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Resumo

O surgimento de dispositivos móveis pessoais de baixo custo e câmeras portáteis, e a

crescente capacidade de armazenamento de sites de compartilhamento de vídeos têm im-

pulsionado o interesse em vídeos em primeira pessoa, também conhecidos como vídeos

egocêntricos. Câmeras vestíveis, em particular, podem operar por horas sem a necessi-

dade de manuseio contínuo. Isso leva os vídeos egocêntricos a serem de longa duração

com conteúdo não editado, o que os torna entediantes e visualmente desagradáveis, pois os

movimentos naturais do corpo fazem com que o vídeo őque instável, causando até mesmo

enjoos. Os algoritmos de hyperlapse visam transformar vídeos longos e monótonos em

vídeos de curta duração e sem transições abruptas entre os quadros. No entanto, um

aspecto importante é que algumas partes dos vídeos podem ser mais importantes do

que outras, portanto devem ter a sua atenção adequada. Neste trabalho, propomos uma

metodologia inovadora capaz de resumir e estabilizar vídeos egocêntricos extraindo e anal-

isando a informação semântica nos quadros. Este trabalho também descreve um novo

conjunto de dados com vários vídeos rotulados e introduz uma nova métrica de avali-

ação de suavidade para vídeos egocêntricos. Diversos experimentos são conduzidos para

mostrar a superioridade de nossa técnica sobre os algoritmos de hyperlapse do estado da

arte no que diz respeito à informação semântica. De acordo com os resultados obtidos,

nosso método é, em média, 10,67 pontos percentuais superior ao melhor competidor em

relação à máxima quantidade semântica que pode ser obtida dado a taxa de aceleração

desejada.

Palavras-chave: Hyperlapse, Aceleração de Vídeo, Informação Semântica, Vídeo em

Primeira Pessoa.



Abstract

The emergence of low-cost personal mobile devices and wearable cameras, and the in-

creasing storage capacity of video-sharing websites have pushed forward a growing inter-

est in őrst-person videos. Wearable cameras, in particular, can operate for hours without

the need for continuous handling. That leads these videos to be generally long-running

streams with unedited content, which makes them boring and visually unpalatable since

the natural body movements cause the videos to be jerky and even nauseating. Hyper-

lapse algorithms aim to downsize long and monotonous videos into short fast-forward

watchable videos with no abrupt transitions between the frames. However, an important

aspect of such videos is that some parts of them may be more important than others, so

they should have their proper attention. In this work, we propose a novel methodology

capable of summarizing and stabilizing egocentric videos by extracting and analyzing the

semantic information in the frames. This work also describes a dataset collection with

several labeled videos and introduces a new smoothness evaluation metric for egocentric

videos. Several experiments are conducted to show the superiority of our approach over

the state-of-the-art hyperlapse algorithms as far as semantic information is concerned.

According to the results obtained, our method is, on average, 10.67 percentage points

higher than the best competitor with respect to the maximum amount of semantics that

can be obtained given the required speed-up.

Palavras-chave: Hyperlapse, Fast-Forward, Semantic Information, First-Person Video.
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13

Chapter 1

Introduction

First-person Vision (FPV), also known as Egocentric Vision, is an emerging őeld in Com-

puter Vision that consists of the automatic analysis of videos captured from a human-

centric perspective [Li et al., 2013]. Thanks to advances in technology which constantly

lead to the decreasing operational cost and the increasing storage capacity of mobile cam-

eras, egocentric videos have shown to be an attractive way for people to document their

lives. Due to this fact, the popularity of these videos has considerably increased on social

media. Video-sharing services like YouTube and personal repositories are also responsible

for such an increase since they provide extensive space for video storage.

Wearable devices such as GoPro™, Looxcie, and Google Glass™ cameras can be

operated with no intervention, i.e., the camera operator just needs to press the łturn-

on buttonž and thereafter, she/he is free to carry out her/his activities. It opens up

unprecedented ways to record many continuous hours of regular activities such as walking,

driving, and cooking, athletic activities like running and bicycling, and even working tasks

(a) GoPro™Hero 5 Black Edition (b) Google Glass

(c) Looxcie LX2 (d) LG Action Cam

Figure 1.1. Wearable cameras examples.
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(a) GoPro™ Hero 4 and Hero 5 used to
record a sports action (mountain biking).

(b) Google Glass™ being used by one of the
Google’s marketing managers.

(c) An example of usage of the Looxcie
LX2.

(d) LG Action Cam being used in a sports
action (motocross).

Figure 1.2. Wearable cameras applications examples.

like event recordings (e.g., weddings, proms, birthdays, etc.) and monitoring (e.g., police

patrol and lifeguarding). Examples of such devices and their usages are depicted in

Figures 1.1 and 1.2, respectively.

Unlike third-person cameras such as in surveillance systems, egocentric cameras

record the action like being the eye of the wearer; thus, they describe the real user’s

intentions and needs [Kanade and Hebert, 2012]. This is an open door for the creation

of a wide range of applications in healthcare, security, education, and entertainment.

The appealing and challenging environment provided by these videos has encouraged

researchers from diverse study őelds to engage. Examples of these őelds include gaze

prediction and tracking [Fathi et al., 2012; Li et al., 2013; Polatsek et al., 2016; Xu et al.,

2015], recognition of activities [Fathi et al., 2011; Matsuo et al., 2014; Poleg et al., 2016;

Singh et al., 2015], events [Lee et al., 2012; Lu and Grauman, 2013], objects [Ishihara

et al., 2015; Ren and Gu, 2010; Wan and Aggarwal, 2015] and interactions [Yang et al.,

2016] and, fast-forwarding/hyperlapse [Halperin et al., 2017; Joshi et al., 2015] which is

the őeld this work belongs to.

In this work, we explore egocentric properties such as the focus of attention and

interaction level in order to deőne the relevance of the scene to the recorder. Our method

performs an adaptive fast-forward strategy in the egocentric video aiming to emphasize
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Frames with 

no relevance

Relevant 

frames

Frames with 

no relevance

Figure 1.3. Example of an adaptive frame sampling with regard to the relevance to the recorder.
Three non-overlapping clips of an egocentric video are presented above. The őrst and last rows
show the clips composed of frames with no relevance to the recorder. The clip in the second row
is composed only of relevant frames. The frame selection to fast forward the video is represented
by the red arrows and boxes on the frame. Note that in the relevant clip, the selection is denser
than in the other clips, what leads it to be representative for the overall selection.

the sections where the recorder was more interested without removing the perception of

continuity of the video. Figure 1.3 presents an example of this fast-forwarding process.

Our method performs a denser frame selection in sections that are relevant to the recorder.

In the next section, we detail the problem addressed in this work.

1.1 Problem Deőnition

Egocentric videos are hardly watched in their entirety because they are usually

long and monotonous as a consequence of the common deferring of the users when it

comes to editing and post-processing [Gygli et al., 2015]. Moreover, they contain shaky

scene transitions due to natural body movements, causing visual discomfort [Bai and

Reibman, 2016] and difficulty in extracting information [Poleg et al., 2016]. The use

of simple fast-forward methods such as frame sub-sampling at a őxed rate is a naïve

approach to reducing the video length since they do not require any understanding of
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the content of the video. In contrast to the creation of fast-forward videos with carefully

controlled cameras, where it is easy to track the movement between consecutive frames, in

őrst-person videos, the signiőcant camera shake leads the fast-forward videos to be jerky

since the shakiness is increased. Consequently, the development of methods to speed up

egocentric videos has become a research topic in Egocentric Vision over the last couple of

years.

Several works have been proposed to address the instability of egocentric videos

aiming to create a pleasant experience when watching the reduced version. Such works

borrowed the term ‘hyperlapse’ from the exposure method in timelapse photography to

name their methods. The term ‘hyperlapse’ refers to a photography technique where the

camera is moved before each new photo is taken to form a moving timelapse. The camera

moves through long distances, and the images are manually aligned to create a őnal

video with smooth transitions along the acquisition time. Hyperlapse algorithms aim to

downsize long and monotonous videos into short and watchable fast-forward videos with

no abrupt transitions between the frames. In the remainder of this work, we will use

hyperlapse, and smooth fast-forward as interchangeable terms.

One challenge involving the hyperlapse approaches is that some portions of the

video may be more signiőcant to the users than others. For instance, a camera installed

on a police car could be recording all day long but with only a few events of interest,

such as the officer interacting with someone or engaging in police activity (e.g., pursuit

and capture). Most of the hyperlapse algorithms do not select frames according to their

relevance to the viewer but instead treat all frames as equally relevant. Also, due to

their nature of skipping stationary frames, the relevant frames may be missing in the

fast-forward version.

Video summarization techniques come as the very őrst option to retain as much

information as possible from the original video taking the minimum amount of viewing

time from the user [Elkhattabi et al., 2015]. However, these techniques typically segment

the video frames into shots and use features (e.g., color, edge, motion features) to őnd

the most informative frames (namely keyframes) that also yield a good diversity of the

original video. They cut out some parts of the video removing its continuity which is not

convenient.

