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Abstract

Clustered survival data can arise if the event of interest (the failure) is recurrent and more than one ob-

served time is registered for each subject (which forms a cluster) under study, and the number of observed times

is �xed for all subjects. Since survival data associated with the same cluster is expected to be correlated, it

should be modeled in order to account for that dependence. Copula models became an appropriate framework

to model clustered survival data, linking marginal survival functions to form a joint survival distribution. Much

of the literature on survival copula models is concentrated on results marginally using only the Weibull model

as the baseline distribution and the Proportional Hazards model as the regression structure when working with

clustered survival data or supposing an informative censoring model for univariate survival data. This work

proposes new survival copula models under a random and independent right-censoring assumption, addressing a

variety of marginal baseline distributions (Weibull, Bernstein Polynomials, and Piecewise Exponential models)

and regression model classes (Proportional Hazards, Proportional Odds, and Yang-Prentice models). Concern-

ing the copulas themselves, each one among those treated in this work belongs to the Archimedean copula

class, a family of copulas widely used in survival analysis due to some important properties. Five Archimedean

copula models were addressed in this work: Ali-Mikhail-Haq; Clayton; Frank; Gumbel-Hougaard, and Joe. To

evaluate and compare the proposed survival copula models, results for an extensive simulation study and a real

data application were obtained. For the simulated data, variations can occur on the copula function and on

the marginal baseline distribution or regression model class used for generation.Also, simulation scenarios were

divided by true Kendall's τ correlation values for the copula model chosen for generation. When �tting the

simulated data, better results are obtained for �tted models with the correct copula, given a speci�cation of

baseline distribution and regression structure. Moreover, even generating marginally from the Weibull model,

results for �tted semiparametric models follow closely those obtained when �tting the Weibull model, being

better (in general) for marginally generated data from the Exponentiated Weibull distribution, among the

models �tted with the correct copula. For all survival copula models presented in this work, an R package is

currently in development, containing speci�c functions for �tting and analysis.

Keywords: Archimedean copulas, Marginal survival functions, Baseline distributions, Regression model

classes.



Resumo

Dados de sobrevivência clusterizados podem surgir se o evento de interesse (a falha) é recorrente e mais de

um tempo observado é registrado para cada indivíduo (o qual forma um cluster) sob estudo, e a quantidade

de tempos observados é �xa para todos os indivíduos. Como se espera que dados de sobrevivência associados

a um mesmo cluster estejam correlacionados, a modelagem dos mesmos deve considerar esta dependência.

Modelos de cópula se tornaram uma estrutura útil para a modelagem de dados de sobrevivência clusterizados,

conectando funções de sobrevivência marginais para construir uma distribuição conjunta de sobrevivência.

Muito da literatura sobre modelos de cópula de sobrevivência está restrita a resultados para o uso do modelo

Weibull como a distribuição marginal da linha de base e do modelo de Riscos Proporcionais como a estrutura

marginal de regressão ao se trabalhar com dados de sobrevivência clusterizados, ou a resultados para modelos de

censura informativa aplicados a dados de sobrevivência univariados. Este trabalho propõe, sob o pressuposto de

censura à direita aleatória e independente, novos modelos de cópula de sobrevivência abordando uma variedade

de distribuições para a linha de base marginal (modelos Weibull, Polinômios de Bernstein e Exponencial

por Partes) e de classes de modelos de regressão (Riscos Proporcionais, de Chances Proporcionais e Yang-

Prentice). Com respeito às cópulas, cada uma dentre as tratadas neste trabalho pertence à classe de cópulas

arquimedianas, uma família de cópulas amplamente utilizada em análise de sobrevivência devido a propriedades

importantes. Cinco cópulas arquimedianas foram abordadas neste trabalho: Ali-Mikhail-Haq; Clayton; Frank;

Gumbel-Hougaard e Joe. Para avaliar e comparar os modelos de cópula de sobrevivência propostos, foram

obtidos resultados para um estudo extensivo de simulação, bem como para uma aplicação de dados reais.

Para os dados simulados, variações podem ocorrer na cópula e na classe de modelos de regressão marginal.

Além disso, os cenários para simulação foram divididos por valores verdadeiros supostos para a correlação τ

de Kendall, dado o modelo de cópula escolhido para a geração. Ao ajustar os dados simulados, resultados

melhores são obtidos para modelos ajustados com a cópula correta, dada uma especi�cação da distribuição

para a linha de base e da estrutura de regressão. Além disso, mesmo gerando do modelo Weibull, resultados

para ajustes de modelos semiparamétricos seguem de perto os obtidos ao ajustar o modelo Weibull, dentre

os modelos ajustados com a cópula correta, sendo melhores (em geral) para dados marginalmente gerados

da distribuição Weibull Exponenciada. Para todos os modelos de cópula de sobrevivência apresentados neste

trabalho, um pacote R está atualmente em desenvolvimento, contendo funções especí�cas para ajuste e análise.

Palavras-chave: Cópulas arquimedianas, Funções de sobrevivência marginais, Distribuições da linha de base,

Classes de modelos de regressão.
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CHAPTER 1

Introduction

Survival analysis is a wide �eld in Statistics that deals with time data ranging from a well-de�ned start

point until the occurrence of some particular event of interest, taken as the endpoint criteria (Collett, 2015).

For instance, in medical research, the start point can correspond to the recruitment of a subject diagnosed

with a particular condition, such as a disease, into a clinical trial to compare two or more treatments. If the

endpoint is the death of a subject, the collected time data is its survival time. However, similar data can be

obtained when the endpoint is not fatal, such as the relief of pain or the recurrence of a disease symptom. More

generally, observed times are referred to as time to event data. Survival times are not liable to be analyzed by

standard statistical procedures, since in general they are not normally or even symmetrically distributed. This

di�culty could be remedied by applying a transformation over the data in order to achieve a normally-like

distribution, like the famous Box and Cox (1964) transformation. However, using a transformation frequently

implies the loss of interpretation in the inference made on parameters of a model for the original data, but

given the transformed data.

Another important feature of survival analysis that requires modeling methods di�erent from the standard

ones is censoring (Collett, 2015). Among the di�erent censoring types in the literature, special attention will

be given for the right-censoring. An observed time is said to be right-censored if the event of interest has

not been observed for a subject, but it is known that the subject has survived up to the observed time. A

right-censored time can arise if a subject has been lost to follow-up before the event occurrence (a patient

moves to another country and can no longer be tracked), the event has not been observed at the end of the

study for all subjects, or death has been caused for a reason completely unrelated to the event of interest.

A crucial assumption that will be made in the present work is that the actual survival time, whether it is

observed or not, does not depend on any censoring mechanism. Then, censoring is said to be independent,

operating randomly over all subjects under study. In other words, when considering a group of subjects who
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have the same values on a set of relevant explanatory variables, a subject whose survival time is censored must

be representative of all other subjects in that group who have survived up to the censoring time.

Depending on the study, survival data can be clustered by a grouping variable or even by subjects. This

last can occur when the event of interest is observed more than one time for the same subject, and for all

subjects under study. Thus, each cluster is composed by two or more observed times. Since data from the

same cluster are expected to be correlated, it cannot be modeled as if all observed times were independent. A

theoretical and well-suited framework to model clustered data is the copula, a multidimensional distribution

function over a �xed number of standard uniform univariate margins, equal to the size of each cluster. Then,

the copula can link marginal survival functions to form a joint survival distribution to model clustered data

(Marra and Radice, 2020). In general, not only survival or distribution functions but any function restricted

to the unit interval can be used as a marginal component of a multidimensional copula model.

1.1 A Brief Literature Review

Survival analysis is one of the oldest �elds of study in Statistics, with roots in demography and actuarial

science, dating back to the 17th century. The �rst results involved a large set of inferences based on mortality

records, which were published by John Graunt, a London merchant, in 1662 (Hacking, 2006, apud Rickert,

2017). Even before the 1700s, basic-life table methods have already comprised techniques for dealing with the

delayed entry (left truncation) and right-censored data when estimating a survival function (Andersen and

Keiding, 1998). In the early 18th century, Abraham de Moivre and Daniel Bernoulli developed the modern

foundations of the survival analysis when working on annuities and competing risks for smallpox inoculation,

respectively. De Moivre proposed a linear approximation for the survival function, the �rst example of a

parametric model. In the 19th century, proposals of parametric models were also made for the hazard function.

Bernoulli, for his part, estimated the expected number of deaths given a standard set of death rates. In the

early 20th century, two themes of research in survival analysis arose: multistate modeling and nonparametric

estimation of survival functions in continuous time.

Although those themes were part of a more modern survival analysis, they still were studied in the �elds

of actuarial mathematics and demography without integrating theoretical statistics (Andersen and Keiding,

1998). Until the �rst half of the 20th century, the main contributions to the statistical theory of survival

analysis were still limited to simple parametric models. Inference results started to appear from two key

articles. The �rst is the paper by Kaplan and Meier (1958), who proposed a nonparametric estimator of the

survival function. The second one is the work of Cox (1972), who introduced a regression model class for the

hazard function, depending arbitrarily (in a nonparametric way) on the observed times and parametrically on

covariates: the semiparametric Proportional Hazards (PH) model class. However, until the late 1970s, much

of the work in survival analysis still involved only constructing better life tables and enhancements of non-

censored nonparametric estimators (Klein et al., 2013). At that time, the counting process martingales theory

was adapted by Aalen (1978) to survival analysis problems. This paved a way for the development of easier

techniques for censored and truncated data, allowing both frequentist and Bayesian approaches of inference
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on a wide range of problems. Since then, survival analysis modeling has been widely used in a variety of

disciplines, including Medicine; Epidemiology; Engineering; Insurance; Economy; Marketing, and many other

applications.

Copula modeling is, on the other hand, a more recent topic. The �rst investigation of a multivariate

standardized distribution function was made by Hoe�ding (1940), who worked with bivariate standardized

distributions whose support was given by the square [−1/2, 1/2]2, with uniform margins on the interval

[−1/2, 1/2]. He also studied measures of dependence that are invariant under strictly increasing transfor-

mations. As Schweizer (1991), apud Nelsen (2006), pointed out, Hoe�ding could have discovered copulas if he

had chosen the unit square [0, 1]2 instead. Féron (1956) considered standardized distribution functions de�ned

on the unit cube [0, 1]3, but the term �copula� (a Latin word for link) was introduced by Sklar (1959). He

was also the �rst to establish a result on the connection between multivariate distribution functions and their

associated one-dimensional margins, posteriorly known as the Sklar's Theorem (Nelsen, 2006). Until the early

1980s, results for the copula theory were mostly limited in the context of probabilistic metric spaces. At that

time, Schweizer and Wol� (1981) studied di�erent criteria for measures of dependence. They concluded that

copulas provide a simple tool for analyzing the dependence among random variables. They also showed that

copulas are invariant under strictly increasing transformations. Thereby, it was proved that copulas resume all

the information about the dependence structure among random variables. Some recent references on copula

theory and applications are the books of Nelsen (2006); Joe (2014); Durante and Sempi (2015); Flores et al.

(2017) and Hofert et al. (2018).

Once copulas allow building multivariate distribution functions with margins de�ned on the unit interval

[0, 1], those same margins could be represented each one by a survival function, which would form a joint

survival distribution. The �rst use of copulas as multivariate survival models dates back to the work of Clayton

(1978) and Oakes (1982). Clayton noted that, when adjusting for covariates, marginal survival functions and

the copula dependence parameter can unveil underlying factors (not speci�ed as covariates) in�uencing the

probability of event times simultaneously. Oakes, in turn, reparameterized the model introduced by Clayton

and proposed a correction for his likelihood expression and variance estimation. The Clayton, or Clayton-

Oakes, copula is an example of a wide class: the Archimedean copula models, which include Frank, Gumbel-

Hougaard (GH), Joe, and Ali-Mikhail-Haq (AMH) copulas (see Nelsen (2006) and references therein). Special

attention will be given for those aforementioned copulas.

1.2 Main Functions in Survival Analysis

The following de�nitions will be mostly based on Collett (2015). Let T > 0 be a non-negative random

variable for the observable (survival) time of a subject and t the value of its actual observed time. Suppose that

T has a probability distribution with a continuous density function f(t|κ), where κ is the vector of parameters

from the distribution of T . Then, the cumulative distribution function of T is given by

F (t|κ) = P (T < t|κ) =

∫ t

0

f(u|κ)du, (1.1)
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which represents the probability that a survival time is less than a value t. The survival (or survivor) function

is the probability that a survival time is greater than or equal to a value t, so

S(t|κ) = P (T > t|κ) = 1− F (t|κ) (1.2)

is the complement of the cumulative distribution function in (1.1), and represents the probability that a subject

will survive beyond a given time t.

One fundamental concept in survival analysis is the hazard function, used to express the hazard of an

event of interest at a time t. The hazard function is obtained from the probability that the event occurs at t,

conditional on the subject having survived up to t. For its formal de�nition, let P (t 6 T < t+ εt|T > t;κ) be

the probability that T lies between t and t+ εt, where ε > 0. This conditional probability can be divided by

the time interval, εt, giving a rate that expresses a probability per unit of time. If εt tends to zero, then

h(t|κ) = lim
εt→0

{
P (t 6 T < t+ εt|T > t;κ)

εt

}
(1.3)

is the hazard function, also referred to as the hazard rate function.

The hazard function de�ned in (1.3) allows constructing relationships among the cumulative distribution,

density, survival, and hazard functions. Using the de�nition of conditional probability, it is possible to rewrite

P (t 6 T < t+ εt|T > t;κ) =
P (t 6 T < t+ εt|κ)

P (T > t|κ)
=
F (t+ εt|κ)− F (t|κ)

S(t|κ)

and, for the hazard function

h(t|κ) = lim
εt→0

{
F (t+ εt|κ)− F (t|κ)

εt

}
1

S(t|κ)
=
f(t|κ)

S(t|κ)
. (1.4)

Thus, given any of the equations (1.1), (1.2) or (1.4), the other two can be determined. Following from

(1.4), it is possible to de�ne the cumulative or integrated hazard function H(t|κ) since

h(t|κ) =
f(t|κ)

S(t|κ)
= − d

dt
{log[S(t|κ)]},

and by de�nition

H(t|κ) =

∫ t

0

h(u|κ)du = − log[S(t|κ)]. (1.5)

Therefore, while the hazard function at the time t can be interpreted as the expected number of events

experienced by a subject in a unit of time (constant over that period), given that the event has not yet occurred

until t, the cumulative hazard function can be regarded as the expected number of events that occur in the

time interval from the origin up to time t. The hazard function has a relevant role in survival modeling. In

general, it is analytically easier to deal with the hazard function associated with a parametric survival model

rather than this last itself. As will be seen later, if the hazard ratio is about the same for two subgroups of

subjects in the study, a Proportional Hazards (PH) model can be used to model the survival times.
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Another function in survival analysis that has gained more attention recently is the odds function (and its

associated derivative). Although the odds de�nition is traditional in epidemiological case-control studies, its

use in survival models appeared only with the work of Bennett (1983), who proposed the Proportional Odds

(PO) model class. The odds function express, for a �xed time t, how much an event of interest is more likely to

occur than not to occur. Thus, denoting the odds function by R(t|κ), its mathematical expression is de�ned

by the ratio F (t|κ)/S(t|κ), which can also be rewritten using (1.5) as

R(t|κ) =
F (t|κ)

S(t|κ)
=

1− exp [−H(t|κ)]

exp [−H(t|κ)]
= exp [H(t|κ)]− 1. (1.6)

Equation 1.6 establishes a relationship between the odds and the cumulative hazard functions. Similarly,

another can be set for the derivative of the odds function, denoted by r(t|κ)

r(t|κ) =
d

dt
[R(t|κ)] =

d

dt
{exp [H(t|κ)]− 1} = h(t|κ) exp [H(t|κ)] =

f(t|κ)

[S(t|κ)]
2 . (1.7)

1.2.1 The Right-censoring Role

As stated early, not always an observed time will be a survival time: the subject has survived up to a given

time and is no longer followed up for a reason unrelated to the event occurrence. This is an example of a right-

censored observed time, the most common type of censoring, which shall be considered in the present work.

Although there are di�erent right-censoring mechanisms, they lead to the same survival likelihood functions

(Duchateau and Janssen, 2007). Assuming also that the survival and censoring times are independent random

variables for all subjects (random censoring), and the censoring times do not depend on any parameter related

to the survival function (non-informative censoring), this guarantees the identi�ability for the distribution of

the observed times (Fleming and Harrington, 1991).

Based on these assumptions, a generic expression for the survival likelihood function can be constructed.

Suppose that for each subject i, 1 6 i 6 n, a survival time Ti = ti or a censored time Ai = ai are registered.

Assume also that survival (censoring) times are independent among all subjects, i. e., T1, . . . , Tn ∼ FT (t|κT )

(A1, . . . , An ∼ FA(a|κA)). The actual observable time is de�ned by Yi = min(Ti, Ai), whose distribution is

indexed by a vector κ = (κT ,κA) of parameters. Then, the information of a subject i is given by the pair

(Yi, δi), with δi = ITi<Ai being the censoring indicator random variable. For a pair (Yi = ti, δi = 1) (a survival

observed time), the likelihood contribution is given by (Duchateau and Janssen, 2007, p. 19)

lim
ε→0+

1

2ε
P (yi − ε < Yi < yi + ε, δi = 1|κ) = lim

ε→0+

1

2ε
P (yi − ε < Ti < yi + ε, Ti 6 Ai|κ)

= lim
ε→0+

1

2ε

∫ yi+ε

yi−ε

∫ ∞
t

dFA(a|κA)dFT (t|κT ) (independence)

= lim
ε→0+

1

2ε

∫ yi+ε

yi−ε
[1− FA(a|κA)]dFT (t|κT )

= [1− FA(yi|κA)]fT (yi|κT ).
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On the other hand, the likelihood contribution for a pair (Yi = ai, δi = 0) (right-censored observed time)

is given by

lim
ε→0+

1

2ε
P (yi − ε < Yi < yi + ε, δi = 0|κ) = lim

ε→0+

1

2ε
P (yi − ε < Ci < yi + ε, Ti > Ci|κ)

= [1− FT (yi|κT )]fA(yi|κA).

Thus, under a random right censoring, the survival likelihood function for a sample y of size n has the

following expression

L(κ|y) =

n∏
i=1

{[1− FA(yi|κA)]fT (yi|κT )}δi {[1− FT (yi|κT )]fA(yi|κA)}1−δi . (1.8)

Assuming also that censoring is non-informative, i. e., the distribution of the censoring times does not

depend on the parameters κT from the survival function, the factors [1 − FA(yiκA)]δi and fA(yiκA)1−δi do

not give any information for inference and can be dropped from (1.8). Thereby, κ = κT and a simpler survival

likelihood function is given by

L(κ|y) ∝
n∏
i=1

[f(yi|κ)]
δi [1− F (yi|κ)]

1−δi =

n∏
i=1

[f(yi|κ)]
δi [S(yi|κ)]

1−δi =

n∏
i=1

[h(yi|κ)]
δi S(yi|κ). (1.9)

Expression (1.9) is useful for the modeling of a hazard function, like in a PH model. An alternative version

can be obtained only in terms of the odds function and its derivative as

L(κ|y) ∝
n∏
i=1

[h(yi|κ)]
δi S(yi|κ) =

n∏
i=1

{r(yi|κ) exp [−H(yi|κ)]}δi F (yi|κ)

R(yi|κ)

=

n∏
i=1

[r(yi|κ)S(yi|κ)]
δi R(yi|κ)

1 +R(yi|κ)

1

R(yi|κ)

=

n∏
i=1

[
r(yi|κ)

1 +R(yi|κ)

]δi 1

1 +R(yi|κ)
, (1.10)

which is useful if the odd function is modeled instead, as done in a PO model.

Presented all the basic concepts in survival analysis, they can be extended to a great variety of problems.

The interested reader can consult the following references for more details. Nonparametric estimators for the

survival function and related quantities are well described in Section 1.4 of Kalb�eisch and Prentice (2002)

and Chapter 4 of Klein and Moeschberger (2005). Parametric models can be viewed in extension on Chapter 2

of Klein and Moeschberger (2005), with diagnostics and inference addressed in Chapters 11 and 12. Censoring

types are widely discussed by Lawless (2011) and Schneider (2017). Finally, a Bayesian approach is covered by

Ibrahim et al. (2001). All those references also address more sophisticated survival models, such as additive

and competing risk models.
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1.3 Research Overview and Contributions

Modeling dependence on clustered survival data with copulas has some advantages in comparison with the

traditional frailty models when applied for the same context (called in this case shared frailty models). When

estimating a dependence parameter under a frequentist approach, in a copula model it is not necessary to

integrate out any random e�ect, a di�culty that can arise for some shared frailty models. Moreover, a shared

frailty model can require some restrictions on the random e�ect distribution moments to ensure identi�ability.

On the other hand, a copula model does not allow to rank each cluster by its heterogeneity, since a unique

parameter (or set of parameters) will contain all information on the dependence of observed times for the same

cluster, which is possible on shared frailty models. However, if there is no interest in any particular cluster,

this is not a drawback of concern. Since shared frailty models will not be covered in this work, the interested

reader can consult Duchateau and Janssen (2007) for a detailed historical review on frailty models for clustered

data and their main properties.

The study of survival models as marginal components of a copula model still has an open avenue for

development, even for Archimedean copulas and under an independent and non-informative right-censoring

scheme for an event of interest. Examples of what have been done recently are the works of Goethals et al.

(2012), who �tted copula models with Weibull Proportional Hazards (PH) components for bivariate clustered

data and compared it with shared frailty models; Louzada et al. (2013) for bivariate copulas with survival

mixture models for each of their components; Prenen et al. (2017) for multivariate clusters with variable size,

and Marra and Radice (2020) for additive copula models with monotonic splines. Several regression model

classes of practical importance, however, have not been addressed yet. One example is the aforementioned

Proportional Odds (PO) model class proposed by Bennett (1983). Therefore, this work will provide not only

a theoretical framework, but also simulation studies and an application for a real data set, for inference on

Archimedean copula models with a PO model class for both survival marginal components. It will include

comparisons with similar procedures using the PH model class and the wider Yang-Prentice (YP) model class,

which comprises the earlier two as particular cases (Yang and Prentice, 2005). Each regression model class

goes along with a baseline function that can also be estimated. Three models will be considered in this work

for the �tting of a baseline function, also being the same for both copula margins.

The �rst model addressed for the baseline function is the Weibull distribution, a traditional parametric

survival model whose main attractive feature is its �exibility for the baseline hazard function (which can

increase, decrease or remain constant), while maintaining a simple expression. Many survival analysis studies

work with Weibull models, or its Exponential particular case, when a comparison is necessary for a proposed

model that includes a di�erent baseline function. The second model addressed is the Bernstein Polynomials

(BP) model for a target function with a baseline component, be it the cumulative hazard function (under a

PH regression model class) or the odds function (under a PO regression model class). The last one, which

follows a similar idea, is the Piecewise Exponential (PE) model. Both BP and PE models are also classi�ed

as semiparametric in the literature due to their �exibility for the number of baseline parameters.

The Bernstein Polynomials model was �rst introduced in survival analysis by Chang et al. (2005) for the
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cumulative hazard function of homogeneous populations (without any regression structure). They treated the

polynomial degree as a random quantity, imposing a Beta prior process to it. However, the chosen framework

for the BP modeling in this work is the one developed by Osman and Ghosh (2012), who used the BP to

approximate both cumulative hazard and hazard functions, since the BP modeling can be used to obtain

another approximation for a derivative function if it exists (Lorentz, 1986). They obtained a semiparametric

model for baseline functions, although �xing the polynomial degree, and also established a proof for the

likelihood log-concavity property of their BP modeling. It led to faster computational routines to �nd Bayesian

estimators, besides being a necessary condition to the uniqueness of the maximum likelihood estimator.

Naturally, proposals combining the BP modeling with survival regression model classes have arisen in the

literature, initially for univariate data (see Panaro (2020) for a brief review). Hu et al. (2017) were the �rst to

use Bernstein Polynomials to model a baseline function, jointly with a PH model for the regression structure,

as a marginal component of a copula model for bivariate interval-censored data. Xu et al. (2019) also worked

with bivariate copula models, but their marginal components were given by the survival and censoring times

of a same subject. They assumed informative interval censoring, using the BP modeling for the associated

baseline hazard function. Although dealing with more complex forms of censoring while introducing the copula

modeling, these two works stick to PH model classes, limiting interpretation for the associated coe�cients.

Having been introduced shortly after the Cox's regression model by Kalb�eisch and Prentice (1973), the

Piecewise Exponential model arose as a discrete model for the hazard function, being an alternative for grouped

survival data or continuous survival data in the presence of ties. The main idea is to assume that distinct

survival times have a constant hazard function between them. Then, the true hazard function is approximated

by a sum of constant hazard functions, each one �tted by an Exponential model. Later, Friedman (1982)

proved the asymptotic properties for the maximum likelihood estimators of PE model parameters. As an

example of using as a marginal component of a copula model, Prenen et al. (2017) �tted PE models for the

margins of multivariate Archimedean copula models with independent random censoring and variable cluster

size, but only using the PH model for the regression structure. For dependent censoring, Emura and Michimae

(2017) applied copula models with PE margins in the context of bivariate competing risks modeling, although

without imposing any regression structure.

To evaluate the �tting of distinct Archimedean copula models with survival marginal components (also

called survival copula models), a simulation study will be performed in this work. Moreover, a real data set

will be �tted: the study of a data collection of patients with ovarian cancer described by Ganzfried et al.

(2013). The computational framework consists of programmed functions in Stan (2020b), an open-source

language designed to de�ne custom likelihood functions and, for a Bayesian analysis, prior speci�cations. Stan

has a broad supporting material available online, such as documentation (including for integrated modules with

R and Python), articles, and books for users and developers. The present work uses the integrated version

of Stan with R, the rstan (2020a). Under a frequentist approach of inference, likelihood maximization is

done through the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Nocedal and Wright, 2006). Under a

full Bayesian inference approach, Stan draws posterior samples through the Hamiltonian Monte Carlo (HMC)

algorithm extended with the No-U-Turn Sampler, preventing a random walk path and greatly reducing the
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sensitivity to correlated parameters, when compared to traditional Markov Chain Monte Carlo methods, such

as random walk Metropolis and Gibbs Sampling. Thereby, their chains converge faster to the target distribution

(Ho�man and Gelman, 2014). In summary, the main contributions of this work are:

• Provide a novel theoretical framework on a fully likelihood-based approach to handle bivariate survival

data, allowing a wide range of behaviors for marginally �tted survival functions. This is done through

the choice of nonparametric models for the baseline distribution, combined with the YP regression model

class, which allows crossing survival times and contains both PH and PO classes as special cases.

• Establishment of inference results on regression parameter estimates and information criterion for distinct

survival copula models under random and independent right-censoring, given a combination of baseline

function (when involving the BP and PE models) and regression model class (for PH, PO and YP);

• Comparison of results, given a combination of baseline function and regression model class, for di�erent

�tted copula models given each one of the �ve Archimedean copulas used for generation;

• Comparison of inference results, given distinct baseline functions, concerning the regression and corre-

lation parameter estimates, and information criterion, given a combination of copula model (only when

the �tted copula and the one used for generation are the same) and regression model class;

• Evaluation of nested �tted models with respect to their regression model classes, for any given class used

for generation, given a combination of (correctly) �tted copula model and baseline distribution;

• Given (correctly) �tted survival copula models with the YP regression model class, crossing time estima-

tion for some speci�c scenarios of correlation and baseline distribution used for generation, comparing

all �tted baseline distributions;

• Development of an R package (named copSurv), integrated with Stan, containing all survival copula

models treated here and their associated methods for inference (see the Appendix for more details).

1.4 Thesis Structure

In the earlier sections, a brief introduction to survival analysis and copula theory was presented, followed

by a succinct literature review. De�nitions of basic concepts in survival analysis were made. Finally, an

outline of the main goals of this work and their related procedures was described. The development of this

work is structured as follows: Chapter 2 presents the Weibull; BP, and PE survival models for the baseline

functions as well as the PH; PO and YP regression model classes. Chapter 3 addresses the basics of copula

theory, giving special attention to the Archimedean copula class and its integration with survival models for the

observed times of a given cluster as the copula marginal components. Dependence measures are also covered,

highlighting some important concepts for survival analysis. Chapter 4 integrates the theory presented in the

earlier two chapters and describes the proposed survival copula models. Numerical results for an intensive

simulation study and an application for real clustered data are discussed in Chapters 5 and 6, respectively.

Finally, Chapter 7 summarizes the main conclusions and appoints possible directions for future work.



CHAPTER 2

Parametric Survival Models and Regression Model Classes

This chapter is divided into two parts. The �rst part covers the de�nition of a parametric survival model

to a baseline function, focusing on the Weibull; Bernstein Polynomial (BP), and Piecewise Exponential (PE)

models. While the Weibull model is extensively used in the literature due to allowing some �exibility for

the hazard function (monotone curves) with few parameters, the BP and PE models have a nonparametric

appeal: the polynomial degree or the number of intervals for the hazard partition can be as high as needed

if there is no interest on the baseline parameter estimates. Also, both BP and PE models do not impose

any restriction on the form of hazard or odds functions. The second part of the chapter addresses ways to

o�er more �exibility in the presence of covariates for the subjects under study: the speci�cation of a model

class containing a particular regression structure. Here, special attention is given to the Proportional Hazards

(PH); Proportional Odds (PO), and Yang-Prentice (YP) regression model classes, since they allow practicable

interpretation in terms of hazards and odds (respectively) from the regression coe�cient estimates. When

combined, each particular choice of baseline and regression model class will enter as a marginal component of

the proposed Archimedean survival copula models in this work.

