UNIVERSIDADE FEDERAL DE MINAS GERAIS PROGRAMA DE PÓS-GRADUAÇÃO EM FÍSICA

TASSIUS TEMISTOCLES LINS MACIEL

Estudo sobre operadores de medições quânticas simétricos

BELO HORIZONTE 2013

Tassius Temistocles Lins Maciel

Estudo sobre operadores de medições quânticas simétricos

Dissertação apresentada ao Programa de Pós-Graduação em Física do Instituto de Ciências Exatas da Universidade Federal de Minas Gerais como requisito parcial para obtenção do título de Mestre em Ciências.

Orientador: Reinaldo Oliveira Vianna

Belo Horizonte 2013 Dados Internacionais de Catalogação na Publicação (CIP)

M152e Maciel, Tassius Temistocles Lins. Estudo sobre operadores de medições quânticas simétricos / Tassius Temistocles Lins Maciel. – 2013. 46f., enc. : il.
Orientador: Reinaldo Oliveira Vianna. Dissertação (mestrado) – Universidade Federal de Minas Gerais, Departamento de Física. Bibliografia: f. 33-35.
1. Tomografia quântica. 2. Simetria. 3. Espaço de Hilbert.
I. Título. II. Vianna, Reinaldo Oliveira. III. Universidade Federal de Minas Gerais, Departamento de Física.

Ficha catalográfica elaborada por Romário Martins Ribeiro – CRB6 3595 Biblioteca Professor Manoel Lopes de Siqueira – Departamento de Física - UFMG

Universidade Federal de Minas Gerais Instituto de Ciências Exatas Programa de Pós-Graduação em Física Caixa Postal 702 30.123-970 Belo Horizonte - MG - Brasil Telefone (xx) (31) 3499 5637 (xx) (31) 3499 5633 Fax (xx) (31) 3499 5688 (xx) (31) 3499 5600 e-mail pgfisica@fisica.ufmg.br

ATA DA SESSÃO DE ARGUIÇÃO DA DISSERTAÇÃO DE MESTRADO DO BACHAREL **Tassius Temistocles Lins Maciel** com fim à obtenção do grau de **MESTRE EM FÍSICA**. Às 9:00 horas do dia treze de agosto de dois mil e treze, na sala 4123 A do Departamento de Física da UFMG, reuniu-se a Comissão Examinadora, composta pelos professores **Reinaldo Oliveira Vianna** (Orientador do candidato e Presidente da Comissão/Departamento de Física/UFMG), **Leonardo Teixeira Neves** (Departamento de Física/UFMG), **Maria Carolina Nemes** (Departamento de Física/UFMG), **Pablo Lima Saldanha** (Departamento de Física/UFMG), para dar cumprimento ao Artigo 37 do Regimento Geral da UFMG, submetendo o bacharel **Tassius Temistocles Lins Maciel** à arguição de seu trabalho de dissertação de Mestrado, que recebeu o título de **" Estudo sobre Operadores de Medições Quânticas Simétricos "**. Às 14:00 horas do mesmo dia, o candidato fez uma exposição oral de seu trabalho durante aproximadamente 50 minutos. Após esta, os membros da comissão prosseguiram com a sua arguição e apresentaram seus pareceres individuais sobre o trabalho e o parecer final da comissão, concluindo pela aprovação do trabalho.

Belo Horizonte, 13 de agosto de 2013.

Prof. Reinaldo Oliveira Vianna Departamento de Física – UFMG Orientador do Candidato

Leonardo T- Ver

Prof. Leonardo Teixeira Neves Departamento de Física – UFMG

.

M. C. Wines Profa. Maria Carolina Nemes Departamento de Física – UFMG

lable Lin Suldante Prof. Pablo Lima Saldanha Departamento de Física - UFMG

CONFERE COM O ORIGINA B. HORIZONTE 131041.2013 do Programa de

Candidato

Agradecimentos

Agradeço as pessoas que foram fundamentais nesse período. Pois, acredito que sem a participação delas tudo seria ainda mais difícil. Agradecer não será o suficiente para retribuir o que recebi, porém se faz necessário para demonstrar a minha gratidão.

Agradeço, em primeiro lugar, à minha fonte de força e vontade de seguir em frente em meio as dificuldades, minha querida mãe Dilma, com ela me sinto forte e com capacidade para alcançar qualquer objetivo.

Agradeço às minhas irmãs, Neila e Leila, por todo apoio que recebo, por todo o incentivo, conselhos e por acreditarem mais em mim do que eu mesmo sou capaz de acreditar.

Agradeço a minha vó Francisca que sempre me acolhe como seu netinho e sempre se emociona a cada visita.

Agradeço à minha amada namorada, Thays, que me acompanha desde o final da graduação com muito amor, cuidado e compreensão. A vontade de tê-la perto serve como combustível para que eu faça o meu melhor.

Enfim, as pessoas citadas acima, despertam a saudade física todos os dias, mas me mantém feliz em saber que existem pessoas que me desejam o bem, mesmo que distantes.

Aos meus primos e primas, Jackson, Júnior, Evandro, Jacqueline e Adriana. E, aos pequenos Lucas, Eduardo e Júlia que estão sempre dispostos a gastar um pouco da minha paciência. Bem como agradeço a todas as tias pela receptividade e conselhos.

Fico feliz em dizer que encontrei amigos em Belo Horizonte. Sou muito agradecido a João Batisa, Benito, Priscila e Álvaro, que me acolheram quando me mudei, e, pelas boas conversas que tivemos.

Agradeço aos amigos de departamento, Alisson (que sempre preocupado com as provas me forçava a estudar também), Ingrid, Júlia Roquette (que salvou meu primeiro carnaval fora do nordeste), e, aos amigos que fiz através da física José Maria, Moniellen, Júlio, Pedro, Welyson, Eliel e Davi.

Por fim, agradeço aos amigos do cafofo, ao Tanus que espontaneamente me auxiliou em discussões e revisões sobre a dissertação, além de incentivos para estudar além dos tópicos trabalhados nela. Ao Thiago (Tchê), pelas ajudas em computação numérica e socorros nas últimas horas de escrita, ao Fernando Iemini pelos rolês, conversas e caronas no seu "táxi", ao Debarba pelas discussões sobre "como fazer ciência" e ao Reinaldo (meu orientador) por propor trabalhos e aceitar algumas das minhas sugestões. Não poderia me esquecer de agradecer ao CNPq pelo suporte financeiro durante esse período de mestrado.

Resumo

Nesta dissertação discutimos medições quânticas simétricas: projetivas e POVMs. Apresentamos o problema da existência destas medições para dimensões finitas de espaços de Hilbert, que, para os casos de medições projetivas é o problema da existência da bases mutuamente não-viciadas (MUBs), enquanto que, para o caso dos POMVs é problema da existência de operadores medição de valores positivos, simétricos e informacionalmente completos (SIC-POVMs). Para as MUBs, discutimos uma construção algébrica para os casos em que a dimensão do espaço de Hilbert é prima. Para os SIC-POVMs, discutimos uma generalização do problema (GSIC-POVM), implementamos um método numérico baseado nessa generalização, desenvolvemos um método via programação semidefinida para a obtenção de SIC-POVMs e sua generalização. Comparamos os resultados obtidos pelos dois métodos numéricos, e a relação dos GSIC-POVM com os SIC-POVM.

Palavras-chave: Medições quânticas, MUB, SIC-POVM.

Abstract

In this dissertation we discuss symmetric quantum measurements: projective and POVMs. We present the problem of the existence of these measurements for finite dimensions of Hilbert spaces, which, for the case of projective measurements, is the problem of the existence of mutually unbiased bases (MUBs), while, for the case of POMVs, it is the problem of the existence of positive, symmetric and informationally complete measurement operators (SIC-POVMs). For MUBs, we discuss an algebraic construction for cases where the dimension of the Hilbert space is prime. For SIC-POVMs, we discuss a generalization of the problem, and, we implement a numerical method based on this generalization, and, we develop a method via semidefinte programming to obtain SIC-POVMs and their generalization (GSIC-POVM). We compared the results obtained by the two numerical methods, and the relationship of the GSIC-POVM with the SIC-POVM.

Keywords: Quantum measurements, MUB, SIC-POVM.

Sumário

1	INTRODUÇÃO	9
2	ESTADOS E MEDIÇÕES	11
3	BASES MUTUAMENTE NÃO-VICIADAS	14
3.1	FS-MUBs com d primo \ldots	15
3.1.1	d=2	15
3.1.2	$d={\sf primo}\;{\sf (mpar}\;\ldots\ldots\ldots\ldots$	16
4	POVM SIMÉTRICOS E INFORMACIONALMENTE COMPLETOS	
	(SIC-POVM)	22
4.1	Generalização de SIC-POVM	23
4.1.1	Construção de GSIC-POVM	24
4.2	Busca numérica de GSIC-POMVs	25
5	CONSIDERAÇÕES FINAIS	32
	REFERÊNCIAS 3	33
	APÊNDICES 3	6
	APÊNDICE A – SIC-POVMS ANALÍTICOS	37
A.1	$d=2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	37
A.2	$d=3 \ldots 3$	37
A.3	$d=4 \ldots 3$	38
	APÊNDICE B – FIDUCIAIS GSIC-POVM (VIA SDP) 3	39
B.1	$d=2 \dots \dots \dots \dots \dots \dots \dots \dots \dots $	39
B.2	d=3	10
B.3	d=4	41
B.4	d=5	12
B.5	d=6	13
B.6	d=7	15
B.7	d=8	16

1 Introdução

A física pode ser descrita como um conjunto de leis e métodos matemáticos capazes de descrever fenômenos naturais sob de hipóteses pré-estabelecidas¹. Partindo desta óptica, para desenvolver/encontrar uma lei física o caminho mais comum é observar, delimitar as variáveis mais influentes/importantes para o problema, e quando possível, realizar alterações em algumas das variáveis para verificar a correlação com as demais. Para este processo de observação e especulação de comportamentos, é necessário definir variáveis que sejam mensuráveis, isto é, uma variável só deve ser considerada grandeza física, se houver uma forma de medir tal propriedade.

Nas teorias clássicas² as grandezas físicas são consideradas como "parte dos sistemas físicos", isto é, independem da medição e as medições não interferem nas propriedades. Enquanto que na teoria quântica, as medições não indicam, necessariamente, que o resultado de uma medição é o valor de uma característica pré-existente no sistema físico³.

O outro objeto que chamei de fundamental para as teorias físicas – as simetrias – são relevantes devido sua possibilidade de encontrar princípios físicos baseados, apenas, nos resultados matemáticas das conservações de algumas quantidades após a evolução de um sistema físico. Segundo o teorema de Noether [2], cada simetria contínua corresponde a uma quantidade conservada.

As simetrias estudadas nesta dissertação vão em outra perspectiva, elas surgem da simetria das medições e espaços de estados quânticos. As simetrias encontras nas MUBs e nos SIC-POVMs, são úteis para protocolos de informação e trazem consigo questões interessantes sobre a existência (ou inexistência) para qualquer dimensão finita arbitrária. Até a data da entrega desta dissertação não existe nenhuma construção do conjunto completo de MUBs para dimensão do espaço de Hilbert igual a 6. Questões como esta, são intrigantes pois o que há de especial nas dimensões primas? O que implicaria, para a teoria quântica e os protocolos de informação sob a teoria quântica, a impossibilidade da construção de 7 MUBs quando o espaço de Hilbert tem dimensão d = 6?

Os capítulos desta dissertação estão distribuídos de forma que no capítulo 1 introduzimos as definições de estados quânticos e medições quânticas que serão trabalhadas ao longo desta dissertação. No capítulo 2 definimos o que são bases mutuamente não-vicidas (MUBs), definimos o problema da existência de MUBs para dimensões finitas arbitrárias,

¹ Essa não é a única possível interpretação. Não irei, aqui, discutir a metafísica das teorias físicas. Apenas abordarei esta dissertação sob está óptica.

 ² Chamaremos de teorias clássicas, ou física clássica, as teorias físicas que antecedem a teoria quântica.
 ³ Nesta dissertação iremos adotar a visão epistemológica da teoria quântica. Novamente, não iremos defender este ponto de vista, mas iremos utilizá-lo. Para quem deseja buscar uma introdução ao debate "Teoria Quântica epistemológica x Teoria Quântica ontológica", sugiro a leitura do texto [1].

comentamos alguns resultados existentes. De forma detalhada, apresentamos a construção de MUBs para dimensões primas. Comentamos, também, sobre a construção de MUBs para dimensões que são potência de primo.

No capítulo 3, trabalhamos com medições mais gerais - os POVM⁴ -, definimos o que são os *Symmetric, Informationally Complete, Positive Operator-Valued Measure* (SIC-POVM) e discutimos uma possível generalização dos SIC-POVMs (GSIC-POVM). Apresentamos o problema da existência dos SIC-POVM para dimensões finitas arbitrárias, e como é possível abordar este problema partindo da generalização dos SIC-POVMs. Ainda no capítulo 3, desenvolvemos um método numérico, via programação semidefinida, para buscar GSIC-POVMs para qualquer dimensão e comparamos os resultados encontrados na literatura.

No final do capítulo 3 e nas considerações finais, discutimos sobre as vantagens e desvantagens de utilizarmos SIC-POVMs ou GSIC-POVMs. E, dissertamos sobre possíveis continuidades deste trabalho.

⁴ Postive Operator Valued Measure.

2 Estados e Medições

Antes de apresentar os problemas trabalhados nesta dissertação, irei introduzir, neste capítulo, a notação e nomenclatura utilizada ao longo deste texto. Aqui, apresentarei, apenas, como os estados e medições são postulados na teoria quântica, pois não serão consideradas a parte pertinente a dinâmica da teoria.

O estado em que um sistema físico se encontra, quando representado pela teoria quântica é chamado de estado quântico.

Definição 1 (Estado Quântico). Um estado quântico em um espaço de Hilbert de dimensão d (\mathcal{H}^d) é representado por uma matriz $\rho \in \mathcal{H}^d$ positiva-semidefinida de traço unitário, i. e.,

$$\rho \ge 0, \tag{2.1a}$$

$$tr(\rho) = 1. \tag{2.1b}$$

A matriz que representa um estado quântico (de dimensão d) possui d^2 números complexos. Entretanto, por ser hermitiana basta a identificação de d^2 números reais, e, devido o normalização (tr(ρ) = 1) o estado fica completamente caracterizado por $d^2 - 1$ números reais. Este problema de determinar o estado quântico, de um sistema físico desconhecido, é conhecido como tomografia de estados quânticos [3].

Uma possível realização de uma tomografia quântica pode ser feita medindo uma coleção de sistemas identicamente preparados, devemos lembrar que independente da característica probabilística da MQ, esse processo não estará livre do erros estatísticos. Os testes capazes de obter esses números reais são as medições quânticas. Uma medição quântica é definida por um conjunto de operadores hermitianos positivos-semidefinidos que somam para a matriz identidade.

Definição 2 (Medição Quântica (ou POVMs)). Uma medição quântica ou medida com valor de operador positivo é um conjunto $\{E_i\}_{i=0,\dots,n-1}$ de operadores hermitianos positivos-semidefinidos, tais que

$$E_i \ge 0, \tag{2.2a}$$

$$\sum_{i=0}^{n-1} E_i = \mathbb{I} \tag{2.2b}$$

com $E_i \in \mathcal{H}^d$.

O caso mais simples de uma medição quântica é conhecido por *medição projetiva*, pois em tal casos os operadores considerados são projetores ortonormais de posto-1, *i. e.*,

se a medição é projetiva então $tr(E_iE_j) = \delta_{ij}$ e n = d onde d é a dimensão do espaço de Hilbert em que os operadores atuam¹.

De forma geral (POVM ou projetivas²), para uma medição quântica realizada em um estado (em geral em uma coleção de estados) podemos associar uma distribuição de probabilidade através da regra de Born [4]

Definição 3 (Distribuição quântica de probabilidades (*regra de Born*)). Seja $\rho \in \mathcal{H}^d$ um estado quântico, e $\{E_i\}_{i=0,...,n-1}$ um POVM. A distribuição de probabilidade obtida ao medir o estado quântico ρ é dada por

$$p(i) \equiv p(E_i|\rho) = tr(E_i\rho). \tag{2.3}$$

Para o caso de medições projetivas é possível considerar que a regra de Born afirma que o $p(i) = \operatorname{tr}(E_i\rho)$ é a probabilidade do estado ρ ter sido preparado no estado E_i . Note que se $E_iE_i = E_i \Rightarrow E_i = |i\rangle\langle i|$, $\operatorname{tr}(E_i) = 1$, o elemento E_i da medição projetiva pode ser interpretado com um estado quântico. Quando um estado quântico pode ser caracterizado completamente por um elemento de medição projetiva diz-se que esse estado é um *estado puro*. Para estados *não-puros*, ou seja, estados mistos, é possível representá-los como uma combinação convexa de estados puros

$$\rho = \sum_{i=1}^{k} \lambda_i |i\rangle \langle i|, \quad \text{com } \sum_{i=1}^{k} \lambda_i = 1.$$
(2.4)

No processo de reconstrução de um estado quântico (desconhecido) assume-se que os estados sejam mistos, é natural supor que a chance de determinar o estado com apenas um elemento de medição é improvável. Porém ao final de uma medição é possível afirmar se um determinado estado foi determinado [citar], quando um estado quântico desconhecido é completamente determinado pela distribuição de probabilidade através da medição quântica, diz-se que tal POVM é informacionalmente completo (IC). Pode-se concluir que uma medição é informacionalmente completa se ela é capaz de gerar o espaço d^2 -dimensional dos operadores hermitianos onde seus elementos de medição atuam [citar].

Para determinar os $d^2 - 1$ números reais e reconstruir o estado quântico $\rho \in \mathcal{H}^d$, é necessária uma medição quântica com no mínimo d^2 elementos, o que não é um problema para POVMs em geral. Porém, quando as medições consideradas são projetivas o cenário merece uma maior atenção, pois em um espaço de Hilbert *d*-dimensional, para cada medição existem apenas *d* projetores ortonormais (condição de uma medição projetiva).

¹ Durante essa dissertação assumiremos implicitamente que a dimensão do espaço de Hilbert dos operadores de medição são iguais a dimensão do estado medido.

² Uma medição projetiva é um POVM de posto-1. Porém, manteremos essa separação de nomenclatura.

