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Resumo

Este trabalho investiga o comportamento dinâmico dos dados de sensores na Internet

das Coisas (IoT, do inglês Internet of Things). Devido ao crescente número de ini-

ciativas na IoT, com seu impressionante número de dispositivos coletando um grande

volume de dados de fenômenos do mundo real, há uma iminente necessidade de soluções

adequadas aos seus desafios. Uma parte importante da atual IoT é a Internet das Coisas

Colaborativa (CoIoT, do inglês Collaborative IoT), que é composta, principalmente,

por componentes baratos e mantidos por usuários comuns, afetando os dados gera-

dos. Assim, soluções para a IoT devem considerar o aprimoramento da segurança de

seus dispositivos, bem como a qualidade e confiabilidade dos seus dados, mas sendo a

eficiência e robusto aos desafios deste novo cenário.

Um tópico que vem sendo usado com sucesso para compreender mais profun-

damente fenômenos do mundo real é o estudo da dinâmica, que visa entender como

sistemas evoluem com o tempo. Uma importante ferramenta com sólidos resultados na

análise da dinâmica de séries temporais é a transformação de padrões ordinais. Con-

tudo, embora a dinâmica tenha o potencial de servir de base para novos domínios de

representação para a análise de dados na IoT, há questões em suas transformações que

devem ser tratadas para sua aplicação adequada.

Este trabalho tem como objetivos avançar o estado da arte na análise da dinâmica

de séries temporais, em sua adequação para os desafios da IoT, e propor soluções

baseadas em comportamentos dinâmicos para o uso mais confiável dos dados da IoT.

Para avançar na aplicabilidade das transformações de padrões ordinais para cenários

desafiadores, como é o caso da IoT, são propostas estratégias em duas principais di-

reções. Uma primeira estratégia tem como objetivo prover a mínima dependência na

seleção de parâmetros na transformação, considerando o comportamento multiescala

de uma nova métrica proposta, a probabilidade de auto transições, que se mostraram

úteis na distinção de dinâmicas de séries temporais. A segunda estratégia consiste

em um índice de separabilidade de classes, que é um valioso método para estimar os

parâmetros mais adequados para as transformações de padrões ordinais, no contexto



da classificação de séries temporais. Em respeito à aplicação da análise da dinâmica

de séries temporais para os cenários de IoT, primeiramente são dados esclarecimentos

quanto ao contexto da CoIoT. Nós provemos um melhor entendimento sobre as prin-

cipais características e propriedades dos dados gerados por seus sensores e seus princi-

pais problemas. Em seguida, são propostas estratégias para a classificação de dados de

fenômenos físicos coletados pelos sensores da CoIoT e um método para incrementar a

segurança dos dispositivos da IoT contra ataques de botnet, ambos considerando seus

comportamentos dinâmicos. As estratégias propostas foram comparadas com trabalhos

relacionados e os resultados demonstraram seus potenciais no avanço da aplicabilidade

das transformações de padrões ordinais para os cenários da IoT. Nós mostramos que a

construção desta nova representação auxilia na escalabilidade, evitando comparações

com uma grande quantidade de dados, sendo robusta para os problemas dos dados da

CoIoT. Assim, por meio dessas abordagens, é possível desenvolver soluções para a IoT

que podem se beneficiar dos aspectos únicos de sistemas dinâmicos.

Palavras-chave: Internet das Coisas, Sensoreamento Colaborativo, Dinâmica de

Séries Temporais, Transformações de Padrões Ordinais..



Abstract

This thesis investigates the dynamical behavior of time series data from Internet of

Things (IoT) sensors. Because of the growing number of IoT initiatives, with its

impressive number of devices collecting a large amount of data from real-world phe-

nomena, there is an imminent need for solutions that are adequate to their issues. For

instance, an important part of the current IoT is the Collaborative Internet of Things

(CoIoT), which is mainly composed by cheap components and managed by common

users, affecting the generated data. Thus, solutions for IoT must consider improving

the security of those devices, as well as the quality and reliability their data, but being

efficient and robust to the issues from this novel scenario.

A subject that has been successfully used for a deeper comprehension of several

real-world phenomena is the study of dynamics, which aims to understand systems that

evolve in time. An important tool with solid results concerning the analysis of time

series dynamics is the ordinal patterns transformation. However, while the dynamics

has the potential to be the basis for novel representation domains to the analysis of IoT

data, there are issues on their transformations that must be handled for their proper

applicability.

This work aims to advance the state-of-the-art in the analysis of time series

dynamics, to be adequate for the IoT issues, and to propose solutions based on dy-

namical behavior for a more reliable use of data from IoT. In order to advance the

applicability of ordinal patterns transformations for challenging scenarios, such as IoT,

we propose strategies in two main directions. A first strategy is aimed to provide mini-

mum dependency on the selection of parameters by the transformation, by considering

the multiscale behavior of a novel proposed metric, the probability of self-transitions,

which are shown to be useful for the distinction of time series dynamics. The second

strategy consists of a class separability index, which is a valuable method to estimate

the most adequate parameters for the ordinal patterns transformations, in the context

of time series classification problems. With respect to the application of the analysis

of time series dynamics to IoT scenarios, we first give an enlightenment on the CoIoT.



We provide a better understanding on the main characteristics and properties of data

that are being generated by their sensors and its inherent problems. Then, we provide

strategies for the classification of physical phenomena data collected by CoIoT sensors

and a method to increase the security of IoT devices against botnet attacks, both con-

sidering their dynamical behavior. The proposed strategies were compared to related

work and the results show their potentials on advancing the applicability of ordinal

patterns transformations for the IoT scenarios. We show that the construction of this

novel representation helps in the scalability, avoiding comparisons with a large number

of data, and being robust to the problems of CoIoT data. Thus, by following these

approaches, it is possible to develop solutions for IoT scenarios that can benefit from

the unique aspects of dynamical systems.

Keywords: Internet of Things, Collaborative Sensing, Time Series Dynamics, Ordinal

Patterns Transformations.
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Chapter 1

Introduction

The study of dynamics aims to understand systems that evolve in time [Strogatz, 2018].

It is an important aspect to be concerned when dealing with time ordered data [Borges

et al., 2019a]. For systems based on some learning strategy, to understand its dynamics

is an essential step to a proper understanding of the data they are based on. When

analyzing a system’s dynamics, the main interest is to understand its behavior when

changing from a previous state to the next one [Birkhoff, 1927]. For instance, with

dynamics it is possible to discover if the system’s behavior is deterministic, periodic,

chaotic, stochastic, or even a combination of them [Rosso et al., 2007a].

The subject of dynamics has been used as a valuable tool for a deeper comprehen-

sion of several real-world phenomena. From the motion of planets or the swinging of a

pendulum, to biological or environmental conditions, these are just a few examples of

its applicability. For instance, one of the first studies from Lorenz, in 1963, which led

to the development of key ideas of chaotic motion, was performed with the intuition

of better understanding the behavior of the weather [Strogatz, 2018]. Thus, because

of the inherent nature of their devices, which are built to interact with real-world phe-

nomena, the Internet of Things (IoT) [Atzori et al., 2010; Miorandi et al., 2012; Gubbi

et al., 2013] has a perfect application scenario that can benefit from the studies of

dynamics. However, despite its notorious applicability, few studies are devoted to the

analysis of dynamics in IoT [Borges et al., 2019b].

Indeed, any solution intended to be applied to IoT scenarios must deal with a hard

challenge, which is the need to handle the impressive number of devices and generated

data. For instance, to search for a specific sensor from this large number of available

ones is a great challenge, requiring scalable and efficient solutions [Perera et al., 2014b;

Stankovic, 2014]. Consequently, even for the best case scenario, simple algorithms

should consider processing a lot of instances as the rule, not the exception. In addition
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to that, the high heterogeneity of devices, technologies, services, and environments is

another challenge present in the current IoT scenarios [Gubbi et al., 2013; Stankovic,

2014].

An important part of the current IoT is the Collaborative Internet of Things

(CoIoT) [Borges Neto et al., 2015]. CoIoT is mainly composed by Do-It-Yourself (DIY)

initiatives, where common users deploy their own devices and collaboratively decide to

make their data open and publicly available. However, due to their cheap components

and the lack of precautions, or even knowledge, by their users, the quality of data

produced is a concerning issue [Austen, 2015; Gao et al., 2015; Chen et al., 2016].

Furthermore, data and resources from CoIoT are usually not described or, when they

are, they have a very poor description. Even if the descriptions are given, there is no

guarantee that they are correct since there is no validation. This makes the search for

some keyword or expression prone to errors [Borges Neto et al., 2015]. In this context,

a reasonable direction to develop solutions able to overcome the challenging aspects of

IoT is given by its dynamics.

1.1 Objectives

The main objectives of this thesis are to advance the state-of-the-art in the analysis of

time series dynamics and propose solutions for more reliable use of data from CoIoT.

More specifically, we aim to develop solutions based on the dynamics of time series

data that could overcome the challenges present in CoIoT scenarios. Thus, we expect

that this can lead to improvements in the reliability of the CoIoT-based systems.

Due to the characteristics of CoIoT scenarios, their generated data are subject to

some challenging issues that directly affect their quality. For instance, they generate a

large amount of time-ordered data that present issues such as missing samples, uneven

time spaces between consecutive samples, and with unreliable precision. Thus, since

the dynamics is an intrinsic aspect of the phenomena, it can be used to understand

the behavior behind the data generated by those sensors. This may lead to a unified

representation to model data collected from heterogeneous sensors at different scales

and sampling rates.

The construction of this novel representation also helps in the scalability problem

of CoIoT by avoiding comparisons with a large number of data. Instead, a small set

of features can represent distinct aspects of the dynamics of a given phenomenon.

Thus, by following this approach, developing CoIoT solutions can benefit from the

unique characteristics of dynamical systems. Particularly, solutions based on learning
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processes, such as machine learning techniques of characterization or classification, can

create models from the dynamical behavior of CoIoT sensors, being able to make better

distinctions and predictions among them.

1.2 Contributions

The main contributions of this thesis are presented in the following.

1. Advancements on the analysis of time series dynamics.

The study of dynamics has been widely applied for distinguishing different be-

haviors of time series’ underlying phenomena [Rosso et al., 2007a]. Important

assets with solid results concerning the distinction of time series dynamics are

the ordinal patterns transformations and their derivations. In this context, the

construction of the Causality Complexity-Entropy Plane (CCEP) [Martin et al.,

2003, 2006; Rosso et al., 2007a], the probability distribution, and the transition

graph are representations derived from the transformed set of ordinal patterns.

However, to achieve significant results with these transformations, it is necessary

to satisfy some requirements, such as defining the proper parameters and the large

enough length of time series. These requirements may limit their applicability

in specific challenging situations, such as those with short time series and where

the parameters recommendations are not adequate.

This contribution consists of the proposal of strategies to advance the applicabil-

ity of ordinal patterns transformations for these challenging situations [Borges

et al., 2019a], [Borges et al., Submitted 2021]. We proposed a novel metric

computed from the ordinal patterns transition graphs, the probability of self-

transitions. We show the feasibility of the applicability of this metric, advancing

the hard task of distinguishing time series dynamics, even for scenarios with short

time series, which is an impacting factor in this context. Furthermore, we also

proposed a class separability index, which is a valuable method to estimate the

most adequate parameters for the ordinal patterns transformations, which is in-

tended to increase the applicability of the time series dynamics to a broader range

of scenarios, such as of the time series classification problems.

2. An enlightenment on the Collaborative Internet of Things.

The CoIoT initiatives consist of an essential data source for the Internet of Things.

However, the literature neglected their proper characterization and clarification,
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which means that solutions based on their data were not adequately designed to

handle their specificities correctly. This contribution aims to better understand

the data generated by CoIoT sensors and its inherent problems. For this, we

advance this subject by providing a definition and description for the CoIoT

environments, which is helpful to highlight its main characteristics and properties.

With this contribution, we also provide results and analyses that help to improve

the knowledge on the impact of such issues on the quality of sensed data [Borges

Neto et al., 2015]. Thus, we provide a strategy for searching for a sensor in

CoIoT, based on the query by content model, according to a given reference time

series. By doing so, we highlight the need for strategies that are robust enough to

mitigate the impact of the challenges on further development of solutions aiming

to extracting knowledge from CoIoT sensors.

3. Knowledge discovery on the Collaborative Internet of Things.

Solutions intended to discover some knowledge from CoIoT time series must con-

sider the availability of a large amount of data and their inherent challenging

aspects. This contribution consists of proposing strategies for knowledge discov-

ery in the context of CoIoT, considering the characteristics and challenges present

on their data. The main goal of this contribution is to advance the application

of knowledge discovery strategies for the challenging scenarios of CoIoT [Borges

et al., 2019b], [Borges et al., 2022].

With this contribution, we advance the state-of-the-art in discovering knowledge

from CoIoT data, especially regarding the time series classification problems.

Our proposals are based on the dynamical behavior of the CoIoT time series,

which are captured by the ordinal patterns transformations, Thus, according to

the dynamical behavior of the CoIoT time series, we proposed a strategy for

the classification of physical phenomena data collected by CoIoT sensors. By

considering the dynamics from the time series underlying phenomena to perform

its distinction, we advance the classification of time series from CoIoT sensors by

considering their expected behavior, instead of the instances of its data points.

Finally, another proposed solution related to this contribution is aimed to detect

anomalies in CoIoT devices’ behavior for the early detection of malicious attacks

on them. By also considering the ordinal patterns transformations, we advance

the state-of-the-art in detecting IoT botnet attacks by considering features ob-

tained from the multiscale ordinal patterns transformations, which are extremely

relevant for their distinction.
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1.3 Thesis outline

The rest of this thesis is organized as follows. Chapter 2 presents an overview of Collab-

orative Internet of Things (CoIoT). This chapter provides our concept and assumptions

on CoIoT, describing its potential and comparing it with its counterpart technologies.

In addition, this chapter also discusses its main characteristics and challenges, which

directly impact the usage and reliability of their data.

Chapter 3 provides an overview of the general concepts of time series analysis.

This chapter presents the main concepts and definitions of time series and their dynam-

ics. A brief analysis of some of the main time series transformations is also presented,

focusing on the ordinal patterns transformations used to capture the dynamics of time

series.

Chapter 4 presents a strategy for sensor searching within CoIoT scenarios. After

characterizing the main properties of the sensed data in CoIoT we present our proposed

strategy to search for a time series within the CoIoT scenario, based on the concept

of query by content. This strategy, which explores collaborative filtering techniques, is

aimed to deal with CoIoT data uncertainties and challenges.

Chapter 5 presents a method for the general problem of learning and distin-

guishing different time series dynamics. After discussing the main limitations and

challenging aspects of current strategies, a novel metric is proposed: the probability

of self-transitions extracted from ordinal patterns transition graphs. Based on this

metric, in this chapter, we demonstrate that this strategy is suitable for scenarios with

short time series and does not depend on selecting parameters.

Chapter 6 presents a strategy based on the analysis of time series dynamics to

precisely identify time series data collected by CoIoT sensors. In this chapter, we first

present a data characterization of the physical phenomena in CoIoT and propose a

classification strategy to identify an appropriate CoIoT sensor correctly.

Chapter 7 presents the Time Series Classification via Class Separability

(TSCLAS) strategy for the CoIoT data, which is based on the class separability anal-

ysis of the time series temporal dynamics. This strategy is based on two steps: the

ordinal patterns transformations to capture the dynamics of time series, and the max-

imization of the proposed class separability measure to estimate the best parameters

for such transformations. With the proposed TSCLAS strategy, we can classify time

series from CoIoT based on their dynamics.

Chapter 8 presents a strategy for detecting botnets in IoT by the anomalies in

their dynamical behavior. The strategy presented in this chapter is based on features

obtained from the multiscale ordinal patterns transformations. The major contribution
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of this strategy is to propose an efficient solution to this critical challenge faced by the

cyber-security community in recent years.

Finally, Chapter 9 presents our final remarks, summarizing the main contribution

of this thesis, and provides future research directions.
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Chapter 2

Collaborative Internet of Things

The Collaborative Internet of Things (CoIoT) can be understood as a special case of

the IoT. However, although inheriting several characteristics from IoT, in this chapter,

we show that there are specific aspects that can distinguish them from IoT. Section 2.1

presents some aspects of the nature of CoIoT sensors, and the factors that motivates

their creation. Our concepts and definitions for CoIoT are presented in Section 2.2, by

considering its main characteristics and particularities. A comparison between CoIoT

and its counterpart, the Industrial Internet of Things (IIoT), is presented in Section 2.3.

It is also discussed, in Section 2.4, the openness aspect of CoIoT and its potential for

novel applications. Then, it is also highlighted the challenges and consequences when

dealing with CoIoT sensors, in Section 2.5, which adds a number of particularities

which directly impact on their usage and reliability. In Section 2.6 our final remarks

are presented.

2.1 Introduction

A fundamental aspect of IoT is its ability of interacting with the environment. This

makes it an important asset towards the convergence between physical and informa-

tional worlds, one of the pillars for the envisioned future from ubiquitous comput-

ing [Weiser, 1991]. In practice, IoT sensors have been the “eyes” and “ears” for the

forthcoming systems that need to interact with some natural phenomena. From home

automation [Coronado and Iglesias, 2016] and agricultural applications [Wu et al., 2014]

to large smart cities [Zanella et al., 2014] and global weather forecasting [Greengard,

2014], the range of phenomena being monitored by IoT is impressive, and is still grow-

ing. The CoIoT has been one of the main enablers for the creation and deployment of

IoT sensors, and a source of all the data for the current IoT.
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The growing number of CoIoT initiatives is mainly driven by recent efforts to

democratize the monitoring of environmental conditions, also known as citizen sci-

ence [Austen, 2015]. These efforts combine the reducing cost of sensors with the in-

creasing accessibility to the knowledge for better using this sort of data. These factors

are enabling common users to actively contribute to the current IoT and have the po-

tential to be a powerful asset for monitoring a diversity of phenomena, in a larger scale

than industrial or governmental initiatives.

However, due to their cheap components and the lack of precautions, or even

knowledge, regarding the right placement and manipulation of the sensors, they are

more prone to errors, imprecisions and inaccuracies in their readings than more reliable

(e.g., industrial [Chen et al., 2016]) sensors. The quality of data generated by CoIoT

sensors has been the focus of scientific studies to testify its accuracy [Gao et al., 2015].

But its use is still a concern by researchers, scientists, and specialists. Most of them

are still cautious regarding their reliability and the quality of data they produce, and

decided not to use it until their quality improves [Austen, 2015].

In addition to that, because of the small size of sensors, most of the available

data in current IoT is available outside the devices, in platforms designed to store and

persist their data for later processing [Rawassizadeh and Kotz, 2017]. This separation

between devices and data is good for technical reasons (e.g., availability, centrality),

but it lacks in providing contextual information regarding the origin of the data. In

those platforms, which is the case of ThingSpeak1, the data and resources usually are

not described or, when they are, have a very poor description. Even if the descriptions

were given, since there is no validation, there is no guarantee that they are correct.

Generally, they are described by a simple set of tags and textual information, freely

assigned by their users, which makes the search for some keyword or expression prone

to errors and misunderstandings [Borges Neto et al., 2015].

Table 2.1 summarizes the lack of descriptions for the collaborative sensors avail-

able in the ThingSpeak platform, collected at three distinct periods: October 31, 2015,

and July 28, 2016, and April 14, 2017. As noted, the number of sensors increased

approximately 90% at each period, in relation to its predecessor. It improved from

4,064 to 7,427 available sensors in the first period, and to 13,013 in the second period.

Some sensors are capable of monitoring more than one phenomenon, resulting in a

different number of available time series. In turn, each time series represents a single

monitored phenomenon. For this case, in 2015 we had a number of 15,170 time series

(≈ 3.73 per sensor), in 2016 a number of 23,660 time series (≈ 3.18 per sensor), and
1ThingSpeak open data platform for the Internet of Things - http://thingspeak.com
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in 2017 a number of 51,185 time series (≈ 3.93 per sensor). The analyzed descriptions

was the textual description, the geographical location (coordinates) in which the sensor

are placed, and the tags, which are keywords that express some semantic information

regarding the sensor resources, the type of data, and monitoring phenomena.

Table 2.1. Summary of problems in the descriptions of CoIoT sensors in the ThingSpeak
platform, for the periods of October 31, 2015, and July 28, 2016, and April 14, 2017.

Issue 2015 2016 2017

Number of sensors 4,064 7,427 13,013
Time series per sensor2 (t/s) 15,170 (3.73 t/s) 28,966 (3.90 t/s) 51,185 (3.93 t/s)
No textual description 1,655 (40.72%) 3,681 (49.56%) 6,632 (50.96%)
No location 3,208 (78.94%) 6,046 (81.41%) 10,856 (83.42%)
No tags 3,233 (79.55%) 6,179 (83.20%) 11,045 (84.88%)
No description and tags 1,564 (38.48%) 3,499 (47.11%) 6,318 (48.55%)

By this analysis, it is clear that the number of available sensors has increased

throughout the years, but also the problems. This reinforces the need for a better

comprehension of CoIoT and their characteristics, which starts by its proper definition.

2.2 Concepts and assumptions

In order to better develop a proper definition for the CoIoT, we must first discuss its

generalization, the Internet of Things. The IoT term has been widely used in recent

years, sometimes as a buzzword by marketing industry and sometimes as an umbrella

for various correlated topics [Atzori et al., 2010]. A comprehensive tracking for most

of the IoT definitions, available from both technical and academic literature, has been

made by the Postscapes team3. Figure 2.1 illustrates a cloud of tags representation for

the most frequently used words in 65 definitions tracked by Postscapes. The top 20

more relevant words, starting by the most common word, are: internet, things, objects,

networks, information, physical, world, communication, services, devices, protocols,

virtual, connected, data, embedded, interact, people, smart, sensors, based.

These more relevant words reinforce the statement from Atzori et al. [2010] that

the concept of IoT can be viewed from different perspectives: (i) Internet-oriented,

(ii) Things-oriented, and (iii) Semantic-oriented.

Both Internet-oriented and Things-oriented visions brings to the scene its enabling

technologies [Al-Fuqaha et al., 2015]. The first one follows a more technical sense, such
2Each sensor may generate one or more time series. t/s: time series per sensor.
3Postscapes’ IoT Overview Handbook: https://www.postscapes.com/iot/#definition
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Figure 2.1. Representation as cloud of tags of the most frequently used words from the 65
definitions tracked by the Postscapes team.

as the sum of the technologies and protocols to create the infrastructure to interconnect

the many available devices [Vasseur and Dunkels, 2010]. In this view, the Internet

protocols plays a central role as main enablers for the communication capabilities to

the objects, allowing their communication with all Internet compatible elements.

From simple Radio-Frequency IDentification (RFID) components to more com-

plex technologies, the Things-oriented vision refers to the technologies for the creation

of the so-called smart objects [Loureiro et al., 2012]. Originated from the concepts of

wireless sensor networks [Akyildiz et al., 2002; Nakamura et al., 2007], these are devices

with sensing and actuating capabilities, that are embedded in the physical world to

perceive and control its state.

The Semantic-oriented vision is directly related to the data generated by the

IoT sensors and the potential knowledge that systems could extract from them. This

vision is closer to the envisioned ubiquitous computing [Weiser, 1991], where the in-

teraction between systems and people in the computing aided environments will open

many opportunities for new applications and services, making easier their everyday

activities [Gubbi et al., 2013].

In this thesis it is assumed an approach closer to the Semantic-oriented vision

of IoT. By focusing on the reliability aspects of the services provided within the IoT

environments, we are automatically guided to follow a more data-driven approach,

where all the services must rely on. Thus, the concept for IoT assumed in this thesis

is presented in Definition 2.2.1. This concept is aligned with the most relevant terms

presented in Figure 2.1, and is a direct adaptation from the works of Abu-Elkheir et al.

[2013] and Qin et al. [2016].
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Definition 2.2.1 (Internet of Things). The Internet of Things is the network of com-

puting enabled objects, or things, that allows the interaction between informational

and physical worlds, by exchanging data via sensing services and performing control

actions through actuating services, following the Internet protocols.

Once the concept for IoT is established, it is easier to define CoIoT. The collab-

orative aspect of IoT comes from the possibility of interaction between the involved

parts aiming to provide enhanced services in IoT environments [Behmann and Wu,

2015]. From a data-driven perspective, the collaborative data gathering will lead to a

significant increase in the amount of available data [Borges Neto et al., 2015], and the

integration between them enables the creation of services that are more adequate to

handle complex requirements [Chen et al., 2016] and more robust to deal with chal-

lenges in data [Borges Neto et al., 2015; Belkacem et al., 2017; Montori et al., 2018a].

With the collaborative initiatives it will not have isolated IoT solutions, instead, it is

possible to create services by the composition of several sources of data, even without

owning dedicated sensors [Montori et al., 2018a].

In practice, CoIoT initiatives follow a near crowdsensing configuration [Borges

Neto et al., 2015; Montori et al., 2018a]. The main difference between the collabo-

rative IoT and crowdsensing initiatives (e.g., participatory sensing) is the active role

users play in the last case [Burke et al., 2006; Silva et al., 2014]. For instance, while

users in participatory sensing actively participate in the process of sensing by con-

tributing with their personal experiences, in CoIoT, users are responsible to configure,

deploy and maintain their owned sensors, and the sensing process is performed by the

devices [Borges Neto et al., 2015].

In CoIoT, users collaboratively choose to make their data open and publicly

available through Internet. These initiatives are mainly composed by Do-It-Yourself

(DIY) sensors, which may vary from simple sensors collecting weather conditions from

a residence (e.g., temperature, humidity) to more complex environmental monitor-

ing stations (e.g., air pollution, radiation levels). But, since CoIoT devices may be

constructed from cheap components, they are more prone to errors of precision and

accuracy in their readings than another professional ones. Also, due to its collaborative

characteristics, users provide no guarantees regarding the responsiveness nor availabil-

ity of their sensors. Thus, in this thesis, the assumed concept for CoIoT is presented

in Definition 2.2.2.

Definition 2.2.2 (Collaborative Internet of Things). The Collaborative Internet of

Things is a specialized case of the Internet of Things, composed by those computing
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enabled objects in which their sensing and actuating services are collaboratively defined

as open access and freely available.

Although simple, this definition for CoIoT is wide enough to represent the type

of sensors we are dealing within the collaborative space of IoT. It covers both sensing

and actuating services, but the vast majority are the sensing ones, since it is easier to

make their data open than enabling the control of some environment available. Also,

given the intention from sensor owners to collaborate, we assume the CoIoT consists of

services that are open and freely available, discarding commercial initiatives. In fact,

this question of openness and commercial initiatives deserves further discussion, which

is given in next sessions.

2.3 Collaborative IoT vs. Industrial IoT

Around the world, IoT initiatives are appearing every day, by both industry and com-

munity. These two sides of IoT comprises two main competing aspects of users require-

ments. One is the innovation and profit of companies that want exclusive products and

advantages to their competitors, provided by industry. The other is the effort for a com-

mon good, where citizens, for example, are the main interested parties in the process,

that want to benefit from the whole IoT community potential.

Following the predictions of billions of dollars that this market will pay off in next

years, industries have been investing a considerable amount of resources to be part of

IoT. Big companies, such as Amazon, AT&T, IBM, Intel, Microsoft, Samsung, among

others, have their own IoT divisions. Solutions have been made for several IoT layers,

from the development of sophisticated miniaturized devices until IoT cloud platforms,

specifically designed to store and process the data originated from IoT devices.

This side of IoT that is often called Industrial Internet of Things (IIoT) [Perry,

2016; Chen et al., 2016], or even commercial IoT, is in charge to develop reliable and

secure IoT solutions. IIoT is strongly based on the quality of the data collected and,

also, on adding value to their consumers products and services.

For instance, industrial IoT solutions are ranging from transportation systems

for monitoring and tracking products throughout the world, improving the logistic and

management of the whole transportation process, until energy consumption monitoring

systems, enabling the control of the overall power demands of a building and reducing

the power consumption through conservation and energy alternative generation meth-

ods. For these cases, the use of IoT products and solutions is governed by a set of

service level agreements between the customers and companies, in order to the main-
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Figure 2.2. Representation as Venn diagram of the Internet of Things space, and their
constituents subspaces of CoIoT and IIoT. The highlighted intersection between CoIoT and
IIoT consists of the part of IoT sensors that are maintained by public organizations, research
institutes, universities, laboratories, among others.

tenance of the quality of the services. Both the data generated by the IoT devices

and the decisions taken based on them are also under this agreement. In this case,

customers’ data do not need to be public, and they have the necessary guarantees that

both quality and privacy will be concerned by their IoT services.

In contrast to the industrial IoT, in the current IoT scenario, this level of agree-

ments and quality is not a reality for all available sensors and data [Borges Neto et al.,

2015]. However, there is an intersection between CoIoT and IIoT worlds that provides

an interesting scenario for exploration, mainly by researchers and innovators. Figure 2.2

illustrates the subspace of CoIoT and IIoT scenarios, as parts of the IoT space. The

highlighted intersection between these two subspaces consists of the IoT sensors that

are maintained by public organizations, research institutes, universities, laboratories,

among others. By having these specialized support behind, these organizations are

able to both have some level of guarantees on the quality of their data, while making

them freely available for anyone who are interested. The grey area in the figure, outside

CoIoT and IIoT, can be understood as the unknown IoT devices spectrum, which are

not visible nor accessible, i.e., their data are not publicly available.

As described by Borges Neto et al. [2015]; Borges et al. [2019b] and Montori et al.

[2018b], IoT data is very challenging to handle. Besides the large amount and hetero-

geneity of sensors, issues such as missing readings, different rates, among others, make

IoT a very unreliable scenario. Thus, in order to properly evaluate any proposed solu-

tion for IoT, a reasonable strategy for researchers and innovators is to choose data from

the sensors within this intersection. For instance, an example of these reliable public

data come from automated airport weather sensors, the Automated Surface Observing

Systems (ASOS). These are reliable sensors that generate observations every minute,

or every hour, according to the airport, and are used to support weather forecast ac-
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tivities and aviation operations4. Their reliability comes from constant monitoring of

data quality, 24 hours per day, with maintenance as soon as a problem is detected.

From the whole IoT spectrum, this is the kind of sensors where their maintainers

can provide more reliable data, mainly with respect to their precision, probability

of correctness, and trustworthiness [Borges Neto et al., 2015; Buchholz et al., 2003].

Besides that, they are still able to make their data freely accessible. This reinforces

the importance of the openness aspect of CoIoT, which is discussed in next section.

2.4 The openness of Collaborative IoT

To understand this growth of collaborative initiatives in IoT, we have to look back a

few years, and take into account, as precedent, the expansion of the Internet in its early

days. Motivated by the fundamental spirit of freedom and collaboration, the Internet

grew as an open environment full of knowledge and opportunities [Cerf, 2012; Cerf and

Quaynor, 2014]. Based on the free access to the information and technologies that

comprise it, the users of the early Internet could easily become developers by simply

studying the technologies behind it. Also, due to the simplicity of its development

process, many users was allowed to create several new kinds of applications, from

discussion boards to commercial systems based on new businesses models.

The case of the collaborative IoT has the potential to be similar to what occurred

to the Internet. The constant reducing costs of embedded computing devices and the

increasing accessibility and simplicity to develop for them are enabling common users,

with just a few backgrounds in computing, to build their own sensors. Moreover, the

increasing number of cloud and IoT platforms dedicated to store, process, and dis-

tribute these sensors’ data, is enabling the creation of environments full of information

with the potential to foster an unprecedented kind of new applications and services.

However, as well as what happens to the Internet, when it became more financially

viable, the interest of private companies to commercially explore this new market

increased. These private initiatives are essential to the rapid development of the IoT

scenario, pushing it towards the standardization of protocols, platforms and tools. For

instance, the lack of standards in the IoT world is one of the biggest challenges faced by

the developers. But, on the other hand, it is also bringing limitations and closures to

IoT. This is creating a scenario where, instead of having a single global IoT, we would

have independent private IoT environments, where each user is able to only access their

own devices and data, in silos [Ahmed et al., 2017].
4Automated Surface Observing Systems from the U.S. National Weather Service: https://www.

weather.gov/asos/asostech.
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Although some applications and systems need this kind of private IoT (e.g., where

information confidentiality is a requirement), most users need to benefit from the col-

lective IoT intelligence, and this can be achieved by the collaborative IoT efforts. If we

lose the openness of data and, thus, the system’s integration desired for a proper ubiq-

uitous scenario, these limitations may affect the ubiquity level of applications. Since

the more integration of systems the more data will be available, then, more context

will be available to the smart applications. Thus, the openness of data is essential to

enable the whole potential for creating the most powerful services of IoT.

Taking as example the smart cities scenarios, since cities are made by people, the

idea of open data is much more meaningful. Most of their services have the citizens

as directly affected by its benefits, whether these services are provided by the govern-

ment or public companies. Indeed, some City Halls had also emerged with projects

to increase their administration transparency by making their data publicly available5.

But also, whether motivated by the spirit of collaboration and the sympathy with the

open data initiatives6 or simply by the benefits the users can have by making their

data open, the collaborative IoT can be responsible for a valuable amount of data,

that could be essential to the development of many of the envisioned smart services.

With respect to the open data from CoIoT, most of them are due to common

users, which are responsible for the deployment of their own sensors and the delivery

of the collected data. By opting for open distribution, they make their data publicly

available through the Internet in a collaborative way. However, to make it useful for any

application it is necessary to consider some specific characteristics within this scenario.

In next section we discuss some challenges related to the CoIoT sensors and their main

characteristics, following a data-centric viewpoint.

2.5 Challenges for the Collaborative IoT

As a special case of IoT, the CoIoT inherits all the challenging characteristics present

in those scenarios. Furthermore, in addition to them, there are specific characteristics

of CoIoT that require special attention. Some of them are related to the collaborative

aspect from the sensors and others to their intended use. In the following, we present

the main issues and, consequently, challenges related to the CoIoT sensors.
5Open data from Rio de Janeiro’s City Hall: http://data.rio
6The Open Data Institute: http://theodi.org
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2.5.1 Inherited issues from IoT

As discussed by Borgia [2014] and Al-Fuqaha et al. [2015], since IoT is the result

of many technologies, it is expected that the challenges from each of them are also

inherited. Thus, CoIoT also inherits the challenges from ioT. However, since there are

several works that survey the IoT challenges in details, let us briefly discuss some of

the most impactful ones that must be addressed for any IoT-like solution.

The high heterogeneity of devices, technologies, services, and environments, is

an aspect that must also be considered for any solution based on IoT devices [Gubbi

et al., 2013; Stankovic, 2014]. In the same way, the need for handling the impressive

number of devices and data generated brings new problems of scalability and big data

analytics to the scene [Stankovic, 2014]. Aspects related to the connectivity of these

devices, such as addressing, routing, mobility, and management, are also important to

be handled by a robust IoT application [Gubbi et al., 2013].

Another important characteristic of IoT is related to the possible limitation of

hardware resources from their devices. Although not considered in Definition 2.2.1 of

IoT, a common aspect for IoT sensors is the fact they constitute embedded systems

composed of resource-constrained devices. These limitations may affect the computa-

tion, memory, communication, storage capabilities of these devices, which are, gener-

ally, powered by batteries [Guinard et al., 2010; Zeng et al., 2011]. The reason for not

considering these restrictions in our definition is because this is not the case for all IoT

sensors. For instance, due to the constant evolution of embedded technologies, which

are enabling the creation of more powerful devices for IoT, restrictions are less impor-

tant for these systems. However, because of its impact, this is an issue that must still

be of concern for IoT based solutions. Indeed, IoT devices may not support complex

algorithms and structures because of such limitations [Al-Garadi et al., 2020].

A critical requirement necessary to the success of this whole IoT world is the secu-

rity [Miorandi et al., 2012]. Questions related to the authentication and authorization

of devices, the integrity and protection of data, and privacy of users and environments,

are examples of such concerns [Sicari et al., 2014]. Furthermore, because of their com-

putational restrictions and misconfigurations, the IoT devices are an easy target for

several types of attacks, which make their security an urgent concern [Bertino and

Islam, 2017; Kolias et al., 2017; Blaise et al., 2020]. For instance, a recurrent attack

involving IoT devices in recent years, which serves as basis for other attacks, is their

infection by botnets [Bertino and Islam, 2017]. Once a device is compromised, it can

be used for large scale orchestrated attacks, such as spam delivery and Distributed

Denial-of-Service (DDoS) attacks [Bertino and Islam, 2017; Kolias et al., 2017]. This
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is a concerning aspect for the security of IoT, because an attack from the large number

of devices in IoT is very hard to be handled by any system.

2.5.2 Absence of proper descriptions

A fundamental task when looking for a specific sensor in the CoIoT environments is

the search for sensors based on their descriptions and select a desired one from the

resulting list [Perera et al., 2014b; Ahmed et al., 2016]. Some IoT platforms allow the

searching for a particular sensor based on its meta-data informed by their owners (e.g.,

tags, location, description). As examples, we have the OpenSensors7, ThingSpeak,

and Xively8 platforms. However, since owners by themselves are responsible for the

definition of these meta-data descriptions, generally as freely text-based, they may not

correctly correspond to the sensor services or even be empty.

To better illustrate this problem, in Table 2.1 we have summarized the lack of

descriptions of collaborative sensors available in the ThingSpeak platform, collected at

three distinct periods from 2015 to 2017. For this case, and following our assumptions

for CoIoT in Section 2.2, we considered those sensors which were set as public by

their owners. The number of collaborative sensors increased more than 3 times in this

period. This demonstrates a clear increase in the popularity of CoIoT, which reinforces

the expected tendency.

The analyzed descriptions was the textual description, the geographical location

(coordinates) in which the sensor is placed, and the tags, which are keywords that

give some meaning regarding the sensor resources, the type of data, and monitoring

phenomena. The problem of lack of descriptions about sensors resources, that is grow-

ing with the increasing number of available sensors, is a challenging aspect impacting

their useful utilization. As a consequence, when searching for sensors based on a set of

parameters, some of them will not be reached, remaining occult to be used.

