first satisfies g(x) ≤ 0.
In fact, the construction of g(·), and the guarantees associated with the criteria
g(·) ≤ 0, is typically where the contributions of those papers are found. Thus,
perhaps justifiably so, it seems that not much research effort has been devoted to
those three lines since they, informally speaking, “get the job done” and “some
other paper can deal with it”. Here, we do precisely this: we tackle the backtracking
problem and find the most efficient way of completing this often overlooked task.

Here, we show a simple and proper construction of a procedure that finds g(x) ≤
0, and does so with optimal guarantees. A logarithmic speed-up is attained with
respect to worst case, and a multi-logarithmic speed-up is attained with respect
to asymptotic performance if hybrid interpolation based techniques are employed.
These speed-ups are well reflected in experiments achieving roughly 50% to 80%
time savings in each call to the inexact line-searching procedure.

References

Armijo, L. (1966). Minimization of functions having lipschitz continuous first

85

Table 4.1: Average number of function evaluations required to solve the in-
exact line-search problem in each iteration of a vanilla gradient descent for
different loss functions. The numbers reported are the average obtained af-
ter 20 gradient steps under conditions where the minmax “geometric-average”
binary-searching procedure would require exactly 7 iterations. Below, the sym-
bol V stands for an identity matrix plus the Vandermonde matrix obtained
in interpolation problems on n Chebyshev points; the vector n is defined as
[1, 2, ..., n]T , and every operation on n is done element-wise.

B
a
ck
tra

ck
in
g

F
a
st-tra

ck
in
g

Functions -
Simple Quadratic

∑
i x

2
i 12.2 4.0

High Degree Polynomial
∑

i x
2i
i 10.8 4.8

Vandermonde Interpolation xTV x 16.2 3.9
Trigonometric 1

∑
i i cos(xi) 7.0 4.8

Trigonometric 2
∑

i i cos(cos(xi)) 12.0 4.0

Log-Poly 2 log ||x− n1/n||2 27.2 2.7

Quartic 1
n
(
∑

i xi)
4 + |
√
nTx| 24.7 4.2

Interpolation w/ Regularizer xTV x+ ||x−
√
n||1 49.5 3.5

Noisy Quadratic Hard ||x||22 + 10−3∑
i sin(i/xi) 26.8 3.0

Noisy Quadratic Easy ||x||22 + 10−3∑
i sin(10

3ixi) 35.6 2.3

Global Average 22.2 3.7
Global Worst Case 147 8

partial derivatives. Pacific Journal of Mathematics, 16 (1), 1-3.
Boukis, C., Mandic, D. P., Constantinides, A. G., & Polymenakos, L. C. (2010,

May). A modified armijo rule for the online selection of learning rate
of the lms algorithm. Digital Signal Processing , 20 (3), 630–639. doi:
https://doi.org/10.1016/j.dsp.2009.09.003

Boyd, S., & Vandenberghe, L. (2009). Convex optimization. In (7th ed.).
Cambridge, UK: Cambridge University Press.

Burachik, R., Drummond, L. M. G., Iusem, A. N., & Svaiter, B. F. (1995,
January). Full convergence of the steepest descent method with inexact
line searches. Optimization, 32 , 137–146. doi: https://doi.org/10.1080/
02331939508844042

Calatroni, L., & Chambolle, A. (2017, September). Backtracking strategies for
accelerated descent methods with smooth composite objectives. SIAM
Journal on Optimization, 29 , 1772–1798. doi: https://doi.org/10.1137/
17M1149390

Chapra, S. C., & Canale, R. P. (2010). Numerical methods for engineers. In

86

(6th ed. ed., p. 202-220). New York, NY: McGraw-Hill Higher Educa-
tion.

Gill, P. E., Murray, W., & Wright, M. H. (1997). Practical optimization (11th
ed.). Academic Press.

Luenberger, D. G., & Ye, Y. (2018). Linear and nonlinear programming. In
(4th ed.). Springer International Publishing.

Oliveira, I. F. D., & Takahashi, R. H. C. (2020). An enhancement of the
bisection method average performance preserving minmax optimality.
ACM Transactions on Mathematical Software.

Oliveira, I. F. D., & Takahashi, R. H. C. (2021). Efficient solvers for armijo’s
backtracking problem.
(Pre-print available at https://arxiv.org/abs/2110.14072)

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007).
Numerical recipes: the art of scientific computing. In (6th ed. ed., p. 442-
486). Cambridge, UK: Cambridge University Press.

Ralha, R. (2012). The geometric mean algorithm. Applied Mathematics
and Computation, 219 (4), 1607-1615. doi: https://doi.org/10.1016/j
.amc.2012.08.002

Ralha, R. (2018). Mixed precision bisection. Mathematics in Computer
Science, 12 , 173–181. doi: https://doi.org/10.1007/s11786-018-0336-6

Shi, Z. J., & Shen, J. (2005). New inexact line search method for unconstrained
optimization. Journal of Optimization Theory and Applications, 127 ,
425–446. doi: 10.1007/s10957-005-6553-6

Truong, T. T., & Nguyen, H. T. (2021, September). Backtracking gradient
descent method and some applications in large scale optimisation. part
2: Algorithms and experiments. Applied Mathematics & Optimization,
84 , 2557–2586. doi: https://doi.org/10.1007/s00245-020-09718-8

Vaswani, S., Mishkin, A., Laradji, I., Schmidt, M., Gidel, G., & Lacoste-
Julieny, S. (2019). Painless stochastic gradient: Interpolation, line-
search, and convergence rates. In Proceedings of the 33rd conference on
neural information processing systems - neurips). Vancouver, Canada.

Wolfe, P. (1969). Convergence conditions for ascent methods. SIAM Review ,
11 (2), 226-235. doi: https://doi.org/10.1137/1011036

https://arxiv.org/abs/2110.14072

5

The multi-objective optimization problem

Summary. This chapter, contained in pages 87 to 117, is based on the the paper
An incremental descent method for multi-objective optimization first submitted for
consideration by a scientific journal on the 11th of September of 2021; and, as of the
day of the submission of this thesis, this paper is under consideration for publication.
The latest version of the paper (Oliveira & Takahashi, 2021b) can be found in the
pre-print repository in the following address: https://arxiv.org/abs/2105.11845.
In the current form presented below, minor changes are made to make for a more
coherent read within the context of this thesis, however, it is kept self contained
and an independent read of Chapter 5 is possible without need of reference to ex-
ternal material within the thesis. Any major content foreign to the original paper is
highlighted with dark blue text, and, the remainder, where little or no alteration is
made, we present the content in plain black text.

In this chapter we formally study the multi-objective optimization problem intro-
duced in Chapter 1 and in particular the multi-objective equivalent of the steepest
descent method. The multi-objective steepest descent method, under the assumption
of lower-bounded objective functions with L-Lipschitz continuous gradients, requires
O(m/ϵ2) gradient and function computations to produce a measure of proximity to
critical conditions akin to ||∇f(x)|| ≤ ϵ in the single-objective setting, where m
is the number of objectives considered. We reduce this to O(1/ϵ2) with a multi-
objective incremental approach that has a computational cost that does not grow
with the number of objective functions m.

5.1 Introduction

In this chapter we deal with the problem of finding critical points of multi-objective
optimization problems. The multi-objective function F : Rn → Rm is defined as the
concatenation of m single-objective functions as F (x) ≡ [f1(x), ..., fm(x)]T that are
assumed to have L-Lipschitz continuous gradients, i.e. for some L ≥ 0 and for all
x,y ∈ Rn and all i = 1, ...,m the inequality ||∇fi(x)−∇fi(y)|| ≤ L||x− y|| holds.

https://arxiv.org/abs/2105.11845
ivoda
Typewritten Text
87

88

A point x ∈ Rn is1 critical (also referred to as stationary) if and only if there does
not exist a direction v ∈ Rn such that ∇fi(x)Tv < 0 for all i = 1, ...,m.

The search for stationary points is motivated by the fact that standard first order
conditions for local optimality, akin to ∇f(x) = 0 in single-objective optimization,
is that x be stationary (Luenberger & Ye, 2018). Descent direction algorithms,
analogous to those employed in single-objective problems, have been devised and
analysed extensively for the multi-objective setting, including: (i) steepest descent
strategies (Fliege & Svaiter, 2000; Vieira, Takahashi, & Saldanha, 2012; Fliege, Vaz,
& Vicente, 2019); (ii) Newton type methods (Fliege, Drummond, & Svaiter, 2009;
Povalej, 2014); (iii) projected gradient strategies (Drummond & Iusem, 2004; Cruz,
Pérez, & Melo, 2011); amongst others (Pérez & Prudente, 2019; Tanabe, Fukuda,
& Yamashita, 2019; Gebken & Peitz, 2021; Moudden & Mouatasim, 2021). These
generally follow the same structure as single-objective optimization strategies:

Algorithm 4: Descent direction method

1 initialize x̂ ∈ Rn;
2 while not stop condition do
3 compute a descent direction d;
4 find an appropriate step-size α ∈ R+;
5 update the estimate x̂← x̂+ αd;

6 end

As in single-objective optimization, the multi-objective steepest descent method
provides the standard performance benchmark to which other methods are typically
compared to (Fliege & Svaiter, 2000; Fliege et al., 2009; Fukuda & Drummond,
2014; Fliege et al., 2019; Cocchi, Liuzzi, Lucidi, & Sciandrone, 2020). For any given
estimate x̂, the steepest descent method defines d as d ≡ V s(x̂) where

V s(x̂) ≡ arg min
V ∈Rn

max
i=1,...,m

∇fi(x̂)TV +
1

2
||V ||2. (5.1)

If line 3 of Algorithm 4 is implemented with d ≡ V s(x̂), and line 4 is implemented
with step-size α produced by Armijo’s backtracking procedure delineated in (Fliege
& Svaiter, 2000) or the Fibonacci search of (Vieira et al., 2012), then, under mild
technical assumptions, global convergence is guaranteed irrespective of the starting
point, analogous to the guarantees of single-objective gradient descent. See Theorem
1 of (Fliege & Svaiter, 2000) and Theorem 3 of (Vieira et al., 2012) for the details.
Furthermore, the computational complexity of the single-objective gradient descent
method, which upperbounds the norm of the gradient of the objective function
||∇f(x)|| by O(1/

√
k) after k steps, is also echoed by its multi-objective counterpart

as the analogous measure of proximity to critical conditions minl=1,...,k ||V s(x̂
l)||

is also upper-bounded by O(1/
√
k) after k steps under the Lipschitz continuous

gradient assumption; see Theorem 3.1 of (Fliege et al., 2019).
As mentioned in Section 1.2, to the best of our knowledge, this worst case query

complexity, in the single-objective setting, is the best known derived under such
assumptions. And, it is not improved on even with the addition of second order
information, such as with the use of Newton’s method; see Section 3 of (Cartis,
Gould, & Toint, 2010) (though the use of a regularizer in addition to the second order
information does improve the bound). Analogous convergence guarantees to those of

1 Following the definition of (Fliege & Svaiter, 2000).

89

gradient descent in single-objective optimization are also known for convex functions
as well as strong convex functions when the multi-objective steepest descent method
is employed (Fukuda & Drummond, 2014; Fliege et al., 2019). Furthermore, similar
results have been developed for Newton-type methods as well as projected gradient-
type methods in the multi-objective optimization literature (Drummond & Iusem,
2004; Fliege et al., 2009; Cruz et al., 2011; Povalej, 2014).

Problem statement.

While multi-objective steepest descent recovers the O(1/
√
k) rate of convergence of

single-objective problem solving, since the computation of d in each iteration re-
quires querying all m gradients, and the production of α in both exact and inexact
line searches requires querying all m functions per iteration, the overall query com-
plexity of multi-objective steepest descent is still m times that of single-objective
optimization; i.e. when we take into consideration the dependence on m the num-
ber of calls to gradient and function evaluations to upper-bound the measure of
proximity to critical conditions by ||V s(x̂)|| ≤ ϵ is more precisely of the order of
O(m/ϵ2). That is, with the same query complexity budget, gradient descent can
produce solutions to each of the m single-objective minimization problems sepa-
rately with similar ϵ worst case bounds as one run of the multi-objective steepest
descent method. Thus, standard multi-objective steepest descent methods turns out
to be extremely inefficient choices when the complexity with respect to the number
of objective functions m is taken into consideration. Furthermore, notice that sta-
tionarity with respect to multi-objective optimization is a relaxation of stationarity
with respect to single-objective optimization, thus the query complexity of multi-
objective optimization should actually be no greater than that of single-objective
optimization. Hence, the motivation of this chapter is to address this complexity
gap, as well as to investigate alternative descent direction definitions that might
provide improved properties in terms of rates of convergence, robustness and overall
simplicity.

For this, we propose a brand new descent method that attains the O(1/
√
k)

rate of convergence of single objective optimization that does not have an increasing
cost with respect to increasing values of m; i.e. we produce measures of proximity
to critical conditions akin to ||∇f(x)|| ≤ ϵ with only O(1/ϵ2) queries irrespective
of the value of m. This is attained by means of two advancements: first, a brand
new generalization of the steepest-descent direction is proposed, which we name the
central descent direction and denote by V c; and second, a brand new incremental
approach to the canonical structure of Algorithm 1 is proposed which is shown to
substantially reduce the cost of each iteration. It is the combination of these two im-
provements that produce the optimal O(1/

√
k) rate of convergence. To motivate our

new descent direction, we show that V c has multiple advantages over the classical
definition of V s, as stated in (5.1), including robustness guarantees that cannot be
ensured by (5.1) as well as natural metric results that provide measures of proximity
to critical conditions, akin to ||∇f(x)|| ≤ ϵ, obtained by computation of the norm of
V c alone. And, to motivate our incremental approach, we provide our main result: a
global convergence guarantee for lower-bounded objective functions with Lipschitz
continuous gradients.