Uma estratégia para tomografar estados quânticos utilizando medições projetivas é separar a coleção de estados em subcoleções, e em cada uma delas realizar medições projetivas distintas entre si. Com essa estratégia, em que cada uma medição projetiva aplicada em uma subcoleção é capaz de determinar d - 1 parâmetros³, é possível notar que para determinar $d^2 - 1$ parâmetros bastam $(d^2 - 1)/(d - 1) = d + 1$ medições projetivas. As análises que faremos nos próximos capítulos circundam as seguintes questões:

- 1. Existem d² POVMs ótimos para tomografar estados quânticos ($\in \mathcal{H}^d$)?
- 2. Existem d+1 medições projetivas ótimas para tomografar estados quânticos ($\in \mathcal{H}^d$)?

³ Cada medição é capaz de obter uma distribuição de probabilidade com d possíveis resultados. Entretanto, devido a normalização são d-1 valores independentes.

3 Bases mutuamente não-viciadas

Para prosseguirmos em busca da reposta para a *pergunta* 2 apresentada no capítulo 2, deveremos apresentar as bases mutuamente não-viciadas (MUBs)¹. Estas bases são o cerne da problema que iremos discutir neste capítulo, mas também possuem sua importância em diversos outro problemas de procolos quânticos e problemas em áreas diversas da matemática [5–8].

Definição 4 (Bases Mutuamente não-viciadas). *Em um espaço de Hilbert de dimensão d,* duas bases ortonormais $\{|b_i\rangle\}_{i=0,...,d-1}$, $\{|c_j\rangle\}_{j=0,...,d-1}$ são ditas mutuamente não-viciadas se

$$|\langle b_i | c_j \rangle| = \frac{1}{\sqrt{d}}, \quad para \ qualquer \ par \ i, j.$$
 (3.1)

Estas bases são nomeadas dessa forma, pois se um estado quântico for completamente identificado pela base $\{|b_i\rangle\}$ a distribuição de probabilidade obtida pela base $\{|c_j\rangle\}$ será uma distribuição uniforme, pois se um estado ρ é completamente determinado por um teste projetivo (realizado na base $\{|b_i\rangle\}$), implica que esse estado é diagonalizável em $\{|b_i\rangle\}$. Assim quando o estado $\rho = \sum_{i=0}^{d-1} \lambda_i |b_i\rangle \langle b_i|$ é medido na base $\{|c_j\rangle\}$

$$p(j) = \operatorname{tr}(\rho|c_j\rangle\langle c_j|) = \operatorname{tr}(\sum_{i=0}^{d-1}\lambda_i|b_i\rangle\langle b_i|c_j\rangle\langle c_j|) = \sum_{i=0}^{d-1}\lambda_i\frac{1}{d} = \frac{1}{d}$$
(3.2)

para qualquer j. Ou seja, a medição realizada em uma das bases não revela nenhuma informação sobre o resultado obtido na outra base.

No capítulo 2 discutimos que se desejarmos tomografar um estado quântico em um espaço de Hilbert *d*-dimensional, utilizando apenas medições projetivas, serão necessárias d + 1 medições (devemos lembrar que cada medição projetiva é representada por uma base com *d* projetores). Em um espaço de Hilbert *d*-dimensional podem existir no máximo d + 1mutuamente não-viciadas (par-a-par) [9].

A existência dos conjuntos completos de MUBs (FS-MUBs)² para qualquer $d < \infty$ ainda é um problema em aberto. Entretanto, pode-se provar que existem para qualquer dimensão que seja a potência de um número primo [9]. Um fato peculiar do problema da *existência de FS-MUBs em dimensão não-prima* é que nem mesmo para o menor valor não-primo (d = 6) é possível afirmar a existência ou a impossibilidade de existir de um FS-MUBs.

 $^{^1}$ $\,$ Preferi manter a sigla originária do inglês Mutually Unbiased Bases

² Irei utilizar a abreviação FS-MUBs (*Full Set of MUBs*) para os conjuntos completos de MUBs, ou seja quando a referência for as d + 1 bases mutuamente não-viciadas par-a-par.

Apesar de existirem algumas formas de se construir os FS-MUBs, as bases encontradas são as mesmas obtidas inicialmente em [9]. Nessa dissertação apresentaremos, a construção das FS-MUBs obtidas por Ivonovic [10] para d primo, e induziremos³ uma construção baseada no trabalho de Bandyopadhyay *et. al.* [11] para d potências de primos.

3.1 FS-MUBs com d primo

3.1.1 d = 2

Para o caso mais simples d = 2 a obtenção pode ser realizada por uma construção direta. Devemos lembrar que para bases que são MUBs, se uma medição⁴ é capaz de caracterizar perfeitamente um estado quântico, então a outra base é incapaz de obter qualquer informação. Essa característica também é observada em alguns observáveis quânticos como, posição-momento, experimento Stern-Gerlach. Inspirado no experimento Stern-Gerlach, em que as matrizes de Pauli são utilizadas como observáveis quânticos, é possível destacar que

$$\sigma_x |j\rangle = |j+1\rangle, \tag{3.3a}$$

$$\sigma_z |j\rangle = (-1)^j |j\rangle, \qquad (3.3b)$$

$$\sigma_x \sigma_y \qquad = i \sigma_y. \tag{3.3c}$$

Se consideramos as bases formadas, pelos autovetores de cada observável,

$$\sigma_x \equiv X_2$$

$$\sigma_z \equiv Z_2$$

$$\sigma_x \sigma_z \equiv X_2 Z_2$$

confirmaremos que as 3 bases formam um FS-MUBs para d = 2. De forma explícita as bases são dadas por

$$\begin{aligned} \mathcal{B}_0 &= \{|0\rangle, |1\rangle\}, \\ \mathcal{B}_1 &= \left\{\frac{|0\rangle + |1\rangle}{\sqrt{2}}, \frac{|0\rangle - |1\rangle}{\sqrt{2}}\right\}, \\ \mathcal{B}_2 &= \left\{\frac{|0\rangle + i|1\rangle}{\sqrt{2}}, \frac{|0\rangle - i|1\rangle}{\sqrt{2}}\right\} \end{aligned}$$

É possível verificar que $|\langle \psi_j^k | \psi_m^l \rangle| = 1/\sqrt{2} \operatorname{com} k \neq l$, onde o $\psi_i^k \operatorname{com} i = 0, 1$ pertence a base $\mathcal{B}_k \operatorname{com} k = 0, 1, 2$. Portanto é um FS-MUBs.

É possível partir da ideia do caso d = 2 e generalizar para qualquer d primo ímpar.

³ A demonstração não estará completa, pois utilizaremos resultados de teoria de grupos. E, descrever esses resultados para tornar o texto autossuficiente para físicos desviaria o objetivo desse texto.

⁴ É possível que ao longo do texto bases e bases de medições sejam utilizadas com o mesmo significado.

3.1.2 d = primo impar

Para seguirmos com a generalização do caso anterior, iremos assumir ao longo de toda essa subseção que d é primo (diferente de 2) e todas as operações algébricas são modulares com módulo d. Assumiremos, também, que a base canônica de \mathbb{C}^d será representada por $\{|0\rangle, \ldots, |d-1\rangle\}$. E, X_d, Z_d podem ser tomadas como as generalizações das matrizes de Pauli para espaços em \mathbb{C}^d , de forma que

$$X_d|k\rangle = |k+1\rangle \tag{3.4a}$$

$$Z_d|k\rangle = w_d^k|k\rangle, \tag{3.4b}$$

$$X_d Z_d^j |k\rangle = (w_d^j)^k |k+1\rangle$$
(3.4c)

 $\operatorname{com} w_d^k = e^{\frac{2\pi k}{d}}.$

Com essas definições, podemos mostrar uma estrutura simétrica dessas bases que são consequências das propriedades dos operadores (3.4).

Teorema 1. Seja $\mathcal{B}_1 = \{ |\phi_0\rangle, \dots, |\phi_{d-1}\rangle \}$ uma base ortonormal em \mathbb{C}^d . Seja V um operador unitário, tal que

$$V|\phi_j\rangle = \beta_j |\phi_{j+1}\rangle, \tag{3.5}$$

em que $|\beta_j = 1 \ e \ |\phi_d\rangle = |\phi_0\rangle$, ou seja, V aplica uma fase e deslocamento cíclico modular nos elementos da base \mathcal{B}_i . Se uma base $\mathcal{B}_2 = \{|\psi_0\rangle, \dots, |\psi_{d-1}\rangle\}$ é formada pelos autovetores de V. Então $\mathbb{B}_1 \ e \ \mathcal{B}_2$ são MUBs.

Demonstração. Pela relação de auto valor, temos

$$V|\psi_k\rangle = \lambda |\psi_k\rangle, \quad \text{com } |\lambda_k| = 1.$$
 (3.6)

Assim,

$$\begin{aligned} |\langle \psi_k || |\phi_l \rangle| &= |\lambda_k^* \langle \psi_k | V | \phi_j \rangle|, \\ &= |\lambda_k^* \beta_j \langle \psi_k | \phi_{j+1} \rangle|, \\ &= |\langle \psi_k | \phi_{j+1} \rangle|, \end{aligned}$$

para quaisquer valores de k, j. De forma que,

$$|\langle \psi_k | \phi_j \rangle|^2 = \frac{1}{d}$$

Então, $\mathcal{B}_1 \in \mathcal{B}_2$ são MUBs.

As matrizes (3.4) apresentam as propriedades cíclicas que aparecem no teorema 1. De tal modo que, devemos encontrar os autovetores dessas matrizes, autovetores de composição dessas matrizes (pois para d = 2 os autovetores da composição X_2Z_2 formam a terceira MUB) e as ações desses operadores (X_d , Z_d e combinações⁵) nas outras bases de interesse.

16

A única combinação de interesse é a $X_d Z_d^k$.

Lema 1. Seja d um primo ímpar. Os autovetores de $X_d Z_d^k$ são

$$|\psi_t^k\rangle = \frac{1}{\sqrt{d}} \sum_{j=0}^{d-1} (w_d^t)^{d-j} (w_d^{-k})^{f_j} |j\rangle, \qquad (3.7)$$

com $f_j = j + \ldots + (d-1), \ 0 \le t \le d-1.$

Demonstração.

$$\begin{split} X_{d}Z_{d}^{k}|\psi_{t}^{k}\rangle &= \frac{1}{\sqrt{d}} \sum_{j=0}^{d-1} (w_{d}^{t})^{d-j} (w_{d}^{-k})^{f_{j}} X_{d}Z_{d}^{k}|j\rangle \\ &= \frac{1}{\sqrt{d}} \left[\sum_{j=0}^{d-2} (w_{d}^{t})^{d-j} (w_{d}^{-k})^{f_{j}} (w_{d}^{k})^{j}|j+1\rangle + w_{d}^{t} (w_{d}^{-k})^{d-1} (w_{d}^{k})^{d-1}|0\rangle \right] \\ &= \frac{w_{d}^{t}}{\sqrt{d}} \left[\sum_{j=0}^{d-2} (w_{d}^{t})^{d-j+1} (w_{d}^{-k})^{f_{j+1}} (w_{d}^{k})^{j}|j+1\rangle + |0\rangle \right] \\ &= \frac{w_{d}^{t}}{\sqrt{d}} \left[\sum_{j=1}^{d-1} (w_{d}^{t})^{d-j} (w_{d}^{-k})^{f_{j}}|j\rangle + (w_{d}^{d})^{t} (w_{d}^{f_{0}})^{-k}|0\rangle \right], \quad w_{d}^{d} = w_{d}^{f_{0}} = w_{d}^{d(d-1)/2} = 1 \\ &= \frac{w_{d}^{t}}{\sqrt{d}} \left[\sum_{j=1}^{d-1} (w_{d}^{t})^{d-j} (w_{d}^{-k})^{f_{j}}|j\rangle + (w_{d}^{t})^{d} (w_{d}^{-k})^{f_{0}}|0\rangle \right] \\ &= \frac{w_{d}^{t}}{\sqrt{d}} \left[\sum_{j=0}^{d-1} (w_{d}^{t})^{d-j} (w_{d}^{-k})^{f_{j}}|j\rangle \right] \\ &= w_{d}^{t}|\psi_{t}^{k}\rangle \end{split}$$

Lema 2. Seja d um número primo, então

$$X_d Z_d^l |\psi_t^k\rangle = w_d^{t+k-l} |\psi_{t+k-l}^k\rangle.$$
(3.8)

Demonstração. Seja $f_j = j + \ldots + (d-1),$

$$\begin{aligned} X_{d}Z_{d}^{l}|\psi_{t}^{k}\rangle &= \frac{1}{\sqrt{d}} \left[\sum_{j=0}^{d-1} (w_{d}^{t})^{d-j} (w_{d}^{-k})^{f_{j}} (w_{d}^{l})^{j} | j + 1 \rangle \right], \\ &= \frac{1}{\sqrt{d}} \left[\sum_{j=0}^{d-1} (w_{d}^{t})^{d-j+1} (w_{d}^{-k})^{f_{j-1}} (w_{d}^{l})^{j-1} | j \rangle \right], \\ &= \frac{w_{d}^{t-l}}{\sqrt{d}} \left[\sum_{j=0}^{d-1} (w_{d}^{t})^{d-j} (w_{d}^{-k})^{f_{j}} (w_{d}^{-k})^{j-1} (w_{d}^{l})^{j} | j \rangle \right], \\ &= \frac{w_{d}^{t+k-l}}{\sqrt{d}} \left[\sum_{j=0}^{d-1} (w_{d}^{t})^{d-j} (w_{d}^{-k})^{f_{j}} (w_{d}^{l-k})^{j} | j \rangle \right], \\ &= \frac{w_{d}^{t+k-l}}{\sqrt{d}} \left[\sum_{j=0}^{d-1} (w_{d}^{t+k-l})^{d-j} (w_{d}^{-k})^{f_{j}} | j \rangle \right], \\ &= w_{d}^{t+k-l} | \psi_{t+k-l}^{k} \rangle. \end{aligned}$$

Com isso podemos estabelecer o seguinte o teorema abaixo:

Teorema 2. Seja d um número primo ímpar. O conjunto de bases $\{\mathcal{B}_i\}_{i=0,...,d-1}$ formadas, respectivamente, pelos autovetores dos operadores

$$X_d, Z_d, X_d Z_d, X_d Z_d^2, \dots, X_d Z_d^{d-1},$$
 (3.9)

formam um FS-MUBs.

Para provar esse teorema utilizaremos o esquema adotado em [11] e adaptado em [12].

Prova do teorema 2

Para provar o teorema 2, utilizaremos os seguintes le mas^6 ,

Lema 3. Se $\mathcal{B}_1, \ldots, \mathcal{B}_m$ são m MUBs $em \mathcal{H}^d$. Então existem m classes $\mathcal{C}_1, \ldots, \mathcal{C}_m$ cada uma contendo d matrizes unitárias comutativas⁷, tais que $\mathcal{C}_i \cap \mathcal{C}_j = \mathbb{I}$ e as matrizes pertencentes a $\mathcal{C}_1 \cup \ldots \cup \mathcal{C}_m$ são ortogonais (par-a-par).

Demonstração. Assumindo que as bases são MUBs, podemos escrever

$$\mathcal{B}_j = \left\{ |\psi_0^j\rangle, \dots, |\psi_{d-1}^j\rangle \right\},\tag{3.10}$$

de modo que, podemos escrever matrizes unitárias comutativas na seguinte forma

$$U_{j,t} = \sum_{k=0}^{d-1} e^{2\pi i \frac{tk}{d}} |\psi_k^j\rangle \langle \psi_k^j|, \quad \text{com } 0 \le t \le d-1.$$
(3.11)

Fixada a base j, as matrizes (3.11) comutam pois são diagonais em relação a \mathcal{B}_j . Para $t = 0 \Rightarrow U_{j,0} = \mathbb{I}$. Assim, para cada base \mathcal{B}_j podemos construir d matrizes na forma (3.11) e, com isso, definir m classes na forma

$$C_j = \{U_{j,0}, \dots, U_{j,d-1}\}.$$
(3.12)

Note que a condição $\mathcal{C}_i \cap \mathcal{C}_j = \mathbb{I}$ é satisfeita.

Para provar a condição de ortogonalidade, precisamos calcular o produto interno da matrizes em $C_1 \cup \ldots \cup C_m$, ou seja, precisamos calcular

 6 Todos os lemas e teoremas apresentados nessa subseção foram extraídos de [12].

⁷ Comutativas ema mesma classe.

Se j = k, então

$$\langle U_{j,s}U_{j,t}\rangle = \sum_{x,y=0}^{d-1} e^{2\pi i \frac{ty-sx}{d}} |\langle \psi_x^j | \psi_y^j \rangle|^2$$

$$= \sum_{x,y=0}^{d-1} e^{2\pi i \frac{ty-sx}{d}} \delta_{x,y}$$

$$= \sum_x^{d-1} e^{2\pi i x \frac{t-s}{d}}$$

$$= d\delta_{t,s}.$$

$$(3.14)$$

Na última igualdade utilizamos $\sum_{i=0}^{d-1} e^{\frac{2\pi m}{d}} = 0$ para qualquer $0 \le m \le d-1$, com m inteiro. Se $j \ne k$, então

$$\langle U_{j,s}U_{j,t}\rangle = \sum_{x,y=0}^{d-1} e^{2\pi i \frac{ty-sx}{d}} |\langle \psi_x^j | \psi_y^j \rangle|^2$$

$$= \sum_{x,y=0}^{d-1} e^{2\pi i \frac{ty-sx}{d}} \left(\frac{1}{d}\right)$$

$$= \frac{1}{d} [d^2 \delta_{x,0} \delta_{y,0}]$$

$$= d\delta_{s,0} \delta_{t,0}.$$

$$(3.15)$$

Assim fica provado, também, que as matrizes em $C_1 \cup \ldots \cup C_m$ são ortogonais par-a-par. \Box

Lema 4. Se existem m classes C_1, \ldots, C_m , em que cada classe contém d matrizes unitárias comutativas $\{U_{j,s}\}_{s=0,\ldots,d-1}$, com $U_{j,s} \in \mathcal{H}^d$, tais que $C_i \cap C_j = \mathbb{I}$ e que as matrizes em $C_1 \cup \ldots \cup C_m$ são ortogonais par-a-par. Então existem m MUBs em \mathcal{H}^d .