Another more subtle problem is that even if the descriptions were given, since

there is no validation for them, there is no guarantee that they are correct and repre-

sentative. For instance, when searching for a keyword like temperature it is possible

to find sensors monitoring the environment temperature, or from the interior of an

apartment, the temperature from the soil in agricultural applications, or even the tem-

perature of a computer processor. To infer which of these sensors is the correct to us

is a problem.
7OpenSensors IoT open data community - http://opensensors.io
8Xively IoT platform for connected devices - http://xively.com
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(f) Histogram for 2017

Figure 2.3. Cloud of tags and histograms of the most frequent words used by owners to
describe their CoIoT sensors, their resources and operations. These data was obtained from
descriptions of CoIoT sensors available in the ThingSpeak platform, collected at periods of
October 2015, July 2016, and April 2017.
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Figure 2.3 illustrates some words that owners often used to describe their devices,

based on the sensors that had some description. It can be noticed that the majority of

descriptions are related to the environmental phenomena, as well as sensors technical

descriptions and properties. In fact, these descriptions are really poor, if compared to

more complex ones such as semantic and ontology based [Barnaghi et al., 2013; Perera

et al., 2014b; Qin et al., 2015]. For instance, the top-5 most frequent words for the

3 years are: temperature, humidity, temp, field, and sensor. These last 3 are generic

descriptors, which add no valuable information to the monitored phenomena. This

leads to the fact that, even when the descriptions of CoIoT sensors were provided,

it may not be representative enough to correctly describe them. Thus, searching for

a specific sensor in the CoIoT scenario by its descriptions may not retrieve the most

appropriate results.

2.5.3 Availability of CoIoT sensors

Since there are no guarantees regarding any kind of quality criteria for the CoIoT

sensors, an important aspect that arises when dealing with them is their availability.

Those sensors may suddenly stop their activity, whether by sensor failures or being

turned off by their owners, or even alternate between periods of inactivity, which is a

reality in this collaborative scenario.

For this reason, the presence of gaps in the time series from the CoIoT sensors

can not be treated as an exception, as occurs to many data based systems. There

are a considerable number of studies proposing methods to deal with missing data,

such as interpolation, imputation, and other strategies to the completion of the fault

samples [Schafer and Graham, 2002]. However, given the large amount of data in

CoIoT, the insertion of more data to complete gaps may not be the most efficient nor

effective solution. For instance, the more data we have to deal the more impact in

scalability problems we will have, increasing the complexity of problems in both time

and space. Furthermore, it is harder to perform data imputation as the gaps increase,

reducing the effectiveness of the data completion.

Another issue, also regarding the missing data, arises when it is necessary to

perform some pairwise processing with the time series. If a time series presents gaps

for a given time interval, there will not be a correspondent for that data in another time

series to compare. Also, a factor impacting this pairwise time series processing is the

differences between their lengths, due to different update intervals. We can easily find

sensors updating data hourly, and others at seconds. Another cause for this problem is

related to the communication of these cheap sensors, now via Internet, and the network



48

problems may also impact on the differences in the moments of data arriving at the

IoT platforms.

As a consequence of the problem of unevenly spaced time series, that is not

always covered by most of the time series processing strategies and algorithms, is the

trade-off between discarding data points or creating new ones. If the data points with

no correspondent samples in a same time interval is discarded, it may cause a loss

of some important information from the time series, that could be essential to their

correct analysis. Or, if it is decided to complete these missing points, they may lead

to inefficient computation, as previously discussed.

2.5.4 Reliability of CoIoT sensed data

Although these collaborative initiatives are real and tend to grow, scientists and spe-

cialists are still cautious regarding the reliability of these sensors and the quality of

data they produce [Austen, 2015]. In fact, every sensing of a real world phenomenon is

subject to some imprecision, since we only get an abstraction of it, but the industrial

and scientific communities are based on high precision sensors which aims to reduce

these imperfections to the possible minimum. However, due to the high cost of these in-

dustrial sensors, the CoIoT initiatives are mostly based on the use of cheap components

and alternative ways to measure a given phenomenon, generally adding noise to the

readings. In most of the CoIoT sensors, we are dealing with virtual sensors [Loureiro

et al., 2012], which are sensors able to measure magnitudes that are very correlated to

the desired one and can be used to infer the values of the desired phenomena.

For instance, the BAM-1020 Beta Attenuation Monitor9 is a professional sensor

certified by the U.S. Environmental Protection Agency to account for particle matters

(PM) in the air, based on the principle of beta ray attenuation, which produces already

known reliable data. On the other hand, the DustDuino10 is a DIY initiative to build

a low-cost air quality monitoring sensor to account for the same PM metric, but based

on the more simple principle of light scattering when particles obstruct an infrared

LED signal. Although the quality of data generated by this method was the focus of

scientific studies to testify its accuracy [Gao et al., 2015], some researchers still decided

not to use it until their quality could be improved [Austen, 2015].

Several examples of DIY sensors are easy to find, such as homemade anemometers
9BAM-1020 Continuous Particulate Monitor: http://www.metone.com/docs/bam1020_datash

eet.pdf
10DustDuino particle concentrations monitor: https://publiclab.org/wiki/dustduino



49

to measure wind speed11 and solar radiation level meters12. However, these less reliable

sensor components may present more problems, such as noise and outliers, than the

industrial ones. In addition, problems may also be caused by the wrong operations from

their owners, such as misplacement of the sensors in a proper location, to reduce the

impact of external interferences. Thus, regarding the reliability of the CoIoT sensors,

it is necessary to assume that errors and uncertainties are common aspects affecting

their correct operation and measurements. Furthermore, solutions toward minimizing

these problems in the data must be considered before properly using them.

2.6 Conclusions

This chapter presented our definition for the Collaborative Internet of Things, dis-

cussing its characteristics and what makes it a particular case of the IoT. In the same

way, a discussion about the similarities and differences between CoIoT and IIoT is

presented. It is also given an insight on the potential of using the intersection among

these two scenarios for precise studies and researches on CoIoT. A discussion about

the need for an open IoT, as its potential of applications, is also presented. Finally, the

challenges that must be considered when dealing with CoIoT-based solutions is pre-

sented, from the ones inherited from IoT to the specificities of this new collaborative

scenario.

11Example of a DIY anemometer: https://thingspeak.com/channels/10021
12Example of a DIY solar radiation monitor: https://thingspeak.com/channels/9892
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Chapter 3

Time series analysis: General

concepts and transformations

In this chapter, we delve into the fundamental aspects of time series and the dynamics

of their underlying phenomena. After a brief motivation, in Section 3.1, a conceptual-

ization of time series analysis and their dynamics is presented in Section 3.2. Concepts

and definitions related to time series from CoIoT are presented in Section 3.3. A brief

analysis on some of the main time series transformations is given in Section 3.4, illus-

trating which aspect of the data can be highlighted by each of them. Thus, we detail,

in Section 3.5, the ordinal patterns transformation, which is our chosen transformation

for capturing the dynamics of time series. In Section 3.6, we discuss the interpretation

of the ordinal patterns transformation, that will serve as the basis for further solutions

to the identified problems in CoIoT. Our final remarks are presented in Section 3.7.

3.1 Introduction

The range of phenomena being monitored by CoIoT is impressive, resulting in a large

amount of highly heterogeneous data. Among this diversity, a common shared aspect

is the notion of time related to each of their data samples. Thus, a reasonable way of

dealing with the CoIoT data is by modeling them as time series. Time series is one of

the most ubiquitous modeling technique in data analysis. Many real world problems,

from different domains, have solutions based on the analysis of time series. Astronomy,

biology, climate, environment, finances, and medicine, although very distinct and with

different objectives, are a few examples of areas that benefit from the analysis of time

series [Aghabozorgi et al., 2015].
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With time series representation, it is possible to model the evolution of a phe-

nomenon in time. The way the data are constructed by events ordered in time, enables

strategies for discovering important time related information, such as predictions of

future trends and historical analysis of data behavior. Another important approach

when dealing with time series consists of strategies aiming to discover knowledge from

the data. This is related to the application of data mining strategies for time series,

such as indexing, clustering, classification, anomaly detection, among others [Keogh

and Kasetty, 2003; Lin et al., 2002, 2003; Bettaiah and Ranganath, 2014].

However, most of the solutions in literature for time series data mining make

assumptions regarding time series regularities, that are not valid for real world scenar-

ios [Hu et al., 2013]. As described in Section 2.5, there are some challenges one need to

consider when dealing with the real CoIoT data, such as the massive number of sensors,

poor descriptions, differences in magnitude and resolutions, problems in data as noise,

imprecision, and missing data points. Given this non-exhaustive list of problems, it is

clear that solutions to handle these data should consider a method that are precise in

representing their characteristics, but also robust to their issues [Borges et al., 2019b].

In this thesis, our strategy for dealing with the issues present in CoIoT data is

based on the transformation of the time series onto another domain distinct of time.

This transformation is a step prior to any data mining technique analysis, so it can mit-

igate the impact of those challenges and reduce their impact on the discovered knowl-

edge. Our strategies are based on the ordinal patterns transformation, a cornerstone

contribution from Bandt and Pompe [2002]. This transformation, which is detailed in

Section 3.5, consists of constructing a set of symbolic ordinal patterns from time series

data, which can be used for distinguishing between different dynamics [Rosso et al.,

2007a].

By following this strategy, we are able to learn the intrinsic dynamics of the

time series underlying phenomena, and are not dependent on a reference sensor, unlike

the previous solution for searching a time series in CoIoT [Borges Neto et al., 2015].

Before presenting more details about the ordinal patterns transformations, let us first

conceptualize time series and their dynamics. After that, we are also able to define the

time series from CoIoT and the representations used in this thesis.

3.2 Time series analysis

The notation of time series for representing time ordered data is a consistent format

that arises on several knowledge domains, belonging to a select group of always relevant
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research topics. Throughout decades, an expressive number of studies involving time

series data mining were proposed, such as characterization, clustering, classification,

among others [Keogh and Kasetty, 2003; Lin et al., 2002, 2003; Bettaiah and Ran-

ganath, 2014]. However, it is still possible to eventually find a novel viewpoint, or that

was not properly covered yet, with the potential to become a feasible approach for the

time series analysis community. In this thesis, we evaluate the feasibility of temporal

dynamics for discovering knowledge when analyzing time series data.

3.2.1 Time series concepts

Before presenting more details on time series dynamics, let us establish the concepts

of time series used throughout this work. We follow the general concept of time series

expressed in Definition 3.2.1, which is based on the notation of Bagnall et al. [2017].

Definition 3.2.1 (Time series). A time series x = (x1, x2, . . . , xm) is a sequence of

m data points, with m = |x|, indexed by time in increasingly order. Each element xi

represents the i-th data point, where i ∈ N maps this point to a given time stamp.

Eventually, a collection of time series is aggregated as a dataset for further pro-

cessing and analysis, which is formalized by Definition 3.2.2.

Definition 3.2.2 (Time series dataset). A time series dataset D = {xi}ni=1 is a collec-

tion of n time series, where each i-th time series having length m.

For some learning strategies, the time series from a given dataset must have a

label, used from training and testing phases. Definition 3.2.3 presents the concept for

labeled time series datasets. More details on learning strategies is given in Section 3.2.3.

Definition 3.2.3 (Labeled time series dataset). A labeled time series dataset D =

{(xi, yi)}ni=1 is a collection of n pairs of time series and labels, where each i-th time

series having length m and a specific label yi ∈ Y , from a given set of c classes Y =

{y1, y2, . . . , yc}.

With these definitions, we are able to follow our discussion on time series dynamics

and their importance for time series analysis.

3.2.2 Time series dynamics

The study of dynamics consists of the understanding of systems that evolve in

time [Strogatz, 2018]. Accordingly to Birkhoff [1927], these are systems which have
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the property that, for a given set of n real variables x1, x2, . . . , xn, its state at a specific

time t can be completely expressed by those variables. There are two main types of

dynamical systems: differential equations, which are used to describe their evolution

in continuous time, and iterated maps (also known as difference equations), which

describe systems evolving in discrete time [Strogatz, 2018].

With respect to the analysis of time series dynamics, they are governed by discrete

time evolutions, so we are interested in the study of iterated maps as the type of

dynamical systems. Consequently, when analyzing these time series dynamics, we are

interested in understanding its behavior when changing from a previous state to the

next one [Birkhoff, 1927]. By understanding this behavior, it is possible to extract

information about the dynamics of the time series underlying process, and use this

information for distinguishing their dynamics, such as deterministic, stochastic, and

chaotic behaviors [Rosso et al., 2007a; Zunino et al., 2012; Ravetti et al., 2014].

Although very useful, the distinction of time series by their dynamics is not an

easy task. For instance, an intriguing aspect of time series arising from chaotic systems

is that they share several properties with stochastic processes, making their distinction

a hard task [Rosso et al., 2015, 2013; Ribeiro et al., 2017; Rosso et al., 2007a; Zunino

et al., 2012; Ravetti et al., 2014; Kulp and Zunino, 2014; Ye et al., 2017].
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Figure 3.1. Illustration of (a) the first 500 data points of a time series generated by a
random uniform distribution U(0, 1) on the interval [0, 1] and (b) a scatter plot of the whole
time series of length m = 5000, consisting of the relation between their consecutive points
(xn, xn+1).

Figures 3.1a and 3.2a illustrate the first 500 data points of time series generated

by a random uniform distribution U(0, 1) on the interval [0, 1] and by a logistic chaotic

map, with ρ = 4 and x0 = 0.1, respectively. Although these time series look similar,

which may be confused as the same random process, their underlying construction pro-

cesses are very distinct. The random time series is constructed completely at random
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Figure 3.2. Illustration of (a) the first 500 data points of a time series generated by a logistic
chaotic map, with ρ = 4 and x0 = 0.1, and (b) a scatter plot of the whole time series of length
m = 5000, consisting of the relation between their consecutive points (xn, xn+1).

following a uniform distribution, each data point being randomly chosen. For instance,

the next point xn+1 does not have any relation with the current data point xn, which

can be observed by the scatter plot of Figure 3.1b. On the contrary, the time series

from the logistic chaotic map is constructed by following a function F : xn → xn+1,

which is given by

xn+1 = ρxn(1− xn), (3.1)

with 0 ≤ xn ≤ 1 and 0 ≤ ρ ≤ 4 [May, 1976; Ravetti et al., 2014]. Thus, each point is not

chosen at random, instead, there is a relation between the next xn+1 with the current

xn. Figure 3.2b illustrate this dependence between consecutive points by showing a

scatter plot for each (xn, xn+1).

A chaotic system is an interesting type of dynamical system because it has a

deterministic formula that rules their evolution but, for specific conditions, it presents

a seemingly erratic, aperiodic behavior, and can be very sensitive to small variations

on their initial values [Strogatz, 2001; Toker et al., 2020]. As described by Strogatz

[2001], a system is considered chaotic if two nearby states moves apart from each other

exponentially fast. Furthermore, a chaotic system is also bounded by some limits and

their values at different states never go to infinity [Toker et al., 2020]. For instance,

the chaotic behavior of the logistic map occurs when the increase rate is ρ = 4, and

their values at different states are bounded by the interval [0, 1].

To better discuss the potential of using this study of dynamics to the analysis

of time series, let us first describe some concepts and classical knowledge discovery

strategies, which are presented in next section.
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3.2.3 Knowledge discovery in time series

Most of the recent solutions on data analysis already consider the availability of a large

amount of data, which is exactly the case for IoT. A trend in this analysis, which

aims to discover knowledge from these data, consists of applying data mining to time

series. From the literature in time series data mining [Keogh and Kasetty, 2003; Lin

et al., 2002, 2003; Bettaiah and Ranganath, 2014], in the following we define the main

strategies to adapt data mining concepts for time series.

Indexing (query by content). A conventional strategy to find an element from a

given database consists of searching for it based on an information that could describe

it (e.g., tags, descriptions) [Perera et al., 2014b]. For the data mining domain, given

a time series x and a dataset D, the search is made by looking for the most similar

time series z ∈ D based on a similarity/dissimilarity measure d(x, z). In this case, the

searching information is the content from the time series itself.

Clustering. Instead of having a time series as starting point to make comparisons,

as the indexing case, for clustering strategies it is assumed no previous information

regarding time series. In this case, the objective of clustering is to find groups of

similar time series from a given dataset D, based on a similarity/dissimilarity measure

d(x, z), where x, z ∈ D. The intention is to discover such groups, clusters, in an

unsupervised learning fashion, increasing the similarities between time series inside the

same cluster, while increasing the dissimilarities among different clusters.

Classification. Differently from clustering, classification is a supervised learning pro-

cess that assumes a training step, where a dataset D = (xi, yi)
n
i=1 with labeled time

series is used to first learn their classes, where yi ∈ Y is the set of known classes. Then,

given an unlabeled time series z, the intention is to assign it to one of the previously

learned classes yi.

Segmentation (summarization). Given a large time series x, with m = |x| being

its length, the intention for the segmentation is to construct an approximation x̄ for it

that summarizes its mains characteristics. The intention is that the new length k = |x̄|
be much smaller than the original, k ≪ m, such that the benefits of using x̄ exceed

the losses from the approximation.

Anomaly detection. For a given, or learned, model of the “normal” behavior from a

time series x, the intention here is to find the sections of x that significantly diverge from
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that normal behavior. An anomaly, thus, can be defined as an unexpected behavior

from a subsequence within a given time series [Chandola et al., 2009]. Another approach

for anomaly detection consists of comparing the behavior of a different time series z

with the learned one. Thus, it is inferred if this behavior is similar to the previous

learned, i.e., regular, or if it is different, indicating an anomaly [García-Teodoro et al.,

2009].

Motif detection. While anomalies are used to identify unexpected behavior, a motif

is defined as a pattern that is recurrent within a time series [Lin et al., 2002; Yankov

et al., 2007]. For a time series x, the aim here is to find a subsequence si,j within

x, with i, j ∈ {1, . . . ,m}, i < j, and m = |x|, that repeats along x. The repetitions

are computed based on a similarity/dissimilarity measure d(si,j, sk,l) for two different

subsequences, either by looking for exactly or approximate matching.

3.3 The CoIoT time series

As described in Section 2.5, the CoIoT scenarios have several challenges that requires

special attention. These challenges are directed responsible for adding issues on their

generated time series, such as unevenly spaced intervals and missing data. To define

this challenging type of time series, in this section, we revisit the time series concepts

presented in Section 3.2.1 by considering these novel issues in those definitions.

3.3.1 Modeling time intervals

To discuss how unevenly time spaces impacts the analysis of CoIoT time series, let us

extend the Definition 3.2.2, which describes an ideal time series dataset to consider

different time intervals between consecutive data points. But, first, we have to briefly

discuss the time index from our previous time series notation.

Thus, for each index i presented in Definition 3.2.1 of time series notation, let

us assume a function T : N → R, which maps each i to the sequential notion of time

t ∈ R. For some well-defined and controlled scenarios, the time interval δ ∈ R between

subsequent data points xi and xi+1 is constant, such that ∀i ∈ N : δ = T (i+ 1)− T (i),

and T (i) = (i− 1)δ + 1. Thus, a representation for the time series, with respect to its

time intervals, can be expressed by x = < x1, xδ+1, x2δ+1, . . . , x(m−1)δ+1 >.

A collection of n time series with equal time intervals can be arranged in a dataset

D1 = D = {xi}ni=1. (3.2)
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In this case, the length |xi| is the same for each ith time series, and the overall size

of the dataset is, thus, n × m. When different time series may have different time

intervals, a dataset within this case can be modeled as a collection of tuples, such that,

D2 = {(xi, δi)}ni=1. (3.3)

In this case, each ith time series xi contains its own time intervals δi, and different

time series may have different lengths, according to its time intervals.

Thus, if xi = (xi
1, x

i
2, . . . , x

i
m) and xj = (xj

1, x
j
2, . . . , x

j
k), with m 6= k, the size of

D2 can be obtained by computing
∑n

i=1 |xi|.
There are cases where different time intervals can occur within the same time se-

ries, configuring a case of unevenly spaced sampling points [Möller-Levet et al., 2003].

For instance, a given time series with length n, in this case, can be modeled by consid-

ering a specific time interval for each data point. Thus, let δ = {0, δ2, . . . , δm} be the

vector of individual time intervals, a time series indexed by its time intervals is given

by x = < x1, x1+δ2 , x1+δ2+δ3 , . . . , x1+
∑m

i=2
δi >. A dataset composed by n time series

with unevenly spaced sampling points can be expressed as

D3 = {(xi, δi)}ni=1. (3.4)

Another modeling strategy for this last case is to assume that the unevenly spaced

intervals is defined by a random process. Thus, each δi is a random variable following

a probability distribution pi. A dataset representing a collection of such time series

can be expressed as

D4 = {(xi,∆i)}ni=1, (3.5)

where each ∆i ∼ pi is defined over the set of real valued time intervals. The number of

data points per time series is also a random variable, so it is also for the whole dataset.

For a long enough time series, the average δµ and other statistics can be estimated

from the time series.

These time series models are useful to understand what kind of problems are

present in the data. For instance, while the first model is sufficient for most of the

regular problems in time series classification [Bagnall et al., 2017], this last model is

useful for describing sensors where data is gathered according to a random event.
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3.3.2 Modeling data availability

Another important aspect to consider when modeling time series is related to the mode

its data are available. According to this, a data analysis can be classified as offline or

online [Gama et al., 2014]. In traditional data analysis, the data are first collected

and datasets are processed offline, being available from the beginning. For instance,

this is the case for most of the classification strategies in current literature [Bagnall

et al., 2017]. On the other hand, there are cases where data are available as streams,

where data points continuously arrive each at a time. For these cases, time series are

dynamically constructed, and data analysis should be performed online, processed as

new data points are received [Gama, 2012].

To represent this transient behavior, let x = (. . . , x1, . . . , xt−1, xt, . . . , xm, . . . ) be

a time series constructed from a data stream, in which each data point is received at a

time. To make a parallel with the static time series representation, it can be mapped

by the observed interval from this stream, comprising the points from x1 to xm. A

simple dataset representation for a collection of streaming time series can be defined

in terms of this observed interval, being similar to the previously presented ones.

In addition to the fact that the whole time series is not available to be processed at

the beginning of the analysis, another important aspect is that the underlying process

generating the data streams can change over time [Kifer et al., 2004; Boracchi and

Roveri, 2014]. Let us assume that the data points in the interval x[1,t−1] = (x1, . . . , xt−1)

are generated following a probability distribution p1, and data points in the interval

x[t,n] = (xt, . . . , xn) follows a different distribution p2. Thus, since p1 6= p2, the moment

t, when the distribution changes, is named the change point [Kifer et al., 2004].

To detect this change point is the aim of many strategies in data stream process-

ing. However, since it is not guaranteed to exactly find t, the intention is to detect

the change by a significant difference between probability distributions p1 and p2 [Kifer

et al., 2004]. The better strategy should minimize the number of occurrences of false-

positives (FP), where changes were erroneously detected, the number of false-negatives

(FN), where real changes were not detected, and the detection-delay (DD), comprising

the sampling interval between the real change point t and its actual detection t∗, given

by t∗ − t [Boracchi and Roveri, 2014].

3.3.3 Defining the CoIoT time series

In Chapter 2, the Collaborative Internet of Things was defined, and its main character-

istics were presented. From the challenges faced by any solution applied to CoIoT, it

is possible to highlight those which directly impact on its data generating process. An
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aspect that always deserves mention is the large amount of data, generated by a vast

number of heterogeneous sensors. However, one of the main challenges when dealing

with this massive scaling of CoIoT [Stankovic, 2014] is that their sensors are producing

streams of data at high-speed [Gama, 2012].

The data generating time interval ranges from a few seconds to minutes, or even

hours, between each data point. Data analysis can be performed both online, by

processing the most recent data points, or offline, by considering the history of time

series. For both cases, the streaming data can be mapped into a static representation

by cutting the time series by an observation interval. The historical representation

of the time series is, generally, stored in large big data platforms (.e.g, ThingSpeak)

and is available for use after querying by a particular keyword(s) that matches their

descriptions. Although this does not directly affect data, it may impact on the correct

sensor search procedures, since descriptions are rare and poorly assigned [Borges Neto

et al., 2015].

So far, given an ideal scenario of CoIoT, their time series can be modeled by a

dataset similar to D2, presented in Equation 3.3, where each time series has its own

fixed time interval δ. However, although these characteristics are challenging enough to

any proposed strategy, such as the scaling factor and the differences in lengths between

time series, in practice, there are more issues that must be concerned.

The time series from CoIoT sensors may have missing data points, variations in

their time intervals, and more imprecise data, with noise and outliers being a real issue.

This is mainly due to their cheap components, that can easily fail or generate uncertain

data. Furthermore, the data transferred over the best-effort protocols of Internet, and

the lack of commitment to data quality by sensors’ owners are also concerning aspects.

Thus, a model that best fits the CoIoT scenarios is by assuming a collection of time

series with random time interval, as described by D4, in Equation 3.5.

Figure 3.3 gives an example of a temperature sensor from an Arduino-based

weather station1 located in Massachussets, USA, and available in the ThingSpeak plat-

form. This time series data was collected from the period between 1st January 2015 to

28th July 2016 and illustrates these mentioned problems. In Figure 3.3a the time series

for the temperature values (◦F) is presented, and in Figure 3.3b the time intervals (s)

between each consecutive data point is shown.

A data missing in the series is detected by an increasing in the time intervals. In

this case, if a single data point is missed, the time interval doubles, and so on. The

normal behavior for this sensor is to collect data at intervals of 60 seconds. Around the
1Example of an Arduino-based weather station: https://thingspeak.com/channels/12397
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Figure 3.3. Example of (a) time series of a temperature sensor from an Arduino-based
weather station, and (b) the time intervals between consecutive data points.

beginning of February 2015 and between mid-June 2015 to August 2015, the number of

missing points considerably increased, reaching 16 consecutive data points. The exact

reason behind this behavior is unknown. Depending on the data missing rates, it is

more difficult to assure the time interval is constant, and some cases are just errors

from the missing points, or if it is variable.

This behavior was dominant throughout the period of 2015, as shown in Fig-

ure 3.3b. However, after 3 days of inactivity, in 23rd February 2016, the sensor starts

collecting data at intervals of 300 seconds, and remains at this rate until 15th June

2016. This period is illustrated as a dashed gray area in the figures. This changing

behavior may affect several data analysis, since data points were more sparse, as seen

in Figure 3.3a. Another important changing at this point is the increasing uncertainty

in time intervals. Even after returning to previous behavior, these values were more

random, fluctuating at 60 seconds, but with an increasing error range. These factors

reinforce the definition of CoIoT as a challenging type of time series, with streaming
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data generation and random time intervals.

3.4 Time series representations

Time series notation is a powerful representation that can be used for extracting knowl-

edge of data in time domain. However, some problems require different representations

in order to extract additional information about different behaviors [Bagnall et al.,

2015, 2017]. A reasonable way to improve the analysis of time series consists of apply-

ing a transformation to the data, resulting in a different representation domain. This

strategy has the intention to highlight the more distinguishable aspects, which are not

readily available from the raw data [Bagnall et al., 2012; Wang et al., 2013]. For some

successful approaches, the use of a transformation on the time series data is an essential

step prior the data analysis [Dempster et al., 2020].

Some time series transformations are intended to reveal novel aspects of data,

but some of them are used to mitigate some problems, such as summarizing original

data points into a more comprehensible format [Wilson, 2017]. Thus, there are trans-

formations performed on the same time domain, i.e. the transformed data continues

indexed by time, and there are transformations that change the data from time domain

into a different domain (e.g., frequency, power spectrum, wavelets, auto correlations,

shapelets [Bagnall et al., 2012, 2015, 2017; Lines et al., 2012; Wang et al., 2013]). In the

following, some time series representations suitable for CoIoT scenarios are presented.

3.4.1 Time domain representations

The first aspect a proper representation must deliver is to minimize the problems from

CoIoT time series. Once the type of time series from CoIoT sensors is defined, see

Section 3.3.3, it is possible to discuss a time series representation that best fits its

characteristics. From a time series knowledge discovery perspective, as described in

Section 3.2.3, and given the challenges from our time series, such as the heterogeneity

and diversity of time series lengths and characteristics, it is clear that solutions based

on the raw data is impracticable. For instance, taking the clustering applications as ex-

ample, the computation of some distance measures (e.g., Euclidean, Fréchet, Dynamic

Time Warping (DTW) [Montero and Vilar, 2014]) from the raw data points of a pair

of time series is not suitable, since the same length for time series can not be assumed.

Furthermore, even when the time series have equal length, they could be long

enough so the computation for direct pairwise comparison could be unfeasible. So, a

direct solution to this case can be an adjustment of the time series by only considering
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the data points that occur at similar timestamp on both time series. A similar times-

tamp is used because it is hard to assure the data is being collected exactly at the

same time, so a time interval should be considered. Problems with this approach are

twofold: (i) to define what is the ideal time interval to assume that two data points

belong to a similar moment in time, and (ii) the data points from a time series with-

out its correspondent in another will be discarded. This last issue is important since

information is being lost, which is essential for the proper knowledge discovery.

A time series representation that is being largely used in literature with con-

siderable success is the approach proposed by Lin et al. [2003], named the Symbolic

Aggregate approXimation (SAX) algorithm. SAX transforms the time series into a

symbolic representation, with dimensionality reduced and which symbols from a com-

mon alphabet a. The steps to the SAX transformation are

1. Normalize each time series to have a zero mean and unitary standard deviation,

to compare them with the same offsets and amplitudes. For a given time series

x = (x1, . . . , xm), where x̄ and sx 6= 0 are, respectively its mean and standard

deviation, this normalization is given by

xi =
xi − x̄

sx
. (3.6)

2. Reduce the dimensionality of time series, so they have the same number of sam-

ples w, with w ≪ m. This is made with their Piecewise Aggregate Approxima-

tion (PAA) algorithm to discretize the time series by performing a transformation

f : Rm → R
w. Let us partition the time series in w pieces so x = (c1, . . . , cw),

with data points divided into each partition ci. The PAA discretization creates a

new time series C = (c̄1, . . . , c̄w), where each c̄i corresponds to the mean of data

points within the partition ci. This is obtained by

c̄i =
w

n

n
w
i

∑

j= n
w
(i−1)+1

cj. (3.7)

3. Symbolize the PAA discretization of the time series into a new representation of

sequential values (the SAX symbols). Each c̄i is replaced by a symbol from the al-

phabet a = {0, . . . , α}, by splitting the range of time series values in equiprobable

regions, considering the data points, after normalization, spreads as a Normal dis-

tribution N (0, 1). This is achieved by computing breakpoints B = {β1, . . . , βα−1}
between these regions, where the breakpoint divides the Normal distribution in
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a set of features [Wang et al., 2006; Fulcher et al., 2013; Fulcher and Jones, 2014]. A

feature can be any measure computed (extracted) from the time series that summarizes

a specific aspect of them. A common approach is to extract more than a single feature

for each time series, so different aspects could be represented. For a given time series

x with length m, by extracting k features from it, one is performing a transformation

f : Rm → R
k, with, usually, k ≪ m.

In fact, the first advantage of strategies based on the extraction of features from

time series is the dimensionality reduction and equalization of different lengths for the

time series, which seems to be very appropriate to our problem. However, two main

aspects must be considered before features are extracted, so their representativeness

could be valid to the problem domain: (i) the decision of which features to extract,

and (ii) from which representation they will be extracted. The chosen features must

be related to the problem domain, and this decision should assure that the main char-

acteristics of the time series are being captured.

In order to express the main aspects from time series of different natures, Wang

et al. [2006] proposed to use a set of statistical features, namely: trend, seasonality, pe-

riodicity, serial correlation, skewness, kurtosis, non-linearity, self-similarity, and chaos.

From these features, seven were extracted from the raw time series and six from a

transformed version of it, by adjusting the de-trending and de-seasonalizing the time

series, giving a total of 13 features. Fulcher and Jones [2014] proposed the extraction

of near 9,000 features, where some of them are different due to parameters variations.

These features cover a wide range of time-series characteristics, such as basic statistics,

linear correlations, stationarity, information theoretic measures, among others.

Although very interesting approaches, for both cases, the best results were only

achieved after applying a feature selection strategy. Both cases used a greedy forward

search algorithm that incrementally adds one feature at a time. From a set of k

features, each feature is verified, one-by-one, by a quality measure, and the best feature

is selected. The previous selected feature is, then, verified in conjunction with the other

k− 1 remaining features, selecting the one that best performed together with the first.

This process is repeated until all features were selected, or by a termination criterion,

e.g., there is no more improvement in the quality measure used. While this is feasible

for well-behaved and controlled scenarios, it may not be the best strategy to be applied

for the CoIoT case, given the magnitude of its numbers, as previously discussed.

On the other hand, by extracting the features directly from the raw time series

representation, some issues may invalidate their representativeness. For instance, one

must consider the case where some features may not be computed simply because of

problems found in the data. Otherwise, some features may have their computed values
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affected by problems in data. It is important that the chosen methods be robust to data

problems, such as data missing, outliers, irregular time spacing, etc. Furthermore, their

computation from the raw data may lead to a problem in which the features became

dependent on the current instance of the time series, instead of a representation of the

characteristic behind it. This may invalidate the set of features if their values changes

as a function of time, and it may require another computation of features, that could

be computationally expensive [Wang et al., 2006].

For the CoIoT applications, it is reasonable to consider the features that could

extract the behavior of the phenomena in which the sensor is monitoring, and not being

dependent on the current sample. Thus, an appropriate strategy should be to extract

the features after performing a time series transformation into a different domain. Such

domains are able to highlight different aspects that can be used as the basis for the

extraction of features, better representing the time series intrinsic characteristics [Wang

et al., 2006; Baydogan et al., 2013].

In the following, we focus our attention on two time series transformations which

gives significant results when applied to real world time series data: the transformation

from time series into a graph representation and a set of ordinal patterns.

3.4.3 Graph domain representations

Another direction that demonstrated to be successful in capturing essential character-

istics of time series is based on their transformation into network representations. This

transformation enables the time series analysis from a different view point, now it can

be made through graph and complex networks theories [Zhang and Small, 2006; Zhang

et al., 2008; Gao and Jin, 2012; Tang et al., 2013; Gao et al., 2016; Lacasa et al., 2008;

Luque et al., 2009; Ravetti et al., 2014; Gonçalves et al., 2016].

A successful approach in representing time series main characteristics through

networks is the Visibility Graph (VG), which is constructed by looking to the visibility

of their elements [Lacasa et al., 2008; Luque et al., 2009; Ravetti et al., 2014; Gonçalves

et al., 2016]. Let GV = (V,E) be the visibility graph constructed from a time series

x = (x1, . . . , xm). Each data point xi from the time series is represented by a vertex

vi ∈ V , such that V = (v1, . . . , vm) in the visibility graph. Two vertices are connected if

they satisfy the visibility criterion. There are two approaches considering this criterion

definition, the visibility graph [Lacasa et al., 2008] and the Horizontal Visibility Graph

(HVG) [Luque et al., 2009].

For the visibility graph, there is an edge (va, vb) between vertices va, and vb if it is

possible to trace a line between their respective data points in the time series without
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intersecting intermediate data points [Lacasa et al., 2008]. For instance, the visibility

criterion is true for two data points xa and xb if, for all points xc between them,

xc < xa + (xb − xa)
c− a

b− a
∀c such that a < c < b. (3.8)

More strictly, for the horizontal visibility graph [Luque et al., 2009] approach, the

visibility criterion is true if it is possible to trace a horizontal line between two data

points xa and xb without intercepting any intermediate data points xc. In this case,

xa, xb > xc ∀c such that a < c < b. (3.9)

These visibility approaches enable the construction of networks that inherit sev-

eral characteristics of the underlying time series. For instance, periodic time series are

converted into regular graphs and random series into random graphs [Lacasa et al.,

2008; Luque et al., 2009]. However, given the one-to-one correspondence between data

samples and network vertices, visibility graphs often grow with the length m of time

series, which is not scalable when considering the CoIoT scenarios.

As pointed out by Ravetti et al. [2014], one may fail in correctly distinguishing the

characteristics of time series by analyzing only simple graph parameters, so relatively

sophisticated graph measures must be employed. While this reinforces the fact that

graph representations can be an interesting transformation to capture essential time

series aspects, it also emphasizes the need for a more efficient graph representation.

3.5 Ordinal patterns representations

In this thesis, we propose a deeper exploration on the use of time series dynamical

behavior as a feasible domain for the IoT data. A representation of time series that

is able to capture this behavior is based on the ordinal patterns transformation. This

transformation has been extensively discussed in recent studies, where it was shown to

be well suited for real-world data [Rosso et al., 2013; Aquino et al., 2015; Rosso et al.,

2016; Aquino et al., 2017; Ribeiro et al., 2017]. Furthermore, it was proposed with a

main focus in the simplicity and fast calculation, and is also robust to observational

and dynamical noises. These are all important properties for our application scenario,

which will be exploited in our proposal.

In this section we introduce this transformation, which represents the time series

data as a set of Ordinal Patterns (OP), and their further analysis, showing how to

discriminate between different behaviors for the time series dynamics. All codes of
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transformations presented here are available at a public repository2.

3.5.1 Ordinal patterns transformation

Bandt and Pompe [2002] proposed a methodology for the transformation of time series

that has been a cornerstone contribution in the study of time series dynamics [Aquino

et al., 2017; Zunino et al., 2012; Rosso et al., 2013; Aquino et al., 2015; Rosso et al.,

2016; Aquino et al., 2017; Ribeiro et al., 2017]. This transformation consists of creating

a set of symbolic patterns, according to the ordinal relation between successive data

points from the time series. It is based on two parameters, the embedding dimension

D, which is related to the length of the patterns, and the embedding delay τ , which

defines the time scale interval between consecutive data points considered for D.

Formally, for a given time series x = (x1, . . . , xn) of length n, an embedding

dimension D ∈ N, and an embedding delay τ ∈ N, the method consists of generating

sliding windows wt ⊆ x of length D each, for each time instant t, such that the elements

within each sliding window can be separated by intervals of size τ , corresponding to a

sample of the time series by regular spaced intervals [Zunino et al., 2012]. Thus, the

sliding window for each instant t = 1, . . . , n− (D − 1)τ is defined as

wt = (xt, xt+τ , . . . , xt+(D−2)τ , xt+(D−1)τ ). (3.10)

The ordinal relation [Rosso et al., 2007a] for each sliding window consists of the

necessary permutation in the elements of wt, so they are sorted in ascending order with

respect to their values. Thus, for each window wt, at a given instant t, the ordinal

pattern consists of the permutation πt = (r1, r2, . . . , rD) of (1, 2, . . . , D) such that

xt+r1−1 ≤ xt+r2−1 ≤ · · · ≤ xt+rD−1−1 ≤ xt+rD−1. (3.11)

The method originally proposed by Bandt and Pompe does not consider an em-

bedding delay, so it is equivalent to the case where τ = 1, and the sliding windows

were sampled by consecutive data samples. Consequently, for τ > 1 the sliding windows

consists of τ -spaced data points.