2.1 Parametric Survival Models

Given a set of (positive) observed times, any family of probabilistic models with support on the positive

real line is a candidate for a parametric survival model. It is said family in the sense that a set of parameters

are not necessarily �xed and each probabilistic model is de�ned when these parameters (denoted here by the

vector κ) assume a particular value. However, the chosen model cannot be arbitrary: it should represent well

many plausible possibilities for the empirical survival curve behavior.
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2.1.1 The Weibull Model

Although he was not the �rst to use the model that bears his name, Weibull (1951) proposed a family

of probability distributions for describing the life length of materials. Its use in engineering and other areas

of applied research quite increased over the years. To understand the popularity of the Weibull distribution,

let's start from its cumulative distribution and probability density functions. If the random variable for the

survival times T follows a Weibull distribution with parameters κ = (α, λ), then

F (t|α, λ) = 1− exp(−λtα), λ > 0, α > 0,

f(t|α, λ) = λαtα−1 exp(−λtα),

where λ and α are the scale and shape parameters, respectively. Note that the classical exponential distribution

is obtained if α = 1. Regarding the hazard function, its expression is a bit simpler: since S(t|α, λ) =

1− F (t|α, λ) = exp(−λtα), then the hazard function and its cumulative are given by

h(t|α, λ) =
f(t|α, λ)

S(t|α, λ)
=
λαtα−1 exp(−λtα)

exp(−λtα)
= λαtα−1, (2.1)

H(t|α, λ) = − log [S(t|α, λ)] = λtα. (2.2)

Expression (2.1) is attractive on a practical point of view because it accommodates increasing (α > 1),

decreasing (α < 1) and constant (α = 1, backing to the exponential case) behaviors for the hazard function of

t. Even when increasing, (2.1) can be concave (α ∈ (1, 2)), linear (α = 2) or convex (α > 2). However, note

that it does not allow non-monotonicity, such as unimodal and �bathtub� forms. Nevertheless, the Weibull

hazard function is a good start point for the development and comparison of any proposed survival model,

being the most used parametric survival model for the hazard function in the literature. Regarding the odds

function and its derivative, they are expressed as

R(t|α, λ) = exp [H(t|α, λ)]− 1 = exp(λtα)− 1, (2.3)

r(t|α, λ) = h(t|α, λ) exp [H(t|α, λ)] = λαtα−1 exp(λtα). (2.4)

2.1.2 The Bernstein Polynomial (BP) Model

The Bernstein Polynomials (BP) were originally proposed by Bernstein (1913) as a proof for the Weierstrass

Approximation Theorem (WAT) in the unit interval (Lorentz, 1986). Following p. 148 of Bartle and Sherbert

(2011), the WAT states

Theorem 2.1 (Weierstrass Approximation Theorem). Let I = [a, b] and let v : I 7→ R continuous over I. If

ε > 0 is given, then there exists a polynomial function pε such that |v(x)− pε(x)| < ε for all x ∈ I.

To understand the BP approximation, �rst consider an event A such as P(A) = x, where P is a probability

measure. Then, suppose that an experiment with m trials will be performed in such a way that, if the event
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A occurs k times, 0 6 k 6 m, a monetary amount equal to v(k/m) will be paid to a hypothetical gambler.

Thereby, a random variable K de�ned as the number of successes (the event A has happened) in m trials has

a binomial distribution: K ∼ Bin(x,m), where x ∈ [0, 1]. Therefore, the probability of k occurrences for the

event A and the expected value for a random variable Q = v(K/m) representing the amount received by the

gambler are given respectively by

P(K = k) =

(
m

k

)
xk(1− x)m−k, (2.5)

Em(Q) = B(m)(x) =

m∑
k=0

v

(
k

m

)(
m

k

)
xk(1− x)m−k, x ∈ [0, 1]. (2.6)

From the relations in (2.5) and (2.6), combined with the Theorem 2.1, Bernstein proved that, given ε > 0,

|v(x)− Em(Q)| < ε. In other words

v(x) = lim
m→∞

Em(Q) = lim
m→∞

m∑
k=0

v

(
k

m

)(
m

k

)
xk(1− x)m−k = lim

m→∞
B(m)(x).

Thus, the Bernstein Polynomial of degree m that approximates v(x) is given by Bm(x), where

b(k,m)(x) =

(
m

k

)
xk(1− x)m−k

is the Bernstein basis. Note that each basis can be seen as a weight since, given the degree m, b(k,m)(x) ∈ (0, 1)

for all k and
m∑
k=0

b(k,m)(x) =

m∑
k=0

(
m

k

)
xk(1− x)m−k = 1.

To accommodate functions restricted to any compact interval [a, b], a < b ∈ R, the result in (2.6) can be

extended as (Farouki and Rajan, 1987, p. 191)

B(m)(x) =

m∑
k=0

v

[
a+

k

m
(b− a)

]
b(k,m)

(
x− a
b− a

)
, x ∈ [a, b]. (2.7)

According to Carnicer and Peña (1993), the BP approximation has optimal shape-preserving property

when compared to other polynomial approximations. The Section 5 of Farouki (2012) review paper lists many

properties and algorithms associated with the Bernstein bases (a total of 18 topics), but four are of major

concern for the construction of a BP survival model:

1. Symmetry: b(k,m−k)(x) = b(k,m)(1− x);

2. Recursion: b(k,m+1)(x) = xb(k−1,m)(x) + (1− x)b(k−1,m)(x);

3. Non-negativity: b(k,m)(x) > 0, ∀ x ∈ [0, 1], if 0 6 k 6 m;

4. Basis Derivative:
d

dx
b(k,m)(x) = m

[
b(k−1,m−1)(x)− b(k−1,m)(x)

]
.
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Following Panaro (2020), the properties above allow the construction of an approximation for the derivative

of B(k,m) in (2.6) with respect to x, which provides

d

dx
B(m)(x; v) =

m∑
k=0

v

(
k

m

)(
m

k

){
kxk−1(1− x)m−k − (m− k)xk(1− x)m−k−1

}
= m

m∑
k=0

v

(
k

m

)[(
m− 1

k − 1

)
xk−1(1− x)m−k −

(
m− 1

k

)
xk(1− x)m−k−1

]

= m

m∑
k=0

v

(
k

m

)
b(k−1,m−1)(x)−m

m∑
k=0

v

(
k

m

)
b(k,m−1)(x)

= m

m−1∑
i=−1

v

(
i+ 1

m

)
b(i,m−1)(x)−m

m∑
k=0

v

(
k

m

)
b(k,m−1)(x), (2.8)

where i = k − 1. By de�nition (Farouki, 2012), consider b−1,m−1(x) = bm,m−1(x) = 0. Then, (2.8) can be

rewritten as

d

dx
B(m)(x; v) = m

m−1∑
i=0

{
v

(
i+ 1

m

)
− v

(
i

m

)}
b(i,m−1)(x) = m

m−1∑
i=0

∆v
(1)
i b(i,m−1)(x), (2.9)

where ∆v
(1)
i = v[(i+ 1)/m]− v[i/m] is the �rst-order di�erence of v(x) at x = i/m.

Chang et al. (2005) noted that the �nite BP approximation could be used to estimate both hazard and

cumulative hazard functions of a survival model, since this last is positive and bounded. Assuming t ∈ [0, τ ],

where τ = inf{t : S(t) = 0} <∞, let H(t) be the target function for the BP approximation. Thereby, rewriting

(2.7) with a = 0 and b = τ , the BP approximation for the cumulative hazard function is expressed as

B(m)(t;H) =

m∑
k=0

H

(
k

m
τ

)
b(k,m)

(
t

τ

)
, t ∈ [0, τ ], (2.10)

and its �rst derivative with respect to the time t (approximating the hazard function), using (2.9), as

d

dt
B(m)(t;H) =

m

τ

m−1∑
i=0

{
H

(
i+ 1

m
τ

)
−H

(
i

m
τ

)}
b(i,m−1)

(
t

τ

)

=
m

τ

m∑
k=1

{
H

(
k

m
τ

)
−H

(
k − 1

m
τ

)}(
m− 1

k − 1

)
b(k−1,m−1)

(
t

τ

)

=
m

τ

m∑
k=1

{
H

(
k

m
τ

)
−H

(
k − 1

m
τ

)}(
m− 1

k − 1

)(
t

τ

)k−1(
1− t

τ

)(m−1)−(k−1)

=
1

τ

m∑
k=1

{
H

(
k

m
τ

)
−H

(
k − 1

m
τ

)}
Γ(m+ 1)

Γ(m− k + 1)Γ(k)

(
t

τ

)k−1(
1− t

τ

)m−k
=

m∑
k=1

{
H

(
k

m
τ

)
−H

(
k − 1

m
τ

)}(
1

τ

)
fB

(
t

τ
; k,m− k + 1

)
, (2.11)

where B denotes the Beta distribution with parameters α = k and β = m−k+1. For simplicity, the cumulative

hazards di�erences between braces and the Bernstein bases in (2.11) will be rewritten, respectively, as
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γk =

{
H

(
k

m
τ

)
−H

(
k − 1

m
τ

)}
, g(k,m)(t) =

(
1

τ

)
fB

(
t

τ
; k,m− k + 1

)
.

Note that γk > 0, k ∈ {1, . . . ,m}, sinceH(·) is monotone increasing. As the coe�cients γk do not depend on

t, no information is given on the true cumulative hazard function and they should be estimated, compounding

a vector κ = γ = (γ1, . . . , γm)′ of BP parameters. Given a time t, its Bernstein bases can also be de�ned on

a vector gm(t) = (g(1,m)(t), . . . , g(m,m)(t))
′ of �xed non-negative quantities. Then, the hazard and cumulative

functions are modeled as (Osman and Ghosh, 2012, p. 561)

h(t|γ) = γ′gm(t), (2.12)

H(t|γ) =

∫ t

0

h(u,γ)du = γ′Gm(t), (2.13)

where Gm(t) = (G(1,m)(t), . . . , G(m,m)(t))
′, with

G(k,m)(t) =

∫ t

0

g(k,m)(u)du =

∫ t

0

fB

(u
τ

; k,m− k + 1
)
d
(u
τ

)
> 0, k ∈ {1, . . . ,m}.

Since the true cumulative hazard function is unknown, a �nite value should be taken form on the estimation

of BP parameters. Osman and Ghosh (2012) suggest a value m such that n2/5 < m < n2/3 for the polynomial

degree. As BP models are computationally intensive, this work will choose the smallest possible integer,

m = dn2/5e, for the simulation results and applied data in this work.

2.1.3 The Piecewise Exponential (PE) Model

Proposed by Kalb�eisch and Prentice (1973) as an alternative to the Cox's regression model in the presence

of ties for the survival times or grouped survival data, the Piecewise Exponential (PE) model assumes that

the hazard function is constant (i.e., an Exponential model) between consecutive distinct survival times. In

the end, the true hazard function is approximated by �steps� of constant hazard functions.

The formal de�nition of a PE model starts from a �nite partition of the time axis, i.e., a time grid

E = {e0, e1, . . . , ep}, with 0 = e0 < e1 < · · · < ep < ∞. That way, there are p intervals Ek = (ek−1, ek],

k = 1, . . . , p. For each interval induced by E, a constant hazard function is assumed, that is

h(t) = λk, t ∈ Ek, k = 1, . . . , p. (2.14)

Therefore, λ = (λ1, . . . , λp) is the vector of constant hazard rates. If p = 1, the Exponential model is

obtained as particular case. To obtain the cumulative hazard and odds functions, for k = 1, . . . , p, de�ne

tk =


ek−1, t 6 ek−1;

t t ∈ Ek;

ek t > ek.

(2.15)
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Then, the cumulative hazard function is computed from (2.14) as

H(t|λ, E) =

p∑
k=1

λk(tk − ek−1) = λ′ (t− e) . (2.16)

The choice of how many intervals should be used for the time grid E will impact on the goodness-of-�t of

a PE model with respect to the target model, i.e., the true hazard function. For the purpose of this work, it

is assumed that the time grid E is random and composed by a subset of size p drawn from all distinct ordered

observed failure times Demarqui et al. (2014). To ensure that at least one failure time falls at each interval, the

time grid associated to a fully nonparametric approach (using all distinct failure times) is initially imposed as

the �nest possible time grid for the PE model. Then, such intervals are clustered by the structure of a product

partition model (see Barry and Hartingan (1992) for more details). By allowing that these intervals may

contain more than one failure time, this enables controlling the maximum number of intervals and therefore

the maximum number of parameters in the PE model. It is important to note that intervals near the end

of a follow-up tend to contain more observed times, since censored times appear more frequently as close a

study reaches its end (specially if there are right-censored subjects). An advantage of this approach is that the

interval length is smaller for intervals with a large number of observed times, and larger for intervals where

few time points are observed (Schneider et al., 2020).

Like the Weibull model, for univariate data the PE model has been used as a benchmark for comparison

with other models for a baseline function, whether they also have a nonparametric appeal or not (Ibrahim

et al., 2001). Although simple, the PE model can accommodate various possible shapes across the extension

of E, since the number of intervals p is (in general) arbitrary and can be as large as needed. Older than the

BP model, the choice of a �xed p for the PE model has been widely investigated in the literature (see Mello e

Silva (2016) and references therein for a discussion). To retain comparability with the number m of polynomial

degrees from the BP model, this work will �x p = dn2/5e for the simulation results and applied data.

2.2 Regression Model Classes

It was previously seen that survival data is in general highly skewed and can be censored for some or

even most of the subjects. Thus, classical linear regression models are not suitable to �t them and also limit

the interpretation of regression coe�cients to the mean of times. However, survival data can be modeled in

alternative ways to achieve other forms of interpretation. This is done by using functions of the observed times

than themselves. In particular, two functions that are of great practical importance in survival analysis are the

hazard and the odds functions. Both of them account for a baseline function (the hazard or odds for a reference

level) associated with a regression structure, which is represented in this work by the multiplicative term

exp(xiβ). The vector xi represents covariate values, given a design matrix X, for a subject i, i ∈ {1, . . . , n}.

The vector β represents the parameters associated to each covariate. Finally, the reference level is represented

by a subject i whose covariate values are all equal to zero (xi = 0).
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2.2.1 Proportional Hazards (PH) Model

The Proportional Hazards (PH) model is the most used regression model class in survival analysis. As

the name says, it is assumed that the hazard functions for any pair of subjects are proportional between

themselves: when taking the ratio of one hazard over the other, it is constant for any value of T . In a PH

model, covariates are included to model the hazard function. Then, the hazard function for all subjects is

always proportional to the baseline hazard function associated with a reference level.

One of the most traditional and known PH models is the Cox (1972) semiparametric model. Taking

advantage of the proportionality assumption, the Cox model does not estimate the hazard function itself:

the baseline term (the nonparametric part of the model) is dropped to estimate directly only the regression

parameters. Formally, the hazard function for every subject i is modeled as

h(t|xi,β) = h0(t) exp(xiβ), (2.17)

where h0(t) denotes the baseline hazard function. Due to the presence of a baseline term, there is no intercept

in (2.17). Since the PH regression model class assumes the hazard function ratio is constant over time for any

pair of subjects i1 and i2, they can be compared through their Hazard Ratio (HR), which is given by

HR(i1, i2) =
h0(t) exp(xi1β)

h0(t) exp(xi2β)
= exp [(xi1 − xi2)β] , (2.18)

where β is estimated through a partial likelihood function calculated only over subjects whose times were not

censored, (Collett, 2015). Then, the interpretation the Cox model is done in terms of the HR for two subjects.

On the other hand, when taking a parametric speci�cation for the baseline hazard function, such as the

Weibull; BP, or the PE models, a fully likelihood-based inference that also accounts for the right-censored

times becomes possible. Thus, given a PH regression model with baseline function h0(t|κ) depending on a set

of parameters κ, the survival likelihood expression in (1.9) can be rewritten as (Panaro, 2020, p. 10)

LPH(κ,β|y, X) ∝
n∏
i=1

[h(yi)]
δi S(yi) =

n∏
i=1

[h(yi,β,κ|xi)]δi S(yi,β,κ|xi)

=

n∏
i=1

[h0(yi,κ) exp(xiβ)]
δi S0(yi,κ) exp(xiβ), (2.19)

where S0(yi,κ) is the baseline survival function. Using the Weibull (κ = (α, λ)); BP (κ = γ), and PE (κ = λ)

model speci�cations for the baseline function, expression (2.19) is replaced by

LPH(α, λ,β|y, X) ∝
n∏
i=1

[
λαyα−1i exp(xiβ)

]δi
λyαi exp(xiβ), (Weibull)

LPH(γ,β|y, X) ∝
n∏
i=1

[γ′gm(yi) exp(xiβ)]
δi exp [−γ′Gm(yi) exp(xiβ)] , (BP)

LPH(λ,β|y, X) ∝
n∏
i=1


[

p∑
k=1

λkIEk(yi) exp (xiβ)

]δi
exp

[
−λ′ (t− e) exp (xiβ)

] . (PE)
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Although providing an easy interpretation, not always the assumption of proportional hazards is suitable.

In the Section 4.4, Collett (2015) discuss some ad hoc diagnostic techniques and a hypothesis test to check

this assumption for a set of univariate data. If those methods fail to ensure hazard proportionality, a possible

alternative is to model the odds function.

2.2.2 Proportional Odds (PO) Model

Introduced by Bennett (1983), the Proportional Odds (PO) regression model class was designed for studies

in which the mortality rates for di�erent groups of subjectsconverge in time (without crossing). The regression

structure is also given by the multiplicative term exp(xiβ), but now modeling the odds function R(t) with its

associated baseline R0(t) for a reference level. The assumption of convergence for the mortality rates given

two subjects with distinct values on covariates is similar to suppose a constant Odds Ratio (OR) for these

same subjects. In other words, this is a proportional odds assumption. Thus, the odds function is modeled as

R(t|xi,β) = R0(t) exp(xiβ), (2.20)

and the OR for a pair of subjects i1 and i2 is given by

OR(i1, i2) =
R0(t) exp(xiβ)

R0(t) exp(xiβ)
= exp [(xi1 − xi2)β] , (2.21)

For a PO model, the survival likelihood can be expressed in terms of the baseline odds function. In that case,

taking now the expression in (1.10) and replacing the odds function and its derivative for their corresponding

baselines, the survival likelihood for a PO model is given by (Panaro, 2020, p. 12)

LPO(κ,β|y, X) ∝
n∏
i=1

[
r(yi)

1 +R(yi)

]δi 1

1 +R(yi)
=

n∏
i=1

[
r(yi,β,κ|xi)

1 +R(yi,β,κ|xi)

]δi 1

1 +R(yi,β,κ|xi)

=

n∏
i=1

[
r0(yi,κ) exp(xiβ)

1 +R0(yi,κ) exp(xiβ)

]δi 1

1 +R0(yi,κ) exp(xiβ)
. (2.22)

When specifying a Weibull (κ = (α, λ)); a BP model (now, κ = ζ, applying the BP approximation to

model the odds function instead of the hazard), or a PE model (κ = λ) as the baseline function, the following

survival likelihood expressions are obtained replacing the terms from (2.22)

LPO(α, λ,β|y, X) ∝
n∏
i=1

{
λαyα−1i exp(λyαi + xiβ)

1 + [exp(λyαi )− 1] exp(xiβ)

}δi
1

1 + [exp(λyαi )− 1] exp(xiβ)
, (Weibull)

LPO(ζ,β|y, X) ∝
n∏
i=1

[
ζ′gm(yi) exp(xiβ)

1 + ζ′Gm(yi) exp(xiβ)

]δi 1

1 + ζ′Gm(yi) exp(xiβ)
, (BP)

LPO(λ,β|y, X) ∝
n∏
i=1

{ ∑p
k=1 λkIEk(yi) exp (xiβ)

1 +
{

exp
[
λ′ (t− e)

]
− 1
}

exp(xiβ)

}δi
×

1

1 +
{

exp
[
λ′ (t− e)

]
− 1
}

exp(xiβ)
. (PE)
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Note that all the likelihoods above are valid for univariate data (without clustering). In Chapter 3 it will

be seen that survival copula likelihood expressions depend on the combination of censoring values for each

cluster. Marginally, it will be necessary to know the survival and density functions in terms of the hazard and

its cumulative functions or of the odds and its derivative functions, depending on the assumption made for

the proportionality (and consequently on the regression model class chosen).

2.2.3 Yang-Prentice (YP) Model

Yang and Prentice (2005) proposed a new regression model class in order to accommodate crossing survival

curves. These can occur when, for instance, a treatment can be e�ective in the long run but may present adverse

e�ects to the subjects in early stages of the follow-up, or, in clinical trials of a curable disease, proportions of

long-term survival (i.e., near the end of the study) for treatment and control groups may be equal, but deaths

(the event of interest) may tend to appear earlier among the control patients. Isolated, the aforementioned

PH and PO models are not suitable for survival data with crossing curves.

The YP model de�nes two vectors of short and long-term hazard ratio parameters to allow intersection

among survival curves. Containing the PH and PO models as particular cases, the YP model can be used for

model-�tting checking and may provide a more accurate inference when either the assumption of proportional

hazards or odds are violated. Let T be a nonnegative random variable that represents the time until the

occurrence of an event of interest; xi the vector of covariate values for a subject i and Φi = (φ
(S)
i , φ

(L)
i ), with

φ
(S)
i = exp(xiβ

(S)); φ(L)i = exp(xiβ
(L)), and β(S), β(L) are vectors of regression parameters with same length,

neither of them including an intercept. Following Demarqui and Mayrink, 2021 and references therein, the

survival function is given by

S(t|Φi) =

[
1 +

φ
(S)
i

φ
(L)
i

R0(t)

]−φ(L)
i

, (2.23)

where R0(t) = exp[H0(t)] − 1 is the baseline odds function. If xi = 0, then (2.23) reduces to the baseline

survival function S0(t) = 1/[1 +R0(t)].

The hazard function associated with (2.23) can be expressed as

h(t|Φi) =
φ
(S)
i φ

(L)
i r0(t)

φ
(S)
i + φ

(L)
i R0(t)

=
φ
(S)
i φ

(L)
i

φ
(S)
i F0(t) + φ

(L)
i S0(t)

h0(t). (2.24)

From (2.24), it follows that

lim
t→0

h(t|Φi,xi)
h(t|Φi,0)

= exp(xiβ
(S)) = φ

(S)
i , lim

t→∞

h(t|Φi,xi)
h(t|Φi,0)

= exp(xiβ
(L)) = φ

(L)
i .

Therefore, φ(S)i and φ
(L)
i can be interpreted as the short and long-term hazard ratios for a subject i,

respectively, and β(S), β(L) are the correspondent vectors of short and long-term coe�cients. If β(S) = β(L),

the PH model is obtained. On the other hand, if β(L) = 0, then the YP model is reduced to the PO model.

It can be shown that crossing survival curves are present if β(S)
l β

(L)
l < 0 for any l = 1, . . . , q, where q is the
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number of covariates (Yang and Prentice, 2005). Given a baseline function with a vector of parameters κ, the

survival likelihood function can be expressed as

LYP(κ,β(S),β(L)|y, X) ∝
n∏
i=1

[
φ
(S)
i φ

(L)
i

φ
(S)
i F0(yi|κ) + φ

(L)
i S0(yi|κ)

h0(yi|κ)

]δi [
1 +

φ
(S)
i

φ
(L)
i

R0(yi|κ)

]−φ(L)
i

.

When combined to a baseline distribution for the survival times, given a covariate representing the treat-

ment and control indicator, the YP model can provide continuous crossing survival functions given both values

on that covariate. If this is the case, due to that continuity, there exists a time point at which the survival

curves intersect each other. Although the observed Fisher information matrix allows to obtain point and

interval estimates for the YP model parameters, it is not straightforward to �nd an interval estimate for a

crossing survival time t∗, since there is no closed form expression for the standard error of its estimator t̂∗

(Demarqui and Mayrink, 2021). A viable solution is to apply a numerical procedure to �nd the root that solves

the nonlinear equation SC(t∗) − ST (t∗) = 0, where SC(·) and ST (·) denote the survival functions for control

and treated subjects, respectively, maintaining all other covariates constant. This issue can be overcome by

applying a resampling method that enables inference for t∗.



CHAPTER 3

Copulas

As stated in Chapter 1, copulas are a way to model dependence among observed values from the same

cluster. The three most studied copula families in the literature are the elliptical copulas; the Archimedean

copulas and the extreme-value copulas (see Chapter 3 of Hofert et al. (2018) and references therein to more

details). In this chapter, the main topics of copula theory will be covered, highlighting additional properties

for the family of Archimedean copulas, since some copula models of greater importance in the literature of

survival analysis (and hence treated in this work) belong to this family. Measures to evaluate the strength of

dependence given the estimate for a copula parameter are also discussed. For the copula theory development

below, each marginal component is always supposed to be an absolutely continuous function associated with

a random variable with continuous support. A more general version, including random variables with discrete

support, is treated by Nelsen (2006).

3.1 Basics of the Copula Theory

In the literature, copulas are generally referred to as �functions that assemble or couple one-dimensional dis-

tribution functions to a multivariate distribution function� or as �distribution functions whose one-dimensional

margins are all uniform� (Nelsen, 2006). Not all multivariate distributions are a copula itself, but each one

can be reparameterized to a copula (see Section 1.2 of Joe (2014) for some examples). Before presenting the

main de�nitions, let d be a positive integer value and I = [0, 1] be the unit interval.
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De�nition 3.1 (Flores et al., 2017, p. 2-3). A d-dimensional copula is a function C : Id 7→ I that attends the

following properties:

(a) C(u1, . . . , uj−1, 0, uj+1, . . . , ud) = 0 for all j = 1, . . . , d;

(b) C(1, . . . , 1, uj , 1, . . . , 1) = uj for all j = 1, . . . , d;

(c) For each rectangle [a, b] =
∏d
j=1[aj , bj ] ⊂ Id, with aj 6 bj for all j = 1, . . . , d in the Cartesian product of

intervals on the right-hand side, its volume is given by

VolC([a, b]) =

2∑
j1=1

· · ·
2∑

jd=1

(−1)j1+···+jdC
(
u1j1 , . . . , udjd

)
> 0,

where uj1 = aj and uj2 = bj for all j = 1, . . . , d.

In the particular case of bivariate copulas (d = 2), (3.1) is rewritten as

De�nition 3.2 (Flores et al., 2017, p. 2). A two-dimensional or bivariate copula (d = 2) is a function

C : I2 7→ I attending the following properties:

(a) For all u1, u2 ∈ I, C(u1, 0) = 0 = C(0, u2);

(b) For all u1, u2 ∈ I, C(u1, 1) = u and C(1, u2) = u2;

(c) For all a1, b1, a2, b2 ∈ I such that a1 6 b1 and a2 6 b2:

VolC([a, b]) = C(b1, b2)− C(b1, a2)− C(a1, b2) + C(a1, a2) > 0.

The most important result on copula theory was established by Sklar (1959). It allowed a representation

for the joint distribution of d random variables as a function of the marginal distribution functions. Let

F1, . . . , Fd be a set of cumulative continuous distribution functions with range (i.e., all values that Fj can

assume) ranFj = I, j = 1, . . . , d, and F−1j the corresponding inverse function. The Sklar's Theorem follows

below.

Theorem 3.1 (Sklar, 1959, apud Hofert et al., 2018, p. 23). Let F be the continuous joint distribution

function of a d-dimensional random vector X = (X1, . . . , Xd) with marginal continuous distribution functions

F1, . . . , Fd. Then, there exists a d-dimensional copula C such that

F (x) = C [F1(x1), . . . , Fd(xd)] , x = (x1, . . . , xd) ∈ Rd. (3.1)

Moreover, C is uniquely de�ned by the Cartesian product of the d ranges,
∏d
j=1 ranFj = Id, and there given

by

C(u) = F
[
F−11 (u1), . . . , F−1d (ud)

]
, u ∈ Id. (3.2)

Conversely, given a d-dimensional copula C and a sequence of univariate distribution functions F1, . . . , Fd, F

de�ned in (3.1) is a d-dimensional joint distribution function.
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Note that the second result in (3.2) gives a method for construction of copulas from joint distributions.

Thereby, many statistical applications of copulas consist of modeling continuous random vectors (Hofert et al.,

2018). From (3.1), it follows that F is absolutely continuous if and only if all marginal distribution functions

F1, . . . , Fd and the copula C are absolutely continuous. To attend this property, the copula should admit a

density c such that

c(u) =
∂d

∂ud · · ·u1
C(u1, . . . , ud),u ∈ Id (3.3)

exists and is integrable. Each margin of a copula function can be seen as a continuous standard uniform

random variable, i.e., Uj ∼ U[0, 1], j = 1, . . . , d. The copula itself is a multivariate cumulative distribution

function; its d �rst-order partial derivatives are the joint conditional distribution functions for d − 1 margins

given the remaining margin (when d = 2, the conditional distribution for one margin given the another); its

d(d−1) second-order partial derivatives are the joint conditional distribution functions for d−2 margins given

the remaining 2 margins, and so on. Di�erentiating d times, the copula joint density function is �nally reached.

Taking the bivariate case (d = 2) for instance, the �rst-order derivative ∂C(u1, u2)/∂u1 is the conditional

distribution for the margin U2 given that U1 = u1, also denoted by C2|1(u2|u1). Similarly, ∂C(u1, u2)/∂u2 =

C1|2(u1|u2) is the conditional distribution for the margin U1 given that U2 = u2. Finally, ∂2C(u1, u2)/∂u2∂u1 =

c(u1, u2) is the density function associated with the copula C.