Demonstração. Para provar esse lema partimos da existência das m classes de matrizes unitárias comutativas (na mesma base) C_1, \ldots, C_m tais que

$$\mathcal{C}_j = \{U_{j,0}, \ldots, U_{j,d-1}\}$$

 $\operatorname{com} U_{j,0} = \mathbb{I}, e$

$$\langle U_{j,s}U_{j,t}\rangle = d\delta_{s,t},$$
 (3.16a)

$$\langle U_{j,s}U_{k,t}\rangle = d\delta_{s,0}\delta_{t,0}, \text{ para } j \neq k.$$
 (3.16b)

Como as matrizes de uma mesma classe comutam, elas são diagonais em alguma base. Assim, para cada índice j, é possível definir a base diagonal $\mathcal{B}_j = \{|\psi_0^j\rangle, \dots, |\psi_{d-1}^j\rangle\}$, tal que

$$U_{j,t} = \sum_{k=0}^{d-1} \lambda_{j,t,k} |\psi_k^j\rangle \langle \psi_k^j|.$$
(3.17)

Note que no lema 3, o valor do produto interno dos autovetores $|\langle \psi_s^j | \psi_t^k \rangle|$ eram assumidos e precisávamos encontrar as relações de ortogonalidades (3.16). Aqui as relações (3.16) são

assumidas e precisamos mostrar que

$$|\langle \psi_s^j | \psi_t^k \rangle| = 1/\sqrt{d}, \quad \text{para } j \neq k, \tag{3.18a}$$

$$|\langle \psi_s^j | \psi_t^j \rangle| = \delta_{s,t}. \tag{3.18b}$$

Ao calcular $\langle U_{j,s}U_{k,t}\rangle$, temos

$$\langle U_{j,s}U_{k,t}\rangle = \sum_{x,y=0}^{d-1} \lambda_{j,s,x}^* \lambda_{k,t,y} |\langle \psi_x^j | \psi_y^k \rangle|^2 = d\delta_{s,0}\delta_{t,0}.$$
(3.19)

Seja,

$$M_{j} = \begin{pmatrix} \lambda_{j,0,0} & \lambda_{j,0,1} & \cdots & \lambda_{j,0,d-1} \\ \lambda_{j,1,0} & \lambda_{j,1,1} & \cdots & \lambda_{j,0,d-1} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{j,d-1,0} & \lambda_{j,d-1,1} & \cdots & \lambda_{j,d-1,d-1} \end{pmatrix}.$$
(3.20)

Como as matrizes $U_{j,s}$ são unitárias, então as matrizes M_j também são. Assim, podemos reescrever o sistema de equações (3.19) na forma

$$AP = \Lambda, \tag{3.21}$$

onde

$$A = M_j \otimes M_k, \tag{3.22a}$$

$$P = (|\langle \psi_0^j | \psi_0^k \rangle|^2, \dots, |\langle \psi_0^j | \psi_{d-1}^k \rangle|^2, \\ |\langle \psi_1^j | \psi_0^k \rangle|^2, \dots, |\langle \psi_1^j | \psi_{d-1}^k \rangle|^2, \dots, |\langle \psi_{d-1}^j | \psi_0^k \rangle|^2, \dots, |\langle \psi_{d-1}^j | \psi_{d-1}^k \rangle|^2)$$
(3.22b)

$$\Lambda = (d, \dots, 0)^T.$$
(3.22c)

Como as matrizes $M_j \in M_k$ são unitárias e possuem suas primeiras linhas iguais ao vetor $(1, \ldots, 1)$ pois $U_{j,0} = \mathbb{I} \Rightarrow \lambda_{j,0,x} = 1 \quad \forall j, x$, podemos concluir que

$$|\langle \psi_s^j | \psi_t^k \rangle|^2 = 1/d, \quad \text{para } j \neq k, \tag{3.23}$$

uma vez que $P = A^{-1}\Lambda$. Assim fica provado o lema.

Para m = d + 1 e com os lemas 3, 4, o teorema 2 fica provado.

Devemos ressaltar que o resultado apresentado nessa seção⁸ é uma construção dos FS-MUBs para dimensões em que d é um número primo. É sabido que não existem mais que d + 1 MUBs para qualquer dimensão [9], e que existem FS-MUBs para dimensões que são potências de primos [9, 13].

Para as dimensões compostas⁹ $d = \prod_{i=1}^{k} p_i$, com p_i primo, e, $p_1 \leq \ldots \leq p_k$ é garantida a existência de $p_1 + 1$ MUBs [11]. Entretanto, mesmo para a menor dimensão

 $^{^{8}}$ Esse resultado não é de nossa autoria, como já comentado.

 $^{^9~}$ Uma dimensão é dita composta se é o produto de dois (ou mais) números primos distintos.

não-prima, d = 6, não se tem uma resposta definitiva sobre a existência (ou impossibilidade da existência) de um FS-MUBs. Embora, um conjunto com 3 MUBs já tenha sido apresentado, para d = 6, não há evidências da existência de 4 MUBs (ou mais), nem mesmo numericamente [14–16].

4 POVM Simétricos e Informacionalmente Completos (SIC-POVM)

O interesse nesses POVMs, simétricos e informacionalmente completos, foi inicialmente introduzido por G. Zauner [17] e posteriormente por J. Renes *et. al.* [18]. Desde então, poucos SIC-POVMs foram apresentados de forma analítica, porém diversos exemplos numéricos foram desenvolvidos ($d \le 45$) [18].

A escolha da abordagem numérica nesta dissertação foi escolhida devido a dificuldade (apresentada historicamente) em obter novos resultados analíticos. Porém, para isto, é necessário que definir o problema e as possíveis extensões que serão utilizadas e desenvolvidas nesta dissertação.

Definição 5 (SIC-POVM). Um POVM $\{E_i/d^2\}_{i=1,...,d^2}$, com $E_i \in \mathcal{H}^d$ projetores de posto-1, é um POVM simétrico e informacionalmente completo (SIC-POVM) se

$$tr(E_i E_j) = \frac{1}{d+1}, \quad \forall i \neq j.$$
(4.1)

Partindo dessa definição, podemos mostrar que o POVM na definição 5 é informacionalmente completo. Para que seja informacionalmente completo, os projetores $\{E_i\}$ devem ser linearmente independentes, ou seja

$$\sum_{i=1}^{d^2} \alpha_i E_i = 0. \tag{4.2}$$

Podemos multiplicar ambos os lados por um elemento de POVM E_k qualquer e tomar o traço

$$\operatorname{tr}(E_k \sum_{i=1}^{d^2} \alpha_i E_i) = \operatorname{tr}(E_k 0) \tag{4.3}$$

$$\sum_{i=1}^{d^2} \alpha_i \operatorname{tr}(E_k E_i) = 0 \tag{4.4}$$

$$\alpha_k + \sum_{i \neq k} \alpha_i \frac{1}{d+1} = 0, \qquad (4.5)$$

e, ao tomar o traço na equação (4.2), temos $\sum_{i=1}^{d^2} \alpha_i = 0,$ e,

$$\alpha_k = -\sum_{i \neq k} \alpha_i \Rightarrow \alpha_k + \sum_{i \neq k} \alpha_i \frac{1}{d+1} = \alpha_k - \alpha_k \frac{1}{d+1} = 0 \iff \alpha_k = 0 \quad \forall_k.$$
(4.6)

Assim fica demonstrado que os operadores são linearmente independentes, e, com isso, informacionalmente completos (geram o espaço dos operadores hermitianos d^2 -dimensionais).

4.1 Generalização de SIC-POVM

Uma outra alternativa possível para a busca de SIC-POVM em \mathcal{H}^d é relaxar a condição de que os operadores possuam posto-1 [19].

Definição 6 (SIC-POVM Generalizados (GSIC-POVM)). Um POVM $\{E_i\}_{i=1,...,d^2}$, com $E_i \in \mathcal{H}^d$, é um POVM simétrico e informacionalmente completo generalizado (GSIC-POVM) se

$$tr(E_i) = tr(E_j), \quad \forall i, j \in \{1, \dots, d^2\}$$

$$(4.7a)$$

$$tr(E_i^2) = tr(E_j^2) \neq \frac{1}{d^3}, \quad \forall i, j \in \{1, \dots, d^2\}$$
(4.7b)

$$tr(E_i E_j) = tr(E_k E_l), \qquad \forall i \neq k, j \neq l.$$
(4.7c)

Com a definição acima, podemos explorar as propriedades dos GSIC-POVM. Seja $a := \operatorname{tr}(E_i^2)$ e $b := \operatorname{tr}(E_i E_j)$ com $i \neq j$. Como são POVM $\sum_{i=1}^{d^2} E_i = \mathbb{I}$, então

$$d^{2} = \operatorname{tr}(\mathbb{I}) = \operatorname{tr}(\mathbb{I}\mathbb{I}) = \operatorname{tr}(\sum_{i=1}^{d^{2}} E_{i} \sum_{j=1}^{d^{2}} E_{j}) = \sum_{i=1}^{d^{2}} \sum_{j=1}^{d^{2}} \operatorname{tr}(E_{i}E_{j}) = d^{2}a + d^{2}(d^{2} - 1)b.$$
(4.8)

Reescrevendo a equação (4.8)

$$b = \frac{1 - da}{d(d^2 - 1)} \tag{4.9}$$

é possível encontrar a relação de dependência entre os parâmetros $a \in b$. Por (4.7a) e (4.9) temos

$$\operatorname{tr}(E_i) = \operatorname{tr}(E_i \mathbb{I}) = \sum_{j=1}^{d^2} \operatorname{tr}(E_i E_j) = a + (d^2 - 1)b = \frac{1}{d}.$$
(4.10)

Note que $1/d^3 < a \le 1/d^2$, o limite inferior não inclui a igualdade pois se $a = 1/d^3 \Rightarrow E_i \equiv \mathbb{I}/d^2$, e, para o limite superior, $a = 1/d^2$, implica que E_i tem posto-1, o que recai na definição 5.

Assim como mostramos que um SIC-POVM é informacionalmente completo por ser uma base para \mathcal{H}^d , é possível mostrar (seguindo os mesmos passos) que os GSIC-POVM também são informacionalmente completos em \mathcal{H}^d , porém podem possuir mais informação redundante¹, e, assim, perde a "optimalidade" para reconstrução de estados quânticos que os SIC-POVM possuem.

Para provarmos que os GSIC-POVM formam uma base para \mathcal{H}^d , temos que mostrar que

$$\sum_{i=1}^{d^2} r_i E_i = 0. (4.11)$$

¹ Consideramos informação redundante a intersecção entre dois elementos de POVM.

Usando o fato de que se $E_i \ge 0$ então

$$\operatorname{tr}(E_i) \ge 0 \Rightarrow \operatorname{tr}(\sum_{i=1}^{d^2} r_i E_i) = 0 \Rightarrow \sum_{i=1}^{d^2} r_i = 0, \qquad (4.12)$$

ao multiplicarmos ambos os lados de (4.11) por E_j temos

$$\sum_{i=1}^{d^2} r_i \operatorname{tr}(E_i E_j) = 0 = \sum_{i=1}^{d^2} r_i (a \delta_{i,j} + b(1 - \delta_{i,j}))$$
$$= (a - b) \sum_{i=1}^{d^2} r_i \delta_{i,j} + b \sum_{i=1}^{d^2} r_i = (a - b)r_j = 0.$$
(4.13)

Por (4.8), a = b se, e, somente se, $a = 1/d^3$ o que é descartado por (4.10). Assim, para que (4.13) seja válida, temos que $r_j = 0, \forall j \in \{1, \ldots, d^2\}$ o que confirma (4.11), e, com isso, fica mostrado que os GSIC-POVM são informacionalmente completos.

4.1.1 Construção de GSIC-POVM

A construção de GSIC-POVM que apresentaremos nesta seção é o principal resultado publicado em [19].

Dada uma base $\{F_i\}_{i=1,\dots,d^2}$ uma base ortonormal para o subespaço $(d^2 - 1)$ dimensional de \mathcal{H}^d das matrizes $d \times d$ de traço nulo, definimos

$$F = \sum_{i=1}^{d^2 - 1} F_i, \tag{4.14a}$$

$$R_i = F - d(d+1)F_i$$
 para $i = 1, \dots, d^2 - 1,$ (4.14b)

$$R_{d^2} = (d+1)F, (4.14c)$$

$$\lambda_i$$
 o maior autovalor de R_i , (4.14d)

 μ_i o menor autovalor de R_i . (4.14e)

Com as definições 4.14, podemos enunciar o seguinte teorema:

Teorema 3. Seja $t_0 = -\frac{1}{d} \min_{\alpha \in \{1,...,d^2\}} \frac{1}{\lambda_{\alpha}}, t_1 = -\frac{1}{d} \max_{\alpha \in \{1,...,d^2\}} \frac{1}{\mu_{\alpha}}$. Para qualquer t não-nulo no intervalo $[t_0, t_1]$ o conjunto de d² operadores

$$P_i = \frac{\mathbb{I}}{d_{\pi}^2} + t(F - d(d+1)F_i), \text{ para } i = 1, \dots, d^2 - 1$$
(4.15a)

$$P_{d^2} = \frac{\mathbb{I}}{d^2} + d(d+1)F$$
 (4.15b)

formam um GSIC-POVM em \mathcal{H}^d .

Demonstração. Precisamos provar que os operadores (4.15) satisfazem as condições impostas pela definição 6. Por verificação é possível mostrar que

$$\sum_{i=1}^{d^2} P_i = \sum_{i=1}^{d^2-1} P_i + P_{d^2} = \mathbb{I}.$$

Para as demais condições, considerando $i, j = 1, \ldots, d^2 - 1$,

$$\begin{aligned} \operatorname{tr}(P_i P_j) &= \operatorname{tr}\left[\left(\frac{\mathbb{I}}{d^2} + t(F - d(d+1)F_i)\right) \left(\frac{\mathbb{I}}{d^2} + t(F - d(d+1)F_j)\right)\right], \\ &= \frac{\operatorname{tr}(\mathbb{I})}{d^4} + t[\operatorname{tr}(F - d(d+1)F_i) + \operatorname{tr}(F - d(d+1)F_j)], \\ &+ t^2(\operatorname{tr}(FF) - d(d+1)\operatorname{tr}(F_iF) - d(d+1)\operatorname{tr}(F_jF) + d^2(d+1)^2\operatorname{tr}(F_iF_j)), \\ &= \frac{1}{d^3} + t^2(d^2 - 1 - 2d(d+1) + d^2(d+1)^2\delta_{i,j}), \\ &= \frac{1}{d^3} + t^2(d+1)^2(d^2\delta_{i,j} - 1). \end{aligned}$$

Aqui usamos $\operatorname{tr}(F_k) = 0$, $\operatorname{tr}(F_kF) = 1$ e $\operatorname{tr}(FF) = d^2 - 1$. É possível verificar por cálculo direto, assim como foi feito no passo anterior, que $\operatorname{tr}(P_iP_j) = \operatorname{tr}(P_iP_{d^2})$, bem como $\operatorname{tr}(P_i^2) = \operatorname{tr}(P_{d^2}^2)$. Assim, fica provado que são GSIC-POVM.

O parâmetro $a={\rm tr}(P_i^2)$ relaciona os GSIC-POVM com os SIC-POVM, de forma que

$$\max a(t) = \max_{t \in [t_0, t_1]} \left[\frac{1}{d^3} + t^2 (d+1)^3 (d-1) \right], \tag{4.17}$$

o que é equivalente à $a_{max}(t) = a(t_{max})$, por dependente diretamente, e, unicamente de tque possui seu valor máximo $t_{max} = \max(|t_0|, t_1)$. Como os valores t_0, t_1 dependem dos autovalores de $\{F_i\}_{i=1,\dots,d^2}$, a escolha da base influenciará no limite superior do parâmetro a(t). O que nos leva a concluir que para os casos em que $a(t) = \frac{1}{d^2}$, implica que $\{F_i\}_{i=1,\dots,d^2}$ é uma base ótima, e, os POVMs construídos da forma (4.15) são SIC-POVMs.

4.2 Busca numérica de GSIC-POMVs

Implementamos o método descrito em [19] com $\{F_i\}_{i=1,...,d^2-1}$ a base que gera o grupo de Weyl-Heinseberg, e, fomos capazes de reproduzir o resultado encontrado analiticamente em [19].

Representamos graficamente a razão parâmetro $t_{max}(d)$ encontrado para a base $\{F_i\}_{i=1,\dots,d^2-1}$, e o valor teórico $a(t^*) = 1/d^2$ para que seja SIC-POVM, ou seja,

$$t^{\star} = \sqrt{\frac{1}{(d(d+1))^3}}.$$
(4.18)

Devemos notar que pela figura 1, a base escolhida só é ótima, isto é, só equivale a SIC-POVM, para d = 2, para as demais ela se afasta rapidamente.

Porém, mesmo que t_{max} se afaste de t^* com o crescimento de d, se compararmos os valores dos *overlaps*² dos GSIC-POVM gerados por essa escolha de base (de elementos de traço nulo) com os valores teóricos dos *overlaps* SIC-POVM é possível verificar que estes

² Estamos chamando de *overlap* o produto interno entre dois elementos de POVM tr $(E_i E_j)$.

Figura 1 – Reprodução numérica do resultado previsto em [19].

valores mantêm uma diferença quase constante, como mostrado na figura 2, o que pode indicar que para altas dimensões a vantagem de usar SIC-POVM ao invés de GSIC-POVM para protocolos não seja tão relevante.

Figura 2 – Comparação entre os *overlaps* de SIC-POVM e GSIC-POVM em dimensões altas.

Além de implementarmos numericamente o resultado apresentado em [19], exploramos algumas propriedades geométricas dos SIC-POVMs e GSIC-POVMs.

Seja \mathcal{W}^d o espaço das matrizes hermitianas de traço unitário. Se uma matriz $M \in \mathcal{W}^d$, então a matriz $Q = M - \mathbb{I}/d$ é uma matriz de traço nulo. Dessa forma, para cada matriz $M \in \mathcal{W}^d$ existe uma matriz Q de traço nulo. Dessa forma, podemos definir um espaço vetorial real com a sua origem definida pela matriz \mathbb{I}/d . O espaço vetorial real

gerado dessa forma é nomeado de espaço de Bloch. Note que \mathcal{W}^d é um espaço maior do que o espaço dos estados quânticos, que além de traço unitário são positivos semidefinidos. O conjunto dos operadores densidade é um conjunto convexo³ no espaço de Bloch, e, será chamado de corpo de Bloch.

O corpo de Bloch possui a mesma dimensão do espaço de Bloch⁴, mas não são equivalentes para qualquer dimensão finita [20]. Entretanto, para d = 2 o corpo de Bloch gerado por qubits, é um esfera $(2^2 - 1)$ -dimensional, e é equivalente ao espaço de Bloch. Devemos ainda ressaltar que os estados quânticos puros são pontos extremos do corpo de Bloch [20].