Figure 3.5 illustrates the process of constructing the ordinal patterns through the

ordinal patterns transformation. For the presented time series, with D = 3 and τ = 1,

the sliding windows of length 3 are sequentially obtained and the ordinal relation for

each of them are computed. For instance, the first sliding window obtained at t = 1

2Implementations of the Bandt and Pompe’s ordinal patterns transformations: https://github

.com/labepi/bandt_pompe.
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Figure 3.5. Illustration of the ordinal patterns transformation process, considering an em-
bedding dimension D = 3 and an embedding delay τ = 1.

is given by w1 = (w1,1, w1,2, w1,3) = (−0.37694, 1.22490, 0.34387), and the necessary

permutation to order it is to switch the second with third elements, keeping the first

data point as it is. This is equivalent to the new ordered w′
t = (w1,1, w1,3, w1,2). So,

this corresponds to the 132 pattern, as presented in the figure.

For the second and third sliding windows we have w2 = (1.22490, 0.34387,

0.32845) and w3 = (0.34387, 0.32845,−0.33761), respectively. Since both of them

are in reverse order, they need the same permutation to be ordered, which corresponds

to the 321 patterns. It is worth noting the transformation does not consider variances

in the amplitudes of data points, the pattern is computed only with respect to the

ordinal relation between them, thus the ordinal name. Even if the values of two slid-

ing windows are way distinct in magnitudes, if they need the same permutation to be

ordered, they will be represented as the same ordinal pattern.

After the transformation, the time series is converted onto a sequence of ordinal

patterns Π = {πi : i = 1, . . . ,m}, where m = n − (D − 1)τ and each πi represents a

permutation from the set of D! possible permutations. The choice of D depends on

the length n of the time series, and the condition n ≫ D! must be satisfied in order

to obtain reliable statistics. For practical purposes D is in the interval between 3 and

7 [Bandt and Pompe, 2002; Zunino et al., 2012]. In Figure 3.6 we present all the D!

possible permutation patterns for (a) D = 3 and (b) D = 4, following the graphical

notation stated by Parlitz et al. [2012].

Algorithm 1 illustrates the steps necessary to perform the transformation of a

given time series x of size n to its ordinal patterns Π. The time complexity of this

algorithm is O(nD2), assuming that the permutation is obtained by sorting each sliding

window by the function Order() in Line 4, which can be a simple sorting algorithm

such as the selection sort. However, given the practical recommendation of D being a

small value (D ∈ {3, . . . , 7}), the sorting algorithm will take at most 7 elements, and
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Figure 3.6. Illustration of all D! possible permutation patterns for (a) D = 3 and (b) D = 4,
following the graphical notation from Parlitz et al. [2012]. Each pattern represents a size D
subsequence of data points for a time series, in which different levels for the points represent
different values from the time series.

the complexity of this strategy depends largely on the size n of the time series, which

is O(n) in practice.

ALGORITHM 1: OrdinalPatterns

Input: The time series x of size n, the embedding dimension D, and the embedding
delay τ .

Output: The sequence of ordinal patterns Π.
// The sequence of ordinal patterns

1 Π← {πi : i = 1, . . . , n− (D − 1)τ} ;
2 for t← 1 to n− (D − 1)τ do

// Get the sliding window w at t
3 wt ← xt, xt+τ , . . . , xt+(D−2)τ , xt+(D−1)τ ;

// The current permutation pattern index

4 πi ← Order(wt) ;

5 return Π;

Once the ordinal patterns are constructed from the time series, the next step
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is to analyze them in order to capture the dynamics of their generating time series.

Two reasonable methods to do this is by taking into account the frequency of patterns

and the sequence of their occurrences. For the first method, the analysis is performed

through the ordinal patterns probability distribution pπ, and for the second case, we

map the transitions between adjacent patterns to a directed weighted graph, the ordinal

patterns transition graph Gπ. Both transformations are derived from the first ordinal

patterns transformation, obtained from the resulting set of ordinal patterns Π. Thus,

features can be extracted from pπ and Gπ to expand the knowledge regarding the set

of patterns, and, consequently, their underlying time series dynamics.

3.5.2 Ordinal patterns probability distribution

Given the set Π of ordinal patterns, obtained from the transformation of a given time

series, the Ordinal Patterns Probability Distribution (OPPD), denoted by pπ, consists

of assigning a probability distribution to the permutations identified in the time series.

Thus, for each possible permutation πt ∈ Π, with t ∈ {1, . . . , D!}, let |sπt
| ∈ {0, . . . ,m}

be the number of observed patterns of type πt, then pπ = {p(πt) : ∀t ∈ 1, . . . , D!} is

defined as

p(πt) =
|sπt
|

n− (D − 1)τ
, (3.12)

which satisfies the conditions p(πt) ≥ 0 and
∑

πt
p(πt) = 1.

Figure 3.7 gives examples of ordinal patterns probability distributions constructed

from different time series. Figures 3.7a–3.7d illustrate random time series with different

correlation levels between their points. Those time series were synthetically generated

according to their power spectra f−k [Ravetti et al., 2014], where (a) is a white noise

(k = 0), (b) pink noise (k = 1), (c) red/brown noise (k = 2), and (d) a black noise

(k = 3). Their respective ordinal patterns probability distributions where constructed

with D = 3 and τ = 1, and are presented in Figures 3.7e–3.7h. For this example, the

frequency of patterns 123 and 321 are higher as the correlation levels increases in the

series, indicating the more regular behavior [Rosso et al., 2007a]. A suitable strategy to

account for different time series dynamics is possible by computing information theory

quantifiers from pπ, as presented in next sections.

Algorithm 2 illustrates the steps to compute the ordinal patterns probability

distribution pπ from a given time series x of length n. Since the number of ordinal

patterns from the time series obtained after the ordinal patterns transformation is

|Π| = n− (D−1)τ , and n≫ D!, this algorithm’s time complexity is bounded by O(n).
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Figure 3.7. Illustration of ordinal patterns probability distributions constructed from ran-
dom time series with different correlation levels. Where (a) is a white noise (k = 0), (b) pink
noise (k = 1), (c) red/brown noise (k = 2), and (d) a black noise (k = 3). Their corespondent
ordinal patterns probability distributions are presented in (e), (f), (g), and (h), respectively.
Each time series was generated with 5,000 samples in length, and the ordinal patterns trans-
formations were computed with D = 3 and τ = 1.

3.5.3 Ordinal patterns transition graphs

Recent approaches for time series representations lie at the crossing between ordinal

patterns and graph representations from time series. They are based on the trans-

formation of time series into networks according to their ordinal patterns [Sorrentino

et al., 2015; McCullough et al., 2015; Kulp et al., 2016; Zhang et al., 2017]. These
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ALGORITHM 2: OrdinalPatternsPD

Input: The sequence of ordinal patterns Π, and the embedding dimension D.
Output: The ordinal patterns probability distribution pπ.
// The distribution of permutations

1 pπ ← {pπi
= 0 : i = 1, . . . , D!} ;

2 for i← 1 to |Π| do
// Counting the pattern frequency

3 pπi
← pπi

+ 1/|Π| ;
4 return pπ;

approaches consider each D! possible ordinal pattern as a vertex in the graph.

Given the sequence of ordinal patterns Π, the Ordinal Patterns Transition Graph

(OPTG), denoted by Gπ, represents the relations between consecutive ordinal patterns,

and is defined as a directed weighted graph Gπ = (V,E) with V = {πi : i = 1, . . . , D!},
where each vertex corresponds to one of the D! possible permutations for an embedding

dimension D, and a set of directed weighted edges E = {(πi, πj) : πi, πj ∈ V }.
A directed edge connects two ordinal patterns in the graph if they appear sequen-

tially in the time series, representing a transition between them, thus the name “ordinal

patterns transition graph”. There is an edge (πi, πj) ∈ E, between the vertices πi and

πj, if there is a pair of ordinal patterns Πt = πi and Πt+1 = πj, 1 ≤ t ≤ n−(D−1)τ−1.
The weight function w : E → R of an edge represents the probability of a specific tran-

sition in Π. Thus, the weight of a given edge (πi, πj) is given by

w(πi, πj) =
|Ππi,πj

|
m− 1

, (3.13)

where |Ππi,πj
| ∈ {0, . . . , n − (D − 1)τ − 1} is the number of transitions between per-

mutations πi and πj, with
∑

πi,πj∈V
w(πi, πj) = 1. Once this graph representation is

constructed, some studies use unweighted edges [McCullough et al., 2015; Kulp et al.,

2016] to represent only the existence of such transitions. However, in this work, we

follow the approach to consider the relative frequency of transitions as the weights of

edges [Sorrentino et al., 2015; Zhang et al., 2017].

Figure 3.8 illustrates the ordinal patterns transition graphs constructed from the

same random time series of Figure 3.7. Each graph is constructed with D = 3, which

corresponds to the graphs vertices, and τ = 1. The weights in transitions between

vertices corresponds to the relative frequencies, computed by accounting consecutive

ordinal patterns.

Algorithm 3 presents the steps to compute the ordinal patterns transition graph

Gπ from the set of ordinal patterns Π obtained from a given time series x of length n.
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Figure 3.8. Illustration of ordinal patterns transition graphs constructed from the same
random time series with different correlation levels presented in Figure 3.7, with D = 3 and
τ = 1. Where (a) is a white noise (k = 0), (b) pink noise (k = 1), (c) red/brown noise (k = 2),
and (d) a black noise (k = 3).

The graph Gπ is represented here as an adjacency matrix of order D!×D!. The same

analysis of time complexity made for the Algorithm 2 can be performed for this case.

Thus, this algorithm’s time complexity is bounded by O(n), since it directly depends

on the number of ordinal patterns |Π| = n− (D − 1)τ , and n≫ D!.

A deeper exploration on the properties of ordinal patterns transition graphs and

their feasibility for the characterization of distinct time series dynamics is presented

in Section 5.3. With respect to the analysis of both ordinal patterns distributions and
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ALGORITHM 3: OrdinalPatternsTG

Input: The sequence of ordinal patterns Π, and the embedding dimension D.
Output: The ordinal patterns transition graph Gπ.
// The adjacency matrix representation

1 Gπ ← {gπi,πj
= 0 : i = 1, . . . , D! and j = 1, . . . , D!} ;

2 for i← 2 to |Π| do
// Counting the transition patterns frequencies

3 gπi−1,πi
← gπi−1,πi

+ 1/(|Π| − 1) ;

4 return Gπ

transition graphs, in the following it is presented an overview on the interpretation of

these resulting transformations and a set of features extracted from both of them.

3.5.4 Numerical analysis of the transformations

Given the previously discussed ordinal patterns transformations, a reasonable strategy

to capture the characteristics from distinct dynamics consists of extracting relevant

features from those transformations. For the present work we consider using metrics

extracted from both the ordinal patterns probability distribution pπ and the ordinal

patterns transition graph Gπ.

3.5.4.1 Features from ordinal patterns distribution

From the ordinal patterns probability distribution pπ, we compute the following features

1. the normalized permutation entropy (HS[pπ]),

2. the statistical complexity (CJS[pπ]), and

3. the Fisher information measure (F [pπ]).

These features are information theory quantifiers that have already been used

as significant measures for the proper characterization of the underlying time series

dynamical behavior [Rosso et al., 2007a; Zhang et al., 2008; Kulp and Smith, 2011;

Tang et al., 2013; Aquino et al., 2015; Gonçalves et al., 2016; Aquino et al., 2017;

Ribeiro et al., 2017].

Permutation entropy Following the initial purpose of Bandt and Pompe [2002], the

information quantifiers are calculated from the distribution pπ for all D! permutations

π of order D.
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Since pπ is defined on the permutations of neighboring values, the authors pro-

posed the permutation entropy, based on the classical entropy of Shannon, which is

defined as

H[pπ] = −
D!
∑

t=1

p(πt) log p(πt), (3.14)

where 0 ≤ H[pπ] ≤ logD!. The permutation entropy, equivalently to the Shannon

entropy, is a measure of uncertainty associated to the process described by pπ [Aquino

et al., 2017]. Lower values of H[pπ] represent an increasing or decreasing sequence

of values in the permutation distribution, indicating that the original time series is

deterministic. On the other side, high values of H[pπ] indicate a completely random

system [Bandt and Pompe, 2002].

Normalized permutation entropy The maximum value for H[pπ] occurs when all

D! possible permutations have the same probability of occurring, which is the case for

the uniform distribution pu of permutations. Thus, Hmax = H[pu] = logD!, where

pu = {1/D!, . . . , 1/D!}. [Zunino et al., 2012].

Rosso et al. [2007a] defined the normalized Shannon entropy, from the permuta-

tion entropy case, as

HS[pπ] =
H[pπ]

Hmax

, (3.15)

where 0 ≤ HS[pπ] ≤ 1.

Statistical complexity Another statistical measure that can be computed from the

ordinal patterns probability distribution pπ is the statistical complexity. While the

entropy gives the notion of the uncertainty of a system, spaning the extremes of perfect

predictable to completely randomness, the statistical complexity is used to represent

the uncertainty between those extremes. Defined by Lamberti et al. [2004], this measure

presents a different perspective regarding the knowledge of some underlying process,

capturing the relationship between the dynamical components of a system, such as

determinism and randomness, giving the idea of the disequilibrium between them.

Based on the Jensen-Shannon divergence JS between the associated probability

distribution pπ and the uniform distribution pu, i.e., the trivial case for the minimum

knowledge from the process, the statistical complexity is given by

CJS[pπ] = QJS[pπ, pu]HS[pπ], (3.16)

where pπ = {p(π)} is the ordinal patterns probability distribution, pu is the uniform
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distribution over {1, 2, . . . , D!}, and HS[pπ] is the normalized Shannon entropy, as

previously described.

The disequilibrium QJS[pπ, pu] is given by

QJS[pπ, pu] = Q0JS[pπ, pu] (3.17)

= Q0

{

S

[

pπ + pu
2

]

− S[pπ] + S[pu]

2

}

, (3.18)

where S is the Shannon entropy measure. Q0 is a normalization constant, given by

Q0 = −2
{(

D! + 1

D!

)

ln(D! + 1)− 2 ln(2D!) + ln(D!)

}−1

, (3.19)

which is equal to the inverse of the maximum value of JS[pπ, pu], so 0 ≤ QJS ≤
1 [Aquino et al., 2017; Rosso et al., 2007b].

Fisher information Following the characterization of distinct dynamics from the or-

dinal patterns probability distribution pπ, the Fisher information is a measure able to

capture the concentration of a given distribution. Contrary to the Shannon entropy,

that gives a notion of the uncertainty of a system by measuring the global spreading

of the distributions, the Fisher information is considered to have a locality property

because it considers the differences among consecutive probabilities within the distri-

bution [Sanchez-Moreno et al., 2009; Rosso et al., 2015].

The Fisher information for the discrete case is given by

F [pπ] = F0

D!−1
∑

t=1

(
√
pt+1 −

√
pt)

2 , (3.20)

where F0 is a normalization constant defined as

F0 =

{

1 if pi∗ = 1 for i∗ = 1 or i∗ = N and pi = 0, ∀i 6= i∗,

1/2 otherwise.
(3.21)

By measuring these local changes, the Fisher information quantifier increases as

the density is more concentrated [Sanchez-Moreno et al., 2009]. For instance, for a

distribution with density concentrated at a single value, F [pπ] ≈ 1, while H[pπ] ≈ 0.

3.5.4.2 Features from ordinal patterns transition graph

From the ordinal patterns transition graph Gπ we extracted the following set of features
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1. number of edges (NE),

2. normalized Shannon entropy of edges weights distribution (HS[Ew]),

3. statistical complexity of edges weights distribution (CJS[Ew]), and

4. Fisher information of edges weights distribution (F [Ew]).

Ew is the distribution of edges weights from the ordinal patterns transition graph.

Once we have the graph representation of the transition between patterns, there

are several possible features to be computed. For instance, Ravetti et al. [2014] con-

struct their metrics from the nodes degree distribution, but this requires a large number

of vertices to be relevant, which is not our intention, since this leads to the need for a

large D, increasing the computational time for execution. On the other hand, following

the studies of Zhang et al. [2017], Borges et al. [2019a], and Olivares et al. [2020], we

focus on the features that represent the transitions themselves, which are related to

the graph edges.

Number of edges Since the edges of Gπ represent the occurrence of transitions

between consecutive patterns, the number of edges is an important indicator of the

time-series dynamics. For instance, as the randomness of a process increases, it also

increases the chances for all possible transitions in the graph to occur. The number of

edges is computed by

NE = |E[Gπ]|. (3.22)

Information theory quantifiers from edges weights distribution Similarly to the

features computed from pπ, we calculate the same information theory quantifiers from

edges weights of Gπ. These are the normalized Shannon entropy of edges weights

(HS[Ew]), the statistical complexity of edges weights (CJS[Ew]), and the Fisher infor-

mation of edges weights (F [Ew]).

In general, the feasibility of using those features for the characterization of time

series dynamics, such as distinguishing noisy, chaotic and deterministic behaviors,

has already been proven by literature [Rosso et al., 2007a, 2013; Aquino et al., 2015;

Gonçalves et al., 2016; Rosso et al., 2016; Aquino et al., 2017; Ribeiro et al., 2017].

However, to assure their reliability, the length n of the time series must be long enough

so the sampling in the D! space of patterns is representative, i.e., n ≫ D!. Among

other problems, this avoids missing patterns, when the time series is not long enough

so all the possible patterns can be observed [Rosso et al., 2012]. A typical value used in

literature is D = 6, requiring the length of time series must be large, usually n ≥ 105.
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Thus, in this work it is given an important attention to the features extracted from the

ordinal pattern transition graph, which can achieve significant results for small values

of D and, consequently, a smaller length of time series is required.

In Section 5.5 we present a novel feature, named probability of self-transitions

(pst), extracted from the ordinal patterns transition graph, which consists of a valuable

information for distinguishing different time series dynamics. However, before that,

in the following sections we present methods for the interpretation of the ordinal pat-

terns transformations and their features. In addition, we discuss some challenges and

limitations with these strategies.

3.6 Interpretation of Bandt-Pompe’s method

In the following sections, we present a general discussion on the interpretation of the

ordinal patterns transformations and an analysis of distinguishing time series dynamics

with the causality complexity-entropy plane.

3.6.1 Interpretation of the resulting transformations

After the aforementioned ordinal patterns transformations, it is possible to identify

different aspects on the resulting representations, which are related to the dynamics

of their underlying time series. Figure 3.9 illustrates these transformations with ex-

amples of time series from the well-known Synthetic Control3 dataset [Alcock et al.,

1999]. This dataset is composed by 600 synthetic generated time series, divided in

six different classes, each of them following a distinct control chart patterns: normal,

cyclic, increasing trend, decreasing trend, upward shift, and downward shift [Alcock

et al., 1999]. Each time series has a length of 60 data points, and all values normalized

between [−2, 2]. Figure 3.9a illustrates two time series following the normal dynamic

(class 1), which is constructed by random generated numbers, and the cyclic dynamic

(class 2), which are random numbers plus a sinusoidal signal.

Although these time series were both constructed from the same random dynam-

ics, the time series of class 2 represents a distinct dynamics by adding a deterministic

sinusoidal component, composing a new mixture dynamics. Figures 3.9b-e illustrate

the ordinal patterns probability distributions and transition graphs from these two

time series, constructed with an embedding dimension D = 3 and an embedding delay
3The Synthetic Control dataset is part of the UCR time series classification archive [Chen et al.,

2015; Dau et al., 2018], it is available at http://timeseriesclassification.com/description.p

hp?Dataset=SyntheticControl.
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Figure 3.9. Illustration of (a) two time series samples from the (1) normal class and (2)
cyclic class of the Synthetic Control dataset [Alcock et al., 1999], and their ordinal patterns
transformations: the ordinal patterns (b) probability distribution and (c) transition graph
of the class 1, and (d) probability distribution and (e) transition graph of the class 2. Both
transformations were constructed with embedding dimension D = 3 and embedding delay
τ = 1.

τ = 1. For the normal time series, by following a pure random behavior, we can observe

a more uniform distribution among the D! patterns, which can be seen in Figure 3.9b,

than the distribution of patterns from the cyclic time series, in Figure 3.9d. It is impor-
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tant to remember the condition n≫ D!, which establishes that the time series length

n must be long enough, so all patterns have the opportunity to occur, and the behavior

be better identified [Rosso et al., 2012]. However, even for n = 60 in this dataset, we

can see the most deterministic behavior from the cyclic time series results in a more

concentration of ascending and descending patterns, 123 and 321, respectively.

With respect to the ordinal patterns transition graphs for the normal and cyclic

classes, Figures 3.9c and 3.9e, respectively, the same behavior can be observed in the

edges weights of the resulting graphs. While for the normal random class the edges

weights are uniformly distributed among the transitions between vertices, for the cyclic

class the transitions are more concentrated between the most frequent patterns. Thus,

the weights of the loop edges between 123 and 321 patterns are higher than for the other

transitions. Another distinction between the two graphs are the number of transitions

between patterns. Given the concentration of ascending and descending transitions,

the rest of transitions are less frequent and, consequently, the transitions among them.

3.6.2 Causality Complexity-Entropy Plane

Both normalized Shannon entropy and statistical complexity measures are quantifiers

from information theory that are suitable to extract knowledge regarding the dynamic

behavior of a given process. With the normalized Shannon entropy it is possible to

measure the amount of uncertainty one may have from the process, ranging from the

certain prediction of the possible values to the maximum uncertainty (uniform distribu-

tion) [Lamberti et al., 2004]. The statistical complexity measure permits to reveal some

details of the dynamics of the process, discerning among different degrees of periodicity

and chaos [Rosso et al., 2007a].

By the application of those measures to evaluate the associate ordinal pattern

probability distribution from a given time series it is possible to extract characteristics

from their dynamics and distinguish between noisy time series and those with some

sort of dynamics. Rosso et al. [2007a] proposed the utilization of these measures from

the ordinal patterns distribution (pπ) to distinguish among different behaviors of time

series. For this, they proposed the Causality Complexity-Entropy Plane (CCEP), that

is a 2-dimensional metric space built by the statistical complexity CJS[pπ] as the y-axis

and the normalized Shannon entropy HS[pπ] as the x-axis.

An important characteristic of the CCEP is the localization of regions in the

plane where reside time series with specific dynamical behaviors. For instance, as

pointed out by the authors, the method permits distinction between deterministic,

stochastic, and chaotic time series, as well as the placement for different noisy time
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series. The authors also showed that, for different values of HS and order D, the

statistical complexity measure ranges between a minimum and maximum values (cf.

Rosso et al. [2007a]).

More details and examples of the CCEP for different time series dynamics is

presented in Section 5.2.2.

3.7 Conclusions

This chapter presented introductory concepts for time series, discussing some models

for better describing the challenges presented in the data of CoIoT scenarios. We also

presented some classical time series representations, which are obtained by the transfor-

mation of the time ordered data onto a novel domain. By following a discussion of the

best time series representation for CoIoT, the chosen ordinal pattern transformations

were presented. We showed how this novel representation can be used for capturing

time series dynamics and suggested a set of features that can be used for its numerical

analysis. Finally, some issues and limitations of the ordinal patterns representations

are presented, leading to our contributions towards their mitigation.
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Chapter 4

Sensing in the Collaborative

Internet of Things

The CoIoT is helping with a considerable increasing in the amount of IoT data, but

also bringing several new challenges. An important challenge is to search for and select

a correct and reliable sensor when there is no such description or when it is imprecise.

In this chapter, we present a strategy for dealing with this issue of searching for a

specific sensor in the IoT. In Section 4.1 we present a contextualization that motivates

our work. In Section 4.2, we briefly discuss the main efforts in sensor search and

selection strategies. In Section 4.3, we investigate the properties of sensed data in the

collaborative IoT, and in Section 4.4 we present our proposed strategies to search for

a time series within the CoIoT scenario, based on the query by content concept, which

deals with its data uncertainties and challenges. Section 4.5 presents our experiments

with real sensed data, in order to evaluate the feasibility and limits of our approach.

Finally, in Section 4.6, we present our conclusions and future research directions.

4.1 Introduction

Internet of Things (IoT) is much about exchanging and analyzing a large amount of

unstructured and heterogeneous data, collected from different sources [Miorandi et al.,

2012; Gubbi et al., 2013]. Unstructured and heterogeneous sensed data have different

characteristics and properties, which can be used to classify the collected data into

two broad groups: data that have a reliable service to represent its “reference data”,

and data that do not have. Examples of the former group are temperature, pressure,

humidity, wind speed and UV radiation that have their corresponding “reference” values

available at different Websites. Examples of the latter group are fine particulate matter,
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sound pressure level and concentrations of both organic compounds and metals in

sediment and tissue that are not readily available. Notice that once IoT devices become

more and more common, variables present in the latter group will start appearing in

the former one. In this chapter, we only consider variables belonging to the first group

that have reference values. Actually, the group with reference values represent variables

that typically the sensor technology is widely available due to its advances/cost or

importance for the society/particular users.

Regardless of the group, IoT devices are entities acting as providers and/or con-

sumers of data related to the physical world, with different computing capabilities and

resource limitations, ranging from small sensors to more powerful and complex systems.

Notice that IoT encompasses different technologies such as wireless sensor networks,

RFID tags and all sort of devices with embedded computing capability. However, our

focus is on the data obtained from those entities, rather than on the physical systems

aspects such as how the data was collected, processed and transmitted. From now on,

we opted to adopt the term “sensor” for those devices/things, as it can also be found

in the well-established literature of wireless sensor networks [Nakamura et al., 2007].

To deal properly with such massive data, a key feature is to have IoT services

to support automated reasoning, which heavily depends on a standardized format and

model for the collected data, i.e., a semantic description of its content and meta-

data [Miorandi et al., 2012]. However, as presented in Section 2.2, the Collaborative

Internet of Things (CoIoT) is a special case of IoT where most of their sensors will

be deployed by different owners, generally common users, and for different purposes.

In this scenario, the collaborative aspect comes from the fact that users make their

data freely available by setting them as public. As a consequence, data privacy is not

a concern, which might not be a problem for the kind of data at hand, whereas for

other applications, security issues related to the IoT domain are typically a serious

issue [Sicari et al., 2015].

Thus, while the CoIoT is helping to increase considerably the amount of IoT

data, it also brings several new challenges, being one of them the data quality. For the

important challenge of searching and selecting a correct and reliable sensor in IoT, the

main research questions that arises are:

1. How reliable are the sensed data available in IoT and which aspects impact their

accuracy?

2. Is it possible to combine sensed data from different sensors in order to improve

the data quality?
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In this chapter, we characterize the properties of real sensed data in the IoT,

potentially contributed by different sources, including sensors from general users, i.e.,

the CoIoT. We show that, in order to safely use data available in the IoT, it is necessary

a filtering process to increase their reliability. In this direction, we propose a new simple

and powerful approach that helps to select reliable sensors, exploring collaborative

filtering [Adomavicius and Tuzhilin, 2005]. We tested our method for different types of

sensed data and the results show that the proposed method is very effective to select

reliable sensors, regardless if they are part of a controlled set of sensors or not.

4.2 Related work

There are at least two aspects to consider when we study sensing in the IoT environ-

ments. The first one is a proper sensor search and selection strategy to ensure the

desired sensors are found. The second one deals with the quality of these selected sen-

sors, since the behavior of a system depends completely on the observations it infers

about the environment, which is based on the sensed data.

4.2.1 Solutions for Sensor Search and Selection

The first aspect that may affect the quality of the sensing is how to correctly match

the expected data to the actually collected one. The description of the services plays a

key role to this, since the richer the service description is, the better its matching will

be [Rong and Liu, 2010] and, thus, it allows us to better interpret and understand the

service itself [Perera et al., 2014a]. To address this problem, the solutions should begin

by a proper description of the service functionalities [Miorandi et al., 2012].

As established by Mian et al. [2009], service description is an abstraction of

a service’s functionalities and characteristics. A simple and unambiguous method

for describing services is to use the Universal Description, Discovery and Integration

(UUID) [Leach et al., 2005]. However, even this method, that results in a practical

unique service identifier, has no relation to the service itself, i.e., it cannot capture the

service details in order to help users to choose the service according to its specificities,

nor the users will be able to compare two different services.

Zhang et al. [2010] point out that a proper service description is not enough to

suggest the best service to the users’ needs. Instead, to handle the characteristics of

IoT services, it is indispensable that the consumer be able to perceive the current state

of the service it will require. In other words, the service consumer should follow the

principles of context awareness [Dey et al., 1999] and be able to intelligently identify



85

and autonomously adapt to service changes. Thus, in addition of being aware of the

state of its users, an IoT-based system should also be able to take into account the

dynamics of the IoT services they are based on.

To address this question, Perera et al. [2014b] propose an ontology-based context

framework to allow a comprehensive sensor search and selection functionality that

best suits the user requirements. Once the system knows the user requirements and

priorities, it will be able to search for the appropriated sensors, rank them according

to the described preferences and select the number of sensors the user defines.

On the other hand, the service discovery, which fully depends on the service

description, still needs a special attention. Ververidis and Polyzos [2008] define service

discovery as a process that enables network entities to advertise their services, query

about services provided by other entities, select the most appropriate matched services

and invoke them. The goal of that work is to facilitate the use of the IoT platform

by automating the service operation and making a seamless integration between the

physical and the informational worlds [Wei and Jin, 2012].

There are several proposals to deal with the service discovery challenge in the

Internet domain. For the Web service discovery, the UDDI also provides a directory

service where entities can register and search for services [Clement et al., 2004]. The

WS-Discovery solution [Modi and Kemp, 2009] deals with the Web service discovery

tasks. Other examples of service discovery are the Apache River [Apache River Com-

munity, 2018], the advancement of the Sun’s Jini, Universal Plug and Play (UPnP)

protocol [UPnP Forum, 2011], Service Location Protocol (SLP) [Guttman et al., 1999]

and the Bluetooth Service Discovery Protocol [Bluetooth SIG, 2010]. However, in

the IoT scenario, there are more challenges to be solved than simply applying those

strategies, as discussed above.

Wei and Jin [2012] also state that context-aware service discovery approaches

should be used to provide, besides autonomous adaptation, the ability to deal with the

uncertainties and temporal contexts of IoT. Rambold et al. [2009] highlight that an

autonomic service discovery approach should consider the possibility of monitoring a

service and, in case it is not available (because of a service failure, for instance) or its

description is outdated, to discover a service replacement. Rong and Liu [2010] present

a survey and classification of the main discovery approaches for context-aware Web

services.
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4.2.2 Solutions for the Quality of Sensing in IoT

Besides the previously mentioned efforts about strategies for searching and selecting

one or more sensors, considering specific contextual information from them, the current

state of the art of a collaborative IoT environment is still far from providing complete

information available. For instance, the most common pieces of information available

from a sensor platform and middleware for an IoT application are the sensor location,

sensor type, keywords and the data they generate. Some examples of these platforms

are the Linked Sensor Middleware (LSM) [Phuoc et al., 2011], the Global Sensor Net-

works (GSN) [Aberer et al., 2007], the Microsoft SensorMap [Nath et al., 2007], the

Thingspeak platform, among others.

To properly search for and select a desired sensor, the designer of an IoT system

must consider those pieces of information and the collected data itself, including its

quality. This means that, once a sensed data is given, it will be necessary to analyze

its behavior and detect if this is the desired data, i.e., if this data is similar to the

expected data generated by a correct sensor (reference value). This can be useful for

both searching for a desired sensor and determining which sensor to select when a set

of sensors is available.

In general, the sensed data will be used in context-aware systems [Dey et al.,

1999], and, thus, the quality of the sensed data can be compared to the Quality of

Context (QoC) concept. Buchholz et al. [2003] define QoC as any information that de-

scribes the quality of information used as context information. They also establish the

differences between QoC and Quality of Service (QoS), which refers to any information

that describes how well a service performs, and Quality of Device (QoD), which means

any information about the devices’ technical properties and capabilities. According to

those definitions, they propose the following QoC parameters to measure the quality of

a context[Buchholz et al., 2003]: precision, probability of correctness, trustworthiness,

resolution and up-to-dateness.

The precision of the sensed data is related to how the sensed data reflects the

current reality of the physical phenomenon. Probability of correctness denotes the

probability that a given data is correct. Trustworthiness is similar to the probability

of correctness, but it is used to rate the quality of the entity which generated the data.

Resolution denotes the information granularity, and up-to-dateness describes the age

of the data.

Li et al. [2012] extend the QoC definition for pervasive environments. They

investigate the challenges in providing data quality in these environments and propose

three metrics to quantitatively observe the quality of these data and their data sources:
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currency, availability and validity. Currency is related to the up-to-dateness metric

above, but it represents the temporal utility of the data, from the moment it is created

until is useless. The availability is more concerned about the capability of an entity

to generate data. Finally, the validity is defined by a set of rules that can be used

to validate the sensed data according to the previous knowledge about the expected

properties of the data.

Despite the fact that all these metrics asses data quality, the current collaborative

IoT environments suffer from a lack of information about their services, which can

impact the correct analysis of their data and sources. In general, there is neither

a precise description about the data a sensor generates nor the functionalities they

provide, nor a metadata about the state of these sensors. Furthermore, we can not

expect to have a different scenario in the short term since this would probably call for

a standardization effort in that case. Thus, it is necessary to investigate this current

scenario and analyze possible solutions to improve the reliability of IoT services to be

deployed.

In that direction, Sicari et al. [2014] propose an architecture to ensure both the

security and the quality of IoT data. The main aspect in that work related to our

discussion is that the collected data is first processed and analyzed to extract relevant

information about it (quantitatively) and from its sources. The resulting information

becomes its metadata.

In our work, we consider a previous step before employing the sensed data, since

in the collaborative IoT we can not rely on the information obtained from sensors and

their services. More specifically, we study the worst case scenario, where no information

about the data exists at all, and discuss a method to select the appropriate data to be

used. We perform our analysis and discuss our assumptions based on properties and

behavior we observe from the real data itself.

4.3 Characterization of the CoIoT data

The study of the properties of the sensed data in CoIoT may be very useful to define

strategies to deal with sensor data uncertainties. To investigate that, we collected and

analyzed public data from real sensors deployed in a city-wide area. In this section we

study the properties of that sensed data and present two algorithms to improve their

reliability, establishing a proper sensor selection and refinement of the sensed data.

In the following analysis, we consider two datasets, both collected from a region

around London, UK, extracted from a collaborative IoT. The first dataset includes only
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temperature sensors, i.e., sensors in which the temperature tag was included in their

descriptions. Note that this procedure may not consider some temperature sensors

whose description does not include this tag. The second dataset includes all collected

sensors, without any sort of filtering. We were able to collect data for temperature,

humidity, pressure, wind speed, and more specific sensors, such as binary sensors that

indicate the turn on/off of lights and watts consumption.

Those datasets will allow us to assess the behavior of the sensed data in a con-

trolled environment and, then, relax this criterion to include different types of data.

The parameters of these collections are detailed in Table 4.1. We also collected ref-

erence values from conventional weather forecast services. This reference was used to

select appropriate temperature sensors (Dataset 1). For this particular case, we were

interested in outdoor temperature data. To select those sensors, we compared data

generated by sensors and data generated by the weather forecast service (reference

service) computing the correlation coefficient among them.

The selection of a reference service concerns the reliability we should have on the

data generated by that particular source. Obviously, to determine how trustworthy a

service is, it is necessary a previous knowledge about both the sensing phenomenon

itself and the corresponding reference values. For our study, it is easy to find a reliable

reference service for our data type. However, for other data types, we may use the

reputation of the related service to assess its reliability. In this sense, some criteria

already discussed here can be used in this assessment, such as the precision of data

generated, probability of correctness, trustworthiness and availability [Dey et al., 1999].

Table 4.1. Parameters for gathering data. Samples were collected from the region near
London, UK, at different moments. The common parameters describe the intervals used for
the data analysis.

Common Parameters

Location London, UK
Coordinates lat. = 51.53, lon. = −0.10
Collection interval (min) 5
Range intervals (distance from coordinates in km) 10–1000
Reference weather service Forecast.io

Dataset 1

From 08 May 2014 14:05
To 12 May 2014 08:35
Total of samples ≈ 1070

Dataset 2

From 07 October 2014 18:55
To 13 October 2014 12:40
Total of samples ≈ 1500
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We considered the following five options of weather forecast services as our refer-

ence: Forecast.io1, Open Weather2, Weather Underground3, World Weather Online4,

Yahoo Weather5. As shown in Figure 4.1, all weather forecast services were similar

in the period of the analysis. We have chosen the Forecast.io service as our reference

data, since it is close to the average merged sample, with a Mean Squared Error (MSE)

of 0.0685161 for Dataset 1, and 0.1571421 for Dataset 2.
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Figure 4.1. Comparison between five possible reference services and the average merged
sample, for the (a) Dataset 1 and (b) Datasets 2.

Notice that IoT scenarios will comprise a massive amount of unstructured and

heterogeneous data, leading to different data classes, which have their own character-

istics, boundaries, trends and patterns. As already discussed, in this work, we only

consider variables belonging to the group that has reference values. The process of

suggesting a reference value for variables that do not have a reference data service

promptly available is still an open issue and will be addressed in the future work.

In this work, we analyze the data class with a reference service by taking as

our case study a single and controlled variable: weather data. This data class has

been studied at a great extent in the literature of sensor networks. Furthermore, it

exemplifies the sort of sensing data we can find several reliable weather forecast services
1Forecast.io weather service is now Dark Sky, it’s available at https://darksky.net/forecast.
2OpenWeather service is available at https://openweathermap.org.
3Weather Undergound is available at https://www.wunderground.com.
4World Weather Online is available at https://www.worldweatheronline.com.
5Yahoo Weather is available at https://www.yahoo.com/news/weather.
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to represent our reference data. For different and more specific data classes, it is not

possible yet to obtain a reference as simple as this. For those cases, we need a better

understanding about the corresponding classes and their features.
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Figure 4.2. Reference data samples for different types of data (a) temperature, (b) pressure,
(c) humidity and (d) wind speed (Dataset 2).

We also collected four different types of data from Forecast.io weather forecast

service: temperature, pressure, humidity and wind speed. Figure 4.2 illustrates the

time series behavior of the obtained samples.

4.4 Sensor search and selection in IoT

Based on this characterization of CoIoT data, we designed algorithms for creating sens-

ing services in the current collaborative IoT environments, establishing two directions:

A) Sensor search and selection, and

B) Sensor refinement.

In the following sections we give more details on these strategies.
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4.4.1 Sensor Search and Selection

To search for a real sensor data, we rely on the public available data from Xively6,

a popular collaborative IoT platform. Through that Web service, users can make

available their sensor readings to the cloud, directly from the embedded devices, collect

data using a common API, and read and manage data from a remote application or

a Web browser. In the Xively platform, the sensor data can be grouped into blocks

called feeds, each one having the following attributes: feed ID, tags, status, description,

location (e.g., name of city or coordinates) and data streams. A data stream is the

sensed data obtained from a sensor and is described by its data stream ID, tags, current

value, min and max values and the unit of the data generated. In some cases, not all of

those pieces of information are filled by the sensor owners or, when they are provided,

they are not precise.