In this work, we propose a novel methodology capable of transforming raw ego-

centric videos into watchable fast-forward videos by considering both the pleasantness

and relevance of frames to the viewer. Our approach analyzes the semantic information

extracted from the frames and segments the video by selecting the set of pictures that

maximizes the semantics, the required speed-up as well as the smoothness of the tran-

sition between the frames. We also present in this thesis a new dataset composed of

semantically labeled videos and an evaluation metric to measure the egocentric videos’

smoothness. We conduct experiments on two datasets to evaluate the smoothness, the
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accuracy of the required speed-up, and the overall semantic content of the video. Results

show the superiority of our method as far as the semantic information is concerned. Our

method is, on average, 10.67 percentage points higher than the best method in relation

to the maximum amount of semantics that can be obtained, given the required speed-up.

We name our method as SHEV (Semantic Hyperlapse for Egocentric Videos).

To the best of our knowledge, this is the őrst work that presents smooth fast-

forwarding concerning the relevance of the video sections to the recorder.

1.2 Contributions

We can summarize our contributions as:

i. a new adaptive fast-forwarding approach. Our method uses the disparity between

the relevant and non-relevant parts to segment the input video and build graphs

mapping the transition costs between pairs of frames to select those with the least

cost adaptively through the shortest path algorithm;

ii. an egocentric video stabilizer. Our algorithm stabilizes the segments by using ho-

mography transformations to match and align frames within a patch. It reconstructs

the frames that were eventually too distorted to őnally create a smooth output video;

iii. a new dataset with several semantically labeled videos to őll the gap in the literature

related to well-controlled datasets concerning the semantic information;

iv. a new evaluation metric able to measure the smoothness of the egocentric videos.

We demonstrate through qualitative results that the most used metric for this kind

of video, which is the reduction of epipole/Focus of Expansion (FOE) jitter, is not

accurate. We also present quantitative experiments to conőrm the accuracy of the

proposed metric.

Part of this work was published at the 2016 IEEE International Conference on Im-

age Processing (ICIP) and at the First International Workshop on Egocentric Perception,

Interaction and Computing at European Conference on Computer Vision (EPIC@ECCV)

2016.
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1.3 Document Structure

This document is structured as follows. Next, in Section 2, we discuss the methods

for video summarization and hyperlapse. In Section 3, we detail the two main steps of our

methodology, the semantic fast-forwarding for egocentric video and the egocentric video

stabilization. The dataset and metric contributions, experimental setup, and results are

presented in Section 4. Finally, we conclude and present the future work in Section 5.
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Chapter 2

Related Work

In this chapter, we present the related work from the Video Summarization and Hy-

perlapse areas. It is worth noting that video summarization and hyperlapse have some

important differences. Video summarization methods are focused on creating compact

visual summaries capable of presenting the most discriminative parts of the video as well

as the most informative ones. Their output is generally a static storyboard of frames

or dynamic skimming, which is a composition of complete video sections. On the other

hand, hyperlapse methods are focused on creating a smooth, fast-forward version of the

input video, i.e., the output video is sped up entirely, and no clips of the video are re-

moved unless they are too similar. Furthermore, in hyperlapse, restrictions like suavity,

continuity, and őnal video length play a key role in the frame selection.

2.1 Video Summarization

In the past several years, video summarization methods have been the main tech-

nique used to create a short summary from a long input video with the goal of maintaining

essential information while saving the viewer a considerable amount of time [Lee et al.,

2012; Mei et al., 2015; Zhang and Roy-Chowdhury, 2015]. It is an effective way to speed

up browsing and retrieval tasks. Video summaries are typically presented in two forms:

(i) static storyboard or still-image abstract, where the most representative keyframes are

selected to represent the video as a whole, and (ii) dynamic video skimming or moving-

image abstract, where a set of video clips compose the output.

The advantages of the still-image abstract over the video skimming are: (i) they

can present, shortly, the most diversiőed moments once they are carefully selected through

feature extraction [Kim et al., 2014], and (ii) they can be organized in many different ways

for browsing or navigation, once they do not need to care about timing or synchronization

issues [de Avila et al., 2008]. Early in 2008, de Avila et al. [2008] proposed a simple and

efficient approach for video summarization. Their approach uses color histograms as
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similarity features of the frames and clusters them via k-means. The selected keyframes

are those most discriminative of each cluster based on their high representativeness. Kim

et al. [2014] present their summarization output as a photo storyline graph. They collect

photo streams from Flickr and user videos from YouTube to build similarity graphs in

order to discover the underlying sequential structure of the photo streams by using the

temporal information of the video frames.

Video skims are chosen as the output representation form in the majority of the

cases because of their visual properties. Video skims are connected temporally and contain

motion elements; hence they are more interesting to watch. Gygli et al. [2014] propose an

approach based on the knapsack 0/1 optimization for the task of summarization. They

őrst split the video into a series of dynamic blocks deőned as superframes that have

their boundaries adjusted in order to match the sequences with the least motion. These

superframes are selected to compose the őnal set of skims via knapsack 0/1 optimization.

Later, Gygli et al. [2015] proposed a learning model to jointly optimize the presence of

the most interesting and discriminative parts of the video and the removal of redundancy.

They combine linearly multiple objectives such as interestingness, representativeness, and

uniformity using a submodular function model. It is worth noting that, unlike the majority

of the video summarization approaches, the authors use an objective function to preserve

the uniformity, once large skips can confuse the viewer.

Zhang et al. [2016] adopt both presentation forms as output. They propose the

vsLSTM, a summarization method that uses a two-layered Long Short-Term Memory

(LSTM) recurrent network in a bi-directional form in order to model long-range depen-

dencies. It avoids deleting similar frames that are temporally distant. They further

improve the diversity of the selected frames with a Determinantal Point Process (DPP)

modeling. Their output is either a binary vector describing the selected frames for the

storyboard or skims or a vector with probabilities for each of the frames to be chosen.

In this work, we propose an approach similar to video skims but with a stronger

visual connection among the scenes to preserve the video’s continuity and content.

2.1.1 Egocentric Video Summarization

Regular summarization strategies are hard to be applied for the egocentric video

summarization task since egocentric videos include diverse scene types, activities, and

environments. Also, it is difficult to őnd important keyframes in such videos because

of the severe camera motion, the varied illumination conditions, and the cluttered back-

ground [Lin et al., 2015].
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Lee et al. [2012] present a video summarization of egocentric data, exploiting ego-

centric properties such as the interaction level, gaze, and object detection frequency.

Their methodology produces a compact storyboard summary of the camera wearer’s day

by training a regression model from annotated data to predict the relative importance of

any region in a frame belonging to a person or object. Lu and Grauman [2013] present

a video summarization approach that discovers the story of an egocentric video. They

segment the input video into subshots, detect which objects appear in each one, and esti-

mate the subshots individual importance. The subshots with the highest score compose

the output.

Recent works focus on highlight detection. Lin et al. [2015] split their method

into two sequential stages, offline and online. In the offline stage, they use a structured

SVM to learn the highlight and the context models either sequentially or jointly. In the

online stage, their method scans the input video, predicts the context of each segment,

and scores each one with highlight conődence based on the predicted context. The őnal

summary is composed of segments őltered from a threshold value. Bettadapura et al.

[2016] present an approach for identifying picturesque moments in an egocentric video.

They leverage GPS data in order to create nodes and őlter them with scores assigned

proportionally to the popularity of the location. The remaining frames are assigned to

shots that will compose the őnal summary according to their aesthetics (composition,

symmetry, and color vibrancy).

Although video summarization methods have been increasing their ability to se-

lect relevant frames to represent the whole video, the őnal result is, in general, a set of

discontinuous frames. In contrast, our work manages to keep the video content entirely.

Probably, the works most related to ours in this category are the work of Okamoto

and Yanai [2013] and the work of Yao et al. [2016]. In their methodology, Okamoto

and Yanai generate walking route guidance videos by summarizing egocentric videos.

They utilize ego-motion and pedestrian crosswalks to estimate the importance of each

video section. Unlike most summarization methods, Okamoto and Yanai do not generate

a summarized video. Their output, instead, is a playing scenario that determines the

playing speed for each section based on their importance. Meaningful sections receive

a smaller speed-up factor compared to the other sections. Although we share some of

their ideas, our main goal is to provide the user with a nice and smooth experience when

watching the fast-forward version. Therefore, in our methodology steps, we include the

creation and stabilization of the fast-forward video. Furthermore, our algorithm is robust

to various activities other than walking. We run experiments on videos of biking, driving,

running, and walking activities (more details in Chapter 4).

Yao et al. propose a pairwise deep ranking model for detecting highlights in ego-

centric videos. The model learns the relationship between paired highlights and non-

highlights segments to produce a score for each segment. The output is twofold: a com-
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position of skims or a video timelapse. Yao et al. exploit a kernel temporal segmentation

approach to deőne the segments for the video skimming. The skims are selected according

to the highlight score until the desired length is achieved. For the video timelapse, they

őnd a proper rate in order to play the highlight segments in slow motion, while the other

segments are played in fast-forward to achieve a required őnal length. In comparison to

their approach, we propose a lighter and modular one since we use the conődence assigned

by the classiőer and a threshold to identify the importance and the segments’ boundaries.

Also, we propose an adaptive frame selection approach, focusing on selecting frames that

lead to a more stable video while they use uniform sampling. Moreover, the authors seg-

ment the video evenly and assume that the number of highlight segments is always smaller

than the number of non-highlight segments, which might not always be valid, as we can

see in examples of our proposed dataset (see Section 4.1.2 for details). Our segmentation

strategy is capable of handling different conőgurations for the highlights lengths.