A copula can specify a vector of parameters θ to govern the dependence among its margins. This work will

only deal with the case in which θ = θ is a single parameter of dependence. A watchful reader has already

noted from Theorem 3.1 that a similar dependence relationship can be constructed for a joint survival function

starting from marginal survival functions instead of the distribution ones since the survival function is de�ned

as the complement of a distribution function. In fact, the Sklar's Theorem can be formulated using survival

functions as well.

Theorem 3.2 (Sklar's Theorem for Survival Functions, Hofert et al., 2018, p. 41). Let S be the joint survival

function of a d-dimensional random vector T = (T1, . . . , Td) with marginal continuous survival functions

S1, . . . , Sd. Then, there exists a d-dimensional survival copula C such that

S(t) = C [S1(t1), . . . , Sd(td)] , t = (t1, . . . , td) ∈ Rd. (3.4)

The survival copula C is uniquely de�ned by the Cartesian product of the d ranges,
∏d
j=1 ranSj = Id, and

there given by

C(u) = S
[
F−11 (1− u1), . . . , F−1d (1− ud)

]
, u ∈ Id. (3.5)

Conversely, given a d-dimensional survival copula C and a sequence of univariate survival functions S1, . . . , Sd,

S de�ned in (3.4) is a d-dimensional survival function.

The survival copula C in (3.5) is also a distribution function, despite neither S nor S1, . . . , Sd being. To

understand this claim, note that for all j ∈ 1, . . . , d, uj = Sj(tj) = 1− Fj(tj). Since Fj and Sj are absolutely



43

continuous for all j, then F−1j (1− uj) = S−1j (uj) = tj , and

C(u) = S
[
F−11 (1− u1), . . . , F−1d (1− ud)

]
= S

[
S−11 (u1), . . . , S−1d (ud)

]
= P

[
S−11 (U1) > S−11 (u1), . . . , S−1d (Ud) > S−1d (ud)

]
= P [S1(T1) 6 S1(t1), . . . , Sd(Td) 6 Sd(td)]

= P [U1 6 u1, . . . , Ud 6 ud] .

The Clayton, Frank and Gumbel-Hougaard (GH) Archimedean copulas are prominent examples of survival

copula models with a single dependence parameter θ (Hofert et al., 2018). Now, let i ∈ {1, . . . , n} be the

cluster (subject) index and yi be a d-dimensional vector of observed times. Suppose that all marginal times

yi;1, . . . , yi;j , j = 1, . . . , d follow the same univariate parametric survival model with a set κ1, . . . ,κd of pa-

rameters for each margin, �xed for all i. Let di =
∑d
j=1 δi;j the number of survival times. Following p. 96�97

of Duchateau and Janssen (2007) and p. 486 of Prenen et al. (2017), but supposing that all clusters have

the same size d for the multivariate case, the contribution of each cluster i to the likelihood function for the

survival copula model in (3.4) with is given by

Li(θ,κ1, . . . ,κd|yi) ∝ (−1)di
∂di

∂
∏d
j=1(yi;j)δi;j

S(yi|θ,κ1, . . . ,κd)

=
∂di

∂
∏d
j=1(yi;j)δi;j

C [S1(yi;1|κ1), . . . , Sd(yi;d|κd)|θ]
d∏
j=1

fj(yi;j |κj)δi;j , (3.6)

where δi;j is the censoring indicator random variable for the observed time yi;j . Therefore, the survival

likelihood function is given by the product over all subjects i, i = 1, . . . , n, of expression (3.6). For the

bivariate case (d = 2), the survival copula likelihood function is expressed as

LC(θ,κ1,κ2|y) ∝
n∏
i=1

{
C [S1(yi;1|κ1), S2(yi;2|κ2)|θ]

}(1−δi;1)(1−δi;2)
×
{
∂C [S1(yi;1|κ1), S2(yi;2|κ2)|θ]

∂yi;1

}δi;1(1−δi;2)
×
{
∂C [S1(yi;1|κ1), S2(yi;2|κ2)|θ]

∂yi;2

}(1−δi;1)δi;2

×
{
∂2C [S1(yi;1|κ1), S2(yi;2|κ2)|θ]

∂yi;1∂yi;2

}δi;1δi;2
f1(yi;1|κ1)δi;1f2(yi;2|κ2)δi;2 , (3.7)

which is a product involving the survival copula C(u1, u2) in the �rst line; the conditional distribution functions

C2|1(u2|u1) and C1|2(u1|u2) in the second and third lines, respectively, and the joint density function c(u1, u2),

multiplied by the marginal densities, in the fourth line.

Initially, inferential procedures in survival copula models were made in two stages, by �rst estimating the

marginal survival and density functions, and then maximizing the survival likelihood function after replacing

the copula function and its derivatives by their estimated versions from the �rst stage (Shih, J. H. and Louis,

T. A., 1995). This is similar to adopt a pro�le likelihood estimation, treating θ as a nuisance parameter. In this
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work, however, the survival copula likelihood will be maximized at once, estimating all parameters from copula

and marginal survival functions simultaneously. This allows incorporating all covariance structure among the

parameters in the inference, avoiding underestimation on their standard errors.

3.2 Archimedean Copulas

According to Nelsen (2006), the class of Archimedean copulas �nd a broad range of applications due to

its easy construction and attractive mathematical properties. Originally, Archimedean copulas appeared as a

part of the development of a probabilistic version for the triangle inequality (Schweizer, 1991). Archimedean

copulas are constructed through an additive generator function and its pseudo-inverse.

De�nition 3.3 (Additive Generator, Durante and Sempi, 2015, p. 196). A function ψ : [0,∞) 7→ I, I = [0, 1],

is said to be additive generator if:

(a) ψ is continuous and decreasing;

(b) ψ(0) = 1 and lim
w→∞

ψ(w) = 0;

(c) ψ is strictly decreasing on the interval [0, w0], where w0 = inf{w > 0 : ψ(w) = 0}.

Unless when said otherwise, whenever speaking of a generator ψ, it is meant to be an additive generator.

The pseudo-inverse of the generator ψ, denoted as ψ(−1)(w), is equal to the inverse function ψ−1(w) if w ∈ (0, 1]

and equal to w0 if w = 0.

De�nition 3.4 (Archimedean Copula, Durante and Sempi, 2015, p. 196). A d-dimensional copula is said to

be Archimedean if

C(u) = ψ
[
ψ(−1)(u1) + . . .+ ψ(−1)(ud)

]
= ψ

 d∑
j=1

ψ(−1)(uj)

 , u ∈ Id. (3.8)

Since Archimedean copulas are de�ned under a generator ψ, the notation Cψ can be used to replace C(u)

in (3.8). Not all generators are suitable to construct an Archimedean copula: a generator ψ needs also to be

a d-monotone function for some value d.

De�nition 3.5 (d-Monotone and Completely Monotone Functions, Durante and Sempi, 2015, p. 197). A

function ψ : (a, b) 7→ R is said to be d-monotone in (a, b), where −∞ 6 a < b 6 +∞ and d > 2, if:

(a) ψ admits derivatives ψ(k) up to the order k = d− 2;

(b) For all w ∈ (a, b), (−1)kψ(k)(w) > 0, for k ∈ {0, 1, . . . , d− 2};

(c) (−1)d−2ψ(d−2) is decreasing and convex in the interval (a, b).

Moreover, if ψ has derivatives of any order in (a, b) and if (−1)kψ(k)(w) > 0 for all w ∈ (a, b) and for all

k ∈ Z+ (the set of the non-negative integers), then ψ is also said to be completely monotone.

The following result yields a characterization for the Archimedean copulas Cψ.



45

Theorem 3.3 (Durante and Sempi, 2015, p. 198). Let ψ(w) : [0,∞) be a generator and d > 2 a �xed integer.

The following statements are equivalent:

(a) ψ is d-monotone on [0,∞);

(b) The function Cψ : Id 7→ I is a d-dimensional copula.

An immediate consequence of this result is that, when d = 2, Cψ is a copula if and only if ψ is a convex

function. Within the class of Archimedean copulas, there is a subclass whose members are generated by

completely monotone functions. The GH and Joe copulas are examples of that subclass. Completely monotone

generators can be written as a Laplace-Stieltjes (LS) transform.

De�nition 3.6 (Joe, 2014, p. 33, Hofert et al., 2018, p. 99). Let V be a non-negative random variable with

distribution function FV . The Laplace-Stieltjes (LS) transform of FV is given by

LSV (w) = E[exp(−wV )] =

∫ ∞
0

exp(−wv)dFV (v), w ∈ [0,∞). (3.9)

Since | exp(−wv)| 6 1 for all v, w ∈ [0,∞), the LS transform always exist for non-negative variables. In

that case, it is more convenient to use than the moment generating function. Some useful properties of the LS

transform for an Archimedean copula generation are (see Joe, 2014, p. 33, and references therein):

1. LSV (0) = 1; LSV (w) 6 1 for all w ∈ [0,∞) and LSV is strictly decreasing;

2. A probability distribution with support on [0,∞) is uniquely determined by its LS transform;

3. LSV is completely monotone;

4. Bernstein's theorem (Bernstein, 1928) for the special case of an expected value as a weighted average: A

function LSV : (0,∞) 7→ [0, 1] is the LS transform of a non-negative random variable V if and only if it

is completely monotone and LSV (0) = 1;

5. If V has positive mass p0 at 0, then (3.9) is rewritten as

LSV (w) = p0 +

∫ ∞
0

exp(−wv)dFV (v), w ∈ (0,∞)

and LSV (∞) = lim
w→∞

LSV (w) = p0. Therefore, LSV (∞) = 0 if and only if p0 = 0;

6. If LSV (∞) = p0, its functional inverse LS−1V : [p0, 1] 7→ [0,∞) is strictly decreasing and satis�es

LS−1V (p0) =∞, LS−1V (1) = 0.

To de�ne a LS transform as generator of an Archimedean copula (LSV = ψ), it is necessary that LSV (∞) =

p0 = 0 (V cannot have any positive mass at 0). Thus, LS(−1)V = ψ(−1) has a closed domain [0, 1], with

LS(−1)V (0) = ∞ (hence, LS−1V = ψ−1). When ψ = ψθ is indexed by a single parameter of dependence θ, the

same parameter indexes the distribution FV = FV |θ.

Knowing that each Archimedean copula generator can be represented by a LS transform, an alternative

stochastic representation can be used to generate from the marginal random variables U1, . . . , Ud (Durante
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and Sempi, 2015). Let E1, . . . , Ed be independent and identically distributed random variables following an

exponential distribution with mean 1, and V a positive and independent random variable with LS transform

LSV = ψ. Then, the random vector

(U1, . . . , Ud) =

[
ψ

(
E1

V

)
, . . . , ψ

(
Ed
V

)]
(3.10)

has joint distribution function given by the Archimedean copula Cψ. Then, a sample can be drawn from an

Archimedean copula generated by a completely monotone ψ under the following steps (Marshall and Olkin,

1988):

1. Sample V from FV = LS−1[ψ];

2. Sample E1, . . . , Ed
iid∼ Exp(1), independently of V ;

3. Return U = [ψ(E1/V ), . . . , ψ(Ed/V )] as a sample from C.

Before its use for Archimedean copulas, LS transforms have already been explored in the context of shared

frailty models belonging to the power variance function family (see Chapter 4 of Duchateau and Janssen, 2007

for more details), since the dependence induced by distributions of those frailty models can also be expressed

in terms of a LS transform. For that reason, FV is referred as a frailty distribution in the literature.

A minor drawback of the LS transform as a representation for a (completely monotone) generator ψ is

that its validity is restricted to cases where θ ∈ [0,∞) (positive dependence). However, it is possible to de�ne

Archimedean copulas that also allow negative dependence modeling, although d-monotonicity for those models

is guaranteed only for d = 2 (see Joe, 2014, p. 48, for further details). Examples of Archimedean copula models

accommodating negative dependence are the AMH and Frank copulas. Section 4.4 of Joe (1997) discuss how

to generate from Archimedean copulas with negative dependence.

If Cψ is a completely monotone Archimedean copula over marginal survival functions S(tj |κj), j = 1, . . . , d,

with generator ψθ = LSV |θ (then, p0 = 0), the joint survival function in (3.4) for each cluster i can be rewritten

as (Prenen et al., 2017, p. 486)

Si(t|θ,κ1, . . . ,κd) = C [S1(ti;1), . . . , Sd(ti;d)|θ,κ1, . . . ,κd] = ψθ

ψ−1θ
 d∑
j=1

Sj(ti;j |κj)


=

∫ ∞
0

exp

−v
d∑
j=1

ψ−1θ [Sj(ti;j |κj)]

 dFV |θ(v|θ). (3.11)

Hence, the contribution of each cluster i to the likelihood function in (3.6) is given by

Li(θ,κ1, . . . ,κd|yi) ∝
∫ ∞
0

exp

{
−v

d∑
j=1

ψ−1
θ [Sj(yi;j |κj)]

}
d∏
j=1

{
−vfj(yi;j |κj)

ψ
(1)
θ

[
ψ−1
θ (Sj(yi;j |κj))

]}δi;j dFV |θ(v|θ), (3.12)

where ψ(1)
θ is the �rst-order derivative of ψθ. Before obtain the survival copula likelihood expression for all

clusters, let di =
∑d
j=1 δi;j and consider the following result for the g-order derivatives of ψ = LSV (Prenen
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et al., 2017, p. 486)

ψ(g)(w) =

∫ ∞
0

(−v)g exp(−wv)dFV (v). (3.13)

Taking the contribution in (3.12) over all clusters, the following survival copula likelihood is obtained

LCψ (θ,κ1, . . . ,κd|y) ∝
n∏
i=1

Li(θ,κ1, . . . ,κd|yi)

=

n∏
i=1

∫ ∞
0

exp

{
−v

d∑
j=1

ψ−1
θ [Sj(yi;j |κj)]

}
d∏
j=1

{
−vfj(yi;j |κj)

ψ
(1)
θ

[
ψ−1
θ (Sj(yi;j |κj))

]}δi;j dFV |θ(v|θ)
=

n∏
i=1

∫ ∞
0

d∏
j=1

exp
{
−vψ−1

θ [Sj(yi;j |κj)]
}{ −vfj(yi;j |κj)

ψ
(1)
θ

[
ψ−1
θ (Sj(yi;j |κj))

]}δi;j dFV |θ(v|θ)
=

n∏
i=1


d∏
j=1

[
fj(yi;j |κj)

ψ
(1)
θ

(
ψ−1
θ (Sj(yi;j |κj))

)]δi;j
ψ

(di)
θ

{
d∑
j=1

ψ−1
θ [Sj(yi;j |κj)]

}
. (3.14)

In the sequel, �ve Archimedean copula models for the development of survival copulas in this work will

be presented through their multivariate representations for the copula function and the associated generator,

following mainly Joe (2014) for the copula model expressions and Hofert et al. (2018) for the associated frailty

distributions when the generator is a completely monotone function. All of them specify a unique parameter

θ to model the copula dependence.

Ali-Mikhail-Haq (AMH) Copula

The Ali-Mikhail-Haq (AMH) copula (Ali et al., 1978) was originally proposed as a bivariate extension for

the univariate logistic distribution. Starting from the generator ψθ(w) = (1−θ)/(exp(w)−θ), where θ ∈ [0, 1],

the general expression for the d-dimensional AMH copula is given by

C(u|θ) =
1− θ∏d

j=1

[
1− θ(1− uj)

uj

]
− θ

, u ∈ Id (3.15)

The distribution FV |θ associated with ψθ as a LS transform is the Geometric distribution Geo(p) with

probability mass function pk = p(1− p)k−1, k ∈ N, where p = 1− θ.

If d = 2, expression (3.15) can be extended to accommodate negative dependence (Joe, 1997; Joe, 2014).

In that case, it reduces to C(u1, u2) = u1u2/[1− θ(1− u1)(1− u2)], θ ∈ [−1, 1].

Clayton Copula

The Clayton copula (Clayton, 1978) has born as a survival model to the problem of demonstrating associa-

tion (dependence) between pairs of subjects for a disease incidence. Its parameter of association θ can assume

any value in the interval [−1/(d − 1),∞), with generator ψθ(w) = [max(0, 1 + θw)]
−1/θ. However, taking

the bivariate case for instance, when θ ∈ [−1, 0), the copula support is restricted to a region that satis�es

ψ−1θ (u1) + ψ−1θ (u2) < ψ−1θ (0) = −1/θ (Cooray, 2018). Thus, it depends on θ and the density is 0 on the set

{(u1, u2) : u−θ1 + u−θ2 < 1} (Joe, 2014). To avoid this problem, only the non-negative part of the dependence

parameter support will be addressed in this work, i.e., θ ∈ [0,∞). In that case, the general expression for the
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d-dimensional Clayton copula is given by

C(u|θ) =

max

 d∑
j=1

u−θj − (d− 1), 0


−1/θ

, u ∈ Id. (3.16)

The distribution FV |θ associated with ψθ as a LS transform is the Gamma distribution Gamma(a, b) with

probability density function p(k) = baka−1 exp(−bk)[Γ(a)]−1, setting a = 1/θ and b = 1.

Frank Copula

The Frank copula (Frank, 1979) arose on a purely mathematical context, but with many properties already

discovered in its debut. Starting from the generator ψθ(w) = − log[1−(1−exp−θ) exp−w]/θ, where θ ∈ (0,∞),

the general expression for the d-dimensional Frank copula is given by

C(u|θ) = −1

θ
log

{
1−

∏d
j=1 [1− exp(−θuj)]
[1− exp(−θ)]d−1

}
, u ∈ Id. (3.17)

The distribution FV |θ associated with ψθ as a LS transform is the Logarithmic distribution Log(p) with

probability mass function pk = pk[−k log(1− p)]−1, k ∈ N, where p = 1− exp(−θ).

Like in the AMH copula, the expression in (3.16) can be extended to allow negative dependence for

on the whole negative part of the real line if d = 2. In that case, it reduces to C(u1, u2) = −(1/θ)

log
{[

1− exp−θ −
(
1− exp−θu1

) (
1− exp−θu2

)]
/
(
1− exp−θ

)}
, θ ∈ R {0}. The range of θ < 0 decreases

as d increases, leading to a limited negative dependence if d > 3 (Joe, 2014).

Among the Archimedean copula models, the Frank copula is the only one that has the re�ection symmetry

property (Frank, 1979), i.e., C(u1, . . . , ud) = C(1 − u1, . . . , 1 − ud). As consequence, a survival Frank copula

is equal to a Frank copula over marginal distribution functions.

Gumbel-Hougaard (GH) Copula

The Gumbel-Hougaard (GH) copula (Nelsen, 2006), sometimes referred as Bivariate Gumbel (Joe, 2014),

was originally proposed by Gumbel (1960) and later discussed by Hougaard (1986) in the survival analysis

context. This copula model generator is given by ψθ(w) = exp(−w1/θ), where θ ∈ [1,∞). Such generator is

also a positive stable LS transform Joe (2014). This unique property among the Archimedean copulas (see

Theorem 4.5.2, p. 143, from Nelsen, 2006) also makes the GH copula a member of the extreme value copula

class. The general expression for the d-dimensional GH copula is given by

C(u|θ) = exp

−
 d∑
j=1

(− log(uj))
θ

1/θ
 , u ∈ Id. (3.18)

The distribution FV |θ associated with ψθ as a LS transform is the 1-parameterization of the Stable dis-

tribution S(1/a, 1, cos1/a(aπ/2), 1(a = 1); 1) with characteristic function φ(k) = exp[−(−ik)a][Γ(a)]−1, setting

a = θ (see Nolan, 2020 for more details on the general family of Stable distributions).
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Joe Copula

The Joe copula �rst appeared in another work of Frank (1981), but its properties have been investigated in

depth by Joe (1993), initially specifying two parameters to model the copula dependence. For the purposes of

this work, the copula speci�cation considered is the one in Section 3.1 of the second paper, but taking only θ

as the dependence parameter (the other being �xed at 1). Taking the generator ψθ(w) = 1− [1− exp (−w)]
1/θ,

where θ ∈ [1,∞), the general expression for the d-dimensional Joe copula is given by

C(u|θ) = 1−

1−
d∏
j=1

[
1− (1− uj)θ

]
1/θ

, u ∈ Id. (3.19)

The distribution FV |θ associated with ψθ as a LS transform is the Sibuya distribution Si(p) with probability

mass function pk =
(
p
k

)
(−1)k−1, k ∈ N, where p = 1/θ.

3.3 Measuring Dependence

In general, it is desirable from a practical point of view to summarize the dependence among components

of a random vector by a real number (Hofert et al., 2018). In the bivariate case, the two most common

ways to summarize dependence between two random variables X1 and X2 are through measures of monotone

association (bivariate concordance) or tail dependence (Joe, 2014).

A monotone association between random variables exists if whenever one variable increases (decreases) the

other also increases (decreases). In other words, there is a monotone (but not necessarily linear) relationship

in terms of the conditional expectation or median of one variable given the another. As this relationship

approaches a monotone function in probability, the measure increases in absolute value. In the copula theory,

a monotone measure of association must be a function q(θ;X1, X2) of the dependence parameter and random

variables that satis�es the following properties (see Joe, 2014, p. 54 for more details):

1. Domain: q(θ;X1, X2) can be de�ned for all pairs of random variables;

2. Symmetry: q(θ;X1, X2) = q(θ;X2, X1);

3. Range: q(θ;X1, X2) ∈ [−1, 1];

4. Independence: If X1 and X2 are independent, then q(θ;X1, X2) = 0;

5. Invariance: If h1, h2 are strictly increasing functions, then q[θ;h1(X1), h2(X2)] = q(θ;X1, X2).

As Hofert et al. (2018) pointed out, the Pearson's coe�cient does not attend all the properties above,

although being a simple measure of monotone (linear) association. The domain and independence can only

be evaluated if both X1 and X2 have �nite 2nd order moments. Moreover, this measure is not invariant

under strictly increasing nonlinear transformations. By only depending on a dependence parameter from a

underlying copula, measures of rank correlations such as the Kendall's τ and Spearman's ρ coe�cients ful�ll

the aforesaid properties.
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De�nition 3.7 (Joe, 2014, p. 55). Let (X1, X2) and (X∗1 , X
∗
2 ) be two independent random pairs with a

common joint continuous distribution F12 and copula C. The Kendall's τ measure is given by

τ = P [(X1 −X∗1 ) (X2 −X∗2 ) > 0]− P [(X1 −X∗1 ) (X2 −X∗2 ) < 0]

= 2P [(X1 −X∗1 ) (X2 −X∗2 ) > 0]− 1

= 4

∫
F12dF12 − 1

= 4

∫
[0,1]2

C(u1, u2)dC(u1, u2)− 1. (3.20)

Since the Kendall's τ will depend on a known copula with well de�ned conditional distributions for each of

its margins, the coe�cient can be directly estimated by plugging the estimate for θ from the survival copula

modeling in (3.20). Note that Kendall's τ is de�ned as the di�erence between probabilities of concordance

(two pairs (X1, X2) and (X∗1 , X
∗
2 ) are concordant if (X1 −X∗1 ) (X2 −X∗2 ) > 0) and discordance (they are

discordant if (X1 −X∗1 ) (X2 −X∗2 ) < 0). For Archimedean copulas, the Kendall's τ can be rewritten in terms

of the corresponding generator as (Nelsen, 2006, p. 163 and 166)

τ = 4

∫ 1

0

ψ−1(w)

ψ−1;(1)(w)
dw + 1 = 1− 4

∫ ∞
0

w

[
dψ(w)

dw

]2
dw.

However, the same cannot be said for the Spearman's ρ, since its integral (de�ned below) does not have a

closed form for some Archimedean copula models, such as the Clayton and Joe copulas.

De�nition 3.8 (Joe, 2014, p. 56). Let (X1, X2), (X∗1 , X
∗
2 ) and (X∗∗1 , X∗∗2 ) be three independent random pairs

with a common joint continuous distribution F12 (with marginals F1 and F2) and copula C. The Spearman's

ρ measure is given by

ρ = 3 {P [(X1 −X∗1 ) (X2 −X∗∗2 ) > 0]− P [(X1 −X∗1 ) (X2 −X∗∗2 ) < 0]}

= 3 {2P [(X1 −X∗1 ) (X2 −X∗∗2 ) > 0]− 1}

= 3

(
4

∫
F12dF12 − 1

)
= 3

(
4

∫
F1F2dF12 − 1

)
(by independence ofX∗1 andX

∗∗
2 )

= 3

(
4

∫
[0,1]2

u1u2dC(u1, u2)− 1

)
. (3.21)

The result in (3.21) can also be expressed in terms of a Riemann integral or using one of the marginal

conditional distributions as ρ = 12
∫
[0,1]2

C(u1, u2)du1du2−3 (Joe, 2014, p. 56). Like the Kendall's τ coe�cient,

Spearman's ρ can also be written as a function of θ. However, the meaning behind its formal de�nition is

slightly di�erent since it allows for independence between the second margin components, i. e., the random

vector (X1, X2) has joint distribution function F12, but the vector (X∗1 , X
∗∗
2 ) has joint distribution function

given by the product F1F2, which is not guaranteed to be equal to F12. Table 3.1 presents the Kendall's τ and

Spearman's ρ measures as functions of θ for the AMH, Clayton, Frank, GH and Joe copulas. Computing of
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those coe�cients will be done through functions of the R copula package (Hofert et al., 2020), including the

cases where there is no closed form or a special function is involved.

Table 3.1: Kendall's τ and Spearman's ρ coe�cients for some bivariate Archimedean copula models

Copula Kendall's τ Spearman's ρ

AMH1
3θ − 2

3θ
− 2(1− θ)2 log(1− θ)

3θ2
12(1 + θ)dl(1− θ)− 24(1− θ) log(1− θ)

θ2
− 3(θ + 12)

θ

Clayton2
θ

θ + 2
12

θ + 1

(θ + 2)2
3F2

(
θ + 1

θ
, 1, 1, 2

θ + 1

θ
,
θ + 1

θ
; 1

)
Frank3 1 +

4

θ
[D1(θ)− 1] 1 +

12

θ
[D2(θ)−D1(θ)]

GH3
θ − 1

θ
12
∫ 1

0
[1 +B(u, θ)]

−2
du− 3

Joe3 1 +
2

2− θ

[
Ψ(2)−Ψ

(
2

θ
+ 1

)]
No closed form

1See Kumar (2010), Theorem 1.
2See Klein et al. (2013), Subsection 24.2.4.
3See Joe (2014), Chapter 4.

The following special functions present in Table 3.1 are:

• dl(x) =
∫ x
1

log(a)(1− a)−1da is the dilogarithm function;

• 3F2 (a1, a2, a3, a4, a5; a6) =
∑∞
l=0

Γ(a1 + l)Γ(a2 + l)Γ(a3 + l)Γ(a4)Γ(a5)

Γ(a1)Γ(a2)Γ(a3)Γ(a4 + l)Γ(a5 + l)

al6
l!

is a hypergeometric function;

• Dk(x) = kx−k
∫ x
0
ak [exp(a)− 1]

−1
da, with k ∈ N, is the Dèbye function;

• B(b, c) =
∫ 1

0
ab−1(1− a)c−1da, with b, c ∈ R+, is the Beta function;

• Ψ(x) = (d/dx) log [Γ(x)] is the digamma function.

According to Joe (2014), tail dependence is a way to measure the amount of dependence in the joint lower

or upper tails of a multivariate distribution function. In bivariate distributions, tail dependence is related to

the amount of dependence in the lower or upper quadrant tails. For copula models, both tails will be in the

square [0, 1]2. Tail dependence coe�cients are also invariant to increasing transformations.

De�nition 3.9 (Durante and Sempi, 2015, p. 73). Let (X1, X2) be a continuous random pair with marginal

distribution functions F1 and F2. The lower and upper tail dependence coe�cients χL and χU are de�ned by

χL = lim
x→0+

P
[
X2 6 F−12 (x)|X1 6 F−11 (x)

]
, (3.22)

χU = lim
x→1−

P
[
X2 > F−12 (x)|X1 > F−11 (x)

]
, (3.23)

provided that both limits exist.

Thus, tail dependence coe�cients provide an asymptotic approximation for the behavior of a distribution

function in the tails. For Archimedean copulas, the expressions in (3.22) and (3.23) can be rewritten in terms
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of the corresponding generator as (Nelsen, 2006, p. 215)

χL = lim
w→+∞

ψ(2w)

ψ(w)
, χU = 2− lim

w→0+

1− ψ(2w)

1− ψ(w)
.

Thereby, χL = χU = 0 for the AMH and Frank copulas; χL = 0 and χU = 2 − 21/θ for the GH and Joe

copulas; and �nally χL = 2−1/θ and χU = 0 for the Clayton copula (when θ > 0). As θ → ∞, the lower

(upper) tail dependence for the Clayton copula (for the GH and Joe copulas) tends to 1. In the survival

analysis context, the presence of lower tail dependence (as in the Clayton copula) implies a higher association

between greater survival times, while the presence of upper tail dependence (as in the GH and Joe copulas)

implies a stronger correlation between smaller survival times (Prenen et al., 2017).
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Figure 3.1: Contour plots on the density for AMH, Clayton, Frank, GH and Joe copulas, given τ = 0.25 and
Weibull margins with κ1 = (α1, λ1) = (1.2, 0.8) and κ2 = (α2, λ2) = (1.6, 0.2)



CHAPTER 4

Proposed Survival Copula Models

The previous two chapters showed (i) parametric survival models and regression model classes of major

concern for this work in a univariate framework, and (ii) copula theory and its applications using univariate

survival functions as components of the Archimedean copula class. This chapter presents the survival copula

likelihood functions for the developed models in this work, given a sample of observed times y = (y1, . . . ,yd)

and an array of design matrices X = (X1, . . . , Xd), j = 1, . . . , d. The parameters are speci�ed by a collection

P = {θ,κ,β} (for PH and PO regression model classes) or P = {θ,κ,β(S),β(L)} (for the YP model), with

κ = (κ1, . . . ,κd) being marginal survival model parameters from the same family of baseline distributions,

and β = (β1, . . . ,βd) being parameters from the same regression model class for all margins (similarly for the

YP class).