Após essa breve introdução de corpo e espaço de Bloch, e com a conexão de que um estado puro pode ser considerado uma medida projetiva única, iremos definir os elementos de POVMs como estados que possuem a seguinte representação

$$P_j = \frac{\mathbb{I}}{d} + \frac{b_n}{2} \sum_{i=1}^{d^2-1} n_i^j T_i$$
(4.19a)

$$= \frac{\mathbb{I}}{d} + \frac{b_n}{2}\hat{n}^j \cdot \hat{T} = \frac{\mathbb{I}}{d} + \frac{b_n}{2}\hat{T}_n^j.$$
(4.19b)

onde $\hat{n^j} := (n_1^j, n_2^j, \dots, n_{d^2-1}^j), \text{ com } ||\hat{n^j}||_2 = 1.$

Para garantir que que os operadores (4.19) sejam positivos-semidefinidos é preciso definir condições para os valores de b_n .

Teorema 4 (Teorema obitdo em [20].). Seja $\hat{T}_n^j \equiv \sum_{i=1}^{d^2-1} n_i^j T_i$ com vetor unitário $\hat{n}^j \in \mathbb{R}^{d^2-1}$, e, $m(\hat{T}_n^j)$ o menor autovalor de \hat{T}_n^j . Se

$$|b_n|_{\max} = \frac{2}{d|m(\hat{T}_n^j)|}.$$
 (4.20)

então,

$$P_j = \frac{\mathbb{I}}{d} + \frac{b_n}{2} \hat{T}_n^j \tag{4.21}$$

é positivo-semidefinido.

Demonstração. Por verificação, temos

$$\min_{|\psi\rangle}(\langle\psi|\left[\frac{\mathbb{I}}{d}+\frac{b_n}{2}\hat{T}_n^j\right]|\psi\rangle) \ge 0 \Rightarrow \frac{1}{d}+\frac{b_n}{2}\min_{|\psi\rangle}\langle\psi|\hat{T}_n^j|\psi\rangle \ge 0 \Rightarrow |b_n|_{\max} = \frac{2}{d|m(\hat{T}_n^j)|}.$$
 (4.22)

Assim, para um POVM com elementos escritos na forma (4.19), ou seja, que pertencem ao corpo de Bloch, é possível associar vetores reais que pertencem ao espaço de Bloch.

³ Se ρ_1, ρ_2 são estados quânticos, então $p\rho_1 + (1-p)\rho_2$ também é um estado quântico.

⁴ São $(d^2 - 1)$ -dimensionais.

Com essas associações geométricas, é possível afirmar que, se um POVM escrito na forma (4.19) é um SIC-POVM, então⁵

$$b_n = 2\sqrt{\frac{d-1}{d}},\tag{4.23}$$

e o ângulo formado entre qualquer par dos vetores de Bloch é

$$\cos\theta = -\frac{1}{d^2 - 1}.$$
 (4.24)

Assim, é possível concluir que um SIC-POVM no corpo de Bloch $(d^2 - 1)$ -dimensional é equivalente a um conjunto de vetores no espaço de Bloch d^2 dimensional cujos ângulos entre qualquer par é dado por (4.24), ou seja, o conjunto destes vetores formam um simplexo [21, 22].

Assim, construímos uma algoritmo numérico para a busca de GSIC-POVM (e SIC-POVM) equivalente a busca de simplexos.

Se escrevermos uma matriz contendo todos os vetores de Bloch associados aos seus respectivos operadores, que são equivalentes a vetores unitários que montam um simplexo, utilizando a decomposição no corpo de Bloch (4.19), temos

$$n_i^j = \operatorname{tr}(P_j T_i) \frac{1}{2b_n} \tag{4.25}$$

com os vetores unitários $\hat{n}^j = (n_1^j, \ldots, n_{d^2-1}^j)$. Com estes vetores unitários, construímos a matriz $R = [\hat{n}^1, \ldots, \hat{n}^{d^2-1}]$, onde os vetores $\hat{n}^1 \in \mathbb{R}^{d^2-1}$ são colunas da matriz R. Assim, podemos definir a matriz de Gram

$$G = R^T R, (4.26)$$

onde R^T é a matriz transposta de R. Note que a matriz G definida desta maneira tem os seus elementos na forma

$$G_{ij} = \begin{cases} 1, & \text{se } i = j, \\ -\frac{1}{d^2 - 1}, & \text{se } i \neq j. \end{cases}$$
(4.27)

Se fizermos algumas relaxações nestes vínculos para tornar o problema convexo, que possui um mínimo global, ele pode ser resolvido através de programação semi-definida $(SDP)^6$, que proporciona algoritmos estáveis e computacionalmente eficientes [23,24].

A partir de problemas de otimização convexa (que buscam minimizar uma função *objetiva* linear sobre alguns vínculos matriciais lineares) é possível obtermos resultados numéricos com valores exatos [24, 25].

No caso de resoluções de SIC-POVMs, os vínculos que as definem são quadráticos $(tr(()P_iP_j) = constante, ou cos (\Theta_{lm}) = -\frac{1}{d^2-1})$. Para tornar a resolução factível através

 $^{^5}$ $\,$ Assumimos que todos os elementos de POVM possuem o mesmo posto.

⁶ SDP vem da abreviação em inglês, Semidefinite Programming.

de um programa em SDP, pode ser reformulado o problema, relaxando a matriz de Gram em um vínculo linear convexo da seguinte forma [23],

$$R^{T}R = G \Rightarrow (R^{T}R - G) \succeq 0 \iff \begin{pmatrix} \mathbb{I} & R \\ R^{T} & G \end{pmatrix} \succeq 0.$$
(4.28)

Resta-nos agora encontrar um meio de relacionar a matriz R de alguma maneira com os operadores e sua decomposição. Isso pode ser resolvido de uma forma simples, utilizado-se o grupo de Weyl-Heisenberg (WH)⁷ e a ideia de estado fiducial de Zauner [17, 18], que pode ser resumido da seguinte forma pela seguinte conjectura⁸

Conjectura 1 (Conjectura de Zauner [17]). Seja $\{|k\rangle\}_{k=0,\dots,d-1}$ uma base ortonormal em \mathcal{H}^d , e,

$$D_{j,k} := \omega^{\frac{jk}{2}} \sum_{m=0}^{d-1} \omega^{jm} \langle k+m || m \rangle,$$
(4.29)

onde a soma k + m é uma soma modular com módulo $d e \omega = \exp(2\pi i/d)$. Então existe um estado $|\Psi\rangle \in \mathcal{H}^d$ tal que o conjunto $\{D_{j,k}|\Psi\rangle\}_{j,k=0}^{d-1}$ é um SIC-POVM.

Partindo da conjectura de Zauner 1 é necessário apenas encontrar um estado fiducial⁹ que remonte todos os outros $d^2 - 1$ operadores restantes, aplicando operações do tipo

O programa SDP fica definido da seguinte maneira:

Encontre P_i tal que: $P_i \in \mathbb{C}^{d \times d}, \quad P_i \succeq 0, P_i = P_i^{\dagger}, \operatorname{tr}(P_i) = 1$ $n_k^j = \operatorname{tr}(P_j T_k) \frac{1}{2b_n}, \quad \text{onde todos os } \{P'_j s\} \quad \text{são gerados por } P_i \quad \text{via WH}$ $R = [\hat{n}^1 \quad \hat{n}^2 \quad \dots \quad \hat{n}^{d^2 - 1}]$ $\begin{pmatrix} \mathbb{I} \quad R \\ R^T \quad G \end{pmatrix} \succeq 0$ (4.30)

Note que não há uma função objetivo a ser minimizada. Esse programa busca a factibilidade de existir um P_i com tais vínculos. Entretanto, a solução encontrada por esse programa é a trivial (R = 0), então um vínculo adicional deve ser inserido a fim de encontrar uma solução não-trivial.

⁷ Os operadores (4.29) geram o grupo de Weyl-Heinseberg.

⁸ Conhecida como conjectura de Zauner. Porém, aqui nesta dissertação está escrita de forma adaptada.

 $^{^{9}}$ $\,$ Adotamos aqui que a conjectura esteja correta.

Não conseguimos identificar um vínculo ideal, porém trabalhamos com o seguinte programa

maximize
$$b_n$$
 (4.31)
tal que: $P_i \in \mathbb{C}^{d \times d}, P_i \succeq 0, P_i = P_i^{\dagger}, \operatorname{tr}(P_i) = 1$
 $n_k^j = \operatorname{tr}(P_j T_k) \frac{1}{2b_n}, \text{ em que todos os } \{P'_j s\} \text{ são gerados por } P_i \text{ via WH}$
 $R = [\hat{n}^1 \ \hat{n}^2 \ \dots \ \hat{n}^{d^2 - 1}]$
 $\begin{pmatrix} \mathbb{I} & R \\ R^T & G \end{pmatrix} \succeq 0.$ (4.32)

O programa escrito deste modo confirmou nossa hipótese e conseguiu encontrar "R" factível diferente da solução trivial, com precisão da ordem de 10^{-8} .

Com esse SDP conseguimos encontrar, apenas, SIC-POVMs para as dimensões d = 2, 3, 4, 5. No entanto, conseguimos encontrar GSIC-POVMs para d = 2, 3, 4, 5, 6, 7, 8 mas acreditamos ser possível encontrar GSIC-POVMs para dimensões maiores que 8, pois não tivemos tempo para investigar e refinar o algoritmo até a escrita desta dissertação. Acreditamos nesta possibilidade, devido ao fato de quanto menor for o simplexo, mais provável que os POVMs associados "caibam no corpo de Bloch". Representamos graficamente os *overlaps* dos GSIC-POVM encontrados via SDP, via o método da subseção 4.1.1 e dos valores teóricos de SIC-POVM na figura 3, e, é possível ver que para as dimensões d = 4, 5, 6, 7, 8 os resultados obtidos via SDP se aproximam mais dos valores teóricos (para SIC-POVM) do que os valores com o método 4.1.1. É possível verificar, também pela figura 3 que a diferença dos valores dos *overlaps* dos GSIC-POVM, obtidos por ambos os métodos, se aproximam de forma monótona dos valores teóricos para os *overlaps* dos SIC-POVM.

Figura 3 – Comparação entre os *overlaps* de SIC-POVM teóricos (pontos verdes), GSIC-POVM via SDP ("×" azul) e GSIC-POVM via método descrito em [19] – apresentado na subseção 4.1.1 – (pontos vermelhos).

5 Considerações Finais

Esse trabalho teve como sua prioridade entender os principais resultados sobre medições quânticas informacionalmente completas e simétricas. Para isso, apresentamos a relação estado-medição presente no formalismo da teoria quântica e que a completa caracterização de estados desconhecidos são realizadas de forma ótima - menor número de elementos de medição e menor erro estatísticos - quando as medições são SIC-POVMs ou MUBs.

Revisamos os principais resultados sobre SIC-POVMs e MUBs. Para o caso das MUBs, apresentamos uma construção (não é a única existente na literatura) das MUBs quando a dimensão do espaço de Hilbert associada ao estado quântico em que a medição é realizada é uma potência de um número primo.

Para o caso dos SIC-POVMs, discutimos alguns resultados numéricos, apresentando a comparação de dois métodos, GSIC-POVMs por bases de traço nulo e GSIC-POVM via SPD, e comentamos os casos um método obtém vantagem sobre o outro. Além disso, pudemos intuir que para grandes dimensões a vantagem de utilizar SIC-POVM, ao invés de GSIC-POVM, torna-se menor pois ambos POVM são informacionalmente completos e simétricos, e, os *overlaps* dos GSIC-POVMs possuem valores próximos dos SIC-POVMs.

As MUBs e SIC-POMVs apresentam relações com outros problemas que não pertencem ao escopo da teoria quântica, o que torna o "problema da existência" dessas medições ainda mais interessante.

Buscaremos dar continuidade à investigação numérica do problema da existência das SIC-POVMs com o uso de programação semi-definida, e, entender outros métodos numéricos existentes na literatura para buscar evidências numéricas sobre a existência do maior número de MUBs em dimensão 6, lembrando que o maior número possível seria de 7 MUBs, e o maior número de MUBs encontrado para dimensão 6 é de 3 MUBs. Poderíamos, também, entender, e, apresentar as relações entre essas duas formas MUBs e SIC-POVMs, pois as MUBs apresentam forma analítica para qualquer potência de primo (contrária às SIC-POMVs) e existem SIC-POVMs para dimensões diferentes de potência de primo.

Referências

- Baily, Charles: Perspectives in Quantum Physics: Epistemological, Ontological and Pedagogical. An investigation into student and expert perspectives on the physical interpretation of quantum mechanics, with implications for modern physics instruction. setembro 2011. https://arxiv.org/abs/1109.1295v1. Citado na página 9.
- [2] Noether, Emmy: Invariant variation problems. Transport Theory and Statistical Physics, 1:186-207, janeiro 2006, ISSN 15322424. https://www.tandfonline.com/ doi/abs/10.1080/00411457108231446. Citado na página 9.
- [3] Nielsen, M.A. e I.L. Chuang: Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010, ISBN 9781107002173. https://books.google.com.br/books?id=j2ULnwEACAAJ. Citado na página 11.
- [4] Peres, Asher: Quantum Theory: Concepts and Methods (Fundamental Theories of Physics). Springer, 1^a edição, 1993, ISBN 0792336321. http://www.worldcat.org/ isbn/0792325494. Citado na página 12.
- [5] Saniga, Metod, Michel Planat e Haret Rosu: Mutually Unbiased Bases and Finite Projective Planes. Journal of Optics B: Quantum and Semiclassical Optics, 6, março 2004. http://arxiv.org/abs/math-ph/0403057http://dx.doi.org/10. 1088/1464-4266/6/9/L01. Citado na página 14.
- [6] Pittenger, Arthur O. e Morton H. Rubin: Mutually Unbiased Bases, Generalized Spin Matrices and Separability. agosto 2003. https://arxiv.org/abs/quant-ph/ 0308142v2. Citado na página 14.
- Koenig, Robert e Renato Renner: A de Finetti representation for finite symmetric quantum states. Journal of Mathematical Physics, 46, outubro 2004. http://arxiv. org/abs/quant-ph/0410229http://dx.doi.org/10.1063/1.2146188. Citado na página 14.
- Bengtsson, Ingemar e Andåsa Ericsson: Mutually Unbiased Bases and The Complementarity Polytope. outubro 2004. https://arxiv.org/abs/quant-ph/0410120v1. Citado na página 14.
- [9] Wootters, William K. e Brian D. Fields: Optimal state-determination by mutually unbiased measurements. Annals of Physics, 191:363–381, maio 1989, ISSN 0003-4916. Citado 3 vezes nas páginas 14, 15 e 20.

- [10] Ivonovic, I. D.: Geometrical description of quantal state determination. Journal of Physics A: Mathematical and General, 14:3241, dezembro 1981, ISSN 0305-4470. https://iopscience.iop.org/article/10.1088/0305-4470/14/12/019https: //iopscience.iop.org/article/10.1088/0305-4470/14/12/019/meta. Citado na página 15.
- [11] Bandyopadhyay, Somshubhro, P. Oscar Boykin, Vwani Roychowdhury e Farrokh Vatan: A New Proof for the Existence of Mutually Unbiased Bases. Algorithmica 2002 34:4, 34:512-528, 2002, ISSN 1432-0541. https://link.springer.com/article/10. 1007/s00453-002-0980-7. Citado 3 vezes nas páginas 15, 18 e 20.
- [12] Vitoria, Pedro: Mutually Unbiased bases: a brief survey. 2008. Citado na página 18.
- [13] Appleby, D. M.: Properties of the extended Clifford group with applications to SIC-POVMs and MUBs. setembro 2009. https://arxiv.org/abs/0909.5233v1. Citado na página 20.
- Brierley, Stephen e Stefan Weigert: Constructing mutually unbiased bases in dimension six. Physical Review A Atomic, Molecular, and Optical Physics, 79:052316, maio 2009, ISSN 10502947. https://journals.aps.org/pra/abstract/10.1103/PhysRevA.79.052316. Citado na página 21.
- [15] Bengtsson, Ingemar, Wojciech Bruzda, Åsa Ericsson, Jan Åke Larsson, Wojciech Tadej e Karol Zyczkowski: Mutually unbiased bases and Hadamard matrices of order six. Journal of Mathematical Physics, 48:052106, maio 2007, ISSN 0022-2488. https: //aip.scitation.org/doi/abs/10.1063/1.2716990. Citado na página 21.
- Butterley, Paul e William Hall: Numerical evidence for the maximum number of mutually unbiased bases in dimension six. Physics Letters A, 369:5–8, setembro 2007, ISSN 0375-9601. Citado na página 21.
- [17] Zauner, G.: Quantum designs—foundations of a non-commutative theory of designs.
 Ph. D. thesis, University of Vienna, 1999. Citado 2 vezes nas páginas 22 e 29.
- [18] Renes, Joseph M., Robin Blume-Kohout, A. J. Scott e Carlton M. Caves: Symmetric informationally complete quantum measurements. Journal of Mathematical Physics, 45(6):2171–2180, 2004. http://link.aip.org/link/?JMP/45/2171/1. Citado 3 vezes nas páginas 22, 29 e 37.
- [19] Gour, Gilad e Amir Kalev: Construction of all general symmetric informationally complete measurements. Journal of Physics A: Mathematical and Theoretical, maio 2013, ISSN 17518121. https://arxiv.org/abs/1305.6545v3. Citado 5 vezes nas páginas 23, 24, 25, 26 e 31.

- [20] Kimura, Gen: The Bloch vector for N-level systems. Physics Letters A, 314:339–349, agosto 2003, ISSN 0375-9601. Citado na página 27.
- [21] Salazar, R, D Goyeneche, A Delgado e C Saavedra: Constructing symmetric informationally complete positive-operator-valued measures in Bloch space. Physics Letters A, 376(4):325–329, 2012. Citado na página 28.
- [22] Rudin, Walter: Principles of mathematical analysis, volume 3. McGraw-Hill New York, 1964. Citado na página 28.
- [23] Boyd, S. e L. Vandenberghe: Convex Optimization. Camebridge University Press, 2004. Citado 2 vezes nas páginas 28 e 29.
- [24] Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimization Methods and Software, 11–12:625–653, 1999. Version 1.05 available from http://fewcal.kub.nl/sturm. Citado na página 28.
- [25] Sturm, Jos F.: Using SEDUMI 1.02, A MATLAB* toolbox for optimization over symmetric cones, 2001. Downloadable from http://sedumi.mcmaster.ca. Citado na página 28.