2.2 Hyperlapse

Hyperlapse is a recent term that refers to a cinematic technique derived from

timelapse photography in which the camera pose changes at every exposure to provide

an accelerated view of real-time. Recent efforts to create smooth, fast-forward videos

from egocentric videos explore the automation of this technique. These approaches can

be divided into two main categories: reconstruction of a 3D model of the scene along with

the creation of a smooth path with a virtual camera and; adaptive selection of a set of

frames that generates a smoother őnal video. Both categories are detailed in the next

two sections.

2.2.1 3D Model Reconstruction

In the 3D model reconstruction category, methods use techniques to extract 3D

information from multiple still images and compose a scene model, along with the camera

poses, freely optimizing the camera’s path for a new smooth virtual path.

A representative method in this category is the work of Kopf et al. [2014]. The

authors present a technique that uses structure-from-motion (SfM) and a dense map inter-

polation to build a 3D model of the world. Using the camera positions and the geometric
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model of the scene, they generate new virtual camera locations and orientations to make

a new smooth path. Then, using image-based rendering techniques to generate the őnal

video. Their results are stunning; however, the method creates many artifacts due to

a large number of interpolated areas in the virtual camera’s path. The technique also

requires camera motion and parallax to compute the 3D model of the scene. It is note-

worthy that the high computational cost required by their method makes it unpractical.

Moreover, the dynamics of the scene cause the SfM to fail.

2.2.2 Adaptive Frame Selection

A natural approach to speed up videos is to keep in the őnal video the k -th frame

from every consecutive set of n frames. Despite this naïve frame selection is able to

reduce the video length, it increases the video shakiness, and it is not able to remove

outlier frames, i.e., the frames that picture voluntary movements directions outward the

main orientation of the camera wearer.

Adaptive frame selection adjusts the density of the frame selection according to

the cognitive load. For instance, a denser selection could be made when the scene motion

is too high, and, in turn, a sparser selection could be made when the camera wearer is

stopped. In another example, a better frame selection algorithm would prefer to select

forward-looking frames to reduce the shakiness, as shown in Figure 2.1. The Instagram

Hypelapse App of Karpenko [2014], the work of Joshi et al. [2015] and the work of Poleg

et al. [2015] are recent examples of this category.

Karpenko feeds into a video stabilizer [Karpenko et al., 2011] gyroscope samples

and frames to obtain a new set of camera orientations as output. These orientations

represent a smooth virtual camera motion. Thus, they apply a stabilization őlter to

produce hyperlapse videos. The major limitation of this approach is the need for inertial

data, which makes it unfeasible to be used in videos recorded using a general camera.

Joshi et al. present a real-time method to create a hyperlapse video. Unlike the

Instagram Hyperlapse App, their approach does not require any special sensor data. Thus,

it can be used for general cameras. They use feature tracking to recover the camera motion

and develop a Dynamic-Time-Warping (DTW) based algorithm to select frames subject

to speed-up and smoothness restrictions in order to őnd an optimal smooth path. Then,

the optimal set of frames is subject to 2D video stabilization, where the images are warped

to render the resulting hyperlapse.

Poleg et al. propose an energy minimization model to sample the frames adaptively.

Their approach focuses on skipping frames that do not represent the best viewing direction
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(a) Naive Sampling

(b) Adaptive Sampling

Figure 2.1. Example of a general adaptive frame sampling. The curves represent a top view of a
camera path with a walking direction from left to right, the arrows represent the frames, and the
arrow directions represent the viewing direction. (a) Naive frame sampling for 5x fast-forward
represented by the solid arrows. (b) Adaptive frame sampling, where it is preferable to select the
forward-looking frames represented by the solid arrows. This őgure was adapted from [Halperin
et al., 2017].

to compose the őnal video. They create a graph from the original video where the frames

are taken as nodes and edges are taken as the relation between frames. Three components

are used in a linear combination to weight the edges of this graph: the shakiness cost,

which assigns lower costs to forward-looking transitions; the velocity cost, which controls

the playback speed of the video and; the appearance cost that prevents large visual

changes between frames. Then, they compute the shortest path in order to őnd the best

frames to compose the hyperlapse. The main contribution of their work is to model a

complex problem in a graph formulation and then use a simple algorithm to perform the

frame selection. Halperin et al. [2017] extended this work by expanding the őeld of view

of the output video. They use a mosaicking approach on the input frames with single or

multiple egocentric videos.

While the 3D category can generate highly smooth videos since virtual images are

created based on the estimated 3D model to decrease the discontinuity between frames,

the 2D category is faster and can provide similar smoothness if a judicious selection of

frames is deőned. Although the aforementioned solutions succeed in speeding up long
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videos and producing a result that is pleasant to watch, they do not take into account the

fact that some frames are more important than others, which is related to the semantics

in regions of the scene. For instance, places where the camera stop moving, such as at a

red light when riding a bike or stopping by to talk to a person at a family party, are taken

as redundant in those methods. Therefore, they are removed from the resulting video. In

this work, we present a new method that selects frames based on semantic information

without degenerating the smoothness of the video.
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Chapter 3

Methodology

In the following two sections we detail our methodology to create semantic hyperlapse

videos. We divide it into two main steps: semantic fast-forwarding and semantic ego-

centric stabilization. In the őrst step, the algorithm seeks the frames in the input video

that maximize the semantic content, the smoothness and the proximity to the required

speed-up. It segments the video into semantic and non-semantic segments and builds a

graph for each type of segment mapping the frames and transition costs between pairs

of frames. Then, it chooses the frames that minimize the overall cost via shortest path

algorithm. The adaptive selection of frames is subject to an egocentric stabilization in

the second step. Homography transformations are used to align the frames transitions

and, an iterative stitching process is responsible for őlling the frames that were excessively

distorted by the homography transformations.

3.1 Semantic Egocentric Fast-Forwarding

This section presents the őrst step of our methodology: the semantic frame sam-

pling process. It is composed of four sub-steps. We őrst extract the semantic information

from each frame. Therefore, we split the video into semantic and non-semantic segments

using the semantic values to deőne a threshold value. Then, we calculate different speed-

up rates for each type of segment such that a lower speed-up rate emphasizes the semantic

segments. Finally, the video frames and their relationships are used to construct a graph.

We optimize the video shakiness, semantic content, and length by running the Dijkstra’s

shortest path algorithm. Figure 3.1 summarizes our frame sampling approach.
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...

FF

...

...

Figure 3.1. Overall steps of our semantic adaptive frame sampling process. From the input
video, we extract ROIs containing the semantic information (A) in each frame and compute the
semantic scores to deőne the semantic proőle (B). We use the Otsu thresholding method to őnd a
meaningful semantic threshold (B.1) in order to identify the semantic segments and calculate the
speed-up rates based on the length of each segment. Then, we create a graph for each segment
mapping the frames and their relations to the nodes and edges, respectively (C). Finally, we
compute the shortest path and compose the őnal video with the selected nodes (D).

3.1.1 Semantic Extraction

In the őrst step of our sampling approach, we extract the semantic information

present in each video frame according to the semantic selected by the user (e.g., pedestrian,

face, car plate, etc.). The semantic information is encoded by the score function S : R→

R, which is composed of three components:

i. the conődence of the extracted information. The user deőnes a classiőer according

to the application to analyze the frame and detect important regions, i.e., the Region

of Interest (ROI). We use the conődence of the classiőer as an important feature to

compose the semantic score;

ii. the size of the ROI. Larger areas mean that the object of interest is close to the

recorder; therefore, it represents a higher probability of interaction;

iii. the centrality of the ROI. Since the input is an egocentric video, the central area

of the frame should have higher relevance to the viewer since it is where people are

usually focused.
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Formally, let k be the k-th ROI returned by the extractor in the frame fx. The

total semantic score is given by:

Sx =
X

k∈fx

ck · ak ·Gσ(k), (3.1)

where ck is the normalized conődence of the classiőer for the ROI k, assigning relevance

proportional to the reliability of the semantic information in frames, and ak is the nor-

malized area of the k-th ROI in pixels. To quantify the centrality of the object, we use

a Gaussian mask with standard deviation σ and centered at the frame fx. Gσ(k) is the

value of the central point of the k-th ROI in the Gaussian function, which returns higher

values to more centralized objects. Examples are illustrated in Figure 3.1-A.

3.1.2 Temporal Segmentation

The semantic score along the frames will deőne the semantic proőle of the video

as illustrated in Figure 3.1-B. Following most video summarization approaches, we split

the video to create temporal segments by thresholding the semantic proőle. We create a

histogram with the semantic scores and, since we assume that this histogram has a bimodal

distribution, we apply the Otsu thresholding method [Otsu, 1979] to őnd the threshold

that better deőnes the disparity between the semantic and non-semantic frames. The

value returned by Otsu (green line in Fig. 3.1-B.1) is used as the semantic threshold.

Thus, every frame above this value is labeled as a semantic frame. Consecutive frames

labeled as semantic will compose the semantic segments, and the remaining ones will

compose the non-semantic segments.

3.1.3 Speedup Rate Estimation

To avoid losing relevant parts of the video, we calculate different speed-up rates

for each type of segment deőned in the previous step such that a lower speed-up rate,

Fs, is applied to semantic segments. Consequently, in order to manage the whole video

at the desired speed-up, Fd, the non-semantic segments receive a higher speed-up rate,

Fns. Estimating these speed-ups is not a trivial task once the total length of the semantic

segments may vary. Therefore, given the total number of frames in semantic segments,
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Ls, and in the non-semantic segments, Lns, the speed-up rates are computed by the

minimization of the Equation 3.2:

D(Fns, Fs) =

����
Ls + Lns

Fd

−

�
Ls

Fs

+
Lns

Fns

����� . (3.2)

The Equation 3.2 has many minimum points, once for every Fs there is a corre-

spondent Fns that leads the result to 0. We solve it by restricting the Fs and Fns values

so that the Fs is minimized as well as the difference between both.