90

Chapter layout.

The remainder of this chapter is divided into five parts: Sections 5.2 through 5.6.
Section 5.2 covers the definition and properties of the central descent direction.
There, robustness guarantees are given to motivate the use of V c as well as met-
ric results that provide measures of proximity to critical conditions derived from
||V c|| which are akin to classical single-objective measures. Section 5.3 defines the
incremental central descent method and contains our main result. There we provide
the main query complexity guarantee as well as discuss the implications of our re-
sult. In Sections 5.4 and 5.5, respectively, we illustrate the method proposed with
a toy example and then provide a self contained analysis of line-searching with the
techniques here delineated; both of which provides an illustration of the conver-
gence (from different angles) of the techniques here proposed. Finally, Section 5.6
summarizes our findings, situates it within the larger framework of multi-objective
optimization literature and points to future work.

5.2 The central descent direction

Given a non-critical point x ∈ Rn, any v that satisfies ∇fi(x)Tv < 0 for all i =
1, ...,m is called a descent direction. In this chapter we propose one specific uniquely
defined descent direction, which we call the central descent direction and denote by
V c(x). It is defined as

V c(x) ≡
{
argmin 1

2
||V ||2

s.t. ∇fi(x)TV ≤ −||∇fi(x)|| for all i = 1, ..., m

}
; (5.2)

i.e. it is the smallest vector V ∈ Rn, as measured by the L2 norm, with a projected
component in the direction of the negative normalized gradients of (at least) a unit:
∇fi(x)T

||∇fi(x)||V ≤ −1. And, the following property, which uniquely identifies V c/||V c||,
provides the first robustness guarantee associated with the descent direction V c.

Theorem 13 (Robustness to Perturbation). The descent direction V c(x)/
||V c(x)|| is the unit vector maximally distant from the set of non-descent directions
Rn \ {v s.t. ∇fi(x)Tv ≤ 0 for i = 1,...,m}.

Proof. Given a unit vector u in {v s.t. ∇fi(x)Tv ≤ 0 for i = 1,...,m}, the L2

distance of u to Rn \ {v s.t. ∇fi(x)Tv ≤ 0 for i = 1,...,m} is given by d(u) =
mini=1,...,m∇fi(x)Tu/||∇fi(x)||. Therefore, the maximization problem that defines
the unit vector maximally distant from non-descent directions can be expressed as

maxz,u z
s.t. z||∇fi(x)|| ≤ ∇fi(x)Tu for i = 1, ...,m;

||u|| = 1;

which, by defining V ≡ u/ − z the objective max z turns out to be equivalent to
min ||V ||2, and, the constraint z||∇fi(x)|| ≤ ∇fi(x)Tu for i = 1, ...,m; turns out to
be equivalent to −||∇fi(x)|| ≥ ∇fi(x)TV for i = 1, ...,m. The remaining constraint
of ||u|| = 1 can be dropped by recognizing that |z| = 1/||V || is non-restrictive on
the remaining variables. ⊓⊔

91

Theorem 13 ensures that the central descent direction is maximally distant from
non-descent directions as measured by the L2 norm. And, as a consequence, the
unavoidable numerical errors and/or intentional approximations in the calculation
of V c/||V c|| are less likely to produce a non-descent direction when compared to any
other directions in the cone of descent directions

{
v | ∇fi(x)Tv < 0 ∀ i = 1, ...,m

}
.

Hence, the direction V c/||V c|| seems to be a natural choice for the descent direction
d in line 3 of Algorithm 4 when numerical errors and approximations are taken into
consideration. In contrast, the unit vector V s/||V s|| not only does not enjoy any
such type of guarantee, but it can also be made arbitrarily close to the boundaries
of the cone of descent directions with a simple rescaling of the objectives with
potentially devastating effects (a property that V c/||V c|| is also immune to as is
discussed further ahead following Theorem 14).

Remark 10. A similar claim can be done if only orthogonal perturbations to the
descent direction are considered, that is, the direction V c/||V c|| also happens
to be maximally distant from non-descent directions if the distance of u in {v
s.t. ∇fi(x)Tv ≤ 0 for i = 1, ..., m} to non descent directions Rn\ {v s.t.
∇fi(x)Tv ≤ 0 for i = 1,...,m} is measured only over the orthogonal plane defined
by {x s.t. (x − u)Tu = 0}. And hence, one way or another, the central descent
direction V c seems to be a robust choice when numerical or estimation errors are
taken into consideration.

The following result further ensures that both the direction V c/||V c|| as well
as the norm ||V c|| are robust to non-linear rescaling of the objective functions.
This property, as discussed ahead, ensures that both V c as well as the metrics we
derive from ||V c|| (to be defined ahead) are a stable choice across different natural
formulations of any given multi-objective optimization problem. This property is a
key difference between V c and V s as well as previous directions proposed in the
literature thus far.

Theorem 14 (Robustness to Rescaling). Given a multi-objective problem with
F (x) ≡ [f1(x), ..., fm(x)] and a collection of strictly increasing and differentiable
transformations gi : R→ R for i = 1, ...,m, define G(x) ≡ [g1(f1(x)), ..., gm(fm(x))].
Then, the central descent direction V c(x) calculated with respect to F (x) is equal to
the central descent direction calculated with respect to G(x).

Proof. The proof follows immediately from the chain rule: ∂
∂xj

(gi(fi(x))) = g′i(fi(x))·
∂

∂xj
fi(x). Applying the chain rule to the central descent direction on the monoton-

ically transformed problem we find that argmin{ 1
2
||V ||2 s.t. g′i(fi(x))∇fi(x)TV ≤

−||g′i(fi(x))∇fi(x)||} is equal to argmin
{

1
2
||V ||2 s.t. ∇fi(x)TV ≤ −||∇fi(x)||

}
since the terms g′i(fi(x)) cancel out. ⊓⊔

Thus, Theorem 14 ensures that the central descent direction is invariant to
changes on the scales of the objective functions. In contrast, the steepest descent di-
rection in (5.1) is not only sensitive to monotone transformations, but even, sensitive
to simple linear transformations of the objectives; i.e. the direction V s(x) obtained
by considering the objective functions in F (x) ≡ [f1(x), f2(x)]

T is not the same
as the one obtained by considering F (x) ≡ [f1(x), κf2(x)]

T for κ > 0 with κ ̸= 1.
This property can have two devastating effects: it can (i) drastically warp the path
taken by the descent direction algorithm if the scales are not a-priori fine tuned; and

92

it can (ii) make V s/||V s|| arbitrarily close to the boundary of the cone of descent
directions making small numerical or estimation errors sufficient to produce a non-
descent direction d. These effects might be difficult to avoid since multi-objective
optimization techniques are typically adopted precisely when the relative weights of
the objectives are unknown.

We illustrate the contrast between V s and V c in Figures 5.1 to 5.4, which refer
to a bi-objective problem with objective functions given by:

f1(x) ≡ (x1 + 2)2 + 3x2
2 f2(x) ≡ 3x2

1 + (x2 + 2)2 (5.3)

Figure 5.1 depicts the level sets of ||V s|| (the standard parameter derived from
V s used to measure of proximity to critical conditions) as well as the stream-lines
(the curves produced by “releasing a particle to flow in the direction of V s”) of
the problem when the objective functions are multiplied by different constants. The
warping effect can over-weigh one objective over the other producing contour-lines
and stream-lines that can even parallel the efficient set, making the descent direction
algorithm unnecessarily “go around” close-by solutions to converge at distant ones.
This effect can be dramatically intensified with different monotone transformations.
Figure 5.2 shows both the contour-lines as well as the stream-lines induced by V c

and, as can be seen, the curves follow a more natural path towards a close-by effi-
cient solution irrespective of the scale adopted in the representation of the objective
functions. Finally, Figure 5.3 depicts V s and V c for varying values of ||∇fi(x)||
for i = 1, 2, while Figure 5.4 shows the variation of V c for different angles between
those gradients. We can now provide our metric results.

One of the key properties of the central descent direction is that the conditions
for a point in Rn to be critical can be restated in terms of the central descent
direction:

Lemma 2. A point x ∈ Rn is critical if and only if (i) at least one gradient ∇fi(x)
is null; or (ii) the central descent direction V c(x) defined in (5.2) is empty; or (iii)
both.

Proof. Follows immediately from the definition of critical points. ⊓⊔

And, furthermore:

Lemma 3. Let {xk}k=1,...,∞ be a sequence of non-critical points converging to x∞ ∈
Rn. Then, if neither the gradients ∇fi(xk) goes to zero with k → ∞, we have that
either (i) the accumulation point x∞ is critical and ||V c(xk)|| → ∞; or (ii) the
accumulation point x∞ is not critical and V c(xk) converges to V c(x∞).

Proof. Refer to the appendix section 5.A.1. ⊓⊔

Thus, while in single-objective optimization convergence to critical conditions
is typically measured in terms of upper-bounding the norm of the gradient, from
Lemmas 2 and 3, in the multi-objective setting proximity to critical conditions is
perhaps more naturally measured in terms of two orthogonal conditions. A point
x ∈ Rn is near-critical if either:

(a) mini=1,...m{||∇fi(x)||} is small; or
(b) 1/||V c(x)|| is small.

93

Fig. 5.1: The top two images depict the level sets of the measure of proxim-
ity induced by the steepest descent (5.1), i.e the level sets of ||V s||2. Since
the steepest descent direction is not metric-independent, the level sets of the
measure of proximity can be warped (as it is on the left side) when the objec-
tives are not measured with some comparable scale (as on the right side). The
path taken by the steepest descent method is affected by the warping and can
produce curves that are arbitrarily close to the efficient set and yet parallel to
it. The path of the steepest descent method (when the steps are sufficiently
small) will follow the stream lines depicted on the two lower images.

Condition (a) indicates that the current solution is near-optimal with respect to
at least one of the single-objective sub-problems and (b) indicates that it is near-
optimal in the Pareto sense. Of course, these can be easily mixed into one combined
metric mini=1,...m{||∇fi(x)||}/||V c(x)||; however, the separation of these conditions
allows for a better understanding of candidate solutions x ∈ Rn. In Figure 5.5 we
illustrate a multi-objective optimization problem and the regions that approximate
the efficient set with the measures here delineated.

While condition (a) is well understood, what is left now is to provide metric
results to better understand (b). That is, in the following two results we characterize
the the measure of proximity to critical conditions given by 1/||V c(x)|| in terms of
more familiar well understood mathematical tools.

Theorem 15 (Proximity measure in gradient space). For any non-critical
point x ∈ Rn define S+ ≡ {∇fi(x)/||∇fi(x)|| for i = 1, ...,m} and S− ≡
{−∇fi(x)/||∇fi(x)|| for i = 1, ...,m}. We have that

94

Fig. 5.2: The top image depicts the level sets of ||V c(x)|| (the same as the
bottom right of Figure 5.5) and the bottom image depicts the stream lines
induced by the central descent direction. Notice that since the central descent
direction is unaffected by the rescaling of the objective functions, these level
sets are not warped by different scales/representations of the same collection
of objectives. Also, notice that proximity to the minima of the single-objective
functions is not measured by this metric, as the level curves meet at a sharp
angle at each individual minimum; instead it measures the angle between the
gradients independently of their norms. This produces (on the bottom figure)
stream lines that are metric independent and are not warped by arbitrary
scaling choices.

95

Fig. 5.3: The background image depicts the effect of changing the scales of the
objective functions. The adoption of different scales on the objective functions
alter the sizes of the gradients gi ≡ ∇fi(x) for i = 1, 2, but not the directions
of the gradients. Both size and direction of the central descent are unaffected
by these changes in scale, however the direction of V s described in (5.1) is
affected by these changes in scale. The size of V s is also affected by such
changes, however, here we only depict the projections of the vectors V s and
V c to the unit ball for ease of visualization.

The maximum margin of separation between S+ and S− is equal to 2/||V c(x)||.
(5.4)

Proof. It is well known that, given vectors u+
i and u−

i for i = 1, ...,m, the separat-
ing hyperplane {x | wTx + b = 0} with maximum margin is obtained by solving
the following problem (refer to the Support Vector Machine literature initiated in
(Cortes & Vapnik, 1995) and subsequent literature):

(w∗, b∗) ≡

argmin 1

2
||w||2

s.t. wTu+
i + b ≥ 1 for i = 1, ...,m

wTu−
i + b ≤ −1 for i = 1, ...,m

(5.5)

It is also known that the maximum margin δ produced by (5.5) is equal to δ =
2/||w∗||. Now since in the separation of S+ and S+ we have u+

i ≡ ∇fi(x)/||∇fi(x)|| =
−u−

i the constraint wTu−
i + b ≤ −1 is equivalent to wTu+

i − b ≥ 1 which in turn
when combined with the constraint wTu+

i + b ≥ 1 implies that the variable b can
be dropped from the formulation thus simplifying (5.5) to

w∗ =

argmin 1

2
||w||2

s.t. wTu+
i ≥ 1

i = 1, ...,m

 =

argmin 1

2
||w||2

s.t. ∇fi(x)Tw ≥ ||∇fi(x)||
i = 1, ...,m

 (5.6)

and by defining V ≡ −w and plugging it back into (5.6) we recover the definition
of V c(x). Thus, the maximum margin δ is equal to 2/||V c(x)||. ⊓⊔

Hence, Theorem 15 provides a natural interpretation of the measure of proximity
to critical conditions 1/||V c(x)|| in terms of the domain of gradients: it measures

96

Fig. 5.4: The images depict the geometric construction of the vector V c for
different angles between ∇f1(x) and ∇f2(x), considering a point x = 0. The
cone of descent directions is shaded in yellow. The central descent direction
can be obtained by bisecting the angle between −∇f1(x) and −∇f2(x). The
V c(x) is obtained as the point which is equidistant to the edges of the cone of
descent directions and is situated at a distance of 1 to those edges. The longer
the vector depicting V c(·) the closer ∇f1(x) and ∇f2(x) are from pointing
in opposite directions, and the nearer is x to become a critical point.

the maximum margin of separation between the normalized gradients and their neg-
atives. Naturally, when separation of the gradients and the negative of the gradients
cannot be attained with a hyper-plane, then the point x must be critical, and, if it
can, the larger the separation the more the directions are “in agreement” as to one
direction that can decrease all objectives.