Searching for the desired sensors using the Xively REST API is simple and can

be accomplished through a Web browser, such as the following example:

http://api.xively.com/v2/feeds.json?

key=XIVELY_API_KEY&lat=51.53&lon=-0.10&

q=temperature&distance=50&status=live

In this example, we are searching for sensors located in a range of 50 km from the

coordinates of London, UK, that have in their description the tag “temperature” and in

which the status is live, meaning the sensor is actually generating data. As we can see,

the Xively query above is very simple and only contains a tag and coordinates. This

means that the sensed data can be different from what we are looking for. Besides, the

result does not include context information about the data themselves, which can lead

to a wrong sensor selection, impacting the quality of the sensed data.

For example, Figure 4.3 shows different sensor data collected for temperature.

While the blue dashed line (Sensor 1) means a sensor reading for an outdoor tempera-

ture, the red dotted line (Sensor 2) corresponds to a sensor reading for the temperature

of a water tank. For this specific case, the data owner filled the description for the

temperature data, but this is not the general case. The black solid line represents our

reference data. This exemplifies the need for a specific sensor selection strategy for this

kind of sensed data.

In our case, we want to select sensors measuring temperature, located at a given

range from a given coordinate, but that their temperature corresponds to similar con-

ditions of the outdoor environment. Since there is no way to specify this requirement in
6The Xively IoT platform is now owned by Google, and its services is subject to new conditions.

The new service is available at https://cloud.google.com/solutions/iot.



92

1
0

2
0

3
0

4
0

5
0

04:46
2014−05−09

18:40
2014−05−09

08:33
2014−05−10

22:26
2014−05−10

12:20
2014−05−11

02:13
2014−05−12

Timestamp

T
e
m

p
e
ra

tu
re

 (
°C

)

Reference Sensor 1 Sensor 2

Figure 4.3. Different sensor readings for the “temperature” tag, but with different meanings
(Dataset 1).

the search parameters, the application must infer, according to the data value, whether

it could be generated by a reliable sensor or not.

It is clear the difference between reliable and unreliable sensor data. A reliable

sensor generates data more correlated to the reference data, and can be a trusted

source of the temperature, in our example. Thus, if the reference corresponds to the

temperature of the outdoor environment, a trusted sensor data will be the one that

is somehow influenced by the environment temperature variation. This influence is

measured by behavior similarities among the two sensed data.

For our first analysis, we consider the statistic measure of the Pearson’s sample

correlation coefficient (r) between the reference data and the collected data from the

sensors. The formula for r is described in Equation 4.1,

r =

∑n

i=1(Xi − X̄)(Yi − Ȳ )
√

∑n

i=1(Xi − X̄)2
√

∑n

i=1(Yi − Ȳ )2
, (4.1)

where Xi is the ith value of the reference data, Yi is the ith value of the sensor data to

compare, and X̄ and Ȳ are their sample mean, respectively. The value of r can vary

between [−1, 1], and the more correlated two samples are, the closer to one is |r|.
For the example of Figure 4.3, the correlation coefficient between the outdoor

Sensor 1 and the reference data is r = 0.8, and for the particular water tank tem-

perature Sensor 2, r = −0.04, which can indicate that this is a good metric to filter
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trusted sensors in a given set. Figure 4.4 depicts a scatter plot that summarizes the

correlations between the reference data (x-axis) and the cited sensors.
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Figure 4.4. Scatter plot between the reference data (x-axis) and (a) the correlated Sensor
1; and (b) the uncorrelated Sensor 2 (Dataset 1).

However, the correlation coefficient is not the only parameter to indicate whether

a sensor is reliable or not. For example, consider Figure 4.5, which represents the

analysis of the correlation coefficient between two naturally uncorrelated data samples,

our temperature reference data and a carbon monoxide (CO) sensor, from Dataset 2.

Since the correlation coefficient r does not consider the scale of the compared data (see

Equation 4.1), even if the magnitude of the samples are very apart, the correct values of

r will depend on the number of considered samples. For the case of Figure 4.5b, we can

observe the increasing of r up to 0.9255456, when we have only 200 samples. After that

point, the value of r tends to decrease, and with 892 samples we have r = 0.3539141.

Thus, if we consider a sensor to be reliable, in our case we would need a correlation

value r = 0.8. To assume that the sensor is unreliable, we would need at least 224

samples.

Notice that we can not depend on the amount of samples we have, as stated before

in Section 4.2.2, and, thus, we need to include in the sensor selection strategy more

knowledge about the data we are dealing with. As proposed by Li et al. [2012], we also

consider a set of validity rules V = {υi, . . . , υl} sensors must satisfy to be considered

reliable. The data validity is a metric based on the estimation that the observation,

according to the specificities of each problem, does not deviate from an acceptable
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range, in comparison to a known and expected behavior for that data. For example,

in London, UK, the average maximum temperature between June and September is

around 23 ◦C whereas the minimum is 11 ◦C.
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Figure 4.5. (a) Scatter plot between a temperature and a carbon monoxide sensor; and (b)
the analysis of its correlation coefficient when the number of samples increases (Dataset 2).

Algorithm 4 summarizes this sensor selection strategy considering the aforemen-

tioned issues. It is important to emphasize that the readings must be adjusted, since,

in a given time, a sensor might fail sending its readings, and this gap can be a problem

in the computation. In the algorithm, we adjust this by computing new vectors s∗

and r∗ in which their values correspond to the entries that occur in both sensor and

reference readings, respectively, i.e., there are no null values (λ) for both vectors.

4.4.2 Sensor Refinement

The correlation coefficient and the validity rules seem to be reasonable metrics to

be used as a first strategy for sensor selection, to filter the sensors that best fit our

purposes. However, in order to safely use all data from these sensors, we still need to

consider some issues. For instance, consider the example of Figure 4.6, from Dataset

1, which illustrates the time series and scatter plots between two sensed data and a

reference data. Even with a relatively high correlation between the sensors and the

reference, r = 0.777395 for Sensor 1 and r = 0.864393 for Sensor 2, the reading values

given by the sensors are systematically higher than that provided by the reference.

For the case of Sensor 1, apparently the temperature values follow the increase of the
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ALGORITHM 4: SensorSelection

Input: Sn×m matrix of time series for n sensors with m samples each, a vector
r = {r1, . . . , rm} of a reference time series, a correlation coefficient limit
ρ ∈ [−1, 1], and a set of validity rules V = {υ1, . . . , υl}.

Output: A set R of reliable sensors.
1 n ← rows(S);
2 m ← cols(S);
3 R ← ∅;
// For each sensor entry in the time series matrix S.

4 for i← 1 to n do
// Adjust the valid readings among the reference and the sensor.

5 s∗ ← { si,j | (si,j 6= λ) and (rj 6= λ), 1 ≤ j ≤ m };
6 r∗ ← { rj | (si,j 6= λ) and (rj 6= λ), 1 ≤ j ≤ m };

// Compute the correlation coefficient between s∗ and r∗.

7 ρ∗ ← cor(s∗, r∗);
// The correlation satisfies the given limit?

8 if ρ∗ ≥ ρ ;

9 then
// The sensor entry satisfies all validity rules?

10 if
∧l

k=1 υk(s
∗) ;

11 then
12 R ← R∪ i;
13 end

14 end

15 end
16 return R

environment temperature, but present a slower response to its decrease. However, for

Sensor 2 readings, we can see that, while the measured temperature values are related

to the reference, i.e., there is an influence of the environment temperature in this

sensor, all its values are an order of magnitude higher than the reference values.

In Figure 4.6, when we analyze the temperature measured by Sensor 2, we can

argue that the given metrics can not ensure the reliability of this sensor data. Note

that the correlation coefficient (≈ 0.8 for this case) can represent an influence of the

environment temperature on the sensor, and can be considered acceptable for the

validity rules at the period of the reading. However, it gives no more information

about the correctness of the data, and how reliable the sensor is. We can not make

sure whether the temperature is really higher at that location or the data is coming

from an indoor sensor, which would explain that value.

On the other hand, when we look at the bigger picture, we can observe some

interesting patterns that can be used to handle this uncertainty. Figure 4.7a shows the

sensors and their data streams found in Dataset 1. As we increase the range (distance
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Figure 4.6. Time series (a1) and scatter plot (a2) analysis for a r = 0.777395 related sensor,
and time series (b1) and scatter plot (b2) analysis for a r = 0.864393 sensor (Dataset 1).

in kilometers from the central coordinate point), the number of available sensors (feeds)

and their data streams also increase. On average, a sensor provides approximately two

data streams (1.84). Applying the sample correlation coefficient r as a metric to filter

the considered trusted data, we have the results showed in the heat map of Figure 4.7b,

which represents the selected data streams when varying the range and the correlation

coefficient limit l. From the set of all data streams in a given range, we selected those

which give r ≥ l in comparison with the reference sensor data.

If we take those sensors considered reliable within a range of 50 km and the

correlation coefficient r ≥ 0.8, we have 14 sensors to handle. Figure 4.8a illustrates a

time series analysis of those sensors. Given the 14 reliable sensors, which we assumed

to be influenced by the environment temperature, ten of them are close to the reference

data, and four are dislocated by a given value ∆i, for each sensor i, considering the

value of the reference sensor.

Given a set R = {r1, r2, . . . , rn} of reliable sensors, let D ⊆ R be the subset of

sensors that are dislocated from the reference values, which we assume to be the correct

temperature value for that region at a given time t. Let us assume to be constant the

amount ∆i a sensor ri is dislocated from the reference sensor throughout time t. Thus,
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Figure 4.7. Analysis of the number of sensors found in Dataset 1. (a) Number of sensors
and their data streams found for different sensor search ranges (Dataset 1); (b) Heat map for
the number of data streams found when varying the range of the desired location area and
the correlation coefficient limit (Dataset 1).

the time series yi,t for each sensor ri can be defined as

yi,t = θt +∆iI[ri∈D] + εt, (4.2)

where θt is the reference sensor value at time t, εt ∼ N(0, σ2) is a Gaussian random

variable that represents an i.i.d. (independent and identically distributed) error with

expected value 0 and variance σ2 at t, and I[ri∈D] is a binary random variable, where

I[ri∈D] = 1 if the sensor ri belongs to the set D, or I[ri∈D] = 0, otherwise.

Based on that, we can define an estimation θ̂t of the value of the reference θt,

using Equation 4.2, as

θ̂t =
1

n

n
∑

k=1

(

yi,t − ∆̂iÎ[ri∈D]

)

. (4.3)

To estimate Î[ri∈D], we compute a pairwise-distance matrix Pn×n for the time

series of the correlated sensors, where each element pi,j1 ≤ i, j ≤ n, i 6= j, corresponds

to the average squared distance between the two time series of sensors ri and rj, and

is denoted by

pi,j = pj,i =
1

T

T
∑

t=1

(yi,t − yj,t)
2 , (4.4)

where T is the final time t in the time series.

Figure 4.8b illustrates the pairwise-distance between those 14 sensors, according
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Figure 4.8. Analysis of the time-series and pairwise-distances between 14 reliable sensors
with r ≥ 0.8 to the reference temperature data (Dataset 1). (a) Time-series analysis of those
14 reliable sensors; (b) Pairwise-distance between the time series of the reliable sensors.

to the computed values of P. We can see that most of the correlated samples have

a small distance among themselves, and a higher distance for the dislocated sensors.

Thus, sensors that have the median pairwise-distance above the average median of

them, the red straight line in Figure 4.8b, can be considered to belonging to D. In this

case, D = {r7, r9, r12, r14}.
The estimated value ∆̂i for each sensor ri dislocated from the non-dislocated

sensors can be denoted as the median of deviations from all the pairwise-distances

between this sensor and the others, i.e., for each row i of P, we can compute ∆̂i as
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follows

∆̂i = median(pi,j −median(pi,j)), 1 ≤ j ≤ n. (4.5)

This equation is a slight variation of the median absolute deviation, without the

absolute value computation, to adjust the correct value, positive or negative. For our

example, ∆̂7 = 11.7309425, ∆̂9 = 9.2068333, ∆̂12 = 9.8445421, and ∆̂14 = 11.8916635.

Algorithm 5 describes the necessary steps to compute the set D of dislocated

sensors and their dislocation values ∆i, ∀i ∈ D.

ALGORITHM 5: SensorRefinement

Input: Sn×m matrix of time series for n sensors with m samples each, and a set
R = {r1, r2, . . . , rn} of reliable sensors.

Output: Set D of dislocated sensors and vector ∆ of their dislocations from the
majority.

1 D ← ∅
2 ∆ ← {∆i = 0 | 1 ≤ i ≤ n}
3 m ← {mi = 0 | 1 ≤ i ≤ n}
4 Pn×n ← {pi,j = 0 | 1 ≤ i, j ≤ n}
// Compute the average squared pairwise-distance between each two sensors.

5 for i← 1 to n− 1 do
6 for j ← i+ 1 to n do

// Adjust the valid readings among the reliable sensors.

7 u ← { sri,k | (sri,k 6= λ) and (srj ,k 6= λ), 1 ≤ k ≤ m };

8 v ← { srj ,k | (sri,k 6= λ) and (srj ,k 6= λ), 1 ≤ k ≤ m };

9 pi,j ← pj,i ← mean((u− v)2)

10 end

11 end
// Compute the median pairwise-distance for each sensor.

12 for i← 1 to n do
13 mi ← median({pi,j | 1 ≤ j ≤ n})
14 end

// The limit to consider a sensor dislocated.

15 l ← mean(m)
// The dislocated sensors.

16 D ← {i | mi > l}
// Compute the dislocation ∆i for each reliable sensor.

17 for i← 1 to n do
18 ∆i ← median(pi,j −mi)
19 end
20 return (D,∆)

Considering the points mentioned above, we can argue that, for a sufficient large

number of sensors, if we observe a pattern between the correlated sensors, it is possible

to estimate the correct signal of the temperature at a given region. This is accomplished

by a collaborative filtering strategy [Adomavicius and Tuzhilin, 2005], assuming that
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most of the sensors in such a region have a higher tendency to be close to the correct

temperature value. Also, based on this assumption, we can estimate the deviation ∆i

of sensors that are a magnitude apart from the majority, to improve the quality of the

sensed data.

An important point to discuss regarding the benefits of the proposed strategy

is about the security concerns of the obtained data quality in the Collaborative IoT.

Coen-Porisini and Sicari [2012] present a detailed study of the problem of a malicious

sensor generating erroneous data, and, here, we emphasize two malicious behaviors:

(i) data is modified by a constant factor; and (ii) data is modified by the addition of a

random error, a noise.

In the first behavior, the sensor readings are apart from the correct data values

by a constant. In this case, the data signal still holds a reasonable correlation with

the reference signal, being, thus, selected as reliable. After the refinement step, their

values will be corrected according to the majority of sensors, by the collaborative

filtering strategy. For the second case, when the data is modified by a random noise,

it is presumable that, according to the magnitude of the noise increments, this signal

will be considered unreliable and invalidated, and, thus, it will not be used. This

occurs because it will not be correlated enough with the reference data, according to

the correlation limit established.

4.5 Evaluation of Our Approaches

In the first experiment we use Dataset 1, described in Section 4.3, which contains only

temperature data shared in the popular Xively collaborative IoT platform. We apply

Algorithm 4 to search and select the most reliable sensors in this dataset.

The parameters passed to Algorithm 4 are the matrix of all sensors found in

a range of 100 km from the coordinates of London, UK (see Table 4.1 for details),

the Forecast.io weather service as the temperature reference data, and the correlation

limit of r = 0.8. The validity rules for the class of temperature data were arbitrar-

ily defined, based on an empirical knowledge of the data behavior, according to the

following restrictions:

• The average temperature of the sampled data must be bounded by a factor of 2

from the average temperature of the reference data, i.e., 1
2
mref ≤ msmp ≤ 2mref ,

where mref and msmp are the average temperature values for the reference data

and the sampled data, respectively;
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• The maximum temperature value of the sample maxsmp can not be above the

bound of 4 times the average reference temperature, maxs mp ≤ 4mref ; and

• The minimum temperature value of the sample minsmp is lower bounded by a

factor of 4 from mref , minsmp ≥ 1
4
mref .

Figure 4.9 illustrates the pairwise-distance of the 22 selected sensors for this

computation. After selecting those sensors, which we assume to be reliable, we compute

the dislocation values ∆i for each sensor i applying Algorithm 5.
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Figure 4.9. Pairwise-distances for temperature sensors in a range of 100 km from the coor-
dinates of London, UK, in Dataset 1, considering only sensors with correlation r ≥ 0.8.

To validate our assumption that the combination of the readings for most of the

reliable sensors converge to a correct value of the measured data, i.e., the reference

temperature data, we estimate the temperature θ̂.

Figure 4.10 shows the estimation of the reference data, based on Equation 4.3.

Figure 4.10a shows the sensors that are 0.8 positive correlated with this reference,

resulting in an MSE = 2.244199. Figure 4.10b shows the same estimation process, but

relaxing the correlation criterion, considering all sensors with correlation coefficient

r ≥ 0.2 to the reference sensor, resulting in an MSE = 16.85198. As we can see, the

more correlated the sensors are with the reference, the better the capacity of estimating

θ̂ is. Figure 4.10 also shows that the estimation error increases as we consider more

unreliable sensors.

We did the same analysis for Dataset 2, but considering a broader range of data

classes. In this case, the goal is to select a desired group of sensors from a set of
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Figure 4.10. Estimation of the temperature θ̂ for two different correlation limits in a range of
100 km from the coordinates of London, UK, in Dataset 1: (a) for sensors with correlation r ≥
0.8 with MSE = 2.244199; and (b) for sensors with correlation r ≥ 0.2 with MSE = 16.85198.

heterogeneous classes of sensors. In this work, we consider selecting reliable sensors for

temperature, pressure, humidity, and wind speed.

For the temperature sensor selection, we considered the same steps and param-

eters of the previously mentioned experiment for Dataset 1. Figure 4.11 presents the

resulting pairwise-distances for the 18 sensors found in Dataset 2. It is important to

consider the time interval between collections, almost five months, to explain the differ-

ence in the number of detected sensors. In Figure 4.12, we have the estimation analysis

for these reliable sensors. For different correlation limits, r ≥ 0.8 and r ≥ 0.2, we have

the mean squared errors of 2.045454 and 15.63293, respectively, which are very close

to the results in the previous experiment.

These results show that the proposed method is a reasonable approach to select

reliable sensors, regardless of having a controlled set of sensors or not. Even when

mixing the available sensors with different data classes, the selection of the reliable

sensors gives a good approximation of the assumed correct temperature values.

For the next data classes, we considered the following parameters for Algorithm 4:

• For the pressure data, the correlation limit is defined as r ≥ 0.7, and the validity

rule ensures that the average pressure of the sample data is upper and lower

bounded by a factor of 4 from the average of the reference data.

• For the humidity data, we consider the correlation limit of r ≥ 0.65 and the

validity rules consider a valid data to be a maximum humidity value of up to
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Figure 4.12. Estimation of the temperature θ̂ for two different correlation limits in a range of
100 km from the coordinates of London, UK, in Dataset 2: (a) for sensors with correlation r ≥
0.8 with MSE = 2.045454; and (b) for sensors with correlation r ≥ 0.2 with MSE = 15.63293.

100% and the minimum not less than 0%.

• For wind speed, even with a correlation limit of r ≥ 0.5, only one sensor was

selected.

For the pressure data (Figure 4.13), we selected only three reliable sensors follow-
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Figure 4.13. Analysis of pressure data from sensors in a range of 100 km from the coordinates
of London, UK, in Dataset 2, considering a limit of r ≥ 0.7. (a) Pairwise-distances for pressure
sensors; (b) Estimation of the pressure, resulting in an MSE = 2.66978.

ing our approach with r ≥ 0.7, but the refinement was able to combine those sensors

and obtain an MSE of 2.66978. However, to the case of the humidity data (Figure

4.14), with a limit r ≥ 0.65, our approach was able to select only four reliable sensors,

and the MSE was in the order of 104.213.

For the wind speed data, Figure 4.15 shows the only sensor selected with a low

correlation coefficient r = 0.5206303 between it and the reference data. For this case,

there is no estimation of the correct value, and we must consider the readings of that
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Figure 4.14. Analysis of humidity data from sensors in a range of 100 km from the coordi-
nates of London, UK, in Dataset 2, considering a limit of r ≥ 0.65. (a) Pairwise-distances for
humidity sensors; (b) Estimation of the humidity, resulting in an MSE = 104.213.

sensor as our wind speed value.

In the experiments we conducted above for the second dataset, the number

of selected sensors was significantly lower than the number of temperature sensors

(Dataset 1). Thus, when the number of selected sensors, which provide the more reli-

able value, decreases, it is possible that there is no majority of sensors to converge to

the expected output of the given environment data. Thereby, our approach depends

on the number of sampled data, which we can not guarantee to occur. However, as
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Figure 4.15. Analysis of the single wind speed sensor, with r = 0.5206303, in a range
of 100 km from the coordinates of London, UK, in Dataset 2: (a) scatter plot between the
reference and this sensor; and (b) the time series analysis of its readings.

stated earlier, in this era of IoT and big data, we can expect to have more and more

data available in the future, and, if it is the case, makes our approach feasible.

In addition, on the majority of the selected sensors, the definition of the corre-

lation limit value is crucial to the proper execution of our strategy. It is clear that

the chosen correlation limit r directly impacts the number of selected sensors. As r

approaches 1, the expected number of sensors that generate a data signal highly cor-

related to the reference value decreases and, conversely, this number is expected to

increase when r approaches 0. However, it is also important to note that, even if the

number of selected sensors increases, due to the choice of r ≈ 0, the quality of the

sensor refinement algorithm will decrease, since it is expected that the mean squared

error between the fused signals and the reference signal increases.

The trade-off between increasing the number of selected sensors and decreasing

the MSE of their aggregation calls for a solution to determine the most appropriate

correlation limit r. The optimum value of the correlation limits, for a given data class

to be monitored, maximizes the number of selected sensors using the sensor selection

strategy (Algorithm 4), and, once aggregated using the sensor refinement adjustments

(Algorithm 5), results in the minimum mean squared error between them and the

reference signal for this data class. In the case of our experiments, the choice of r

was empirically determined by analyzing the selected sensors, and testing r in the
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reasonable range of 0.5 to 0.9.

4.6 Conclusions

Dealing with the uncertainties of the sensed data in a collaborative IoT scenario is a

new and important problem that must be considered before the development of systems

that can benefit from this data. The core of ubiquitous computing systems is based

on the knowledge they infer about the state of the physical environment and, thus, the

reliability of the sensed data will directly impact the decisions and context-awareness

of those systems.

In this chapter, we characterized the properties of the available sensed data from

real deployed sensors in the current collaborative IoT, for which we have a reference

value. We concluded that to use data available in the IoT safely, we need to perform a

filtering process followed by a refinement of the selected data to increase its reliability.

Thus, we proposed a simple and effective approach to select and refine the data from

reliable sensors by a collaborative filtering technique.

Our assumption is that the readings of most of the reliable sensors converge to

the correct value of the measured data. This hypothesis was validated through an

experiment using data collected from real deployed sensors. The results show that

the proposed method is a promising approach to select reliable sensors, regardless of

having a controlled set of sensors or not. Even when mixing the available sensors with

different data classes, the selection of the reliable data provides a good approximation

of the assumed correct values based on a reference sample.

When the number of selected sensors decreases, we may not have enough sensors.

The collaborative filtering technique can not be expected to converge to the correct

value of the given variable (in our example, environmental data). However, we can

expect to have more sensors available in the future (possibly in the order of hundreds

of millions) since we are entering a new era of computing technology with a powerful

presence of the Internet of Things, and, thus, this issue will probably be minimized for

different classes of sensor data.

As future work, we plan to extend our analysis of the properties of the sensed

data in the IoT and its different classes to better understand how the number of

sensors impacts the collaborative filtering strategy, and infer about its precision limits.

This analysis can help us determine the minimum subset of available sensors in the

collaborative IoT needed to assure the data quality.

In addition, an interesting point we plan to investigate is related to the het-
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erogeneity and limitations of IoT devices. Since IoT comprises different devices with

different capabilities, the data accuracy provided by such elements can be compro-

mised due to their limitations. Probably, the more limited the device is, the lower the

data accuracy will be. Thus, we intend to study how these limitations can be used as

another characteristic in the sensor selection strategy.

It is also very important to investigate how the lack of a reference sensor influences

the design of a solution based only on the analysis of the data itself. In that direction,

we would like to study some possible strategies and the corresponding costs to model

this as a mathematical/computational problem, such as an optimization problem, or

even as a problem of statistical inference.

Finally, another direction is to explore the potential of ubiquitous computing by

combining different data sources (e.g., humidity, rain precipitation, and even social

networks) to improve the data reliability and accuracy.
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Chapter 5

Learning time series dynamics via

ordinal patterns transition graphs

Strategies based on the extraction of measures from ordinal patterns transformation,

such as probability distributions and transition graphs, have reached relevant advance-

ments in distinguishing different time series dynamics. However, the reliability of such

measures depends on the appropriate selection of parameters and the need for large

time series. In this chapter, we present a method for the characterization of time series,

based on the probability of self-transitions, that is suitable for scenarios with short time

series, and that does not depend on the selection of parameters.

In Section 5.1, we introduce the problem and motivate our claim on the use

of the ordinal patterns transition graph for distinguishing time series dynamics. A

discussion of limitations and challenging aspects of the ordinal patterns transformations

is presented in Section 5.2. More details and a discussion on the properties of those

transition graphs are given in Section 5.3. Section 5.4 presents an analysis on the

forbidden and missing transition patterns, a special case of this type of graphs, and

Section 5.5 presents our proposed probability of self-transition measure. In Section 5.6,

we present our results for learning and distinguishing different time series dynamics.

Finally, Section 5.7 discuss our final remarks of this chapter.

5.1 Introduction

An essential initial step for any learning strategy is to properly understand the data.

When dealing with time ordered data, as presented in Chapter 3, an important aspect

to be concerned is their dynamics. With the knowledge of how a system evolves over

time, it is possible the development of better solutions, by understanding the underlying
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data generating process [Rosso et al., 2015; Gama et al., 2014]. However, there are few

studies of using dynamical aspects of time series for knowledge discovery, which is the

basis for several data mining strategies (e.g., classification, anomaly detection).

By following the cornerstone contributions of Bandt and Pompe [2002], the or-

dinal patterns transformations, detailed in Section 3.5, are a powerful tool for the

characterization of time series dynamics [Rosso et al., 2013; Aquino et al., 2015; Rosso

et al., 2016; Aquino et al., 2017; Ribeiro et al., 2017]. However, the feasibility of such

characterization depends on the proper choice of parameters and has some limitations

impacting on the clear separability between distinct time series dynamics.

Recent approaches to obtain knowledge about the time series dynamics consider

the creation of graphs based on the observed ordinal patterns of a given time series [Mc-

Cullough et al., 2015; Sorrentino et al., 2015; Kulp et al., 2016; Zhang et al., 2017].

These ordinal patterns transition graphs (Gπ) are constructed after the transformation

of a time series onto the set of ordinal patterns, taking into account the transitions

between consecutive patterns. As described in Section 3.5.3, each D! possible pattern

is a vertex in the graph, and a directed edge connects two vertices in the graph if they

appear sequentially in the time series.

The analysis of these graphs is often performed on their structure, by accounting

both graph measures and information quantifiers, which may require creating graphs

with a large enough number of vertices. For the case of Gπ, the number of vertices

depends on D. Thus, the reliability of such metrics may suffer from the same inherited

problems of the underlying ordinal patterns transformations. For instance, the range

6 ≤ D ≤ 10 may invalidate the strategy for small time series [McCullough et al., 2015].

Another challenge when dealing with strategies based on ordinal patterns transforma-

tions is that there is still no clear definition regarding the choice of the embedding

delay τ . This is also an aspect to consider when constructing the transition graphs,

since inappropriate values may obscure important characteristics of the phenomenon

under analysis [Zunino et al., 2012].

In this study, we present a novel method for the characterization of time series

dynamics based on the probability of self-transitions (pst), a measure extracted from

the graph Gπ. The main contributions of this work are the following:

1. we show that the pst measure is directly related to the temporal correlation of time

series, which is a valuable indicative of their underlying dynamics and adequate

to their proper characterization;

2. we advance the state of the art by providing a precise distinction among different

time series dynamics within those challenging regions in the plane, as discussed
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above, even for short time series. In our experiments, we use time series with

length n = 5 × 103, being necessary small values of D, in contrast to previous

research results that considered lengths from 215(≈ 3.2× 104) to 107, i.e., one to

four orders of magnitude of difference; and

3. we reduce the dependence of the ordinal patterns transformation on the selection

of the parameters. We assume small values of D and, in order to be independent

on the choice of τ , we propose evaluating the evolution of their behavior for

different time scales.

Furthermore, this strategy also aims to contribute in motivating the community

towards a broader applicability of the ordinal patterns transformation, being possible

to be used for several different domains, such as Medical Sciences, Engineering, Math-

ematics, Computing and Physics, where time series representing the dynamics of a

system must be characterized and better understood.

5.2 Limitations of Bandt-Pompe’s method

The effectiveness of using ordinal patterns for the characterization of time series has

already been largely discussed by many recent studies [Rosso et al., 2013, 2016; Ribeiro

et al., 2017; Rosso et al., 2007a]. These are strong results that have driven extensive

discussions in the literature. However, most of them are confined to theoretic problems

in areas such as physics and statistics. When trying to apply those strategies to a

broader domain, there are some issues that still hinder the achievement of similar

success. In the following, we conjecture that specific aspects of Bandt-Pompe’s proposal

and the current methods used to capture time series behaviors are responsible for

adding limitations to a wide applicability.

5.2.1 Strong dependence on parameters definition and time

series length

Strategies based on ordinal patterns transformations depend on the proper choice of

parameters D and τ . For instance, to assure the reliability of measures, the length n

of the time series must be long enough so the sampling in the D! space of patterns

is representative, i.e., n ≫ D! [Rosso et al., 2013; Zunino et al., 2012]. For practical

purposes, D is recommended to be within the interval between 3 and 7 [Bandt and

Pompe, 2002]. If this condition is not satisfied, it may lead to analysis of statistics

that are not consistent to the real time series behavior and the occurrence of missing
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patterns [Rosso et al., 2012]. Recall that the number of possible patterns grows with

D!. Thus, if the time series is not long enough, the absence of some patterns may

occur, but just due to its limited length n, not because these patterns do not occur

within the time series behavior. This effect also occurs on the derived transformations,

such as the probability distribution and transition graph transformations.

For instance, for large values of D, the constructed graph may have a large number

of vertices, up to D!. Thus, if the time series length is also not long enough, some of

these vertices may be wrongly absent. However, for the current strategies based on

ordinal patterns transformations, the best results are achieved when large values of

D are used. For instance, the range 6 ≤ D ≤ 10 has been suggested [McCullough

et al., 2015] for the extraction of representative behaviors from the constructed graphs.

This fact practically invalidates the application of those strategies for small time series,

which represent a severe limitation for many real-world scenarios.

Another challenge when dealing with ordinal patterns is the choice of the embed-

ding delay τ . The most suitable τ is domain specific, and inappropriate values may

obscure important characteristics of the phenomenon under analysis [Zunino et al.,

2012]. A common choice found in many studies is τ = 1. Although some of them

follow different strategies, such as using the first zero of the autocorrelation of the time

series [McCullough et al., 2015], there is still no closed strategy for choosing its value.

One of our contributions consists of a strategy to advance the applicability of

Bandt-Pompe’s method, being possible to be used even for short time series, in con-

trast to previous strategies. Moreover, the proposed method also presents minimum

dependency on the selection of parameters. We must consider small values of D and be

independent of the choice of τ . We accomplish this last requirement by comparing the

behavior of time series when evaluated as a function of the embedding delay τ , which

is better described later on.

5.2.2 Clear separability of time series dynamics within CCEP

The distinction of time series dynamics is not an easy task. For instance, because

they share several properties, the distinction between time series from chaotic and

stochastic processes is a hard task [Rosso et al., 2015, 2013; Ribeiro et al., 2017; Rosso

et al., 2007a; Zunino et al., 2012; Ravetti et al., 2014; Kulp and Zunino, 2014; Ye et al.,

2017]. The CCEP, presented in Section 3.6.2, has been successfully applied [Rosso

et al., 2013, 2007a] to effectively distinguish noise from chaos, by placing each type of

series at different locations in the plane. Figures 5.1a and 5.1b show the CCEP for

D = 3 and D = 6, respectively, in which we reproduce the scenario for the distinction
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of 27 chaotic maps and 15 colored random noises.

Table 5.1. Descriptions of the 27 chaotic maps used in the characterization [Rosso et al.,
2013]. They are arranged into three different groups, and each chaotic map may have one or
more dimensions. Each time series arising for these chaotic maps dimensions are defined in
text by the syntax “n-d”, where n = {1, . . . , 27} represents the number of the chaotic map and
d = {x, y, z} its respective dimension. More details regarding the generation of these maps
and their initial conditions can be found in Ravetti et al. [2014], including the supplementary
materials.

# Description Group Dimensions

1 Logistic map

Noninvertible maps

{x}
2 Sine map {x}
3 Tent map {x}
4 Linear congruential generator {x}
5 Cubic map {x}
6 Ricker’s population model {x}
7 Gauss map {x}
8 Cusp map {x}
9 Pinchers map {x}
10 Spence map {x}
11 Sine-circle map {x}

12 Hénon map

Dissipative maps

{x,y}
13 Lozi map {x,y}
14 Delayed logistic map {x,y}
15 Tinkerbell map {x,y}
16 Burgers’ map {x,y}
17 Holmes cubic map {x,y}
18 Dissipative standard map {x,y}
19 Ikeda map {x,y}
20 Sinai map {x,y}
21 Discrete predator-prey map {x,y}

22 Chirikov standard map

Conservative maps

{x,y}
23 Hénon area-preserving quadratic map {x,y}
24 Arnold’s cat map {x,y}
25 Gingerbreadman map {x,y}
26 Chaotic web map {x,y}
27 Lorenz three-dimensional chaotic map {x,y,z}

Total of time series 44

Altogether, we analyzed 59 time series: 15 random noises and 44 chaotic maps,

considering their dimensions. The chaotic maps are arranged into three different groups

(noninvertible, dissipative and conservative maps), and each chaotic map may have

one or more dimensions. Table 5.1 presents the list of maps, with dimensions in curly
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brackets. The random noises were created to have different levels of correlation between

points, defined by their power spectra f−k. Each noisy time series was generated

with n = 5,000 samples and the ordinal patterns transformation was computed as the

average of 10 runs with different seeds.

Figure 5.1a shows a version of the CCEP for D = 3, which is not sufficient for

distinguishing the time series by positions in the plane. Instead, larger values of D

(such as D = 6 in Figure 5.1b) are able to contrast different placements for them.

However, as the method requires larger values of D, it also requires longer time series.

The time series length to compute this plane is n = 105.

Considering the case for D = 6, the colored noises have a well-defined placement

in the plane, with intermediate values of CJS and, for the entropy, there is an inverse

relation between HS and the correlation degree k. The random time series, with lower

k, have larger entropy, while the more correlated noises, with higher k, present lower

HS. The general placement for the chaotic maps is close to the upper limits of CJS,

being straightforward to be distinguished from noises. However, there are a few chaotic

maps whose placement lies at the bottom right of the plane, with large HS and low

CJS, thus being very similar to random noises with small correlation degree k, hindering

their distinction.

This challenging region is highlighted by a dashed-line rectangle in the bottom-

right of Figure 5.1b. It comprises the colored random noises with k = {0, . . . , 1.75},
and chaotic maps: linear congruential generator (4-x), Gauss map (7-x), dissipative

standard map (18-x, 18-y), sinai map (20-x, 20-y), and Arnold’s cat map (24-x, 24-y).

Although the CCEP method is able to mostly distinguish noisy from chaotic time series,

these chaotic maps could be easily confused as noises. There is no clear separability

between those time series within the challenging region, so a distance-based algorithm

could not be applied to correctly make the distinction among them. Thus, another

contribution aimed with this work is to present a method for distinguishing different

time series dynamics, even within this region.

5.3 Properties of ordinal patterns transition graphs

The ordinal patterns representation was proposed focusing on its simplicity and fast

calculation. It was intended to enable the extraction of information measures from

time series that could have similar results of other well-known methods, such as the

Lyapunov exponent for chaotic systems [Wolf et al., 1985], but with a lower compu-

tational cost. Thus, once transition graphs are constructed from the ordinal patterns,
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some properties are directly inherited from that transformation. However, there are

specific properties that could be noted when comparing it with other classical graph

representations for time series.

5.3.1 Simplicity and fast calculation

The process of constructing transition graphs is very simple and fast. It only depends

on the number m = n − (D − 1)τ of ordinal patterns, where n is the time series

length, accounting the number of transitions in m− 1 steps. The transformation from

a time series into the set of ordinal patterns, in turn, depends on the length n of

the time series and the embedding dimension D. The time complexity to perform

this transformation is bounded by O(nD2), assuming the permutations are obtained

by sorting each sliding window by a simple sorting algorithm, such as selection sort,

in O(D2) and the embedding delay τ = 1 is the worst case. However, for practical

purposes, D is recommended to be small [Bandt and Pompe, 2002], 3 ≤ D ≤ 7, so the

sorting will take at most 7 elements, and the time complexity largely depends on n.

5.3.2 Robustness

Since transition graphs are created from ordinal patterns, the robustness in creating

this set is also inherited. This transformation is robust to the presence of observational

and dynamic noise, and also invariant with respect to nonlinear monotonous trans-

formations [Aquino et al., 2017; Rosso et al., 2007a]. Although losing the amplitude

of the original time series, it is still suitable for the analysis of experimental data,

avoiding amplitude threshold dependencies that affect other methods based on range

partitions [Zunino et al., 2012].

5.3.3 Scalability

With respect to the scalability of the transition graphs, we can make a comparison

with the visibility graphs approach. The main difference between Gπ and VG ap-

proaches [Lacasa et al., 2008; Luque et al., 2009] is the scalability of graphs. In VG

or HVG, each time series sample is mapped onto a vertex in the graph. Although this

transformation can be satisfactorily performed in terms of time complexity, it requires

a large space, which can be critical for long time series. Instead, the number of vertices

for a transition graph is given by the embedding dimension D, independently of the

time series length, and it is limited by D!, where 3 ≤ D ≤ 7 [Bandt and Pompe, 2002].
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Even for D = 7, it is easy to find time series in practice which will lead to a VG with

a larger number of vertices.