We also add some space restrictions: (i) Fs ⩽ Fd, once we want more emphasis in

the semantic parts; (ii) Fns ⩾ Fd, once we want to achieve desired speed-up in the fast-

forward video and; (iii) Fs ⩾ psFd, where ps = Ls/(Ls +Lns), once Fs < psFd leads to an

excessive number of frames. Given these restrictions and because Fns, Fs and Fd ∈ N, the

problem becomes easier to be solved, since the search space is őnite and discrete. Thus,

the optimization problem is represented by the Equation 3.3:

(F ∗

s , F
∗

ns) = arg min
Fs, Fns

D (Fns, Fs) + λ1|Fns − Fs|+ λ2|Fs|

subject toFs ⩽ Fd

Fns ⩾ Fd

Fs ⩾ psFd,

(3.3)

where λ1 and λ2 are the regularization terms that give more importance to either keeping

the speed-up rates close or taking the smaller Fs.

3.1.4 Graph Building

We model each video segment using a weighted graph similar to Poleg et al. [2015]

and Halperin et al. [2017]. Figure 3.2 illustrates our graph building process. Each node of

this graph represents a frame of the input video, and an edge connecting two nodes repre-

sents the existence of a temporal relation between the pair of frames. We connect the τb

border frames of each graph with one source and one sink node. The edges connecting the

regular nodes are created up to a temporal distance τmax to reduce the graph complexity.

The cost of the transitions from frames fi to fj are taken as the edges weight Wi,j. These

costs are composed of a linear combination of four terms related to the shakiness, speed

of motion, appearance change, and semantic gain/loss caused by the transition. The őrst

three terms were previously proposed by Poleg et al. [2015] and Halperin et al. [2017] in
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Figure 3.2. Our graph-building process for each video segment. Each frame of the video segment
becomes a node in the graph, and the edges’ weights Wi,j indicate the cost when including the
frame fi right before the frame fj in the fast-forward video. Nodes S and T represent the source
and sink nodes of each graph, respectively.

their graph construction. The details of the four terms are presented as follows.

• Instability Cost Term (Ii,j). To measure the instability of the transition, we őrst

compute the motion direction of each frame by estimating the Focus of Expansion

(FOE). The FOE is one particular point in the image extracted from the relative

motion between two time-varying images [Sazbon et al., 2004]. Given the optical

ŕow (OF) vectors, it can be understood as the point where the ŕow vectors seem

to be ŕowing out. Examples of FOEs are depicted in Figure 3.3. The instability

cost term prefers forward-looking frames; therefore, we use the difference between

the FOE positions as the shakiness cost. Motivated by the good results achieved

by Poleg et al. [2015] with sparse optical ŕow computations, our estimation of OF

vectors and FOE are also obtained according to Poleg et al. [2014] and Sazbon et al.

[2004], respectively.

• Velocity Cost Term (Vi,j). This term controls the playback speed of the out-

put video by skipping more frames where the camera motion is low and skipping

less when the motion is high. We deőne the desired magnitude, Dmag, to act as a

target for the average magnitude of the optical ŕow for consecutive output frames,

Amag(i, j). It is preferable to choose the frames fi and fj to be consecutive in the out-

put video if the average magnitude of the optical ŕow computed for this pair is closer

to Dmag. Therefore, the velocity cost is computed as: Vi,j = Amag(i, j)−Dmag.

• Appearance Cost Term (Ai,j). More similar frame transitions make the video

more enjoyable. We use the Earth Mover’s Distance (EMD) [Pele and Werman,
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FOE

OF vectors

(a)

FOE

OF vectors

(b)

Figure 3.3. Examples of the Focus of Expansion (FOE). Black arrows represent the OF vectors,
and the red dot represents the FOE position in images (a) and (b). Images (a) and (b) are not
related to each other. Note that the OF vectors seem to be ŕowing out from the FOE. Thus, it
can be used as an estimator for motion.

2009] between the color histograms of frames fi and fj as a resemblance measure.

The EMD is a measure of distance between two distributions. It is deőned as the

minimum amount of łworkž needed to change one distribution into the other. The

appearance cost term value is proportional to the EMD value.

• Semantic Cost Term (Si,j). This term is used to penalize the transitions that

are not composed of frames with relevant semantic information. Given the semantic

score Si of the frame fi and the semantic score Sj of the frame fj, the semantic cost

is given by Equation 3.4:

Si,j =
1

Si + Sj + ϵ
. (3.4)

The value ϵ avoids dividing by zero when there is no semantic information in both

frames.

The őnal weight Wi,j of the edge Ei,j is given by:

Wi,j = (λI · Ii,j + λV · Vi,j + λA · Ai,j + λS · Si,j) ·

�
(j − i)

F

�
, (3.5)

where the values of λ coefficients are the regularization factors for each one of the terms

of the costs. We add a proportional factor to enhance transitions between frames with

lower distance, where F ∈ {Fs, Fns}.

The best frame selection in our modeling is obtained by running the Dijkstra’s

shortest path algorithm in each graph separately. The frames related to the selected

nodes will compose the őnal fast-forward video.
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Figure 3.4. Stabilization methodology for fast-forwarding egocentric videos. (a) Illustration of
how the video is segmented into temporal patches, dropped frames, and the terms α, ∆, and δ.
(b) The diagram of the stabilization process.

3.2 Egocentric Video Stabilization

As noted by Kopf et al. [2014], traditional video stabilization algorithms do not

achieve good results on egocentric videos. This can be assigned to the difficulty of tracking

the motion between successive frames, which is increased in the fast-forward version. In

this section, we present our egocentric stabilization method for semantic fast-forward

egocentric videos. We őrst segment the video into temporal patches and, for each patch,

look for the frame that contains the best features for matching the other frames in the

patch, the master frame. Then, we apply weighted homography transformations to the

intermediate frames for every pair of masters, intending to create smooth transitions

along with the output video. Finally, we reconstruct the frames łover-warpedž by the

homography transformations by an image stitching process.

3.2.1 Master frames deőnition

The őrst step of the stabilization methodology consists of segmenting the video

into temporal patches of length α and selecting one master frame Mk for each patch

(Fig. 3.4-a). We select as the master of the k-th patch, the frame Mk in this patch that

maximizes the Equation 3.6:

M∗

k = arg max
Mk∈pk

X

fi∈pk

R(fi,Mk), (3.6)

where pk is the k-th patch and the fi is the i-th frame of the fast-forward video. The
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(a) (b) (c)

Figure 3.5. Examples of possible distortions after applying weighted homography transforma-
tions. The green outer boxes in the images represent the crop area ca, and the red inner boxes
represent the drop area da. The leftmost frame (a) covers the ca area, the middle frame (b)
covers the da area, and the rightmost frame (c) does not cover any area.

function R(x, y) calculates the number of inliers in the RANSAC method [Fischler and

Bolles, 1981] when computing the homography transformation from the image x to y.

3.2.2 Transition smoothing

The second step is to smooth the transitions between the selected master frames.

We share with Hsu et al. [2012] the idea of alleviating the transitions with weighted homog-

raphy transformations. However, instead of using homography consistency and smoothing

the transitions between segments, we propose to segment the video into temporal patches

and alleviate the transitions between the master frames.

For each frame fi, we calculate two homography matrices, Hfi,Mpre
and Hfi,Mpos

.

Mpre = fb stands for the previous master frame, which is the one that is temporally closer

to the frame fi, s.t. b < i. Mpos = fa stands for the posterior master frame, which is the

one that is temporally closer to the frame fi, s.t. a > i. Both homography transformations

are applied with weights set according to the temporal distance to the masters. The i-th

frame of the stabilized video (bfi) is given by:

bfi = H1−w
fi,Mpre

Hw
fi,Mpos

fi. (3.7)

The term Hp
x,y in Equation 3.7 represents the p-th power of the homography trans-

formation matrix from the image x to the image y. w = (δ(2α)/∆) is the weight that

composes the p-th power, where δ is the temporal distance from the frame fi to Mpre, and

∆ is the distance between Mpre and Mpos (Fig. 3.4-a). As stated by Hsu et al., choosing

the α value to be a power of 2 makes the root calculation feasible by consecutive square

roots.
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Figure 3.6. The reconstruction process for a given warped frame. The images from left to
right represent the stitching being applied to an intermediate frame, i.e., a frame between two
masters.

3.2.3 Frames reconstruction

As expected, after applying the homography transformations estimated in Equa-

tion 3.7, black areas are generated due to the fact that the camera movements are abrupt

and the elapsed time between consecutive frames in the fast-forward videos is large. Thus,

the last step is to reconstruct these corrupted regions.