In the following we provide a similar result that ties in the measure 1/||V c(x)||
directly with distance of x to the set of critical points in the solution space. For this,
more regularity must be assumed on the objective functions; in this case µ-strong
convexity. We find that:

Theorem 16 (Proximity measure in decision space). If the objective functions
are assumed to be µ-strong convex then the distance δ of any estimate x ∈ Rn to the
set of critical points is upper-bounded by

δ ≤
(

2
µ

max
i=1,...,m

||∇fi(x)||
)

1

||V c(x)||
. (5.7)

Proof. From the definition of µ-strong convexity we have that for some µ > 0

fi(x) ≤ fi(y) +∇fi(x)T (x− y)− µ

2
||x− y||2 for all x,y ∈ Rn; (5.8)

97

Fig. 5.5: The top figure depicts the level curves and the efficient set of the
multi-objective optimization problem with objective functions f1(x) ≡ (x1 +
2)2 + 3x22 and f2(x) ≡ 3x21 + (x2 + 2)2. The bottom left depicts the level
curves of min{||∇f1(x)||; ||∇f1(x)||} and the bottom right depicts the level
curves of ||V c(x)||. Both measures are complementary to quantify proximity
to critical conditions; the min{||∇f1(x)||; ||∇f1(x)||} measures proximity to
local minima of the single-objective sub-problems, and, ||V c(x)|| measures
proximity to intermediate solutions of the multi-objective problem.

Now given any x ∈ Rn consider the collection of points y such that fi(y) ≤ fi(x);
for such points we may rearrange the terms in equation (5.8) to find that

0 ≤ fi(x)− fi(y) ≤ ∇fi(x)T (x− y)− µ

2
||x− y||2;

and therefore every y such that fi(y) ≤ fi(x) must satisfy ||x−y||2 ≤ 2
µ
∇fi(x)T (x−

y). Furthermore, since there must exist at least one critical point y∗ such that
fi(y

∗) ≤ fi(x) we may therefore upper-bound the distance δ of x to the critical set
by

δ ≤
{
maxy∈Rn ||y − x||
s.t. ||y − x||2 ≤ 2

µ
∇fi(x)T (y − x) for each i = 1, ...,m

}
which is then upper-bounded by

98

≤

{
maxy∈Rn ||y − x||
s.t. ||y − x||2 ≤

(
2
µ
maxi ||∇fi(x)||

)
∇fi(x)T

||∇fi(x)|| (y − x) for i = 1, ...,m

}

and by defining K ≡ 2
µ
maxi=1,...,m ||∇fi(x)||, and defining d ≡ y − x and t ≡ ||d||

we obtain

≤

maxd∈Rn,t∈R t

s.t. t2 ≤ tK ∇fi(x)T

||∇fi(x)||
d

||d|| for each i = 1, ...,m

t = ||d||

which can be further simplified to

=

maxv∈Rn,t∈R t

s.t. 1 ≤ ∇fi(x)T

||∇fi(x)||

(
K
t
v
)
for each i = 1, ...,m

||v|| = 1

and by defining V ≡ −K

t
v we have

=

{
maxV ∈Rn K/||V ||
s.t. −||∇fi(x)|| ≥ ∇fi(x)TV for each i = 1, ...,m

}
which, of course, has V c(x) as it’s unique solution. ⊓⊔

Theorem 13, under the assumption of strong convexity, provides an upper-bound
on the distance to the set of critical points as a function of 1/||V c(x)||. In single-
objective optimization, a similar inequality plays a role in motivating the use of
||∇f(x)|| as a measure of proximity to critical conditions since the distance δ can
be shown to be upper-bounded by2

δ ≤ 1
µ
||∇f(x)||.

And thus, for sufficiently well behaved functions, small values of 1/||V c(x)|| en-
sure proximity to critical conditions in a much similar fashion that small values of
||∇f(x)|| does in single-objective optimization.

In the absence of strong convexity 1/||V c(x)|| still provides a very clear measure
of proximity when considering the domain of the gradients as ensured by Theorem
15. And, in the remainder of this chapter we no longer make use of this assumption
of strong convexity, but instead only that the gradients are L-Lipschitz continuous,
and, further ahead, we will also assume that the functions are lower-bounded by
some unknown constant.

5.3 Incremental central descent method

In this section we will analyse the following algorithm which requires an initial
estimate x̂ ∈ Rn provided by the user, as well as specifications for functions SE-
LECT INDICES(·) and STEP SIZE(·) discussed ahead.

2 See (ii) of Lemma 3 in (Zhou, 2018).

99

Algorithm 5: The central descent algorithm

1 initialize x̂ ∈ Rn and set k ← 0 and ĝ1, ..., ĝm ← 0 ∈ Rn ;
2 while not stop condition do
3 S ←SELECT INDICES(·) and update ĝi ← ∇fi(x̂) for each i ∈ S;
4 V̂ ← argmin{||V ||2 s.t. ĝT

i V ≤ −||ĝi|| for i = 1, ...,m};
5 α̂←STEP SIZE(·);
6 x̂← x̂+ α̂V̂ /||V̂ || and k ← k + 1 ;

7 end

The central descent algorithm is a generalization of the classical descent direc-
tion algorithm which encompasses both single-objective as well as multi-objective
patterns. If function SELECT INDICES(·) defines S as S ≡ {1} and STEP SIZE(·)
is taken as a classical line searching technique then Algorithm 5 reduces to tradi-
tional single-objective optimization on f1(x). Alternatively, if SELECT INDICES(·)
defines S as the collection of all indices S ≡ {1, ...,m}, then, at a cost of com-
puting the gradients of all m objective functions per iteration, we produce a full
multi-objective descent direction method similar to the steepest descent methods
of (Fliege & Svaiter, 2000) and (Vieira et al., 2012). Here, we are not interested in
either of these extreme cases, but rather, in incremental approaches which produce
sparse samplings of the gradients ∇f1(·), ...,∇fm(·) in order to estimate V c instead
of computing it exactly.

In our main result ahead SELECT INDICES(·) simultaneously produces a sparse
sampling of the gradients ∇f1(·), ...,∇fm(·) while also keeping track of one anchor
function for the sake of performing inexact line searches which, as we show, is suf-
ficient to ensure convergence to the critical set. Further ahead we discuss these
decisions and point to other alternatives. In the following, β ∈ (0, 1) is a user pro-
vided sufficient decrease parameter and SELECT INDICES(·) and STEP SIZE(·)
are defined as
Incremental Anchored Sampling with Inexact Search:

SELECT INDICES(k) ≡ {j(k), t(k)};
STEP SIZE(x̂, V̂ , β, k) ≡ maxl=0,1,...,∞α = (1/2)l

s.t. fj(k)(x̂+ αV̂ /||V̂ ||)− fj(k)(x̂) ≤ βαĝj(k)
T V̂ /||V̂ ||;

(5.9)
where j(k) and t(k) are defined as j(k) = 1 and t(0) = 2 with t(k + 1) = t(k) + 1
if t(k) < m and t(k + 1) = 2 otherwise. Index j holds the anchor function identity
and t produces a step-wise sampling of the gradients.

Theorem 17. Suppose all functions fi are bounded from below and let fmin be a
lower bound on all fi. The central descent method with incremental anchored sam-
pling with inexact searching as defined in (5.9) generates a sequence such that:

min
0≤l≤k−1

mint=1,...,m ||∇ft(x̂l)||
||V̂ l||

≤

√√√√√ 1

k

 f1(x̂
0)− fmin

min
{

β(1−β)
2L

, β
}
. (5.10)

Proof. The proof will make use of the following lemma:

Lemma 4. Assuming that the gradients of objective functions are L-Lipschitz con-
tinuous, then, in each iteration of Algorithm 5 the step-size α satisfies:

100

α ≥ αmin ≡ min
{

1−β
2L

, 1
}
||ĝj ||/||V̂ ||. (5.11)

where j = j(k) is the index of the function searched in STEP SIZE(x̂, V̂ , β, k).

Proof. When 2α does not satisfy sufficient decrease condition we have

fj(x̂+ 2αV̂ /||V̂ ||)− fj(x̂) > β2α∇fj(x̂)T V̂ /||V̂ ||.

From the Lipschitz condition we find:

fj(x̂+ 2αV̂ /||V̂ ||)− fj(x̂) ≤ 2α∇fj(x̂)T V̂ /||V̂ ||+ L
2
||2α V̂

||V̂ ||
||2.

Therefore:
2α(1− β)∇fj(x̂)T V̂ /||V̂ ||+ 2Lα2 ≥ 0;

=⇒ −Lα ≤ (1− β)∇fj(x̂)T V̂ /||V̂ || ≤ −(1− β)||∇fj(x̂)||/||V̂ ||;

=⇒ α ≥ 1− β

L
||∇fj(x̂)||/||V̂ || = 1−β

2L
||ĝj ||/||V̂ ||.

⊓⊔

In each iteration l the following inequality holds for the objective function indexed
by j = j(l)

fj(x̂
l+1)− fj(x̂

l) ≤ βαl∇fj(x̂l)T V̂
l
/||V̂ l|| ≤ −βαl||∇fj(x̂l)||/||V̂ l||

and therefore by the above stated lemma

fj(x̂
l)− fj(x̂

l+1) ≥ βαl||∇fj(x̂l)||/||V̂ l|| ≥ βαmin||∇fj(x̂l)||/||V̂ l||

= βmin
{

1−β
2L

, 1
}
||∇fj(x̂l)||2/||V̂ l||2 ≥ min

{
β(1−β)

2L
, β
}
mint=1,...,m ||∇ft(x̂l)||2/||V̂ l||2.

Therefore a decrease of

fj(x̂
l)− fj(x̂

l+1) ≥ min

{
β(1− β)

2L
, β

}
min

t=1,...,m
||∇ft(x̂l)||2/||V̂ l||2 (5.12)

is attained in iteration l. By summing the terms in equation (5.12) for varying values
of l between 0 and k − 1 we find:

fj(x̂
0)− fj(x̂

k−1) ≥ min

{
β(1− β)

2L
, β

} k−1∑
l=0

min
t=1,...,m

||∇ft(x̂l)||2/||V̂ l||2.

And therefore

fj(x̂
0)− fmin ≥ kmin

{
β(1− β)

2L
, β

}
min

0≤l≤k−1
min

t=1,...,m
||∇ft(x̂l)||2/||V̂ l||2

=⇒ 1

k

 f1(x̂
0)− fmin

min
{

β(1−β)
2L

, β
}
 ≥ min

0≤l≤k−1
min

t=1,...,m
||∇ft(x̂l)||2/||V̂ l||2.

Which completes our proof. ⊓⊔

101

Theorem 17 provides, for the first time, an O(1/
√
k) convergence to critical

conditions with an iteration cost that is unaffected by increasing values of m.
The method delineated makes use of two gradients per iteration and one single-
objective inexact line search. The above instantiation of the incremental central de-
scent method is perhaps the simplest form in which Theorem 17 ensures convergence

of mint=1,...,m ||∇ft(x̂l)||/||V̂ l|| at the 1/
√
k rate of single-objective optimization.

In each step an Armijo line-search is performed on one anchor function indexed by
j = j(k) which ensures that the sequence of estimates x̂ monotonically approaches
critical conditions.

An intuitive step-by-step reasoning behind the proposed method is described
below with the number between square brackets representing the iteration count:

• In the first iteration, only the gradients ĝ1[1] = ∇f1(x̂[0]) and ĝ2[1] = ∇f2(x̂[0])
are evaluated and employed in the computation of the direction V̂ [1]; thus, it is
guaranteed to be a descent direction with respect to the first two objectives, but
not the remaining objectives. Then, the Armijo search generates a new point
x̂[1] that satisfies f1(x̂[1]) < f1(x̂[0]); and, if the step-size is sufficiently small,
then also f2(x̂[1]) < f2(x̂[0]).

• In the second iteration, the gradients ĝ1[2] = ∇f1(x̂[1]) and ĝ3[2] = ∇f3(x̂[1])
are evaluated in the current point x̂[1], and the former gradient of f2 is kept,
with ĝ2[2] = ĝ2[1] = ∇f1(x̂[0]). Those three vectors ĝ1[2], ĝ2[2] and ĝ3[2] are
used in the computation of a new direction V̂ [2]. Notice that it is guaranteed
that this V̂ [2] constitutes a descent direction for functions f1 and f3; and, if the
step-size in the first iteration was sufficiently small, then due to the Lipschitz
continuity of the gradients, it should also be a descent direction with respect
to f2, though it need not be (since we do not impose a small step-size). Thus,
after the Armijo search in this iteration, the new point x̂[2] must be such that
f1(x̂[2]) < f1(x̂[1]) and, again, if the step-sizes were sufficiently small then
f3(x̂[2]) < f3(x̂[1]) and possibly f2(x̂[2]) < f2(x̂[1]).