5.4 Forbidden and Missing Transition Patterns

Deterministic time series have an important characteristic: some patterns may be

forbidden and will not occur in the set of ordinal patterns Π, after data transformation,

no matter the time series length [Amigó et al., 2006]. Instead of forbidden patterns,

time series with stochastic components, if long enough, will exhibit all possible patterns.

Unobserved patterns in random time series are not forbidden, but missing, as the result

of the finite sample size [Rosso et al., 2012].

The same phenomenon can also be observed with respect to transition graphs.

Similarly, there are forbidden and missing transition patterns, where some transitions

between consecutive patterns do not occur. Unobserved patterns, whichever their

nature, will not appear as a vertex in the constructed graph. Also, if a transition

between two patterns does not occur in te set Π, this edge will not be present in the

transition graph.

A special case of forbidden transition patterns that always occurs when τ = 1,

no matter the time series dynamics and value of D, is presented in Theorem 5.4.1.

Theorem 5.4.1 (Forbidden transitions). Given a time series x with length n, if the

embedding delay τ = 1 is used for computing ordinal patterns, its constructed ordinal

patterns transition graph Gπ will always present forbidden transitions, independently

of n, of the chosen embedding dimension D, and of the dynamics of its underlying

phenomena.

Proof. Let x = (x1, . . . , xn) be a time series that will be transformed into a set Π with

D = 3 and τ = 1. For a given time instant t, the sliding window wt = (xt, xt+1, xt+2)

is the subset of x that will be used for computing the pattern at t.

Let us assume, without loss of generality, that the pattern at t is πt = 123,

representing an ascending sequence of time series points, i.e., xt ≤ xt+1 ≤ xt+2. The

next sliding window wt+1 will be composed of the sample points (xt+1, xt+2, xt+3), as

the last two sample points were already fixed.

Since we already know that xt+1 ≤ xt+2, then, the possible values for xt+3 are

xt+1 ≤ xt+2 ≤ xt+3, xt+1 ≤ xt+3 ≤ xt+2, and xt+3 ≤ xt+1 ≤ xt+2.

Thus, the possible ordinal patterns for these options at t + 1 are πt+1 = 123,

πt+1 = 132, and πt+1 = 312, respectively.
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By generalization, for each of the D! patterns, the next possible transition pat-

terns are limited to only D other patterns, since D!−D patterns are forbidden due to

the fixed previous points.

Corollary 5.4.2 (Maximum number of edges). As a consequence of Theorem 5.4.1,

the maximum number of edges, including loops, for a transition graph when τ = 1 is

bounded by

|E(Gπ)|τ=1 ≤ D! ·D, (5.1)

where E(Gπ) is the set of edges in Gπ.

This limitation is given only for the case of τ = 1, but it occurs for any value of

D. For τ > 1, the number of transitions depends on the time series behavior, and the

maximum number of edges is given by a complete graph with loops, i.e.,

|E(Gπ)|τ>1 ≤ D!2. (5.2)

If a transition graph has fewer edges, we may consider a scenario with more forbidden

transitions or with missing transition patterns, but this last case occurs when the time

series is not long enough so all the possible patterns can be observed.

5.5 Probabilty of self-trantisions

The transition graphs are important assets on the analysis of time series dynamics.

Zhang et al. [2017] proposed to use transition graphs from ordinal patterns for the

identification of joint dynamical changes in multivariate time series by using D = 2

and τ = 1. Although D = 2 is very small in the univariate case, they extend the number

of patterns by the combination of patterns for each dimension of the time series. For

instance, in an m-dimensional time series, the number of patterns considered increases

from D! to D!m. Their main contribution relies on the analysis of the entropy computed

over the weights of edges in the graph (transitions between patterns), after the removal

of the self-transitions (loops) in the graph.

However, since the self-transitions is directly related to the temporal correlation

of time series, it is a valuable indicative for their underlying dynamics, and should

not be discarded. The way edges are set is an important aspect to the further graph

analysis. For Sorrentino et al. [2015] and McCullough et al. [2015], the weights for the

edges are normalized such that all transitions from a given vertex sum up to 1, creating

a Markov chain representation for the series. On the other hand, a normalization used



119

by Zhang et al. [2017] considers the case where the sum of all weights is 1. The main

difference for this last notation is that the presence of self-transitions (loops) in the

graph represents the proportions of the occurrence of consecutive patterns.

These transitions are the basis for the computation of our probability of self-

transitions (pst) [Borges et al., 2019a], an important characterization criterion for dif-

ferent aspects of time series dynamics, which is presented in Definition 5.5.1.

Definition 5.5.1 (Probability of self-transitions). The probability of self-transitions

is defined as the probability of the occurrence of a sequence of equal patterns within

the set of ordinal patterns. Assuming the normalization of edges weights, such that

the sum of all weights is 1.

Formaly, pst can be expressed as

pst = p(πi, πi) =
∑

i∈{1,...,D!}

w(vπi
, vπi

). (5.3)

When considering the adjacency matrix Aπ = {aπi,πj
: πi, πj ∈ Π} of Gπ, we can

check that pst is the trace of Aπ. Thus, it can also be denoted as pst =
∑

πi∈Π
aπi,πi

,

representing the sum of its diagonal.

In the following sections it is presented a method for the characterization of time

series, by evaluating the probability of self-transitions from transition graph repre-

sentations of their ordinal patterns. In fact, we show that the self-transitions, when

evaluated as a function of the embedding delay τ , represent a valuable indicative of the

main characteristics of the time series, even for small values of D, and independently

on a single value of τ .

5.6 Characterization of time series dynamics

A key aspect when dealing with graph representations of time series is to discover

which characteristics from the series are inherited by the graph, and how they can

be extracted [Lacasa et al., 2008]. In this section, we apply learning algorithms for

the characterization and distinction of time series, based on the measures extracted

from the ordinal patterns transition graphs. We show how different dynamics can be

expressed by analyzing inherited characteristics from periodic, random, and chaotic

synthetically generated time series.



120

5.6.1 Periodic time series

An important issue in a graph constructed from periodic time series is how to identify

their period within the graph properties. For some graph representations, which is

the case for the VG and HVG transformations, periodic time series are mapped onto

regular graphs and the degree distribution of the vertices has a peak suggesting the

period [Lacasa et al., 2008]. For the ordinal patterns transformation, the number of

vertices is limited to D!, avoiding a precise analysis of the degree distribution. Thus,

an indicative of the time series period can be given from the transition graph when

considering the pst as a function of the embedding delay τ .

As a first analysis, let us consider the example of a periodic time series used

by Lacasa et al. [2008] to illustrate their visibility graph approach. Its first 20 samples,

from a total length n = 1,000, are illustrated in Figure 5.2a. It is a series of period

T = 4, composed of n/T repetitions of the same pattern (0.87, 0.49, 0.36, 0.83).

After the ordinal patterns transformation with D = 3 and τ = 1, due to its

determinism, we have forbidden patterns that will not be observed, no matter the

length of the time series [Rosso et al., 2012; Amigó et al., 2006]. The Gπ for D = 3 and

τ = 1 is illustrated in Figure 5.2c. The transitions between the four observed patterns

have the same probability of occurrence, and there are no self-transitions, which give

a pst = 0.

However, different values of τ lead to different transition graphs. For instance,

in Figure 5.2d, for τ = 2, we have only two patterns but four possible transitions.

In this case, pst = 0.5, considering the sum of loops. For τ = 3, in Figure 5.2e the

graph is similar to the case τ = 1, but patterns 213 and 312 were replaced by 132 and

231, respectively. Figure 5.2f shows the case for τ = 4, when the embedding delay is

equal to the period of the series. Here we have a particular behavior: only pattern

123 is observed and, thus, all possible transitions are loops and pst = 1. This occurs

because when τ = T all sliding windows extract equal values from the time series, and

the sequence is considered already ordered. Repeated behaviors can be observed in

Figures 5.2c–5.2f for different values of τ .

Since forbidden patterns do not occur in all periodic time series, it is not expected

that only one pattern will be observed like this example. Thus, we have to generalize

this observation to be able to suggest the period of a given periodic time series based

on the pst. Thus, we conjecture that pst assumes maximal values when τ is equal to

the period T or multiples of it, i.e., τ = nT, n = {1, 2, 3, . . . }. This maximal values

can be observed as peaks in the values of pst, as shown in Figure 5.2b, which occurs

regardless of D.
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To examine this statement, let us consider the synthetic periodic time series, con-

structed from a sinusoidal function with period T = 12.5, in which its first 50 samples

are shown in Figure 5.3a. Without loss of generality, let us consider as example the

cases for an embedding dimension D = 3, which enables a more clear visualization

and explanation given the reduced number of D! patterns. The ordinal patterns dis-

tribution of this time series is illustrated in Figure 5.3b for D = 3 and τ = 1, which

reveals nothing regarding the time series period but shows that all possible patterns

are observed. In fact, for any value of τ , all patterns will be observed for a large enough

time series, and the main differences that may be observed are the number of edges

and the probabilities of the transitions, as illustrated in Figures 5.3d–5.3g for different

values of τ . According to these figures, we can see a repetition in the behavior of the

graphs for different values of τ .

For the case of the sinusoidal series, a simple strategy to obtain the period consists

in averaging the intervals between the values of τ where the peaks are higher than a

particular threshold. As shown in Figure 5.3c, we have T = (12 + 13 + 12 + 13 +

12 + 13)/6 = 12.5 as peaks for the pst, when considering a peak the values higher

than a threshold of 0.76. This result is in agreement with [Zunino et al., 2012], where

the normalized Shannon entropy and statistical complexity measures are evaluated as

functions of τ for periodic time series. For those series, values are close to zero when

τ matches the period or multiples of it.

5.6.2 Random time series

Studies in literature have investigated methods for identifying and characterizing ran-

domness in time series [Rosso et al., 2015, 2007a; Ravetti et al., 2014; Rosso et al.,

2012; Ye et al., 2017]. Following the visibility graph approaches, random time series

are mapped onto random graphs, with an exponential degree distribution [Lacasa et al.,

2008; Luque et al., 2009]. While this can be used for a randomness test, in our case,

besides this randomness identification, we also want to express the randomness level

present at each time series.

In our strategy using the transition graph Gπ, we assume a long enough random

time series, so missing patterns are not expected to occur [Amigó et al., 2006], and

also no missing transition patterns when τ > 1, as described in Theorem 5.4.1. Also,

graphs will have a fixed number of D! vertices, and the number of edges will reach

their bound D!2, defined in Equation 5.2. In this case, each vertex will have the same

degree, so the degree distribution does not reveal anything regarding the time series

structure. Thus, we propose using the pst as an indicative to the presence of some
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randomness, and to suggest at which levels the noise affects it.
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Figure 5.4. Analysis of Gπ from the random time series with different correlation levels
presented in Figure 3.7. Where (a) is a white noise (k = 0), (b) pink noise (k = 1), (c)
red/brown noise (k = 2), and (d) a black noise (k = 3). Their correspondent ordinal patterns
transition graphs are presented (a) for the white noise (k = 0), (b) for the pink noise (k = 1),
(c) for red/brown noise (k = 2), and (d) for the black noise (k = 3). Each Gπ was constructed
from the ordinal patterns transformations computed as the average of 10 runs with different
seeds for D = 3 and τ = 2. The first 1,000 points were omitted for the time series for better
illustrate their randomness after the generation, and some minor transition probabilities (edges
weights) were removed from the graphs to clear their visualization.

To evaluate different randomness levels, we used the synthetically generated time

series from Figure 3.7, where Figures 3.7a–3.7d illustrate, respectively, a time series

with a white (k = 0), pink (k = 1), red/brown (k = 2), and black (k = 3) noises.
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The transition graphs presented in Figures 5.4a–5.4d and were generated with from

the ordinal patterns transformations computed as the average of 10 runs with different

seeds for D = 3 and τ = 2.

Figure 5.4a shows the ordinal patterns transition graph created from the white

noise time series. When D = 3 and τ = 2, all the 36 possible transitions occurred,

as expected by Equation 5.2, with the same probability pst ≈ 1/36 ≈ 0.03, ∀i, j ∈
{1, . . . , D!}. This reinforces the notion that for a completely random time series (and

it occurs independently of its marginal distribution) all the patterns [Rosso et al.,

2012] and all the transitions between consecutive patterns are expected to occur with

the same probability, for long enough time series. Also, as the correlation between

observations increases, i.e., k > 0, the randomness decreases and is expected that this

should be observed in the graphs. In fact, when evaluated with examples of pink,

red, and black noises, illustrated in Figures 5.4b–5.4d, pst increases with the noise

correlation. The values assumed for these noises are, approximately, 0.168, 0.242,

0.368, and 0.733, respectively.

Following our strategy to better understand these randomness levels, in Figure 5.5

we present an analysis of the behavior of pst for random time series when evaluated

as functions of τ . We considered colored noises ranging from k = 0 to k = 3.5, by

steps of ∆k = 0.25, illustrated as different data points for each k. We constructed the

ordinal patterns transformations for D = {3, 4, 5, 6} and evaluated them as functions of

τ = {2, . . . , 50}. In our analysis, we discarded the case for τ = 1 to avoid the influence

of forbidden transition patterns, as previously described in Theorem 5.4.1.

For the particular case of white noise (k = 0), there is a special situation where

increasing τ does not affect pst, giving approximately 1/D! for all combinations of D

and τ . However, for k > 0 there is a growing tendency in pst as τ increases. It is possible

to see a direct relation between pst and its determinism. The more deterministic the

series, by the increase of k, the higher the pst. This increasing determinism as a function

of τ was also pointed out by Zunino et al. [2012], and we could also verify its influence

here. Another point related to this growing tendency of pst is its behavior between

different values of D. As Figure 5.5 shows, there is a direct relation between D and an

easy distinction of k. For instance, for D = 3, we can clearly see a better distinction

of different correlation levels for lower values of k. On the contrary, for D = 6, lower

values of k became hard to distinguish and higher values of k became clearer.

Following our strategy of distinguishing the randomness levels in time series,

based on curves of Figure 5.5, one may consider its characterization by analyzing

the growing behavior of pst. For this analysis, we quantify the correlation degree of

random time series by fitting a regression model for each of these noise curves. For
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The fitted curves for each noise are plotted as solid lines in Figure 5.5, with shaded

95% confidence regions. The unbiased Mean Squared Error (MSE) of residuals in the

regression model fitted for all random noises ranges from 3.58× 10−8 to 1.7× 10−4
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Figure 5.6. Analysis of the parameters β0, β1, and β2 from the regression model presented
in Equation 5.4, fitted for the colored random noises of Figure 5.5a, considering the case for
D = 3.

Figure 5.6 shows the estimated parameters of the model applied to the pst curves

of Figure 5.5a, with D = 3. Parameters β1 and β2 are presented as functions of the

intercept β0. As β0 increases, β1 and β2 present similar behaviors, but in opposite

directions. For both cases, each noise level k is placed at different regions, indicating

they can be used for distinction.

Thus, to evaluate the model, we performed the classification of time series with

different randomness degrees, with the intention to effectively distinguishing among

them. The dataset used for this task is composed of 150 time series, with 10 samples

for each of the 15 different colored noises with power spectra f−k, ranging from k = 0

to k = 3.5, by steps of ∆k = 0.25. The dataset was split in the proportion of 70% and

30% of the time series for the training and test sets, respectively, by keeping the same

number of time series for each k. For each time series, we computed their pst values

for each D = {3, 4, 5, 6}, as functions of τ = {2, . . . , 50}. After fitting the regression

model presented in Equation 5.4, we only extract the parameters β0 and β1 for the

fitted model. The reason for this choice is simply by the similar behavior between β1

and β2, as shown in Figure 5.6.

For the classification, we used the Support Vector Machine (SVM) [Cortes and

Vapnik, 1995], evaluated with radial (SVMR), linear (SVML), polynomial (SVMP),

and sigmoid (SVMS) kernels. Table 5.2 presents the classification accuracy results

achieved with this strategy. We can see its success in correctly distinguishing these

different random levels. For SVM with both radial and linear kernels, we achieved

100% accuracy when D = 3 and D = 4. This highlights the effectiveness and efficiency

of the method, since the lower the values of D, the lower the resource consumption.
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Table 5.2. Classification accuracy (%) results achieved with our strategy for distinguishing
time series with different randomness levels. We present the results of different classification
algorithms for D = {3, 4, 5, 6}.

D SVMR SVML SVMP SVMS

3 100 100 93.33 51.11
4 100 100 97.78 48.89
5 97.78 97.78 95.56 57.78
6 95.56 95.56 88.89 68.89

5.6.3 Chaotic time series

As discussed before, a hard task when dealing with time series from both stochastic

processes and chaotic systems is to distinguish them. This is an intriguing aspect since

these systems share several properties, even being completely different in concept [Rosso

et al., 2007a; Zunino et al., 2012; Ye et al., 2017]. Many studies were proposed to tackle

this issue, such as the CCEP method [Rosso et al., 2013, 2007a], which is able to mostly

distinguish noisy from chaotic time series, but some chaotic maps and random noises

could still be misclassified. As presented in Section 5.2.2, there is no clear separation

between those time series within the challenging region in Figure 5.1, so a distance-

based algorithm could not be applied to correctly make the distinction among them.

Before presenting the proposed method for distinguishing time series, let us first

revisit the previously discussed pst as functions of τ and understand its behavior when

considering the chaotic maps. Figure 5.7 analyzes the challenging chaotic maps (com-

posed of 8 chaotic time series) and the Cusp map. In that figure we can also see the

fitted line and 0.95 confidence interval region for the regression model presented in

Equation 5.4. We see that pst for some of these time series, highlighted in Figure 5.7a,

does not necessarily follow a stable behavior as compared to the fitted results for the

random time series in Figure 5.5. For instance, the linear congruential generator (4-x),

which presents the more challenging placement in CCEP, at the far bottom right of

the plane, does not grow with τ .

This leads to a poor fit of the regression model, which can be used as a consid-

erable difference in behavior from the random series. On the other hand, there are

chaotic maps where the regression model fits quite well, such as the Holmes cubic map

(17-x, 17-y) and the Cusp map (8-x), presented in Figures 5.7b and 5.7c, respectively.

If compared to Figure 5.5, we note that both curves and fitted regression model are

similar, making their distinction more difficult.

Thus, in order to distinguish chaotic maps from random time series, based on their

behavior as a function of τ , we have to consider both the parameters from the regression
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each of the 59 time series presented in the analysis of Figure 5.1 as “Random noise”

or “Chaotic map”. For each ith time series, we transformed it onto a feature vector

fi = {βi
0, β

i
1, R

2,i}, and used the k-means [Macqueen, 1967] clustering algorithm for

partitioning the time series into these two clusters. We compute these features for

D = {3, 4, 5, 6} and τ = {2, . . . , 50} over time series with 5,000 observations in length,

which is sufficient for these values of D.

Table 5.3. Clustering results for distinguishing 59 time series (random process and chaotic
systems). The accuracy values and errors for this distinction are also presented.

D Accuracy (%) Errors

3 93.22 0, 8-x, 17-x, 17-y
4 94.91 0, 17-x, 17-y
5 96.61 0, 0.25
6 94.91 0, 0.25, 8-x

Table 5.3 presents the clustering results, with the accuracy and errors for this

distinction. The best result is achieved for D = 5, with just 2 errors out of 59 cases,

which gives an accuracy result of 96.61%. The errors in this case are, exactly, the

random noises with correlation degree k = 0 (white noise) and k = 0.25. In fact, as

mentioned in Section 5.6.2, these lower levels of k are the ones with practically constant

growing tendency as τ increases, mainly for higher values of D, which give poor fitting

for the regression model, thus, being identified as a chaotic map. However, for this

case, all the remaining time series were correctly identified. For other values of D, we

achieved lower accuracies, 93.22% for D = 3, and 94.91% for D = 4 and D = 5, where

some chaotic maps were misidentified as random noises. These are exactly the cases

illustrated in Figures 5.7b and 5.7c, the Holmes cubic maps (17-x, 17-y) and Cusp map

(8-x), respectively, whose behaviors are similar to noises.

These results show the efficacy of the proposed method for distinguishing different

time series dynamics, which is a hard task with several proposals found in literature.

Also, they highlight the simplicity of the method, which could be easily employed

in conjunction with simple learning algorithms, giving reasonable results with low

computational complexity.

5.7 Conclusions

The approach based on the pst from Gπ, presented in this chapter, provides a valuable

tool for characterizing time series. We show that pst, when evaluated as a function of

the embedding delay τ , can be successfully applied as an indication of different time
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series dynamics. For periodic time series, when τ matches the period (or multiples) of

the time series, the measure reaches maximal levels, suggesting a strategy to discover

it. This confirms the results from previous studies about the observed behavior of

information theory quantifiers when also evaluated as a function of τ .

We show, for random time series with different degrees of correlation and colored

noises, that pst is directly related to their correlation. It follows a monotonically in-

creasing function of τ for all colored noises except for the white noise (k = 0). For

this particular case, the measure remains constant for all values of τ , implying a higher

randomness level. However, we could precisely distinguish those different randomness

levels using a supervised learning (classification) algorithm, reaching 100% accuracy.

To distinguish random noises from chaotic maps, we show that the behavior of pst,

when evaluated as a function of τ , is different for these types of time series. Thus, we

map this behavior by fitting a regression model for each curve and show that, while the

proposed model almost perfectly fits the random series, it does not properly represent

chaotic maps. In fact, by assessing the model parameters and residual errors when

fitting, the difference in their behaviors were used to supply an unsupervised learning

(clustering) algorithm that correctly identified 96.61% of the underlying dynamics.

In general, our method is a simpler alternative for the characterization of time

series, even short ones (we used here 5,000 data points). However, there are still a few

time series in which their dynamics are misclassified. For those cases, an alternative

solution for future studies might be the integration between our proposed method with

already established techniques, such as other more complex learning algorithms. When

applicable, one strategy could solve the drawbacks of the other, yielding a more robust

and general solution. Furthermore, the method can also be evaluated when applied to

real time series to verify the results when facing new challenges present in real-world

scenarios.
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Chapter 6

Physical phenomena classification

in the Internet of Things

By understanding the dynamics behind a given time series, it is possible to perform

its distinction based on their expected behavior, not being subject to the instances of

its data points. In this chapter, we present a strategy based on the analysis of time

series dynamics for the precise identification of physical phenomena data collected by

IoT sensors. In Section 6.1, we introduce the problem and give a contextualization

for the proposed work. Section 6.2 discusses the related work and motivates our main

problem. Section 6.3 presents a data characterization of the physical phenomena used

in this work, and Section 6.4 shows our classification strategy to correctly identify an

appropriate sensor monitoring a given physical phenomenon. Section 6.5 concludes the

work and presents some open research issues.

6.1 Introduction

When dealing with the massive scale of data from IoT [Stankovic, 2014], a challenging

question that arises is “how to precisely characterize and classify physical phenomena in

data collected by a large population of sensors?” In this question, there are two issues to

examine. First, a poor description of both data and resources of most deployed sensors

in current IoT solutions, with their sensors deployed all over the world. As presented

in Chapter 2, they are described by a simple set of tags and textual information, freely

assigned by their owners. This makes the analysis and, consequently, the understanding

of the related physical phenomena prone to errors and misunderstandings. Second, the

high heterogeneity of sensors brings differences in the resolution and magnitude of their

collected data. This may affect distance-based algorithms when making comparisons
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between data collected by pairs of sensors.

Given such issues, we reinforce the claim that solutions to handle data collected

from IoT platforms should avoid the use and the processing of raw data. Instead,

it is recommended (i) the extraction of features able to capture data attributes of

the physical phenomena, and (ii) the analysis of such features using machine learning

techniques (e.g., classification and clustering) [Aghabozorgi et al., 2015]. This has the

benefit of minimizing or circumventing the effects of inadequate descriptions and high

data variability, as mentioned above.

In order to perform the feature extraction and feature analysis, we will model the

data collected from sensors as time series. However, since we are interested in physical

phenomena, it is important to properly identify which features to extract. This may

lead to a problem in which features can depend on a given instance of the data and not

represent the phenomena behind it. For instance, a feature vector of different sensors,

even for the same phenomenon, but created at different moments and locations, may

lead to completely different values, which may invalidate any further analysis [Wang

et al., 2006].

To tackle all these challenges related to the precise identification of physical phe-

nomena in the IoT context, we make the following contributions:

1. We use information theory quantifiers as features to precisely characterize phys-

ical phenomena. In this work, we will consider temperature, relative humidity,

atmospheric pressure and wind speed, which are physical phenomena typically

monitored in IoT solutions. These quantifiers allow us to know the behavior

behind a given physical phenomenon;

2. We model data collected from heterogeneous sensors, at different scales and sam-

pling rates, as a unified representation by using the ordinal patterns transfor-

mations (Section 3.5). We advance the state-of-the-art of understanding and

classifying IoT data by designing strategies based on the phenomena’ expected

behavior, rather than on the raw data of a sensor itself. This also helps in the

scalability problem in IoT by avoiding comparisons with a large number of time

series; and

3. We perform the classification of physical phenomena by analyzing their place-

ment on the Causality Complexity-Entropy Plane (CCEP). We compare their

placement with previously learned placement regions from known physical phe-

nomena. We also employ a robust method to minimize the lack of a proper

distance measure for this plane, helping further investigations and reducing the
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gap between the theory from Bandt-Pompe transformations and their application

to problems in real-world scenarios.

6.2 Related work and problem definition

Time series analysis is a research topic that gained a new breath in last years, mainly

due to the increasing attention for big data, machine learning, and IoT initiatives.

A considerable number of algorithms and strategies has been proposed [Aghabozorgi

et al., 2015], in which classification and clustering are the most representative ones for

the supervised and unsupervised cases, respectively.

These solutions are, basically, divided in those which use raw time series data

and those in which some processing is applied before extracting information. The

algorithms based on raw data generally compute some distance metric (e.g., Euclidean,

Fréchet, Dynamic Time Warping (DTW) [Montero and Vilar, 2014]) between pairs

of time series. Those with the lower distances are grouped together (clustering), or

identified as similar (classification). However, as previously discussed in Section 3.3.3,

for IoT scenarios, in which there is a vast heterogeneity of sensors, some assumptions

can not be made. For instance, most of these solutions assume that time series have

similar length, or they are sampled at the same constant rate. Furthermore, due to

the high number of available sensors, it is not scalable to perform direct comparisons

on raw data, making many strategies unsuitable for this scenario.

On the other hand, strategies based on extracting features from the time series

seem to be more appropriate to the problem. These solutions are based on the analysis

of a new vector of features extracted from the time series [Wang et al., 2006; Fulcher

et al., 2013]. One of the first advantages of this strategy is the dimensionality reduction

of the time series, which are expected to have a very large length for in IoT. This

reduction and equalization of sizes was also the subject of many studies in the literature,

via some smoothing technique or symbolic approximation [Lin et al., 2003].

Another point to be concerned in feature extraction is related to the decision

of which features to compute. Since we are interested in physical phenomena, this

may lead to features that can be dependent on the current instance of time series, not

representing the phenomena behind it. For instance, features from different time series,

even for a same given phenomenon, may lead to completely different values, which may

invalidate any further analysis. For these cases, they may change as a function of time

and space, requiring another extraction for new features, that could be computationally

expensive [Wang et al., 2006].
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Thus, it is reasonable to consider as features those metrics that could represent the

behavior of a phenomenon measured by the sensor, independently of the current sample.

In this direction, metrics originated from information theory seem to be appropriate to

extract this knowledge from a phenomenon. The use of information theory quantifiers

has been applied for characterizing time series in several studies. These metrics proved

to be effective in distinguishing different dynamic behaviors of time series [Rosso et al.,

2007a; Zunino et al., 2010; Rosso et al., 2007b], being useful in the characterization of

real-world time series [Aquino et al., 2017; Gonçalves et al., 2016].

In this work, we use information theory quantifiers to characterize the behavior

behind physical phenomena. Our aim is to better identify time series by just com-

paring their behaviors, not their data points. This allows avoiding the comparisons

for identification, between a large number of time series, thus, solving the scalability

problem in IoT. We also base the extraction of the quantifiers in a transformation from

the time series, which is valid for the dimensionality reduction of the data as well as

to increase their robustness to IoT problems, discussed in the following sections.

6.3 Characterization of physical phenomena

Focusing on the provision of a better understanding of real-world data, this section

presents a characterization of the following physical phenomena: temperature, atmo-

spheric pressure, humidity, and wind speed. As previously discussed in Section 3.5,

the ordinal patterns transformation has some properties that make it well suited for

its application to real data. Furthermore, using the normalized Shannon entropy (HS)

and the statistical complexity (CJS) as information quantifiers along with the CCEP,

allow us distinguishing the different time series behaviors, as presented in Section 3.6.2.

6.3.1 Dataset selection

When dealing with IoT sensors, there is some uncertainty and unreliability that must

be considered before dealing with their data. For instance, for sensors available in

IoT platforms, such as the case of ThingSpeak, the data and resources usually are not

described or, when they do, have a very poor description. Even if the descriptions were

given, since there is no validation, there is no guarantee that it is correct. Generally,

they are described by a simple set of tags and textual information, freely assigned by

their owners and/or users, which makes the search for a keyword or expression prone

to errors and misunderstandings [Borges Neto et al., 2015]. In Table 2.1, we presented

a summary of this lack of descriptions for the IoT sensors available in the ThingSpeak
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platform. It highlighted the increasing of these problems in the available sensors at

this platform, from the period of 2015 to 2017.

For those sensors where some description was provided, Fig. 2.3 illustrated some

of the most frequent words used to describe them. While it can be noticed that most

descriptions are, indeed, related to environmental and physical phenomena, they are

still really poor. The top-5 most frequent words for the three years are: temperature,

humidity, temp, field, and sensor. These last three are generic descriptors, which add

no valuable information to the monitored phenomena.

Thus, given this uncertainty and unreliability of sensors, in order to correctly

evaluate our hypothesis, we decided to apply our proposed strategy in those sensors

lying in the intersection between CoIoT and IIoT. As discussed in Section 2.3, these

are IoT sensors that are maintained by organizations, which can guarantee the quality

of data, but are freely available for anyone who are interested. Thus, to investigate

the feasibility of using CCEP on the study of physical phenomena, we considered time

series data measured by international airport stations from 60 different airports from

all regions of the USA territory. Table 6.1 presents the list of these places. Data

are measures from the historical weather conditions of temperature, relative humidity,

atmospheric pressure, and wind speed, in the period from 2000 to 2015. All data were

collected from the Weather Underground1 platform.

6.3.2 Dataset characterization

The dataset was randomly split in half, where the time series from 30 places was

used to the characterization step and the other 30 to validate the classification of the

phenomena. To illustrate the behavior of the data we are dealing with, Figure 6.1

gives an example of time series for 2015, measured at the Logan International Airport,

Boston, MA. For each phenomenon, it is also showed a Lowess smoothing of the data

with smoother span f = 0.1.

We can see that the behavior of the data for each different phenomenon is quite

different. From a more seasonal behavior for temperature to a more “random” behav-

ior for the wind speed. Figure 6.2 shows the ordinal patterns probability distributions,

presented in Section 3.5.2, for the dataset in the period between 2000 and 2015, con-

sidering an embedding dimension of D = 4. We can see that, for each phenomenon,

the ordinal patterns have different probability distributions. This is the behavior that

is captured by the aforementioned information quantifiers HS and CJS.
1Weather Underground – http://wunderground.com.
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Table 6.1. List of places in the USA, ordered by state, used for the characterization and
classification phases.

ID Place Type ID Place Type

1 Anchorage F 31 Detroit C
2 Phoenix C 32 Minneapolis F
3 Los Angeles C 33 Charlotte C
4 Oakland F 34 Raleigh F
5 Ontario F 35 Omaha F
6 Sacramento F 36 Newark F
7 San Diego F 37 Albuquerque F
8 San Francisco C 38 Las Vegas C
9 San Jose F 39 Buffalo F
10 Santa Ana F 40 New York (Central Park) C
11 Denver C 41 New York (JFK) F
12 Hartford F 42 New York (LaGuardia) C
13 Fort Myers C 43 Cleveland C
14 Fort Lauderdale C 44 Columbus F
15 Jacksonville F 45 Cincinnati F
16 Miami C 46 Portland C
17 Orlando F 47 Philadelphia C
18 Tampa C 48 Pittsburgh F
19 West Palm Beach F 49 Nashville F
20 Atlanta C 50 Austin C
21 Honolulu C 51 Dallas C
22 Kahului F 52 Dallas (Fort Worth) C
23 Chicago (Midway) C 53 Houston (Bush) F
24 Chicago (O’Hare) C 54 Houston (Hobby) C
25 Indianapolis F 55 San Antonio C
26 New Orleans F 56 Salt Lake City F
27 Boston C 57 Washington (Reagan) C
28 Baltimore C 58 Washington (Dulles) F
29 Kansas City F 59 Seattle C
30 St. Louis C 60 Milwaukee F

Legend: C - Used for Characterization / F - Used for Classification

To better understand these behaviors, Figure 6.3 presents the CCEP for the whole

time series, considering different embedding dimensions D = {4, . . . , 7}. The rightmost

region of CCEP (near HS = 1 and CJS = 0) represents a totally random behavior such

as a white noise. On the other hand, the time series that present strong regularity and

more correlation between neighboring values tend to lie in the leftmost part of CCEP

(near HS = 0 and CJS = 0). The region of high CJS, i.e., the upper-center region of

the plane represents time series with chaotic behavior [Rosso et al., 2007a].
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Figure 6.1. Historical data of 2015 from the Logan International Airport, Boston, MA.
Phenomena (a) temperature, (b) relative humidity, (c) atmospheric pressure, and (d) wind
speed, along with a Lowess smoothing (f = 0.1).

Figure 6.3 shows that, for all values of D, all phenomena lied in the region of

medium-high entropy values (0.6 < HS < 1), which are similar to the region that

characterizes “colored” random noises, representing different correlation values in the

time series structures [Rosso et al., 2007a]. Also, as D increases, the regularities of the

phenomena are better captured by the information quantifiers. This can be expressed

by the increasing of CJS, the decreasing of HS, and the more clear separation between

the points for each phenomenon in the plane.

Following our analysis, in order to verify the feasibility of this method in charac-

terizing the physical phenomena per se, Figure 6.4 presents the CCEP representation
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Figure 6.2. Ordinal patterns probability distributions of Boston’s weather historical data in
the period between years 2000 and 2015. All plots considered D = 4.

for all phenomena studied herein, from the 30 places used for the characterization

phase, according to Table 6.1, with an embedding dimension D = 6. The reason for

choosing D = 6 is due to a trade-off between a concise capture of the regularities of

the phenomena and the small value of D!, which impacts on the required length of the

time series.

Fig. 6.4 also shows that, with exception for the atmospheric pressure, all the phe-

nomena lie at a specific region in the plane and has an “expected behavior”, described

by the shape in which the points are scattered. The time series for the atmospheric

pressure present different behaviors in different places, and are more spread over the

plane.

Fig. 6.5 illustrates the two most extreme time series, i.e., the ones which are

farther from their cluster regions when considering temperature and atmospheric pres-

sure. We can see that, while there is a small variation between the temperatures of

Denver and Phoenix, for the atmospheric pressure, this difference is more apparent,

and the time series of Denver seems to be more noisy than that for Honolulu. This

difference on behavior results in different values of the information quantifiers and,
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Figure 6.3. CCEP of Boston’s weather historical data between years 2000 and 2015, for
D = {4, . . . , 7}.

thus, different placements in CCEP. This may lead to the need of a study about the

geographical influence on these measures, which we will conduct as a future work.

6.4 Classification of Physical Phenomena

In this section, we present our strategy for the classification of physical phenomena

from the IoT sensors. The first step is to learn the expected behaviors from different

phenomena and, hence, identify their placement regions in the CCEP by clustering

their placements. Thus, we will be able to verify if a given time series are similar to an
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Figure 6.4. CCEP of historical weather data in the period between years 2000 and 2015 of
all the places used for characterization, with D = 6.

already known phenomenon, by comparing the distance of its placement in the plane

to the previous learned placements.

6.4.1 Identifying regions on CCEP

To define the expected placement region in the CCEP for a given phenomenon, we

have to consider their concentration of points in the plane and estimate a centroid to

represent it. Figure 6.6 presents a heat map, built with a Kernel Density Estimation

(KDE) from the points showed in Figure 6.4, illustrating the concentration of points in

CCEP for the phenomena under analysis. We can see that, for temperature, relative

humidity and wind speed, there is a regularity in the concentration of points around a

particular natural centroid. Furthermore, they form three different grouped clusters.

For the case of atmospheric pressure, the points are more spread and two centroids

are highlighted, resembling a bimodal data. Issues related to mixture models to fit

bimodal data will not be covered in the present work and will be the subject of a
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Figure 6.5. Examples of historical data for 2015 of the most divergent places in the CCEP.
For the temperature of (a) Phoenix and (b) Denver, and the atmospheric pressure for (c)
Honolulu and (d) Denver, with a Lowess smoothing (f = 0.1).

future study. For our current purposes, it is sufficient to identify the centroids in which

the points are surrounding and accept the fact that the atmospheric pressure can be

characterized by two different regions on the plane.

Another point we must also be concerned when discovering the regions in the

plane is about the effects of noise and imprecision in the information quantifiers. Thus,

before obtaining the centroids, we first apply the Skinny-dip clustering algorithm [Mau-

rus and Plant, 2016] on the points for each phenomenon. Skinny-dip is a noise-robust

clustering algorithm based on the Hartigan’s dip test of modality and is able to rea-
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Figure 6.6. Heat map illustrating the concentration of points from information quantifiers
related to the characterization of the temperature, relative humidity, atmospheric pressure,
and wind speed phenomena, with D = 6.

sonably detect the more distinguishing concentration of points in a given region, even

under a rate of 80% of noise [Maurus and Plant, 2016].

Figure 6.7 depicts the resulting clusters after the Skinny-dip processing for the

points of each phenomenon. Gray points are those considered noisier by the algorithm.

We can see that, for the atmospheric pressure points, there are clearly two formed clus-

ters. After discovering the most significant points, we performed a KDE to each cluster

and interpolate between their points to compute the centroids. Table 6.2 illustrates

the values of the centroids computed for each discovered cluster.
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Figure 6.7. Most relevant points discovered by Skinny-dip clustering algorithm for the
physical phenomena, with D = 6.