Apêndices

APÊNDICE A – SIC-POVMs analíticos

Os estados fiduciais para a conjectura de Zauner 1 serão representados nas seções deste apêncie com a forma¹

$$\Psi = \sum_{k} r_k e^{i\theta_k} |k\rangle, \tag{A.1}$$

assumindo que, quando θ não for identificado deve-se assumir $\theta = 0$.

A.1 d = 2

Os dois estados fiduciais possíveis (classes distintas), representados como vetores coluna na base canônica, são

$$\left\{\frac{1}{\sqrt{6}}(\sqrt{3+\sqrt{3}},e^{i\pi/4}\sqrt{3-\sqrt{3}})^T,\frac{1}{\sqrt{6}}(-\sqrt{3-\sqrt{3}},e^{i\pi/4}\sqrt{3-\sqrt{3}})^T\right\}.$$
 (A.2)

A.2 d = 3

Seja

$$r_{\pm}(r_0) = \frac{1}{2}r_0 \pm \frac{1}{2}\sqrt{2 - 4r_0^2},\tag{A.3}$$

onde $1/\sqrt{2} \leq r_0 \leq \sqrt{2/3},$ e
, $0 < r_- \leq 1/\sqrt{6} \leq r_+ < 1/\sqrt{2} < r_0 \leq \sqrt{2/3}.$ Todos os estados fiduciais são da forma

$$\{(r_0, r_+e^{i\theta_1}, r_-e^{i\theta_2})^T,$$
 (A.4)

(e todos os vetores formados por permutações dos elementos)

$$\begin{aligned} |\theta_1, \theta_2 \in \left\{ \frac{\pi}{3}, \pi, \frac{\pi}{5} \right\}, \frac{1}{\sqrt{2}} < r_0 \le \sqrt{\frac{2}{3}} \\ & \bigcup \left\{ (\frac{1}{\sqrt{2}}, \frac{e^{i\theta_1}}{\sqrt{2}}, 0)^T, \end{aligned}$$

(e todos os vetores formados por permutações dos elementos) $|\theta_1, 0 \le \theta_1 \le 2\pi$ }.

¹ Estes estados fiduciais podem ser encontrados em [18].

A.3 d = 4

Seja

$$r_{0} = \frac{1 - (1/\sqrt{5})}{2\sqrt{2 - \sqrt{2}}},$$

$$r_{1} = (\sqrt{2} - 1)r_{0},$$

$$r_{\pm} = \frac{1}{2}\sqrt{1 + (1/\sqrt{5}) \pm \sqrt{(1/5) + (1/\sqrt{5})}},$$

$$a = \arccos(\frac{2}{\sqrt{5 + \sqrt{5}}}),$$

$$b = \arcsin(\frac{2}{\sqrt{5}}),$$

e o conjunto

$$\Omega = \{ ((-1)^m (a/2 + b/4) + \pi (m + 2n + 7j + 1)/4, \pi (2k + 1)/2 , (-1)^m (-a/2 + b/4) + \pi (m + 2n + 3j + 4k + 1)/4) | j, k, m = 0, 1 e n = 0, \dots, 3 \}.$$

O conjunto de todos os estados fiduciais são

$$\left\{ \left(r_0, r_+ e^{i\theta_+}, r_1 e^{i\theta_1}, r_- e^{i\theta_-} \right)^T, \left(r_0, r_- e^{i\theta_-}, r_1 e^{i\theta_1}, r_+ e^{i\theta_+} \right)^T,$$
(A.5)
e todas as permutação cíclicas $|(\theta_+, \theta_1, \theta_-) \in \Omega \right\}.$

APÊNDICE B – Fiduciais GSIC-POVM (via SDP)

Cada uma das tabelas representa um estado quântico fiducial (matriz densidade $\rho)$ para a conjectura de Zauner 1.

B.1 d = 2

0.644338	-0.144338+0.144338i
-0.144338-0.144338i	0.355662

B.2 d = 3

0.215484	-0.117852-0.117850i	0.021568 + 0.080494i	
-0.117852+0.117850i	0.494322	0.160987-0.043138i	
0.021568-0.080494i	0.160987+0.043138i	0.290194	
0.179246	0.010070.0.020701;	0 174704 0 179200;	
0.172340 0.010070 \pm 0.030701;	0.010970-0.0307911	-0.174794-0.1723001	
$-0.174794 \pm 0.172300i$	-0.031027-0.015123	0.451185	
-0.114134 0.1125001	-0.051021-0.0101251	0.401100	
0.166667	0.202692-0.042022i	0.077693 - 0.030141i	
0.202692+0.042022i	0.416669	-0.047312 + 0.102309i	
0.077693 + 0.030141i	-0.047312-0.102309i	0.416664	
0.166667	-0.070593-0.226691i	-0.018382-0.052211i	
-0.070593 + 0.226691i	0.416665	-0.036024-0.042027i	
-0.018382+0.052211i	-0.036024+0.042027i	0.416668	
0.416665	-0.176777+0.176777i	0.000000+0.000000i	
-0.176777-0.176777i	0.166667	-0.000000+0.000000i	
0.000000-0.000000i	-0.000000-0.000000i	0.416668	
0.416666	0.216506+0.125000i	0.000000 + 0.000000i	
0.216506-0.125000i	0.166667	0.000000-0.000000i	
0.000000-0.000000i	0.000000+0.000000i	0.416668	
0.015400	0.072160 ± 0.041666	0.004924.0.194209;	
0.215482	0.072109+0.0410001	-0.094234 - 0.1843081 0.112407 + 0.007007;	
0.072109 - 0.0410001	0.494521	0.112497+0.0070971	
-0.094294+0.1845081	0.112497-0.0070971	0.230137	
0.333336	-0.086073+0.002108i	-0.045568 + 0.159583i	
-0.086073-0.002108i	0.477670	-0.115420 + 0.119256i	
-0.045568 - 0.159583i	-0.115420 - 0.119256i	0.188995	
0 333335	$0.211590\pm0.038826i$	-0.029893+0.100590j	
0.211590-0.038826i	0.477670	0.034811-0.063234i	
-0.029893-0.100590i	$0.034811 \pm 0.063234i$	0 188995	
0.020000 0.1000001	0.001011+0.0002011	0.100000	
0.333332	0.021181 + 0.024894i	0.028608-0.019308i	
0.021181-0.024894i	0.477672	-0.174793+0.172302i	
0.028608 + 0.019308i	-0.174793-0.172302i	0.188997	
0.477670	0.008715+0.061164i	-0.028644 + 0.078256i	
0.008715-0.061164i	0.188995	-0.066002-0.217675i	
-0.028644-0.078256i	-0.066002+0.217675i	0.333334	
		I	
0.477672	0.160986+0.043136i	-0.080494+0.021568i	
0.160986-0.043136i	0.188997	0.160989+0.043137i	
-0.080494-0.021568i	0.160989-0.043137i	0.333332	

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	1194i 5314i 2338i 2932i 9453i 3010i 2384i 2282i
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5314i 2338i 2932i 9453i 3010i 2384i 2282i
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2338i 2932i 9453i 3010i 2384i 2282i
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2932i 9453i 3010i 2384i 2282i
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2932i 9453i 3010i 2384i 2282i
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2932i 9453i 3010i 2384i 2282i
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	9453i 3010i 2384i 2282i
0.000000-0.022806i -0.025575-0.025572i 0.127077 0.025772+0.00 0.001079-0.042932i -0.111803-0.109453i 0.025772-0.008010i 0.395390 0.398651 -0.205761+0.028722i 0.111803+0.045149i 0.032804+0.05 -0.205761-0.028722i 0.131667 -0.035393-0.035371i -0.000000-0.10 0.111803-0.045149i -0.035393+0.035371i 0.213153 0.000200-0.022 0.032804-0.052384i -0.000000+0.102282i 0.000200+0.022657i 0.256529 0.399485 0.00233+0.216658i -0.111803-0.111625i -0.027399+0.0353000000000000000000000000000000000	8010i 2384i 2282i
0.001079-0.042932i -0.111803-0.109453i 0.025772-0.008010i 0.395390 0.398651 -0.205761+0.028722i 0.111803+0.045149i 0.032804+0.05 -0.205761-0.028722i 0.131667 -0.035393-0.035371i -0.000000-0.10 0.111803-0.045149i -0.035393+0.035371i 0.213153 0.000200-0.022 0.032804-0.052384i -0.000000+0.102282i 0.000200+0.022657i 0.256529 0.399485 0.00233+0.216658i -0.111803-0.111625i -0.027399+0.03260000000000000000000000000000000000	2384i 2282i
0.398651 -0.205761+0.028722i 0.111803+0.045149i 0.032804+0.05 -0.205761-0.028722i 0.131667 -0.035393-0.035371i -0.000000-0.10 0.111803-0.045149i -0.035393+0.035371i 0.213153 0.000200-0.022 0.032804-0.052384i -0.000000+0.102282i 0.000200+0.022657i 0.256529 0.399485 0.002333+0.216658i -0.111803-0.111625i -0.027399+0.00	2384i 2282i
-0.205761-0.028722i 0.131667 -0.035393-0.035371i -0.000000-0.10 0.111803-0.045149i -0.035393+0.035371i 0.213153 0.000200-0.022 0.032804-0.052384i -0.000000+0.102282i 0.000200+0.022657i 0.256529 0.399485 0.002333+0.216658i -0.111803-0.111625i -0.027399+0.02	2282i
0.131001 0.03230121 0.035393+0.0353711 0.0000000 0.100 0.111803-0.045149i -0.035393+0.035371i 0.213153 0.000200-0.022 0.032804-0.052384i -0.000000+0.102282i 0.000200+0.022657i 0.256529 0.399485 0.002333+0.216658i -0.111803-0.111625i -0.027399+0.01000000000000000000000000000000000	22021
0.111000 0.041101 0.000303 (0.05011) 0.210133 0.000200 (0.021) 0.032804-0.052384i -0.000000+0.102282i 0.000200+0.022657i 0.256529 0.399485 0.002333+0.216658i -0.111803-0.111625i -0.027399+0.02000000000000000000000000000000000	657i
0.399485 0.002333+0.216658i -0.111803-0.111625i -0.027399+0.022334i	0011
0.399485 0.002333+0.216658i -0.111803-0.111625i -0.027399+0.0	
	22338i
0.002333 - 0.2166581 0.132926 -0.029995 + 0.0266551 0.000000 + 0.0000000 + 0.0000000 + 0.0000000 + 0.0000000 + 0.0000000 + 0.00000000	6314i
-0.111803+0.111625i -0.029995-0.026655i 0.212318 0.013875-0.00	1194i
-0.027399-0.022338i 0.000000-0.006314i 0.013875+0.001194i 0.255271	
0.288672 0.103386+0.023387i 0.111803+0.111703i 0.073210-0.011	218i
0.103386-0.023387i 0.083631 0.146179+0.015821i -0.000000+0.00	4738i
0.111803-0.111703i 0.146179-0.015821i 0.323131 -0.107511+0.01)083i
0.073210+0.011218i -0.000000-0.004738i -0.107511-0.010083i 0.304566	
0.111331 0.003475-0.004888i -0.000000-0.013016i -0.005287+0.0	20170i
0.111331 0.003475-0.004888i -0.000000-0.013016i -0.005287+0.0 0.003475+0.004888i 0.381065 0.021421+0.004436i -0.111803-0.1	20170i 1043i
0.111331 0.003475-0.004888i -0.000000-0.013016i -0.005287+0.0 0.003475+0.004888i 0.381065 0.021421+0.004436i -0.111803-0.11 -0.000000+0.013016i 0.021421-0.004436i 0.276866 -0.158797-0.15	20170i 1043i 4384i
0.111331 0.003475-0.004888i -0.000000-0.013016i -0.005287+0.0 0.003475+0.004888i 0.381065 0.021421+0.004436i -0.111803-0.11 -0.000000+0.013016i 0.021421-0.004436i 0.276866 -0.158797-0.15 -0.005287-0.020170i -0.111803+0.111043i -0.158797+0.154384i 0.230738	20170i 1043i 4384i
0.111331 0.003475-0.004888i -0.000000-0.013016i -0.005287+0.00 0.003475+0.004888i 0.381065 0.021421+0.004436i -0.111803-0.11 -0.000000+0.013016i 0.021421-0.004436i 0.276866 -0.158797-0.15 -0.005287-0.020170i -0.111803+0.111043i -0.158797+0.154384i 0.230738	20170i 1043i 4384i
0.111331 0.003475-0.004888i -0.000000-0.013016i -0.005287+0.0 0.003475+0.004888i 0.381065 0.021421+0.004436i -0.111803-0.11 -0.000000+0.013016i 0.021421-0.004436i 0.276866 -0.158797-0.18 -0.005287-0.020170i -0.111803+0.111043i -0.158797+0.154384i 0.230738 0.230424 -0.018358-0.007122i 0.000000-0.009193i 0.005502+0.00	20170i 1043i 4384i 2456i
0.111331 0.003475-0.004888i -0.000000-0.013016i -0.005287+0.00 0.003475+0.004888i 0.381065 0.021421+0.004436i -0.111803-0.11 -0.000000+0.013016i 0.021421-0.004436i 0.276866 -0.158797-0.13 -0.005287-0.020170i -0.111803+0.111043i -0.158797+0.154384i 0.230738 0.230424 -0.018358-0.007122i 0.00000-0.009193i 0.005502+0.00 -0.018358+0.007122i 0.411639 0.091612+0.201869i -0.111803-0.11	20170i 1043i 4384i 2456i 1425i
0.111331 0.003475-0.004888i -0.000000-0.013016i -0.005287+0.00 0.003475+0.004888i 0.381065 0.021421+0.004436i -0.111803-0.11 -0.000000+0.013016i 0.021421-0.004436i 0.276866 -0.158797-0.13 -0.005287-0.020170i -0.111803+0.111043i -0.158797+0.154384i 0.230738 -0.230424 -0.018358-0.007122i 0.000000-0.009193i 0.005502+0.00 -0.018358+0.007122i 0.411639 0.091612+0.201869i -0.111803-0.11 0.000000+0.009193i 0.091612-0.201869i 0.157772 -0.007125+0.00	20170i 1043i 4384i 2456i 1425i .9532i
0.111331 0.003475-0.004888i -0.000000-0.013016i -0.005287+0.0 0.003475+0.004888i 0.381065 0.021421+0.004436i -0.111803-0.11 -0.000000+0.013016i 0.021421-0.004436i 0.276866 -0.158797-0.13 -0.005287-0.020170i -0.111803+0.111043i -0.158797+0.154384i 0.230738 0.230424 -0.018358-0.007122i 0.000000-0.009193i 0.005502+0.00 -0.018358+0.007122i 0.411639 0.091612+0.201869i -0.111803-0.11 0.000000+0.009193i 0.091612-0.201869i 0.157772 -0.007125+0.00 0.005502-0.002456i -0.111803+0.111425i -0.007125-0.019532i 0.200164	20170i 1043i 4384i 2456i 1425i .9532i
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20170i 1043i 4384i 2456i 1425i .9532i
0.111331 0.003475-0.004888i -0.000000-0.013016i -0.005287+0.0 0.003475+0.004888i 0.381065 0.021421+0.004436i -0.111803-0.11 -0.000000+0.013016i 0.021421-0.004436i 0.276866 -0.158797-0.18 -0.005287-0.020170i -0.111803+0.111043i -0.158797+0.154384i 0.230738 0.230424 -0.018358-0.007122i 0.000000-0.009193i 0.005502+0.00 -0.018358+0.007122i 0.411639 0.091612+0.201869i -0.111803-0.11 0.000000+0.009193i 0.091612-0.201869i 0.157772 -0.007125+0.00 0.005502-0.002456i -0.111803+0.111425i -0.007125-0.019532i 0.200164 0.207681 0.000336-0.018820i 0.000000+0.111589i -0.008839+0.00	20170i 1043i 44384i 2456i 1425i .9532i 9359i
0.111331 0.003475-0.004888i -0.000000-0.013016i -0.005287+0.0 0.003475+0.004888i 0.381065 0.021421+0.004436i -0.111803-0.11 -0.000000+0.013016i 0.021421-0.004436i 0.276866 -0.158797-0.13 -0.005287-0.020170i -0.111803+0.111043i -0.158797+0.154384i 0.230738 0.230424 -0.018358-0.007122i 0.000000-0.009193i 0.005502+0.00 -0.018358+0.007122i 0.411639 0.091612+0.201869i -0.111803-0.11 0.000000+0.009193i 0.091612-0.201869i 0.157772 -0.007125+0.00 0.005502-0.002456i -0.111803+0.111425i -0.007125-0.019532i 0.200164 0.207681 0.000336-0.018820i 0.000000+0.111589i -0.008839+0.00 0.000336+0.018820i 0.416877 -0.160933+0.152642i 0.111803-0.00	20170i 1043i 4384i 2456i 1425i .9532i
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20170i 1043i 4384i 2456i 1425i .9532i 9359i 9359i 918i 0624i