• In the third iteration, the gradients ĝ1[3] = ∇f1(x̂[2]) and ĝ4[3] = ∇f4(x̂[2])
are evaluated in the current point x̂[2], and the old evaluations of gradients
ĝ2[3] = ĝ2[2] = ∇f1(x̂[0]) and ĝ3[3] = ĝ3[2] = ∇f3(x̂[1]) are kept fixed. Those
four vectors ĝ1[3], ĝ2[3], ĝ3[3] and ĝ4[3] are used in the computation of a new
direction V̂ [3]. Notice that it is guaranteed that V̂ [3] now constitutes a descent
direction for functions f1 and f4. Again, if the previous step-sizes were suffi-
ciently small then by Lipschitz continuity of the gradients V̂ [3] should also be a
descent direction with respect to f2 and f3, however it need not be. And, after
the Armijo step, the new point x̂[3] must be such that f1(x̂[3]) < f1(x̂[2]), and,
if the step-sizes are sufficiently small, we may also ensure f4(x̂[3]) < f4(x̂[2]),
f2(x̂[3]) < f2(x̂[2]) and f3(x̂[3]) < f3(x̂[2]); though these last three inequalities
need not hold.
...

• This process of increasing one new gradient vector on each iteration goes on
up to iteration k = m. After this iteration, all computations of the descent
direction V̂ [k] are performed using m non-null vectors ĝ1, . . . , ĝm. Notice that
on each iteration k the vector ĝ1 is updated to the current value of the gradient
∇f1(x̂[k − 1]) and one other vector ĝt is also updated to ∇ft(x̂[k − 1]), which
means that each vector ĝi for i = 2, . . . ,m is updated at least once every
m − 1 iterations. Armijo Searching ensures that f1(x̂[k]) < f1(x̂[k − 1]) and

102

ft(x̂[k]) < ft(x̂[k − 1]) and, if the step-sizes are sufficiently small, we ensure
fi(x̂[k]) < fi(x̂[k − 1]) for every i = 1, ...,m.

It should be noticed that any function fi might be used instead of f1 for the purpose
of controlling the step size with Armijo line-searching. Of course, different choices
of the anchor function will lead to different step sizes, causing different trajectories
of the sequence x̂[k] towards the set of Pareto-critical points (different choices for
anchor functions can be used and are discussed ahead). In this version of Algorithm
5, although the only function which is guaranteed to decrease on each step is the
anchor function f1, since the step sizes tend to decrease from iteration to iteration,
every other non-anchor function also tends to decrease the further into the run. This
is because decreasing step-sizes combined with Lipschitz continuity of the gradients
ensures that the difference between the estimates ĝi and the gradients ∇fi(x̂) also
tends to decrease from iteration to iteration. Furthermore, the robustness guarantees
of V c/||V c|| in Theorem 13 provides maximal resilience to estimation errors, and
thus, it is reasonable to expect V̂ /||V̂ || to quickly fall within the cone of descent
directions despite the added errors that come with the incremental approach in
updating ĝi’s. However, it is also worth noticing that the convergence to Pareto-
critical conditions does not require this, i.e. that all searches be performed along true
descent directions; instead, as demonstrated in our main result, monotonic decrease
of the (lower-bounded) anchor function is sufficient.

5.3.1 Even weaker conditions for convergence

In the light of Theorem 17 one may ask what are the minimal conditions to ensure
the convergence of Algorithm 5. In the following we provide yet another convergence
guarantee for Algorithm 5, where the assumption of lower-boundedness is dropped.
Furthermore, the anchoring strategy is dropped and the step-sizes {αk}k=1,2,... are
only assumed to be non-negative, vanishing and non-summable; i.e. rather than as-
suming a specific backtracking strategy, we make use of an assumption that can be
ensured by pre-specifying the step-sizes (e.g. αk = 1/k) or, for example, by perform-
ing a search in vanishing intervals. More precisely, we assume that

Vanishing non-summable steps with uniform sampling:
The functions STEP SIZE and SELECT INDICES satisfy

STEP SIZE produces a sequence of αk > 0 for all k and that limk→∞ αk = 0
and

∑
k∈N αk =∞;

SELECT INDICES(k) ≡ {t(k)};
(5.13)

where t(k) is defined as t(1) = 1 with t(k+1) = t(k)+1 if t(k) < m and t(k+1) = 1
otherwise.

Theorem 18. Algorithm 5 constructed with (5.13) produces a subsequence of esti-
mates {x̂kj}j=1,2,... such that as j → ∞ either (i) the gradient ∇fi(x̂kj) vanishes
for some i = 1, ...,m; or (ii) the the central descent direction V c(x̂kj) is unbounded;
or (iii) all functions are unbounded from below and decrease indefinitely:

(i) limj→∞ ||∇fi(x̂kj)|| = 0 or (ii) ||V c(x̂kj)|| → ∞ or (iii) limj→∞ fi(x̂kj) = −∞.

for some i = 1,...,m for all i = 1,...,m
(5.14)

103

Before we provide the proof of Theorem 18 we point out a few key differences
between this result and the one in Theorem 17. Firstly, it makes fewer and weaker
assumptions on both the objective functions as well as the construction of Algorithm
5. As a consequence, the guarantees are also weaker in the sense that no speed or rate
of decay/convergence is given. However, in one specific sense Theorem 18 provides
one additional insurance that is not given by Theorem 17 alone: namely that the
result is stated with respect to ||V c(·)|| and not simply with respect to ||V̂ c(·)||.
Thus, Theorem 18 provides one (amongst others that are discussed in the following
subsection) way to ensure a finer control over the convergence of 1/||V c(·))|| rather
than 1/||V̂ c(·)|| if needed.

Proof. In this proof we will show that if (i) does not occur, then either (ii) or (iii)
must occur. The negation of (i) implies that ||∇fi(x̂k)|| is lower-bounded by some
positive real value c1 for all i = 1, ...,m and all k ∈ N is thus assumed henceforth.

Notice that for any iteration k ≥ m + 1 and any i = 1, ...,m we have that
||∇fi(x̂k)− ĝi,k|| = ||∇fi(x̂k)−∇fi(x̂τ)|| ≤ L||x̂k − x̂τ || for some τ between k−m
and k; and furthermore ||x̂k−x̂τ || ≤ ||x̂k−x̂k−1||+||x̂k−1−x̂k−2||+...+||x̂k−m+1−
x̂k−m|| =

∑k
k−m αj ; and therefore

||∇fi(x̂k)− ĝi,k|| ≤ L

k∑
k−m

αj for any k ≥ m+ 1 and i = 1, ...m; (5.15)

and thus ||∇fi(x̂k)− ĝi,k|| goes to zero as k increases. With this fact established we
will now analyse two complementary cases:
Case 1. There exists a subsequence {kj}j=1,...,∞ for which limj→∞ ||V̂ kj || =∞.

Case 2. There exists an upper-bound c2 > 0 for which ||V̂ k|| ≤ c2 for every k ∈ N.

Analysis of Case 1.
Under the conditions of Case 1 all that is needed is to show that when

||V̂ kj || → ∞ for j → ∞, then the points x̂k produce a subsequence of central

descent directions V k ≡ argmin{||V ||2 st. fi(x̂k)
TV ≤ −||∇fi(x̂k)||} that diverge.

For this, notice that over the subsequence in which ||V̂ kj || diverges we have: (A)
the vectors ĝi,k/||ĝi,k|| are contained in a unit ball, and thus, there must exist
a converging subsequence where limk→∞ ĝi,k/||ĝi,k|| = ui; and (B) ||∇fi(x̂k)|| is
lower-bounded by some positive real value c1 for all i = 1, ...,m and all k ∈ N; and
(C) the value of ||∇fi(x̂k) − ĝi,k|| goes to zero as k increases. The combination of
(A), (B) and (C) imply that ∇fi(x̂k)/||∇fi(x̂k)|| also converges to ui, and thus, by
Lemma A.1 part 1 we conclude that the points x̂k produce a subsequence of central
descent directions V k ≡ argmin{||V ||2 st. fi(x̂k)

TV ≤ −||∇fi(x̂k)||} that diverge.

Analysis of Case 2.
Lipschitz continuity of the gradients ensures that for each i = 1,...,m we have

fi(x̂k+1)− fi(x̂k) ≤ ∇fi(x̂k)
T (x̂k+1 − x̂k) +

1
2
L||x̂k+1 − x̂k||2; (5.16)

and thus
fi(x̂k+1)− fi(x̂k) ≤ αk∇fi(x̂k)

T V̂ k/||V̂ k||+ 1
2
Lα2

k = αk[ĝi,k + (∇fi(x̂k)− ĝi,k)]
T V̂ k/||V̂ k||+ 1

2
Lα2

k

≤ αkĝ
T
i,kV̂ k/||V̂ k||+αkL

k∑
k−m

αj+
1
2
Lα2

k ≤ −αk||ĝi,k||/||V̂ k||+αkL

k∑
k−m

αj+
1
2
Lα2

k;

104

where the first inequality of the second line is a consequence of (5.15) and the
second inequality is a consequence of the definition of V̂ k. Now, using (5.15) a
second time on the first term we obtain −||ĝi,k|| ≤ −||∇fi(x̂k)||+ L

∑k
k−m αj and

thus −αk||ĝi,k||/||V̂ k|| ≤ −αk||∇fi(x̂k)||/||V̂ k||+αkL(
∑k

k−m αj)/||V̂ k||, and since

by construction ||V̂ k|| ≥ 1 (when it exists) and by assumption ||∇fi(x̂k)|| ≥ c1, then
we conclude that the first term is upper-bounded by −αkc1/||V̂ k||+αkL

∑k
k−m αj .

Hence for every i = 1, ...,m and every k ≥ m+ 1 we have

fi(x̂k+1)− fi(x̂k) ≤ αk

(
2L

k∑
k−m

αj +
1
2
Lαk −

c1

||V̂ k||

)
. (5.17)

Furthermore, under the conditions of Case 2, there exists a constant c2 > 0 such
that ||V̂ k|| ≤ c2 and thus −c1/||V̂ k|| ≤ −c1/c2. Inserting this back into (5.17) we
obtain

fi(x̂k+1)− fi(x̂k) ≤ αk

(
2L

k∑
k−m

αj +
1
2
Lαk − c1/c2

)
.

Now notice that the first term within the brackets vanishes with increasing values
of k, and thus for sufficiently large k we have 2L

∑k
k−m αj +

1
2
Lαk ≤ 1

2
c1/c2. Hence,

for all i = 1, ...,m and for all k ≥ k̄, for some k̄ ∈ N, we have

fi(x̂k+1)− fi(x̂k) ≤ − 1
2
αkc1/c2. (5.18)

Summing up the terms for k ≥ k̄ in equation (5.18) we obtain:[
lim
k→∞

fi(x̂k)
]
− fi(x̂k̄) ≤ − 1

2

c1
c2

∑
k≥k̄

αk = −∞.

In this case all functions are unbounded and the sequence produces a subsequence
of points in which all functions are simultaneously decreased indefinitely. This con-
cludes our proof. ⊓⊔

5.3.2 Alternative sampling and searching strategies

We chose to display our main result in Theorem 17 with the simplest anchoring
technique which keeps j = 1 as well as with the simplest Armijo-type line-search
technique. However, other sound alternatives which more generally have the form of

SELECT INDICES(k) ≡ J (k) ∪ T (k)

also ensure a convergence of the type found in Theorem 17 and are discussed in this
subsection. First, the fixed anchor j(k) = 1 can be substituted for a set of fixed
anchors of size O(1) while still preserving the same query complexity cost:

Fixed anchor(s). Select at random a fixed set of indices J ⊂ {1, ...,m} of size
#{J } = O(1) prior to initialization and perform the inexact line search in each
function fj′(·) for j′ ∈ J .

Alternatively, the anchor functions over which the line-search is performed need
not be fixed. It can be shown that instead of fixing the index of the anchor, one

105

might define j as the index of the function with lowest value visited so far:

Lowest anchor(s). Function SELECT INDICES(·) verifies if ft(x) < fj(x) and,
if so, then it assigns j ← t. If multiple anchors are used, then, SELECT INDICES(·)
verifies and keeps the indices of functions with the lowest function values.

Under such a rule, the inexact line search needs only to be performed on the low-
est function observed. Similarly, the sampling strategy analyzed in Theorem 17 to
estimate V c had t(k) incrementally visiting each index of the multi-objective func-
tion F(x) ≡ [f1(x), ..., fm(x)]T . We chose this rule due to its simplicity, however, if

a finer monitoring of 1/||V c(x)|| is desired rather than the estimate 1/||V̂ l||, then
we point out two alternatives. The first alternative is to update all ĝi ← ∇fi(x̂) for
i = 1, ...,m once in every m steps:

Full updating. If k = m, 2m, 3m, then T (k) = {1, ...,m} otherwise T (k) =
{t(k)}.

And the second alternative is to reduce the step-sizes by means of:

Small step-sizes. Select a high value for β ∈ (0, 1).