6.4.2 Classification of time series in the CCEP

The next step towards the classification of a given time series is to place it in the CCEP

and verify if it lies close to some know phenomenon placement. A point to consider

here is that the notion of distance in this plane is still an open research question. For

instance, although the values for HS ranges from 0 to 1, the values for CJS are bounded

by their limits, impacting on direct distance metrics. This occurs because CJS behavior

is governed by patterns in the probability distribution space that gives, for the same

entropy, different levels of statistical complexity.

However, to illustrate the feasibility of the method for the classification of physical

phenomena, we used the Euclidean distance, despite not being the most appropriate,
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Table 6.2. Centroids of CCEP regions for each phenomenon, from a kernel density estimation
on the most relevant points.

Phenomenon HS CJS

Temperature 0.711 0.334
Relative Humidity 0.755 0.290
Atmospheric Pressure 1 0.739 0.286
Atmospheric Pressure 2 0.658 0.324
Wind Speed 0.930 0.131

to compute the nearest centroid for the time series of the places present in our dataset.

We show the classification results in terms of Accuracy (A), true positive rate per class

(tp) and false positive rate per class (fp), where A = tp+tn

tp+tn+fp+fn
, where tn is the true

negative rate and fn is the false negative rate.

Table 6.3 summarizes the results for the classification process using the CCEP

method with the Euclidean distance (CCEPE) to discover the type of the time series.

To perform this identification, we compute the Euclidean distance between the position

of a given time series in the plane to the already known centroids, showed in Table 6.2.

We use a simple classification technique that assigns a given time series to the same

type of the closest centroid.

Table 6.3. Results of the number of true positive and false positive identifications for the
physical phenomena time series with the CCEP method for the Euclidean distance (CCEPE).

Metric Value

Accuracy (A) 0.75 (90/120)
Accuracy (without Atm. Pressure) 0.93 (84/90)
Temperature (tp) 0.83 (25/30)
Humidity (tp) 0.67 (20/30)
Pressure (tp) 0.53 (16/30)
Wind Speed (tp) 0.97 (29/30)
Temperature (fp) 0.10 (9/90)
Humidity (fp) 0.10 (9/90)
Pressure (fp) 0.12 (11/90)
Wind Speed (fp) 0.01 (1/90)

For the two general configurations we consider the cases where the atmospheric

pressure time series, as their centroids, were present in the experiment and not. We can

see that, since the atmospheric pressure phenomenon was the most difficult to estimate

its behavior, when it is included in the experiment the number of correct identifications

is about 75%, which means specifically a number of 90 out of 120 in total. The total
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of 120 series is from the 30 places used for classification, such that each place has four

time series for their phenomena. Without the pressure being considered, this number

increases to 93%, 84 out of the 90 total time series were correctly classified.

For each individual phenomenon class, we can see a reasonable total of true

positives, with the wind speed being the most correctly identified, with a total of

97%. The atmospheric pressure has the lowest true positive rate, only 53%. This

result is indeed expected, since the behavior of the pressure phenomenon was the

hardest to be characterized. On the other hand, as the most stable phenomena in the

characterization, the wind speed was the one with the best results.

Another important aspect for this classification is regarding the false positive

values. In fact, according to the application that will be using an IoT sensor, maybe

worse than not finding a sensor to be used is to find a wrong sensor. For this sort

of problems, the method also seems to be reasonable with the highest rate of wrong

identification being 12% for the atmospheric pressure phenomenon. Furthermore, as

mentioned before, even with this promising results, the Euclidean distance is not the

most appropriate for the current method. It is expected that, with a proper distance

metric to this plane, these results will be improved.

6.5 Conclusions and future directions

In this chapter, we proposed the application of information theory quantifiers, namely

the normalized Shannon entropy and statistical complexity, to extract knowledge re-

garding the expected behavior of physical phenomena in the context of IoT. We showed

that the time series dynamics, obtained by the ordinal patterns transformation, and

the analysis of CCEP plane provide a robust approach to face the challenges related

to this particular scenario.

To perform the classification of the physical phenomena, we proposed a definition

of regions within the plane. Those placement regions were defined by the application of

a noise-robust strategy for finding their centroids, which resulted in significant quality

for the process. All these contributions clearly advance the state of the art in the

characterization and classification of physical phenomena in IoT.

As future work, we open several questions related to the advances in the definition

of distance metrics in the CCEP space, the need for studying the geographical influence

on this information measures, and novel approaches to minimize the effect of IoT related

problems in the correct characterization and identification of physical phenomena.
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Chapter 7

Time Series Classification via Class

Separability Maximization

The classification of time series is a fundamental research topic that has gained a

new breath in the last years, mainly due to the increasing needs from big data and

Internet of Things (IoT) communities in better understanding the data they are dealing

with [Tsai et al., 2014; Sezer et al., 2018; Mohammadi et al., 2018]. A considerable

number of strategies was already proposed for the task of time series classification in

general [Bagnall et al., 2017]. However, for the challenging scenario of IoT, the use of

traditional methods is not always possible [Borges Neto et al., 2015].

In this chapter, we present the Time Series Classification via Class Separability

(TSCLAS) strategy for the IoT data, which is based on the class separability analysis of

the time series temporal dynamics. Section 7.1 introduces the problem and motivates

our contribution. In Section 7.2 we discuss studies related to our proposal, focusing

on class separability strategies and the use of the ordinal patterns transformations in

other problem domains. Section 7.3 presents our proposed class separability measure

for time series dynamics, and Section 7.4 introduces TSCLAS, our strategy for using

these measures in the time series classification. Section 7.5 shows our experiments and

results. Finally, Section 7.6 presents our final conclusions and future directions.

7.1 Introduction

To process IoT data from different sources, one must consider handling large time

series data generated at different rates, of different types and magnitudes, possibly

having issues concerning uncertainty, inconsistency, and incompleteness due to missing

readings and sensor failures [Borges Neto et al., 2015; Qin et al., 2016; Karkouch
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et al., 2016; Sezer et al., 2018; Liu et al., 2020]. These problems directly affect data

quality and, consequently, make it harder, or even impracticable, to apply traditional

classification methods to them [Borges et al., 2019b]. For instance, missing readings

create gaps within the time series, which may require a prior imputation step on the raw

data [Wu, 2021]. However, it can be impracticable as the gap increases, affecting the

performance and scalability of classification methods. Furthermore, the randomness of

missing readings create time series with different lengths, while most classifiers assume

time series of equal length.

In this work, we propose TSCLAS, a time series classification strategy for the

IoT data, based on the class separability analysis of their temporal dynamics. Since

TSCLAS must be suited for IoT scenarios, in addition to the requirements for the

classification task itself, it is designed to be robust to the following challenges: (i) the

large length and (ii) incompleteness of IoT data. For both challenges, we follow the

claim that solutions to handle data from IoT sensors should avoid using raw data,

considering their transformation to another representation domains, which are less

sensitive to those problems [Borges et al., 2019b]. To consider the first challenge, we

follow a fast and scalable method to transform the large time series in a small set of

features, reducing the processing time of a further classification strategy. Consequently,

for the second challenge, we show that, with the proper transformation on the raw

data, we are able to mitigate the problems derived from the incompleteness of data,

and propose a more robust time series classification approach.

Our proposal is based on the ordinal patterns transformation, detailed in Sec-

tion 3.5, which is a representation domain for the characterization of data according

to its dynamics, indicating how a system evolves over time [Rosso et al., 2015; Borges

et al., 2019a]. By considering its dynamics, it is possible to evaluate its data generat-

ing process, giving us the ability to capture the inner characteristics of the underlying

phenomena, which is a feasible strategy for dealing with the issues of IoT data. The

ordinal patterns transformation, proposed by Bandt and Pompe [2002], is a powerful

tool to evaluate time series dynamics, that has been extensively discussed and applied

to real-world studies [Rosso et al., 2013; Aquino et al., 2015; Rosso et al., 2016; Aquino

et al., 2017; Ribeiro et al., 2017]. Furthermore, this transformation focuses on the

simplicity and the fast calculation, being invariant to differences in magnitudes, which

are essential aspects of our scenario. However, despite the transformation’s ability for

the characterization and distinction of time series dynamics [Rosso et al., 2007a, 2013],

when applied to real world challenging data, which is the case for IoT, some aspects

must be considered in order to increase its classification potential. An essential aspect

is, thus, the choice of transformation parameters (D,τ), which is an important step in
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the classification process.

The importance of choosing the best parameters for the ordinal patterns transfor-

mation is clear, but most studies in the literature use off-the-shelf values. For instance,

the choice of the best embedding dimension D is still an open question, where the cur-

rent solutions follow the recommendations from literature [Bandt and Pompe, 2002],

by choosing D ∈ {3, . . . , 7}. The main aspect to consider here is that the chosen D

depends on the time series length n, satisfying the condition that n ≫ D!. On the

other hand, for the embedding delay, a common choice is to assume τ = 1. However,

although these values are enough for a controlled scenario, it may impact the classifi-

cation results for the challenging IoT data. In this work, we investigate the selection of

these parameters, discussing the main conditions for the embedding dimension D and

providing a strategy for finding the most appropriate embedding delay τ .

Thus, for given a train/test dataset, TSCLAS performs a strategy for selecting

the best parameters for the ordinal patterns transformation, based on the maximization

of the class separability of the time series dynamics within the training dataset. It is

important to mention that this is not a hyperparameter tuning approach, where the best

parameters are defined by their classification results assessed on a different validation

set. Instead, we only consider the training dataset and its classification potential given

the separation of their classes for different parameters. Our class separability analysis

is performed on the Causality Complexity-Entropy Plane (CCEP) [Rosso et al., 2007a,

2013], which is detailed in Section 3.6.2. We show that the best distinction of time series

dynamics within the CCEP occurs whenever there is a clear separability between the

time series classes, since the distribution of their points does not intersect with others.

Thus, our strategy consists of choosing the best parameters that maximize the class

separability of the distribution of points for the classes on the plane.

Thus, once the parameters are chosen, TSCLAS is applied for the classification

of IoT data, based on a combination of features extracted from the ordinal patterns

probability distribution and the ordinal patterns transition graph, both derived trans-

formations from the set of computed ordinal patterns. As shown in the following, it is

scalable to the length of time series and robust to missing data gaps, common issues

from IoT context not properly covered by traditional classification strategies.

In summary, in this work, we present the following contributions:

1. a class separability measure for time series dynamics, according to their displace-

ment on the CCEP, indicating its potential for correctly distinguishing the time

series,

2. a method for choosing the best parameters for the ordinal patterns transforma-
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tions according to the maximization of the separability measure of time series

classes, and

3. a time series classification strategy for IoT data, which is scalable to time series

length and robust to missing gaps, through features extracted from the ordinal

patterns transformations.

7.2 Related Work

The top-rank state-of-art solutions for time series classification consist of general-

purpose classifiers, independently of the type and application domain of the time

series. One of the first proposals with significant results classification that remains

relevant nowadays is the Time Series Forest (TSF) classifier [Deng et al., 2013], which

is an ensemble algorithm that improves the well-established Random Forest (RANDF)

method. The use of an ensemble of classifiers is a common basis for these strategies,

which is the case of the Bag-of-SFA-Symbols (BOSS) [Schäfer, 2015], the Ensemble of

Elastic distances (EE) [Lines and Bagnall, 2015], and Random Interval Spectral Forest

(RISE) [Lines et al., 2018] classifiers. Following this approach, the solutions with the

most significant results, but that also take the ensemble method to its extreme, is the

Flat COllective of Transformation-based Ensembles (Flat-COTE) [Bagnall et al., 2015],

with 35 classifiers in its ensemble, followed by its hierarchical version, the Hierarchical

Vote COllective of Transformation-based Ensembles (HIVE-COTE) [Lines et al., 2016].

However, most of these strategies require a considerable processing time for training

its classifiers, even for small datasets, which are not adequate for IoT scenarios. Con-

sequently, a simpler classification algorithm, such as the K-Nearest Neighbors (KNN),

is a feasible solution for scenarios with large time series. The interested reader might

refer to the “bake of” work of Bagnall et al. [2017] for more details regarding these

classifiers.

For the challenging IoT time series, unlike the general-purpose classifiers, the

proposed solutions for classifying IoT data are very domain-specific, making them

hard to reproduce in different contexts. For instance, Montori et al. [2018b] proposed a

classification strategy considering a scenario where some textual information to describe

the IoT data is provided. However, not all sensors have a description available, making

this approach unfeasible. Another aspect usually considered when classifying IoT data,

as surveyed by Wu [2021], consists of strategies that are robust to their issues, mainly

the data incompleteness. In this direction, Postol et al. [2019] proposed a strategy for

the classification of noisy and incomplete IoT data based on topological data analysis
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(TDA). However, although their solution achieves good results, their proposal is well

suited for time series that spans over months, with the best results with one month

for training and eight months for testing. Although not directly related to the time

series classification task, some strategies try to be robust to data imperfections in

the realm of industrial IoT time series. Chen et al. [2019] proposed a strategy for

predicting future values of time series even in the presence of missing data, based on a

variational inference algorithm for a kernel dynamic Bayesian network (KDBN). In the

same direction, Bekiroglu et al. [2020] proposed a strategy for predicting the output

measure of a sensor by combining multiple inputs, which can handle the case when

there are imperfections in these inputs.

The ordinal patterns transformation, which is detailed in Section 3.5, consists of

transforming a time series into a set of ordinal patterns, according to two parameters:

the embedding dimension D and the embedding delay τ . Roughly speaking, the pa-

rameter D is used for constructing sliding windows of size D, which will define the

ordinal patterns, and the parameter τ corresponds to the time scale interval used to

sample the consecutive points of those sliding windows.

This transformation was successfully applied by many works in literature, from a

more theoretic perspective of discriminating time series dynamics, such as noise from

chaos [Rosso et al., 2007a; Zunino et al., 2012; Rosso et al., 2013; Ravetti et al., 2014;

Kulp and Zunino, 2014; Rosso et al., 2015; Borges et al., 2019a; Olivares et al., 2020]

to a more applied approach for the characterization of diverse time series dynamics,

such as vehicular behavior [Aquino et al., 2015], electric load [Aquino et al., 2017],

analysis of ECG data [Kulp et al., 2016], analysis of physiological signals [Wang et al.,

2016], and the classification of handwritten signatures [Rosso et al., 2016] and physical

phenomena [Borges et al., 2019b].

The choice of parameters (D,τ) for the ordinal patterns transformation is an im-

portant part of such studies, but most of them use their off-the-shelf values. Following

the recommendations from literature [Bandt and Pompe, 2002], the embedding dimen-

sion is chosen from D ∈ {3, . . . , 7}, which must consider the time series length n, such

that n ≫ D. For the embedding delay, it is common to just assume τ = 1, and the

sliding windows are sampled from consecutive points from the time series. In fact,

choosing the best parameters in this context is not easy, since it may consider different

approaches according to the task, such as finding periodicity in data and estimating

the scale of delayed systems [Zunino et al., 2012]. However, as shown by Zunino et al.

[2012] and Borges et al. [2019a], it is possible to discover important characteristics of

the time series when evaluating the extracted metrics as a function of τ . Consequently,

different values of (D,τ), instead of the off-the-shelf ones, may be used to achieve better
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results in time series classification, by revealing their similarities and distinctions.

Our proposal for selecting the best parameters for the ordinal patterns trans-

formation is based on the class separability of time series dynamics. The separation

of classes is a classical question that arises in many distinct areas. From molecular

biology [Unger and Chor, 2010; Mao and Wenyin Tang, 2011] to astronomy [Zheng

and Zhang, 2008; Makhija et al., 2019], whenever there is a graphical representation

of points that belong to different classes, there is the need to understand to what ex-

tent we can separate a particular subset from the others [Cerdeira et al., 2012; Wang

and Lei Wang, 2008]. The class separability is a measure used to identify the regions

of different classes, which can be used to distinguish them [Thornton, 1998; Cerdeira

et al., 2012]. It consists of geometric analysis of the space where points are distributed,

which tries to find regions or boundaries that separate each class [Thornton, 1998].

This generalizes the linear separability concept. The Thornton’s Geometric Separabil-

ity Index (GSI) [Thornton, 1998] was one of the first defined separability measures. It

is defined as the proportion of data points whose classification labels are the same as

those of their nearest neighbors, accounting for the degree to which inputs associated

with the same output tend to cluster together [Greene, 2001]. This method has shown

that it is possible to empirically analyze the predictability at the core of the learning

methods. This led to novel class separability measures that have been proposed for

different problems [Zheng and Zhang, 2008; Wang and Lei Wang, 2008; Unger and

Chor, 2010; Mao and Wenyin Tang, 2011; Cerdeira et al., 2012; Makhija et al., 2019].

In this work, we apply this concept of class separability analysis to the graphical

presentation of time series dynamics from the causality complexity-entropy plane. The

CCEP representation has been extensively discussed in recent studies used for the char-

acterization of real-world data, such as electrical load, vehicular behavior, handwritten

signatures, and IoT time series [Rosso et al., 2013; Aquino et al., 2015; Rosso et al.,

2016; Borges et al., 2019b]. However, contrary to most class separability indices in

the literature, which are based on some distance measure to identify different classes,

distances in the CCEP are not easy to consider. For instance, given the minimum and

maximum limits for statistical complexities in the plane, as illustrated in Section 7.3, a

straight line between two points is not always possible, since it may not respect those

limits. Thus, we took another path to propose the separability index of TSCLAS,

which is based on the estimation of classes regions and the intersection among them.
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7.3 The class separability of time series dynamics

A powerful tool for the characterization of time series dynamics is the Causality

Complexity-Entropy Plane (CCEP), proposed by Rosso et al. [2007a], and detailed

in Section 3.6.2. It was successfully applied as a method to distinguish different time

series dynamics, according to the placement of (HS, CJS) pairs. For instance, it is useful

for the hard task of distinguishing noise from chaos [Rosso et al., 2007a; Zunino et al.,

2012; Rosso et al., 2013; Kulp and Zunino, 2014; Ravetti et al., 2014; Rosso et al., 2015;

Ribeiro et al., 2017; Ye et al., 2017]. However, although this method can distinguish

most of these dynamics, some conditions must be satisfied by the time series data, so

it can be placed at the expected position.

Firstly, to assure the reliability of the computed measures, the time series length

n must be long enough so the sampling in the D! space of patterns is representative, i.e.,

n≫ D! [Rosso et al., 2013; Zunino et al., 2012]. If this condition is not satisfied, it may

lead to a statistical analysis that is not consistent with the real-time series behavior

and the occurrence of missing patterns [Rosso et al., 2012]. Furthermore, even if the

length is satisfied, in real-world scenarios, data may not be pure concerning a single

dynamic behavior. A dominant behavior may be corrupted by spurious noise or even

by rounding or truncating values, which may affect the precision when measuring their

dynamics. These issues add a certain degree of uncertainty to the measures, impacting

their placement in the CCEP.

Figure 7.1a shows a CCEP, for D = 4 and τ = 1, illustrating the placements

of 1,500 colored random noise time series, each of them with n = 1,000 samples, and

defined by their power spectra f−k [Larrondo et al., 2006], representing three equal

sized classes with k ∈ {2, 2.25, 2.75}. Classes are represented as red, green, and blue

points, respectively, for each k (represented by the highlighted diamond points in the

figure). Continuous lines represent the minimum and maximum limits for statistical

complexities Their marginal density distributions also illustrates the spread of points

along HS and CJS axes.

It can be noted that the potential for correctly distinguishing the time series

dynamics with the CCEP is related to the placement distribution of points for each

class in the plot. Assuming the distribution of points in Figure 7.1a, the points of

the class k = 2.75 are more straightforward to distinguish than the others since the

distribution of their points does not intersect with others. Otherwise, the intersection

between classes for k = 2 and k = 2.25 makes their distinction harder since there is

no clear separability between those time series classes, which, however, may lead to

misclassifications. Thus, to measure this potential of classification with the CCEP, let
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To analyze the class separability for this scenario, we have to define our version

of a separability index SI for the classes of a given dataset. Before describing SI , let

us establish some requirements:

1. It should be robust to outliers to reduce the effects of noise and imprecision of

the measurements on the analysis.

2. It should be non-parametric, given the placement area of points in CCEP, it is

not easy to fit a priori distribution for the data to calculate their intersection

ranges.

3. It should be independent of the number of instances per class, and, thus, we must

consider the area covered by the points in a broad sense, and not computing the

index per point.

These requirements are essential due to the possible expensive computational cost

that quickly arises when dealing with the magnitudes of IoT data. So, as a solution for

requirement (1), we propose using a method for removing the outliers by computing

the points by their concentration range. Any method could be applied here, but we

follow the approach described in Borges et al. [2019b], which achieved good results by

using the Skinny-dip [Maurus and Plant, 2016] clustering strategy on the points for

each class. Skinny-dip is a noise-robust clustering algorithm based on the Hartigan’s

dip test of modality, which can reasonably detect the more distinguished concentration

of points in a given region. In this work, we use a statistical significance level of

α = 0.05% for estimating the clusters.

For requirements (2) and (3), we propose estimating class distributions, after

filtering the most significant points, by a Kernel Density Estimation (KDE). For our

case, it is sufficient to apply a two-dimensional KDE given our bivariate case with

the HS and CJS axes of CCEP. As a result, KDE will transform the CCEP onto an

nKDE × nKDE square grid. A large nKDE impacts on the precision of the estimated

regions and has implications on the processing time. Figure 7.1b shows the combined

version of the resulting grids for each class from the CCEP of Figure 7.1a, after applying

the methods above with nKDE = 250.

Let us model these grids as nKDE × nKDE matrices A = {ai,j}, B = {bi,j}, and

C = {ci,j}, corresponding to the areas covered by the classes distributions formed by

points from colored noises with k = 2, k = 2.25, and k = 2.75, respectively. Without

loss of generality, let us consider the case of the class distribution from k = 2 modeled

by A. Each one of their elements is defined as ai,j = di,j, with i, j ∈ {1, . . . , nKDE},
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where di,j represents the values according to the estimated density of points at that

location from its underlying CCEP.

Thus, for each ijth element, we want to measure the proportion of the density

this element of A has concerning other distributions intersecting at these positions.

Then, each ai,j element is normalized as

a′i,j =
ai,j

∑

c∈C ci,j
, (7.1)

where c ∈ C is used as a correspondence for all the classes of labels in the given dataset.

Consequently, the possible values of a′i,j are

a′i,j =



















0 if ai,j = 0,

1 if ci,j = 0, ∀c ∈ C and c 6= a,

(0, 1) otherwise.

(7.2)

Note that the proportion 0 < a′i,j < 1 only occurs in case of intersection at that point.

After the normalization of all values, having a normalized matrix A′, we can

compute the individual separability sc for each class c ∈ C. Let A′ = {a′i,j|a′i,j > 0}
be the set of elements of A′ with non-zero values. If m = |A′|, then, the individual

separability for a given class A is given by

sA =

∑

i

∑

j a
′
i,j

m
. (7.3)

The following Lemmas are directly derived from the equations above.

Lemma 7.3.1 (Maximum individual separability). For a given class distribution with-

out intersection with any other class, its separability achieves the maximum value

equals 1.

Proof. If a normalized grid A′, transformed from a given class distribution has no

intersections, then, a′i,j = 1, ∀i, j ∈ {1, . . . , nKDE}. Thus, its individual separability is

given by

sA =

∑

i

∑

j 1

m
=

m

m
= 1. (7.4)

Lemma 7.3.2 (Minimum individual separability). The minimum individual separabil-

ity for a given class distribution occurs when all ℓ classes distributions are completely

overlapped, and it is equal to 1/ℓ.
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Proof. Let ℓ be the number of class distributions in a given dataset. If all classes

are perfectly overlapped, then their estimated grids will be equally distributed over

the CCEP. So, all elements of a given normalized grid A′ have intersections with

all other classes, with the same density values and, consequently, a′i,j = 1/ℓ, ∀i, j ∈
{1, . . . , nKDE}. Thus, its individual separability is given by

sA =

∑

i

∑

j 1/ℓ

m
=

m/ℓ

m
= 1/ℓ. (7.5)

Finally, given the individual separability for all classes in C, the separability index

SI is given by

SI =
1

ℓ

∑

c∈C

Sc. (7.6)

The bounds for the class separability index SI is presented by Theorem 7.3.3.

Theorem 7.3.3 (Bounds of separability index). The separability index SI for a given

dataset D, composed of a number of time series labeled from a set of classes C =

{c1, . . . , cℓ}, with respect to its projected CCEP, is bounded by 1/ℓ ≤ SI ≤ 1.

Proof. Following Lemmas 7.3.1 and 7.3.2, the maximum value of the separability index

SI of a given dataset occurs when all classes c ∈ C achieve their maximum individual

separabilities sc. Conversely, the minimum SI occurs when sc is minimum for all c ∈ C.
Thus, the maximum separability index Smax

I is given by

Smax
I =

1

ℓ

∑

c∈C

Smax
c =

1

ℓ

∑

c∈C

1 =
ℓ

ℓ
= 1, (7.7)

and the minimum separability index Smin
I is given by

Smin
I =

1

ℓ

∑

c∈C

Smin
c =

1

ℓ

∑

c∈C

1/ℓ =
ℓ/ℓ

ℓ
=

1

ℓ
. (7.8)

Algorithm 6 illustrates and summarizes all steps for computing the class separa-

bility index of a given dataset. Besides all the steps above, in line 5, we have to perform

an additional step to consider the CCEP limits. This step is necessary since the KDE

method only estimates the density with a grid according to the parameters and is not

aware of these limits. However, since they are strict for the CCEP, assuring all points
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are always within limits, we have to change all grid elements outside the CCEP limits

to zero. Otherwise, it will impact the metrics computation. It is worth noting that the

robust clustering Skinny-Dip presents a significance level and is used as a threshold for

estimating the points within their clusters, and, thus, we set α = 0.05.

The class separability index SI depends on a given dataset and other instances

may show different SI values. This fact may cause differences, for instance, between

the expected classification potential when analyzing a given training dataset, and the

resulting accuracy for the testing dataset.

ALGORITHM 6: ClassSeparability

Input: Lists of computed features from the m time series of a given dataset,
h = {h1, . . . , hm} and s = {s1, . . . , sm}, for the normalized Shannon entropy and
statistical complexity, respectively. Their labels y = {y1, . . . , ym}, where
∀i, yi ∈ C = {c1, . . . , cℓ}. And an embedding dimension D.

Output: The class separability index SI for the given parameters.
// Estimating density grids for each class

1 for k ← 1 to ℓ do
// Filtering features by class

2 h← {hj : yj = ck} ; s← {sj : sj = ck} ;
// Filtering outliers features with skinny-dip

3 h, s← skinnyDipCluster (h, s, α← 0.05);
// Computing the grid of class k with KDE

4 Ak ← KDE (h, s, nKDE ← 250);
// Zeroing grid elements outside the CCEP limits

5 Ak ← limitCCEP (Ak);
// Converting densities to probability

6 aki,j ← aki,j/
∑nKDE

i=1

∑nKDE

j=1 aki,j

// Normalizing each element of the classes as [0,1]

7 for i← 1 to nKDE do
8 for j ← 1 to nKDE do
9 for k ← 1 to ℓ do

10 aki,j ← aki,j/
∑

c∈Cci,j

// Computing individual separabilities for each class

11 for k ← 1 to ℓ do
// The number of elements in the k-th grid with non-zero values

12 A′ = {ai,j |ai,j > 0}| ; m← |A′| ;
// Computing the individual separability for the class

13 sk ←
∑

i

∑

j a
′
i,j/m

// Computing the class separability index

14 SI ← 1/ℓ
∑

c∈C sc
15 return SI ;
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7.4 TSCLAS: time series classification via class

separability

The class separability index SI measures the potential for correctly distinguishing time

series according to their dynamics, and, thus, it is reasonable to consider the maximiza-

tion of SI to achieve better classification results. For the domain of ordinal patterns

transformations, both embedding dimension D and embedding delay τ have important

roles in capturing different aspects of time series dynamics, which could indicate such

maximization task [Rosso et al., 2007a; Larrondo et al., 2006; Rosso et al., 2013; Zunino

et al., 2012].

Concerning the embedding dimension D, as emphasized in Section 7.3, there are

recommendations for its proper definition, which is directly related to the time series

length. Since D! is the number of possible ordinal patterns (symbols) to consider, the

length n of time series must be long enough so that the sampling in the D! space of

patterns is representative, i.e., n ≫ D! [Rosso et al., 2013]. On the other hand, there

is no simple rule of thumb for defining the embedding delay τ . Although for most

studies, it is sufficient to define τ = 1, different values of τ are used for specific tasks,

such as finding periodicity in data and estimating the scale of delayed systems [Zunino

et al., 2012]. Furthermore, as shown by Zunino et al. [2012] and Borges et al. [2019a],

it is possible to discover important characteristics of the time series when evaluating

the extracted metrics as a function of τ .

Thus, in this work, we follow the approach of analyzing the behavior of the

classes’ metrics for different values of embedding delays τ , intending to find the most

appropriate one for the maximization of SI . This is formally defined by Problem 7.4.1.

Problem 7.4.1 (Maximization of class separability index SI). For a given dataset

D and an embedding dimension D, find τ ∈ T that maximizes the class separability

index SI . The search space T = {1, . . . , τmax} consists of the set of possible embedding

delays, with respect to both D and the length n of time series in D.

7.4.1 Maximization of SI via multiscale approach

The maximization of class separability index via a multiscale approach consists of

computing SI for each pair (D, τ), with τ = {1, . . . , τmax}. Different values for τ

correspond to sampling data with different interval scales within the time series data

points. In this case, we have a limit for the maximum possible value of τmax, which

depends on the length n of the time series and the chosen embedding dimension D,
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and is bounded by

τmax <
n

D − 1
. (7.9)

This limit affects the number of observed ordinal patterns within a time series, so this

bound ensures at least one observed pattern. For the experiments from this work,

we have datasets with time series ranging from n = 96 to n = 30,240, representing

data collected at 1 minute intervals for one day up to 3 weeks. If we consider D = 6,

this range gives a τmax = 19 for the former case and τmax = 6,048 for the latter.

However, such large values of τ are unfeasible in practice, since a higher τ will create

sliding windows with very distant elements from the time series, losing any relation

among them. For our analysis, we have decided to set τmax = min(τmax, 30), which we

empirically found as a reasonable trade-off between capturing the temporal correlation

dependence of the time series and taking into account the computational costs of the

algorithm.

Algorithm 7 presents our strategy for finding the best τ ∗ that maximizes the

separability index SI , for a given dataset. The method consists of computing the SI

for each τ within the list of embedding delays T , lines 2-11. For a given pair (D, τ), the

normalized Shannon entropy and statistical complexity are computed from the ordinal

patterns probability distributions of each time series (lines 5-8). With these features,

we can create the CCEP and compute its class separability index (line 9). After these

rounds, the maximum τ is chosen (lines 10 and 11).

7.4.2 Time series classification strategy

TSCLAS is based on a combination of features extracted from the ordinal patterns

probability distribution (pπ) and the ordinal patterns transition graph (Gπ), both ob-

tained from the set of ordinal patterns (Π) from these time series. To compute those

features, we consider the ordinal patterns transformations for a given embedding di-

mension D and, for the embedding delay, we chose the best τ ∗ according to the strategy

presented in Algorithm 7, which is the one that maximizes the class separability index

SI for the present data.

The whole classification strategy is presented in Algorithm 8. It assumes as inputs

a dataset D = {(xi, yi)}mi=1, which is composed by m time series xi = {x1, . . . , xn} of

size n each, with each of them having its label in y = {y1, . . . , ym}. As parameters for

the ordinal patterns transformations, it expects an embedding dimension D ∈ N, and

a list of embedding delays T = {τ1, . . . , τℓ} to find the best τ ∗.

After randomly splitting the datasets into the training and testing subsets, Dtrain

and Dtest, respectively, in Line 1, the next step is to obtain the τ ∗ that maximizes the
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ALGORITHM 7: FindTau

Input: A dataset D = {(xi, yi)}mi=1, containing m time series xi = {x1, . . . , xn} of size n
each, with labels y = {y1, . . . , ym}. An embedding dimension D, and a list of
embedding delays T = {τ1, . . . , τℓ}.

Output: The τ∗ that maximizes the separability index SI of D.
1 SI ← 0 ;
2 forall τ ∈ T do

// Lists for the features extracted from each of the m time series of

D
3 h← {hi = 0 : i = 1, . . . ,m} ;
4 s← {ci = 0 : i = 1, . . . ,m} ;
5 for i← 1 to m do

// Computing the ordinal patterns probability distributions for the

pair (D, τ)
6 pπ ← OrdinalPatternsPD(xi, D, τ) ;

// Features extracted: normalized Shannon entropy and statistical

complexity

7 hi ← ShannonEntropy(pπ) ;
8 si ← StatisticalComplexity(pπ) ;

// Calculating the class separability index

9 S′
I ← ClassSeparability(h, s,y, D) ;

10 if S′
I > SI then

11 τ∗ ← τ

12 return τ∗;

ALGORITHM 8: Classification

Input: A dataset D = {(xi, yi)}mi=1, containing m time series xi = {x1, . . . , xn} of size n
each, with labels y = {y1, . . . , ym}. An embedding dimension D, and a list of
embedding delays T = {τ1, . . . , τℓ}.

Output: The predicted labels ypred for the test dataset.
// Dataset train/test split

1 Dtrain,Dtest ← TrainTestSplit (D, trainpct) ;
// Finding the best tau for the train set

2 τ∗ ← FindTau (Dtrain, D, T ) ;
// Computing features for the selected tau

3 Ftrain ← ExtractFeatures (Dtrain, D, τ∗) ;
4 Ftest ← ExtractFeatures (Dtest, D, τ∗) ;
// Pre-procesing the features: center and scale

5 Ftrain ← ScaleData (Ftrain) ;
6 Ftest ← ScaleData (Ftest) ;
// Training step

7 model← Training (Ftrain)
// Prediction step on test datset

8 ypred ← Prediction (model, Ftest)
9 return ypred;
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class separability for the training split, Line 2. It is worth mentioning that, following

this method for selecting τ ∗, we avoid the need to perform successive classifications

on a validation set as in a conventional hyperparameter tuning approach. Instead, we

only need to evaluate the maximization of the proposed separability index with the

training set, which is more efficient and adequate for the IoT scenarios.

Thus, once we have D and τ ∗, we can extract the features from both datasets

(Lines 3 and 4), which are further scaled to have zero mean and unit variance (Lines 5

and 6). The computed features are those described in Section 3.5.4, with addition to

the probability of self-transitions measure pst, described in Section 5.5. The features

are presented here as Ftrain and Ftest from the training and testing subsets, respectively.

For the time series classification step, once we have the dataset properly con-

verted, any classification algorithm may be used, according to the availability and

necessity of the problem. For the chosen classifier, the training and prediction steps

are presented in lines 7 and 8, respectively. However, as shown in Section 7.5, given

the importance of considering the large numbers of IoT environments, we chose the

random forest classifier [Breiman, 2001], so this step may correspond to both accuracy

and processing time requirements. Section 7.5.1 presents more details regarding the

chosen classification algorithm and its parameters.

7.5 Results

To evaluate TSCLAS, we performed experiments of time series classification on datasets

collected from real-world sensors, and compared our results with known classification

algorithms from the literature. Besides, we considered common data quality issues to

evaluate the robustness of TSCLAS. In the following, we describe the materials and

methods for our experiments, and the results achieved for the considered scenarios.

7.5.1 Materials and methods

As described by Borges Neto et al. [2015]; Borges et al. [2019b] and Montori et al.

[2018b], IoT data is very challenging to handle. Besides the large amount and het-

erogeneity of sensors, issues such as missing readings, different rates, among others,

make IoT a very unreliable scenario. Thus, in order to properly evaluate TSCLAS,

we have to choose those sensors from the whole IoT spectrum that can provide more

reliable data, mainly with respect to their precision, probability of correctness, and

trustworthiness [Borges Neto et al., 2015; Buchholz et al., 2003]. We decided to per-

form our experiments using data collected from automated airport weather sensors, the
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Automated Surface Observing Systems (ASOS). These are reliable sensors that lies in

the intersection between CoIoT and IIoT, as presented in Section 2.3. These sensors

generate observations every minute, or every hour, according to the airport, and are

used to support weather forecast activities and aviation operations1. Their reliability

comes from constant monitoring of data quality, 24 hours per day, with maintenance

as soon as a problem is detected.

The typical format of these data is the METAR format2, standardized by the

International Civil Aviation Organization (ICAO), which follows a common syntax

used for weather reporting around the world3. However, to collect our data, we use

the weather data archive of the Iowa Environmental Mesonet (IEM), from the Iowa

State University, which collects the ASOS data, stores and makes them available via

an API and a Web interface4. In our experiments, we collect data with a 1-minute

interval, available only for the ASOS from the United States, and with a 1-hour interval,

available for ASOS from several countries in the world.

With these data, we can perform experiments with different setups by varying

the data interval granularity, time span, and geographical locations. Thus, we evaluate

TSCLAS on time series of (i) temperature, (ii) atmospheric pressure, (iii) wind speed,

and (iv) wind direction, composing the four classes in our datasets, considering both 1-

minute and 1-hour time intervals. For the 1-minute interval experiment, the time series

data were collected from 803 airports in the U.S. with geographical locations illustrated

in Figure 7.2a, and, for the 1-hour interval, the time series data were collected from 3742

airports around the world, as depicted in Figure 7.2b. The validity of our experiments

is corroborated by the fact that the time series related to weather phenomena are the

most common types of data in the current IoT [Borges Neto et al., 2015; Borges et al.,

2019b; Montori et al., 2018b].

We may choose any classification algorithm to perform the time series classifica-

tions, as described in Algorithm 8. However, given the characteristics of IoT scenarios,

we decided for the random forest classifier [Breiman, 2001]. Since we are dealing with

large IoT datasets, this decision is motivated by the good reported accuracy and fast

processing time of the random forest classifier, besides its robustness to outliers and

noise. Furthermore, given the relevance of the computed features for each time series,
1Automated Surface Observing Systems from the U.S. National Weather Service: https://www.

weather.gov/asos/asostech.
2METAR description at Wikipedia: https://en.wikipedia.org/wiki/METAR.
3Guide to decode the ASOS - METAR format: https://www.weather.gov/media/wrh/me

sowest/metar_decode_key.pdf, and a more intuitive METAR decoder (in portuguese): https:

//www.redemet.aer.mil.br/?i=facilidades&p=decodificacao-metar.
4Iowa Environmental Mesonet ASOS-METAR Data Download: https://mesonet.agron.iast

ate.edu/ASOS/.
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fication of IoT data are very domain specific, making it difficult to adapt to other

contexts, or the authors of those papers does not make their code available, making

them difficult to be reproducible. Thus, TSCLAS is compared to four different classi-

fication algorithms from literature, which are well known and easy to reproduce. The

Random Forest classifier (RANDF), to test the classification of the raw time series

without our transformation step; the k-nearest neighbors (KNN), to compare with

this well-known distance-based algorithm, mostly used as a ground truth for time se-

ries classification with k = 1, and the Dynamic Time Warping (DTW) as a distance

method [Ratanamahatana and Keogh, 2005; Bagnall et al., 2017]; the Time Series For-

est Classifier (TSF) [Deng et al., 2013], a composition algorithm that improves the

random forest method; and the Random Interval Spectral Forest (RISE) [Lines et al.,

2018], a more recent frequency-based algorithm that performs an ensemble of the trees

with features extracted from the spectral domain of time series. For these tree-based

algorithms, we also fix the number of trees as n_estimators = 200 and the number of

splits as min_samples_split = 2, to have a fair comparison between all methods and

our strategy.