To reconstruct these frames, we deőne two image areas centered in the frame: i)

the drop area (da) equals to dp% size of the frame and; ii) the crop area (ca) equals to

cp% size of the frame, where cp > dp. Figure 3.5 depicts such areas. The da area is the

center of the image, where the viewer focuses on the majority of the time. Therefore,

it is not allowed present any black or reconstructed areas. On the other hand, the area

between the ca and da is the peripheral vision, which is allowed to present artifacts

but not black areas. The ca area is the cut region; thus, regions outside this area are

removed in the őnal video. Therefore, having these black areas outside does not cause any

issues. The reconstruction procedure is an iterative process represented by the ŕowchart

in Figure 3.4-b and described by the Algorithm 1.

The stitching step is performed as follows. We use the SURF detector to select

feature points in the frame bfi and in the j-th frame dropped from the original video, dj.

To calculate the homography transformation matrix we match feature points between the

images by describing all feature points of dj and bfi with SURF descriptors and applying the

brute force matching strategy. Given the matched points, we calculate the homography

matrix H
dj ,bfi

using the RANSAC method. The bdj = H
dj ,bfi

dj is now aligned and stitched

with bfi to compose the reconstructed image. Figure 3.6 illustrates the stitching step in a

frame that covers the da area (inner red box) but not the ca area (external green box).

If it is necessary to select a new frame, it means that the bfi does not yield a good

transition in the őnal video. The algorithm selects a new frame dj that belongs to the

interval [fi−1, fi+1] in the original video and maximizes the Equation 3.8:

d∗j = arg max
dj

(Gσ(p)(R(dj, bfi−1) +R(dj, bfi+1))(η + S(dj))), (3.8)
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Algorithm 1 Reconstruction Procedure

Requires: The set of frames F of the fast-forward video; The set of frames D dropped
in the fast-forward process; The da and ca areas; The set of the selected mastersM.

Ensures: The set of stabilized frames S.

1: function StabilizeEgoVideo(F)
2: S ← {} ▷ The set of output frames
3: for each fi ∈ F do
4: bfi ← ApplyWeightedHomography(fi,M) ▷ According to Equation 3.7
5: while ¬ItCovers(bfi, ca) do

6: if ItCovers(bfi, da) & ExistUnusedFrames(fi,D) then

7: bfi ← DoStitching(bfi, dj)
8: else
9: dj ← SelectNewFrame(M, fi) ▷ According to Equation 3.8

10: bfi ← ApplyWeightedHomography(dj,M)
11: end if
12: end while
13: S ← S + {bfi}
14: end foreach
15: end function

where, Gσ(x) is the value of the Gaussian function with zero mean and standard deviation

σ in the position x; p is the percentage of area covered by dj; η is a value used to prevent

multiplication by zero, in case the function S(dj) that calculates the semantic score in the

frame dj returns zero. The őnal stabilized video is composed of all frames that achieve

the Done step.
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Chapter 4

Experiments

This chapter presents the whole experimental setup and evaluations for our proposed

methodology. We őrst present details about the datasets used in Section 4.1, including

speciőc aspects of our proposed dataset composition. Then, in Section 4.2 we present

the evaluation metrics used for comparison, including details about the new instability

evaluation metric. The parameters conőguration are presented in Section 4.3. Finally, we

show the comparison with literature work and the results in Section 4.4.

The experiments were executed using an Intel®Core™ i7-3770 CPU at 3.40GHz

with 8 cores and 32GB of RAM. All the semantic fast-forwarding algorithm was imple-

mented in MATLAB due to the simple matrix manipulations provided by the language.

We used the C++ implementation of OpenCV in our egocentric video stabilization, which

is also implemented in C++.

4.1 Datasets

In the following two sections, we describe the datasets we used to conduct our

experiments. We present in the next section the Pub-Seq Dataset, which is a collection of

publicly available videos that other authors previously used to evaluate their hyperlapse

methods. Then, we present details about the Semantic Dataset, which is a collection of

videos that we recorded aiming to achieve a certain level of semantics to further verify

the effectiveness of our method. We use people as semantic information since people are

usually considered relevant to the wearers and watchers.
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Table 4.1. Pub-Seq Dataset Details. Sequences were collected from the sources in the ‘Source’
column. All sequences were őlmed at 30 frames per second (fps), except ‘Running’ and ‘Walking
3’, which were őlmed at 24 and 15 fps, respectively.

Name Source Resolution Camera Number
of Frames

Bike 1 [Kopf et al., 2014] 1280× 960 Hero3 10,786
Bike 2 [Kopf et al., 2014] 1280× 960 Hero3 7,049
Bike 3 [Kopf et al., 2014] 1280× 960 Hero3 23,700
Running [Poleg et al., 2015] 1280× 720 Hero3+ 12,900
Driving [Poleg et al., 2015] 1280× 720 Hero2 10,200
Walking 1 [Kopf et al., 2014] 1280× 960 Hero2 17,249
Walking 2 [Kopf et al., 2014] 1280× 720 Hero 6,900
Walking 3 [Poleg et al., 2015] 1920× 1080 Hero3+ 7,999
Walking 4 [Poleg et al., 2014] 1920× 1080 Hero3+ 15,667

4.1.1 Public Sequences Dataset

This dataset is composed of 9 publicly available sequences which were used by

Kopf et al. [2014], Joshi et al. [2015], and Poleg et al. [2015] to evaluate their hyperlapse

methodologies. All sequences were őlmed with GoPro™Hero series cameras at 30 frames

per second (fps), except ‘Running’ and ‘Walking 3’, which were őlmed at 24 and 15 fps,

respectively. Details about these sequences are shown in Table 4.1.

During our experiments, we found a limitation in this dataset. None of the videos

has a considerable amount of semantics. This prevents us from testing our method in

scenarios where most part of the video is composed of semantic content. Therefore, we

propose a new labeled dataset which is presented in the next section.

4.1.2 Semantic Egocentric Dataset

We propose a new labeled dataset to run the experiments and validate our method-

ology along with the Pub-Seq Dataset since no semantically controlled egocentric datasets

were found in the literature. A dataset of such kind provides us with richer details about

the behavior of our algorithm in diverse cases.

The dataset comprises 11 videos divided into 3 categories of different activities:

Biking; Driving and Walking. The videos under each one of these categories are classiőed

according to their amount of semantic information. The classes are: 0p, which represents
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Table 4.2. Semantic Dataset Details. Videos with the resolution of 1280x720 were őlmed at
60 fps, and the others were őlmed at 30 fps. All videos were recorded with a GoPro™ Hero3+
camera.

Name Resolution Number
of Frames

Biking 0p 1280× 720 17,949
Biking 25p 1920× 1080 17,071
Biking 50p 1280× 720 26,954
Biking 50p2 1280× 720 14,939
Driving 0p 1920× 1080 9,463
Driving 25p 1920× 1080 7,989
Driving 50p 1920× 1080 10,379
Walking 0p 1920× 1080 8,219
Walking 25p 1920× 1080 10,982
Walking 50p 1920× 1080 11,570
Walking 75p 1920× 1080 15,481

the videos with approximately no semantic information present (Biking 0p, Driving 0p,

and Walking 0p); 25p, for the videos containing relevant semantic information in ap-

proximately 25% of its frames (Biking 25p, Driving 25p and Walking 25p); 50p, for the

ones with around a half of their frames composed by semantics (Biking 50p, Biking 50p2,

Driving 50p and Walking 50p) and; 75p, which represents videos with approximately 75%

of their frames containing relevant semantic information (Walking 75p).

We deőned people as the relevant object for this dataset since people play an

important role in most of the egocentric recordings, either in casual or in security ap-

plications. To őnd the people in the videos, we used the Normalized Pixel Difference

(NPD) Face Detector [Liao et al., 2016] (the state-of-the-art face detector) for the videos

of the Walking category or a pedestrian detector [Dollár, 2016] for the videos of the other

categories. We tried to use faces as the semantic information for all videos, but the us-

age of the pedestrian detector was necessary because the videos when biking or driving

present a higher motion speed, which prevents the face detector from achieving a sub-

stantial accuracy. The semantic information used to measure and classify the videos in

the categories was obtained according to the Equation 3.1. We apply the same process

as in Section 3.1.2 in order to deőne which frames are classiőed as relevant and which are

not.

The videos were recorded with a GoPro™Hero 3+ camera mounted in a helmet

for the Biking and Walking videos and attached to a head strap for the Driving videos.

All videos were recorded in daylight so that the detectors could achieve better accuracy.

Table 4.2 shows some details about the videos in the dataset and Figure 4.1 shows some

frame examples. The complete dataset, including videos and the semantic labels, is
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0% Semantic

25% Semantic

50% Semantic

75% Semantic

Figure 4.1. Examples of the proposed semantic egocentric dataset. Frames in the őrst row
represent the videos of the ‘Biking’ category. Frames in the second row represent the videos of
the ‘Walking’ category. Frames in the third row represent the videos of the ‘Driving’ category.

publicly available to the research community 1.

4.2 Evaluation Metrics

Our őnal goal is to create a semantic smooth fast-forward egocentric video with

a given number of frames. A satisfying result depends on the amount of semantic in-

formation, the achieved speed-up factor, and the visual smoothness of the őnal video.

Measuring the visual smoothness is complex. Most hyperlapse methodologies either use

qualitative metrics, which involve human evaluation of the videos, or the reduction of

epipole/FOE jitter in the őnal video as a quantitative metric. Even though the qualita-

tive measurement is appropriate, once the őnal video has to be enjoyable to the viewers,

during our preliminary experiments, we noticed that the reduction of epipole/FOE jitter

occasionally assigns better scores for videos evidently more shaky. Based on that, we

devised a quantitative metric that takes into account the preference of the viewers. We

used the following metrics to quantify the accuracy of the evaluated methodologies:

I. Semantic Content. This metric indicates the amount of semantic information in

the output video. Output videos with higher values demonstrate that the technique

managed to keep more semantic information from the input video. We calculate it

1https://www.verlab.dcc.ufmg.br/semantic-hyperlapse
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through the Equation 4.1:

Semantics =

bLX

i=1

bSi, (4.1)

where bSi is the semantic score (see Eq. 3.1) of the i-th output video frame.