The full updating strategy ensures that the exact value of 1/||V̂ (x)|| can be
known after every m steps while still attaining an average computational cost per
iteration of only three gradient computations and a line search. And small step-
sizes cautiously ensures small estimation errors of the older estimates ĝi of ∇fi(x̂),
which also amounts to finer estimation of V c. This causes an increase in the cost
of the Armijo-type line-searching steps since ∼ log ϵ iterations are required in each
call of the LINE SEARCH(·) procedure, where ϵ = ϵ(β) is a lower-bound on α∗.
However this increased cost can be mitigated with the implementation of modern
sub-logarithmic techniques to tackle the sufficient decrease condition that require
only ∼ log log log ϵ iterations asymptotically while taking no more than ∼ log log ϵ
in the worst case: see geometric bisection method and the implementation of the
ITP method on the logarithmic scale as discussed in (Oliveira & Takahashi, 2020,
2021a).

Finally, we point out that there are situations in which a smaller sampling might
be desired. For example, when the number of objectives m is less than the dimension
of the decision space n the (seldom updated) estimates ĝi of the gradients are unlikely
to produce an estimate V̂ (x) with a large value of ||V̂ (x)|| because that would
require a near co-planarity of a subset of ĝi. However, when the number of objectives
m is greater than the dimension of the decision space n, then it is sufficient that the
complementarity condition

∑m
i=1 λiĝi = 0 holds for λi > 0, which might occur with

non-null probability. Thus, in such situations a smaller sampling might be desired
to avoid early stopping. This can be addressed by either dropping older gradient
estimates or by making t(k) in (5.9) only visit a subset of indices {1, ...,m} of size
less than n.

106

5.4 A toy experiment

In this section we perform one small experiment to visualize Algorithm 5. For this
we construct a multi-objective function which consists of five quadratic functions
defined on the plane:

F (x, y) ≡

f1(x, y)
f2(x, y)
f3(x, y)
f4(x, y)
f5(x, y)

 ≡

(x+ 2)2 + 3y2

3x2 + (y + 2)2

(x− 5)2 + 3y2

7(x− 4)2 + (y + 1
2
)2

x2 + (y − 1
2
)2

 . (5.19)

These five functions have the following distinct minima : P1 ≡ (x∗
1, y

∗
1) = (−2, 0),

P2 ≡ (x∗
2, y

∗
2) = (0,−2), P3 ≡ (x∗

3, y
∗
3) = (5, 0), P4 ≡ (x∗

4, y
∗
4) = (4,− 1

2
), P5 ≡

(x∗
5, y

∗
5) = (0, 1

2
). And, the Pareto optimal region, depicted in Figure 5.6, has a non-

linear optimal front composed of curves between points P̂1P5, P̂5P3, P̂3P4, P̂4P2

followed by P̂2P1. The first, third and fifth curves produce concave frontiers, the
fourth curve produces a convex frontier and the second curve produces a frontier
that is neither convex nor concave.

In this experiment we produced ten initial points equidistant from the origin with
a radius of r = 10. Then, by performing ten steps of Algorithm 5 with the anchored
sampling and Armijo line searching strategies outlined in (5.9) as in Theorem 17,
we produced updated estimates. We depict the paths (in red) taken by the different
starting points in Figure 5.7 for β = 0.95 in the final steps.

In this example we find that the path taken by the updated estimates (in red)
closely approximates the stream lines of V c(x) (in blue). This is so because we took
β near 1. For smaller value of β (such as β = 0.5 not depicted in the figure) although
our experiments suggest a faster convergence, the estimates take a less restrictive ap-
proximation path to the solution set. Also, we point out that this example illustrates
that the method in Algorithm 5 with anchored sampling and Armijo searching (5.9)
seems to be indiscriminate with respect to convexity/concavity of the Pareto-front;
i.e. we observe convergence to points in both the convex and the concave fronts as
well as the edges of the efficient set.

One caveat must however be pointed out. Since the anchored sampling of (5.9)
only approximately estimates to V c in each step, it is perfectly possible that the
Algorithm has an early stop due to a “false alarm” with a small value of 1/||V̂ c||
when the actual value of 1/||V c|| is not small. However, isolating the effects of the
stopping criteria the method will behave as expected; in our example this is ensured
by taking large value of β since the value of 1/||V̂ c|| is thus ensured to be close to
the actual value of 1/||V̂ c|| for large β.

5.5 An improvement on single objective optimization?

While the focus of this chapter has been on producing an improved steepest-descent
type method for multi-objective optimization, one of the chapter’s starting point
was the fact that critical conditions for multi-objective optimization can be seen
as a relaxation to critical conditions with respect to single objective optimization.
And, this implies that the computational cost of searching for critical points of

107

(a) Efficient fronts & level curves.

(b) minj=1,...,m ||∇fj(x)|| (c) 1/||V c(x)||

Fig. 5.6: The top-most figure depicts the level curves and the efficient fronts
for each pair of objectives. The bottom-left figure depicts the level curves of
the minimum of the norm of the gradients. And, the figure to the bottom-right
depicts the multi-objective metric induced by ||V c(x)|| on the plain.

multi-objective problems must be less than or equal to the cost of searching for
critical points of single-objective optimization problems. One compelling question
that remains is: by how much is the computational cost reduced with the addition
of objectives?

Here we partially answer this question by quantifying the reduction in worst case
query complexity of one dimensional multi-objective optimization when compared
to single-objective optimization. To the best of our knowledge, that one dimensional
line-searching in multi-objective optimization can enjoy of a reduced computational
cost was first identified in (Vieira et al., 2012) where a multi-objective golden-section
procedure was proposed and argued to (i) find iterations where the shrinking con-
stant of the bracketing interval was reduced with the tracking of the many objectives
and (ii) have a weaker stopping criteria when compared to single objective optimiza-

108

Fig. 5.7: The stream lines of V c(x) (in blue) overlapped with the path (in
red) taken by the ten iterations of Algorithm 5 with anchored sampling and
Armijo line searching (5.9) for ten different starting points equidistant from
the origin.

tion. In (Vieira et al., 2012) the minmax optimal ∼ log 1/ϵ lower-bound (where ϵ is
the target precision) on query complexity for one dimensional searching is attained
by the multi-objective line-search method proposed, and thus, the multi-objective
problem complexity is shown to remain below the single-objective computational
cost. However, as in the previous literature, in (Vieira et al., 2012) one query ac-
counts for the computation of all m objective functions simultaneously, which, in our
setting is equivalent to m queries. Here, we further argue that even with each objec-
tive function accounting for one query, the computational cost of a multi-objective
line search must be no greater than that of a single-objective line search.

Problem definition.

Let fi : [0, 1] → R for i = 1, ...,m be m distinct unimodal functions with unique
and distinct minima xi for i = 1, ...,m; and, define F : [0, 1] → Rm as F (x) =
[f1(x), f2(x), ..., fm(x)]. Given a target precision ϵ, we are interested in finding an
estimate x̂ ∈ [0, 1] such that |x̂ − x∗| ≤ ϵ where x∗ is critical with respect to
F (x). All functions considered are assumed to be continuously differentiable and
the derivatives f ′

i(x) for i = 1, ...,m are available. Thus a point x∗ is critical if and
only if there exists i, j = 1, ...,m such that f ′

i(x
∗)f ′

j(x
∗) ≤ 0. Furthermore, we make

use of the following definitions:

∆x∗ ≡ max{|xi − xj | st. i, j = 1, ...,m},
and

δx∗ ≡ min{|xi − xj | st. i, j = 1, ...,m and i ̸= j}.
(5.20)

109

Remark 11. The assumption that the derivatives f ′
i(x) are available is made only to

simplify the analysis while capturing the theoretical limits that can be derived for
the non-differentiable case (and/or when function derivatives are not available). For
example, derivatives used in our results may instead be substituted for numerical
derivatives with a step-size smaller than ϵ and the result in Theorem 19 would hold,
albeit, with weaker constants.

For the problem considered, the minmax optimal ∼ log 1/ϵ query complexity of
one dimensional minimization is attained by Fibonacci-searching on functions f :
[a, b]→ R, and, if the derivative f ′(x) is available then the bisection method may be
employed to search for the zero of f ′(x) instead at a slightly improved speed (Kiefer,
1953). In this section, we describe a one dimensional bisection-type method for multi-
objective minimization that makes use of derivative values and produces a critical
point with a query complexity of less than ∼ log 1/ϵ. More specifically, we obtain a
worst case query complexity of min{3⌈log2 1/ϵ⌉, 3⌈log2 1/δx∗⌉, 3⌈log2 1/∆x∗⌉+3m},
where ∆x∗ is the maximum distance between the minima of each individual ob-
jective function, and, δx∗ is the minimum distance between the minima of each
individual objective function and m is the number of objective functions consid-
ered. Hence we obtain a less than ∼ log 1/ϵ minmax query complexity when the
objective functions do not degenerate all minima to a neighbourhood of size less
than ϵ and we match 3⌈log 1/ϵ⌉ otherwise. Thus, we provide here for the first time
an explicit characterization of the reduction in the worst-case query complexity of
single-objective optimization obtained via multi-objective optimization. It is a subtle
but meaningful result that may open doors to exploiting multi-objective relaxations
to single-objective optimization problems. The analysis will rely on the following
algorithm:

110

Algorithm 6: Alternating Bisection

Input: F (x) and ϵ
/* where F (x) = [f1(x), ..., fm(x)] with m ≥ 2 is to be minimized and

ϵ > 0 is the target precision for the estimate x̂ */

1 Initialize a = 0, b = 1, k = 0 and i = 2;

2 Calculate l = f ′
1(a), r = f ′

1(b) and l̃ = f ′
i(a), r̃ = f ′

i(b);
/* verifying if initial conditions already provide solution to

minimization problem */

3 if l ≥ 0 then
4 b = 0;

5 else if r ≤ 0 then
6 a = 1;

/* if not, we then search for an ϵ solution */

7 while (b− a > 2ϵ) & (ll̃ > 0 and rr̃ > 0) do
/* storing previously visited points */

8 Ak = a,Bk = b and k = k + 1;
/* performing a bisection step: */

9 Calculate x1/2 = a+b
2

and d = f ′
1(x1/2);

10 if d < 0 then
11 a = x1/2 and l = d;

12 else if d > 0 then
13 b = x1/2 and r = d;

14 else
15 a = x1/2 and b = x1/2;

/* rotating the objective function and updating information

on the extremities: */

16 if i < m then
17 i = i+ 1;

18 else
19 i = 2;

20 Calculate l̃ = f ′
i(a) and r̃ = f ′

i(b);

/* generating the estimate x̂ */

21 if ll̃ ≤ 0 then
22 x̂ = a;

23 else if rr̃ ≤ 0 then
24 x̂ = b;

25 else
26 Calculate x1/2 = a+b

2
and make x̂ = x1/2;

Output: Estimate x̂

The alternating bisection method makes use of a very similar technology as the
anchored incremental central descent method. In each iteration it brackets the min-
ima of one anchor function while incrementally querying the derivative of one other

111

function on the extremities of the bracketing interval. If the derivatives on the ex-
tremities have the same sign, then they are not critical with respect to the pair of
objectives being evaluated. But, if the derivatives disagree in sign on at least one of
the extremities of the interval then the method found a critical point with respect
to that pair of objectives. In this way, the alternating bisection method enjoys the
following guarantee:

Theorem 19. The number of queries required by the alternating bisection method
to return an estimate x̂ to the multi-objective optimization problem is upper-bounded
by

3⌈log2 1/ϵ⌉ and 3⌈log2 1/δx∗⌉ and 3⌈log2 1/∆x∗⌉+ 3m. (5.21)

Proof. In order to prove that the number of function evaluations is upper-bounded
by 3⌈log2 1/ϵ⌉, we first recognize that for each function evaluation performed for
the sake of the bisection step on the anchor function f1(x) in line 9, the Algorithm
performs two evaluations of the derivative f ′

i(x) for some i in line 20. Also, notice that
the while-loop contains the standard bisection stopping criteria of (b− a > 2ϵ) and
thus, the upperbound 3⌈log2 1/ϵ⌉ is guaranteed by the standard bisection guarantees
on the minimization of the anchor function f1. It will terminate under this criteria
if it has bracketed an epsilon solution to the single-objective problem, which in turn
must also be an epsilon solution to the multi-objective problem as well.

We now proceed to prove that the number of function evaluations is upper-
bounded by 3⌈log2 1/δx∗⌉. For this, assume that Algorithm 6 has performed ⌈log2
1/δx∗⌉ bisection steps and has produced an interval of length b− a ≤ δx∗. We will
see that in this iteration either the condition ll̃ ≤ 0 or the condition rr̃ ≤ 0 must
hold enabling the algorithm to break loose from the while-loop. For this, we recall
that by the definition of δx∗ it follows that for any pair of objective functions i, j
the distance between the minima xi and xj must be greater than or equal to δx∗;
in particular this is true for the objectives f1(x) and the objective fi(x) in which
that Algorithm 6 probes in line 20. Hence, interval [x1, xi] (or [xi, x1] depending
on the order of xi and x1) is of length greater than or equal to that of [a, b], and
also, since Algorithm 6 has maintained x1 bracketed in every iteration, it follows
that [a, b] ∩ [x1, xi] is not empty (x1 belongs to both intervals). Combining these
two facts implies that either a or b or both must fall within interval [x1, xi], i.e.
at least one of them is a non-dominated solution to the problem of minimizing the
pair of functions f1 and fi. Now, we recall that the first-order condition for a point
x∗ ∈ (0, 1) to be non-dominated, given a pair of differentiable objective functions
fi and fj , is that f ′

i(x
∗)f ′

j(x∗) ≤ 0; and, under the hypothesis of unimodality, this

condition is also sufficient. Thus, we conclude that either ll̃ ≤ 0 or rr̃ ≤ 0 or both,
which proves the second upper-bound.