B.3 *d* = 4

0.925920					
0.255259	0.003167-0.004343i	$0.002603 {+} 0.019394i$	-0.025977+0.058248i	-0.023653-0.058260i	
0.003167+0.004343i 0.325727		$0.093851 {+} 0.121246i$	-0.085819-0.163243i	0.023331-0.043411i	
0.002603-0.019394i	0.093851-0.121246i	0.075308	-0.073850-0.017707i	-0.024623-0.012951i	
-0.025977-0.058248i	-0.085819 + 0.163243i	-0.073850 + 0.017707i	0.175604	-0.087750+0.026613i	
-0.023653+0.058260i	0.023331+0.043411i	-0.024623 + 0.012951i	-0.087750-0.026613i	0.188122	
0.078175	_0.028305_0.106011;	0.010263-0.012436	-0.006188-0.017761;	0 116518-0 082530;	
$-0.028395\pm0.106911i$	0.186605	-0.003036-0.00187/j	-0.010265-0.020653	0.110516 - 0.0825551	
-0.026339 ± 0.1003111	$-0.003036\pm0.001874i$	0 164431	0.023152-0.032561j	$-0.030238\pm0.003223i$	
$-0.006188 \pm 0.017761i$	-0.0000000 + 0.0010141 -0.019265+0.020653i	0.104401 0.023152 \pm 0.032561i	0.250129	0.086139-0.003513i	
-0.000100 + 0.0111011 0.116518+0.082539i	0.049767-0.191973j	-0.030238-0.003223i	0.250125 0.086139 \pm 0.003513i	0.320569	
0.110010+0.0020001	0.010101 0.1010101	0.000200 0.0002201	0.000100 0.0000101	0.020000	
0.108821	-0.055509+0.009505i	0.004220- $0.034559i$	-0.059102 + 0.036716i	-0.179608 + 0.045843i	
-0.055509-0.009505i	0.144597	-0.013239-0.012699i	-0.092337-0.057768i	0.142240 + 0.018947i	
0.004220+0.034559i	-0.013239+0.012699i	0.198256	0.002093-0.028775i	0.002995-0.056124i	
-0.059102-0.036716i	-0.092337+0.057768i	0.002093+0.028775i	0.200179	0.050120+0.021294i	
-0.179608-0.045843i	0.142240-0.018947i	0.002995 + 0.056124i	0.050120-0.021294i	0.348146	
0.219602	-0.024342+0.034320i	0.043225-0.023692i	0.022932-0.118366i	-0.110298-0.148682i	
-0.024342-0.034320i	0.050486	-0.031395+0.037131i	0.036261+0.036596i	-0.047212+0.005447i	
0.043225+0.023692i	-0.031395-0.037131i	0.242705	0.006349-0.017834i	-0.124040+0.066346i	
0.022932+0.118366i	0.036261-0.036596i	0.006349+0.017834i	0.193762	0.029555-0.045033i	
-0.110298+0.148682i	-0.047212-0.005447i	-0.124040-0.066346i	0.029555 + 0.045033i	0.293445	
0.071493	-0.033877-0.028476i	-0.009351-0.003424i	0.129607+0.008808i	-0.080651-0.065682i	
-0.033877+0.028476i	0.216185	0.029417-0.033908i	0.044557+0.017811i	0.122816+0.016823i	
-0.009351+0.003424i	0.029417+0.033908i	0.156648	0.019497+0.052285i	-0.083565+0.006278i	
0.129607-0.008808i	0.044557-0.017811i	0.019497-0.052285i	0.313619	-0.138103-0.068469i	
-0.080651+0.065682i	0.122816-0.016823i	-0.083565-0.006278i	-0.138103+0.068469i	0.242054	
0.190074	-0.029637+0.017914i	-0.005967+0.034662i	-0.047782+0.087283i	-0.004286+0.016096i	
-0.029637-0.0179141	0.357030	0.084098 ± 0.1767941	-0.068101-0.1393421	1 0 007756-0 0704301	
0.005065.0.094660	0.004000.0.176704:	0.127200	0.000010+0.017505		
-0.005967-0.034662i	0.084098-0.176794i	0.137269	-0.036610+0.017525i	-0.031368-0.021673i	
-0.005967-0.034662i -0.047782-0.087283i	0.084098-0.176794i -0.068101+0.139342i	0.137269 -0.036610-0.017525i	-0.036610+0.017525i 0.181069	-0.031368-0.021673i 0.013244+0.006220i	
-0.005967-0.034662i -0.047782-0.087283i -0.004286-0.016096i	0.084098-0.176794i -0.068101+0.139342i 0.007756+0.070430i	0.137269 -0.036610-0.017525i -0.031368+0.021673i	-0.036610+0.017525i 0.181069 0.013244-0.006220i	-0.031368-0.021673i 0.013244+0.006220i 0.134558	
-0.005967-0.034662i -0.047782-0.087283i -0.004286-0.016096i 0.288749	0.084098-0.176794i -0.068101+0.139342i 0.007756+0.070430i 0.030918+0.021991i	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i	-0.031368-0.021673i 0.013244+0.006220i 0.134558 0.007378-0.000024i	
-0.005967-0.034662i -0.047782-0.087283i -0.004286-0.016096i 0.288749 0.030918-0.021991i	0.084098-0.176794i -0.068101+0.139342i 0.007756+0.070430i 0.030918+0.021991i 0.199952	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i 0.039804-0.192748i	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i 0.002954-0.014736i	-0.031368-0.021673i 0.013244+0.006220i 0.134558 0.007378-0.000024i -0.013718-0.004575i	
-0.005967-0.034662i -0.047782-0.087283i -0.004286-0.016096i 0.288749 0.030918-0.021991i 0.142567+0.143985i	0.084098-0.176794i -0.068101+0.139342i 0.007756+0.070430i 0.030918+0.021991i 0.199952 0.039804+0.192748i	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i 0.039804-0.192748i 0.293795	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i 0.002954-0.014736i 0.033745-0.005654i	-0.031368-0.021673i 0.013244+0.006220i 0.134558 0.007378-0.000024i -0.013718-0.004575i 0.009468-0.001193i	
$\begin{array}{c} -0.005967 \text{-} 0.034662 \mathrm{i} \\ -0.047782 \text{-} 0.087283 \mathrm{i} \\ -0.004286 \text{-} 0.016096 \mathrm{i} \\ \hline \\ 0.288749 \\ \hline 0.030918 \text{-} 0.021991 \mathrm{i} \\ 0.142567 \text{+} 0.143985 \mathrm{i} \\ \hline 0.001105 \text{+} 0.009067 \mathrm{i} \end{array}$	0.084098-0.176794i -0.068101+0.139342i 0.007756+0.070430i 0.030918+0.021991i 0.199952 0.039804+0.192748i 0.002954+0.014736i	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i 0.039804-0.192748i 0.293795 0.033745+0.005654i	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i 0.002954-0.014736i 0.033745-0.005654i 0.110647	-0.031368-0.021673i -0.031368-0.021673i 0.013244+0.006220i 0.134558 0.007378-0.000024i -0.013718-0.004575i 0.009468-0.001193i 0.010172+0.012745i	
$\begin{array}{c} -0.005967 - 0.034662 i \\ -0.047782 - 0.087283 i \\ -0.004286 - 0.016096 i \\ \hline \\ \hline \\ 0.288749 \\ \hline \\ 0.030918 - 0.021991 i \\ \hline \\ 0.142567 + 0.143985 i \\ \hline \\ 0.001105 + 0.009067 i \\ \hline \\ 0.007378 + 0.000024 i \\ \hline \end{array}$	0.084098-0.176794i -0.068101+0.139342i 0.007756+0.070430i 0.030918+0.021991i 0.199952 0.039804+0.192748i 0.002954+0.014736i -0.013718+0.004575i	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i 0.039804-0.192748i 0.293795 0.033745+0.005654i 0.009468+0.001193i	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i 0.002954-0.014736i 0.033745-0.005654i 0.110647 0.010172-0.012745i	$\begin{array}{c} -0.031368{-}0.021673i\\ -0.031368{-}0.021673i\\ 0.013244{+}0.006220i\\ 0.134558\\ \hline \\ 0.007378{-}0.000024i\\ -0.013718{-}0.004575i\\ \hline \\ 0.009468{-}0.001193i\\ \hline \\ 0.010172{+}0.012745i\\ \hline \\ 0.106857\\ \hline \end{array}$	
-0.005967-0.034662i -0.047782-0.087283i -0.004286-0.016096i 0.288749 0.030918-0.021991i 0.142567+0.143985i 0.001105+0.009067i 0.007378+0.000024i	0.084098-0.176794i -0.068101+0.139342i 0.007756+0.070430i 0.030918+0.021991i 0.199952 0.039804+0.192748i 0.002954+0.014736i -0.013718+0.004575i	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i 0.039804-0.192748i 0.293795 0.033745+0.005654i 0.009468+0.001193i	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i 0.002954-0.014736i 0.033745-0.005654i 0.110647 0.010172-0.012745i	-0.031368-0.021673i -0.031368-0.021673i 0.013244+0.006220i 0.134558 0.007378-0.000024i -0.013718-0.004575i 0.009468-0.001193i 0.010172+0.012745i 0.106857	
$\begin{array}{c} -0.005967 \text{-} 0.034662 \mathrm{i} \\ -0.047782 \text{-} 0.087283 \mathrm{i} \\ -0.004286 \text{-} 0.016096 \mathrm{i} \\ \hline \\ 0.288749 \\ 0.030918 \text{-} 0.021991 \mathrm{i} \\ 0.142567 \text{+} 0.143985 \mathrm{i} \\ 0.001105 \text{+} 0.009067 \mathrm{i} \\ 0.007378 \text{+} 0.000024 \mathrm{i} \\ \hline \\ 0.359611 \\ \hline \\ 0.085445 0.172075 \mathrm{i} \\ \hline \end{array}$	$\begin{array}{c} 0.084098\text{-}0.176794\mathrm{i}\\ -0.068101\text{+}0.139342\mathrm{i}\\ 0.007756\text{+}0.070430\mathrm{i}\\ \hline\\ 0.030918\text{+}0.021991\mathrm{i}\\ 0.199952\\ \hline\\ 0.039804\text{+}0.192748\mathrm{i}\\ 0.002954\text{+}0.014736\mathrm{i}\\ -0.013718\text{+}0.004575\mathrm{i}\\ \hline\\ 0.085445\text{+}0.172075\mathrm{i}\\ \hline\\ 0.151601\\ \hline\end{array}$	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i 0.039804-0.192748i 0.293795 0.033745+0.005654i 0.009468+0.001193i -0.164156-0.116927i 0.043147+0.025136i	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i 0.002954-0.014736i 0.033745-0.005654i 0.110647 0.010172-0.012745i -0.003547+0.012609i 0.017405 + 0.009001i	-0.031368-0.021673i -0.031368-0.021673i 0.013244+0.006220i 0.134558 0.007378-0.000024i -0.013718-0.004575i 0.009468-0.001193i 0.010172+0.012745i 0.106857 -0.038944-0.018550i 0.015051+0.010215i	
$\begin{array}{c} -0.005967 - 0.034662i\\ -0.047782 - 0.087283i\\ -0.004286 - 0.016096i\\ \hline \\ \hline \\ 0.288749\\ \hline \\ 0.030918 - 0.021991i\\ \hline \\ 0.142567 + 0.143985i\\ \hline \\ 0.001105 + 0.009067i\\ \hline \\ 0.007378 + 0.000024i\\ \hline \\ \hline \\ 0.359611\\ \hline \\ 0.085445 - 0.172075i\\ -0.164156 \pm 0.116927i\\ \hline \end{array}$	0.084098-0.176794i -0.068101+0.139342i 0.007756+0.070430i 0.030918+0.021991i 0.199952 0.039804+0.192748i 0.002954+0.014736i -0.013718+0.004575i 0.085445+0.172075i 0.151601 -0.043147-0.025136i	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i 0.039804-0.192748i 0.293795 0.033745+0.005654i 0.009468+0.001193i -0.164156-0.116927i -0.043147+0.025136i 0.183181	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i 0.002954-0.014736i 0.033745-0.005654i 0.110647 0.010172-0.012745i -0.003547+0.012609i 0.017405+0.009901i 0.009770+0.004148i	-0.031368-0.021673i 0.013244+0.006220i 0.134558 0.007378-0.000024i -0.013718-0.004575i 0.009468-0.001193i 0.010172+0.012745i 0.106857 -0.038944-0.018550i -0.015051+0.010215i 0.011291-0.004063i	
$\begin{array}{c} -0.005967 - 0.034662i\\ -0.047782 - 0.087283i\\ -0.004286 - 0.016096i\\ \hline \\ \hline \\ 0.288749\\ \hline \\ 0.030918 - 0.021991i\\ \hline \\ 0.142567 + 0.143985i\\ \hline \\ 0.001105 + 0.009067i\\ \hline \\ 0.007378 + 0.000024i\\ \hline \\ \hline \\ 0.359611\\ \hline \\ 0.085445 - 0.172075i\\ -0.164156 + 0.116927i\\ \hline \\ -0.003547 - 0.012609i\\ \hline \end{array}$	0.084098-0.176794i -0.068101+0.139342i 0.007756+0.070430i 0.030918+0.021991i 0.199952 0.039804+0.192748i 0.002954+0.014736i -0.013718+0.004575i 0.085445+0.172075i 0.151601 -0.043147-0.025136i 0.017405-0.009901i	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i 0.039804-0.192748i 0.293795 0.033745+0.005654i 0.009468+0.001193i -0.164156-0.116927i -0.043147+0.025136i 0.183181 0.009770-0.004148i	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i 0.002954-0.014736i 0.033745-0.005654i 0.110647 0.010172-0.012745i -0.003547+0.012609i 0.017405+0.009901i 0.009770+0.004148i 0.133090	-0.031368-0.021673i -0.031368-0.021673i 0.013244+0.006220i 0.134558 0.007378-0.000024i -0.013718-0.004575i 0.009468-0.001193i 0.010172+0.012745i 0.106857 -0.038944-0.018550i -0.015051+0.010215i 0.011291-0.004063i -0.066011-0.015909i	
$\begin{array}{c} -0.005967 - 0.034662i\\ -0.047782 - 0.087283i\\ -0.004286 - 0.016096i\\ \hline \\ \hline 0.288749\\ \hline 0.030918 - 0.021991i\\ \hline 0.142567 + 0.143985i\\ \hline 0.001105 + 0.009067i\\ \hline 0.007378 + 0.000024i\\ \hline \\ \hline 0.359611\\ \hline 0.085445 - 0.172075i\\ -0.164156 + 0.116927i\\ -0.003547 - 0.012609i\\ -0.038944 + 0.018550i\\ \hline \end{array}$	$\begin{array}{c} 0.084098\text{-}0.176794\mathrm{i}\\ -0.068101\text{+}0.139342\mathrm{i}\\ 0.007756\text{+}0.070430\mathrm{i}\\ \hline\\ 0.030918\text{+}0.021991\mathrm{i}\\ 0.199952\\ \hline\\ 0.039804\text{+}0.192748\mathrm{i}\\ 0.002954\text{+}0.014736\mathrm{i}\\ -0.013718\text{+}0.004575\mathrm{i}\\ \hline\\ 0.085445\text{+}0.172075\mathrm{i}\\ 0.151601\\ -0.043147\text{-}0.025136\mathrm{i}\\ 0.017405\text{-}0.009901\mathrm{i}\\ -0.015051\text{-}0.012215\mathrm{i}\\ \hline\end{array}$	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i 0.039804-0.192748i 0.039804-0.192748i 0.033745+0.005654i 0.009468+0.001193i -0.164156-0.116927i -0.043147+0.025136i 0.183181 0.009770-0.004148i 0.011291+0.004063i	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i 0.002954-0.014736i 0.033745-0.005654i 0.110647 0.010172-0.012745i -0.003547+0.012609i 0.017405+0.009901i 0.009770+0.004148i 0.133090 -0.006011+0.015909i	-0.031368-0.021673i -0.031368-0.021673i 0.013244+0.006220i 0.134558 0.007378-0.000024i -0.013718-0.004575i 0.009468-0.001193i 0.010172+0.012745i 0.106857 -0.038944-0.018550i -0.015051+0.010215i 0.011291-0.004063i -0.006011-0.015909i 0.172517	
$\begin{array}{c} -0.005967 - 0.034662 i \\ -0.047782 - 0.087283 i \\ -0.004286 - 0.016096 i \\ \hline \\ 0.288749 \\ 0.030918 - 0.021991 i \\ 0.142567 + 0.143985 i \\ 0.001105 + 0.009067 i \\ 0.007378 + 0.000024 i \\ \hline \\ 0.359611 \\ 0.085445 - 0.172075 i \\ -0.164156 + 0.116927 i \\ -0.003547 - 0.012609 i \\ -0.038944 + 0.018550 i \\ \hline \end{array}$	$\begin{array}{c} 0.084098\text{-}0.176794\mathrm{i}\\ -0.068101\text{+}0.139342\mathrm{i}\\ 0.007756\text{+}0.070430\mathrm{i}\\ \hline\\ 0.030918\text{+}0.021991\mathrm{i}\\ 0.199952\\ \hline\\ 0.039804\text{+}0.192748\mathrm{i}\\ 0.002954\text{+}0.014736\mathrm{i}\\ -0.013718\text{+}0.004575\mathrm{i}\\ \hline\\ 0.085445\text{+}0.172075\mathrm{i}\\ \hline\\ 0.151601\\ -0.043147\text{-}0.025136\mathrm{i}\\ 0.017405\text{-}0.009901\mathrm{i}\\ -0.015051\text{-}0.010215\mathrm{i}\\ \end{array}$	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i 0.039804-0.192748i 0.0293795 0.033745+0.005654i 0.009468+0.001193i -0.164156-0.116927i -0.043147+0.025136i 0.183181 0.009770-0.004148i 0.011291+0.004063i	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i 0.002954-0.014736i 0.033745-0.005654i 0.110647 0.010172-0.012745i -0.003547+0.012609i 0.017405+0.009901i 0.009770+0.004148i 0.133090 -0.006011+0.015909i	-0.031368-0.021673i 0.013244+0.006220i 0.134558 0.007378-0.000024i -0.013718-0.004575i 0.009468-0.001193i 0.010172+0.012745i 0.106857 -0.038944-0.018550i -0.015051+0.010215i 0.011291-0.004063i -0.006011-0.015909i 0.172517	
$\begin{array}{c} -0.005967 - 0.034662 i \\ -0.047782 - 0.087283 i \\ -0.004286 - 0.016096 i \\ \hline \\ 0.288749 \\ \hline 0.030918 - 0.021991 i \\ 0.142567 + 0.143985 i \\ 0.001105 + 0.009067 i \\ \hline 0.007378 + 0.000024 i \\ \hline \\ 0.359611 \\ \hline 0.085445 - 0.172075 i \\ -0.164156 + 0.116927 i \\ -0.003547 - 0.012609 i \\ -0.038944 + 0.018550 i \\ \hline \\ \hline \\ 0.189522 \\ \hline \end{array}$	$\begin{array}{c c} 0.084098\text{-}0.176794\mathrm{i}\\ \hline -0.068101+0.139342\mathrm{i}\\ 0.007756+0.070430\mathrm{i}\\ \hline \\ 0.030918+0.021991\mathrm{i}\\ 0.199952\\ \hline \\ 0.039804+0.192748\mathrm{i}\\ 0.002954+0.014736\mathrm{i}\\ \hline \\ -0.013718+0.004575\mathrm{i}\\ \hline \\ 0.085445+0.172075\mathrm{i}\\ \hline \\ 0.085445+0.172075\mathrm{i}\\ \hline \\ 0.085445+0.025136\mathrm{i}\\ 0.017405-0.009901\mathrm{i}\\ \hline \\ -0.015051\text{-}0.010215\mathrm{i}\\ \hline \\ \hline \\ 0.032126\text{-}0.029766\mathrm{i}\\ \hline \end{array}$	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i 0.039804-0.192748i 0.0393745+0.005654i 0.009468+0.001193i -0.164156-0.116927i -0.043147+0.025136i 0.183181 0.009770-0.004148i 0.011291+0.004063i	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i 0.002954-0.014736i 0.033745-0.005654i 0.110647 0.010172-0.012745i -0.003547+0.012609i 0.017405+0.009901i 0.009770+0.004148i 0.133090 -0.006011+0.015909i 0.063345+0.179073i	-0.031368-0.021673i 0.013244+0.006220i 0.134558 0.007378-0.000024i -0.013718-0.004575i 0.009468-0.001193i 0.010172+0.012745i 0.106857 -0.038944-0.018550i -0.015051+0.010215i 0.011291-0.004063i -0.006011-0.015909i 0.172517 -0.015451+0.121826i	
$\begin{array}{c} -0.005967 - 0.034662i\\ -0.047782 - 0.087283i\\ -0.004286 - 0.016096i\\ \hline \\ 0.288749\\ \hline 0.030918 - 0.021991i\\ \hline 0.142567 + 0.143985i\\ \hline 0.001105 + 0.009067i\\ \hline 0.007378 + 0.000024i\\ \hline \\ 0.359611\\ \hline 0.085445 - 0.172075i\\ -0.164156 + 0.116927i\\ -0.003547 - 0.012609i\\ -0.038944 + 0.018550i\\ \hline \\ 0.189522\\ \hline 0.032126 + 0.029766i\\ \hline \\ 0.00000000000000000000000000000000$	$\begin{array}{c c} 0.084098 - 0.176794 i \\ \hline -0.068101 + 0.139342 i \\ \hline 0.007756 + 0.070430 i \\ \hline 0.030918 + 0.021991 i \\ \hline 0.199952 \\ \hline 0.039804 + 0.192748 i \\ \hline 0.002954 + 0.014736 i \\ \hline -0.013718 + 0.004575 i \\ \hline 0.085445 + 0.172075 i \\ \hline 0.085445 + 0.172075 i \\ \hline 0.0151601 \\ \hline -0.043147 - 0.025136 i \\ \hline 0.017405 - 0.009901 i \\ \hline -0.015051 - 0.010215 i \\ \hline 0.032126 - 0.029766 i \\ \hline 0.133514 \\ \hline 0.00143147 - 0.01515 \\ \hline 0.015160 \\ \hline 0.013514 \\ \hline 0.00145 - 0.01516 \\ \hline 0.013514 \\ \hline 0.00145 - 0.01516 \\ \hline 0.01516 \\ \hline 0.01516 \\ \hline 0.013514 \\ \hline 0.00145 - 0.01516 \\ \hline 0.01516 \\ \hline 0.01516 \\ \hline 0.013514 \\ \hline 0.00145 \\ \hline 0.01516 \\ \hline$	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i 0.039804-0.192748i 0.0393745+0.005654i 0.009468+0.001193i -0.164156-0.116927i -0.043147+0.025136i 0.183181 0.009770-0.004148i 0.01291+0.004063i -0.036142-0.015487i	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i 0.002954-0.014736i 0.033745-0.005654i 0.110647 0.010172-0.012745i -0.003547+0.012609i 0.017405+0.009901i 0.009770+0.004148i 0.133090 -0.006011+0.015909i 0.063345+0.179073i -0.045102+0.000493i	-0.031368-0.021673i 0.013244+0.006220i 0.134558 0.007378-0.000024i -0.013718-0.004575i 0.009468-0.001193i 0.010172+0.012745i 0.106857 -0.038944-0.018550i -0.015051+0.010215i 0.011291-0.004063i -0.006011-0.015909i 0.172517 -0.015451+0.121826i 0.008259+0.019902i	