II. Output Speed-up. This metric indicates the speed-up achieved by the output

video. It is better to have a speed-up close to the required speed-up. We calculate

the achieved speed-up according to the following equation:

Speedup =
L

bL
, (4.2)

where L and bL are the number of frames of the input and the output videos, re-

spectively.

III. Instability Index. This metric quantiőes the shakiness of the output video. It is

detailed in Section 4.2.1. The lower is the Instability Index, the smoother is the

video.

4.2.1 Instability Index Metric

Hyperlapse methodologies focus on producing smooth fast-forward egocentric

videos. In order to evaluate the smoothness of the output videos, we need an evalua-

tion metric that accurately expresses this value. The most popular quantitative measure

present in the literature is the reduction of the epipole/FOE jitter [Halperin et al., 2017;

Poleg et al., 2015], which is not accurate.

Inspired by the qualitative comparison between videos made by Joshi et al. [2015],

where they made side-by-side comparisons using only the mean and standard deviation of

consecutive output frames, we devised a quantitative metric to calculate the smoothness

of videos. We assume that, in shaky videos, the pixels should present more distant values

in a range of consecutive frames when compared to smoother videos. The shakiness

estimation is computed as in Equation 4.3, which presents a value for the instability of

the video.

I = M

 
1

N
·

NX

i=1

P
j∈Bi

(fj − f̄i)
2

(NB − 1)

!
, (4.3)
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Figure 4.2. Comparison among the epipole/FOE metric, the preference of the users, and the
Instability Index metric. The smaller the value, the better it is. Results are normalized by the
highest mean value for better visualization. The epipole/FOE metric presents a low mean for
the ES algorithm, which does not match the users’ preference, unlike the Instability Index, which
seems to be a better match.

where N is the number of frames of the video, Bi is the i-th buffer composed by NB

temporal neighbor frames, fj is the j-th frame of the video, and f̄i is the average frame

of the buffer Bi. M(·) is a function that returns the mean value for the pixels of a given

image, and I indicates the instability index of the video. A smoother video yields a

smaller I value.

Once the viewers are whom the methodologies concern, we conducted a user study

to verify the real smoothness of the videos and to assess the quality of the metric. For the

qualitative evaluation, we generated output videos with an average length of 35 seconds

from the 9 sequences present in Table 4.1 using the following smooth fast-forwarding

techniques: EgoSampling (ES) [Poleg et al., 2015]; Microsoft Hyperlapse (MH) [Joshi

et al., 2015] and Ours (semantic fast-forward step only), with a speed-up factor of 10.

Then, we asked for 33 subjects to watch the videos (randomly and with no labels) and

grade each video instability with respect to its smoothness in an assessment questionnaire.

The format of the questionnaire is a őve-level Likert item for the question łHow shaky is

the video?ž. The items are as follows: (1) Not a bit shaky; (2) A little shaky; (3) Shaky;

(4) Very shaky; (5) Too shaky. We demonstrate the accuracy of our evaluators by low

average standard deviations, which represent a small divergence in the user responses:

σ = 0.93 for the ES output videos; σ = 0.97 for the MH output videos and; σ = 0.78 for

our output videos.

Figure 4.2 shows the mean values of the 9 sequences, normalized by the highest

mean of each metric. Unlike the quantitative measure of epipole/FOE locations differen-

tiation, where the ES technique is superior to the other two techniques, the majority of

the subjects preferred watching the MH output video. Results reveal that the proposed
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Table 4.3. Instability Index calculated for each experimental video (10× faster).

NB

Video
Head01 Gimbal01 Head02 Gimbal02 Head03 Gimbal03

5 28.535 26.145 31.780 27.192 33.775 29.917
7 31.242 29.164 34.900 30.779 36.124 32.785
11 34.919 33.262 39.089 35.768 39.278 36.620
15 37.472 36.030 42.005 39.183 41.467 39.173

metric really reŕects the preference of the subjects since it is more similar.

We realized a quantitative experiment to consolidate the accuracy of the Instability

Index metric. In this experiment, we used two GoPro™ Hero series cameras, one attached

to a 3-axis handheld gimbal and the other to a head strap. Since the gimbal is a hardware

stabilizer, we expect the videos recorded with it to be more stable.

We recorded three pairs of videos ((Head01, Gimbal01), (Head02, Gimbal02), and

(Head03, Gimbal03)) with an average length of 9 minutes and applied a 10x naive fast-

forwarding to reduce the videos. For each pair of videos, we calculated the instability

index for both with different buffer sizes (NB in Eq. 4.3) to compare their smoothness.

Results of these experiments are presented in Table 4.3. The smallest instability index

values are in bold. As expected, the videos recorded with the gimbal present the smallest

values since it causes the camera to become more stable in acquisition time.

4.3 Parameters Setup

In this section, we show details of our experimental setup, which includes the

datasets used, the methods and metrics that were chosen for comparison, and the param-

eters conőguration for both main steps of our methodology.

Most parameters were deőned empirically, but some were optimized via a bio-

inspired algorithm since they are simple to implement and can őnd reasonable solutions

efficiently. We tried two kinds of algorithms: Genetic Algorithms (GAs) [Man et al., 1996],

which are inspired by the process of natural selection and use a population of candidate

solutions, and the Swarm Intelligence algorithms, more speciőcally the Particle Swarm

Optimization (PSO) [Kennedy and Eberhart, 1995], which shares many similarities with

the GAs, but instead of evolution operators such as crossover and mutation it uses particles

moving through the solution space. We chose PSO over a GA to use in our experiments

because PSO is less complex and could őnd solutions with less computational costs than

GAs. In this section, we present the values that we deőned empirically. Details about
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our optimization via PSO are presented in Section 4.3.1.

In our semantic fast-forwarding methodology, we used as the semantic extractors

the same detectors used for the labeled dataset composition: the Liao et al.’s NPD Face

Detector [Liao et al., 2016] in videos where the wearer is walking and the Dollár’s pedes-

trian detector [Dollár, 2016] in videos where the motion speed is higher (running, driving

and biking). These detectors are responsible for giving us the conődence value (ck) and

the ROI size (ak) of the Equation 3.1. We considered any ck < 60 as false face detections

and ck < 100 as false pedestrian detections. The Gaussian function (Equation 3.1) is a

Normal with parameters µ = 0 and σ = min(W/2, H/2), where W is the frame width and

H is the frame height.

In the temporal segmentation (Sec. 3.1.2), we őltered the semantic proőle with

a Gaussian function with σ = 5 · fps, where fps stands for frames per second and ‘·’

is the multiplication operator. We only considered ranges with 3 seconds or over, once

short ranges would result in a ŕash in the fast-forward video. We also connected every

semantic segment separated by a span of 5 seconds or less because we consider this gap

as a misdetection range. Such actions change the ps value (Sec. 3.1.3) of each video,

once some frames below the semantic threshold can be part of semantic segments and

vice-versa. However, it reduces the number of transitions between different segments and

makes the segments more solid.

For the construction of the graph, we set the values of the border frames τb and

the maximum allowed skip τmax to be 1 and 100, respectively. In the velocity cost term,

we set the value of the desired magnitude for the optical ŕows Dmag to be 10 times the

average optical ŕow magnitude of the sequence. We tested different values for the ϵ in the

semantic cost term equation (Equation 3.4). The value with the best results was ϵ = 1.

Finally, for all experiments, we set the desired speed-up to Fd = 10.

In our egocentric video stabilization methodology, the size of the patches for selec-

tion of the master frames was deőned as α = 4. We set the area of da as dp = 50% of the

frame and the area of ca as cp = 90%. The parameter σ of the Gaussian function in the

Equation 3.8 and the value of η in the same equation were deőned as σ = 10 and η = 0.5.

We used the OpenCV implementation of SURF and RANSAC.

4.3.1 λ’s optimization via PSO

The PSO algorithm comprises a group of particles arranged randomly in the search

space. The optimization process occurs iteratively. In every iteration, the particles’

positions (parameters values) are updated to follow the local and global best particles.
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Local best is the particle that achieved the best solution in the current iteration, and

global best is the particle with the overall best solution. The solution is given by a őtness

equation which is deőned according to the problem.

For the optimization of the parameters λ1 and λ2 of the Equation 3.3, we designed

the following őtness equation:

fitnessλ1λ2
= c

����F ∗

s −
Fd + psFd

2

����+ |cFd − Fd|+ pns|F
∗

s − F ∗

ns|, (4.4)

where F ∗

s and F ∗

ns are the best values of Fs and Fns when replacing λ1 and λ2 with the

particle position. ps = Ls/(Ls + Lns) represents the semantic percentage of the video,

pns = Lns/(Ls + Lns) is non-semantic percentage, c = 2 is a constant value to control the

importance of selecting a lower semantic speedup and cFd = (Ls + Lns)/(Ls/F
∗

s + Lns/F
∗

ns)

is the speedup achieved with the selected speedups.