Now, in order to prove our third upper-bound we will use the fact that max{|x1−
xi| : for i = 2, ...,m} is greater than or equal to 1

2
∆x∗. Now, assume that Algorithm

6 has performed ⌈log2 2/∆x∗⌉ iterations reducing the interval to a length of b− a ≤
∆x∗/2. If the function fi whose derivative is to be probed in line 20 happened to
(luckily) be the one which maximizes |x1 − xi|, by analogous arguments to those
provided above (for the upper bound of 3⌈log2 1/δx∗⌉) Algorithm 6 would break
loose from the while-loop for satisfying either ll̃ ≤ 0 or rr̃ ≥ 0 or both. Now, in any
other case it takes at most m iterations for the index i that maximizes |x1−xi| to be
probed after iteration number ⌈log2 2/∆x∗⌉. Hence, at most ⌈log2 2/∆x∗⌉+m−1 =

112

⌈log2 1/∆x∗⌉ + m iterations (which correspond to 3⌈log2 1/∆x∗⌉ + 3m derivative
evaluations) are required to hit the desired index after the interval has reached the
desired length.

⊓⊔

Theorem 19 provides three upper-bounds on the cost of finding a non-dominated
solution to the one-dimensional multi-objective problem. The first is a function of
the desired precision ϵ, the second is a function of the geometry of the problem
alone, and, the third is a function of the dimensions of the problem (in addition to
the geometry of the problem). An immediate consequence of these upper-bounds is
that, for small ϵ, the computational cost of finding a solution to the multi-objective
problem turns out to be much less than that of finding a solution to the single-
objective problem. Of course, if ϵ is not small then the single-objective problem
might be less costly, however, even in such cases, the cost of the multi-objective
problem is at most three times the cost of it’s single-objective counterpart. Thus, for
the first time, we can characterize (for the one dimensional problem) the reduction
in computational cost associated with the addition of objective functions.

Finally, it is worth mentioning that, while we have focused here on the worst
case bounds, improvements on asymptotic and average performances of Algorithm
6 can also be attained by performing ITP steps (Oliveira & Takahashi, 2020) in
line 9 instead of bisection steps. This would yield an asymptotic function evaluation
count of the order of min{log log 1/ϵ, log log 1/δx∗, log log 1/∆x∗ + m} given that
x1 is a simple root of f ′

1(x), and, that the ITP method is initiated near steady
state conditions (as discussed in (Oliveira & Takahashi, 2020)), with no cost on the
minmax performance established in Theorem 19.

5.6 Discussions

Current state-of-the-art solvers for multi-objective optimization problems require
computing the gradients of all m objective functions per iteration and one m-
objective line search to produce convergence to critical conditions at the worst case
rate of O(1/

√
k), where k is the iteration count. Here, we propose an incremental

descent method that achieves the same rate of O(1/
√
k) with at most two gradient

computations per iteration and one single-objective line search; i.e. a reduction in
the computational complexity by a factor of m.

The methods developed here make use of a brand new descent direction similar
to the Cauchy’s steepest descent, which we term the central descent direction. The
central descent is shown to have improved robustness and geometric guarantees
which are not shared by other directions considered so far in the literature. And,
when approximated incrementally, it allows the construction of the method here
proposed with a computational complexity that is unaffected by increasing values
of m.

Future work.

The results attained here produce a convergence with a query complexity matching
that of single-objective optimization. However, as mentioned in Section 5.1, since

113

multi-objective optimization can be seen as a relaxation to single-objective optimiza-
tion, it is natural to expect that increasing values of m should reduce the overall
computational cost of the search, specifically when the dependence on the stopping
criteria is made explicit. This is so because a larger region of the solution space is
considered near-critical with the increase in the number of objectives. In this chap-
ter we focused solely on the iteration cost and, thus, it may be possible to show
that, when the dependence on the stopping criteria is made explicit, the incremen-
tal central descent methods here considered have a diminishing cost with increasing
values of m in a symilar fashion as the alternating bisection method of Section 5.5.
Furthermore, despite our formulation having attained a reduced query complexity,
it still requires a memory cost that is dependent and increasing with m. It might
be possible to exploit the fact that each gradient only shows up as a restriction in
the formulation of (5.2), and formulate an update scheme in the computation of V̂
that might mitigate and even eliminate the increasing memory cost with increasing
values of m. Another compelling direction of research is to investigate if it is possible
to exploit the “opposite direction” of scalarization; i.e. to formulate multi-objective
relaxations of single-objective problems with the intent of reducing the overall query
complexity of any given single-objective problem. We are unaware of any research
done in this direction and we believe a mapping of the trade-offs associated with such
a relaxation might prove to open brand new methods of solving classical problems.

5.A Appendix

5.A.1 Proof of Lemma 3

This proof will use make use of continuity-type results on the dependence of the
central descent direction with respect to the gradients, described in Lemma 5 whose
proof is found in the appendix Section 5.A.2.

Lemma 5. Given a collection of vectors gi for i = 1, ...,m define S ≡ {v s.t. gT
i v ≤

−||gi|| for all i = 1, ...,m }. Then:

1. If for some R > 0 the intersection of {v s.t. ||v|| ≤ R} with S is empty, then,
there exists an ϵ > 0 such that for every collection of ĝi’s such that ||ĝi −
gi|| ≤ ϵ for all i = 1, ...,m the intersection of {v s.t. ||v|| ≤ R} with {v|ĝT

i v ≤
−||ĝi|| for all i = 1, ...,m } is also empty.

2. If vI is vector in Rn that satisfies gT
i vI < −||gi|| for all i = 1, ...,m , then,

there exists an ϵ > 0 such that for every collection of ĝi’s in Rn such that
||ĝi − gi|| ≤ ϵ for all i = 1, ...,m the vector vI also satisfies ĝT

i vI <
−||ĝi|| for all i = 1, ...,m .

3. If vE is a vector in Rn that satisfies gT
i vE > −||gi|| for some i = 1, ...,m ,

then, there exists an ϵ > 0 such that for every collection of ĝi’s in Rn such
that ||gi − ĝi|| ≤ ϵ for all i = 1, ...,m the vector vE also satisfies ĝT

i vE >
−||ĝi|| for some i = 1, ...,m .

Proof. Refer to the Appendix Section 5.A.2. ⊓⊔

Proof. Given that the gradients are L-Lipschitz continuous, we must have that
||∇fi(xk) − ∇fi(x∞)|| → 0 as k → ∞. Let us assume that x∞ is critical

114

with ∇fi(x∞) ̸= 0 for all i = 1, ..., m. Under these conditions the feasible set
S∞ ≡ {v s.t. ∇fi(x∞)Tv ≤ −||∇fi(x∞)|| for all i = 1, ..., m } is empty, and thus
for any given R > 0 the intersection between {v s.t. ||v|| ≤ R} and S∞ is empty.
Hence, as a consequence of Lemma 5 part 1 we have: for any R > 0 there will
exist an ϵ > 0 such that any collection of ĝi’s in which ||ĝi −∇fi(x∞)|| ≤ ϵ for all
i = 1, ...,m and any v which satisfies ||v|| ≤ R we have that the intersection between
{v s.t. ||v|| ≤ R} and {v s.t. ĝT

i v ≤ −||ĝi|| for all i = 1,...,m } is also empty. As a
consequence of this fact, as ∇fi(xk) approaches ∇fi(x∞), the value of ||V c(xk)||
must arbitrarily increase.

Now, let us assume that x∞ is non-critical, and hence, V c(x∞) is non empty.
We recall the definition of the feasible set S∞ as S∞ ≡ {v s.t. ∇fi(x∞)Tv ≤
−||∇fi(x∞)|| for all i = 1, ..., m }, and, we will refer to the interior of S∞ as
the set of vectors that satisfy all the inequalities strictly, i.e. the interior of S∞
is the set {v s.t. ∇fi(x∞)Tv < −||∇fi(x∞)|| for all i = 1, ..., m }. By consider-
ing the vector vδ ≡ (1 + δ)V c(x∞) for any δ > 0 it is easy to see that vδ is
in the interior of S∞. As a consequence of Lemma 5 part 2, for every vI in the
interior of S∞ there exists an ϵ > 0 such that for every collection of ĝi’s for
i = 1, ...,m that satisfy ||ĝi −∇fi(x∞)|| ≤ ϵ we will have vI also in the interior of
{v s.t. ĝT

i v ≤ −||ĝi|| for all i = 1, ..., m }. The same can be said about points in the
exterior of S∞ by applying Lemma 5 part 3, where vE is said to be in the exterior
of S∞ if there exists an i between 1 and m such that ∇fi(x∞)TvE > −||∇fi(x∞)||.
Hence, if any subsequence of V k’s converges, then, since it cannot converge to the
interior of S∞ nor the exterior, it must converge to the subset of S∞ where at least
one of the constraints ∇fi(x∞)Tv ≤ −||∇fi(x∞)|| is satisfied with an equality.

Now, notice that every point in the interior of Sk ≡ {v s.t. ∇fi(xk)
Tv <

−||∇fi(xk)|| for all i = 1, ..., m } provides an upper-bound on the value of ||V c(xk)||
since V c(xk) is the minimizer of ||v|| over Sk. One such upper-bound is sufficient
to recognize that V c(xk) remains bounded for k > k̄ for some k̄ ∈ N. Thus, since
bounded sequences must have at least one converging sub-sequence, all that is left
is to show that every such sub-sequence converges to V c(x∞).

Since every point in the interior of Sk provides an upper-bound on the value of
||V c(xk)|| we know that limk→∞ ||V c(xk)|| ≤ limδ→0 ||vδ|| = ||V c(x∞)||. Now, to
see that limk→∞ ||V c(xk)|| also satisfies limk→∞ ||V c(xk)|| ≥ ||V c(x∞)|| notice that
if {v s.t. ||v|| ≤ R}∩S∞ is empty for some R > 0, then, by Lemma 5 part 1 we have
that for ϵ > 0 sufficiently small, any collection of ĝi’s that satisfy ||ĝi−∇fi(x∞)|| ≤ ϵ
will also have an empty intersection between {v s.t. ||v|| ≤ R} and {v s.t. ĝT

i v ≤
−||ĝi for all i = 1, ..., m||}. This is the case for any R < ||V c(x∞)||, and thus for
any R < ||V c(x∞)|| and for any k ≥ k̄ for some sufficiently large k̄ ∈ N the value
of ||V c(x∞)|| is greater than or equal to R. Taking the limit of R to ||V c(x∞)|| we
obtain that limk→∞ ||V c(xk)|| ≥ ||V c(x∞)||.

Defining vlim ≡ limk→∞ V c(xk), since we have established that ||vlim|| =
||V c(x∞)|| while satisfying ∇fi(x∞)Tvlim ≤ −||∇fi(x∞)|| for all i = 1, ..., m
(because it cannot be in the interior or the exterior of S∞); and, since V c(x∞)
is the unique minimizer of ||v|| over S∞, we must conclude that limk→∞ V c(xk) =
V c(x∞). ⊓⊔

115

5.A.2 Proof of Auxiliary Lemma 5

Proof. Part 1. Define ϵ(R) as any positive value strictly less than ϵ∗(R) ≡
z(R)+1
R+1

minj{||gj || for j = 1, ..., m} where z(R) is uniquely defined as:

z(R) ≡

minz∈R,v∈Rn z
s.t. gT

i v ≤ z||gi|| for all i = 1,...,m;
||v|| ≤ R.

(5.22)

Notice that since the intersection of {v s.t. ||v|| ≤ R} with S is empty, it must
be that z(R) is strictly greater than −1 which implies that ϵ∗(R) is strictly greater
than zero. Furthermore, notice that for any v which satisfies ||v|| ≤ R we will have
that for some i between 1 and m the relation gT

i v ≥ z(R)||gi|| holds. This is because
only for the minimizers v∗, z∗ of (5.22) that gT

i v equates to z(R)||gi|| on (at least)
one value of i between 1 and m. For non-optimal values of v, there will exist an i
where the condition gT

i v ≤ z(R)||gi|| must be broken. Thus, consider a collection of
ĝi’s in which ||ĝi−gi|| ≤ ϵ(R) for all i = 1, ...,m and any v which satisfies ||v|| ≤ R;
then, we have that for some i the following must hold:

ĝT
i v = gT

i v + (ĝi − gi)
Tv ≥ z(R)||gi|| − ϵ(R) ·R. (5.23)

What we must show is that the right hands side of (5.23) is strictly greater than
−||ĝi||. This follows from

z(R)||gi|| − ϵ(R) ·R > −||ĝi|| ⇐⇒ −ϵ(R) ·R > −z(R)||gi|| − ||ĝi||,

which holds if and only if

1
R
[z(R)||gi||+ ||ĝi||] > ϵ(R). (5.24)

Now observing that

1
R
[z(R)||gi||+ ||ĝi||] ≥ 1

R
[z(R)||gi||+ ||gi|| − ϵ(R)] ;

and, the right hand side is greater then ϵ(R) because

1
R
[z(R)||gi||+ ||gi|| − ϵ(R)] > ϵ(R)

⇐⇒ 1
R
[z(R)||gi||+ ||gi||] > (1 + 1/R)ϵ(R)

⇐⇒ z(R)+1
R+1

||gi|| > ϵ(R);

and, by the definition of ϵ(R), this inequality holds.
Part 2. If vI satisfies gT

i vI < −||gi|| for all i = 1, ...,m , then clearly si =
gT
i vI+||gi|| < 0 for all i = 1, ...,m. Now, chose any ϵ > 0 such that ϵ(1+||vI ||) < −si

for all i = 1, ...,m. Notice that

ĝT
i vI = gT

i vI + (ĝi − gi)
TvI = gT

i vI + ||gi|| − ||gi||+ (ĝi − gi)
TvI ;

and thus

ĝT
i vI ≤ si − ||gi||+ ϵ||vI || ≤ si − ||ĝi||+ ϵ+ ϵ||vI || = si − ||ĝi||+ ϵ(1 + ||vI ||);

and, since ϵ was chosen to satisfy ϵ(1 + ||vI ||) < −si for all i = 1, ...,m, we have
that ĝT

i vI < −||ĝi|| for all i = 1, ...,m.