$\begin{array}{c} -0.005967 - 0.034662i\\ -0.047782 - 0.087283i\\ -0.004286 - 0.016096i\\ \hline \\ 0.288749\\ 0.030918 - 0.021991i\\ 0.142567 + 0.143985i\\ 0.001105 + 0.009067i\\ 0.007378 + 0.000024i\\ \hline \\ 0.359611\\ 0.085445 - 0.172075i\\ -0.164156 + 0.116927i\\ -0.003547 - 0.012609i\\ -0.038944 + 0.018550i\\ \hline \\ 0.189522\\ 0.032126 + 0.029766i\\ -0.021825 + 0.032389i\\ -0.021825 + 0.032389i\\ -0.021825 + 0.032389i\\ -0.021825 + 0.032389i\\ \hline \end{array}$	$\begin{array}{c} 0.084098\text{-}0.176794\mathrm{i}\\ -0.068101\text{+}0.139342\mathrm{i}\\ 0.007756\text{+}0.070430\mathrm{i}\\ \hline\\ 0.030918\text{+}0.021991\mathrm{i}\\ 0.199952\\ \hline\\ 0.039804\text{+}0.192748\mathrm{i}\\ 0.002954\text{+}0.014736\mathrm{i}\\ -0.013718\text{+}0.004575\mathrm{i}\\ \hline\\ 0.085445\text{+}0.172075\mathrm{i}\\ 0.151601\\ -0.043147\text{-}0.025136\mathrm{i}\\ 0.017405\text{-}0.009901\mathrm{i}\\ -0.015051\text{-}0.010215\mathrm{i}\\ \hline\\ 0.032126\text{-}0.029766\mathrm{i}\\ 0.133514\\ \hline\\ 0.036142\text{+}0.015487\mathrm{i}\\ \hline\\ 0.0301420\text{-}0.02010\mathrm{i}\\ \end{array}$	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i 0.039804-0.192748i 0.039804-0.192748i 0.033745+0.005654i 0.009468+0.001193i -0.164156-0.116927i -0.043147+0.025136i 0.183181 0.009770-0.004148i 0.011291+0.004063i -0.036142-0.015487i 0.243676	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i 0.002954-0.014736i 0.033745-0.005654i 0.010172-0.012745i -0.003547+0.012609i 0.017405+0.009901i 0.009770+0.004148i 0.133090 -0.006011+0.015909i 0.063345+0.179073i -0.045102+0.000493i 0.053863+0.026117i	-0.031368-0.021673i -0.031368-0.021673i 0.013244+0.006220i 0.134558 0.007378-0.000024i -0.013718-0.004575i 0.009468-0.001193i 0.010172+0.012745i 0.106857 -0.038944-0.018550i -0.015051+0.010215i 0.011291-0.004063i -0.006011-0.015909i 0.172517 -0.015451+0.121826i 0.008259+0.019902i -0.027839+0.028066i	
$\begin{array}{c} -0.005967 - 0.034662i\\ -0.047782 - 0.087283i\\ -0.004286 - 0.016096i\\ \hline \\ \hline 0.288749\\ \hline 0.030918 - 0.021991i\\ \hline 0.142567 + 0.143985i\\ \hline 0.001105 + 0.009067i\\ \hline 0.007378 + 0.000024i\\ \hline \\ \hline 0.359611\\ \hline 0.085445 - 0.172075i\\ -0.164156 + 0.116927i\\ -0.003547 - 0.012609i\\ -0.038944 + 0.018550i\\ \hline \\ \hline 0.189522\\ \hline 0.032126 + 0.029766i\\ -0.021825 + 0.032389i\\ \hline 0.063345 - 0.179073i\\ \hline 0.015451 + 0.102026i\\ \hline \end{array}$	$\begin{array}{c} 0.084098\text{-}0.176794\mathrm{i}\\ -0.068101\text{+}0.139342\mathrm{i}\\ 0.007756\text{+}0.070430\mathrm{i}\\ \hline\\ 0.030918\text{+}0.021991\mathrm{i}\\ 0.199952\\ \hline\\ 0.039804\text{+}0.192748\mathrm{i}\\ 0.002954\text{+}0.014736\mathrm{i}\\ -0.013718\text{+}0.004575\mathrm{i}\\ \hline\\ 0.085445\text{+}0.172075\mathrm{i}\\ 0.085445\text{+}0.172075\mathrm{i}\\ 0.0151601\\ -0.043147\text{-}0.025136\mathrm{i}\\ 0.017405\text{-}0.009901\mathrm{i}\\ -0.015051\text{-}0.010215\mathrm{i}\\ \hline\\ 0.032126\text{-}0.029766\mathrm{i}\\ 0.133514\\ 0.036142\text{+}0.015487\mathrm{i}\\ -0.045102\text{-}0.000493\mathrm{i}\\ 0.00295200000000000000000000000000000000$	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i 0.039804-0.192748i 0.039804-0.192748i 0.033745+0.005654i 0.009468+0.001193i -0.164156-0.116927i -0.043147+0.025136i 0.183181 0.009770-0.004148i 0.011291+0.004063i -0.021825-0.032389i 0.036142-0.015487i 0.243676 0.053863-0.026117i	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i 0.002954-0.014736i 0.033745-0.005654i 0.110647 0.010172-0.012745i -0.003547+0.012609i 0.017405+0.009901i 0.009770+0.004148i 0.133090 -0.006011+0.015909i 0.063345+0.179073i -0.045102+0.000493i 0.053863+0.026117i 0.331408 0.000770 + 0.024750	-0.031368-0.021673i -0.031368-0.021673i 0.013244+0.006220i 0.134558 0.007378-0.000024i -0.013718-0.004575i 0.009468-0.001193i 0.010172+0.012745i 0.106857 -0.038944-0.018550i -0.015051+0.010215i 0.011291-0.004063i -0.006011-0.015909i 0.172517 -0.015451+0.121826i 0.008259+0.019902i -0.027839+0.028066i 0.093973+0.103479i 0.10100	
$\begin{array}{c} -0.005967 - 0.034662i\\ -0.047782 - 0.087283i\\ -0.004286 - 0.016096i\\ \hline \\ \hline 0.288749\\ \hline 0.030918 - 0.021991i\\ \hline 0.142567 + 0.143985i\\ \hline 0.001105 + 0.009067i\\ \hline 0.007378 + 0.000024i\\ \hline \\ \hline 0.359611\\ \hline 0.085445 - 0.172075i\\ -0.164156 + 0.116927i\\ -0.003547 - 0.012609i\\ -0.038944 + 0.018550i\\ \hline \\ \hline 0.189522\\ \hline 0.032126 + 0.029766i\\ -0.021825 + 0.032389i\\ \hline 0.063345 - 0.179073i\\ -0.015451 - 0.121826i\\ \hline \end{array}$	$\begin{array}{c} 0.084098\text{-}0.176794\mathrm{i}\\ -0.068101\text{+}0.139342\mathrm{i}\\ 0.007756\text{+}0.070430\mathrm{i}\\ \hline\\ 0.030918\text{+}0.021991\mathrm{i}\\ 0.199952\\ \hline\\ 0.039804\text{+}0.192748\mathrm{i}\\ 0.002954\text{+}0.014736\mathrm{i}\\ -0.013718\text{+}0.004575\mathrm{i}\\ \hline\\ 0.085445\text{+}0.172075\mathrm{i}\\ 0.151601\\ -0.043147\text{-}0.025136\mathrm{i}\\ 0.017405\text{-}0.009901\mathrm{i}\\ -0.015051\text{-}0.010215\mathrm{i}\\ \hline\\ 0.032126\text{-}0.029766\mathrm{i}\\ 0.133514\\ 0.036142\text{+}0.015487\mathrm{i}\\ -0.045102\text{-}0.000493\mathrm{i}\\ 0.008259\text{-}0.019902\mathrm{i}\\ \hline\end{array}$	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i 0.039804-0.192748i 0.039804-0.192748i 0.0393745+0.005654i 0.009468+0.001193i -0.164156-0.116927i -0.043147+0.025136i 0.009770-0.004148i 0.011291+0.004063i 0.036142-0.015487i 0.243676 0.053863-0.026117i -0.027839-0.028066i	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i 0.002954-0.014736i 0.033745-0.005654i 0.110647 0.010172-0.012745i -0.003547+0.012609i 0.017405+0.009901i 0.009770+0.004148i 0.133090 -0.006011+0.015909i 0.063345+0.179073i -0.045102+0.000493i 0.053863+0.026117i 0.331408 0.093973-0.103479i	-0.031368-0.021673i 0.013244+0.006220i 0.134558 0.007378-0.000024i -0.013718-0.004575i 0.009468-0.001193i 0.010172+0.012745i 0.106857 -0.038944-0.018550i -0.015051+0.010215i 0.011291-0.004063i -0.006011-0.015909i 0.172517 -0.015451+0.121826i 0.008259+0.019902i -0.027839+0.028066i 0.093973+0.103479i 0.101880	
$\begin{array}{r} -0.005967 - 0.034662i\\ -0.047782 - 0.087283i\\ -0.004286 - 0.016096i\\ \hline \\ \hline 0.288749\\ \hline 0.030918 - 0.021991i\\ \hline 0.142567 + 0.143985i\\ \hline 0.001105 + 0.009067i\\ \hline 0.007378 + 0.000024i\\ \hline \\ \hline 0.0359611\\ \hline 0.085445 - 0.172075i\\ -0.164156 + 0.116927i\\ -0.003547 - 0.012609i\\ -0.038944 + 0.018550i\\ \hline \\ \hline 0.189522\\ \hline 0.032126 + 0.029766i\\ -0.021825 + 0.032389i\\ \hline 0.063345 - 0.179073i\\ -0.015451 - 0.121826i\\ \hline \hline 0.144617\\ \hline \end{array}$	$\begin{array}{r} 0.084098 - 0.176794 i \\ -0.068101 + 0.139342 i \\ 0.007756 + 0.070430 i \\ \hline \\ 0.030918 + 0.021991 i \\ 0.199952 \\ 0.039804 + 0.192748 i \\ 0.002954 + 0.014736 i \\ -0.013718 + 0.004575 i \\ \hline \\ 0.085445 + 0.172075 i \\ 0.085445 + 0.172075 i \\ 0.151601 \\ -0.043147 - 0.025136 i \\ 0.017405 - 0.009901 i \\ -0.015051 - 0.010215 i \\ \hline \\ 0.032126 - 0.029766 i \\ 0.133514 \\ 0.036142 + 0.015487 i \\ -0.045102 - 0.000493 i \\ 0.008259 - 0.019902 i \\ \hline \\ 0.036823 - 0.020670 i \\ \hline \end{array}$	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i 0.039804-0.192748i 0.039804-0.192748i 0.0393745+0.005654i 0.009468+0.001193i -0.164156-0.116927i -0.043147+0.025136i 0.009770-0.004148i 0.009770-0.004148i 0.036142-0.015487i 0.036142-0.015487i 0.023863-0.026117ii -0.027839-0.028066i -0.035715+0.003679i	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i 0.002954-0.014736i 0.033745-0.005654i 0.010172-0.012745i -0.003547+0.012609i 0.017405+0.009901i 0.009770+0.004148i 0.133090 -0.006011+0.015909i 0.063345+0.179073i -0.045102+0.000493i 0.053863+0.026117i 0.331408 0.093973-0.103479i -0.016625+0.001342i	$\begin{array}{c} -0.031368 - 0.021673i\\ -0.031368 - 0.021673i\\ 0.013244 + 0.006220i\\ 0.134558\\ \hline \\ 0.007378 - 0.000024i\\ -0.013718 - 0.004575i\\ \hline \\ 0.009468 - 0.001193i\\ \hline \\ 0.010172 + 0.012745i\\ \hline \\ 0.010172 + 0.012745i\\ \hline \\ 0.010857\\ \hline \\ -0.038944 - 0.018550i\\ -0.015051 + 0.010215i\\ \hline \\ 0.011291 - 0.004063i\\ -0.006011 - 0.015909i\\ \hline \\ 0.0172517\\ \hline \\ -0.015451 + 0.121826i\\ \hline \\ 0.008259 + 0.019902i\\ \hline \\ -0.027839 + 0.028066i\\ \hline \\ 0.093973 + 0.103479i\\ \hline \\ 0.101880\\ \hline \\ \hline \\ 0.021481 + 0.063405i\\ \hline \end{array}$	
$\begin{array}{r} -0.005967 - 0.034662i\\ -0.047782 - 0.087283i\\ -0.004286 - 0.016096i\\ \hline \\ 0.288749\\ 0.030918 - 0.021991i\\ 0.142567 + 0.143985i\\ 0.001105 + 0.009067i\\ 0.007378 + 0.000024i\\ \hline \\ 0.359611\\ 0.085445 - 0.172075i\\ -0.164156 + 0.116927i\\ -0.003547 - 0.012609i\\ -0.038944 + 0.018550i\\ \hline \\ 0.189522\\ 0.032126 + 0.029766i\\ -0.021825 + 0.032389i\\ 0.063345 - 0.179073i\\ -0.015451 - 0.121826i\\ \hline \\ 0.144617\\ 0.036823 + 0.020670i\\ \hline \end{array}$	$\begin{array}{c} 0.084098\text{-}0.176794\mathrm{i}\\ -0.068101\text{+}0.139342\mathrm{i}\\ 0.007756\text{+}0.070430\mathrm{i}\\ \hline\\ 0.030918\text{+}0.021991\mathrm{i}\\ 0.199952\\ \hline\\ 0.039804\text{+}0.192748\mathrm{i}\\ 0.002954\text{+}0.014736\mathrm{i}\\ -0.013718\text{+}0.004575\mathrm{i}\\ \hline\\ 0.085445\text{+}0.172075\mathrm{i}\\ 0.151601\\ -0.043147\text{-}0.025136\mathrm{i}\\ 0.017405\text{-}0.009901\mathrm{i}\\ -0.015051\text{-}0.010215\mathrm{i}\\ \hline\\ 0.032126\text{-}0.029766\mathrm{i}\\ 0.133514\\ \hline\\ 0.036142\text{+}0.015487\mathrm{i}\\ -0.045102\text{-}0.000493\mathrm{i}\\ 0.008259\text{-}0.019902\mathrm{i}\\ \hline\\ 0.036823\text{-}0.020670\mathrm{i}\\ 0.248498\\ \hline\end{array}$	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i 0.039804-0.192748i 0.039804-0.192748i 0.039804-0.192748i 0.033745+0.005654i 0.009468+0.001193i -0.164156-0.116927i -0.043147+0.025136i 0.009770-0.004148i 0.011291+0.004063i 0.036142-0.015487i 0.035863-0.026117i -0.027839-0.028066i 0.035715+0.003679i 0.034314-0.003443i	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i 0.002954-0.014736i 0.033745-0.005654i 0.010172-0.012745i -0.003547+0.012609i 0.017405+0.009901i 0.009770+0.004148i 0.033090 -0.006011+0.015909i 0.063345+0.179073i -0.045102+0.000493i 0.053863+0.026117i 0.331408 0.093973-0.103479i -0.016625+0.001342i -0.017930-0.002743i	-0.031368-0.021673i -0.031368-0.021673i 0.013244+0.006220i 0.134558 0.007378-0.000024i -0.013718-0.004575i 0.009468-0.001193i 0.010172+0.012745i 0.106857 -0.038944-0.018550i -0.015051+0.010215i 0.011291-0.004063i -0.006011-0.015909i 0.172517 -0.015451+0.121826i 0.008259+0.019902i -0.027839+0.028066i 0.093973+0.103479i 0.101880 0.021481+0.063405i -0.023609+0.020298i	
$\begin{array}{r} -0.005967 - 0.034662i\\ -0.047782 - 0.087283i\\ -0.004286 - 0.016096i\\ \hline \\ \hline 0.288749\\ \hline 0.030918 - 0.021991i\\ \hline 0.142567 + 0.143985i\\ \hline 0.001105 + 0.009067i\\ \hline 0.007378 + 0.000024i\\ \hline \\ \hline 0.007378 + 0.000024i\\ \hline \\ \hline 0.0359611\\ \hline 0.085445 - 0.172075i\\ -0.164156 + 0.116927i\\ -0.003547 - 0.012609i\\ -0.038944 + 0.018550i\\ \hline \\ \hline 0.189522\\ \hline 0.032126 + 0.029766i\\ -0.021825 + 0.032389i\\ \hline 0.063345 - 0.179073i\\ -0.015451 - 0.121826i\\ \hline \\ \hline 0.144617\\ \hline 0.036823 + 0.020670i\\ -0.035715 - 0.003679i\\ \hline \end{array}$	$\begin{array}{c} 0.084098\text{-}0.176794\mathrm{i}\\ -0.068101\text{+}0.139342\mathrm{i}\\ 0.007756\text{+}0.070430\mathrm{i}\\ \hline 0.030918\text{+}0.021991\mathrm{i}\\ 0.199952\\ \hline 0.039804\text{+}0.192748\mathrm{i}\\ 0.002954\text{+}0.014736\mathrm{i}\\ -0.013718\text{+}0.004575\mathrm{i}\\ \hline 0.085445\text{+}0.172075\mathrm{i}\\ 0.085445\text{+}0.172075\mathrm{i}\\ \hline 0.0151601\\ -0.043147\text{-}0.025136\mathrm{i}\\ 0.017405\text{-}0.009901\mathrm{i}\\ -0.015051\text{-}0.010215\mathrm{i}\\ \hline \hline 0.032126\text{-}0.029766\mathrm{i}\\ 0.133514\\ \hline 0.036142\text{+}0.015487\mathrm{i}\\ -0.045102\text{-}0.000493\mathrm{i}\\ 0.008259\text{-}0.019902\mathrm{i}\\ \hline 0.036823\text{-}0.020670\mathrm{i}\\ 0.248498\\ \hline 0.034314\text{+}0.003443\mathrm{i}\\ \hline \end{array}$	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i 0.039804-0.192748i 0.039804-0.192748i 0.039804-0.192748i 0.033745+0.005654i 0.009468+0.001193i -0.164156-0.116927i -0.043147+0.025136i 0.009770-0.004148i 0.011291+0.004063i 0.036142-0.015487i 0.035863-0.026117i -0.027839-0.028066i -0.035715+0.003679i 0.034314-0.003443i 0.326788	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i 0.002954-0.014736i 0.033745-0.005654i 0.010172-0.012745i -0.003547+0.012609i 0.017405+0.009901i 0.009770+0.004148i 0.133090 -0.006011+0.015909i 0.063345+0.179073i -0.045102+0.000493i 0.053863+0.026117i 0.331408 0.093973-0.103479i -0.016625+0.001342i -0.017930-0.002743i 0.099972+0.098139i	-0.031368-0.021673i -0.031368-0.021673i 0.013244+0.006220i 0.134558 0.007378-0.000024i -0.013718-0.004575i 0.009468-0.001193i 0.010172+0.012745i 0.106857 -0.038944-0.018550i -0.015051+0.010215i 0.011291-0.004063i -0.006011-0.015909i 0.172517 -0.015451+0.121826i 0.008259+0.019902i -0.027839+0.028066i 0.093973+0.103479i 0.101880 0.021481+0.063405i -0.023609+0.020298i 0.074202-0.182469i	
$\begin{array}{c} -0.005967 - 0.034662i\\ -0.047782 - 0.087283i\\ -0.004286 - 0.016096i\\ \hline \\ 0.288749\\ \hline 0.030918 - 0.021991i\\ \hline 0.142567 + 0.143985i\\ \hline 0.001105 + 0.009067i\\ \hline 0.007378 + 0.000024i\\ \hline \\ 0.359611\\ \hline 0.085445 - 0.172075i\\ -0.164156 + 0.116927i\\ -0.003547 - 0.012609i\\ -0.038944 + 0.018550i\\ \hline \\ 0.189522\\ \hline 0.032126 + 0.029766i\\ -0.021825 + 0.032389i\\ \hline 0.063345 - 0.179073i\\ -0.015451 - 0.121826i\\ \hline \\ 0.144617\\ \hline 0.036823 + 0.020670i\\ -0.035715 - 0.003679i\\ -0.016625 - 0.001342i\\ \hline \end{array}$	0.084098-0.176794i -0.068101+0.139342i 0.007756+0.070430i 0.030918+0.021991i 0.199952 0.039804+0.192748i 0.002954+0.014736i -0.013718+0.004575i 0.085445+0.172075i 0.151601 -0.043147-0.025136i 0.017405-0.009901i -0.013051-0.010215i 0.032126-0.029766i 0.133514 0.036142+0.015487i -0.045102-0.000493i 0.008259-0.019902i 0.036823-0.020670i 0.248498 0.034314+0.003443i -0.017930+0.002743i	0.137269 -0.036610-0.017525i -0.031368+0.021673i 0.142567-0.143985i 0.039804-0.192748i 0.039804-0.192748i 0.0393745+0.005654i 0.009468+0.001193i 0.0164156-0.116927i -0.164156-0.116927i -0.043147+0.025136i 0.009770-0.004148i 0.01291+0.004063i 0.036142-0.015487i 0.036363-0.026117i -0.027839-0.028066i 0.035715+0.003679i 0.034314-0.003443i 0.326788 0.099272-0.098139i	-0.036610+0.017525i 0.181069 0.013244-0.006220i 0.001105-0.009067i 0.002954-0.014736i 0.033745-0.005654i 0.110647 0.010172-0.012745i -0.003547+0.012609i 0.017405+0.009901i 0.009770+0.004148i 0.133090 -0.006011+0.015909i 0.063345+0.179073i -0.045102+0.000493i 0.053863+0.026117i 0.331408 0.093973-0.103479i -0.016625+0.001342i -0.017930-0.002743i 0.099272+0.098139i 0.091828	-0.031368-0.021673i -0.031368-0.021673i 0.013244+0.006220i 0.134558 0.007378-0.000024i -0.013718-0.004575i 0.009468-0.001193i 0.010172+0.012745i 0.010172+0.012745i 0.010172+0.012745i 0.010551+0.010215i 0.011291-0.004063i -0.006011-0.015909i 0.172517 -0.015451+0.121826i 0.008259+0.019902i -0.027839+0.028066i 0.093973+0.103479i 0.101880 0.021481+0.063405i -0.023609+0.020298i 0.074202-0.182469i -0.019412-0.119789i	