The őtness equation for obtaining the best values for λI , λV , λA and λS is:

fitnessλIλV λAλS
=

J

MaxJ

+

�����
bL− EL

EL

�����+
bS∗ − Semantics

bS∗

, (4.5)

where J is the jitter of the generated fast-forward video, which is obtained by the mag-

nitude mean deviation of the FOE locations along the selected frames; MaxJ is the

maximum jitter possible for the video, obtained by the J value of a hypothetical video

where for every frame the FOE is as far as possible from the previous; EL is the expected

number of frames for the fast-forward video, bL = L/cFd is the fast-forward video length

and L is the original video length; bS∗ is the maximum value for the Semantic Score of the

fast-forward video that could be obtained given the required speed-up; and Semantics is

the value calculated as in Equation 4.1 for the fast-forward video. Due to performance

restrictions, we use the jitter measure instead of the proposed Instability Index metric.

4.4 Results & Discussions

We őrst compare the improvement in stability when applying our egocentric stabi-

lizer to the semantic fast-forward videos. Then, we present an overall comparison against

the naïve frame selection, the work of Poleg et al. [2015] and the work of Joshi et al.

[2015].

Tables 4.4 and 4.5 present the semantic percentage (ps) , the speed-ups obtained

by minimization of the Equation 3.3 (Fs and Fns) using the PSO algorithm and, the

theoretic őnal speed-up calculated for the both datasets used in our experiments (S). It is
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Table 4.4. Selected Speed-ups for the Pub-Seq Dataset.

Name ps Fs Fns S

Bike 1 17.48% 5 12 9.640
Bike 2 2.79% 2 10 8.995
Bike 3 21.93% 6 12 9.842
Driving 0.00% 10 10 10.000
Running 7.01% 3 12 9.914
Walking 1 1.84% 1 12 9.977
Walking 2 0.00% 1 10 10.000
Walking 3 11.77% 4 12 9.713
Walking 4 6.94% 3 12 9.933

Table 4.5. Selected Speed-ups for the Semantic Dataset.

Name ps Fs Fns S

Biking 0p 1.06% 1 11 9.947
Biking 25p 24.81% 6 13 10.081
Biking 50p 54.73% 8 14 9.926
Biking 50p2 51.72% 8 13 9.824
Driving 0p 2.25% 1 12 9.619
Driving 25p 24.23% 6 11 9.152
Driving 50p 46.33% 8 12 9.743
Walking 0p 0.00% 10 10 10.000
Walking 25p 25.60% 6 13 10.011
Walking 50p 50.11% 8 13 9.899
Walking 75p 75.20% 9 15 9.991

noticeable that our designed őtness function could manage different amounts of semantics

since the overall speed-up remains closer to the desired speed-up, which is Fd = 10, and

the selected speed-ups are not too distant nor too close, except for the cases where the

semantic percentage is close to 0%. Note that in order to get the perfect overall speed-up,

the value of Fns should be very high since we intend to get the smallest possible value for

Fs without degrading the video continuity.

4.4.1 Instability improvement by the egocentric video stabilizer

We calculated the Instability Index for the videos of both datasets before and after

the stabilization step of our methodology. Table 4.6 summarizes our results. In general,

the output videos produced by the complete methodology are more stable than the videos

produced by the semantic fast-forward step only. Failure cases are observed in Driving
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Table 4.6. Instability comparison between the two major steps of our methodology for both
datasets. The column SHEV-Stb presents the instability index for the output video of the
semantic fast-forward step only, and the column SHEV+Stb presents the results for the output
video of the complete methodology.

Semantic Dataset Pub-Seq Dataset
Name SHEV-Stb SHEV+Stb Name SHEV-Stb SHEV+Stb

Biking 0p 28.77 26.81 Bike 1 37.68 36.58
Biking 25p 52.36 50.28 Bike 2 36.68 35.68
Biking 50p 36.23 32.91 Bike 3 36.76 36.12
Biking 50p2 31.64 29.20 Driving 41.44 39.00
Driving 0p 46.59 48.09 Running 39.21 38.28
Driving 25p 42.21 43.39 Walking 1 30.47 27.18
Driving 50p 42.84 42.24 Walking 2 36.98 35.73
Walking 0p 35.54 35.43 Walking 3 37.51 35.56
Walking 25p 37.73 37.38 Walking 4 35.35 34.67
Walking 50p 40.94 38.24
Walking 75p 38.52 35.95

0p and Driving 25p. The videos recorded in a car are more challenging for our egocentric

stabilizer since many scene changes occur in a short interval because of the car’s speed.

A large number of skipped frames in the fast-forward step causes the sequential frames

in the fast-forward video to be spatially distant. Thus, the key-point correspondences are

not valid, leading the homography calculation to be erroneous.

4.4.2 Comparison to other methodologies

We compared the results of our complete methodology against three different tech-

niques:

(i) Naïve (N), which simply creates a video by taking every n-th frame of the input

video. This selection gives us the perfect Output Speed-up, which is the exact value

required, but the Instability Index and the Semantic Content are video-dependent

values;

(ii) EgoSampling (ES) [Poleg et al., 2015], which creates a video by using the Poleg

et al.’s technique with parameters deőned according to the best values of their

work;

(iii) Microsoft Hyperlapse (MH) [Joshi et al., 2015], where we used the released desktop

version of their algorithm to create the output videos.



4. Experiments 47

0%

10%

20%

30%

40%

Bike 1

Bike 2

Bike 3

Running

Walking 1

Walking 2

Walking 3

Walking 4

Semantic Content (Pub-Seq Dataset)

Naive EgoSampling Microsoft Hyperlapse SHEV

Figure 4.3. Semantic Content for the videos in Pub-Seq Dataset. The results are related to the
highest Semantic Content that could be achieved given the required speed-up. Results for the
‘Driving’ video were removed since this video has no semantic information. Our method is on
average 11.88 percentage points better than the Naïve approach, which is the competitor with
the highest average semantic content.

Semantic Evaluation. Figures 4.3 and 4.4 depict the semantic content value normalized

by the number of frames of the output video for the videos of both tested datasets. We

present the results concerning the maximum semantic content achievable given the desired

speed-up. The maximum semantic content is given by the sum of the semantic score of

the k frames with the highest values, where k is the ideal number of frames for the output

video. Results for the ‘Driving’ video were removed since it has no semantic information.

Therefore, all algorithms would present the same value of semantic content for their output

videos.

Our method outperforms all other methodologies as far as semantic information

is concerned. In Figure 4.3, it is noteworthy the small values obtained by the hyperlapse

techniques that are even smaller than the Naïve ones. This fact is due to the uniformity of

frame selection of the Naïve approach along with the skipping strategy of the hyperlapse

techniques. Hyperlapse algorithms tend to make larger skips when the motion is low, for

example, when the recorder is stopped. This might have led the techniques to exclude

frames with more semantic information. Our technique stands out in this aspect since, in
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Figure 4.4. Semantic Content for the videos in Semantic Dataset. The results are related to
the highest semantic content that could be achieved given the required speed-up. Our method
is, on average, 9.46 percentage points better than the Naïve approach, which is the competitor
with the highest average semantic content.

addition to reducing the speed-up factor in semantic segments, the semantic term balances

the selection in non-semantic segments. Our method is, on average, 11.88 percentage

points better than the Naïve approach, which is the competitor with the highest average

semantic content.

We repeat our analysis for the Figure 4.4 which presents the results for the seman-

tic dataset. It is important to note that our technique is robust to different amounts of

semantics. The main reason for this is the restrictions imposed by Equation 3.3 that de-

mands the minimization of the semantic speed-up and its difference from the non-semantic

speed-up independently of the length of the semantic segments. Our method is, on aver-

age, 9.46 percentage points better than the Naïve approach, which is the competitor with

the highest average semantic content.

Speed-up Evaluation. Tables 4.7 and 4.8 present the Output Speed-up achieved by the

techniques in Pub-Seq Dataset and Semantic Dataset, respectively. For a better analysis

of the data, we removed the Naïve technique since it always achieves the required speed-

up.
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Table 4.7. Output Speed-up for the videos of Pub-Seq Dataset. Better results are those with
the values closer to Fd = 10.

Video Name EgoSampling
Microsoft

Hyperlapse
SHEV

Bike 1 15.344 11.052 10.110
Bike 2 13.663 10.586 10.352
Bike 3 13.383 11.122 9.996
Driving 57.309 11.272 24.002
Running 13.495 10.841 9.970
Walking 1 54.245 11.115 11.001
Walking 2 24.824 8.735 10.425
Walking 3 12.520 7.929 10.000
Walking 4 25.770 9.255 9.999

Mean 25.617 10.212 11.762
St. Dev. 17.823 1.241 4.602

Table 4.8. Output Speed-up for the videos of Semantic Dataset. Better results are those with
the values closer to Fd = 10.

Video Name EgoSampling
Microsoft

Hyperlapse
SHEV

Biking 0p 24.028 10.152 11.926
Biking 25p 11.388 8.389 10.006
Biking 50p 14.024 10.760 10.002
Biking 50p2 18.086 8.397 9.979
Driving 0p 32.187 10.024 11.814
Driving 25p 25.938 10.430 10.049
Driving 50p 26.078 11.221 10.038
Walking 0p 14.244 7.391 10.011
Walking 25p 13.328 8.307 9.993
Walking 50p 24.256 7.632 10.000
Walking 75p 27.160 9.199 9.994

Mean 20.974 9.264 10.347
St. Dev. 6.979 1.319 0.754

In general, our technique produces hyperlapse videos with the speed-up closest to

the desired one. A failure case is present in the ‘Driving’ output video shown in Table 4.7.