116

Part 3. If vE satisfies gT
i vE > −||gi|| for some i = 1, ...,m , then clearly for

one such i = i∗ that satisfies this inequality we have si∗ = gT
i∗vE + ||gi∗ || > 0. Now,

chose any ϵ > 0 such that ϵ(1 + ||vE ||) < si∗ . Notice that

ĝT
i∗vE = gT

i∗vE + (ĝi∗ − gi∗)
TvE = gT

i∗vE + ||gi∗ || − ||gi∗ ||+ (ĝi∗ − gi∗)
TvE ;

and thus

ĝT
i∗vE ≥ si∗−||gi∗ ||−ϵ||vE || ≥ si∗−||ĝi∗ ||−ϵ−ϵ||vE || = si∗−||ĝi∗ ||−ϵ(1+ ||vE ||);

and, since ϵ was chosen to satisfy ϵ(1 + ||vE ||) < si∗ we have that ĝT
i∗vE > −||ĝi∗ ||.

⊓⊔

References

Cartis, C., Gould, N. I. M., & Toint, P. L. (2010, September). On the complex-
ity of steepest descent, newton’s and regularized newton’s methods for
nonconvex unconstrained optimization problems. SIAM Journal on Op-
timization, 20 (6), 2833-2852. doi: https://doi.org/10.1137/090774100

Cocchi, G., Liuzzi, G., Lucidi, S., & Sciandrone, M. (2020). On the
convergence of steepest descent methods for multiobjective optimiza-
tion. Computational Optimization and Applications, 77 , 1-27. doi:
https://doi.org/10.1007/s10589-020-00192-0

Cortes, C., & Vapnik, V. (1995). Support-vector networks. In Machine
learning (p. 273-297).

Cruz, J. Y. B., Pérez, L. R. L., & Melo, J. G. (2011). Convergence of the
projected gradient method for quasiconvex multiobjective optimization.
Nonlinear Analysis: Theory, Methods and Applications, 74 (16), 5268-
5273. doi: https://doi.org/10.1016/j.na.2011.04.067

Drummond, L. M. G., & Iusem, A. N. (2004). A projected gradient method
for vector optimization problems. Computational Optimization and Ap-
plications, 28 , 5-29. doi: https://doi.org/10.1023/B:COAP.0000018877
.86161.8b

Fliege, J., Drummond, L. M. G., & Svaiter, B. (2009). Newton’s method for
multiobjective optimization. Journal on Optimization, 20 (2), 602-626.
doi: https://doi.org/10.1137/08071692X

Fliege, J., & Svaiter, B. F. (2000). Steepest descent methods for multicriteria
optimization. Mathematical Methods of Operations Research, 51 , 479-
494. doi: https://doi.org/10.1007/s001860000043

Fliege, J., Vaz, A. I. F., & Vicente, L. N. (2019). Complexity of gradi-
ent descent for multiobjective optimization. Optimization Methods and
Software, 34 (5), 949-959. doi: https://doi.org/10.1080/10556788.2018
.1510928

Fukuda, E. H., & Drummond, L. M. G. (2014). A survey on multiobjective
descent methods. Pesquisa Operacional , 34 (3), 585-620. doi: https://
doi.org/10.1590/0101-7438.2014.034.03.0585

117

Gebken, B., & Peitz, S. (2021). An efficient descent method for locally lipschitz
multiobjective optimization problems. Journal of Optimization Theory
and Applications, 188 , 696-723. doi: https://doi.org/10.1007/s10957
-020-01803-w

Kiefer, J. (1953). Sequential minimax search for a maximum. Proceedings of
the American Mathematical Society , 4 (3), 502-506.

Luenberger, D. G., & Ye, Y. (2018). Linear and nonlinear programming. In
(4th ed.). Springer International Publishing.

Moudden, M. E., & Mouatasim, A. E. (2021). Accelerated diagonal steepest
descent method for unconstrained multiobjective optimization. Journal
of Optimization Theory and Applications, 188 , 220-242. doi: https://
doi.org/10.1007/s10957-020-01785-9

Oliveira, I. F. D., & Takahashi, R. H. C. (2020). An enhancement of the
bisection method average performance preserving minmax optimality.
ACM Transactions on Mathematical Software.

Oliveira, I. F. D., & Takahashi, R. H. C. (2021a). Efficient solvers for armijo’s
backtracking problem.
(Pre-print available at https://arxiv.org/abs/2110.14072)

Oliveira, I. F. D., & Takahashi, R. H. C. (2021b). An incremental descent
method for multi-objective optimization. Under consideration by the
journal Optimization Methods and Software, Taylor & Francis. (Pre-
print available at https://arxiv.org/abs/2105.11845)

Pérez, L. R. L., & Prudente, L. F. (2019). A wolfe line search algorithm
for vector optimization. ACM Transactions on Mathematical Software,
45 (4), 1-23. doi: https://doi.org/10.1145/3342104

Povalej, Z. (2014). Quasi-newton’s method for multiobjective optimization.
Journal of Computational and Applied Mathematics, 255 (1), 765-777.
doi: https://doi.org/10.1016/j.cam.2013.06.045

Tanabe, H., Fukuda, E. H., & Yamashita, N. (2019). Proximal gradient
methods for multiobjective optimization and their applications. Com-
putational Optimization and Applications, 72 , 339–361. doi: https://
doi.org/10.1007/s10589-018-0043-x

Vieira, D. A. G., Takahashi, R. H. C., & Saldanha, R. R. (2012). Multicriteria
optimization with a multiobjective golden section line search. Mathe-
matical Programming , 131 (1-2), 131–161. Retrieved from https://doi

.org/10.1007/s10107-010-0347-9 doi: 10.1007/s10107-010-0347-9
Zhou, X. (2018). On the fenchel duality between strong convexity and lipschitz

continuous gradient. arXiv Preprint arXiv:1803.06573 .

https://arxiv.org/abs/2110.14072
https://arxiv.org/abs/2105.11845
https://doi.org/10.1007/s10107-010-0347-9
https://doi.org/10.1007/s10107-010-0347-9

6

Concluding Remarks

Searching algorithms have served as building blocks for more complex computa-
tional systems, and, are often used as subroutines called multiple times by parent
algorithms used in computer science, engineering and numerical analysis. This thesis
revisits four such classical searching algorithms which are widely considered optimal
with respect to the typical measures of performance. And, somewhat surprisingly,
we find long overseen theoretical improvements to these procedures. The procedures
and corresponding problems considered are: (i) the bisection method for continuous
root-searching problems; (ii) the binary search algorithm for discrete list-searching;
(iii) the back-tracking technique for inexact Armijo-type searching; and (iv) the
n-dimensional steepest descent method for non-linear multi-objective optimization.

The four improvements proposed have, to a greater of lesser degree, one thing in
common: we keep the worst case guarantees of our methods upper-bounded by the
current state-of-the-art while ensuring improvements on alternative metrics such as
average computational cost or asymptotic costs. Our theoretical improvements are
well reflected in time savings and in reduction of computational costs as confirmed
in many experiments and, at times, can span several orders of magnitude. These
results are surprising precisely because the methods here considered have been both
extensively studied in the literature as well as employed in multiple applications,
and thus our advancements both push the theoretical boundaries and bring practical
benefits to existing technology.

Much of the improvements come from a careful understanding of the optimality
of binary searching strategies. More specifically, (i) the finding that binary searching
is not uniquely minmax optimal motivated (ii) the search for other minmax optimal
strategies with improved performance under different metrics; and also (iii) a better
comprehension of the interdependence of the performance of binary searching with
the underlying metrics pre-assumed on the domain of solutions clarified (iv) the
improper use of binary searching in back-tracking procedures. The first two papers,
found in Chapters 2 and 3, build on an alternative minmax optimal strategy which
we name the ITP method, whereas, the two last papers, found in Chapters 4 and 5,
build on this interplay between the metric used in the domain of solutions and the
performance of the divide-and-conquer nature of searching strategies.

ivoda
Typewritten Text
118

119

A few open problems

All four papers presented in this thesis point to different promising directions in
which the techniques here identified may yet be improved upon. However, as a clos-
ing remark, we reiterate what we believe to be the most promising ideas that deserve
further investigation. First, concerning one dimensional problems: The ITP method
described and analysed in detail in this thesis still requires three user provided
meta-parameters to be fully defined κ1, κ2 and n0. Although we empirically adjust
these parameters to the data available in our sample test-sets, it still remains an
open question as to how to select these values in a theoretically sound and empiri-
cally satisfiable way. Second, concerning the multi-objective optimization scenario:
Different classes of functions could have been considered in our derivation of the
query complexity guarantees on objective functions with Lipschitz continuous gra-
dients. Other natural classes of functions that deserve investigation include convex
functions, strongly convex functions as well as classical (and widely used) quadratic
forms. Third and lastly, concerning single-objective optimization: As reiterated mul-
tiple times in the second half of this thesis, multi-objective optimization can be seen
as a relaxation to single-objective optimization, and, the addition of objectives to a
single-objective optimization problem with the purpose of lowering computational
cost is a much unexplored idea that deserves further investigation.

120

The following collected list of references contains the bibliography
cited throughout the chapters of this thesis. It is presented in alphabetical
order for ease of access.

References

Argyros, I. K., & Khattri, S. K. (2013). On the secant method. Journal of
Complexity , 29 (6), 454-471.

Armijo, L. (1966). Minimization of functions having lipschitz continuous first
partial derivatives. Pacific Journal of Mathematics, 16 (1), 1-3.

Bentley, J. L., & Sedgewick, R. (1997, January). Fast algorithms for sorting
and searching strings. SODA ’97: Proceedings of the eighth annual ACM-
SIAM symposium on Discrete algorithms, 360–369.

Bentley, J. L., & Yao, A. C. (1976). An almost optimal algorithm for un-
bounded searching. Information Processing Letters, 5 (3), 82-87. doi:
https://doi.org/10.1016/0020-0190(76)90071-5

Boukis, C., Mandic, D. P., Constantinides, A. G., & Polymenakos, L. C. (2010,
May). A modified armijo rule for the online selection of learning rate
of the lms algorithm. Digital Signal Processing , 20 (3), 630–639. doi:
https://doi.org/10.1016/j.dsp.2009.09.003

Boyd, S., & Vandenberghe, L. (2009). Convex optimization. In (7th ed.).
Cambridge, UK: Cambridge University Press.

Brent, R. P. (1971). An algorithm with guaranteed convergence for finding
a zero of a function. The Computer Journal , 14 (4), 422–425. doi:
https://doi.org/10.1093/comjnl/14.4.422

Burachik, R., Drummond, L. M. G., Iusem, A. N., & Svaiter, B. F. (1995,
January). Full convergence of the steepest descent method with inexact
line searches. Optimization, 32 , 137–146. doi: https://doi.org/10.1080/
02331939508844042

Bus, J. C. P., & Dekker, T. J. (1975). Two efficient algorithms with guaranteed
convergence for finding a zero of a function. ACM Transactions on
Mathematical Software, 1 (4), 330–345. doi: https://doi.org/10.1145/
355656.355659

Calatroni, L., & Chambolle, A. (2017, September). Backtracking strategies for
accelerated descent methods with smooth composite objectives. SIAM
Journal on Optimization, 29 , 1772–1798. doi: https://doi.org/10.1137/
17M1149390

Cannizzo, F. (2018). Fast and vectorizable alternative to binary search in O(1)
applicable to a wide domain of sorted arrays of floating point numbers.
Journal of Parallel and Distributed Computing , 113 (5), 37. doi: https://
doi.org/10.1016/j.jpdc.2017.10.007

Cartis, C., Gould, N. I. M., & Toint, P. L. (2010, September). On the complex-
ity of steepest descent, newton’s and regularized newton’s methods for

121

nonconvex unconstrained optimization problems. SIAM Journal on Op-
timization, 20 (6), 2833-2852. doi: https://doi.org/10.1137/090774100

Chapra, S. C., & Canale, R. P. (2010). Numerical methods for engineers. In
(6th ed. ed., p. 202-220). New York, NY: McGraw-Hill Higher Educa-
tion.

Cocchi, G., Liuzzi, G., Lucidi, S., & Sciandrone, M. (2020). On the
convergence of steepest descent methods for multiobjective optimiza-
tion. Computational Optimization and Applications, 77 , 1-27. doi:
https://doi.org/10.1007/s10589-020-00192-0

Conn, A. R., Gould, N. I. M., & Toint, P. L. (2000). Trust region methods.
SIAM Society for Industrial and Applied Mathematics.

Cortes, C., & Vapnik, V. (1995). Support-vector networks. In Machine
learning (p. 273-297).