For all possible combinations of baseline distribution and regression structure, the following likelihood

functions are versions of (3.6) for the general case of an Archimedean copula in (3.8), and (3.14) for the

particular case of a completely monotone generator for an Archimedean copula. In both cases, marginal

survival and density functions are replaced according to the parametric survival model (one of Weibull, BP or

PE) for the baseline distribution, and the regression model class (one of PH, PO or YP) considered. Since �ve

Archimedean copulas (AMH, Clayton, Frank, GH and Joe) are addressed in this work, a total of 45 survival

copula models are developed under the proposed framework. As seen in Section 1.3, Archimedean copula

models with Weibull PH components are not exactly a novelty, but due to the use of marginal Weibull PH

models as a benchmark, they are presented in the next sections. For the same reason, those copula models

will also be used for data generation in the simulation study done in Chapter 5.
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4.1 Survival Copula Models with Marginal Weibull Baseline

4.1.1 Weibull Proportional Hazards Copula Model

The survival copula likelihood function for a model with Weibull PH marginal components and parameters

κj = (αj , λj) and βj , j = 1, . . . , d, over all subjects i, i = 1, . . . , n, is given by

LC(WPH)(θ,κ,β|y, X) =

n∏
i=1

∂di

∂
∏d
j=1 (yi;j)

δi;j
ψθ

ψ−1θ
 d∑
j=1

exp
(
−λjy

αj
i;j exp

(
xi;jβj

))
×

d∏
j=1

{
λjαjy

αj−1
i exp

(
xi;jβj

)
exp

[
−λjy

αj
i;j exp

(
xi;jβj

)]}δi;j
. (4.1)

If ψθ = LSV |θ is a completely monotone generator, then (4.1) can be rewritten as

LC(WPH)(θ,κ,β|y, X) =

n∏
i=1


d∏
j=1

[
λjαjy

αj−1
i exp

(
xi;jβj

)
exp

(
−λjy

αj
i;j exp

(
xi;jβj

))
ψ
(1)
θ

(
ψ−1θ

(
exp

(
−λjy

αj
i;j exp

(
xi;jβj

)))) ]δi;j
× ψ(di)

θ


d∑
j=1

ψ−1θ
[
exp

(
−λjy

αj
i;j exp

(
xi;jβj

))] .

4.1.2 Weibull Proportional Odds Copula Model

Changing only the regression model class, the survival copula likelihood function for a model with Weibull

PO marginal components, with parameters κj and βj , is given by

LC(WPO)(θ,κ,β|y, X) =

n∏
i=1

∂di

∂
∏d
j=1 (yi;j)

δi;j
ψθ

ψ−1θ
 d∑
j=1

1(
1 +

(
exp

(
λjy

αj
i;j

)
− 1
)

exp
(
xi;jβj

))


×
d∏
j=1

{
λjαjy

αj−1
i;j exp

(
λjy

αj
i;j + xi;jβj

)[
1 +

(
exp

(
λjy

αj
i;j

)
− 1
)

exp
(
xi;jβj

)]2
}δi;j

. (4.2)

If ψθ = LSV |θ is a completely monotone generator, then (4.2) can also be expressed as

LC(WPO)(θ,κ,β|y, X) =

n∏
i=1


d∏
j=1


λjαjy

αj−1
i;j exp

(
λjy

αj
i;j + xi;jβj

)[
1 +

(
exp

(
λjy

αj
i;j

)
− 1
)

exp
(
xi;jβj

)]2
ψ
(1)
θ

(
ψ−1θ

(
1(

1 +
(
exp

(
λjy

αj
i;j

)
− 1
)

exp
(
xi;jβj

))))

δi;j

× ψ(di)
θ


d∑
j=1

ψ−1θ

[
1(

1 +
(
exp

(
λjy

αj
i;j

)
− 1
)

exp
(
xi;jβj

))]
 .
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4.1.3 Weibull Yang-Prentice Copula Model

Changing again the regression model class, the survival copula likelihood function for a model with Weibull

YP marginal components, with parameters κj , β
(S)
j and β(L)

j , is given by

LC(WYP)(θ,κ,β
(S),β(L)|y, X) =

=

n∏
i=1

∂di

∂
∏d
j=1 (yi;j)

δi;j
ψθ

ψ−1θ
 d∑
j=1

1 +
exp

(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

) (exp
(
λjy

αj
i;j

)
− 1
)− exp

(
xi;jβ

(L)
j

)


×
d∏
j=1

 exp
(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

)
λjαjy

αj−1
i;j

exp
(
xi;jβ

(S)
j

) [
1− exp

(
−λjy

αj
i;j

)]
+ exp

(
xi;jβ

(L)
j

)
exp

(
−λjy

αj
i;j

)

δi;j

×
d∏
j=1


1 +

exp
(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

) (exp
(
λjy

αj
i;j

)
− 1
)− exp

(
xi;jβ

(L)
j

)
δi;j

. (4.3)

If ψθ = LSV |θ is a completely monotone generator, then (4.3) can also be expressed as

LC(WYP)(θ,κ,β
(S),β(L)|y, X) =

=

n∏
i=1



d∏
j=1



exp
(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

)
λjαjy

αj−1
i;j

exp
(
xi;jβ

(S)
j

) [
1− exp

(
−λjy

αj
i;j

)]
+ exp

(
xi;jβ

(L)
j

)
exp

(
−λjy

αj
i;j

)
1 +

exp
(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

) (exp
(
λjy

αj
i;j

)
− 1
)exp

(
xi;jβ

(L)
j

)

ψ
(1)
θ

ψ−1θ

1 +

exp
(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

) (exp
(
λjy

αj
i;j

)
− 1
)− exp

(
xi;jβ

(L)
j

)




δi;j


× ψ(di)
θ


d∑
j=1

ψ−1θ


1 +

exp
(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

) (exp
(
λjy

αj
i;j

)
− 1
)− exp

(
xi;jβ

(L)
j

)
 .
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4.2 Survival Copula Models with Marginal BP Baseline

4.2.1 Bernstein Polynomials Proportional Hazards Copula Model

Switching now the baseline, the survival copula likelihood function for a model with BP PH margins and

parameters κj = γj and βj , j = 1, . . . , d, over all subjects i, i = 1, . . . , n and �xed degree m, is given by

LC(BPPH)(θ,κ,β|y, X) =

n∏
i=1

∂di

∂
∏d
j=1 (yi;j)

δi;j
ψθ

ψ−1θ
 d∑
j=1

exp
(
−γ′jGm (yi;j) exp

(
xi;jβj

))
×

d∏
j=1

{
γ′jgm (yi;j) exp

(
xi;jβj

)
exp

[
−γ′jGm (yi;j) exp

(
xi;jβj

)]}δi;j
. (4.4)

If ψθ = LSV |θ is a completely monotone generator, then (4.4) can be rewritten as

LC(BPPH)(θ,κ,β|y, X) =

n∏
i=1


d∏
j=1

[
γ′jgm (yi;j) exp

(
xi;jβj

)
exp

(
−γ′jGm (yi;j) exp

(
xi;jβj

))
ψ
(1)
θ

(
ψ−1θ

(
exp

(
−γ′jGm (yi;j) exp

(
xi;jβj

)))) ]δi;j
× ψ(di)

θ


d∑
j=1

ψ−1θ
[
exp

(
−γ′jGm (yi;j) exp

(
xi;jβj

))] .

4.2.2 Bernstein Polynomials Proportional Odds Copula Model

Again changing only the regression model class, the survival copula likelihood function for a model with

BP PO marginal components, with parameters κj = ζj and βj , is given by

LC(BPPO)(θ,κ,β|y, X) =

n∏
i=1

∂di

∂
∏d
j=1 (yi;j)

δi;j
ψθ

ψ−1θ
 d∑
j=1

1(
1 + ζ′jGm (yi;j) exp

(
xi;jβj

))


×
d∏
j=1

{
ζ′jgm (yi;j) exp

(
xi;jβj

)[
1 + ζ′jGm (yi;j) exp

(
xi;jβj

)]2
}δi;j

. (4.5)

If ψθ = LSV |θ is a completely monotone generator, then (4.5) can also be expressed as

LC(BPPO)(θ,κ,β|y, X) =

n∏
i=1


d∏
j=1


ζ′jgm (yi;j) exp

(
xi;jβj

)[
1 + ζ′jGm (yi;j) exp

(
xi;jβj

)]2
ψ
(1)
θ

(
ψ−1θ

(
1(

1 + ζ′jGm (yi;j) exp
(
xi;jβj

))))

δi;j


× ψ(di)
θ


d∑
j=1

ψ−1θ

[
1(

1 + ζ′jGm (yi;j) exp
(
xi;jβj

))]
 .
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4.2.3 Bernstein Polynomials Yang-Prentice Copula Model

Switching the regression structure to the YP model, the survival copula likelihood function for a model

with BP YP margins and parameters κj = γj , β
(S)
j and β(L)

j , is given by

LC(BPYP)(θ,κ,β
(S),β(L)|y, X) =

=

n∏
i=1

∂di

∂
∏d
j=1 (yi;j)

δi;j
ψθ

ψ−1θ
 d∑
j=1

1 +
exp

(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

) (exp
(
γ′jGm (yi;j)

)
− 1
)− exp

(
xi;jβ

(L)
j

)


×
d∏
j=1

 exp
(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

)
γ′jgm (yi;j)

exp
(
xi;jβ

(S)
j

) [
1− exp

(
−γ′jGm (yi;j)

)]
+ exp

(
xi;jβ

(L)
j

)
exp

(
−γ′jGm (yi;j)

)

δi;j

×
d∏
j=1


1 +

exp
(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

) (exp
(
γ′jGm (yi;j)

)
− 1
)− exp

(
xi;jβ

(L)
j

)
δi;j

. (4.6)

If ψθ = LSV |θ is a completely monotone generator, then (4.6) can also be expressed as

LC(BPYP)(θ,κ,β
(S),β(L)|y, X) =

=

n∏
i=1



d∏
j=1



exp
(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

)
γ′jgm (yi;j)

exp
(
xi;jβ

(S)
j

) [
1− exp

(
−γ′jGm (yi;j)

)]
+ exp

(
xi;jβ

(L)
j

)
exp

(
−γ′jGm (yi;j)

)
1 +

exp
(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

) (exp
(
γ′jGm (yi;j)

)
− 1
)exp

(
xi;jβ

(L)
j

)

ψ
(1)
θ

ψ−1θ

1 +

exp
(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

) (exp
(
γ′jGm (yi;j)

)
− 1
)− exp

(
xi;jβ

(L)
j

)




δi;j


× ψ(di)
θ


d∑
j=1

ψ−1θ


1 +

exp
(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

) (exp
(
γ′jGm (yi;j)

)
− 1
)− exp

(
xi;jβ

(L)
j

)
 .

4.3 Survival Copula Models with Marginal PE Baseline

4.3.1 Piecewise Exponential Proportional Hazards Copula Model

Switching again the baseline distribution, the survival copula likelihood function for a model with PE PH

margins and parameters κj = λj and βj , j = 1, . . . , d, over all subjects i, i = 1, . . . , n, and �xing a (d, p+ 1)



58

time grid E with p intervals Ej;k = (ej;k−1, ej;k] for each copula margin j, k = 1, . . . , p, is given by

LC(PEPH)(θ,κ,β|y, X,E) =

n∏
i=1

∂di

∂
∏d
j=1 (yi;j)

δi;j
ψθ

ψ−1θ
 d∑
j=1

exp
(
−λ′j (tj − ej) exp

(
xi;jβj

))
×

d∏
j=1

{
p∑
k=1

λj;kIEj;k(yi;j) exp
(
xi;jβj

)
exp

[
−λ′j (tj − ej) exp

(
xi;jβj

)]}δi;j
. (4.7)

If ψθ = LSV |θ is a completely monotone generator, then (4.7) can be rewritten as

LC(PEPH)(θ,κ,β|y, X,E) =

n∏
i=1


d∏
j=1


∑p
k=1 λj;kIEj;k(yi;j) exp

(
xi;jβj

)
exp

(
λ′j (tj − ej) exp

(
xi;jβj

))
ψ
(1)
θ

(
ψ−1θ

(
exp

(
−λ′j (tj − ej) exp

(
xi;jβj

))))

δi;j


× ψ(di)
θ


d∑
j=1

ψ−1θ
[
exp

(
−λ′j (tj − ej) exp

(
xi;jβj

))] .

4.3.2 Piecewise Exponential Proportional Odds Copula Model

Changing now the regression model class, the survival copula likelihood function for a model with PE PO

marginal components, with parameters κj and βj , is given by

LC(PEPO)(θ,κ,β|y, X,E) =

n∏
i=1

∂di

∂
∏d
j=1 (yi;j)

δi;j
ψθ

ψ−1θ
 d∑
j=1

1(
1 +

(
exp

(
λ′j (tj − ej)

)
− 1
)

exp
(
xi;jβj

))


×
d∏
j=1

{∑p
k=1 λj;kIEj;k(yi;j) exp

(
λ′j (tj − ej) + xi;jβj

)[
1 +

(
exp

(
λ′j (tj − ej)

)
− 1
)

exp
(
xi;jβj

)]2
}δi;j

. (4.8)

If ψθ = LSV |θ is a completely monotone generator, then (4.8) can also be expressed as

LC(PEPO)(θ,κ,β|y, X,E) =

n∏
i=1


d∏
j=1


∑p
k=1 λj;kIEj;k(yi;j) exp

(
λ′j (tj − ej) + xi;jβj

)[
1 +

(
exp

(
λ′j (tj − ej)

)
− 1
)

exp
(
xi;jβj

)]2
ψ
(1)
θ

(
ψ−1θ

(
1(

1 +
(
exp

(
λ′j (tj − ej)

)
− 1
)

exp
(
xi;jβj

))))

δi;j


× ψ(di)
θ


d∑
j=1

ψ−1θ

[
1(

1 +
(
exp

(
λ′j (tj − ej)

)
− 1
)

exp
(
xi;jβj

))]
 .
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4.3.3 Piecewise Exponential Yang-Prentice Copula Model

Changing again the regression structure to the YP model, the survival copula likelihood function for a

model with PE YP margins and parameters κj , β
(S)
j and β(L)

j , is given by

LC(PEYP)(θ,κ,β
(S),β(L)|y, X,E) =

=

n∏
i=1

∂di

∂
∏d
j=1(yi;j)δi;j

ψθ

ψ−1θ
 d∑
j=1

1 +
exp

(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

) (exp
(
λ′j (tj − ej)

)
− 1
)− exp

(
xi;jβ

(L)
j

)


×
d∏
j=1

 exp
(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

)∑p
k=1 λj;kIEj;k(yi;j)

exp
(
xi;jβ

(S)
j

) [
1− exp

(
−λ′j (tj − ej)

)]
+ exp

(
xi;jβ

(L)
j

)
exp

(
−λ′j (tj − ej)

)

δi;j

×
d∏
j=1


1 +

exp
(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

) (exp
(
λ′j (tj − ej)

)
− 1
)− exp

(
xi;jβ

(L)
j

)
δi;j

. (4.9)

If ψθ = LSV |θ is a completely monotone generator, then (4.9) can also be expressed as

LC(PEYP)(θ,κ,β
(S),β(L)|y, X,E) =

=

n∏
i=1



d∏
j=1



exp
(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

)∑p
k=1 λj;kIEj;k (yi;j)

exp
(
xi;jβ

(S)
j

)
[1− exp (−H0 (yi;j))] + exp

(
xi;jβ

(L)
j

)
exp (−H0 (yi;j))1 +

exp
(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

) (exp (H0 (yi;j))− 1)

exp
(
xi;jβ

(L)
j

)

ψ
(1)
θ

ψ−1
θ


1 +

exp
(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

) (exp (H0 (yi;j))− 1)

− exp
(
xi;jβ

(L)
j

)




δi;j


× ψ(di)
θ


d∑
j=1

ψ−1
θ


1 +

exp
(
xi;jβ

(S)
j

)
exp

(
xi;jβ

(L)
j

) (exp (H0 (yi;j))− 1)

− exp
(
xi;jβ

(L)
j

)
 .



CHAPTER 5

Numerical Results

This chapter presents Monte Carlo simulation studies to evaluate the performance of bivariate Archimedean

survival copula models taking into account M = 1000 replications of data sets. To generate the simulated

data, the R copula package (Hofert et al., 2020) was used to obtain each marginal uniform realizations ui;j ,

i = 1, . . . , n and j = 1, 2, for the �ve Archimedean copulas addressed in this work (AMH, Clayton, Frank, GH

and Joe), according to the stochastic representation in (3.10). For each margin, the same design matrix was

speci�ed, with two covariates Xi,1 ∼ Bern(0.5) and Xi,2 ∼ N(0, 1) generated independently and identically

distributed for all i. Assuming ui;j = S(ti;j), where S(·) is a survival function with inverse S−1(·), each

marginal survival time was generated as ti;j = S−1(ui;j). Two baseline distributions were considered in the

data generation process: the traditional Weibull model, and the Exponentiated Weibull (EW) model proposed

by Mudholkar and Srivastava (1993). The EW distribution is a parametric model widely used in survival

analysis due to its high �exibility for the hazard function behavior, allowing both unimodal and bathtub

forms, which are not accommodated by the traditional Weibull model. The EW model possesses a vector of

parameters κ = (α, λ, ξ), where α and λ are the shape and scale parameters from the Weibull model, and ξ is

the exponentiation parameter. If ξ = 1, then the Weibull model is obtained. Each baseline distribution used

for generation of marginal survival times was combined with one of the three regression model classes (PH, PO,

or YP) presented in Section 2.2. Thereby, each marginal survival time ti;j was generated from the following

expressions in (5.1) for the YP class, obtaining the PH and PO as particular cases by taking β(S)
j = β

(L)
j or

β
(L)
j = 0 (respectively), and depending on the chosen baseline distribution (Weibull or EW).

ti;j =


{
log
[
1− q

(
ui;j ,xi;j ,β

(S)
j ,β

(L)
j

)]
λ−1
j

}(α−1
j )

; (Weibull YP){
− log

[
1−

(
1−

(
1− q

(
ui;j ,xi;j ,β

(S)
j ,β

(L)
j

))−1
)ξ−1

j

]
λ−1
j

}(α−1
j )

, (EW YP)

(5.1)
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with

q
(
ui;j ,xi;j ,β

(S)
j ,β

(L)
j

)
= exp

(
xi;jβ

(L)
j − xi;jβ(S)

j

)(
1− u

− exp
(
−xi;jβ

(L)
j

)
i;j

)
.

Given a survival copula model, the baseline distribution and the associated regression model class are

generated from the same family for both margins. The simulation scenarios are primarily de�ned by: (i)

a �xed and same sample size (n = 500) for all margins, and (ii) three Kendall's τ correlation values (τ ∈

{0.25, 0.5, 0.75}). In other words, there are three scenarios for study with the same sample size: S1, with

τ = 0.25, S2, with τ = 0.50, and S3, with τ = 0.75. These true values for τ were chosen in order to obtain

results given di�erent levels of dependence, and to retain comparability among all �tted copulas: for a same

value of τ , θ can be quite di�erent from one copula to another. The Kendall's τ choice as the measure of

association for this work is justi�ed by its easier computation if compared to Spearman's ρ for all copulas (as

showed in 3.1), and the recurrent use of Kendall's τ in the literature, as seen in Prenen et al. (2017).

Although the baseline distribution and regression model class are from the same family for both margins,

the chosen values for κj and βj (for PH or PO), or κj , β
(S)
j , and β(L)

j (for YP), j = 1, 2, are di�erent.

Regardless of copula or regression model class, for the Weibull model as the baseline generator, κ1 = (α1, λ1) =

(1.2, 0.8) and κ2 = (α2, λ2) = (1.6, 1.2). Both parameter speci�cations yield increasing marginal hazard

functions. If the generator process for the baseline is the EW model, κ1 = (α1, λ1, ξ1) = (2.1, 0.5, 0.3),

and κ2 = (α2, λ2, ξ2) = (2.5, 0.6, 0.2). Those parameter speci�cations produce �bathtub�-shaped marginal

hazard functions. Concerning the regression model classes, regardless of copula or baseline distribution, for

both PH and PO models β1 = (−0.7, 0.4) and β2 = (−0.9, 0.6). For the YP model, β(S)
1 = (−0.7, 0.4),

β
(S)
2 = (−0.9, 0.6), β(L)

1 = (0.8,−0.6), and β(L)
2 = (1.0,−0.8). To introduce censoring, all generated times ti;j ,

i = 1, . . . , n and j = 1, 2, were compared to a corresponding threshold value ai;j sampled from a continuous

uniform distribution U(0, aj). If ti;j 6 ai;j , then yi;j = ti;j is a failure time. Otherwise, yi;j = ai;j is a censored

time. The values aj were chosen in order to achieve a failure rate between 65% and 85% for each margin, given

their corresponding set of parameters values, for all scenarios. The threshold choices were a1 = 6, a2 = 4 when

the generated baseline is a Weibull model, and a1 = 4, a2 = 3 for a EW model.

The simulation study has three main goals: (i) to compare results for di�erent survival copula models,

given the same baseline function and regression model class, when �tting all �ve Archimedean copulas to a set

of data generated from a given copula, (ii) given the correct �tting for the copula and regression structure, to

compare results for di�erent �tted baseline functions, and (iii) for a same combination of copula and baseline,

evaluate the �tting of nested regression model classes when generating from a given one. Goal (i) is achieved

by presenting results for regression parameter estimation and information criteria, while goal (ii) is reached

by presenting also results for Kendall's τ estimation. To achieve goal (iii), an analysis through the Likelihood

Ratio (LR) test is done, confronting pairs of nested models for each regression model class used for generation

(supposed unknown for each test). Since �tted baseline functions from Weibull, BP and PE families have

distinct speci�cations for κj , which do not allow to compare them directly, their parameter estimation will

not be addressed here. To evaluate MC estimates for the regression parameter set βj (for PH and PO), or

β
(S)
j ,β

(L)
j (for YP), and the Kendall's τ correlation as function of the original dependence parameter θ, the

following statistics were computed over simulation results for allM data sets. If νl, l = 1, . . . ,M , is a parameter
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of interest for inference with maximum likelihood estimate ν̂l and associated standard error estimate se (ν̂l)

obtained from the hessian matrix, it is possible to compute:

• The Average Estimate (AE) of ν, given by the mean of point estimates ν̂l:

AE(ν) =
1

M

M∑
l=1

ν̂l; (5.2)

• The Standard Deviation Estimate (SDE) of ν, given by the standard deviation of point estimates ν̂l:

SDE(ν) =

{
1

M − 1

M∑
l=1

[ν̂l −AE (ν)]
2

}1/2

; (5.3)

• The Average Standard Error (ASE) of ν, given by the mean of standard error estimates se(ν̂l):

ASE(ν) =
1

M

M∑
l=1

se (ν̂l) ; (5.4)

• The Average Relative Bias (ARB) of ν, generally expressed by a percentage, given by the mean of relative

biases computed over all estimates ν̂l, with respect to the true value ν:

ARB(ν) = 100× 1

M

M∑
l=1

(ν̂l − ν)

|ν|
(5.5)

• The Coverage Rate (CR) of ν, i.e., the proportion of M data sets that provides a interval with a pre-

speci�ed con�dence level (95%) that contains the true value ν.

On a well-�tted model, the AE is expected to be near the true parameter value, the SDE and ASE are

expected to have values close to each other, the ARB is expected to be around 0, and the CR is expected to be

near the pre-speci�ed con�dence level. If the ARB is close to 0, underestimating the true standard deviation

of a given parameter (ASE < SDE) leads to a CR lower than the con�dence level. When overestimating the

true standard deviation (ASE > SDE), the CR is greater than the con�dence level. If the data is marginally

generated from a Weibull baseline function, under the correct �tting of both copula and regression structure,

�tted Weibull models are expected to have great performance. Also, semiparametric �tted models (BP and

PE) are expected to perform well due to its nonparametric appeal. However, for marginal generation from an

EW baseline function, it is expected that semiparametric models perform better than the Weibull �tting due

to their greater �exibility to capture non-monotonic behaviors potentially present in both hazard functions.

Another way to compare �tted models is computing an information criteria based on the log-likelihood

` = `(ν) for a set of n observed values, given the p-dimensional vector ν̂ of estimates. A model is preferable if it

has the lowest criteria value. For a frequentist approach, a method frequently used is the Akaike Information

Criteria (AIC, Akaike, 1974). Comparisons for �tted models in this work will be done through the mean

AIC and, given a copula model used for generation, using also the proportion of choice for each of the �ve
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�tted copula models. Furthermore, given any pair of �tted survival copula models nested with respect to the

regression model class, an analysis through the LR test is done to conclude if the augmented model (the one

with more regression parameters) is signi�cant. It is expected that �tted PH (or PO) models will be chosen

due to their parsimony over YP model for PH (PO) marginally generated data, but also that �tted YP models

perform signi�cantly better than �tted PH or PO models for YP marginally generated data.

De�ned all statistics, criteria and tests to be evaluated, simulation results are produced for all scenarios.

Due to the high number of tables and �gures, along with the detection of similar patterns, in the main

text these results are limited to scenario S1 (τ = 0.25), while the others can be accessed through the link

https://wrmfstat.shinyapps.io/CopRegEst/ (for regression parameter estimation) or seen in the Appendix,

which also presents some instructions on how to visualize them online. For the regression parameter estimates

presented here, results are restricted to the 1st copula margin and given generated data from the AMH model,

since Kendall's τ for that copula varies in the interval [(5− 8 log(2))/3, 1/3] ≈ [−0.1817, 0.3333] (the only one

that does not cover the open unit interval). This way, AMH generated data used a value of τ truncated to

the upper limit when necessary. The idea is to show that this change has little e�ect on regression parameter

estimates from di�erent �tted copula models, since the true τ value is �unknown�. Thus, results for AMH

generated data are comparable to those of other Archimedean copulas used for generation, which in general

appoints to similar conclusions. Concerning the amount of time to �t all MC replicas, given a scenario, the

BP model was about 5.1 times slower than the PE model, and about 8.2 times than the �tted Weibull model.

This is justi�ed by BP models presenting hessian matrices near singularity. In its turn, all �ve Archimedean

copulas had similar amounts of �tting time, with AMH (the fastest) spending about 84% the time of GH (the

slowest). Finally, the YP class �tting was about 1.7 times slower than the PH and PO ones.

Results for �tted survival copula models over simulated data are presented in the following sections, divided

by the marginally generated baseline distribution (Weibull or EW). Each section contains MC estimates for

regression parameters (including the average lower and upper bounds � ALB and AUB � for their estimated

intervals), AIC for the �tted models, MC estimates for Kendall's τ correlation, and LR tests for nested

regression model classes. Finally, an additional simulation study is done over a speci�c scenario (τ = 0.25),

and only for copula generated data with Weibull YP margins, to estimate marginal crossing survival times

given a combination of �tted Archimedean copula (one of the �ve discussed in this work, and always �tting

the correct copula), baseline distribution (one of Weibull, BP or PE), and the YP model class. To handle the

solving of nonlinear equations involving survival functions of treated and control subjects in R, the command

uniroot is used to �nd the corresponding root for each marginal crossing survival time (R Core Team, 2021).

5.1 Generated Copulas with Weibull Baseline

This section presents results for �tted survival copula models over generated data from Archimedean

survival copulas with marginal Weibull baseline distribution, associated to a regression model class. Results

are divided in the following subsections by Monte Carlo estimates for regression parameters, AIC for the �tted

models, Monte Carlo estimates for Kendall's τ correlation, and LR tests for nested �tted models.

https://wrmfstat.shinyapps.io/CopRegEst/
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5.1.1 Regression Parameter Estimates

The Monte Carlo estimates on regression parameters for �tted survival copula models are showed from

Tables 5.1 to 5.4, divided by �tted baseline distribution for each regression parameter set (βj , β
(S)
j or β(L)

j )

from a given class, on the 1st copula margin (j = 1). For those results, comparisons are done among �tted

models with di�erent copulas, but always maintaining the same regression model class used for generation.

Table 5.1: MC statistics for 1st margin regression parameter estimates of �tted survival copula models over
AMH Weibull PH generated data (n = 500; τ = 0.25).