B.4 d = 5

B.5 d = 6

0.058062	0.019486-0.016819i	0.001297+0.013557i	-0.004024+0.001880i	-0.033629+0.039146i	-0.041380-0.000697i
0.019486+0.016819i	0.292365	0.068383-0.018635i	-0.134348+0.120419i	-0.094327-0.094454i	0.005187-0.007459i
0.001297-0.013557i	0.068383+0.018635i	0.197536	-0.133437 + 0.046925i	0.012350 + 0.006231i	0.003859-0.001843i
-0.004024-0.001880i	-0.134348-0.120419i	-0.133437-0.046925i	0.165998	-0.009552+0.052313i	-0.000899+0.006378i
-0.033629-0.039146i	-0.094327+0.094454i	0.012350-0.006231i	-0.009552-0.052313i	0.149911	-0.051017+0.053641i
-0.041380+0.000697i 0.005187+0.007459i 0.00385		0.003859+0.001843i	-0.000899-0.006378i	-0.051017-0.053641i	0.136128
0.102617	0.026315 + 0.016789i	0.001074-0.012335i	0.006149-0.005345i	0.009020-0.013476i	0.013427-0.011355i
0.026315-0.016789i	0.189601	0.056345 + 0.012937i	-0.024474+0.007661i	-0.094061-0.094170i	-0.005985-0.000647i
0.001074+0.012335i	0.056345-0.012937i	0.299142	0.127458 + 0.099241i	-0.051654-0.177200i	-0.006579+0.005666i
0.006149 + 0.005345i	-0.024474 $-0.007661i$	$0.127458 \text{-} 0.099241 \mathrm{i}$	0.105698	-0.046333-0.050425i	-0.022763 + 0.004255i
0.009020 + 0.013476i	-0.094061 + 0.094170i	-0.051654 + 0.177200i	-0.046333 + 0.050425i	0.192732	-0.015535 + 0.007954i
0.013427 + 0.011355i	-0.005985 + 0.000647i	-0.006579 - 0.005666i	-0.022763 - 0.004255i	-0.015535 - 0.007954i	0.110211
0.120592	-0.030637-0.019861i	-0.001850-0.010483i	0.000800 + 0.000709i	-0.004569 + 0.003489i	-0.008721+0.014562i
-0.030637+0.019861i	0.128067	-0.051370-0.021075i	0.027102-0.035613i	-0.094484-0.094486i	-0.001866+0.003565i
-0.001850 + 0.010483i	-0.051370 + 0.021075i	0.158015	-0.013316+0.060412i	0.169467 + 0.051275i	-0.000807-0.000704i
0.000800-0.000709i	$0.027102 {+} 0.035613i$	-0.013316 - 0.060412i	0.105207	0.032087 - 0.151233i	-0.005617 - 0.046573i
-0.004569-0.003489i -0.094484+0.094486i 0.1		0.169467 - 0.051275i	0.032087 + 0.151233i	0.315884	0.040919-0.040096i
-0.008721-0.014562i	-0.001866-0.003565i	$-0.000807 {+} 0.000704 i$	-0.005617 + 0.046573i	0.040919 + 0.040096i	0.172235
0.179.470	0.070000.0.0004070:	0.000000 + 0.040701	0.000040 + 0.004404	0.010100.0.005060	0.000000 + 0.0000 40
0.172470	0.070822-0.0648721	-0.002363+0.0427011	0.093949 ± 0.0944041	-0.018122-0.0053691	-0.028339 ± 0.0260421
0.070822 ± 0.0648721	0.271387	0.040572+0.051470i	0.072624 + 0.163115i	-0.006871-0.0029151	0.007396 ± 0.0166571
-0.002363-0.042701i	0.040572-0.051470i	0.129680	0.106357-0.085063i	-0.024891-0.019978i	0.007413-0.002827i
0.093949-0.094404i	0.072624-0.163115i	0.106357 + 0.085063i	0.243203	-0.004131-0.015918i	0.015411 + 0.007682i
-0.018122 + 0.005369i	-0.006871 + 0.002915i	-0.024891 + 0.019978i	-0.004131 + 0.015918i	0.103359	-0.033632 + 0.027653i
-0.028339-0.026042i	0.007396-0.016657i	0.007413+0.002827i	0.015411-0.007682i	-0.033632-0.027653i	0.079901
0 179609	0.007610+0.050741	0.000720.0.016002	0.004401.0.004990;	0.000691.0.004500:	0.010087+0.007640
0.1/8002	0.007619+0.0597411	-0.020730-0.0100831	-0.094491-0.0943801	-0.000621-0.0045091	-0.019987+0.0076491
0.007619-0.059741i	0.310130	$0.151803 \pm 0.062521i$	-0.170258+0.072547i	-0.000072-0.003180i	-0.005857-0.005967i
-0.020730+0.016083i	0.151803-0.062521i	0.105655	-0.041448+0.050411i	0.004049-0.023437i	0.000072-0.003291i
-0.094491+0.094380i	-0.170258-0.072547i	-0.041448-0.050411i	0.174224	0.015969-0.011256i	0.010349+0.003406i
-0.000621 + 0.004509i	-0.000072+0.003180i	0.004049+0.023437i	0.015969 + 0.011256i	0.121252	0.002858-0.005212i
-0.019987 - 0.007649i	-0.005857+0.005967i	0.000072 + 0.003291i	0.010349-0.003406i	0.002858 + 0.005212i	0.110137

0.180391	-0.052430+0.029934i	0.012542 + 0.011562i	0.094087 + 0.094471i	-0.003848-0.000573i	-0.014559+0.014709i
-0.052430-0.029934i	0.310552	0.041381 + 0.158404i	-0.049600-0.180632i	0.006368-0.001374i	-0.003290-0.001753i
0.012542-0.011562i	0.041381-0.158404i	0.102984	-0.068955+0.000977i	0.005467- $0.016446i$	-0.005964-0.001354i
0.094087-0.094471i	-0.049600+0.180632i	-0.068955-0.000977i	0.170361	0.003382+0.000209i	-0.001988-0.001353i
-0.003848+0.000573i	0.006368+0.001374i	0.005467 + 0.016446i	0.003382-0.000209i	0.122133	0.005198- $0.006525i$
-0.014559-0.014709i	-0.003290+0.001753i	-0.005964+0.001354i	-0.001988+0.001353i	$0.005198 {+} 0.006525i$	0.113579

B.6 d = 7

0.101825	0.008058-0.044521i	-0.016548 + 0.001378i	0.005363 + 0.037737i	0.022907-0.010603i	-0.003430+0.002739i	-0.011451+0.015251i
0.008058 + 0.044521i	0.284171	0.085562 + 0.021743i	-0.151703-0.086907i	0.161353+0.029328i	-0.028614-0.014136i	0.004519 + 0.005822i
-0.016548-0.001378i	0.085562 - 0.021743i	0.125945	-0.109005-0.051271i	0.006540 + 0.013728i	-0.003260+0.024988i	0.005090 + 0.020673i
0.005363-0.037737i	-0.151703+0.086907i	-0.109005+0.051271i	0.157631	-0.070612+0.006574i	0.003892-0.008603i	-0.009367-0.008392i
0.022907+0.010603i	0.161353-0.029328i	0.006540-0.013728i	-0.070612-0.006574i	0.128456	-0.030530-0.018059i	0.002387+0.002781i
-0.003430-0.002739i	-0.028614+0.014136i	-0.003260-0.024988i	0.003892 + 0.008603i	-0.030530+0.018059i	0.122366	-0.006001-0.014538i
-0.011451-0.015251i	0.004519-0.005822i	0.005090-0.020673i	-0.009367+0.008392i	0.002387-0.002781i	-0.006001+0.014538i	0.079605
0.189165	$0.020538 \text{-} 0.071624 \mathrm{i}$	0.018570 + 0.026853i	0.168553-0.039193i	0.025009 + 0.000101i	$0.002098 \text{-} 0.000997 \mathrm{i}$	-0.030612 + 0.018380i
0.020538+0.071624i	0.228766	0.079171 + 0.096183i	0.119993 + 0.121535i	-0.001967-0.002036i	-0.004033 + 0.002955i	-0.001236 + 0.002379i
0.018570-0.026853i	0.079171-0.096183i	0.087595	0.076393-0.043450i	-0.024947-0.017703i	0.001099-0.004039i	0.004372 + 0.005631i
0.168553+0.039193i	0.119993-0.121535i	0.076393+0.043450i	0.219767	0.023771-0.015992i	$0.007103 {+} 0.002851i$	-0.021761 + 0.010178i
0.025009-0.000101i	-0.001967+0.002036i	-0.024947+0.017703i	0.023771 + 0.015992i	0.105722	0.010623-0.002982i	-0.002269-0.001714i
0.002098+0.000997i	-0.004033-0.002955i	0.001099+0.004039i	0.007103-0.002851i	0.010623 + 0.002982i	0.077421	-0.008512 + 0.012863i
-0.030612-0.018380i	-0.001236-0.002379i	0.004372-0.005631i	-0.021761-0.010178i	-0.002269+0.001714i	-0.008512-0.012863i	0.091564

B.7 d = 8

0.079498	0.002285-0.013551i	-0.008048+0.001341i	0.011680 + 0.005396i	-0.000177+0.008427i	0.009609 + 0.008549i	0.001745 + 0.009213i	0.007429-0.011208i
0.002285 + 0.013551i	0.079145	-0.041132-0.028176i	0.004441- $0.009160i$	0.007078-0.001599i	0.003836 + 0.001674i	0.006145 + 0.020878i	0.019831-0.013428i
-0.008048-0.001341i	-0.041132+0.028176i	0.103567	-0.055474 + 0.032003i	-0.020489 + 0.025787i	0.026647- $0.041860i$	-0.083156-0.082878i	$0.000055 {+} 0.011543 i$
0.011680-0.005396i	0.004441 + 0.009160i	-0.055474-0.032003i	0.131829	0.059716-0.002553i	-0.038803 + 0.037569i	0.047949 + 0.142625i	-0.003836-0.001365i
-0.000177-0.008427i	0.007078 + 0.001599i	-0.020489-0.025787i	0.059716 + 0.002553i	0.142863	-0.045478-0.005880i	-0.003046+0.139611i	0.039030 + 0.012674i
0.009609-0.008549i	0.003836-0.001674i	0.026647 + 0.041860i	-0.038803-0.037569i	-0.045478+0.005880i	0.082916	0.027715-0.109014i	-0.030207-0.050311i
0.001745-0.009213i	0.006145-0.020878i	-0.083156+0.082878i	0.047949-0.142625i	-0.003046-0.139611i	0.027715 + 0.109014i	0.257406	0.014259-0.047854i
0.007429+0.011208i	0.019831 + 0.013428i	0.000055-0.011543i	-0.003836 + 0.001365i	0.039030-0.012674i	-0.030207+0.050311i	0.014259 + 0.047854i	0.122776