This is a challenging video where the driver with a camera attached to his head alternates

between looking ahead and looking in the left rear-view mirror often. This leads to larger

frame skips aiming to eliminate outlier frames, which are those where the driver is looking

in the rear-view mirror. Although we have a factor to penalize distant skips (see Eq. 3.5),

the graph may have low edge weights for higher temporal relationships. We believe this

occurred in this experiment because the video has a homogeneous content, i.e., the frames

have similar structure and appearance. Figure 4.5 presents some frames of this video.
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(a) (b)

(c) (d)

Figure 4.5. Frames of the ‘Driving’ video, a failure case. The top left corner frame (a) depicts
the forward-looking frame. The frames (b), (c), and (d) are outlier frames, which are often in this
video. Removing many outlier frames causes the output video to have a high speed-up factor.

Another notable case is the speed-ups achieved by the EgoSampling technique.

The mean value for the Output Speed-up of this technique in both datasets is far from

ideal. We believe this is the absence of control of the speed-up rate in their graph building

step. In most cases, it is more advantageous for the shortest path algorithm to select a

smaller number of frames in order to reduce the overall cost.

Note that the ‘Driving’ video experiment in Table 4.7 presents the higher output

speed-up rates even for the Microsoft Hyperlapse algorithm, which has the best result

for this experiment. Therefore, we should consider it as an outlier. By considering this

experiment as an outlier, the new mean and standard deviation values for each of the

techniques drop to 21.655 and 14.199 for EgoSampling, 10.079 and 1.257 for Microsoft

Hyperlapse, and 10.232 and 0.357 for ours (SHEV), what lead us to the most accurate

results for the Pub-Seq Dataset.

Instability Evaluation. We present in Figures 4.6 and 4.7 the Instability Index values

for all videos. As expected, the Microsoft Hyperlapse algorithm presents the best results

once its optimization technique is entirely focused on the smoothness of the őnal video.

Our approach presents the second-best values for smoothness in all cases, except in the

‘Driving’ video, where EgoSampling presents a smoother video. In this speciőc video,

the EgoSampling algorithm did not allow for a speed-up rate closer to the ideal to avoid
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Figure 4.6. Instability Index for the videos of Pub-Seq Dataset. Smaller values represent a
smoother video.

introducing shakiness into the őnal video.

4.4.3 Running Times

We measured the running times for each step of our methodology. It is important

to mention that producing hyperlapse videos in real-time is not one of our objectives.

However, we consider the running times a piece of relevant information for those interested

in reproducing our methodology.

In the semantic fast-forwarding stage, we used either a face or a pedestrian detector

as semantic extractors, which took approximately 0.7 and 1.2 seconds per input frame,

respectively. These values relate to a frame with a resolution of 1920× 1080. We ran the

temporal segmentation and the speed-up estimation steps 30 times per video to obtain the

average running time of these tasks. We used the PSO algorithm with 30 particles and 50

iterations to estimate our speed-up rates. The temporal segmentation step took around
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Figure 4.7. Instability Index for the videos of Semantic Dataset. Smaller values represent a
smoother video.

7 milliseconds, and the speed-up estimation task took approximately 150 milliseconds

per video. The average cost to calculate the terms used in the graph building is around

600 milliseconds per input frame. Once the graph is built, we run the PSO algorithm

with 8 particles and 30 iterations, which takes around 1 second per iteration. It includes

the Dijkstra’s shortest path algorithm running time. These values are also considering a

frame with a resolution of 1920× 1080.

The bottleneck of our methodology is the stabilization stage. It is highly dependent

on the frames selected by the fast-forward stage since the reconstruction step is expensive.

The best case, which was the Biking 0p video, took around 2.4 seconds per frame in the

fast-forward version, while the worst case (Driving 25p) took around 17.13 seconds per

frame in the fast-forward version. The master frames deőnition step took on average 2.8

seconds per patch in the worst-case experiment.
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4.4.4 Concluding Remarks

The results acquired in our tests reveal the robustness of our method to diverse

amounts of semantics. Independently of the semantic information in the input video,

our method remains the one with the highest Semantic Content without degenerating

the Output Speed-up. Although the Microsoft Hyperlapse achieved the best results for

the smoothness, they present poor results for the Semantic Content, even worse than the

Naïve approach in both tested datasets. Results also show that the ‘Driving’ video is very

challenging to our methodology because it leads us to our worst results for the Output

Speed-up and Instability Index metrics. The main reason for these results is the number

of outlier frames, i.e., those where the driver is looking in the rear-view mirror.

4.4.5 Limitations

Our approach has some limitations, which we present following:

• We use in our methodology user-deőned semantics in order to do the semantic ex-

traction and deőne the segments. Although this method works well for speciőc

applications, the ideal scenario for the general users would be the automatic deőni-

tion of the semantics, which could be deőned according to the video content.

• In our adaptive frame selection step, we assume a perfect estimation for the FOE.

We use a sparse optical ŕow estimation proposed by Poleg et al. [2014], where the

images are divided into blocks, and only one vector is taken as representative for

each block. This estimation is not always accurate since contradictory movements

within the same block can be found. Thus, the optical ŕow vectors would negatively

inŕuence the FOE estimation.

• In the egocentric video stabilizer, when using a homography matrix to describe the

transition from one frame to another, we are based on the assumption that the

detected key-points are in the same plane on the scene, which is not always true.

This leads the stitching process to present visual discontinuities since some planes

do not match. Figure 4.8 shows a good match among the planes on the right side

of the őgure (blue dotted circle), while the planes on the left side are compromised

(red dashed circle). Another example is depicted in Figure 4.9, where the bottom
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Figure 4.8. Planes mismatches, failure case 1. The Figure depicts a frame reconstructed by
the stitching process. The usage of homography restricts the correct matches for only one plane
per image. The blue dotted circle presents a region where the planes match correctly. The red
dotted circle presents a region where the planes do not match correctly.

left planes of the images used in the stitching match correctly (blue dotted circle),

while in the upper left planes, the match is not correct (red dashed circle).
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Figure 4.9. Planes mismatches, failure case 2. The Figure depicts a frame reconstructed by
the stitching process. The usage of homography restricts the correct matches for only one plane
per image. The blue dotted circle presents a region where the planes match correctly. The red
dotted circle presents a region where the planes do not match correctly.
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Chapter 5

Conclusions & Future Work

5.1 Conclusions

Several factors have inŕuenced the emergence of the smooth fast-forward, or hyper-

lapse, methodologies in recent years. The main factor is the mass usage of wearable and

mobile device cameras for life-logging since many continuous hours of video are generated

for such purpose, and no edition or preprocessing is done to turn these recordings into

watchable videos. Despite the great results achieved by hyperlapse methodologies, some

applications need the information usually lost along the fast-forwarding process.

In this work, we were inspired by the video summarization strategies, where the

goal is to create a compact summary of the video with the key components for under-

standing the overall content. However, unlike video summarization, we aimed to maintain

the continuity of the video. To the best of our knowledge, this is the őrst work focused

on a semantic hyperlapse.

We have presented an approach with two steps: semantic fast-forwarding and

egocentric stabilization. In the őrst step, we split the video into semantic and non-

semantic segments. For each type of segment, we calculated different speed-up rates such

that the semantic segments were emphasized by a lower speed-up. The őnal video speed-

up should achieve the speed-up required by the user. In the second step, we stabilize the

video by applying homography transformations estimated from consecutive fast-forward

frames. We used neighbor frames from the original video to őll the images łover-warpedž

by the homography transformations.

We compared our results to the state-of-the-art hyperlapse techniques. We per-

formed the experiments in two datasets, one of them our contribution to the research

community. We also contributed with a metric to measure the smoothness of egocentric

videos since the most used metric in the literature does not reŕect the real preference of

the watchers. We measured the semantic content, speed-up achieved, and the smoothness.

The results show the superiority of our approach over the state-of-the-art hyperlapse algo-

rithms as far as the semantic information is concerned. According to the results obtained,
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our method is, on average, 10.67 percentage points higher than the best method with

respect to the maximum amount of semantics that can be obtained, given the required

speed-up.

5.2 Future Works

Many possibilities arise with this new research őeld. Some extensions and modiő-

cations to our pipeline are:

• Use the concept of multi-importance to deőne different levels of semantic segments.

Although we label some segments only as semantic, some parts can be even more

important within the semantic segments. So, our methodology could be adapted to

deőne multiple thresholds and play each one of them at different speed-up rates.

• Use the power of Convolutional Neural Networks (CNNs) to extract the semantic

information instead of simple detectors. CNNs have been on the rise in the latest

years, achieving state-of-the-art results in image classiőcation. The usage of CNNs

would automatize part of our pipeline and eventually present better results for

general watchers, i.e., those who are not only looking for a speciőc object like faces

but overall important scenes.

• Use Image/Video Captioning and Natural Language Processing (NLP) together to

deőne the semantic segments. We could attach to the beginning of the pipeline an

NLP system that would receive a sentence from the user, in natural language, that

expresses her/his choice of which clip of the video she/he would like to watch in an

emphasized way. That would be possible with Video Captioning algorithms, which

have substantial results to deőne accurate labels for video clips.
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