Parameter Copula
Weibull PH Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β11 = −0.7 AMH -0.7069 0.1048 0.1041 -0.9840 -0.9123 -0.5015 95.1807
Clayton -0.6970 0.1031 0.1052 0.4310 -0.8991 -0.4949 94.6000
Frank -0.7086 0.1059 0.1061 -1.2306 -0.9162 -0.5010 94.3888
GH -0.7027 0.1065 0.1069 -0.3916 -0.9114 -0.4941 93.7876
Joe -0.7020 0.1070 0.1080 -0.2873 -0.9116 -0.4924 93.3000

β12 = 0.4 AMH 0.4016 0.0536 0.0545 0.4000 0.2966 0.5066 94.1767
Clayton 0.3964 0.0527 0.0552 -0.9103 0.2931 0.4997 93.1000
Frank 0.4018 0.0541 0.0554 0.4469 0.2957 0.5079 93.7876
GH 0.3985 0.0543 0.0558 -0.3736 0.2920 0.5050 93.0862
Joe 0.3979 0.0546 0.0564 -0.5152 0.2909 0.5050 93.1000

Parameter Copula
BP PH Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β11 = −0.7 AMH -0.7089 0.1061 0.1055 -1.2776 -0.9169 -0.5010 94.9000
Clayton -0.6961 0.1043 0.1062 0.5600 -0.9005 -0.4916 94.8000
Frank -0.7129 0.1072 0.1078 -1.8472 -0.9230 -0.5029 94.0941
GH -0.7138 0.1075 0.1092 -1.9711 -0.9245 -0.5031 93.9940
Joe -0.7107 0.1079 0.1104 -1.5238 -0.9222 -0.4992 93.9880

β12 = 0.4 AMH 0.4026 0.0542 0.0553 0.6474 0.2963 0.5088 93.8000
Clayton 0.3960 0.0533 0.0560 -0.9963 0.2915 0.5005 92.9000
Frank 0.4044 0.0548 0.0563 1.0925 0.2970 0.5117 93.7938
GH 0.4047 0.0549 0.0570 1.1748 0.2972 0.5122 92.6927
Joe 0.4029 0.0551 0.0576 0.7237 0.2950 0.5108 92.7856

Parameter Copula
PE PH Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β11 = −0.7 AMH -0.7046 0.1059 0.1052 -0.6551 -0.9121 -0.4971 94.9648
Clayton -0.6919 0.1041 0.1056 1.1616 -0.8959 -0.4879 95.0000
Frank -0.7088 0.1069 0.1072 -1.2510 -0.9183 -0.4992 93.9819
GH -0.7099 0.1071 0.1083 -1.4116 -0.9197 -0.5001 94.1650
Joe -0.7064 0.1073 0.1095 -0.9206 -0.9168 -0.4961 93.9759

β12 = 0.4 AMH 0.4000 0.0541 0.0548 -0.0094 0.2939 0.5060 94.3605
Clayton 0.3934 0.0532 0.0556 -1.6573 0.2891 0.4976 93.4000
Frank 0.4022 0.0547 0.0558 0.5506 0.2951 0.5093 93.6810
GH 0.4025 0.0546 0.0564 0.6236 0.2955 0.5095 93.3602
Joe 0.4006 0.0547 0.0571 0.1481 0.2933 0.5079 93.0723

Taking the results in Table 5.1, when correctly �tting the PH class under a low correlation, the ARB is

always lower (in magnitude) than 2%, and the CR is at most 0.03 away from the con�dence level (set as 95%)

for all regression parameters, even when �tting the wrong copula. Correctly �tted (AMH) copula models had,
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in general, smaller ARB values and closer CR values to the con�dence level. As expected, �tted semiparametric

models (BP and PE) perform similar to (correctly) �tted Weibull models, but without imposing any parametric

restriction for the (marginal) hazard rate function to obtain good regression parameter estimates.

Table 5.2: MC statistics for 1st margin regression parameter estimates of �tted survival copula models over
AMH Weibull PO generated data (n = 500; τ = 0.25).

Parameter Copula
Weibull PO Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β11 = −0.7 AMH -0.7074 0.1627 0.1596 -1.0597 -1.0263 -0.3885 95.4955
Clayton -0.7050 0.1621 0.1604 -0.7157 -1.0227 -0.3874 95.2906
Frank -0.7039 0.1637 0.1627 -0.5541 -1.0247 -0.3831 95.2953
GH -0.6988 0.1640 0.1663 0.1678 -1.0203 -0.3774 94.9900
Joe -0.6978 0.1643 0.1676 0.3118 -1.0199 -0.3758 94.7844

β12 = 0.4 AMH 0.3997 0.0819 0.0850 -0.0830 0.2392 0.5602 94.0941
Clayton 0.3980 0.0816 0.0850 -0.4963 0.2382 0.5579 94.2886
Frank 0.3968 0.0824 0.0862 -0.7885 0.2354 0.5583 94.3944
GH 0.3936 0.0825 0.0881 -1.6097 0.2318 0.5554 93.1864
Joe 0.3930 0.0827 0.0889 -1.7474 0.2309 0.5551 92.9789

Parameter Copula
BP PO Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β11 = −0.7 AMH -0.7071 0.1633 0.1604 -1.0134 -1.0272 -0.3870 95.1904
Clayton -0.7082 0.1629 0.1619 -1.1705 -1.0274 -0.3890 95.0902
Frank -0.7036 0.1643 0.1633 -0.5193 -1.0256 -0.3816 95.1000
GH -0.7011 0.1642 0.1669 -0.1517 -1.0229 -0.3792 94.8000
Joe -0.7009 0.1642 0.1695 -0.1339 -1.0227 -0.3792 94.2886

β12 = 0.4 AMH 0.3992 0.0822 0.0854 -0.2035 0.2380 0.5604 94.4890
Clayton 0.4000 0.0820 0.0858 -0.0075 0.2393 0.5607 94.1884
Frank 0.3967 0.0827 0.0863 -0.8250 0.2346 0.5588 94.5000
GH 0.3954 0.0826 0.0879 -1.1611 0.2335 0.5572 93.2000
Joe 0.3951 0.0826 0.0892 -1.2283 0.2332 0.5570 92.3848

Parameter Copula
PE PO Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β11 = −0.7 AMH -0.7019 0.1631 0.1589 -0.2761 -1.0215 -0.3823 95.1952
Clayton -0.7018 0.1625 0.1605 -0.2637 -1.0204 -0.3833 94.9648
Frank -0.6986 0.1640 0.1620 0.2017 -1.0201 -0.3771 95.4683
GH -0.6972 0.1635 0.1645 0.3991 -1.0176 -0.3768 94.8640
Joe -0.6961 0.1632 0.1678 0.5527 -1.0159 -0.3764 94.3548

β12 = 0.4 AMH 0.3959 0.0821 0.0847 -1.0276 0.2350 0.5568 94.4945
Clayton 0.3965 0.0818 0.0851 -0.8827 0.2362 0.5567 94.2598
Frank 0.3942 0.0826 0.0858 -1.4482 0.2324 0.5561 94.3605
GH 0.3936 0.0822 0.0868 -1.5970 0.2326 0.5547 93.4542
Joe 0.3926 0.0820 0.0881 -1.8446 0.2319 0.5534 92.7419

Looking now on Table 5.2, but now correctly �tting the PO regression structure, conclusions for ARB and

CR values are similar to those obtained from Table 5.1. For results in Table 5.3, when correctly �tting the

YP class, the ARB for short-term parameters is a bit larger than the ones in Tables 5.1 and 5.2, but always

lower than 6% even when �tting the wrong copula, and lower than 3% when �tting the correct one. This was

expected, since the YP class speci�es more regression parameters for the same covariates. On the other hand,

the CR is as close as the obtained for PH and PO models to the con�dence level. When comparing the �tted
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baseline distributions, BP models had in general lowest ARB and closer CR values to the con�dence level.

Table 5.3: MC statistics for 1st margin short-term regression parameter estimates of �tted survival copula
models over AMH Weibull YP generated data (n = 500; τ = 0.25).

Parameter Copula
Weibull YP Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β
(S)
11 = −0.7 AMH -0.7077 0.1542 0.1526 -1.0935 -1.0099 -0.4054 96.3783

Clayton -0.6939 0.1544 0.1545 0.8667 -0.9965 -0.3914 96.0765
Frank -0.7137 0.1543 0.1542 -1.9526 -1.0161 -0.4112 96.4895
GH -0.7387 0.1537 0.1550 -5.5346 -1.0400 -0.4375 94.8949
Joe -0.7281 0.1543 0.1565 -4.0175 -1.0306 -0.4256 94.7791

β
(S)
12 = 0.4 AMH 0.3973 0.0917 0.0965 -0.6857 0.2176 0.5770 94.0644

Clayton 0.3938 0.0911 0.0958 -1.5552 0.2152 0.5724 94.1650
Frank 0.3946 0.0921 0.0978 -1.3604 0.2141 0.5750 93.9819
GH 0.3900 0.0917 0.0996 -2.5020 0.2102 0.5698 93.5936
Joe 0.3891 0.0920 0.1008 -2.7225 0.2088 0.5694 93.0723

Parameter Copula
BP YP Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β
(S)
11 = −0.7 AMH -0.7047 0.1610 0.1609 -0.6751 -1.0202 -0.3893 94.6894

Clayton -0.7031 0.1612 0.1619 -0.4359 -1.0189 -0.3872 95.1000
Frank -0.7006 0.1616 0.1632 -0.0923 -1.0175 -0.3838 94.9000
GH -0.7000 0.1618 0.1656 0.0033 -1.0170 -0.3830 95.0853
Joe -0.6980 0.1619 0.1673 0.2905 -1.0152 -0.3807 94.5892

β
(S)
12 = 0.4 AMH 0.3983 0.0920 0.0969 -0.4133 0.2180 0.5787 94.0882

Clayton 0.3965 0.0919 0.0968 -0.8667 0.2165 0.5766 93.6000
Frank 0.3956 0.0923 0.0976 -1.0976 0.2147 0.5765 94.4000
GH 0.3929 0.0916 0.0980 -1.7673 0.2134 0.5724 93.6810
Joe 0.3920 0.0918 0.1001 -1.9878 0.2120 0.5721 93.0862

Parameter Copula
PE YP Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β
(S)
11 = −0.7 AMH -0.7142 0.1604 0.1594 -2.0219 -1.0285 -0.3998 95.0902

Clayton -0.7110 0.1604 0.1604 -1.5749 -1.0254 -0.3966 95.1807
Frank -0.7121 0.1610 0.1615 -1.7298 -1.0277 -0.3965 95.0853
GH -0.7101 0.1607 0.1640 -1.4432 -1.0251 -0.3951 95.0853
Joe -0.7071 0.1606 0.1652 -1.0206 -1.0219 -0.3924 94.8847

β
(S)
12 = 0.4 AMH 0.3899 0.0914 0.0951 -2.5355 0.2107 0.5690 94.4890

Clayton 0.3882 0.0912 0.0951 -2.9483 0.2095 0.5670 94.0763
Frank 0.3876 0.0917 0.0961 -3.0900 0.2080 0.5673 94.5838
GH 0.3878 0.0908 0.0969 -3.0581 0.2097 0.5658 93.8816
Joe 0.3869 0.0909 0.0985 -3.2749 0.2087 0.5651 92.9789

Again for correctly �tted YP models, but now looking results on long-term parameters in Table 5.4, the

ARB is always below 10% when �tting the correct copula, being higher for the �rst (dichotomous) covariate

than for the second (continuous) one, regardless of the �tted baseline distribution. The CR values, however,

are still near the con�dence level, at most 0.03 away from it. The SDE and ASE estimates are also greater

than those obtained for short-term parameters. These evidences implies more accurate estimates for short-

term parameters than for their long-term counterpart. This is not a surprise: it is harder to estimate β(L)
j

than β(S)
j since there are fewer subjects under risk the closer a follow-up is to its end.
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Table 5.4: MC statistics for 1st margin long-term regression parameter estimates of �tted survival copula
models over AMH Weibull YP generated data (n = 500; τ = 0.25).

Parameter Copula
Weibull YP Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β
(L)
11 = 0.8 AMH 0.8454 0.3206 0.3317 5.6743 0.2171 1.4737 95.8753

Clayton 0.8033 0.2984 0.3197 0.4179 0.2186 1.3881 93.7626
Frank 0.8734 0.3346 0.3453 9.1696 0.2175 1.5292 97.1916
GH 0.9268 0.3543 0.3693 15.8551 0.2325 1.6212 97.7978
Joe 0.9124 0.3655 0.3767 14.0457 0.1961 1.6287 97.9920

β
(L)
12 = −0.6 AMH -0.5985 0.1231 0.1199 0.2430 -0.8397 -0.3574 95.1710

Clayton -0.5832 0.1190 0.1197 2.8063 -0.8164 -0.3499 94.2656
Frank -0.6063 0.1263 0.1218 -1.0567 -0.8538 -0.3588 95.9880
GH -0.6041 0.1280 0.1224 -0.6776 -0.8549 -0.3532 96.3964
Joe -0.6041 0.1288 0.1239 -0.6877 -0.8565 -0.3517 96.4859

Parameter Copula
BP YP Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β
(L)
11 = 0.8 AMH 0.8732 0.3456 0.5894 9.1463 0.1756 1.5304 95.3815

Clayton 0.8440 0.3284 0.5070 5.5004 0.1889 1.4762 94.7948
Frank 0.8636 0.3519 0.4083 7.9500 0.1683 1.5479 96.2963
GH 0.8558 0.3507 0.4249 6.9739 0.1617 1.5363 96.0843
Joe 0.8777 0.3634 0.6558 9.7078 0.1415 1.5660 96.2814

β
(L)
12 = −0.6 AMH -0.6073 0.1276 0.1256 -1.2173 -0.8574 -0.3573 95.5868

Clayton -0.5933 0.1248 0.1237 1.1244 -0.8379 -0.3485 95.4955
Frank -0.6111 0.1302 0.1281 -1.8558 -0.8664 -0.3559 95.9000
GH -0.5996 0.1305 0.1288 0.0696 -0.8554 -0.3438 96.0883
Joe -0.6027 0.1317 0.1301 -0.4453 -0.8607 -0.3444 96.4895

Parameter Copula
PE YP Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β
(L)
11 = 0.8 AMH 0.8664 0.3452 0.3615 8.2977 0.1899 1.5429 95.9920

Clayton 0.8452 0.3268 0.3504 5.6472 0.2046 1.4858 95.7831
Frank 0.8727 0.3556 0.3698 9.0874 0.1757 1.5697 96.5898
GH 0.8601 0.3515 0.3650 7.5125 0.1711 1.5491 96.2889
Joe 0.8637 0.3570 0.3707 7.9609 0.1641 1.5633 96.4895

β
(L)
12 = −0.6 AMH -0.5917 0.1249 0.1204 1.3806 -0.8366 -0.3469 96.0922

Clayton -0.5805 0.1218 0.1191 3.2541 -0.8192 -0.3417 94.9799
Frank -0.5958 0.1275 0.1226 0.6950 -0.8458 -0.3459 96.4895
GH -0.5869 0.1276 0.1234 2.1866 -0.8370 -0.3368 96.4895
Joe -0.5902 0.1290 0.1249 1.6344 -0.8430 -0.3374 96.1886

Figures 5.1 (for PH and PO model classes) and 5.2 (for YP) show boxplots for the relative bias on regression

parameter estimates for �tted survival copula models, divided by baseline, over AMH Weibull generated data

(again, marginally �tting the correct regression structure), given Scenario S1 (n = 500; τ = 0.25). For the

majority of regression parameters, boxplots for �tted models with the correct copula had, in general, smaller

range or fewer outlier count, given a �tted baseline distribution, even on a scenario with weak dependence.

Also, given a regression model class, �tted BP and PE models' boxplot ranges are similar to those obtained for

(correctly) �tted Weibull models, another evidence of the great �exibility from these semiparametric models

to �t marginal hazard functions without bind them to a parametric functional form.
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Figure 5.1: Relative bias on regression parameter estimates for �tted survival copula models over AMH
Weibull (PH or PO) generated data (n = 500; τ = 0.25).
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Figure 5.2: Relative bias on regression parameter estimates for �tted survival copula models over AMH
Weibull YP generated data (n = 500; τ = 0.25).
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Even simulating with a high sample size, given generated data from an Archimedean copula model with

marginal Weibull baseline distribution, �tted models with an incorrect (Archimedean) copula, among the �ve

treated in this work (AMH, Clayton, Frank, GH and Joe), still show results close to the correct copula for

regression parameters (regarding the ARB and CR) under a PH, PO or YP regression structure. Therefore,

the choice of a copula for �tting has little impact on estimation of regression parameters. Also, given a correct

copula �tting and a regression structure, the ARB and CR values for �tted models with a nonparametric

baseline distribution (BP or PE) are similar to those obtained for (correctly) �tted Weibull models.

5.1.2 Akaike Information Criteria

Unlike conclusions obtained for regression parameter tables, results for the mean of the AIC values and

their proportion of choice (by the smallest AIC, given each MC replica) appoint clearly to the correct copula

model choice, when generating marginally from the Weibull baseline distribution, as seen from Tables 5.5 to

5.7 for PH, PO and YP regression structures, respectively. Looking only the correct copula �tted models, the

highest proportions of choice are observed for the Joe copula, while the AMH and GH copulas (this last when

�tted with the PE baseline) exhibit the lowest proportions, regardless of regression model class.

Table 5.5: Mean AIC and choice proportion for all �tted survival copula models over generated data from
each copula with Weibull PH margins (n = 500; τ = 0.25).

True Fitted
Weibull PH BP PH PE PH

AIC Choice (%) AIC Choice (%) AIC Choice (%)

AMH AMH 1631.46 67.90 1663.57 66.90 1663.27 66.90
Clayton 1634.55 18.20 1666.40 19.50 1666.35 18.70
Frank 1636.44 13.70 1668.51 13.40 1668.44 13.90
GH 1655.72 0.20 1685.77 0.20 1682.51 0.50
Joe 1669.42 0.00 1699.73 0.00 1696.41 0.00

Clayton Clayton 1624.10 81.90 1655.94 82.50 1656.24 82.20
AMH 1626.91 17.50 1658.52 16.90 1658.74 17.20
Frank 1639.29 0.60 1671.08 0.60 1671.35 0.60
GH 1658.35 0.00 1688.23 0.00 1685.50 0.00
Joe 1672.79 0.00 1703.19 0.00 1700.91 0.00

Frank Frank 1629.86 84.10 1661.78 83.30 1661.46 80.30
AMH 1634.42 12.50 1666.31 11.90 1666.29 11.40
Clayton 1643.45 0.90 1675.01 1.10 1674.83 0.90
GH 1644.40 2.50 1674.18 3.70 1671.21 7.30
Joe 1656.39 0.00 1685.65 0.00 1682.12 0.10

GH GH 1602.46 82.10 1634.60 77.30 1635.05 65.00
AMH 1636.56 0.00 1668.58 0.00 1669.10 0.00
Clayton 1647.34 0.00 1678.96 0.10 1679.21 0.00
Frank 1623.95 1.50 1655.94 1.70 1656.39 0.70
Joe 1606.21 16.40 1637.76 20.90 1637.02 34.30

Joe Joe 1567.79 89.60 1599.67 89.90 1600.63 95.70
AMH 1637.18 0.00 1668.89 0.00 1669.37 0.00
Clayton 1652.74 0.00 1683.90 0.00 1684.21 0.00
Frank 1615.81 0.00 1647.55 0.00 1648.17 0.00
GH 1573.57 10.40 1605.46 10.10 1608.51 4.30
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For results in Table 5.5 for correctly �tted PH models, and taking also the correct copula �tting, the Joe

copula presents the smallest mean AIC values, given each �tted baseline distribution. Inside each (correct)

copula, �tted Weibull models exhibit the smallest mean AIC values, as expected. Fitted semiparametric models

perform well and similarly to each other, with BP models being slightly better for the majority of copulas (it

is only outperformed by the PE models when given the Frank copula).

Table 5.6: Mean AIC and choice proportion for all �tted survival copula models over generated data from
each copula with Weibull PO margins (n = 500; τ = 0.25).

True Fitted
Weibull PO BP PO PE PO

AIC Choice (%) AIC Choice (%) AIC Choice (%)

AMH AMH 1524.02 73.40 1553.17 71.70 1556.26 72.30
Clayton 1527.58 16.20 1556.92 16.10 1559.77 15.00
Frank 1530.21 10.30 1558.63 12.00 1561.82 12.20
GH 1552.28 0.10 1576.42 0.20 1575.93 0.50
Joe 1566.80 0.00 1591.85 0.00 1591.39 0.00

Clayton Clayton 1514.42 84.40 1543.70 81.70 1546.57 81.80
AMH 1517.85 15.40 1546.46 17.90 1549.57 17.80
Frank 1532.87 0.20 1561.31 0.40 1563.96 0.40
GH 1554.76 0.00 1579.05 0.00 1578.39 0.00
Joe 1570.19 0.00 1596.16 0.00 1595.80 0.00

Frank Frank 1525.10 82.70 1554.30 83.00 1557.26 79.50
AMH 1529.32 14.80 1558.94 12.30 1562.23 11.50
Clayton 1539.38 0.80 1568.95 0.70 1571.83 0.80
GH 1542.13 1.70 1566.96 3.90 1566.61 8.10
Joe 1554.97 0.00 1579.00 0.10 1578.15 0.10

GH GH 1497.29 88.30 1526.84 77.80 1530.60 64.90
AMH 1531.11 0.30 1561.09 0.20 1564.52 0.00
Clayton 1542.80 0.00 1572.75 0.10 1575.92 0.00
Frank 1518.31 2.50 1548.16 1.80 1551.88 0.50
Joe 1502.21 8.90 1530.33 20.10 1532.28 34.60

Joe Joe 1463.40 82.80 1492.63 90.90 1496.25 95.70
AMH 1532.57 0.00 1562.43 0.00 1565.82 0.00
Clayton 1549.23 0.00 1579.10 0.00 1582.01 0.00
Frank 1510.95 0.00 1540.94 0.00 1544.67 0.00
GH 1467.89 17.20 1498.54 9.10 1505.09 4.30

Taking results in Table 5.6 for correctly �tted PO models, along with the correct copula �tting, the Joe

copula presents again the smallest mean AIC values, given each �tted baseline. Given each (correct) copula,

once again �tted Weibull models exhibit the smallest mean AIC values. Fitted semiparametric models also

perform well, but now BP baseline overcome PE for all �ve copulas. Similar results are observed in Table 5.7

for correctly �tted YP models, but for semiparametric models the BP baseline are slightly better than PE

for the majority of copulas, only being outperformed when given the Clayton copula. Having more marginal

regression parameters, YP models possess the lowest mean AIC given any combination of copula and �tted

baseline. This was expected, since the YP regression structure is a more �exible model class that contains the

other two (PH and PO) as particular cases.

Although the highest proportions of choice by the smallest AIC always point out to the correct copula choice,

given any Archimedean copula for generation, it is possible to identify a similar pattern of �tted copulas with
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Table 5.7: Mean AIC and choice proportion for all �tted survival copula models over generated data from
each copula with Weibull YP margins (n = 500; τ = 0.25).

True Fitted
Weibull YP BP YP PE YP

AIC Choice (%) AIC Choice (%) AIC Choice (%)

AMH AMH 1452.21 70.10 1483.53 70.50 1484.45 68.90
Clayton 1456.01 17.50 1487.01 16.80 1487.78 18.00
Frank 1457.82 12.30 1489.12 12.50 1489.85 12.70
GH 1477.82 0.10 1506.95 0.20 1504.21 0.40
Joe 1492.98 0.00 1522.31 0.00 1519.60 0.00

Clayton Clayton 1443.29 83.10 1474.76 82.70 1475.45 83.60
AMH 1446.29 16.70 1477.91 16.90 1478.38 16.10
Frank 1461.58 0.20 1492.95 0.40 1493.41 0.30
GH 1481.45 0.00 1510.66 0.00 1507.64 0.00
Joe 1498.01 0.00 1527.91 0.00 1525.19 0.00

Frank Frank 1454.63 84.90 1486.48 83.10 1487.11 79.20
AMH 1459.53 12.30 1491.15 12.80 1491.76 12.40
Clayton 1469.78 0.50 1500.81 0.50 1501.42 0.40
GH 1469.61 2.30 1499.11 3.60 1496.36 8.00
Joe 1482.36 0.00 1511.19 0.00 1507.76 0.00

GH GH 1426.64 83.10 1458.16 79.00 1459.69 65.00
AMH 1460.84 0.10 1492.32 0.10 1493.69 0.00
Clayton 1472.77 0.00 1503.61 0.00 1504.59 0.00
Frank 1448.32 1.40 1479.62 1.60 1481.05 0.40
Joe 1430.85 15.40 1461.67 19.30 1461.39 34.60

Joe Joe 1392.68 90.00 1424.21 89.50 1425.65 95.40
AMH 1462.87 0.00 1494.04 0.00 1494.98 0.00
Clayton 1479.56 0.00 1510.41 0.10 1510.97 0.00
Frank 1441.53 0.00 1472.54 0.00 1473.74 0.00
GH 1398.89 10.00 1430.24 10.40 1434.29 4.60

non-negligible proportions of choice, regardless of �tted baseline or regression structure. For example, when

�tting generated data from an AMH copula, �tted models with the Clayton and Frank copulas always present

proportions of choice about than 10% or higher. The same can be said for �tted AMH models over data

generated from Clayton or Frank copulas, and so on. Therefore, it is possible to de�ne two groups of copulas

that, albeit not nested on themselves with respect to the copula function, seem to capture similar behaviors of

dependence (to be checked by correlation estimation in the next subsection): the �rst one composed by Frank,

AMH and Clayton copulas, and the second one by GH and Joe copulas.

5.1.3 Correlation Estimates

As well as observed AIC results, the correct copula choice provides the best Monte Carlo Kendall's τ

estimates. For the sake of simplicity, comments on the dependence parameter are restricted to the ARB results,

since computations for a Kendall's τ standard error estimate from its analogue for θ (either through a Delta

Method or a nonparametric resampling technique) is extremely di�cult for some copulas or computationally

demanding. A special note should be taken on AMH models: as seen earlier, the Kendall's τ for the AMH

copula is restricted to the interval [−0.1817, 0.3333]. To accommodate a stronger (positive) dependence, on
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data generated from the AMH copula model, the supposed value for τ is truncated to the upper limit. That

way, all other survival copula models �tted for AMH generated data will approximate well the truncated

correlation value, but won't do the same for the supposed original τ value according to the copula chosen for

�tting (treating the true copula as unknown). This explains the higher negative values for the ARB of �tted

models for AMH generated data with τ = 0.5 and τ = 0.75 (see the Appendix for more details).

Table 5.8: MC statistics for Kendall's tau estimates of �tted survival copula models over generated data
from each copula model with Weibull PH margins (n = 500; τ = 0.25)

True Copula
Weibull PH BP PH PE PH

AE ARB (%) AE ARB (%) AE ARB (%)

AMH AMH 0.2501 0.0575 0.2507 0.2622 0.2518 0.7377
Clayton 0.2357 -5.7147 0.2375 -4.9943 0.2394 -4.2569
Frank 0.2385 -4.5856 0.2389 -4.4257 0.2415 -3.4193
GH 0.1741 -30.3761 0.1875 -25.0138 0.2004 -19.8577
Joe 0.1077 -56.9244 0.1223 -51.0694 0.1375 -44.9808

Clayton Clayton 0.2513 0.5042 0.2516 0.6514 0.2538 1.5012
AMH 0.2737 9.4982 0.2791 11.6256 0.2788 11.5064
Frank 0.2308 -7.6685 0.2315 -7.4135 0.2339 -6.4577
GH 0.1656 -33.7657 0.1796 -28.1539 0.1929 -22.8444
Joe 0.0932 -62.7046 0.1059 -57.6590 0.1220 -51.2054

Frank Frank 0.2504 0.1504 0.2504 0.1746 0.2528 1.1036
AMH 0.2249 -10.0457 0.2253 -9.8906 0.2264 -9.4488
Clayton 0.2177 -12.9197 0.2210 -11.6183 0.2227 -10.9247
GH 0.1953 -21.8819 0.2068 -17.2841 0.2191 -12.3614
Joe 0.1391 -44.3578 0.1557 -37.7189 0.1694 -32.2251

GH GH 0.2487 -0.5239 0.2506 0.2495 0.2655 6.1938
AMH 0.2130 -14.8199 0.2138 -14.4629 0.2147 -14.1087
Clayton 0.2090 -16.3891 0.2133 -14.6809 0.2150 -13.9853
Frank 0.2650 6.0163 0.2655 6.2063 0.2674 6.9612
Joe 0.2068 -17.2847 0.2134 -14.6314 0.2300 -8.0025

Joe Joe 0.2514 0.5567 0.2542 1.6760 0.2717 8.6645
AMH 0.2007 -19.7268 0.2017 -19.3366 0.2024 -19.0564
Clayton 0.1982 -20.7288 0.2037 -18.5174 0.2053 -17.8804
Frank 0.2826 13.0336 0.2838 13.5001 0.2854 14.1603
GH 0.2824 12.9736 0.2810 12.4060 0.2966 18.6229

Given Scenario S1 (n = 500; τ = 0.25) from Tables 5.8 to 5.10, the least ARB was almost always observed

for the correct copula choice (except for GH generated data when �tting the Frank copula with PE PO or PE

YP for its margins). Moreover, given any �tted model with the correct copula, when plugging the Weibull

model as �tted baseline distribution, it presented the lowest ARB among all �tted baseline models for correctly

�tted PH and YP regression structures, while the BP model exhibited the lowest ARB for correctly �tted PO

models. However, the BP baseline performs well for PH and YP models, as the Weibull baseline for PO models:

their ARB values are always below 4%, regardless of the regression structure. Concerning the PE baseline, it

also performs well, specially for the correct �tting of AMH, Clayton and Frank copulas (always below 2%),

but not as much as Weibull and BP models for GH and Joe copulas, given any regression model class.

For correctly �tted survival copula models with the PH regression structure in Table 5.8, and given each

one of the three �tted baseline distributions, the smallest ARB were observed for the AMH (Weibull, PE) and
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Frank (BP) copulas. For all �tted (correct) AMH survival copula models, their ARB values were below 1%,

while for the Joe copula it is observed only when �tting the Weibull baseline. On the other hand, for �tted

models with the wrong copula, regardless of the baseline chosen for its margins, the ARB frequently exceeds

10%, specially when generating data from the Joe copula model (and �tting incorrectly any other Archimedean

survival copula model).