All experiments were performed in a computer with Intel Core i9-9900X CPU at

3.50GHz × 20, 128 GB RAM, and running a Linux Ubuntu 18.04.4 LTS 64-bit. We

implemented TSCLAS in R 3.4.4 [R Core Team, 2018], with some excerpts of code in

C++. All pieces of code used in our experiments are available at a public repository5.

The algorithms from the literature used to compare are implemented in Python 3.6.9,

within the sktime library [Löning et al., 2019], a unified toolbox for machine learning

with time series, except for the RANDF, which is implemented with the scikit-learn

library [Pedregosa et al., 2011].

Table 7.1 presents the versions of software and libraries used in our experiments.

Another step necessary when comparing TSCLAS to the literature solutions is to

transform the raw collected time series into a proper dataset to be read by the algo-

rithms. Although it is not necessary to TSCLAS, for the other strategies we have to

first adjust the time series to have equal length. For this, given the expected number

of data points for a given time span and a fixed time interval between the points, we

adjusted each observation from the collected data by its timestamp to its correspond-

ing position in the adjusted time series. For instance, for making a dataset from the

1-minute raw time series data, considering a 1-day time span, with a 1-minute interval

between observations, each time series should have 1,440 samples. Thus, by consid-
5Classification of IoT data with ordinal pattern transformations: https://github.com/labepi/

tsclas. This code requires the codes for Bandt-Pompe ordinal pattern transformations, available at
https://github.com/labepi/bandt_pompe.
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Table 7.1. List of main software and libraries versions used in the experiments in this work.

Software Details Version

R R software system. 3.4.4

caret R package used for preprocessing data (centering and scaling) and for creating the
dataset splits.

6.0.86

randomForest R package used for the RANDF classifier. 4.6.14

diptest Hartigans’ Dip Test for Unimodality, used for the skinny-dip clustering. 0.75-7

MASS Used for the kernel density estimation KDE. 7.3-49

Rcpp Used for the codes excerpts in C++. 1.0.4.6

matrixcalc Used for matrix operations when extracting features. 1.0-3

Python Python software system. 3.6.9

scikit-learn A machine learning library for the Python. Used for the RANDF classification algo-
rithm and accessory functions.

0.23.1

pandas Python tool used for data analysis and manipulation tool. 1.1.0

numpy A library for the Python programming language used for mathematical operations. 1.19.1

sktime A unified toolbox for machine learning with time series. Used for the time series
classification algorithms of literature.

0.4.1

ering a starting date, which for our experiments was January 1, 2020, we place each

observation at the correct position according to its timestamp. For timestamps with-

out observations, we have a missing data sample. For evaluating TSCLAS in different

setups, we create different datasets by varying these parameters, which impact the time

series lengths for each case.

For the 1-hour raw time series, the time interval is fixed in 1 hour, but we may

vary the time span. However, for these time series, before adjusting the timestamp, we

have to synchronize the hourly observations from different time series according to their

minute of data sampling. This is necessary because each ASOS sensor collects data

at different minutes from the hour. For instance, some of them make their samples

at 00:05 h, 01:05 h, 02:05 h, and so on, while others collect their samples at 00:42 h,

01:42 h, 02:42 h, and so on. Thus, we discover each minute of collection for the ASOS

sensors by considering the minute where most of the data is present. After that, we

consider this minute as the offset for this sensor and use it to center all data samples

at minute 0 of each hour. Although this may potentially distort the moment of data

collection by at most 59 minutes, it is necessary to create the dataset for the literature

algorithms. It is important to mention that this issue does not impact the ordinal

patterns construction of our strategy.

For both 1-minute and 1-hour datasets, we only consider adding to the dataset

those time series with at least 80% of valid data samples for the given time parameters.

For those time series satisfying this condition, before classifying them using literature

algorithms, we apply a linear interpolation for missing data imputation. We have tested



167

different approaches for the data imputation, and our conclusion is that a simple linear

approach provides the best trade-off between the resulting accuracy and processing

time.

Table 7.2 presents the different configuration setups used in our experiments.

Table 7.2. Configurations for the 1-minute and 1-hour experiments and the lengths of time
series for each time span and interval parameters.

1-minute experiments 1-hour experiments

Time span
Time series length per interval Time

span

Time series

length

Time

span

Time series

length1 min 5 min 10 min 15 min

1-day 1,440 288 144 96 1-month 744 4-months 2,904

1-week 10,080 2,016 1,008 672 2-months 1,440 5-months 3,648

2-weeks 20,160 4,032 2,016 1,344 3-months 2,184 6-months 4,368

Finally, another parameter necessary for the classification step is the training

percentage used for the dataset train/test split, which is defined as trainpct = 0.8 for

all experiments involving dataset split, giving the 80/20 split as commonly used in the

machine learning literature. We also assure that each one of the four classes present in

our data has the same number of instances on both train and test splits, so the datasets

are balanced with respect to the number of classes. Finally, we assure the precision

of our results by presenting them as the average of 30 resamples of randomly selected

train/test splits, with 95% confidence interval of the error margin.

7.5.2 Results and discussion

In this section, we present our results on the classification of time series for the 1-

minute and 1-hour ASOS time series. To evaluate TSCLAS and compare its behavior in

contrast to the known solutions from literature, we perform three different experiments,

as presented in the following.

7.5.2.1 Classification of 1-minute time series

In this experiment, we evaluate the capacity of TSCLAS to correctly classify the 1-

minute ASOS time series under different conditions, varying time span of data col-

lection, and time interval between consecutive observations. Figure 7.3a presents the

classification accuracy of TSCLAS by considering four different embedding dimensions

D = {3, 4, 5, 6}, and for the KNN, RANDF, TSF, and RISE, algorithms for the 1-day

time span. Table 7.3 presents all mean accuracies for these regular time series, best

results per configuration are in bold.
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We can observe that, for the 1-minute time interval, TSCLAS achieves an accu-

racy around 0.89, behind TSF and RISE, which are in the order of 0.91, and ahead of

KNN and RANDF. We can also see that our accuracies considerably decay as the time

interval between samples increases for 5, 10 and 15 minutes, being more accentuated for

higher values of D. While KNN and RANDF remain barely constant, similar behavior

is also observed for both TSF and RISE, but more smoothly. This expected behavior

was presented in Section 3.5.1, i.e., for a given time series with length n, the condition

n ≫ D! must be satisfied to obtain reliable statistics with the ordinal patterns trans-

formations [Zunino et al., 2012]. Since we only have 96 samples for 15-minute time

intervals in a single day, c.f. Table 7.2, there is not enough data for the method, mainly

when D is higher.
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Algorithms: D=3 D=4 D=5 D=6 KNN RANDF TSF RISE

Figure 7.3. Accuracies of 1-minute ASOS time series for time spans of (a) 1-day, (b) 1-week,
and (c) 2-week, starting in January 1, 2020, evaluated for time intervals of 1, 5, 10, and 15
minutes between consecutive observations.

On the other hand, as presented in Figure 7.3b, as the number of samples in-

creases when considering a one week of data, the achieved accuracies also increase. For

instance, for a 1-minute time interval, the time series length grows from 1,440 to 10,080

observations, and we have accuracies around 0.94 for all values of D, tying whith TSF.

However, we can also observe the dependency of TSCLAS on the number of samples,

as the time interval increases and, consequently, the n decreases up to 672 samples for

15 minutes, decreasing our achieved accuracies.

The length of the time series is an important aspect to consider, but it is not the

only one impacting our classification results. For instance, the length of the time series

for the 1-week experiment with a 15-minute interval of Figure 7.3b is shorter than the

time series for the 1-day experiment with a 1-minute interval of Figure 7.3a. However,

the accuracy of the former is higher than the latter, i.e., around 0.9 for all Ds, except

for D = 6, which has 0.88, the same as before. This behavior occurs because the

method’s success depends on two aspects: number of observations, as discussed above,
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Table 7.3. Classification accuracies for different configurations of the 1-minute experiment,
for the regular time series and their versions with missing data gaps. Best results per config-
uration are highlighted in bold.

Time

span

Time

interval

TSCLAS
KNN RANDF TSF RISE

D=3 D=4 D=5 D=6

Regular time series

1-day

1 min 0.87 0.88 0.89 0.89 0.62 0.78 0.91 0.91

5 min 0.85 0.83 0.82 0.67 0.62 0.78 0.90 0.85
10 min 0.80 0.75 0.59 0.57 0.63 0.78 0.89 0.83
15 min 0.77 0.74 0.55 0.56 0.63 0.77 0.87 0.81

1-week

1 min 0.93 0.94 0.94 0.94 0.80 0.90 0.94 0.93
5 min 0.93 0.94 0.94 0.94 0.80 0.90 0.94 0.92
10 min 0.93 0.93 0.93 0.91 0.80 0.89 0.93 0.92
15 min 0.90 0.91 0.92 0.88 0.80 0.89 0.94 0.92

2-week

1 min 0.94 0.94 0.94 0.94 0.84 0.91 0.94 0.93
5 min 0.94 0.94 0.95 0.95 0.84 0.92 0.94 0.92
10 min 0.93 0.94 0.94 0.94 0.84 0.92 0.94 0.92
15 min 0.94 0.94 0.94 0.93 0.84 0.92 0.94 0.92

10% gap

1-day

1 min 0.87 0.87 0.89 0.88 0.61 0.77 0.90 0.91

5 min 0.83 0.83 0.80 0.71 0.62 0.77 0.87 0.84
10 min 0.79 0.75 0.75 0.54 0.62 0.77 0.86 0.82
15 min 0.75 0.72 0.70 0.52 0.62 0.77 0.86 0.80

1-week

1 min 0.93 0.94 0.94 0.94 0.79 0.89 0.93 0.93
5 min 0.93 0.94 0.94 0.93 0.78 0.88 0.93 0.91
10 min 0.92 0.93 0.92 0.91 0.78 0.88 0.93 0.91
15 min 0.91 0.90 0.91 0.89 0.79 0.88 0.92 0.91

2-week

1 min 0.94 0.94 0.94 0.94 0.82 0.89 0.94 0.93
5 min 0.94 0.94 0.94 0.94 0.83 0.90 0.93 0.92
10 min 0.93 0.94 0.94 0.93 0.82 0.90 0.93 0.92
15 min 0.94 0.94 0.93 0.93 0.82 0.90 0.93 0.92

30% gap

1-day

1 min 0.84 0.86 0.85 0.85 0.58 0.72 0.88 0.89

5 min 0.79 0.76 0.75 0.73 0.58 0.73 0.84 0.81
10 min 0.74 0.69 0.70 0.66 0.60 0.73 0.82 0.79
15 min 0.68 0.68 0.65 0.59 0.60 0.72 0.81 0.77

1-week

1 min 0.93 0.94 0.94 0.94 0.71 0.82 0.92 0.92
5 min 0.92 0.93 0.93 0.93 0.72 0.83 0.91 0.89
10 min 0.92 0.92 0.91 0.89 0.72 0.82 0.90 0.89
15 min 0.90 0.91 0.88 0.87 0.73 0.82 0.89 0.88

2-week

1 min 0.93 0.94 0.94 0.94 0.76 0.85 0.92 0.92
5 min 0.94 0.94 0.94 0.94 0.76 0.85 0.92 0.91
10 min 0.94 0.94 0.94 0.93 0.76 0.85 0.91 0.90
15 min 0.92 0.93 0.93 0.91 0.75 0.86 0.91 0.90

50% gap

1-day

1 min 0.82 0.82 0.81 0.77 0.56 0.68 0.85 0.81
5 min 0.74 0.72 0.70 0.67 0.55 0.68 0.81 0.73
10 min 0.66 0.62 0.59 0.53 0.56 0.67 0.79 0.72
15 min 0.60 0.58 0.51 0.51 0.57 0.67 0.76 0.69

1-week

1 min 0.92 0.93 0.93 0.93 0.70 0.79 0.91 0.87
5 min 0.92 0.92 0.92 0.91 0.70 0.79 0.89 0.81
10 min 0.91 0.90 0.89 0.87 0.70 0.79 0.88 0.82
15 min 0.89 0.86 0.84 0.83 0.69 0.79 0.87 0.80

2-week

1 min 0.93 0.94 0.94 0.94 0.72 0.82 0.92 0.90
5 min 0.93 0.94 0.94 0.93 0.72 0.82 0.91 0.88
10 min 0.93 0.93 0.93 0.92 0.72 0.81 0.90 0.87
15 min 0.93 0.92 0.91 0.90 0.72 0.82 0.90 0.87
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and representativeness of the phenomena of the collected data.

For instance, the temperature values of METAR are reported as degree Celsius

with two integer digits, without decimal places, which are rounded up. The same

rounding is also applied to other data types. Thus, with an 1-minute interval, small

temperature variations are lost, and the values remain constant as long as the tempera-

ture does not increase/decrease enough. These constant numbers are misinterpreted by

the method as a deterministic behavior that does not exist. However, by increasing the

time interval between data observations, the number of consecutive samples tends to

reduce, and the phenomena’ real conditions can be correctly represented by data. For

the 1-minute interval samples, the increase in the number of observations masquerade

some data representation issues, and we have the best accuracy results for that case.

The same behavior is observed for a 2-week time span, presented in Figure 7.3c, but

with better results for all time intervals, once the number of samples for 15 minutes is

large enough. In general, TSCLAS ties with the best classifier, TSF, even beating it

in the configuration of 2-week and 5min interval.
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Algorithms: D=3 D=4 D=5 D=6

Figure 7.4. Selected values of τ∗ during the maximization of class separability index for the
configurations of 1-minute ASOS time series, for (a) 1-day, (b) 1-week, and (c) 2-week time
spans.

The issue of the time series length versus the representativeness duality is also

present in TSCLAS during the maximization of the class separability index. Figure 7.4

presents the average selected τ ∗ for 1-minute configurations. We can see that, for the

1-week and 2-week spans, in Figures 7.4b and 7.4c, respectively, as the time interval

increases the selected τ tends to 1, since the spacing between observations already

provides a significant data representation. On the other hand, for 1-minute intervals,

we need large values of τ to minimize the impact of rounding.

For the 1-day case, presented in Figure 7.4a, since we have small time series,

this behavior is observed only for D = 3 and D = 4. For D = 5 and D = 6,

we have an inconsistent behavior of the selected τ ’s because the length n of time
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series does not satisfy the recommendation for n ≫ D!, as previously discussed in

Section 3.5.1 [Rosso et al., 2007a, 2013]. This reinforces the fact that larger values of

D are not recommended for the configurations with short time series since the method

cannot compute enough patterns to represent the phenomenon.
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Figure 7.5. Average time spent for the classification of 1-minute ASOS time series, consid-
ering their training steps with (a) 1-day, (b) 1-week, and (c) 2-week times spans, and their
prediction steps for (d) 1-day, (e) 1-week, and (f) 2-week time spans.

Concerning the time spent on the time series classification, Figure 7.5 presents

the average times for the training and prediction steps for the 1-minute ASOS time

series. Overall, the time spent for both training and testing increases with the data

length. The algorithms with lower processing times are KNN and RANDF, followed

by TSCLAS, and, finally, TSF and RISE. For TSCLAS, the time increases with the

embedding dimension D, which can easily be observed in Figures 7.5b and 7.5c of the

training steps, but it is also similar to the other configurations. TSCLAS requires more

training time than KNN and RANDF, but presents better classification accuracies.

Given the current availability of cloud and fog resources, the training step can be

processed in those powerful machines, which might favor our strategy. Besides, the

time spent in the prediction step is competitive to KNN and RANDF, as can be

observed in Figures 7.5d-f.

In summary, when TSCLAS is applied to long enough time series, for configura-

tions of 1-week and 2-weeks, it beats the accuracies of KNN and RANDF and is very
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close to TSF and RISE, even beating them for some configurations. Furthermore, even

when not winning these last two, its processing times for both training and prediction

are lower, making it a competitive strategy. On the contrary, for the 1-day configu-

rations, TSCLAS is not the best solution since the conditions are not appropriate to

achieve its full potential.

Another perspective for evaluating TSCLAS is presented in Figure 7.6, which

illustrates our worst and best-case scenarios for each embedding dimension D. Our

worst results occur when there are fewer observations per time series, thus, Figures 7.6a-

d illustrate the confusion matrices for the experiments configured with 1-day time span

and 15 minutes of time interval between observations, for D = {3, 4, 5, 6}, respectively.

Each confusion matrix was obtained by accumulating the actual-predicted classes for all

30 resamples from each experiment configuration, which was then normalized between

0 and 1 and presented as heat maps. From those figures, we can observe the errors

increasing as a function of D, but those errors occur in some particular ways. For

instance, it is more likely to misclassify temperature with atmospheric pressure and

vice-versa. The same occurs between the wind direction and wind speed time series,

which are more misclassified. This behavior occurs due to the similarity between these

phenomena’ intrinsic dynamics, which are easier to confuse when there is not enough

data.

Concerning the best classification results, Figures 7.6e-h, present the heat maps

of the confusion matrices for the experiments with a 2-week time span and 1-minute

time interval between observations, which are the configurations with more data for the

considered embedding dimensions. We can note the reduction of classification errors

for all values of D, but there is still a concentration of errors among the wind direction

and wind speed time series. Since both time series represent distinct views of the same

physical phenomenon (wind), it is harder to make a perfect distinction among them.

This issue is inherited from the ordinal pattern transformations, which go deep into the

phenomena’ dynamic characteristics. At this point, the time series from temperature

and atmospheric pressure are correctly classified 99% of the time.

7.5.2.2 Classification of 1-minute time series with missing data

To evaluate the robustness of TSCLAS, we present the results for experiments when

we have missing data in the time series. We simulated the case where sensors stopped

generating data for a while, and then return their operation, creating continuous gaps

in time series. These are concerns that easily occur in current IoT scenarios and that

we must consider when classifying their data [Borges Neto et al., 2015; Borges et al.,
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Figure 7.6. Heat maps of the confusion matrices for the worst and best results, with respect
to the classification accuracies, for D = {3, 4, 5, 6}. Worst results occur for 1-day time span
and 15 minutes of time interval between observations, and the best ones are achieved for
2-week time span with 1 minute of time interval.

2019b]. The problem with gaps is that (i) they reduce the number of observations,

which may affect our method as previously mentioned, and (ii) it is harder to perform

data imputation as the gaps increases, which may affect the performance of other
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methods.

To evaluate at what extent this is a problem for the compared strategies, we tried

three different gap sizes, which are 10%, 30%, and 50% of the original length of time

series. For each time series, given a gap size, the moment in time the gap occurs is

randomly selected within the time series. Starting from the point corresponding to this

selected moment in time, all consecutive data points of the time series are removed until

completing the gap length for each case. The achieved accuracies for the algorithms for

the 1-minute datasets, considering different time spans, time intervals, and gap sizes.

are illustrated in Figure 7.7 and its numerical results are presented in Table 7.3.

Figures 7.7a-c present the impacts of the increase in the gap size in the algorithms’

accuracy for the 1-day time span. For TSCLAS, we can observe this impact by the

steeper negative slope as the gap size increases. In contrast to Figure 7.3, which

consists of the classification of the original data without gaps, by reducing the number

of observations with gaps, the accuracy of TSCLAS is more damaged. This is due

to the violation of the n ≫ D! requirement for the transformation, as explained in

Sections 3.5.1 and 5.2.1. For instance, for a 1-day time span, with a 15-minute interval,

and 50% of gaps in data, we only have 48 observations to compute the ordinal patterns.

The impact on other strategies was only noted for 30% and 50% of gaps. While TSF

and RISE have a similar but smoother effect than ours, RANDF and KNN have their

general accuracy lower but constant concerning the increase in the time intervals.

This same constant, but lower, behavior of RANDF and KNN also occurs for

these algorithms on the 1-week and 2-week time spans, presented in Figures 7.7d-f

and 7.7g-i, respectively. For other strategies, the increase in gaps still impacts their

accuracy, but this is mitigated as the time span increases. However, as the number

of observations per time series increases with the growth in time span, the impact

of gaps is less perceived on our strategy than on the TSF and RISE. For instance,

considering Figure 7.7i and Table 7.3, for 2-week time span with a 50% gap size, the

best accuracies for TSCLAS, for different configurations and values of D, range from

0.93 to 0.94, beating the best results of other compared classifiers. This behavior

represents a minimal impact of gaps in TSCLAS, reinforcing our claim that, once we

have the representativeness of the phenomena on the collected data, our performance

is a matter of enough observations in the time series.

We evaluate the time spent by the methods to classify the time series with missing

data. Without loss of generality, we take as an example the case for 50% gaps for both

training and prediction steps, presented in Figure 7.8. By comparing these times to the

ones for the classification steps without gaps, presented in Figure 7.5, we can see similar

behavior for all methods. However, while TSCLAS has a reduction in the time spent
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with 30% gap size.
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with 50% gap size.
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with 10% gap size.
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(e) 1−week time span
with 30% gap size.
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(f) 1−week time span
with 50% gap size.
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(g) 2−week time span
with 10% gap size.
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(h) 2−week time span
with 30% gap size.
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(i) 2−week time span
with 50% gap size.

Algorithms: D=3 D=4 D=5 D=6 Knn RandF TSF RISE

Figure 7.7. Classification accuracies of 1-minute ASOS time series with missing data, sim-
ulated as continuous gaps randomly positioned within the time series. Figures correspond to
combinations 1-day, 1-week, and 2-week time spans, for gaps with 10%, 30%, and 50% of
the length of the time series, evaluated for different time intervals of 1, 5, 10, and 15 minutes
between consecutive observations.

for both training and prediction steps in general, the other methods increased their

spending times. This occurs due to the reduced time series length as the gap increases,

which, for our method, also reduces the number of ordinal patterns to compute.

The methods that require some data imputation need more pre-processing time to

adjust the data, increasing their total time. Take TSF, for instance, the most prominent

case for a 2-week time span with 1-minute time interval. It increased its training and

prediction times from approximately 4,700 and 1,040 seconds, to approximately 5,840
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(d) 1−day prediction time
with 50% gap size.
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(f) 2−week prediction time
with 50% gap size.

Algorithms: D=3 D=4 D=5 D=6 Knn RandF TSF RISE

Figure 7.8. Average time spent for the classification of 1-minute ASOS time series with 50%
of time series samples as missing data. The missing data points were simulated as continuous
gaps, randomly positioned within the time series. We consider evaluating the training step
with (a) 1-day, (b) 1-week, and (c) 2-week times spans, and the prediction step for (d) 1-day,
(e) 1-week, and (f) 2-week time spans.

and 1,300 seconds, respectively. Oppositely, our worst-case scenario, with D = 6,

decreased its training and prediction times from approximately 2,750 and 125 seconds,

to approximately 2,250 and 122 seconds, respectively. This indicates the valuable

robustness of TSCLAS concerning the missing data problem in time series, a common

issue present in real-world IoT data.

7.5.2.3 Classification of 1-hour time series

To evaluate TSCLAS in a broader sense, we perform the classification of the 1-hour

ASOS time series. While the 1-minute ASOS correspond to time series from airports

within the United States, the 1-hour ASOS consists of time series from around the

world, as illustrated in Figure 7.2b. For this experiment, we consider the time series

from all 3,742 airports as a single dataset, performing 30 classifications with random-

ized splits each, as described in Section 7.5.1. Figure 7.9a presents the classification

accuracies achieved by the classifiers for different time spans, ranging from 1-month to

6-months.

We can see that all classifiers are impacted by the number of observations per time
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Figure 7.9. Results for the experiments on the 1-hour ASOS time series, consisting of (a)
the classification accuracy, and times spent on (b) the training and (c) the prediction steps.
All results were evaluated considering time spans of 1, 2, 3, 4, 5, and 6-months, with a starting
date of January 1, 2020.

series, but TSCLAS is the most dependent on the time series length. As the length

increases, our achieved accuracy also increases. It ranges from the worst accuracy

level of 0.81 for D = 6 in the 1-month time span, with only 744 observations, to our

highest accuracy of 0.93 for D = 3 in the 6-month time span, where there are 4,368

observations, as presented in Table 7.2. However, we can see by the tendency of the

curves that we are bounded at this highest accuracy. This behavior occurs due to

the low representativeness of the time series dynamics that we can capture from these

phenomena by having a fixed 1-hour time interval. Unlike the 1-minute ASOS time

series, where lower time intervals, up to 15 minutes, give reasonable representativeness

for the phenomena dynamics, the 1-hour intervals are too much spaced. However, as

can also be seen, this is not a problem for the others strategies in comparison with ours,

where TSF reaches classification accuracies between 0.95 and 0.97, for the 1-month and

6-month configurations, respectively.

By looking at Figures 7.9b and 7.9c, which present the time for training and

prediction, respectively, we can note that both TSF and RISE need more time to achieve

their highest accuracies. On the other hand, KNN, which practically does not have

operations to do in the training step, presents a considerable time for the prediction

step. TSCLAS presents reasonable times for both steps, being below TSF and RISE in

the training step and only losing for the RANDF algorithm in the prediction step. In

fact, regarding the trade-off between classification times and achieved accuracy, for all

algorithms, RANDF appears as the best choice for this 1-hour time interval scenario,

with accuracies increasing from 0.91 to 0.95 and a short processing time at both steps.

In summary, we can conclude that, although TSCLAS is still competitive in this

scenario, it is not the most favorable for it. On the contrary, time series with smaller

granularities, such as the 1-minute scenarios, are more suitable. In fact, we can also
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note that, in the current IoT scenarios, it is more likely to have sensors collecting data

at small intervals, even in seconds, than at 1-hour intervals. Thus, justifying the main

objectives for TSCLAS to be a valuable strategy for the classification of IoT time series

data according to their dynamical behavior.

7.6 Conclusion

In this chapter, we presented TSCLAS, a strategy for time series classification, using

features extracted from ordinal patterns transformations, demonstrated to be a very

suitable solution for classifying data generated by IoT sensors. TSCLAS is exception-

ally adaptable to time series length and robust to missing data gaps. We conducted

several experiments using real-world meteorological time series, leading to significant

classification accuracies for both time series from 1-minute and 1-hour intervals be-

tween consecutive data points. The method achieved better results when the time

series length are large enough and when the data points represent the measured phe-

nomena well.

Besides that, TSCLAS presents lower computation times for training and testing,

being competitive enough compared to the tested algorithms from the literature. By

simulating a missing data problem as consecutive gaps in the time series, which is

common and likely to occur in IoT scenarios, TSCLAS surpasses the algorithms from

literature in our tests, even with gaps as long as 50% of time series data points.

Furthermore, although further studies are needed to confirm it, we also argue that

the proposed class separability analysis can be a valuable method for estimating the

classification potential of ordinal patterns transformations. Preliminary data analysis

for a given dataset can be helpful as a first step in knowing if its time series classes are

distinguishable or not. Another future work includes the application of the proposed

classification strategy to other datasets in other domains to assure its viability in

different scenarios. Finally, we plan to evaluate the robustness of TSCLAS to other

IoT common problems, such as precision, correction, and trustworthiness.
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Chapter 8

IoT Botnet Detection based on

Multiscale Time Series Dynamics

The detection of botnet attacks on the Internet of Things (IoT) is a critical challenge

faced by the cyber-security community in recent years, given its high degree of severity.

For instance, botnets are used to trigger Distributed Denial-of-Service (DDoS) attacks,

which are further amplified by a large number of IoT devices. In this chapter we tackle

this urgent task, which is motivated in Section 8.1. Section 8.2 discusses studies related

to our proposed strategy, focusing on solutions for anomaly and botnet detections in

IoT scenarios. Section 8.3 presents our proposed strategy for detecting botnets in IoT

by the anomalies in their dynamical behavior, using the features obtained from the

multiscale ordinal patterns transformations. Section 8.4 shows our experiments and

results. Finally, Section 8.5 presents our conclusions and future directions.

8.1 Introduction

The growing number of Internet of Things (IoT) devices can create several new services

and solutions to ease modern life [Atzori et al., 2010; Gubbi et al., 2013; Borges et al.,

2019b]. Ranging from small sensors to powerful devices, the number of IoT-enabled

devices is estimated to reach up to 25 billion in the next years [Schmeißer and Schiele,

2020]. However, because of their computational restrictions and misconfigurations, IoT

devices are easy targets for attacks, making their security an urgent concern [Bertino

and Islam, 2017; Kolias et al., 2017; Blaise et al., 2020].

A recurrent attack involving IoT devices in recent years, serving as the basis for

other attacks, is their infection by bots. A bot is a malicious software that can be

used for remote controlling these devices by an attacker, the botmaster. A network
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of devices compromised by bots is a botnet [Bertino and Islam, 2017]. The main

security threat is that once a device is compromised, the power of an attacker goes

from collecting data of its targets, such as password cracking and keylogging, to large-

scale orchestrated attacks, such as spam delivery and Distributed Denial-of-Service

(DDoS) attacks [Bertino and Islam, 2017; Kolias et al., 2017].

Furthermore, although an attack from a small IoT device might not be harmful,

as pointed by aKolias et al. [2017], the number of IoT devices compensates for their lack

of computational resources. For instance, between March and April 2019, a massive

botnet attack that used more than 400,000 IoT devices worldwide was detected. This

attack produced more than 292,000 requests per minute, aiming to affect the availability

of a remote server1. This is an aspect that enhances the impact of DDoS attacks,

making them hard to be handled by any powerful server.

Thus, following the threat model proposed by Abbas et al. [2020], and considering

the severity and destructive potential of DDoS attacks once empowered by botnets

of billions of compromised IoT devices [Al-Garadi et al., 2020], there is an urge for

solutions to identify and mitigate their impact. However, since DDoS attacks are

difficult to defend against, given the volatility and different attack patterns [Wang

et al., 2018], the early detection of such digital threats is a reasonable solution. This

is possible by evaluating anomalies in the typical behavior of IoT devices. Thus, given

the expected behavior of IoT devices, the detection of any deviation can be signaled

as an anomaly [García-Teodoro et al., 2009]. In fact, following the claim of Meidan

et al. [2018], this approach is well suited for IoT since their devices are dedicated to

a specific task, and sudden changes may indicate potential attacks of compromised

devices [Bertino and Islam, 2017].

In this paper, our main objectives are to investigate the following research ques-

tions:

1. Do these behavioral changes in devices’ operation affect their temporal dynamics?

2. In the affirmative case, can these dynamics be used to detect anomalous behavior,

which represents an attack?

The temporal dynamics indicate how a system evolves, being an essential aspect for

distinguishing data that changes its behavior as a function of time [Rosso et al., 2007a,

2015; Borges et al., 2019a]. We argue that this duality between IoT devices’ typical

and anomalous behavior is an aspect their temporal dynamics can capture. Thus, our
1Massive Botnet Attack Used More Than 400,000 IoT Devices. Accessed in April 04, 2021.

https://www.bankinfosecurity.com/massive-botnet-attack-used-more-than-400000-iot-d

evices-a-12841.
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proposed strategy for detecting botnet attacks in IoT consists of evaluating anomalies

in the dynamical behavior of devices’ network traffic during regular and attack periods,

aiming to distinguish them.

For instance, once a device is infected by the Mirai malware [Kolias et al., 2017],

one of the most prominent botnets for DDoS attacks, it automatically does some op-

erational steps that change its network traffic. Some of them include scanning the

network for new victims, sending reports and receiving commands from a Command

and Control (C&C) server, and send attack traffic to a target server [Kolias et al.,

2017; Meidan et al., 2018]. This change in the network traffic can be interpreted as an

anomalous behavior and be used to detect a compromised device [Kolias et al., 2017].

To capture these dynamics, we use the ordinal patterns transformation, a corner-

stone contribution from Bandt and Pompe [2002], described in Section 3.5. For this

work, we add another intrinsic characteristic of dynamical systems: strong dependence

on the scale used for sampling the signals [Zunino et al., 2012]. Thus, we consider

evaluating the time series following a multiscale approach, i.e., using different time in-

tervals to construct the ordinal patterns. With this approach, we can understand how

different time series evolve as well as their temporal correlation dependence. In fact,

the multiscale analysis of time series has been demonstrated to be useful information

for the correct characterization of time series dynamics [Zunino et al., 2012; Borges

et al., 2019a].

In summary, our main contributions to this work are:

1. We propose a strategy for detecting botnet attacks in IoT based on anomalies in

the dynamics of network traffic captured by the ordinal patterns transformation.

2. We propose using a set of features extracted from the multiscale ordinal patterns

transformations for representing the changes in dynamics of IoT devices, which

are inputs for the anomaly detection algorithm.

3. We demonstrate that with the proper transformation, which is able to capture

distinguishing aspects from the typical phenomena, it is possible to use simple

methods for detecting anomalies in the behavior of devices.

With these contributions, we advance the state of the art of detecting IoT botnet

attacks in a simpler and more efficient way than other strategies from literature. Fol-

lowing the strategy of Nomm and Bahsi [2018], we apply a shallow anomaly detection

algorithm. Instead of using deep learning methods, we use the Isolation Forest, a

model-free anomaly detection algorithm with linear time complexity and low memory
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requirements [Liu et al., 2008, 2012; Hariri et al., 2019]. In fact, from the experiments

of Nomm and Bahsi [2018], the Isolation Forest was the algorithm with the best results.

8.2 Related Work

The network traffic data is an essential asset for monitoring and evaluating devices’

behaviors in many domain areas. Strategies range from remote distinguishing oper-

ating systems [Medeiros et al., 2010] to the malfunction detection of devices by the

unexpected behavior of their communications [Chandola et al., 2009; Boukerche et al.,

2020]. Thus, information extracted from network traffic is of fundamental importance

to the analysis of a device’s behavior.

With respect to the security concerns of networked devices, unexpected behavior

of a device may indicate it is hacked and performing undesired operations. Thus,

an important strategy to discover security issues on devices is detecting anomalies in

their network traffic. Chandola et al. [2009] presented a survey on anomaly detection

techniques and applications. They noted that once a device is compromised by a worm,

for example, the anomalous traffic is more frequent than the regular traffic. Likewise,

García-Teodoro et al. [2009] discussed strategies for detecting abnormalities in network

traffic and their important role for intrusion detection systems.

Many solutions were proposed to detect network traffic anomalies. [Agarwal and

Mittal, 2012] proposal is based on the entropy of network measures. After extracting

the network measures, they compute their normalized entropy which are further clas-

sified with Support Vector Machine (SVM) as normal or attack traffic. The work of

Yu et al. [2013] consists of detecting flooding attacks by observing network measures

of devices, which are collected by Simple Network Management Protocol (SNMP) re-

quests. After collecting data, such as the number of received, sent, and error packets,

they use a C4.5 decision tree to identify the attacks.

For the specific case of detecting botnet attacks, Wang et al. [2018] presented a

study on the characterization and analysis of the behavior of 50,704 different Internet

DDoS attacks observed during seven months. For our concerns, they reveal that un-

derstanding DDoS attack patterns is the key to defending against them. One of the

most prominent patterns they identified is some periodicity of the inter-attack time

interval for the DDoS attacks, which may be an interesting aspect for their detection.

Mirsky et al. [2018] proposed the Kitsune, a Network Intrusion Detection System

(NIDS), which uses an ensemble of autoencoders to detect attacks on local networks.

At the core of Kitsune is a feature extraction framework used for capturing measures
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from the network traffic, which serves as input for the autoencoders. This framework

is used for extracting network measures that will serve as a basis for other related

proposals, including this one.

Blaise et al. [2020] proposed a Collaborative Intrusion Detection System (CIDS)

for detection of anomalies in network traffic by considering the aggregated traffic at

target ports. They assume that, once a device is compromised, the sudden rise in

traffic towards a port is the first steps of their operation. The authors claim that it is

possible to early identify a botnet attack by focusing on port-based detection.

Given the increase of IoT botnets and their harmful impact on current network

threats, many studies have investigated this problem focusing on anomaly detection.

Meidan et al. [2018] proposed detecting IoT botnets using autoencoders. They follow

the Kitsune method [Mirsky et al., 2018] for extracting network traffic measures, which

is the input for their autoencoders. The measures were extracted from real IoT devices

during normal (benign) and attack operations, which were infected by the Mirai and

Bashlite botnets [Bertino and Islam, 2017; Kolias et al., 2017]. The resulting N-BaIoT

dataset, detailed in Section 8.4.1, is publicly available and used for other studies.

Nomm and Bahsi [2018] proposed a strategy for detecting IoT botnets based

on shallow methods, rather than using deep learning models as Meidan et al. [2018],

which the authors affirm to be more appropriated for IoT devices. The authors propose

a feature selection approach to consider only the best network traffic measures for

further classification as benign and attack event. Alqahtani et al. [2020] also used

the N-BaIoT dataset for their experiments to detect IoT botnet attacks. The authors

propose a feature selection strategy for simplifying the number of network measures

in the original N-BaIoT dataset. With the best features, they use eXtreme Gradient

Boosting (XGBoost) as a classification method. Unlike the other proposals, which

used only the benign traffic data for training their models, in this last one, the authors

considered both benign and attack data for the model training step. Popoola et al.

[2021] proposed a federated deep learning method for zero-day botnet attack detection

in IoT edge devices. Their strategy uses a federated averaging strategy to aggregate all

local models from edges, producing a global deep neural network model. The authors

used a subset of five attacks from the N-BaIoT dataset.

To put our work in perspective, let us compare it with the previous related work.

Our focus is to detect anomalies in the N-BaIoT network traffic dataset, collected by

Meidan et al. [2018]. Thus, we can compare our results with their work and the work

of Nomm and Bahsi [2018], Alqahtani et al. [2020], and Popoola et al. [2021] which

also use the same dataset. Our first difference from them is in the number of network

measures used to detect anomalies. These works use all the 115 measures from the
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The next step consists of transforming the constructed time series by the mul-

tiscale ordinal patterns transformation, described in Section 8.3.2. After this trans-

formation, we will have a set of relevant features to represent the characteristics from

the distinct dynamics of the devices’ operations. Then, these features are the input

for the Isolation Forest anomaly detection algorithm [Liu et al., 2008], described in

Section 8.3.3.