Cruz, J. Y. B., Pérez, L. R. L., & Melo, J. G. (2011). Convergence of the
projected gradient method for quasiconvex multiobjective optimization.
Nonlinear Analysis: Theory, Methods and Applications, 74 (16), 5268-
5273. doi: https://doi.org/10.1016/j.na.2011.04.067

Dowell, M., & Jarratt, P. (1971, June). A modified regula falsi method for
computing the root of an equation. ACM Transactions on Mathematical
Software, 11 (2), 168-174. doi: https://doi.org/10.1007/BF01934364

Drummond, L. M. G., & Iusem, A. N. (2004). A projected gradient method
for vector optimization problems. Computational Optimization and Ap-
plications, 28 , 5-29. doi: https://doi.org/10.1023/B:COAP.0000018877
.86161.8b

Eiger, A., Sikorski, K., & Stenger, F. (1984). A bisection method for systems
of nonlinear equations. ACM Transactions on Mathematical Software,
10 (4), 367-377. doi: https://doi.org/10.1145/2701.2705

Fletcher, R. (1987). Practical methods of optimization (Second ed.). New
York, NY, USA: John Wiley & Sons.

Fliege, J., Drummond, L. M. G., & Svaiter, B. (2009). Newton’s method for
multiobjective optimization. Journal on Optimization, 20 (2), 602-626.
doi: https://doi.org/10.1137/08071692X

Fliege, J., & Svaiter, B. F. (2000). Steepest descent methods for multicriteria
optimization. Mathematical Methods of Operations Research, 51 , 479-
494. doi: https://doi.org/10.1007/s001860000043

Fliege, J., Vaz, A. I. F., & Vicente, L. N. (2019). Complexity of gradi-
ent descent for multiobjective optimization. Optimization Methods and
Software, 34 (5), 949-959. doi: https://doi.org/10.1080/10556788.2018
.1510928

Ford, J. A. (1995). Improved algorithms of illinois-type for the numerical solu-
tion of nonlinear equations (Department of Computer Science Report).
University of Essex.

Fukuda, E. H., & Drummond, L. M. G. (2014). A survey on multiobjective
descent methods. Pesquisa Operacional , 34 (3), 585-620. doi: https://
doi.org/10.1590/0101-7438.2014.034.03.0585

122

Gal, S., & Miranker, W. (1977). Optimal sequential and parallel search for
finding a root. Journal of Combinatorial Theory , 23 (1), 1-14. doi:
https://doi.org/10.1016/0097-3165(77)90074-7

Gebken, B., & Peitz, S. (2021). An efficient descent method for locally lipschitz
multiobjective optimization problems. Journal of Optimization Theory
and Applications, 188 , 696-723. doi: https://doi.org/10.1007/s10957
-020-01803-w

Gill, P. E., Murray, W., & Wright, M. H. (1997). Practical optimization (11th
ed.). Academic Press.

Graf, S., Novak, E., & Papageorgiou, A. (1989). Bisection is not optimal
on the average. Numerische Mathematik , 55 , 481-491. doi: https://
doi.org/10.1007/BF01396051

Kearfott, R. B. (1987). Some tests of generalized bisection. ACM Transac-
tions on Mathematical Software, 13 (3), 197-220. doi: https://doi.org/
10.1145/29380.29862

Kiefer, J. (1953). Sequential minimax search for a maximum. Proceedings of
the American Mathematical Society , 4 (3), 502-506.

Knuth, D. E. (1998). The art of computer programming - sorting and search-
ing. In (2nd ed., Vol. 3, chap. 6.2). Addison-Wesley.

Laber, E. S., Milidiú, R. L., & Pessoa, A. A. (2002). On binary searching with
nonuniform costs. SIAM Journal on Computing , 31 (4), 1022-1047. doi:
https://doi.org/10.1137/S0097539700381991

Le, D. (1985a). An efficient derivative-free method for solving nonlinear
equations. ACM Transactions on Mathematical Software, 11 (3), 250-
262. doi: https://doi.org/10.1145/214408.214416

Le, D. (1985b). Three new rapidly convergent algorithms for finding a zero
of a function. SIAM Journal on Scientific and Statistical Computing ,
6 (1), 193-208. doi: https://doi.org/10.1137/0906016

Luenberger, D. G., & Ye, Y. (2018). Linear and nonlinear programming. In
(4th ed.). Springer International Publishing.

McNamee, J. M., & Pan, V. Y. (2012). Efficient polynomial root-refiners: A
survey and new record efficiency estimates. Computers & Mathematics
with Applications, 63 (1), 239-254. doi: https://doi.org/10.1016/j.camwa
.2011.11.015

Moudden, M. E., & Mouatasim, A. E. (2021). Accelerated diagonal steepest
descent method for unconstrained multiobjective optimization. Journal
of Optimization Theory and Applications, 188 , 220-242. doi: https://
doi.org/10.1007/s10957-020-01785-9

Muller, D. E. (1956). A method for solving algebraic equations using an auto-
matic computer. Mathematical Tables and Other Aids to Computation,
10 (56), 208-215. doi: https://doi.org/10.2307/2001916

Nerinckx, D., & Haegemans, A. (1976). A comparison of non-linear equation
solvers. Journal of Computational and Applied Mathematics, 2 (2), 145-
148. doi: https://doi.org/10.1016/0771-050X(76)90017-6

123

Nesterov, Y. (2018). Lectures on convex optimization. In (2nd ed., Vol. 137).
Springer International Publishing.

Nocedal, J., & Wright, S. J. (2006). Numerical optimization (second ed.).
New York, NY, USA: Springer.

Norton, V. (1985). Algorithm 631 finding a bracketed zero by larkin’s method
of rational interpolation. ACM Transactions on Mathematical Software,
11 (2), 120-134. doi: https://doi.org/10.1145/214392.214396

Novak, E. (1989). Average-case results for zero finding. Journal of Complexity ,
5 (4), 489-501.

Novak, E., & Ritter, K. (1993). Some complexity results for zero finding for
univariate functions. Journal of Complexity , 9 (1), 15-40. doi: https://
doi.org/10.1006/jcom.1993.1003

Novak, E., Ritter, K., & Woźniakowski, H. (1995). Average-case optimal-
ity of a hybrid secant-bisection method. Mathematics of Computation,
64 (212), 1517–1539. doi: https://doi.org/10.2307/2153369

Oliveira, I. F. D. (2013). Optimal black-box sequential searching. Mas-
ters Thesis of the Mathematics Department of the Federal Univer-
sity of Minas Gerais. Retrieved from http://hdl.handle.net/1843/

EABA-98VHPQ (Advised by Professor R.H.C. Takahashi.)
Oliveira, I. F. D., & Takahashi, R. H. C. (2020a). An enhancement of the

bisection method average performance preserving minmax optimality.
ACM Transactions on Mathematical Software.

Oliveira, I. F. D., & Takahashi, R. H. C. (2020b). Minmax-optimal list
searching with O(log2 log2 n) average cost. Under consideration by the
Journal of Computer and System Sciences, Elsevier . (Pre-print available
at https://arxiv.org/abs/2105.11919)

Oliveira, I. F. D., & Takahashi, R. H. C. (2021a). Efficient solvers for armijo’s
backtracking problem.
(Pre-print available at https://arxiv.org/abs/2110.14072)

Oliveira, I. F. D., & Takahashi, R. H. C. (2021b). An incremental descent
method for multi-objective optimization. Under consideration by the
journal Optimization Methods and Software, Taylor & Francis. (Pre-
print available at https://arxiv.org/abs/2105.11845)

Pérez, L. R. L., & Prudente, L. F. (2019). A wolfe line search algorithm
for vector optimization. ACM Transactions on Mathematical Software,
45 (4), 1-23. doi: https://doi.org/10.1145/3342104

Perl, Y., Itai, A., & Avni, H. (1978). Interpolation search—a log log n
search. Communications of the ACM , 21 , 550-553. doi: https://doi.org/
10.1145/359545.359557

Perl, Y., & Reingold, E. M. (1977). Understanding the complexity of in-
terpolation search. Information Processing Letters, 6 (6), 219-222. doi:
https://doi.org/10.1016/0020-0190(77)90072-2

Povalej, Z. (2014). Quasi-newton’s method for multiobjective optimization.
Journal of Computational and Applied Mathematics, 255 (1), 765-777.
doi: https://doi.org/10.1016/j.cam.2013.06.045

http://hdl.handle.net/1843/EABA-98VHPQ
http://hdl.handle.net/1843/EABA-98VHPQ
https://arxiv.org/abs/2105.11919
https://arxiv.org/abs/2110.14072
https://arxiv.org/abs/2105.11845

124

Pownuk, A., & Kreinovich, V. (2017). Why linear interpolation? Mathematical
Structures and Modeling , 3 (43), 43-49.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007).
Numerical recipes: the art of scientific computing. In (6th ed. ed., p. 442-
486). Cambridge, UK: Cambridge University Press.

Ralha, R. (2012). The geometric mean algorithm. Applied Mathematics
and Computation, 219 (4), 1607-1615. doi: https://doi.org/10.1016/j
.amc.2012.08.002

Ralha, R. (2018). Mixed precision bisection. Mathematics in Computer
Science, 12 , 173–181. doi: https://doi.org/10.1007/s11786-018-0336-6

Rice, J. R. (1969). A set of 74 test functions for nonlinear equation solvers
(Department of Computer Science Report No. 64-034). Purdue Univer-
sity.

Ridders, C. (1979). A new algorithm for computing a single root of a real con-
tinuous function. IEEE Transactions on Circuits and Systems, 26 (11),
979–980. doi: https://doi.org/10.1109/TCS.1979.1084580

Ritter, K. (1994). Average errors for zero finding: lower bounds for smooth
or monotone functions. Aequationes Mathematicae, 48 (2), 194-219. doi:
https://doi.org/10.1007/BF01832985

Schlegel, B., Gemulla, R., & Lehner, W. (2009). k-ary search on modern
processors. Proceedings of the Fifth International Workshop on Data
Management on New Hardware, 52-60.

Segura, J. (2010). Reliable computation of the zeros of solutions of second
order linear odes using a fourth order method. SIAM Journal on Numer-
ical Analysis, 48 (2), 452-469. doi: https://doi.org/10.1137/090747762

Shi, Z. J., & Shen, J. (2005). New inexact line search method for unconstrained
optimization. Journal of Optimization Theory and Applications, 127 ,
425–446. doi: 10.1007/s10957-005-6553-6

Shrager, R. I. (1985). A rapid robust rootfinder. Mathematics of Computation,
44 (169), 151-165. doi: https://doi.org/10.2307/2007799

Sikorski, K. (1982). Bisection is optimal. Numerische Mathematik , 40 (1),
111-117. doi: https://doi.org/10.1007/BF01459080

Sikorski, K. (1985). Optimal solution of nonlinear equations. Journal of
Complexity , 1 (2), 197-209. doi: https://doi.org/10.1016/0885-064X(85)
90011-1

Stage, S. A. (2013). Comments on an improvement to the brent’s method.
International Journal of Experimental Algorithms, 4 (1), 1-16.

Tanabe, H., Fukuda, E. H., & Yamashita, N. (2019). Proximal gradient
methods for multiobjective optimization and their applications. Com-
putational Optimization and Applications, 72 , 339–361. doi: https://
doi.org/10.1007/s10589-018-0043-x

Traub, J. F. (1963). Iterative methods for the solution of equations. Bell
Telephone Laboratories, 8 (4), 550-551.

Truong, T. T., & Nguyen, H. T. (2021, September). Backtracking gradient
descent method and some applications in large scale optimisation. part

125

2: Algorithms and experiments. Applied Mathematics & Optimization,
84 , 2557–2586. doi: https://doi.org/10.1007/s00245-020-09718-8

Vaswani, S., Mishkin, A., Laradji, I., Schmidt, M., Gidel, G., & Lacoste-
Julieny, S. (2019). Painless stochastic gradient: Interpolation, line-
search, and convergence rates. In Proceedings of the 33rd conference on
neural information processing systems - neurips). Vancouver, Canada.

Vieira, D. A. G., Takahashi, R. H. C., & Saldanha, R. R. (2012). Multicriteria
optimization with a multiobjective golden section line search. Mathe-
matical Programming , 131 (1-2), 131–161. Retrieved from https://doi

.org/10.1007/s10107-010-0347-9 doi: 10.1007/s10107-010-0347-9
Vrahatis, M. N. (1988). Algorithm 666 chabis: A mathematical software

package for locating and evaluating roots of systems of nonlinear equa-
tions. ACM Transactions on Mathematical Software, 14 (4), 330-336.
doi: https://doi.org/10.1145/50063.51906

Wolfe, P. (1969). Convergence conditions for ascent methods. SIAM Review ,
11 (2), 226-235. doi: https://doi.org/10.1137/1011036

Wu, X. (2005). Improved muller method and bisection method with global
and asymptotic superlinear convergence of both point and interval for
solving nonlinear equations. Applied Mathematics and Computation,
166 (2), 299-311. doi: https://doi.org/10.1016/j.amc.2004.04.120

Yao, A. C., & Yao, F. F. (1976). The complexity of searching an ordered ran-
dom table. Proceedings of the Seventeenth Annual Symposium on Foun-
dations of Computer Science, 173-177. doi: https://doi.org/10.1109/
SFCS.1976.32

Zhang, Z. (2011). An improvement to the brent’s method. International
Journal of Experimental Algorithms, 2 (1).

Zhou, X. (2018). On the fenchel duality between strong convexity and lipschitz
continuous gradient. arXiv Preprint arXiv:1803.06573 .

https://doi.org/10.1007/s10107-010-0347-9
https://doi.org/10.1007/s10107-010-0347-9