Table 5.9: MC statistics for Kendall's tau estimates of �tted survival copula models over generated data
from each copula model with Weibull PO margins (n = 500; τ = 0.25)

True Copula
Weibull PO BP PO PE PO

AE ARB (%) AE ARB (%) AE ARB (%)

AMH AMH 0.2522 0.8760 0.2502 0.0823 0.2511 0.4248
Clayton 0.2340 -6.4012 0.2326 -6.9744 0.2347 -6.1096
Frank 0.2394 -4.2344 0.2425 -2.9897 0.2448 -2.0625
GH 0.1665 -33.3865 0.1941 -22.3417 0.2079 -16.8443
Joe 0.0976 -60.9664 0.1272 -49.1358 0.1440 -42.4011

Clayton Clayton 0.2540 1.5988 0.2511 0.4568 0.2530 1.2178
AMH 0.2826 13.0418 0.2826 13.0421 0.2824 12.9613
Frank 0.2332 -6.7320 0.2374 -5.0269 0.2398 -4.0750
GH 0.1597 -36.1176 0.1895 -24.2055 0.2035 -18.6034
Joe 0.0841 -66.3741 0.1112 -55.5349 0.1287 -48.5108

Frank Frank 0.2498 -0.0906 0.2508 0.3079 0.2529 1.1439
AMH 0.2246 -10.1600 0.2228 -10.8646 0.2235 -10.5958
Clayton 0.2132 -14.7223 0.2128 -14.8752 0.2147 -14.1165
GH 0.1868 -25.2842 0.2098 -16.0651 0.2229 -10.8207
Joe 0.1284 -48.6378 0.1597 -36.1350 0.1745 -30.2145

GH GH 0.2411 -3.5522 0.2508 0.3010 0.2663 6.5337
AMH 0.2127 -14.9300 0.2111 -15.5732 0.2116 -15.3635
Clayton 0.2041 -18.3629 0.2031 -18.7502 0.2052 -17.9385
Frank 0.2643 5.7298 0.2645 5.7817 0.2660 6.4176
Joe 0.1968 -21.2627 0.2153 -13.8696 0.2331 -6.7525

Joe Joe 0.2409 -3.6527 0.2542 1.6621 0.2730 9.2106
AMH 0.1992 -20.3069 0.1974 -21.0261 0.1978 -20.8973
Clayton 0.1919 -23.2354 0.1904 -23.8456 0.1923 -23.0789
Frank 0.2807 12.2675 0.2806 12.2461 0.2814 12.5418
GH 0.2739 9.5605 0.2781 11.2486 0.2944 17.7418

When correctly �tting a survival copula model with the PO regression structure in Table 5.9, the smallest

ARB were observed for the AMH (PE), Frank (Weibull) and GH (BP) copulas. Again, for all �tted (correct)

AMH survival copula models, their ARB values were below 1%, while for the Joe copula it is always above this

percentage. Again, when �tting the wrong copula, regardless of the marginal baseline, the ARB often surpass

10%, now specially for data generated from Frank and Joe copula models. Finally, for correctly �tted survival

copula models with the YP regression structure in Table 5.10, given each one of the three �tted baselines,

the smallest ARB were always observed for the AMH copula (all of them below 1%), regardless of the �tted

baseline, while for the Joe copula it is observed only when �tting the Weibull baseline. For �tted models with

the wrong copula, the ARB frequently exceeds 10%, specially when generating from Frank and Joe copulas.

Figures 5.3 to 5.5 show boxplots for the relative bias on Kendall's τ estimation for all �tted survival copula

models in Scenario S1 (n = 500; τ = 0.25). Again, the correct copula choice provides the best results (i.e.,
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more centered around 0 when compared to �tted models with a wrong copula), regardless of the baseline

distribution or regression model class used for marginal �tting. Taking only the �tted models with the correct

copula, given any regression structure, the best results are observed for the Weibull baseline, although BP

models have similar performance for all copulas, as well as PE models (except for GH and Joe copulas).

Table 5.10: MC statistics for Kendall's tau estimates of �tted survival copula models over generated data
from each copula model with Weibull YP margins (n = 500; τ = 0.25)

True Copula
Weibull YP BP YP PE YP

AE ARB (%) AE ARB (%) AE ARB (%)

AMH AMH 0.2504 0.1433 0.2506 0.2271 0.2513 0.5034
Clayton 0.2312 -7.5121 0.2338 -6.4906 0.2353 -5.8715
Frank 0.2415 -3.3931 0.2431 -2.7794 0.2451 -1.9716
GH 0.1798 -28.0668 0.1956 -21.7589 0.2091 -16.3777
Joe 0.1114 -55.4558 0.1286 -48.5525 0.1454 -41.8507

Clayton Clayton 0.2517 0.6780 0.2522 0.8913 0.2536 1.4278
AMH 0.2855 14.1892 0.2859 14.3573 0.2830 13.1897
Frank 0.2362 -5.5211 0.2386 -4.5782 0.2405 -3.7861
GH 0.1742 -30.3022 0.1916 -23.3753 0.2054 -17.8321
Joe 0.0974 -61.0555 0.1124 -55.0309 0.1301 -47.9483

Frank Frank 0.2507 0.2944 0.2512 0.4942 0.2530 1.1973
AMH 0.2226 -10.9621 0.2232 -10.7273 0.2238 -10.4709
Clayton 0.2100 -15.9833 0.2150 -13.9823 0.2164 -13.4214
GH 0.1987 -20.5014 0.2108 -15.6613 0.2238 -10.4984
Joe 0.1427 -42.9139 0.1610 -35.5982 0.1757 -29.7065

GH GH 0.2488 -0.4624 0.2511 0.4276 0.2663 6.5289
AMH 0.2106 -15.7413 0.2117 -15.3085 0.2121 -15.1727
Clayton 0.2008 -19.6602 0.2056 -17.7519 0.2069 -17.2430
Frank 0.2631 5.2348 0.2648 5.9315 0.2660 6.3892
Joe 0.2082 -16.7336 0.2158 -13.6746 0.2333 -6.6855

Joe Joe 0.2516 0.6351 0.2546 1.8259 0.2732 9.2728
AMH 0.1968 -21.2954 0.1979 -20.8251 0.1983 -20.6982
Clayton 0.1874 -25.0559 0.1934 -22.6403 0.1943 -22.2730
Frank 0.2783 11.3159 0.2811 12.4523 0.2817 12.6789
GH 0.2803 12.1088 0.2784 11.3529 0.2945 17.8041

When simulating with a high sample size, even on a scenario with weak dependence, the choice of the

correct Archimedean copula for �tting is crucial to ensure a suitable estimation of θ and consequently of the

Kendall's τ correlation. This was expected, since all copulas considered for �tting are de�ned as functions

of a single dependence parameter, besides being enough to produce, on average, better AIC results. Also,

semiparametric models have similar performance to (correctly �tted) Weibull models for almost all �tted

survival models with the correct copula, no matter which results are taken to comparison, be it regression

parameters, an information criteria, or the correlation parameter. Concerning the identi�ed groups of copulas

earlier on mean AIC evaluation (Frank, AMH and Clayton composing the �rst group, and GH and Joe the

second one), this is corroborated by ARB results on the correlation estimation, although the Frank copula also

seems to compete with the correct �tting of a GH copula along with Joe.
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Figure 5.3: Kendall's τ estimates for �tted survival copula models over data generated from each copula
model with Weibull PH margins (n = 500; τ = 0.25)
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Figure 5.4: Kendall's τ estimates for �tted survival copula models over data generated from each copula
model with Weibull PO margins (n = 500; τ = 0.25)
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Figure 5.5: Kendall's τ estimates for �tted survival copula models over data generated from each copula
model with Weibull YP margins (n = 500; τ = 0.25)
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5.1.4 Likelihood Ratio Tests

The analysis presented below compares, through the Likelihood Ratio (LR) test, two nested models with

respect to their regression structure (i.e., PH vs. YP, and PO vs. YP), given each class used for generation

(always �tting the correct copula). Note that there are no pairs of nested Archimedean copulas, or �tted

baseline models, among those treated in this work. Since there are two covariates for each margin, keeping the

same speci�cation for �tted PH, PO and YP models, p-values for all LR statistics from tests comparing nested

models from each MC replica will be obtained from a χ2 distribution with 2× 2 = 4 degrees of freedom (note

that PH and PO classes have the same number of parameters). Under the null hypothesis, it is supposed that

the additional regression parameters from YP model are not signi�cant. If the LR statistic does not surpass

the critical value under a signi�cance of 5% (here, equal to χ2(0.95, 4) ≈ 9.4877), the regression class with

less parameters (more parsimonious model), is chosen. Otherwise, the YP model is selected as the best class.

Results for the average statistics and p-values from LR tests are presented from Tables 5.11 to 5.13.

Table 5.11: LR tests for PH and PO classes against YP class, given �tted survival copula models over
generated data from each copula model with Weibull PH margins (n = 500; τ = 0.25)

Copula Class
Weibull Fitting BP Fitting PE Fitting

LR stat. P-value LR stat. P-value LR stat. P-value

AMH PH 4.1965 0.4846 4.2689 0.4787 4.1354 0.4907
PO 48.0752 < 0.0001 33.8761 0.0005 34.1804 0.0002

Clayton PH 4.0989 0.4923 4.0398 0.4921 3.9649 0.4991
PO 48.7359 < 0.0001 34.4732 0.0003 34.6441 0.0002

Frank PH 4.1500 0.4742 4.1365 0.4736 4.0266 0.4840
PO 47.6290 < 0.0001 34.1908 0.0003 34.6151 0.0002

GH PH 4.0212 0.5008 4.0232 0.5000 3.8907 0.5124
PO 47.3462 < 0.0001 33.5009 0.0003 34.0694 0.0002

Joe PH 4.1007 0.4867 4.1930 0.4755 4.0980 0.4858
PO 47.2089 < 0.0001 33.6742 0.0004 34.7567 0.0003

For Table 5.11, when generating from the PH regression model class, all LR tests accept �tted YP models

against the (incorrect) PO regression structure, given any combination of �tted baseline and copula, as ex-

pected. Remember that the YP model is a generalization for the PH class, which are not nested within the

PO structure. However, the same cannot be said for LR tests confronting �tted PH and YP models. Their

results are always non-signi�cant, leading to the choice of (correctly) �tted PH models, since they are more

parsimonious (fewer regression parameters). Therefore, given a large sample size, introducing more regres-

sion parameters with a wider functional form to capture both short and long-term covariate e�ects (without

increasing the number of original covariates) does not provide a signi�cantly better �tting.

Looking now for Table 5.12, this time generating from the PO class, the converse is also true: all LR tests

accept �tted YP models against the (incorrect) PH structure, given any combination of �tted baseline and

copula, as expected, since the YP model is also a generalization for the PO class. However, the same cannot

be said for LR tests confronting �tted PO and YP models. Their results lead towards the choice of �tted PO

models, since (in this case) they are more parsimonious. Finally, for Table 5.13, when generating from the
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Table 5.12: LR tests for PH and PO classes against YP class, given �tted survival copula models over
generated data from each copula model with Weibull PO margins (n = 500; τ = 0.25)

Copula Class
Weibull Fitting BP Fitting PE Fitting

LR stat. P-value LR stat. P-value LR stat. P-value

AMH PH 30.1272 0.0018 23.7872 0.0100 24.9197 0.0066
PO 5.5396 0.3600 4.1265 0.4960 5.3370 0.3465

Clayton PH 31.1509 0.0015 24.6702 0.0076 25.9595 0.0051
PO 5.5430 0.3617 4.0845 0.4890 5.2688 0.3469

Frank PH 29.9082 0.0017 23.6726 0.0096 24.7241 0.0066
PO 5.4930 0.3664 4.1064 0.4922 5.2970 0.3465

GH PH 29.0730 0.0026 23.2333 0.0096 24.0902 0.0063
PO 5.5658 0.3659 4.3068 0.4800 5.4802 0.3429

Joe PH 30.1505 0.0029 23.7688 0.0139 24.2719 0.0107
PO 5.5344 0.3654 4.2056 0.4780 5.4340 0.3316

wider YP regression model class, all LR tests accept �tted YP models against the PH or PO structures, given

any combination of �tted baseline and copula. This was also expected, since (nested) PH and PO models do

not account for covariate short and long-term e�ects, but only during the whole time of follow-up.

Table 5.13: LR tests for PH and PO classes against YP class, given �tted survival copula models over
generated data from each copula model with Weibull YP margins (n = 500; τ = 0.25)

Copula Class
Weibull Fitting BP Fitting PE Fitting

LR stat. P-value LR stat. P-value LR stat. P-value

AMH PH 122.1934 < 0.0001 108.0926 < 0.0001 109.9563 < 0.0001
PO 94.2805 < 0.0001 80.5264 < 0.0001 82.8430 < 0.0001

Clayton PH 128.0063 < 0.0001 113.2562 < 0.0001 115.0452 < 0.0001
PO 100.5764 < 0.0001 85.5648 < 0.0001 87.9450 < 0.0001

Frank PH 122.1422 < 0.0001 107.9013 < 0.0001 109.4467 < 0.0001
PO 96.4341 < 0.0001 82.5658 < 0.0001 84.6061 < 0.0001

GH PH 120.1831 < 0.0001 106.2706 < 0.0001 107.3817 < 0.0001
PO 93.6736 < 0.0001 80.5333 < 0.0001 82.1474 < 0.0001

Joe PH 123.6797 < 0.0001 108.7011 < 0.0001 109.9063 < 0.0001
PO 96.3288 < 0.0001 82.1735 < 0.0001 84.0249 < 0.0001

Tables 5.11 to 5.13 showed that the analysis through the LR test for nested regression model classes, when

generating from an Archimedean survival copula with marginal Weibull baseline distribution, and regardless

of the �tted copula or baseline models (among those considered in this work) is a useful tool to choose the

regression structure for �tting if the one that generated the data is unknown.

5.2 Generated Copulas with EW Baseline

This section shows results for �tted survival copula models over generated data from Archimedean survival

copulas with marginal EW baseline distribution, also associated to a regression model class. Results in the

following subsections are divided in the same way as done for generated copula data with Weibull margins.
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5.2.1 Regression Parameter Estimates

The Monte Carlo estimates on regression parameters for �tted survival copula models, when marginally

generating from the EW distribution, are showed from Tables 5.14 to 5.17, divided by �tted baseline distri-

bution for each regression parameter set from a given class (for j = 1). For those results, comparisons are

again done among �tted models with di�erent copulas, yet keeping the same regression model class used for

generation.

Table 5.14: MC statistics for 1st margin regression parameter estimates of �tted survival copula models over
AMH EW PH generated data (n = 500; τ = 0.25)

Parameter Copula
Weibull PH Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β11 = −0.7 AMH -0.6066 0.1015 0.0895 13.3455 -0.8055 -0.4077 88.9972
Clayton -0.5993 0.0995 0.0899 14.3829 -0.7943 -0.4044 85.6960
Frank -0.6095 0.1026 0.0917 12.9305 -0.8106 -0.4084 89.4268
GH -0.6141 0.1040 0.0940 12.2656 -0.8180 -0.4103 89.6552
Joe -0.6165 0.1045 0.0947 11.9343 -0.8213 -0.4116 89.8848

β12 = 0.4 AMH 0.3502 0.0519 0.0488 -12.4418 0.2486 0.4519 84.2618
Clayton 0.3454 0.0507 0.0488 -13.6555 0.2460 0.4447 81.8646
Frank 0.3494 0.0525 0.0500 -12.6491 0.2465 0.4524 84.7134
GH 0.3515 0.0532 0.0518 -12.1180 0.2472 0.4559 85.9515
Joe 0.3529 0.0535 0.0521 -11.7710 0.2480 0.4578 86.2996

Parameter Copula
BP PH Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β11 = −0.7 AMH -0.7100 0.1039 0.1048 -1.4239 -0.9137 -0.5062 93.8878
Clayton -0.6990 0.1023 0.1061 0.1419 -0.8994 -0.4986 93.5936
Frank -0.7105 0.1053 0.1070 -1.4981 -0.9168 -0.5042 93.7938
GH -0.7115 0.1071 0.1083 -1.6477 -0.9214 -0.5017 94.0798
Joe -0.7086 0.1073 0.1077 -1.2283 -0.9189 -0.4983 94.3590

β12 = 0.4 AMH 0.4025 0.0530 0.0553 0.6300 0.2986 0.5064 93.3868
Clayton 0.3973 0.0522 0.0560 -0.6811 0.2950 0.4995 92.2923
Frank 0.4016 0.0537 0.0566 0.4077 0.2963 0.5070 93.0931
GH 0.4043 0.0547 0.0579 1.0772 0.2971 0.5115 92.7928
Joe 0.4032 0.0548 0.0577 0.8078 0.2958 0.5107 92.9487

Parameter Copula
PE PH Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β11 = −0.7 AMH -0.7014 0.1037 0.1037 -0.1956 -0.9046 -0.4981 94.1767
Clayton -0.6875 0.1018 0.1048 1.7838 -0.8870 -0.4881 93.3801
Frank -0.7053 0.1048 0.1056 -0.7579 -0.9107 -0.4999 94.0704
GH -0.7057 0.1057 0.1062 -0.8144 -0.9129 -0.4985 94.3517
Joe -0.7032 0.1063 0.1066 -0.4513 -0.9115 -0.4948 94.6223

β12 = 0.4 AMH 0.3981 0.0529 0.0549 -0.4838 0.2943 0.5018 93.4739
Clayton 0.3906 0.0520 0.0553 -2.3384 0.2888 0.4925 92.3771
Frank 0.3993 0.0535 0.0559 -0.1666 0.2944 0.5042 93.2663
GH 0.4012 0.0539 0.0566 0.2880 0.2954 0.5069 92.4262
Joe 0.3998 0.0542 0.0571 -0.0478 0.2935 0.5061 92.5736

Taking the results in Table 5.14, when correctly �tting the PH class under a low correlation, the ARB

is always lower (in magnitude) than 3%, and the CR is at most 0.03 away from the con�dence level when
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�tting a semiparametric model, for all regression parameters, even when �tting the wrong copula. However,

for (incorrectly) �tted Weibull models, the ARB is always above 10%, while the CR is always below 90%, even

with the correct copula. On the other hand, �tted BP and PE models with the correct (AMH) copula have

produced, in general, smaller ARB values and closer CR values to 95%. Therefore, they perform better than

�ttedWeibull models. This was expected due to the high �exibility of these semiparametric models: they do not

impose any parametric restriction for the (marginal) hazard rate function. It allows to capture non-monotonic

behaviors for the (marginal) hazard function that cannot be wrapped by any parametric speci�cation in the

Weibull family, and therefore produce more accurate and better regression parameter estimates.

Table 5.15: MC statistics for 1st margin regression parameter estimates of �tted survival copula models over
AMH EW PO generated data (n = 500; τ = 0.25)

Parameter Copula
Weibull PO Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β11 = −0.7 AMH -0.7267 0.1615 0.1601 -3.8092 -1.0432 -0.4102 95.6958
Clayton -0.7231 0.1603 0.1585 -3.2944 -1.0373 -0.4089 95.6577
Frank -0.7103 0.1624 0.1628 -1.4767 -1.0287 -0.3920 95.4023
GH -0.7043 0.1640 0.1678 -0.6213 -1.0258 -0.3829 95.2685
Joe -0.7024 0.1645 0.1681 -0.3468 -1.0249 -0.3800 94.8914

β12 = 0.4 AMH 0.4151 0.0810 0.0839 3.7873 0.2565 0.5738 93.9742
Clayton 0.4124 0.0804 0.0845 3.0914 0.2548 0.5700 93.4866
Frank 0.4023 0.0817 0.0868 0.5804 0.2422 0.5624 93.6143
GH 0.3970 0.0826 0.0894 -0.7601 0.2351 0.5588 92.9668
Joe 0.3958 0.0829 0.0895 -1.0499 0.2334 0.5582 93.1034

Parameter Copula
BP PO Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β11 = −0.7 AMH -0.7255 0.1616 0.1610 -3.6441 -1.0423 -0.4088 94.8000
Clayton -0.7291 0.1614 0.1633 -4.1529 -1.0454 -0.4128 94.5000
Frank -0.7160 0.1625 0.1634 -2.2924 -1.0345 -0.3976 94.6000
GH -0.7126 0.1653 0.1683 -1.7988 -1.0366 -0.3885 94.5083
Joe -0.7101 0.1656 0.1683 -1.4413 -1.0347 -0.3855 94.3152

β12 = 0.4 AMH 0.4107 0.0814 0.0866 2.6638 0.2511 0.5702 93.1000
Clayton 0.4133 0.0813 0.0873 3.3176 0.2539 0.5726 92.7000
Frank 0.4038 0.0819 0.0875 0.9387 0.2433 0.5642 93.0000
GH 0.4025 0.0833 0.0900 0.6137 0.2391 0.5658 92.0817
Joe 0.4007 0.0835 0.0889 0.1824 0.2372 0.5643 93.1525

Parameter Copula
PE PO Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β11 = −0.7 AMH -0.7111 0.1612 0.1579 -1.5817 -1.0271 -0.3951 95.2764
Clayton -0.7108 0.1607 0.1605 -1.5469 -1.0258 -0.3959 95.0505
Frank -0.7055 0.1622 0.1609 -0.7889 -1.0233 -0.3877 94.9648
GH -0.7076 0.1635 0.1653 -1.0901 -1.0280 -0.3872 95.1469
Joe -0.7064 0.1640 0.1662 -0.9186 -1.0279 -0.3849 94.8849

β12 = 0.4 AMH 0.4012 0.0812 0.0849 0.3037 0.2421 0.5604 93.4673
Clayton 0.4017 0.0809 0.0850 0.4323 0.2431 0.5603 93.6364
Frank 0.3972 0.0817 0.0859 -0.7022 0.2371 0.5573 93.5549
GH 0.3997 0.0823 0.0879 -0.0796 0.2384 0.5609 92.5926
Joe 0.3988 0.0826 0.0881 -0.3080 0.2369 0.5606 92.9668

For results in Table 5.15, this time correctly �tting the PO structure, (incorrectly) �tted Weibull models
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perform worse than, with respect to regression parameter estimation, �tted semiparametric models, although

that di�erence is smaller than the observed given the PH class. Other than that, conclusions over the ARB

and CR values are similar to those obtained for �tted semiparametric PH models in Table 5.14. Moreover,

their magnitude are similar to those obtained for marginally generated data from the Weibull baseline.

Table 5.16: MC statistics for 1st margin short-term regression parameter estimates of �tted survival copula
models over AMH EW YP generated data (n = 500; τ = 0.25)

Parameter Copula
Weibull YP Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β
(S)
11 = −0.7 AMH -0.9417 0.1450 0.1420 -34.5262 -1.2259 -0.6574 60.7692

Clayton -0.9342 0.1446 0.1425 -33.4615 -1.2177 -0.6508 63.4615
Frank -0.9400 0.1457 0.1427 -34.2802 -1.2255 -0.6545 61.5877
GH -0.9372 0.1473 0.1451 -33.8843 -1.2258 -0.6486 63.3205
Joe -0.9184 0.1481 0.1474 -31.2050 -1.2086 -0.6282 68.4547

β
(S)
12 = 0.4 AMH 0.3796 0.0941 0.1101 -5.1048 0.1952 0.5640 90.1282

Clayton 0.3837 0.0933 0.1078 -4.0625 0.2009 0.5666 90.7692
Frank 0.3685 0.0956 0.1131 -7.8817 0.1811 0.5559 89.1165
GH 0.3594 0.0960 0.1168 -10.1546 0.1712 0.5476 86.3578
Joe 0.3588 0.0967 0.1173 -10.2903 0.1694 0.5483 86.5900

Parameter Copula
BP YP Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β
(S)
11 = −0.7 AMH -0.7013 0.1591 0.1614 -0.1835 -1.0132 -0.3894 95.1904

Clayton -0.7022 0.1595 0.1628 -0.3190 -1.0148 -0.3896 94.8795
Frank -0.6912 0.1601 0.1643 1.2584 -1.0049 -0.3775 94.8000
GH -0.6949 0.1631 0.1683 0.7306 -1.0146 -0.3752 95.2381
Joe -0.6961 0.1633 0.1678 0.5590 -1.0162 -0.3760 95.6522

β
(S)
12 = 0.4 AMH 0.4284 0.0923 0.1003 7.0937 0.2475 0.6093 92.2846

Clayton 0.4260 0.0921 0.1010 6.5109 0.2456 0.6065 92.1687
Frank 0.4228 0.0926 0.1016 5.6939 0.2413 0.6043 92.5000
GH 0.4168 0.0940 0.1037 4.2096 0.2326 0.6010 92.9215
Joe 0.4138 0.0942 0.1038 3.4473 0.2292 0.5984 92.5831

Parameter Copula
PE YP Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β
(S)
11 = −0.7 AMH -0.7154 0.1589 0.1576 -2.1955 -1.0268 -0.4039 94.9648

Clayton -0.7125 0.1589 0.1584 -1.7868 -1.0240 -0.4010 94.7844
Frank -0.7111 0.1596 0.1601 -1.5865 -1.0239 -0.3983 94.8692
GH -0.7125 0.1611 0.1633 -1.7907 -1.0282 -0.3968 95.5128
Joe -0.7111 0.1617 0.1639 -1.5849 -1.0280 -0.3942 95.3668

β
(S)
12 = 0.4 AMH 0.4020 0.0913 0.0961 0.5080 0.2230 0.5810 93.9577

Clayton 0.4002 0.0911 0.0960 0.0597 0.2218 0.5787 94.2828
Frank 0.3988 0.0916 0.0968 -0.3012 0.2193 0.5783 94.7686
GH 0.3991 0.0921 0.0992 -0.2233 0.2185 0.5797 93.0769
Joe 0.3977 0.0927 0.0997 -0.5820 0.2160 0.5794 92.9215

From Table 5.16, when correctly �tting the YP class under a nonparametric baseline, the ARB for short-

term parameters is larger than the ones in Tables 5.14 and 5.15, but still always lower than 3% for �tted PE

models and 8% for BP models, even when �tting the wrong copula. However, for (incorrectly) �tted Weibull

models, ARB and CR results are poor: for the �rst covariate, the ARB is always higher than 30%, leading to
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CR values below 70%. Again, for semiparametric models, �tting the correct copula has produced, in general,

smaller ARB values and closer CR values to the con�dence level, specially when �tting the PE baseline. When

looking the results for long-term parameters in Table 5.17, conclusions are similar to those obtained for short-

term parameters. Along with results in Table 5.16, for the wider YP class, �tted semiparametric models (BP

and PE) perform better than (incorrectly) �tted Weibull models, given copula generated data with marginal

EW baseline distribution. Figures 5.6 (for PH and PO model classes) and 5.7 (for YP) show the boxplots for

the relative bias on regression parameter estimates for �tted survival copula models, divided by baseline, over

AMH EW generated data, given Scenario S1 (n = 500; τ = 0.25).

Table 5.17: MC statistics for 1st margin long-term regression parameter estimates of �tted survival copula
models over AMH EW YP generated data (n = 500; τ = 0.25)

Parameter Copula
Weibull YP Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β
(L)
11 = 0.8 AMH 1.5848 1.4085 1.2081 98.0972 -1.1837 4.3373 88.5751

Clayton 1.4957 0.5825 1.2353 86.9635 0.3539 2.6375 88.4615
Frank 1.7089 1.8974 1.5321 113.6081 -2.0099 5.4277 90.3969
GH 1.8217 2.6840 1.7635 127.7085 -3.4389 7.0822 89.1892
Joe 1.7977 2.6400 1.8409 124.7111 -3.3923 6.9564 91.8159

β
(L)
12 = −0.6 AMH -0.6478 0.1324 0.1224 -7.9588 -0.9073 -0.3882 95.0000

Clayton -0.6401 0.1286 0.1174 -6.6816 -0.8921 -0.3881 95.6410
Frank -0.6428 0.1393 0.1276 -7.1338 -0.9159 -0.3698 95.7746
GH -0.6269 0.1426 0.1329 -4.4868 -0.9063 -0.3475 95.8816
Joe -0.6221 0.1434 0.1348 -3.6821 -0.9031 -0.3411 95.9132

Parameter Copula
BP YP Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β
(L)
11 = 0.8 AMH 0.8385 0.3274 0.4899 4.8121 0.1860 1.4694 95.1856

Clayton 0.8122 0.3103 0.4292 1.5309 0.1956 1.4120 94.0704
Frank 0.8570 0.3364 0.6558 7.1276 0.1859 1.5045 95.3954
GH 0.8562 0.4646 0.5860 7.0267 -0.0543 1.7667 95.7529
Joe 0.8594 0.5793 0.5502 7.4200 -0.2763 1.9946 95.6466

β
(L)
12 = −0.6 AMH -0.6398 0.1257 0.1261 -6.6401 -0.8865 -0.3938 93.6810

Clayton -0.6227 0.1226 0.1232 -3.7775 -0.8629 -0.3825 94.6787
Frank -0.6432 0.1291 0.1295 -7.1932 -0.8961 -0.3902 93.5000
GH -0.6325 0.1304 0.1310 -5.4141 -0.8881 -0.3769 94.0798
Joe -0.6325 0.1307 0.1314 -5.4090 -0.8889 -0.3766 94.1101

Parameter Copula
PE YP Fitting

AE SDE ASE ARB (%) ALB AUB CR (%)

β
(L)
11 = 0.8 AMH 0.8352 0.3320 0.3398 4.4056 0.1845 1.4860 96.5760

Clayton 0.8138 0.3130 0.3264 1.7189 0.2003 1.4272 95.7874
Frank 0.8446 0.3448 0.3545 5.5735 0.1687 1.5204 97.1831
GH 0.8426 0.3412 0.3376 5.3285 0.1740 1.5113 97.0513
Joe 0.8501 0.3460 0.3431 6.2629 0.1720 1.5283 97.0399

β
(L)
12 = −0.6 AMH -0.5922 0.1223 0.1172 1.2967 -0.8319 -0.3526 96.3746

Clayton -0.5795 0.1188 0.1153 3.4173 -0.8124 -0.3466 95.5868
Frank -0.5955 0.1253 0.1195 0.7452 -0.8411 -0.3500 96.3783
GH -0.5908 0.1261 0.1225 1.5272 -0.8381 -0.3436 95.6410
Joe -0.5946 0.1273 0.1230 0.8981 -0.8440 -0.3452 95.7529
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Figure 5.6: Relative bias on regression parameter estimates for �tted survival copula models over AMH EW
(PH or PO) generated data (n = 500; τ = 0.25).
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Figure 5.7: Relative bias on regression parameter estimates for �tted survival copula models over AMH EW
YP generated data (n = 500; τ = 0.25).
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For �tted semiparametric models, the boxplots for the majority of regression parameters with the correct

copula �tting had, in general, smaller range or fewer outlier count. Fitted PE models seem to have slightly

better results for relative bias on regression parameter estimates than BP models, specially for the PO class.