8.3.2 The multiscale ordinal patterns transformation
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Figure 8.2. Process for the transformation of a time series xi onto a new vector of features
fi, based on the multiscale ordinal patterns transformations, for a given embedding dimension
D and a list of embedding delays T of length t.

Figure 8.2 depicts the detailed process to perform the transformations necessary

on the time series. For a given time series xi = (xi,1, . . . , xi,m), of length m, the ordinal

patterns transformation is applied as described in Section 3.5.1. The parameters are

D and τi ∈ T , with i = {1, . . . , t}, corresponding to a given embedding dimension and

an embedding delay (time interval) from the list, respectively.

For each pair (D, τi), the result of this step is a set of ordinal patterns Πτi repre-

senting the transformation of the time series with D and τi ∈ T as parameters. Thus,

given the list of considered embedding delays, each time series is transformed into t

different sets of ordinal patterns.

Once a set of ordinal patterns Πτi is obtained, it is transformed onto both an

ordinal patterns probability distribution (pτiπ ) and an ordinal patterns transition graph

(Gτi
π ), as described in Sections 3.5.2 and 3.5.3, respectively. From both pτiπ and Gτi

π , a

set of features is extracted, consisting of the new representation for the time series xi,

which will be used to create the new features vector. Therefore, for each time series xi

and for each pair (D, τi), we have the set of features

fτi = {fτi,1, fτi,2, . . . , fτi,j}, (8.1)
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where j is the number of features extracted.

In this work, from a given time series xi, there is a total of j = 8 features

extracted for each pair (D, τi). These are the features presented in Sections 3.5.4,

plus the probability of self-transitions pst, described in Section 5.5. Thus, the vector

presented in Equation 8.1 can be instantiated to the following features,

fτi = {N τi
E , HS[Ew]

τi , CJS[Ew]
τi , F [Ew]

τi , pτist, HS[pπ]
τi , CJS[pπ]

τi , F [pπ]
τi}. (8.2)

The next step for transforming the time series corresponds to the composition of a

vector f of all extracted features for each τi ∈ T , representing the final transformation.

To illustrate this step, Equation 8.3 shows the set of features f constructed from the

time series x.

f =
t
⋃

i=1

fτi =
t
⋃

i=1

{fτi,1, fτi,2, . . . , fτi,j} (8.3)

After these steps, the new ordinal patterns domain for the raw time series corre-

sponds to a new features vector of length tj. Algorithm 9 describes the transformation

process of a given time series onto this novel features representation, following the

multiscale ordinal patterns transformations.

ALGORITHM 9: MultiscaleTransformation

Input: A time series x = {x1, . . . , xm} of length m, an embedding dimension D and a
list of embedding delays T of length t.

Output: The resulting f = {f1, . . . , ftj} features after the multiscale transformations
process.

// Transforming the time series for each τ
1 foreach τi ∈ T do

// Main transformation

2 Πτi ← ordinalPatterns(x, D, τi);
// Probability Distribution

3 pτiπ ← ordinalPatternsPD(Πτi , D);
// Transition Graph

4 Gτi
π ← ordinalPatternsTG(Πτi , D);

// Extracting the features

5 fτi ← extractFeatures(pτiπ , G
τi
π );

// Joining features from all τ’s as a single features vector

6 f = {fτ1 , . . . , fτt};
7 return f ;
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8.3.3 The anomaly detection strategy

For detecting anomalies in IoT devices, our method requires time series samples to

learn its behavior. These time series are constructed by consecutive observations of a

single network traffic measure at distinct moments. Thus, for a given network measure

k, our proposal consists of training a model with the time series observations of k during

the benign operation of the devices and, then, performing the anomaly detection for

unseen observations.

8.3.3.1 The training phase

For training the model, let us assume the dataset of time series from a given network

measure k, collected during its benign operation, is available. Let the matrix Xk
n×m =

[xk
1,x

k
2, . . . ,x

k
n]

⊤ be this dataset consisting of n distinct time series for a specific network

measure k. For the sake of clarity, let us assume each time series xk
i = xk

i,1, . . . , x
k
i,m

consists of consecutive samples and has the same length m. However, it is important

to highlight that the method does not require time series of equal lengths.

After performing the multiscale transformation for each time series, described in

Section 8.3.2, the novel matrix of features vectors Fk
n×tj ← [fk1 , f

k
2 , . . . , f

k
n ]

⊤ is obtained.

This matrix of features will be used for training a model with the Isolation Forest

anomaly detection algorithm. The processes for training the model ck, specific for the

network traffic measure k, is presented in Algorithm 10.

ALGORITHM 10: ModelTraining

Input: The time series dataset Xk
n×m for a specific network traffic measure, an

embedding dimension D, and a list of embedding delays T of length t.
Output: The resulting classification model ck for the network traffic measure k.
// Transforming each time series from the dataset onto a set of features

1 foreach xk ∈ Xk do
// Main transformation

2 fk ← MultiscaleTransformation(xk, D, T );
// The matrix of transformed features

3 Fk
n×tj ← [fk1 , f

k
2 , . . . , f

k
n ]

⊤

// Fitting a model

4 ck ← IsolationForest(Fk, ntrees);

5 return ck;
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8.3.3.2 The anomaly detection phase

For the anomaly detection phase, a given time series of unseen observations is passed

through the isolation forest model ck, which results in an anomaly score s. According

to the value of s, this time series will be concluded as a regular time series, i.e., similar

to the time series presented to the model during its training or an anomalous time

series.

Thus, let yk = (yk1 , . . . , y
k
m) be a time series of m suspicious observations from the

network traffic measure k. As in the case when training the model, the observations

are consecutive samples collected from the same network measure k. After computing

the features vector fk, with the multiscale ordinal patterns transformation, its anomaly

score s is computed with the isolation forest model ck.

The behavior of the given time series is predicted by simply evaluating the value

of s according to a defined anomaly threshold e. As originally defined by Liu et al.

[2008], significant anomaly scores potentially indicate an anomaly. Section 8.4.1 gives

more details about the value for this threshold as a limit for our detection strategy.

Algorithm 11 illustrates these steps for the anomaly detection phase.

ALGORITHM 11: AnomalyDetection

Input: A suspicious time series yk for the network traffic measure k, the isolation forest
model ck, an anomaly score threshold e, an embedding dimension D, and a list
of embedding delays T of length t.

Output: The detection result of the suspicious time series as benign or attack traffic.
// Applying the multiscale transformation

1 fk ← MultiscaleTransformation(yk, D, T );
// Computing the anomaly score

2 s← predictInstance(ck, fk);
// Evaluate the time series behavior

3 if s < e then
4 return benign;

5 else
6 return attack ;

8.4 Results and Discussion

This section presents our results and discussions about the botnet detection in IoT

network traffic, using the identification of anomalies in the behavior of their temporal

dynamics. To evaluate our approach, we compare our results with related work in

the literature by performing experiments on the real-world N-BaIoT network traffic
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dataset [Meidan et al., 2018]. However, we first give more details on the chosen methods

and decisions, such as the data preprocessing, software, and packages versions.

8.4.1 Materials and methods

The experiments presented in this work used the N-BaIoT public dataset2. This

dataset, created by Meidan et al. [2018], consists of network traffic collected from

nine IoT devices during both their regular operation (benign) and under botnet at-

tacks (anomaly). The list of devices includes one thermostat, one baby monitor, one

webcam, two doorbells, and four security cameras. The anomalous network traffic was

generated by infecting each device with the Mirai and Bashlite botnet families [Bertino

and Islam, 2017; Kolias et al., 2017].

The anomalous network traffic was generated by infecting each device with the

Mirai and Bashlite botnet families [Bertino and Islam, 2017; Kolias et al., 2017]. These

are two of the most prominent botnets that are still a risk for the current IoT. For

instance, although the Mirai source code was released in late 2016 [Kolias et al., 2017], in

2021, we still find numerous Mirai-based botnets infecting and exploring vulnerabilities

of IoT devices3. Furthermore, the operation of a device once infected by these botnets

is similar to the original botnets they are derived from, such as contacting a C&C

server, flooding the network, and scanning for other vulnerable devices. Thus, this

makes the N-BaIoT dataset still relevant for evaluating anomalous behavior.

For each botnet, the authors captured the network traffic data under five different

attacks. For the Mirai botnet, the attacks were:

1. ACK flooding;

2. SCANning the network for new victims;

3. SYN flooding;

4. UDP flooding; and

5. UDPPLAIN, which is another UDP flooding but with fewer options.

For the Bashlite botnet, the attacks were:

1. SCANning the network for new vulnerable devices;
2N-BaIoT dataset is available to download at the UCI Machine Learning Repository: http:

//archive.ics.uci.edu/ml/datasets/detection_of_IoT_botnet_attacks_N_BaIoT.
3Dark Mirai botnet targeting RCE on popular TP-Link router. Accessed in Dec. 14, 2021.

https://www.bleepingcomputer.com/news/security/dark-mirai-botnet-targeting-rce-on-p

opular-tp-link-router/.
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2. TCP flooding;

3. UDP flooding;

4. JUNK, which consists of sending spam data; and

5. COMBO of sending spam data and connecting to a specific IP address and port.

Thus, there are 11 distinct classes, ten classes of attacks, and one class of benign data,

for each of the nine IoT devices.

Table 8.1 presents the dataset properties, illustrating the devices used for the

experiments and the numbers of samples for each of the 11 classes. It can be observed

that there is no traffic data from the Mirai botnet for two devices, only for the Bashlite.

Another important aspect, as Alqahtani et al. [2020] pointed out, is the unbalanced

length of classes, with the Mirai botnet dominating the number of samples and the

benign data being the class with fewer samples.

To collect the network traffic measures for each of these samples, the authors

followed the method proposed by Mirsky et al. [2018], the Kitsune network intrusion

detection system. Thus, for each one of these 11 classes, for each IoT device, after

capturing the raw traffic data from those devices, the authors aggregated the samples

within five different time windows: 1 min, 10 s, 1.5 s, 500 ms, and 100 ms; which are

coded as their decay factor λ as L0.01, L0.1, L1, L3, and L5, respectively. Furthermore,

they computed 23 distinct network traffic measures for each of these time windows,

consisting of statistics from the packet’s sender and the traffic between the packet’s

sender and receiver [Mirsky et al., 2018]. Consequently, each sample of Table 8.1

consists of a snapshot with 115 distinct network traffics measures.

To handle the samples from the N-BaIoT dataset, the other related work, pre-

sented in Section 8.2, uses as input for their anomaly detection methods the samples

snapshot directly, whether it be the total 115 measures or a subset of them. Instead,

our method needs to construct a time series from consecutive samples of a single net-

work measure to learn their temporal dynamics. Thus, for our experiments, we chose

the MI_dir_L5_weight network traffic measure, as the dataset notation, to be our k

measure, as described in Section 8.3.3. This measure consists of the number of packets

(weight) originated from a single device, represented by a pair of source MAC and IP

addresses (MI), aggregated by time windows of 100 ms (L5), constructed in an incre-

mental approach [Mirsky et al., 2018]. The reason for choosing this measure follows the

results of Alqahtani et al. [2020], which analyzed the measures’ importances by their

Fisher scores. However, differently from those authors, we chose the measure with the

smallest time window, while they chose the one with the highest time window (L0.01).
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Table 8.1. Description of the N-BaIoT dataset, illustrating the IoT devices used in the
experiment and the number of samples for each benign and attack classes.

# Device Benign Mirai Bashlite

1 Danmini Doorbell 49,548

ACK 102,195 COMBO 59,718
SCAN 107,685 JUNK 29,068
SYN 122,573 SCAN 29,849
UDP 237,665 TCP 92,141
UDPPLAIN 81,982 UDP 105,874
TOTAL: 652,100 TOTAL: 316,650

2 Ecobee Thermostat 13,113

ACK 113,285 COMBO 53,012
SCAN 43,192 JUNK 30,312
SYN 116,807 SCAN 27,494
UDP 151,481 TCP 95,021
UDPPLAIN 87,368 UDP 104,791
TOTAL: 512,133 TOTAL: 310,630

3 Ennio Doorbell 39,100

– – COMBO 53,014
– – JUNK 29,797
– – SCAN 28,120
– – TCP 101,536
– – UDP 103,933
TOTAL: 0 TOTAL: 316,400

4
Philips B120N10 Baby
Monitor

175,240

ACK 91,123 COMBO 58,152
SCAN 103,621 JUNK 28,349
SYN 118,128 SCAN 27,859
UDP 217,034 TCP 92,581
UDPPLAIN 80,808 UDP 105,782
TOTAL: 610,714 TOTAL: 312,723

5
Provision PT 737E
Security Camera

62,154

ACK 60,554 COMBO 61,380
SCAN 96,781 JUNK 30,898
SYN 65,746 SCAN 29,297
UDP 156,248 TCP 104,510
UDPPLAIN 56,681 UDP 104,011
TOTAL: 436,010 TOTAL: 330,096

6
Provision PT 838
Security Camera

98,514

ACK 57,997 COMBO 57,530
SCAN 97,096 JUNK 29,068
SYN 61,851 SCAN 28,397
UDP 158,608 TCP 89,387
UDPPLAIN 53,785 UDP 104,658
TOTAL: 429,337 TOTAL: 309,040

7
Samsung SNH 1011 N
Webcam

52,150

– – COMBO 58,669
– – JUNK 28,305
– – SCAN 27,698
– – TCP 97,783
– – UDP 110,617
TOTAL: 0 TOTAL: 323,072

8
SimpleHome XCS7
1002 WHT Security
Camera

46,585

ACK 111,480 COMBO 54,283
SCAN 45,930 JUNK 28,579
SYN 125,715 SCAN 27,825
UDP 151,879 TCP 88,816
UDPPLAIN 78,244 UDP 103,720
TOTAL: 513,248 TOTAL: 303,223

9
SimpleHome XCS7
1003 WHT Security
Camera

19,528

ACK 107,187 COMBO 59,398
SCAN 43,674 JUNK 27,413
SYN 122,479 SCAN 28,572
UDP 157,084 TCP 98,075
UDPPLAIN 84,436 UDP 102,980
TOTAL: 514,860 TOTAL: 316,438

TOTAL 555,932 3,668,402 2,838,272

Concerning the parameters chosen for the algorithms and experiments, we varied

the length m of the time series constructed from the selected measure in our experi-



192

ments to check its impact on the detection results. We also evaluated the values of the

embedding dimension D, and the length t of the embedding delays list T by varying

their values. The number of trees used in our experiments was ntrees = 300, which

provided good results with reasonable execution time. The remaining Isolation Forest

parameters was kept as default. For the anomaly score threshold e, which is used to

conclude a benign or attack behavior, as described in Section 8.3.3, we chose the fixed

value of e = 0.59. The original Isolation Forest work [Liu et al., 2008] partially sup-

ports the reason for this choice since it shows that potential anomalies can be identified

when the anomaly score is s ≥ 0.6. However, by empirical observations, we obtained

the value of e = 0.59 was more appropriate, giving better detection results.

Our algorithms and experiments were implemented in the R statistical software

suite [R Core Team, 2018], version 4.0.3, with some code excerpts in C++. For the

Isolation Forest anomaly detection, we used the R package isotree4 version 0.2.7. All

codes used in our experiments are available at a public repository5. All experiments

were performed on a computer with Intel Core i9-9900X CPU at 3.50GHz x 20, 128 GB

RAM, and running a Linux Ubuntu 18.04.4 LTS 64-bit.

8.4.2 Temporal dynamics of a Botnet attack

The success of the whole anomaly detection process depends on the right choice of the

features and their ability to represent the different behaviors from the time series. When

dealing with the ordinal patterns transformations, this involves the proper definition

of the parameters (D, τ).

The embedding dimension D depends on the length n of the time series, since it

will define the alphabet of size D! to which the possible patterns will be mapped. As

previously discussed in Section 3.5.1, the main recommendation is that the condition

n≫ D! must be satisfied to obtain reliable statistics [Rosso et al., 2007a; Zunino et al.,

2012]. Given the rapid increase of the factorial function, for practical purposes, Bandt

and Pompe [2002] recommended D ∈ {3, . . . , 7}.
For the embedding delay τ , although there is no strict recommendation, it is

already known that τ is significantly related to some intrinsic time-space characteristics

of the series, such as periodicity and time scales [Zunino et al., 2012]. While a common

choice of several studies is τ = 1, we show that different values of τ enable the features
4isotree: Isolation-Based Outlier Detection: https://cran.r-project.org/web/packages/is

otree/index.html.
5The repository with the code for our IoT Botnet Detection is available at https://github.c

om/labepi/anomaly_iot. This code requires the Bandt-Pompe ordinal patterns transformations,
available at https://github.com/labepi/bandt_pompe.
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extracted from both pπ and Gπ to result in a more separable space between the different

classes.
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Figure 8.3. Illustration of the first 400 samples of the chosen MI_dir_L5_weight network
measure for different operations of the Danmini Doorbell device of the N-BaIoT dataset.

Figure 8.3 illustrates the first 400 samples of the chosen MI_dir_L5_weight net-

work measure for different operations of the Danmini Doorbell device from the N-

BaIoT dataset. It can be noticed that different moments of the operation result in

very distinct behaviors for this measure. For instance, the samples collected during the

benign operation have a pattern similar to the Additive Increase, Multiplicative De-

crease (AIMD) operation of TCP. Instead, other botnet operations, such as the ACK

or SYN operations from Mirai, are more random, with no apparent pattern.

By considering the temporal dynamics of these behaviors, we can observe some

patterns that can be used for distinguishing them. Figure 8.4 presents the Causality

Complexity-Entropy Plane (CCEP), proposed by Rosso et al. [2007a] and described in

Section 3.6.2, computed from the time series of Figure 8.3, with D = 3 and τ = 1.

The CCEP is a plane formed by the HS[pπ] and CJS[pπ] features, computed from the

ordinal patterns probability distribution pπ, as the x-axis and the y-axis of the plane,

respectively.

According to the (HS[pπ], CJS[pπ]) pair, different time series dynamics are ex-

pected to be placed at specific regions of the plane, bounded by minimum and maxi-

mum limits of the statistical complexity. In general, random dynamics are placed to the

right of the plane, while the more deterministic behaviors are placed to the left [Rosso
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Figure 8.4. Illustration of the CCEP for the different operations of the MI_dir_L5_weight
feature, presented in Figure 8.3, computed with D = 3 and τ = 1.

et al., 2007a; Ravetti et al., 2014; Borges et al., 2019a]. For instance, the SCAN op-

eration of Mirai botnet presents the highest deterministic dynamics, followed by the

SCAN of the Bashlite botnet. While the COMBO and JUNK operations of Bashlite

have a slight determinism, the other operations present a more random behavior.

This clear distinction of SCAN is an essential asset for botnet detection since

it is one of their most common operations leading to applying the method for other

botnets [Bertino and Islam, 2017; Kolias et al., 2017]. However, the distinction be-

tween regular and other attack operations is not clear in the CCEP. To address this,

Figure 8.5 presents the feasibility of our multiscale approach for a better distinction

of those different operations. It illustrates the behavior of the pst feature, described in

Section 5.5, evaluated as a function of the embedding delay τ ∈ {1, . . . , 10}, with fixed

D = 3. Other features are not presented to save space. It can be observed that as τ

increases, the separation between the device’s regular and other attack operations is

easier to distinguish.

8.4.3 IoT botnet detection results

This section presents our results for the detection of botnets in IoT, by applying this

multiscale approach to the samples from the N-BaIoT dataset.
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measure, during distinct operations of a device, presented in Figure 8.3, evaluated for D = 3
and τ ∈ {1, . . . , 10}.

8.4.3.1 One model for all devices

This first experiment consists of creating a single model for all dataset devices, which

are used for detecting anomalies for each of them. It is based on a similar experiment

made by Nomm and Bahsi [2018], used to evaluate the performance of one model

created regardless of the device.

To create this model, we first have to construct time series from consecutive

samples of the original dataset, as described in Section 8.4.1. Once the time series

for both benign and attack data are constructed considering all devices, we used two-

thirds of the benign time series for training phase. The remaining one-third of the

benign time series plus all the attack time series are used for testing phase. This split

is similar to the experiments in Meidan et al. [2018], except that, since we do not have

an optimization parameter phase, all the two-thirds are used for training.

Since the time series length is an important aspect to consider by the ordinal

patterns transformations, we consider evaluating the accuracy of our model for differ-

ent time series lengths. Figure 8.6 presents the achieved accuracies for our method,

combining different parameters of D = {3, 4} and t = {5, 10}. This last parameter

t is used for the maximum value of τ in the multiscale approach, i.e., τi ∈ T , with

i = {1, . . . , t}.
It can be noticed that the accuracies increase with the length m of time series

presented to the method, with significant results occurring for m ≥ 500. Also, the best

results are achieved when D = 3 and t = 10, reaching the maximum value of 99.5%

for larger values of m. This result beats Nomm and Bahsi [2018], which achieved a

maximum of 95.6% accuracy in their similar experiment, and it is also better than
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Figure 8.6. Accuracy results for the one model for all devices experiment, evaluated as a
function of the time series length, combinations of D and t, and maximum τ .

Popoola et al. [2021], which achieved an average accuracy of 99% with their federated

learning strategy. It is also important to emphasize that reaching the best values

with D = 3 is a fundamental aspect of the method, since larger values of D require

more processing time. Table 8.2 summarizes the classification accuracies comparing

our strategy, for different configurations of D and τ with time series length n = 1000,

with the related work from literature.

Table 8.2. Classification accuracies for different configurations of D and t, with time series
length n = 1000, comparing with the related work in the one model for all devices experiment.
Best result is highlighted in bold.

Work Accuracy (%)

Our strategy

D = 3, t = 5 89.4%

D = 3, t = 10 99.5%

D = 4, t = 5 89.0%

D = 4, t = 10 97.5%

Nomm and Bahsi [2018] 95.6%

Popoola et al. [2021] 99.0%

For the detection performance, the method’s sensitivity and specificity results for

the configuration with the best accuracy (D = 3 and t = 10) are presented in Figure 8.7.

The sensitivity, which measures the proportion of benign (positives) correctly identified,

is practically constant for all lengths, with a slight decay for larger values. However,

the essential aspect to assess in our case is the achieved specificity, which accounts the
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proportion of attacks (negatives) correctly identified since it is most important for us

to not miss a genuine attack. In this situation, the specificity increases with the length

of time series, with significant results occurring for m ≥ 700. Figure 8.8 illustrates

the confusion matrix for the configuration with the best specificity result (99.6%),

occurring for m = 1,000.

8.4.3.2 One model per device

This section follows another common experiment setup from the literature, which con-

sists of fitting a model for each device. This analysis assesses the ability of the method

to individually detect the botnet attacks considering only the data that each device

produced. Figure 8.9 presents the accuracy results for the one model per device ex-
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periment. The devices are identified by the same numbers as presented in Table 8.1.

Each bar represents the average accuracy of all ten botnet attacks considered in the

N-BaIoT dataset, previously described in Section 8.4.1, with a confidence interval at

95% of confidence level.
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Figure 8.9. Accuracy results for the one model per device experiment, evaluated as a function
of the time series length, considering D = 3 and t = 10. The identification of devices is the
numbers presented in Table 8.1.

It can be observed that, in general, the models for specific devices present sig-

nificant accuracy results. However, the length of the time series is also an important

aspect of this experiment. When the length is m ≥ 400, all devices reach high accu-

racies, ranging from a minimum of 98.5% when m = 600 for the device (5) Provision

PT 737E Security Camera, to a maximum of 100% for all devices when m = 1,000.

The worst cases occur when m = 200, where few data hinder the models’ ability

to capture the temporal dynamics of attacks correctly. For instance, for device (6)

Provision PT 838 Security Camera, when time series length is m = 200, the detection

accuracy is 80.19%, with confidence interval of ±0.21. To assure this is far beyond

other results, the second-worst detection accuracy for m = 200 occurs for device (8)

SimpleHome XCS7 1002 WHT Security Camera, with an accuracy of 99.05%, with

confidence interval of ±0.007.
However, when we take a closer look at this specific worst case, Figure 8.10

shows that the method can reach significant accuracies for some botnet attacks. This

is the case for the ACK, SCAN, and SYN attacks of Mirai, and the TCP and UDP

attacks of Bashlite, with more than 90% of accuracy for all of them. To infer what is

happening here, we should have access to more information from the dataset collection

process from Meidan et al. [2018], but only the processed data is available. Given its

discrepancy with other results, and since we are dealing with real-world data, it is
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Figure 8.10. Accuracy results per single attack, for the one model per device experiment,
considering the worst case of Figure 8.9, when device is the (6) Provision PT 838 Security
Camera and time series length m = 200.

reasonable to suggest that some spurious data was added during the data collection of

this specific device.

This is valid to consider once, as the number of samples increases, the method

can correctly distinguish between attack and benign data for all devices. In fact, for

the devices (1) Danmini Doorbell, (2) Ecobee Thermostat, (7) Samsung SNH 1011

N Webcam, and (9) SimpleHome XCS7 1003 WHT Security Camera, all detection

accuracies are 100%, independently of the time series length.

With respect to the sensitivity and specificity of the results, considering the case

with time series length m = 1,000, since all devices correctly detected all of their

attacks, both sensitivity and specificity are 100%. These results surpass the related

work for similar experiments with a model per device. For instance, Meidan et al.

[2018] have a false positive rate of 0.007 (1−specificity), and Nomm and Bahsi [2018]

have an average accuracy of 96.64% for all devices. Alqahtani et al. [2020] also achieve

100% accuracy when performing an experiment with a model per device; however,

the authors used both benign and attack data during the training phase, differently

from us. While this improves their method’s ability to differentiate benign and attack

events correctly, it may impact their ability to detect novel attacks not seen during the

training phase.

Table 8.3 summarizes the classification results of our strategy, considering the

configuration with D = 3 and t = 10 with the time series length n = 1000, in compar-

ison with the related work in the one model per device experiment.
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Table 8.3. Classification results for our strategy, with the configuration of D = 3 and t = 10,
with time series length n = 1000, comparing with the related work in the one model per device
experiment.

Work Result Observation

Our strategy 100% for all devices When m = 1000

Meidan et al. [2018] FPR 0.007 Using all 115 measures

Nomm and Bahsi [2018] 96.64% for all devices Not the best

Alqahtani et al. [2020] 100% for all devices Benign and attack for training

8.4.4 Detection time analysis
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Figure 8.11. Average detection time for the one model for all devices experiment, evaluated
as a function of the time series length, combinations of D and maximum τ .

To evaluate the time spent by our method to detect an attack, we analyzed the

time spent for the anomaly detection phase by the one model for all devices experiment

as a function of the time series length. This is the most time-consuming experiment as

it handles more data. Figure 8.11 shows the average detection time over 10 realizations,

for different combinations of D and maximum τ . The linear increase on m confirms

the theoretical analysis of the computational cost in Section 3.5.1. In the worst case,

our method needs under 40ms to detect an anomaly. However, considering the case

which resulted in better accuracies, when D = 3, the maximum τ = 10, and the time

series length is m = 1,000, the detection time is under 24ms.

Another aspect to consider in this analysis is the time spent extracting the mea-

sure and constructing the time series. For instance, for m = 1,000 and for the chosen

measure, which needs 100 ms windows to compute the number of packets from a given
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device, we need another 100 seconds to construct the time series before the transfor-

mation step. In fact, the related work does not consider the time spent to extract

measures when evaluating their detection time. Thus, since all other methods require

network measures with larger time windows, they all need at least 1 minute to compute

their measures and then perform their detection.

8.5 Conclusion

In this chapter, we presented a solution for the detection of botnet attacks in IoT by

identifying anomalies in the temporal dynamics of their devices. Their dynamics were

obtained by features extracted after the multiscale ordinal patterns transformation,

from time series constructed of the number of packets transmitted by devices. Using the

features computed during the regular operation of the devices, we trained an Isolation

Forest model to detect anomalies when presented to features computed from the data

collected when the devices are under attack.

To evaluate our proposal, we conducted two main experiments using the N-BaIoT

dataset: the first consists of creating a single model for all dataset devices, and the

second consists of fitting a specific model per device. While the first experiment is used

to evaluate the detection of anomalies regardless of the device, the second analyzes the

method’s ability to individually detect the botnet attacks considering only the data

each device produced.

Our results show that the proposed method can reach significant detection accu-

racies for both experiments, overcoming other strategies from the literature. For the

first experiment, the best results achieved maximum accuracy of 99.5%, beating the

related work, which achieved a maximum 95.6% of accuracy in their similar experi-

ment. For the second experiment, we reached the maximum accuracy of 100%. Other

related solutions also achieved this accuracy, but they used both regular and attack

data to train the model, reducing their ability to detect novel attacks.

We obtained these results when the time series length was m = 1,000, indicating

that its value is fundamental to the transformation process, i.e., this is an important

aspect to consider in our method. This is not a drawback since both best results are

obtained when D = 3, requiring less processing time. As future work, we plan to inves-

tigate alternatives to reduce this dependence on large time series. Furthermore, given

the urgent need for security solutions in IoT, future solutions should consider transfer

learning and online strategies to follow the dynamical evolution of the botnets better,

which our proposal can facilitate being another advantage of our method. Finally, an-
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other future work includes the application of the proposed method to other datasets,

considering other botnets, to assure its viability to different scenarios.
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Chapter 9

Conclusion and Future Work

This chapter presents the dissertation final conclusion and discusses directions for fu-

ture work. Section 9.1 presents our final remarks and a summary of the thesis contri-

butions. In Section 9.2, we present potential future research directions following the

contributions of this work. Finally, in Section 9.3, we list the publications produced

during the development of this work that are related to the topics of this thesis.

9.1 Summary

In this thesis, we proposed advancements on the analysis of time series dynamics and

their applicability for the Internet of Things scenarios. We first provided a deeper

comprehension on the main characteristics of IoT data, specifically by analyzing its

part that is publicly available, the Collaborative Internet of Things. With this under-

standing, we presented the main challenges when dealing with these kinds of data. We

show that, besides the always mentioned IoT issues, there are novel aspects that must

be considered. A main challenge, which is specific to CoIoT devices, is the absence of

proper descriptions for the type of sensors and their collected data. This is caused due

to the collaborative aspect of this environment, where common users are responsible

for both deploying and maintaining their devices.

While this aspect directly affects on the quality of results when searching for

sensors within CoIoT, it has also a significant impact on the availability and reliability

of devices and their data. Thus, we conclude that to extract knowledge from these data,

we must consider transforming the raw time series onto a novel representation domain

that is robust to the aforementioned issues. To do so, we propose using the dynamics of

the time series, which are obtained by the ordinal patterns transformation. We show
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that the dynamics is an appropriate representation domain for knowledge discovery

applications within the IoT scenarios, such as classification and anomaly detection.

However, to improve the applicability of ordinal patterns transformations to the

IoT scenarios, we proposed solutions that consider features extracted from both ordinal

patterns distribution and ordinal patterns transition graph, which are transformations

derived from the original ordinal patterns. For this, a novel metric was proposed, the

probability of self-transitions, which is a metric extracted from the ordinal patterns

transition graphs. We show that, when evaluated in a multiscale fashion, the behav-

ior of this metric is a valuable tool for the characterization of time series dynamics.

Furthermore, the proposed method presented significant results even when considering

small time series, which is an important aspect for the scalability issues of IoT.

With respect to the applicability of time series dynamics for the IoT scenarios,

we show that different types of real-world time series data, such as those from weather

phenomena, presented different dynamics, which can be used for distinguishing them.

To do so, we first provided an analysis of distinguishing these types of data based on

their placement on the CCEP. We show that each type of data have their our region in

the CCEP, and proposed a noise-robust strategy to find centroids from these regions,

which resulted in significant improvement on the classification of these time series.

Following the analysis of the CCEP regions for different types of phenomena

data, we proposed a class separability index to find the best parameters for the ordinal

patterns transformations. Thus, we show that the best parameters was those which

maximizes this index, resulting in better distinctions of time series phenomena. We

also show that this method is an important tool for IoT scenarios, due to its ability

in adapting to different time series length and robustness to missing data gaps. Also,

the proposed class separability analysis can be a valuable method to estimate the

classification potential of ordinal patterns transformations. This prior data analysis

can be a first step in knowing if its time series classes are distinguishable or not.

Finally, we proposed a solution for the detection of botnet attacks in IoT, an

urgent need for the always evolving security concerns within IoT environments. We do

so by identifying anomalies in the temporal dynamics of features extracted after the

multiscale ordinal patterns transformation, from time series constructed of the number

of packets transmitted by devices. We show the potential of this method to learn the

regular operation of IoT devices and to detect anomalies when they are under attack.

With these results, we advance the state of the art of detecting IoT botnet attacks in

a simpler and more efficient way.
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9.2 Future research directions

Following the contributions of this thesis, in this section we present potential research

directions for each presented strategy. We consider open questions that was not covered

and need further investigation.

In the following, we present some possibilities for future work:

• The first research direction is related to the strategy for searching for a sensor

in CoIoT, based on the query by content model. We plan to extend the analysis

of the proposed collaborative filtering strategy, which may answer the question

on the minimum subset of time series required to assure the reliability of the

method. In the same direction, it is also important to investigate alternatives to

application cases where there is not a reference sensor to be based on. Which

leads to the analysis of potential solutions that could consider the combination of

different data types to improve the reliability of the presented method. Finally,

we also plan to investigate the impact of the limitations and particular aspects

of CoIoT devices in the quality of the collected data.

• With respect to the advancements on the analysis of time series dynamics, we

suggest further studies on the integration of the proposed method with other

already established strategies. This is motivated due to the valuable aspects of the

proposed feature, the probability of self-transition, on distinguishing time series

dynamics with multiscale transformations. For instance, a promising direction

could be their addition in general time series classification strategies. A possibility

is to consider solutions based on ensemble of classifiers, where one strategy could

solve the drawbacks of another, yielding a more robust and general solution.

• For the contributions related to the applicability of time series dynamics on the

IoT scenarios, a first aspect to consider as future work is the study and defini-

tion of distance metrics in the CCEP space. Given the importance of this plane

to our contributions, and considering its particular limits, there is the need for

novel metrics to better calculate the placement of different time series dynamics.

Another important aspect to consider, given the dynamical evolution of IoT and,

consequently, their problems, is the proposition of ordinal patterns transforma-

tions as an online method.

These directions can be useful for the advancement of the proposed strategies

on the IoT scenarios, but can also lead to their applicability to other domains. Thus,

one can study the viability of the contributions of this thesis to different scenarios,
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which may result as novel approaches for knowledge discovery in time series, such as

characterization, classification, and anomaly detection.

9.3 List of Publications

In the following, we list the publications related to this thesis that were produced as

the results of this work.

• Borges Neto, J., Silva, T., Assunção, R., Mini, R., and Loureiro, A. (2015). Sens-

ing in the Collaborative Internet of Things. Sensors, 15(3):6607--6632

• Borges, J. B., Ramos, H. S., Mini, R. A., Rosso, O. A., Frery, A. C., and Loureiro,

A. A. (2019a). Learning and distinguishing time series dynamics via ordinal

patterns transition graphs. Applied Mathematics and Computation, 362:124554

• Borges, J. B., Ramos, H. S., Mini, R. A. F., Viana, A. C., and Loureiro, A. A. F.

(2019b). The Quest for Sense: Physical phenomena Classification in the Internet

of things. In 2019 15th International Conference on Distributed Computing in

Sensor Systems (DCOSS), pages 701--708. IEEE

• Borges, J. B., Medeiros, J. P. S., Barbosa, L. P. A., Ramos, H. S., and Loureiro, A.

A. F. (2022). IoT Botnet Detection based on Anomalies of Multiscale Time Series

Dynamics. Submitted to IEEE Transactions on Knowledge and Data Engineering,

accepted for publication

• Borges, J. B., Ramos, H. S., and Loureiro, A. A. F. (Submitted, 2021). A classifi-

cation strategy for Internet of Things data based on the class separability analysis

of time series dynamics. Submitted to ACM Transactions on Internet of Things,

second round

The following publications are the results from the interaction and collaboration

on the application of the analysis of data from sensors to other research projects.

• Silva, T. H., Vaz de Melo, P. O. S., Almeida, J. M., Borges, Neto, J. B., Tostes,

A. I. J., Celes, C. S. F. S., Mota, V. F. S., Cunha, F. D., Ferreira, A. P. G.,

Machado, K. L. S., and Loureiro, A. A. F. (2015). Redes de Sensoriamento

Participativo: Desafios e Oportunidades. In Martinello, M., Ribeiro, M. R. N.,

and Rocha, A. A. A., editors, Minicursos / XXXIII Simpósio Brasileiro de Redes

de Computadores e Sistemas Distribuídos, pages 266--315. Sociedade Brasileira

de Computação
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• Silva, T., Celes, C., Borges Neto, J. B., Mota, V., da Cunha, F., Ferreira, A.,

Ribeiro, A., Vaz de Melo, P., Almeida, J., and Loureiro, A. (2016). Users in the

urban sensing process. In Dobre, C. and Xhafa, F., editors, Pervasive Computing:

Next Generation Platforms for Intelligent Data Collection, pages 45--95. Elsevier

• Santos, B. P., Silva, L. A. M., Celes, C. S. F. S., Borges Neto, J. B., Vieira, M.

A. M., Vieira, L. F. M., Goussevskaia, O. N., and Loureiro, A. A. F. (2016).

Internet das Coisas: da Teoria à Prática. In Gonçalves, F. A. S. L. C. L. F.

and Freitas, P. G. A. E. S., editors, Minicursos / XXXIV Simpósio Brasileiro de

Redes de Computadores e Sistemas Distribuídos, chapter 1, pages 1--50. Sociedade

Brasileira de Computação, Salvador, Brasil

• Celes, C. S. F. S., Nunes, I. O., Borges Neto, J. B., Silva, F. A., Cotta, L.,

Melo, P. O. S. V., Ramos Filho, H. S., Andrade, R. M. C., and Loureiro, A.

A. F. (2017). Big Data Analytics no Projeto de Redes Móveis: Modelos, Proto-

colos e Aplicações. In Fernandes, A. J. G. A., Cerqueira, E. C., Ramos, H. S.,

and de Lacerda, S. F., editors, Minicursos / XXXV Simpósio Brasileiro de Re-

des de Computadores e Sistemas Distribuídos, chapter 1, pages 1--58. Sociedade

Brasileira de Computação

• Cardoso, I., Barros, P., Borges, J., Loureiro, A. A. F., and Ramos, H. S. (2019).

Classificação de Séries Temporais Através de Grafos de Transição de Padrões

Ordinais. In Anais do XXXVII Simpósio Brasileiro de Redes de Computadores
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