On the other hand, the boxplots from (incorrectly) �tted Weibull models, given the PH and YP classes, are

far from being centered to the null value, even for the correct copula �tting.

Given generated data from an Archimedean copula model with marginal EW baseline distribution, again

�tted models with an incorrect copula show results close to the correct one for regression parameters (regarding

the ARB and CR) under a PH, PO or YP structure, when marginally �tting a semiparametric baseline

distribution. In that case, the choice of a copula for �tting has little impact on estimation of regression

parameters. However, choosing a wrong parametric speci�cation for the baseline distribution can lead to poor

estimation on regression parameters. This was expected, since the hazard function for the Weibull model

cannot accommodate non-monotone forms, as those that can arise from marginally generated EW models.

5.2.2 Akaike Information Criteria

For copula generated data with marginal EW baseline distribution, results on the AIC of �tted BP and PE

Table 5.18: Mean AIC and choice proportion for all �tted survival copula models over generated data from
each copula with EW PH margins (n = 500; τ = 0.25)

True Fitted
Weibull PH BP PH PE PH

AIC Choice (%) AIC Choice (%) AIC Choice (%)

AMH AMH 905.73 34.01 909.44 67.30 859.54 68.60
Clayton 904.69 62.04 912.33 22.30 862.73 19.80
Frank 913.69 3.95 915.33 10.40 865.25 11.60
GH 941.99 0.00 949.11 0.00 897.45 0.00
Joe 952.82 0.00 959.67 0.00 910.99 0.00

Clayton Clayton 898.76 97.02 899.48 86.10 849.32 83.40
AMH 902.90 2.72 903.05 13.40 852.46 16.00
Frank 917.27 0.26 916.67 0.50 866.17 0.60
GH 945.09 0.00 951.43 0.00 898.52 0.00
Joe 955.16 0.00 961.45 0.00 911.71 0.00

Frank Frank 903.39 65.32 906.36 83.40 856.10 85.70
AMH 905.55 26.10 910.52 14.90 860.55 12.90
Clayton 908.98 7.82 920.23 1.00 869.80 0.90
GH 928.44 0.76 936.19 0.70 884.28 0.50
Joe 940.57 0.00 947.78 0.00 897.85 0.00

GH GH 873.88 90.75 879.71 71.90 835.03 70.90
AMH 905.11 0.13 913.51 0.20 864.46 0.10
Clayton 910.95 0.25 925.06 0.10 875.56 0.00
Frank 892.74 8.24 900.66 27.60 850.48 28.40
Joe 882.09 0.63 888.56 0.20 843.11 0.60

Joe Joe 833.34 29.69 841.11 19.10 796.33 37.30
AMH 901.10 0.00 909.95 0.00 860.09 0.00
Clayton 910.85 0.00 926.90 0.00 875.94 0.00
Frank 877.35 0.13 887.86 22.30 836.71 22.30
GH 831.08 70.18 838.38 58.60 795.97 40.40
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models corroborate to choose the correct copula, as seen from Tables 5.18 to 5.20, except when generating from

the Joe copula. In that case, �tted Frank and GH copulas have non-negligible or even higher proportions of

choice, while �tted GH copula models also present smaller mean AIC values, even under the YP class. When

taking other �tted models with the correct copula, the highest proportions of choice are observed for the

Clayton and Frank copulas. On the other hand, for �tted models with the (incorrect) Weibull baseline, AIC

results induce to the choice of Clayton copula instead of AMH when generating from the last one, although

leading to the correct copula �tting for Clayton, Frank or GH generated data.

For results in Table 5.18 for correctly �tted PH models, and taking also the correct copula �tting, the

Joe copula presents the smallest mean AIC values (narrowly losing to �tted GH models over Joe generated

data), given each �tted nonparametric baseline distribution. This conclusion is the same for correctly �tted

PO models in Table 5.19. Inside each (correct) copula with marginal PH class, �tted PE models exhibit by far

the smallest mean AIC values, while �tted Weibull models perform slightly better than BP ones. Changing to

the marginal PO class, once again �tted PE models exhibit the smallest mean AIC values, but now �tted BP

models clearly perform better than Weibull ones.

Table 5.19: Mean AIC and choice proportion for all �tted survival copula models over generated data from
each copula with EW PO margins (n = 500; τ = 0.25)

True Fitted
Weibull PO BP PO PE PO

AIC Choice (%) AIC Choice (%) AIC Choice (%)

AMH AMH 815.06 18.47 792.56 71.70 755.36 70.50
Clayton 814.24 79.87 796.03 19.60 758.29 18.10
Frank 827.00 1.66 799.35 8.70 761.37 11.40
GH 857.86 0.00 835.71 0.00 796.08 0.00
Joe 868.58 0.00 847.99 0.00 810.98 0.00

Clayton Clayton 808.05 99.61 782.04 86.30 744.41 85.90
AMH 813.07 0.26 785.62 13.30 748.29 13.70
Frank 831.17 0.13 802.07 0.40 763.53 0.40
GH 861.15 0.00 839.67 0.00 798.32 0.00
Joe 870.79 0.00 851.03 0.00 813.27 0.00

Frank Frank 815.65 51.58 792.98 83.30 755.35 86.40
AMH 816.49 28.88 797.16 15.40 760.11 12.70
Clayton 818.47 19.04 807.79 0.80 770.21 0.60
GH 843.35 0.50 824.00 0.50 784.32 0.30
Joe 855.62 0.00 836.66 0.00 798.59 0.00

GH GH 785.44 90.11 767.94 70.80 734.21 69.90
AMH 815.76 0.25 800.33 0.30 764.36 0.10
Clayton 820.55 0.38 813.15 0.00 776.89 0.00
Frank 804.59 9.13 787.22 28.50 751.25 28.70
Joe 794.75 0.13 777.23 0.40 743.13 1.30

Joe Joe 745.21 17.61 730.38 20.70 695.93 36.60
AMH 812.18 0.00 797.71 0.00 759.91 0.00
Clayton 821.26 0.00 816.21 0.00 777.52 0.00
Frank 789.53 0.13 775.02 22.30 737.14 22.30
GH 741.49 82.26 727.71 57.00 695.62 41.10

Similar results to those obtained for the PH class are observed in Table 5.20 for correctly �tted YP

models, but now the gap between Weibull and BP mean AIC is a bit larger. Having more marginal regression
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parameters, �tted YP models possess again the lowest mean AIC when compared to �tted PH and PO classes,

given any combination of copula and baseline distribution, when �tting the correct regression structure.

Table 5.20: Mean AIC and choice proportion for all �tted survival copula models over generated data from
each copula with EW YP margins (n = 500; τ = 0.25)

True Fitted
Weibull YP BP YP PE YP

AIC Choice (%) AIC Choice (%) AIC Choice (%)

AMH AMH 747.29 25.22 760.94 71.10 720.23 70.50
Clayton 745.76 73.63 764.42 19.50 723.36 18.50
Frank 757.80 1.15 767.78 9.40 726.24 11.00
GH 787.88 0.00 806.15 0.00 762.19 0.00
Joe 800.04 0.00 817.86 0.00 777.21 0.00

Clayton Clayton 738.31 98.70 749.94 85.40 709.60 85.60
AMH 742.98 1.30 753.99 14.40 713.19 14.20
Frank 761.62 0.00 770.33 0.20 729.10 0.20
GH 790.49 0.00 808.30 0.00 763.97 0.00
Joe 802.17 0.00 819.70 0.00 778.96 0.00

Frank Frank 746.74 57.25 762.06 83.50 721.45 85.50
AMH 747.55 31.15 766.39 15.50 726.34 13.70
Clayton 751.49 11.10 776.96 0.60 735.91 0.50
GH 771.96 0.50 793.08 0.40 750.36 0.30
Joe 785.56 0.00 805.68 0.00 764.70 0.00

GH GH 717.57 91.40 735.00 71.60 698.76 70.20
AMH 748.38 0.13 768.72 0.20 729.69 0.10
Clayton 754.07 0.38 781.10 0.00 741.32 0.00
Frank 737.14 7.08 755.41 28.10 716.00 28.70
Joe 726.33 1.01 744.60 0.10 707.78 1.00

Joe Joe 678.42 31.23 698.14 18.10 661.12 35.50
AMH 745.59 0.00 766.69 0.00 725.67 0.20
Clayton 756.43 0.00 784.82 0.00 742.78 0.00
Frank 723.87 0.13 743.68 22.50 702.14 22.20
GH 676.54 68.64 695.33 59.40 660.71 42.10

Although the majority of highest proportions of choice by the smallest AIC point out, in general, to the

correct copula choice, it is possible to identify the same pattern (veri�ed earlier for generated data with Weibull

baseline) of �tted copulas with non-negligible proportions of choice, regardless of �tted baseline or regression

structure. Therefore, the same two copula groups (one involving Frank, AMH and Clayton, and the other

composed by GH and Joe) that seem to capture similar behaviors of dependence are once again de�ned.
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5.2.3 Correlation Estimates

As well as observed AIC results for generated data with marginal EW baseline distribution, the correct

copula choice yields, in general, the best MC Kendall's τ estimates, as seen from Tables 5.21 to 5.23, except

when generating from GH or Joe copulas. For those two cases, �tted models with the correct copula present

non-negligible (and negative) ARB values, even when �tting a nonparametric baseline, regardless of the gen-

erated regression model class. This possibly evidences a di�culty on identifying the dependence parameter

over more general behaviors for the marginal hazard function, with respect to some copulas.

Table 5.21: MC statistics for Kendall's tau estimates of �tted survival copula models over generated data
from each copula model with EW PH margins (n = 500; τ = 0.25)

True Copula
Weibull PH BP PH PE PH

AE ARB (%) AE ARB (%) AE ARB (%)

AMH AMH 0.2692 7.6685 0.2450 -1.9970 0.2506 0.2438
Clayton 0.2720 8.7965 0.2311 -7.5745 0.2386 -4.5715
Frank 0.2269 -9.2588 0.2253 -9.8928 0.2370 -5.1902
GH 0.1151 -53.9482 0.0955 -61.8159 0.1353 -45.8630
Joe 0.0571 -77.1447 0.0430 -82.8188 0.0663 -73.4804

Clayton Clayton 0.2772 10.8926 0.2446 -2.1504 0.2524 0.9446
AMH 0.2788 11.5088 0.2730 9.2034 0.2793 11.7282
Frank 0.2164 -13.4423 0.2178 -12.8868 0.2298 -8.0825
GH 0.1034 -58.6357 0.0865 -65.4156 0.1268 -49.2837
Joe 0.0467 -81.3315 0.0345 -86.1940 0.0539 -78.4380

Frank Frank 0.2459 -1.6421 0.2380 -4.8003 0.2487 -0.5051
AMH 0.2461 -1.5459 0.2212 -11.5032 0.2255 -9.7840
Clayton 0.2674 6.9786 0.2165 -13.4000 0.2230 -10.7841
GH 0.1414 -43.4516 0.1176 -52.9479 0.1563 -37.4759
Joe 0.0835 -66.5869 0.0653 -73.8774 0.0950 -62.0043

GH GH 0.2013 -19.4865 0.1750 -30.0019 0.2143 -14.2728
AMH 0.2356 -5.7770 0.2098 -16.0892 0.2141 -14.3517
Clayton 0.2662 6.4946 0.2087 -16.5322 0.2153 -13.8865
Frank 0.2673 6.9242 0.2516 0.6332 0.2645 5.8170
Joe 0.1469 -41.2225 0.1234 -50.6293 0.1637 -34.5352

Joe Joe 0.1901 -23.9626 0.1623 -35.0645 0.2085 -16.6136
AMH 0.2232 -10.7372 0.1979 -20.8271 0.2015 -19.3810
Clayton 0.2658 6.3373 0.1993 -20.2615 0.2058 -17.6903
Frank 0.2907 16.2822 0.2688 7.5022 0.2829 13.1531
GH 0.2403 -3.8876 0.2104 -15.8259 0.2503 0.1352

Given any �tted model with the correct copula, among AMH, Clayton, and Frank, the lowest ARB values

were observed when �tting the PE model as the baseline distribution (always below 1% in magnitude), followed

by the BP and Weibull models, regardless of the regression structure. Although not presenting good ARB

values for correctly �tted models with GH or Joe copulas (always above 10%), the PE baseline still performs

better than (incorrect) Weibull and BP models (in that order). Comparing only the semiparametric models

for those cases, using the BP baseline produces an ARB about twice the obtained when using the PE model

(a bit more under the PH regression structure, and less under PO or YP classes).
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Table 5.22: MC statistics for Kendall's tau estimates of �tted survival copula models over generated data
from each copula model with EW PO margins (n = 500; τ = 0.25)

True Copula
Weibull PO BP PO PE PO

AE ARB (%) AE ARB (%) AE ARB (%)

AMH AMH 0.2737 9.4981 0.2467 -1.3137 0.2496 -0.1653
Clayton 0.2711 8.4380 0.2286 -8.5671 0.2347 -6.1307
Frank 0.2227 -10.9094 0.2309 -7.6308 0.2401 -3.9497
GH 0.1057 -57.7121 0.1044 -58.2329 0.1395 -44.2022
Joe 0.0495 -80.1828 0.0463 -81.4680 0.0675 -73.0074

Clayton Clayton 0.2764 10.5568 0.2453 -1.8737 0.2516 0.6336
AMH 0.2865 14.6094 0.2775 10.9822 0.2802 12.0855
Frank 0.2122 -15.1248 0.2248 -10.0944 0.2347 -6.1226
GH 0.0944 -62.2345 0.0961 -61.5624 0.1323 -47.0846
Joe 0.0402 -83.9202 0.0372 -85.1124 0.0552 -77.9196

Frank Frank 0.2418 -3.2838 0.2407 -3.7264 0.2485 -0.6146
AMH 0.2484 -0.6586 0.2204 -11.8350 0.2225 -10.9926
Clayton 0.2651 6.0267 0.2107 -15.7333 0.2157 -13.7379
GH 0.1318 -47.2975 0.1247 -50.1255 0.1576 -36.9556
Joe 0.0745 -70.2033 0.0692 -72.3315 0.0955 -61.8100

GH GH 0.1909 -23.6432 0.1820 -27.2177 0.2132 -14.7030
AMH 0.2368 -5.2942 0.2085 -16.6036 0.2104 -15.8425
Clayton 0.2623 4.9357 0.2010 -19.5860 0.2061 -17.5774
Frank 0.2621 4.8592 0.2538 1.5231 0.2621 4.8452
Joe 0.1358 -45.6651 0.1297 -48.1014 0.1630 -34.8036

Joe Joe 0.1781 -28.7560 0.1698 -32.0668 0.2068 -17.2698
AMH 0.2242 -10.3358 0.1959 -21.6590 0.1970 -21.1959
Clayton 0.2608 4.3090 0.1893 -24.2804 0.1938 -22.4926
Frank 0.2856 14.2578 0.2705 8.2015 0.2786 11.4376
GH 0.2296 -8.1666 0.2167 -13.3032 0.2473 -1.0807

Figures 5.8 to 5.10 show boxplots for the relative bias on Kendall's τ estimation for all �tted survival

copula models in Scenario S1 (n = 500; τ = 0.25) over generated copula data with EW baseline for each

margin. Given any regression model class, results for their associated boxplots con�rms those obtained for

point estimation and ARB from Tables 5.21 to 5.23: �tted Weibull and semiparametric models (specially these

last ones) with the correct copula have boxplots well-centered in the null line for generated data from AMH,

Clayton and Frank copulas. As expected, the same cannot be said for any �tted baseline model when correctly

�tting the GH and Joe copulas: for �tted Weibull and BP models, their corresponding boxplots barely touch

the null line, while for �tted PE models only a small part from their interquartile range is around it. On the

other hand, given any copula for generation, the boxplot dispersion for the relative bias of each �tted copula

model is similar, in general, across all �ve Archimedean copula models, even if choosing a wrong one.

From Tables 5.21 to 5.23 and also from Figures 5.8 to 5.10, it is possible to conclude that the choice of a

correct Archimedean copula is necessary to ensure an appropriate estimation of the Kendall's τ correlation if

marginal survival times were generated by a more general process, but it is not su�cient depending on the true

copula function. However, when looking to mean AIC values and proportions of choice for correctly �tted GH

and Joe copulas from tables 5.18 to 5.20 it can be said that, if τ estimates alone are not the best, those models

are better �tted if compared to almost all wrong copula choices, regardless of the �tted baseline distribution.
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Finally, �tted PE models performed exceptionally better than the (also semiparametric) BP and the (in-

correct) Weibull models given any correct copula �tting, over generated data with EW margins. This contrasts

with results obtained when generating marginally with the Weibull baseline, for which BP models had better

�tting than PE ones for the majority of copula and regression model class combinations (although still being

outperformed to �tted Weibull models in general). That said, there is no immediate response for which semi-

parametric model is better when the generator process of copula data and marginal baseline distribution are

unknown, but both BP and PE have proven to be useful.

Table 5.23: MC statistics for Kendall's tau estimates of �tted survival copula models over generated data
from each copula model with EW YP margins (n = 500; τ = 0.25)

True Copula
Weibull YP BP YP PE YP

AE ARB (%) AE ARB (%) AE ARB (%)

AMH AMH 0.2681 7.2207 0.2480 -0.8038 0.2502 0.0607
Clayton 0.2606 4.2588 0.2310 -7.6188 0.2356 -5.7568
Frank 0.2235 -10.6162 0.2322 -7.1067 0.2410 -3.6106
GH 0.1209 -51.6409 0.1021 -59.1694 0.1394 -44.2551
Joe 0.0596 -76.1624 0.0446 -82.1799 0.0669 -73.2306

Clayton Clayton 0.2672 6.8785 0.2476 -0.9431 0.2521 0.8494
AMH 0.2980 19.2168 0.2813 12.5057 0.2815 12.5824
Frank 0.2141 -14.3685 0.2266 -9.3537 0.2359 -5.6588
GH 0.1099 -56.0272 0.0943 -62.2957 0.1326 -46.9619
Joe 0.0484 -80.6363 0.0354 -85.8384 0.0545 -78.2067

Frank Frank 0.2402 -3.9398 0.2416 -3.3708 0.2489 -0.4216
AMH 0.2395 -4.2144 0.2212 -11.5299 0.2230 -10.8022
Clayton 0.2525 1.0081 0.2134 -14.6327 0.2174 -13.0395
GH 0.1458 -41.6675 0.1226 -50.9588 0.1572 -37.1380
Joe 0.0865 -65.3876 0.0675 -73.0175 0.0946 -62.1548

GH GH 0.2006 -19.7675 0.1800 -27.9929 0.2125 -15.0124
AMH 0.2267 -9.3075 0.2098 -16.0970 0.2112 -15.5357
Clayton 0.2481 -0.7549 0.2044 -18.2425 0.2079 -16.8314
Frank 0.2571 2.8342 0.2552 2.0885 0.2627 5.0931
Joe 0.1477 -40.9160 0.1274 -49.0377 0.1618 -35.2800

Joe Joe 0.1899 -24.0296 0.1673 -33.0780 0.2061 -17.5799
AMH 0.2148 -14.0708 0.1970 -21.1825 0.1977 -20.9172
Clayton 0.2452 -1.9213 0.1938 -22.4956 0.1961 -21.5458
Frank 0.2780 11.2183 0.2720 8.8198 0.2794 11.7567
GH 0.2370 -5.1906 0.2150 -13.9848 0.2468 -1.2794
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Figure 5.8: Kendall's τ estimates for �tted survival copula models over data generated from each copula
model with EW PH margins (n = 500; τ = 0.25)
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Figure 5.9: Kendall's τ estimates for �tted survival copula models over data generated from each copula
model with EW PO margins (n = 500; τ = 0.25)
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Figure 5.10: Kendall's τ estimates for �tted survival copula models over data generated from each copula
model with EW YP margins (n = 500; τ = 0.25)
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5.2.4 Likelihood Ratio Tests

For copula generated data with EW margins, the analysis through LR tests will not account for �tted

Weibull models: for the purpose of this work, evaluation of nested models is done with respect to the regression

model class. Therefore, it is restricted to �tted semiparametric models. Again, p-values for all LR statistics

will be obtained from a χ2
(4). Tables 5.24 to 5.26 present results for average statistics and p-values from LR

tests on �tted BP and PE models over generated data with the EW baseline (under the correct copula �tting).

Table 5.24: LR tests for PH and PO classes against YP class, given �tted survival copula models over
generated data from each copula model with EW PH margins (n = 500; τ = 0.25)

Copula Class
BP Fitting PE Fitting

LR stat. P-value LR stat. P-value

AMH PH 6.1175 0.3425 4.2940 0.4717
PO 26.0845 0.0172 30.8931 0.0009

Clayton PH 5.6297 0.3771 4.0687 0.4891
PO 26.4718 0.0124 31.3756 0.0008

Frank PH 5.9444 0.3527 4.1757 0.4726
PO 25.9596 0.0192 31.2596 0.0007

GH PH 5.4472 0.3895 4.1775 0.4853
PO 24.9161 0.0176 29.9006 0.0013

Joe PH 5.6756 0.3807 4.4143 0.4622
PO 23.1901 0.0283 28.8543 0.0023

On Table 5.24, when generating from the PH class, all LR tests accept �tted YP models against the

(incorrect) PO class, for any combination of �tted nonparametric baseline and copula, as expected. The same

cannot be said for LR tests confronting �tted PH and YP models, whose results are always non-signi�cant,

leading to the choice of (correctly and more parsimonious) �tted PH models. Thus, even on a more general

baseline distribution for marginal survival times and given a large sample size, introducing more regression

parameters to capture short and long-term covariate e�ects does not provide a signi�cantly better �tting.

Table 5.25: LR tests for PH and PO classes against YP class, given �tted survival copula models over
generated data from each copula model with EW PO margins (n = 500; τ = 0.25)

Copula Class
BP Fitting PE Fitting

LR stat. P-value LR stat. P-value

AMH PH 27.9217 0.0071 26.7120 0.0051
PO 1.0745 0.7665 4.4347 0.4495

Clayton PH 28.9169 0.0040 27.9565 0.0038
PO 0.9686 0.7644 4.4032 0.4478

Frank PH 28.0047 0.0062 26.6746 0.0043
PO 1.1426 0.7550 4.3725 0.4536

GH PH 28.0819 0.0072 26.9723 0.0045
PO 1.7151 0.7208 4.6114 0.4355

Joe PH 30.1212 0.0061 28.6870 0.0051
PO 1.7149 0.7188 4.6527 0.4233
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Looking now for Table 5.25, this time generating from the PO class, the converse is also true: all LR

tests accept �tted YP models against the (incorrect) PH regression structure, given any combination of �tted

nonparametric baseline and copula. However, the same cannot be said for LR tests confronting �tted PO

and YP models. Their results lead towards the choice of PO class, since its associated models are more

parsimonious. Finally, for Table 5.26, when generating from the wider YP class, all LR tests accept �tted YP

models against the PH or PO regression structures, given any combination of �tted nonparametric baseline

and copula function, as occurred for marginally generated data from the Weibull baseline.

Table 5.26: LR tests for PH and PO classes against YP class, given �tted survival copula models over
generated data from each copula model with EW YP margins (n = 500; τ = 0.25)

Copula Class
BP Fitting PE Fitting

LR stat. P-value LR stat. P-value

AMH PH 118.2559 < 0.0001 111.9872 < 0.0001
PO 86.1503 < 0.0001 83.1002 < 0.0001

Clayton PH 124.1241 < 0.0001 117.2673 < 0.0001
PO 91.4135 < 0.0001 87.9554 < 0.0001

Frank PH 118.5429 < 0.0001 111.6295 < 0.0001
PO 88.7532 < 0.0001 84.9454 < 0.0001

GH PH 117.8587 < 0.0001 111.5238 < 0.0001
PO 87.7842 < 0.0001 83.9300 < 0.0001

Joe PH 120.8868 < 0.0001 114.6986 < 0.0001
PO 90.1515 < 0.0001 86.4063 < 0.0001

Tables 5.24 to 5.26 showed that the analysis through the LR test for nested regression model classes, also

when generating from an Archimedean survival copula with marginal EW baseline distribution (regardless of

the �tted copula function or nonparametric baseline model) is a useful tool to choose the regression structure

for �tting if the one that generated the data is unknown, even on a more general behavior for the true marginal

baseline distribution.

5.3 Crossing Time Estimation

Both PH and PO classes allows a feasible interpretation on regression parameter estimates if their corre-

sponding assumptions are valid. However, neither of them account for the situation where, given two levels of

a covariate (e.g., the indicator for a treatment), the associated survival functions cross each other. It might

be of interest to estimate such crossing survival time t∗. This is possible for �tted models with the YP class,

but it is not straightforward to �nd an interval estimate for t∗, since the standard error of t̂∗ has no closed

form expression (Demarqui and Mayrink, 2021). The usual solution is to implement a numerical procedure to

�nd the root that solves the nonlinear equation SC(t∗) − ST (t∗) = 0, where SC(·) and ST (·) are the survival

functions given control and treatment values, respectively. This can be done through nonparametric bootstrap,

generating a set of new samples from the original data and �tting the same model for each bootstrap sample

to obtain the associated parameter estimates and the quantities ŜC(t∗) and ŜT (t∗). To search the root for

each marginal crossing survival time, the R command uniroot (see Brent, 1973 for more details) will be used.
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Table 5.27: MC statistics for marginal crossing time estimates of �tted survival copula models over generated
copulas with Weibull YP margins (n = 500; τ = 0.25)

Quantity Copula
Weibull YP Fitting

AE ARB (%) ALB AUB CR (%)

t∗1 AMH 2.2435 2.2842 1.5853 3.2383 95.4
Clayton 2.2234 1.3651 1.5865 3.1295 95.2
Frank 2.2268 1.5205 1.5680 3.2149 95.2
GH 2.2649 3.2590 1.5835 3.3060 94.4
Joe 2.2318 1.7471 1.5932 3.2586 95.3

t∗2 AMH 1.5041 0.6694 1.2589 1.8630 95.0
Clayton 1.4964 0.1520 1.2602 1.8160 94.7
Frank 1.5108 1.1208 1.2626 1.8814 95.6
GH 1.4963 0.1450 1.2460 1.8615 93.2
Joe 1.5034 0.6257 1.2631 1.8663 94.7

Quantity Copula
BP YP Fitting

AE ARB (%) ALB AUB CR (%)

t∗1 AMH 2.2392 2.0862 1.5573 3.2609 96.0
Clayton 2.2237 1.3778 1.5647 3.1783 95.1
Frank 2.2275 1.5521 1.5468 3.2470 94.2
GH 2.2444 2.3242 1.5516 3.3123 94.7
Joe 2.2212 1.2645 1.5752 3.2832 96.1

t∗2 AMH 1.5011 0.4668 1.2506 1.9020 95.1
Clayton 1.4946 0.0342 1.2530 1.8560 94.7
Frank 1.5118 1.1868 1.2554 1.9264 95.1
GH 1.4944 0.0183 1.2391 1.8914 94.5
Joe 1.5009 0.4540 1.2560 1.9069 94.7

Quantity Copula
PE YP Fitting

AE ARB (%) ALB AUB CR (%)

t∗1 AMH 2.2432 2.2674 1.5826 3.2278 96.3
Clayton 2.2284 1.5944 1.5880 3.1294 94.9
Frank 2.2407 2.1555 1.5835 3.2242 94.3
GH 2.2655 3.2843 1.5871 3.3091 94.8
Joe 2.2322 1.7665 1.6068 3.2489 95.5

t∗2 AMH 1.5051 0.7345 1.2596 1.8560 94.3
Clayton 1.4995 0.3626 1.2627 1.8138 94.3
Frank 1.5164 1.4968 1.2653 1.8810 95.0
GH 1.4955 0.0973 1.2456 1.8481 94.1
Joe 1.5006 0.4381 1.2602 1.8531 95.0

Due to the use of a resampling method for each MC replica, the estimation of crossing survival times is far

more computationally intensive. Thus, the evaluation of marginal crossing time estimates through simulation

for the survival copula models proposed here is restricted to a single correlation value, given copula generated

data with Weibull YP margins and �tting only the correct copula. Therefore, consider a new MC simulation

study with M = 1000 replications of copula data sets with Weibull YP margins and n = 500, using the

same covariates and values for the baseline and regression parameters as before, and varying only the true

Archimedean copula, but always with a �xed θ value such that τ = 0.25. To estimate marginal crossing

survival times associated to the treatment e�ect (dichotomous covariate), take two new subjects, control and

treated, with covariate values x∗C;j = (0, 0) and x∗T ;j = (1, 0), respectively, for j = 1, 2.
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Figure 5.11: Crossing time estimates on the 1st margin for �tted survival copula models over data generated
from the correct copula model with Weibull YP margins (n = 500; τ = 0.25)



100

−30

0

30

60

90

AMH Clayton Frank GH Joe
Copula

R
el

at
iv

e 
B

ia
s

Weibull YP margins

−30

0

30

60

AMH Clayton Frank GH Joe
Copula

R
el

at
iv

e 
B

ia
s

BP YP margins

−30

0

30

60

AMH Clayton Frank GH Joe
Copula

R
el

at
iv

e 
B

ia
s

PE YP margins

Figure 5.12: Crossing time estimates on the 2nd margin for �tted survival copula models over data generated
from the correct copula model with Weibull YP margins (n = 500; τ = 0.25)
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Note that the continuous covariate is set constant (here, equal to a reference level) for both subjects. To

infer on marginal crossing survival times, a nonparametric bootstrap is applied over each MC replica, using a

total of 1000 bootstrap samples to obtain their associated point and interval estimates (using the corresponding

percentiles to a con�dence level of 95%). Table 5.27 presents the MC results on the estimation of crossing

survival times, divided for each copula and baseline distribution. As expected, the ARB was always lower

than 4% for the �rst marginal crossing survival time (2% for the second one), and the CR is at most 0.02

(0.01) away from the con�dence level of 95%, for �tted survival copula models with Weibull YP margins.

However, the same can be said from the estimation for �tted BP and PE models, which can still overcome the

Weibull model as seen for the GH copula. Thus, such semiparametric models obtain estimates as good as those

from the correctly �tted Weibull models even for marginal crossing survival times, but without imposing any

parametric functional form for the hazard function. Concerning the copula itself, changing only its expression

(maintaining the true correlation and other unrelated parameters and quantities) has little e�ect over the

estimated marginal crossing survival times. Also, none of them is far better or worse than another with

respect to the ARB or CR values. Figures 5.11 and 5.12 corroborate the above conclusions from Table 5.27.

For the relative bias of crossing survival time estimates, their corresponding boxplots are all well-centered

around 0, regardless of �tted copula or baseline distribution. Concerning the margins, boxplot dispersion is

greater the for 1st margin, which also seems to have more (positive) outlier counts. This result con�rms the

lower ARB and more accurate CR values observed for the 2nd margin in Table 5.27.



CHAPTER 6

A Real Data Application

This work addresses the study of a manually curated data collection of patients with ovarian cancer,

described by Ganzfried et al. (2013). Their resource provides data for a total of 23 distinct studies, but a

single one (TCGA), with a total of n = 508 subjects (after removing 49 of them with missing information on

the tumor stage or treatment indicators, or null values for survival times), is considered as an application to

�t the survival copula models proposed in Chapter 4. Each subject i, i = 1, . . . , n, has 2 observed times, the

�rst one representing a nonterminal event time (in this study, the time-tumor progression) Ti or a random,

independent censored time Ai, and the second, a terminal event time (here, the overall survival of a subject)

T ∗i or a censored time Ai (the censoring mechanism is always the same). This is a semi-competing risks study:

a subject may experience two potential events: the nonterminal event (tumor progression) or the terminal

event (death). The nonterminal event may not be observable due to an earlier occurrence of the terminal

event. On the other hand, an occurrence of the nonterminal event does not change the observational condition

for the terminal event. Therefore, the terminal event is a competing risk for the non-terminal event, but the

reciprocal is not true (Wu et al., 2020). In order to �t a survival copula model, it is necessary to de�ne what

are the survival times and censoring statuses for each subject i at each copula margin j, j = 1, 2:

• The survival time for the 1st copula margin is Yi1 = min(Ti, T
∗
i , Ai);

• The censoring status for the 1st copula margin is δi1 = I(Yi1 = Ti);

• The survival time for the 2nd copula margin is Yi2 = min(T ∗i , Ai);

• The censoring status for the 2nd copula margin is δi2 = I(Yi2 = T ∗i ).

The failure rates were about 53,15% for the �rst margin and 50,39% for the second one. De�ned the

survival times and censoring statuses for each margin j, a set of covariates must be chosen for the regression
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structure speci�cation. From the TCGA study, two covariates are speci�ed: CXCL12, a biomarker for the

gene expression of a ovarian cancer (continuous, with concentration values standardized to have zero mean

and unit variance), and pltx, an indicator for a platinum-based treatment (dichotomous, the reference level is

the subject who did not receive this treatment). Note that this covariate speci�cation is similar to the one

de�ned for Monte Carlo simulations in Chapter 5.

First, survival copula models accounting for all possible combinations of bivariate Archimedean copulas

(one of AMH, Clayton, Frank, GH or Joe copulas), baseline distributions (one among Weibull, BP or PE

models), and regression model classes (one of PH, PO or YP models) are �tted in order to obtain their AIC

values, which are shown in Table 6.1. Thus, results on the regression parameter and Kendall's τ estimates will

be presented for the �best� combination (given the AIC) of copula, baseline and regression structures.

Table 6.1: AIC values for �tted survival copula models on cancer ovarian data

Copula
PH PO YP

Weibull BP PE Weibull BP PE Weibull BP PE

AMH 8621.72 8488.80 8492.15 � 8485.22 8499.18 � 8493.96 8482.57
Clayton � 8489.49 8492.82 � 8485.99 8499.25 � 8494.60 8482.56
Frank � 8482.81 8485.61 � 8477.73 8492.78 � 8487.71 8473.49
GH 8602.52 8475.95 8479.39 � 8471.22 8485.91 � 8480.06 8467.78

Joe � 8484.92 8487.88 � 8480.05 8494.15 � 8489.00 8476.54

For almost all combinations specifying the Weibull model for the baseline distribution, the survival copula

�tting fails. Even when the log-likelihood is successfully maximized, the AIC values are higher when compared

to all other �tted models with a semiparametric baseline distribution. This is an evidence of a generator process

with non-monotonic hazard function for survival times at each margin. All copulas are close to each other

concerning the AIC criterion, but �tted models with the GH copula have the lowest AIC values, regardless of

(semiparametric) baseline distribution or regression model class. Given all �tted models with the GH copula,

the GH PE YP has the lowest AIC values compared to all other marginal speci�cations for baseline and

regression models.

Table 6.2: LR tests for nested models against the GH PE YP model on cancer ovarian data

Fitted Model Log-lik. LR stat. DF P-value

GH PE YP -4224.89 � � �
GH PE PH -4234.70 19.62 4 5.94 ×10−4

GH PE PO -4237.96 26.14 4 2.97 ×10−5

Now, when taking the Likelihood Ratio (LR) test statistic for the GH PE YP model against its nested

models (those last ones as the null hypothesis for each test) with the same copula and baseline speci�cation

(i.e., the GH PE PH and GH PE PO models) in Table 6.2, the LR statistic is signi�cant at the level of 5%

(1 minus the con�dence level) for both tests. Thus, there is no evidence to not reject the GH PE YP model

instead of any nested model more parsimonious with respect to the regression model class. Hence, results

on the regression parameter coe�cients (point estimate, standard error, lower and upper limits of the 95%

con�dence interval, Z-statistics and p-values) for the GH PE YP model are presented in Table 6.3.
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Table 6.3: Regression parameter results for the GH PE YP model on cancer ovarian data

Margin Covariate Coef. Estimate SE Lower Upper Z-stat. P-value

1st

CXCL12 β̂
(S)
11 0.0900 0.0620 -0.0316 0.2116 1.4505 0.1469

CXCL12 β̂
(L)
11 1.8903 0.7537 0.4131 3.3675 2.5081 0.0121

pltx β̂
(S)
12 -1.7650 0.3898 -2.5289 -1.0011 -4.5286 5.94 ×10−6

pltx β̂
(L)
12 8.1402 14.1470 -19.5874 35.8678 0.5754 0.5650

2nd

CXCL12 β̂
(S)
21 0.2372 0.1087 0.0241 0.4503 2.1817 0.0291

CXCL12 β̂
(L)
21 -0.1160 0.1414 -0.3932 0.1612 -0.8205 0.4119

pltx β̂
(S)
22 -1.2938 0.4460 -2.1680 -0.4196 -2.9007 0.0037

pltx β̂
(L)
22 -0.4670 0.6098 -1.6621 0.7281 -0.7659 0.4437

Given the GH PE YP model in Table 6.3, except for β̂(S)
11 , all other short-term regression coe�cients were

signi�cant at the level of 5%. However, the long-term counterpart of β̂(S)
11 , β̂(L)

11 , has signi�cance. When

interpreting the signi�cant regression coe�cients for the GH PE YP model, it can be said that the ra-

tio of hazard rates between a treated subject and a control for tumor progression (nonterminal event) is

exp(−1.7650) ≈ 0.1712 (or 17.12%), i.e., the treatment (pltx ) reduces the hazard rate in 82.88% for a tumor

progression. Also, the ratio of hazard rates between a treated subject and a control for death (terminal event)

is exp(−1.2938) ≈ 0.2742 (or 27.42%). In other words, the treatment reduces the hazard rate in 72.58%

for a death. On the other hand, each level gained for the CXCL12 biomarker increases the hazard rate in

exp(1.8903) ≈ 6.6214 times in the long-term for a tumor progression, and in exp(0.2372) ≈ 1.2677 times in the

short-term for a death. Therefore, the platinum treatment reduces the hazard for both events in the short-

term, but does not have signi�cant in�uence in the long-term. However, greater levels of CXCL12 increases

the hazard for both events, but in distinct moments of the follow-up.

Concerning the dependence estimation, for the �tted GH PE YP survival copula model, the estimated

Kendall's correlation is τ̂ = 0.3332, with con�dence interval Iτ̂ = [0.1576, 0.4483]. This signi�cant correlation

gives an estimated upper tail dependence χ̂U = 2 − 21/0.3332 ≈ −6.0067. In other words, marginal survival

times have moderate overall dependence given a same subject, but they also have a moderate upper tail

dependence, thus implying on a mild correlation across smaller survival times. For greater marginal survival

times, there is no lower tail dependence, since it is always null for GH copulas.



CHAPTER 7

Final Remarks and Future Research

The present work proposed a new theoretical framework for semiparametric modeling on clustered survival

data through the introduction of copulas under independent random censoring. Each margin of a copula

model was given by a survival time from a cluster under study, modeled by a combination of two compo-

nents: a survival model for a baseline function, and a regression model class to accommodate explanatory

variables. Hence, a wider and �exible survival copula model class was proposed, with programmed functions

for generation, �tting and methods for inference on the copSurv R package.

Three models were considered to �t the baseline distribution: the parametric Weibull model, vastly used in

the literature; the nonparametric Bernstein Polynomials (BP) model, which uses a polynomial approximation

for the baseline function, and the nonparametric Piecewise Exponential (PE) model, which approximates the

baseline function through constant hazard functions for each interval from a partition on the time axis.

For the regression structure, the traditional Proportional Hazards (PH); the Proportional Odds (PO) and

the Yang-Prentice (YP) models were addressed. The �rst two assume a proportionality relationship for survival

times of di�erent subjects conditional on the baseline functional form. For PH models, the proportionality is

in the hazard function, while for PO models it is in the odds function. The YP model was originally proposed

to accommodate crossing survival curves, but it also contains both PH and PO as particular cases.

Although many copulas developed in the literature can be used for a survival copula model, this work

focused on �ve models from the Archimedean copula class: the Ali-Mikhail-Haq (AMH); Clayton; Frank;

Gumbel-Hougaard (GH) and Joe copula models, obtaining results from simulated data for all of them.

Archimedean copulas have been widely studied and enjoys from well-established properties that ful�ll an

important role in the (survival) copula likelihood function evaluation, and even for dependence measures.

It should be noted that some combinations arisen from the models above for a joint survival copula modeling
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are a novelty in the literature, in particular those involving the BP model for the baseline distribution or the

PO and YP regression model classes. To evaluate and compare all proposed (bivariate) survival copula models,

an extensive simulation study was realized. All simulated data was generated from a bivariate survival copula

model with two covariates for each margin. The generation could vary on the copula used (one of the �ve

Archimedean copulas aforementioned); on the survival model for the baseline distribution on both margins

(from Weibull or EW models), or on the regression model class (PH, PO or YP). For a �xed sample size

n = 500, simulation scenarios also were divided by three chosen values for the true Kendall's τ correlation

(τ ∈ {0.25, 0.5, 0.75}). In its turn, the proposed survival copula models for �tting over simulated data were

always a combination of a copula function (again, one of the �ve Archimedean copulas), a baseline distribution

(one of Weibull, BP or PE models), and a regression model class (one of PH, PO or YP classes). For parameter

estimation and choice through the mean AIC, �tted models were compared by exchanging the copula function

or baseline distribution used for �tting, while for an analysis through the LR test they were compared by

swapping the regression model class. Finally, all proposed survival copula models for �tting were applied to a

set of bivariate real data, in order to choose the best one through the AIC combined to an LR test analysis,

and also present its results on regression parameter and Kendall's τ correlation estimates.

One of the main goals of this work was to compare results on regression parameter estimates, specially in

terms of the Average Relative Bias (ARB) and Coverage Rate (CR), and mean AIC, among each Archimedean

copula used for �tting, given a �xed copula for generation of the simulated data, and verify if a correct copula

�tting has suitable results under a high sample size for three distinct levels of dependence. Illustrating for the

AMH copula in the main text and presenting results when generating from other copulas in the Appendix,

�tting the correct copula has generally produced good estimates (when looking for the ARB and CR), although

for many cases a wrong �tting of the copula model can still have similar performance, even for a scenario with

higher correlation. In general, �tting a wrong copula does not lead to a severe loss of performance for the

regression parameter estimation, but this in fact occurs for the computed AIC and τ estimates, regardless of

the regression model class.

Given only �tted models with the correct copula and �xed the regression model class, another main goal

of this work was to compare results for three baseline distributions, two of them o�ering a nonparametric

appeal. As expected, when generating copula data from the Weibull baseline, �tting the same distribution

provided the best results, although �tted models with a nonparametric baseline (BP or PE) follow closely in

terms of ARB. On the other hand, when generating copula data from the EW baseline, PE and BP models

perform better than Weibull ones for the majority of copulas. This was expected due to their nonparametric

nature: their number of baseline parameters depends on the sample size, thus �tting well when that size is

high, including when the true marginal hazard functions have a non-monotonic behavior.

Finally, given the correct copula �tting and now exchanging the regression model class, the last goal involved

an analysis through the LR test to check if the YP class is preferable or no over the more parsimonious (and

nested) PH and PO classes. Given one of the smaller regression structures for marginal survival data generation,

the YP class �ts signi�cantly better if tested against the other not used for generation, but it does not if tested

against the true one, regardless of the true or �tted baseline distribution and copula function. On the other
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hand, if the YP class is also part of the generator process for marginal survival data, LR tests always accept

it against both PH and PO classes.

Based on the conclusions set out above, the next steps for a future work include:

• Obtain results for �tted survival copula models under a Bayesian approach of inference, using appropriate

criteria and comparing with results already presented under the frequentist approach in this work;

• Study, through a sensitivity analysis, more conservative choices for the polynomial degree in BP models

when marginally �tted on a survival copula model. Since copulas themselves introduce at least one

parameter for dependence and multiplies each marginal parameterization by the copula dimension, it is

reasonable to suppose that smaller degrees for each margin can ensure a more accurate estimation;

• Implement, to survival copula models, the usual residual analysis for survival data, in order to �nd

potentially outlier or in�uential subjects, and rede�ne the correct covariate speci�cation, potentially

including the use of non-linear or time-dependent covariates;

• Introduce, among all margins from a survival copula model, distinct choices on the baseline distribution

(for non-nested parametric survival models), number of baseline parameters (for BP and PE nonpara-

metric models), regression model class (allowing parsimonious choices for some, but not necessarily all,

copula margins), and number of covariates for estimation of regression parameters;

• Extend marginal survival models to also incorporate cure fraction estimation when the marginal survival

function seems to stop at a positive lower limit sj , after a time tj for each copula margin j = 1, . . . , d

(see chapter 6 of Klein et al., 2013 for an insight on cure fraction models);

• Extend the developed combinations of baseline and regression structures in this work for a joint frailty-

copula modeling, when the heterogeneity can come from a known source other than the subjects them-

selves, such as interviews from a small number of distinct studies (see Wu et al., 2020 for an example);

• Provide in the CRAN repository the copSurv R package, already in development, for all survival copula

models treated in this work and their associated methods for inference.
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Appendix



APPENDIX A

Additional Results for Generated Copulas with Weibull Baseline

A.1 Akaike Information Criteria

Results in this appendix for the AIC consist of tables on two statistics, the mean AIC and the proportion

of choice by the least AIC, for each �tted copula model (among AMH, Clayton, Frank, GH and Joe), given

a speci�cation for the baseline distribution (Weibull, BP or PE) and regression model class (PH, PO or YP),

on Scenarios S2 (n = 500, τ = 0.5) and S3 (n = 500, τ = 0.75).

A.2 Correlation Estimates

Results for the Kendall's τ correlation estimates in this appendix comprehend tables of two statistics (AE

and ARB), and boxplots of the relative biases, for all Archimedean copulas addressed in this work (AMH,

Clayton, Frank, GH and Joe), given each combination of �tted baseline distribution (Weibull, BP or PE) and

regression model class (PH, PO or YP), on Scenarios S2 and S3.

A.3 Likelihood Ratio Tests

Finally, results for the LR tests in this appendix comprehend tables of means for the LR statistic and its

corresponding p-value for nested �tted models with respect to the regression model class, given each one of

the �ve Archimedean copulas discussed in this work (AMH, Clayton, Frank, GH and Joe), combined with a

�tted baseline distribution (Weibull, BP or PE), on Scenarios S2 and S3, given a regression model class (PH,

PO or YP) used for marginal data generation.
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Table A.1: Mean AIC and choice proportion for all �tted survival copula models over generated data from
each copula with Weibull PH margins (n = 500; τ = 0.5)

True Fitted
Weibull PH BP PH PE PH

AIC Choice (%) AIC Choice (%) AIC Choice (%)

AMH AMH 1580.73 16.80 1610.81 17.30 1611.73 14.90
Clayton 1578.36 82.70 1610.46 82.20 1610.66 84.60
Frank 1602.40 0.50 1634.17 0.50 1633.98 0.50
GH 1633.77 0.00 1661.41 0.00 1657.19 0.00
Joe 1659.58 0.00 1688.05 0.00 1684.02 0.00

Clayton Clayton 1440.89 100.00 1472.84 100.00 1473.21 99.40
AMH 1474.12 0.00 1509.16 0.00 1507.53 0.30
Frank 1484.36 0.00 1515.23 0.00 1515.26 0.30
GH 1551.93 0.00 1569.36 0.00 1564.09 0.00
Joe 1606.30 0.00 1625.25 0.00 1619.73 0.00

Frank Frank 1449.39 99.50 1481.15 99.80 1481.40 99.40
AMH 1515.36 0.00 1545.28 0.00 1546.92 0.00
Clayton 1500.82 0.00 1527.50 0.00 1527.75 0.00
GH 1498.98 0.50 1518.92 0.20 1514.02 0.60
Joe 1541.71 0.00 1556.16 0.00 1550.64 0.00

GH GH 1382.26 97.30 1414.21 95.20 1416.06 90.60
AMH 1523.14 0.00 1553.47 0.00 1554.91 0.00
Clayton 1509.20 0.00 1535.12 0.00 1535.86 0.00
Frank 1433.55 0.10 1464.37 0.10 1465.57 0.00
Joe 1396.53 2.60 1426.23 4.70 1425.56 9.40

Joe Joe 1300.54 98.30 1332.84 97.90 1336.24 98.70
AMH 1537.29 0.00 1567.93 0.00 1568.54 0.00
Clayton 1534.40 0.00 1556.46 0.00 1556.31 0.00
Frank 1409.46 0.00 1438.03 0.00 1439.33 0.00
GH 1320.72 1.70 1350.37 2.10 1357.67 1.30

Table A.2: Mean AIC and choice proportion for all �tted survival copula models over generated data from
each copula with Weibull PO margins (n = 500; τ = 0.5)

True Fitted
Weibull PO BP PO PE PO

AIC Choice (%) AIC Choice (%) AIC Choice (%)

AMH AMH 1464.57 15.20 1492.62 19.30 1497.99 14.70
Clayton 1464.04 84.50 1493.02 80.10 1496.40 84.60
Frank 1493.44 0.30 1520.64 0.60 1523.32 0.70
GH 1529.47 0.00 1548.50 0.00 1546.55 0.00
Joe 1557.16 0.00 1578.94 0.00 1577.23 0.00

Clayton Clayton 1316.40 99.70 1345.43 100.00 1348.84 99.50
AMH 1358.76 0.00 1384.25 0.00 1387.46 0.20
Frank 1370.03 0.30 1393.86 0.00 1396.33 0.30
GH 1447.01 0.00 1448.85 0.00 1445.53 0.00
Joe 1505.85 0.00 1511.74 0.00 1508.18 0.00

Frank Frank 1337.94 99.70 1367.22 99.80 1369.99 99.30
AMH 1403.92 0.00 1433.04 0.00 1435.94 0.00
Clayton 1393.15 0.20 1417.39 0.00 1420.26 0.00
GH 1395.79 0.10 1404.98 0.20 1401.86 0.70
Joe 1442.43 0.00 1443.49 0.00 1439.96 0.00

GH GH 1270.66 99.40 1300.06 96.40 1304.90 90.10
AMH 1411.40 0.00 1441.11 0.00 1444.70 0.00
Clayton 1399.72 0.00 1425.60 0.00 1429.07 0.00
Frank 1320.09 0.10 1350.00 0.00 1354.43 0.00
Joe 1289.63 0.50 1313.10 3.60 1314.83 9.90

Joe Joe 1191.99 97.20 1221.57 98.10 1227.66 99.20
AMH 1428.72 0.00 1458.55 0.00 1461.70 0.00
Clayton 1430.90 0.00 1453.68 0.00 1456.20 0.00
Frank 1297.86 0.00 1327.18 0.00 1331.83 0.00
GH 1209.46 2.80 1240.02 1.90 1250.92 0.80
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Table A.3: Mean AIC and choice proportion for all �tted survival copula models over generated data from
each copula with Weibull YP margins (n = 500; τ = 0.5)

True Fitted
Weibull YP BP YP PE YP

AIC Choice (%) AIC Choice (%) AIC Choice (%)

AMH AMH 1391.61 16.70 1423.89 17.80 1424.75 14.10
Clayton 1390.87 82.80 1422.23 81.70 1423.21 85.20
Frank 1419.77 0.50 1450.42 0.50 1451.15 0.70
GH 1452.44 0.00 1478.13 0.00 1474.24 0.00
Joe 1481.63 0.00 1509.04 0.00 1505.30 0.00

Clayton Clayton 1242.58 99.30 1273.94 100.00 1274.69 99.80
AMH 1282.07 0.50 1313.24 0.00 1316.08 0.00
Frank 1295.03 0.20 1324.00 0.00 1323.97 0.10
GH 1364.99 0.00 1377.96 0.00 1372.05 0.10
Joe 1427.29 0.00 1441.95 0.00 1435.87 0.00

Frank Frank 1267.05 99.70 1298.67 99.80 1299.26 99.10
AMH 1334.51 0.00 1364.32 0.00 1366.27 0.00
Clayton 1324.07 0.20 1346.56 0.00 1347.20 0.20
GH 1317.05 0.10 1335.68 0.20 1330.28 0.70
Joe 1362.76 0.00 1373.77 0.00 1368.41 0.00

GH GH 1199.30 98.30 1230.49 96.00 1233.67 90.60
AMH 1340.76 0.00 1370.90 0.00 1373.07 0.00
Clayton 1330.14 0.00 1353.64 0.00 1355.73 0.00
Frank 1251.14 0.10 1280.34 0.00 1283.14 0.00
Joe 1215.02 1.60 1243.68 4.00 1243.62 9.40

Joe Joe 1119.84 98.90 1151.48 98.10 1155.89 99.60
AMH 1359.21 0.00 1388.63 0.00 1389.82 0.00
Clayton 1361.06 0.00 1379.26 0.00 1380.24 0.00
Frank 1230.67 0.00 1256.75 0.00 1259.48 0.00
GH 1141.21 1.10 1169.66 1.90 1179.27 0.40

Table A.4: Mean AIC and choice proportion for all �tted survival copula models over generated data from
each copula with Weibull PH margins (n = 500; τ = 0.75)

True Fitted
Weibull PH BP PH PE PH

AIC Choice (%) AIC Choice (%) AIC Choice (%)

AMH AMH 1580.59 16.90 1610.81 17.20 1611.60 14.60
Clayton 1578.43 82.60 1610.49 82.30 1610.61 84.90
Frank 1602.36 0.50 1634.17 0.50 1634.08 0.50
GH 1633.82 0.00 1661.41 0.00 1657.24 0.00
Joe 1659.54 0.00 1687.99 0.00 1684.08 0.00

Clayton Clayton 1062.09 99.90 1093.63 100.00 1094.16 99.90
AMH 1350.25 0.00 1385.33 0.00 1386.93 0.00
Frank 1133.70 0.10 1161.21 0.00 1160.83 0.10
GH 1310.52 0.00 1293.16 0.00 1287.85 0.00
Joe 1417.59 0.00 1398.52 0.00 1393.01 0.00

Frank Frank 1058.83 99.80 1090.50 99.90 1090.44 99.40
AMH 1389.72 0.00 1417.09 0.00 1418.62 0.00
Clayton 1175.85 0.10 1183.91 0.10 1184.98 0.40
GH 1194.37 0.10 1186.40 0.00 1181.52 0.20
Joe 1286.19 0.00 1261.93 0.00 1256.92 0.00

GH GH 941.27 99.50 973.50 99.50 980.29 99.10
AMH 1384.48 0.00 1417.03 0.00 1417.25 0.00
Clayton 1173.91 0.00 1180.39 0.00 1181.78 0.00
Frank 1032.93 0.00 1061.15 0.00 1062.26 0.00
Joe 971.95 0.50 999.23 0.50 1005.02 0.90

Joe Joe 809.76 99.60 842.04 99.70 860.19 99.70
AMH 1416.84 0.00 1443.97 0.00 1446.40 0.00
Clayton 1248.05 0.00 1224.22 0.00 1225.39 0.00
Frank 978.85 0.00 1002.31 0.00 1004.28 0.00
GH 856.15 0.40 879.14 0.30 896.76 0.30
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Table A.5: Mean AIC and choice proportion for all �tted survival copula models over generated data from
each copula with Weibull PO margins (n = 500; τ = 0.75)

True Fitted
Weibull PO BP PO PE PO

AIC Choice (%) AIC Choice (%) AIC Choice (%)

AMH AMH 1464.57 15.50 1492.58 19.30 1498.00 14.70
Clayton 1464.12 84.10 1493.15 80.10 1496.29 84.60
Frank 1493.22 0.40 1520.55 0.60 1523.35 0.70
GH 1529.50 0.00 1548.43 0.00 1546.73 0.00
Joe 1557.10 0.00 1578.96 0.00 1577.24 0.00

Clayton Clayton 909.56 99.80 938.30 100.00 941.81 99.80
AMH 1221.73 0.00 1256.84 0.00 1260.65 0.00
Frank 999.32 0.20 1015.24 0.00 1017.05 0.20
GH 1200.94 0.00 1150.41 0.00 1148.54 0.00
Joe 1319.09 0.00 1266.40 0.00 1264.80 0.00

Frank Frank 928.25 99.80 957.15 100.00 959.57 99.50
AMH 1270.17 0.00 1292.09 0.00 1298.31 0.00
Clayton 1059.34 0.20 1059.44 0.00 1064.44 0.20
GH 1083.06 0.00 1051.66 0.00 1049.65 0.30
Joe 1185.71 0.00 1129.92 0.00 1129.21 0.00

GH GH 811.62 100.00 840.87 99.80 851.73 99.40
AMH 1263.97 0.00 1292.42 0.00 1297.80 0.00
Clayton 1050.73 0.00 1059.62 0.00 1066.05 0.00
Frank 901.04 0.00 927.14 0.00 932.87 0.00
Joe 853.18 0.00 868.81 0.20 878.50 0.60

Joe Joe 685.75 99.90 714.74 99.70 737.42 99.50
AMH 1301.47 0.00 1324.75 0.00 1330.48 0.00
Clayton 1147.59 0.00 1122.85 0.00 1128.83 0.00
Frank 850.80 0.00 876.04 0.00 882.98 0.00
GH 730.94 0.10 753.78 0.30 777.02 0.50

Table A.6: Mean AIC and choice proportion for all �tted survival copula models over generated data from
each copula with Weibull YP margins (n = 500; τ = 0.75)

True Fitted
Weibull YP BP YP PE YP

AIC Choice (%) AIC Choice (%) AIC Choice (%)

AMH AMH 1391.65 16.60 1423.93 17.50 1424.75 14.10
Clayton 1390.94 82.90 1422.14 82.00 1423.30 85.40
Frank 1419.55 0.50 1450.43 0.50 1451.17 0.50
GH 1452.49 0.00 1478.13 0.00 1474.13 0.00
Joe 1481.86 0.00 1509.04 0.00 1505.15 0.00

Clayton Clayton 830.73 99.90 861.71 100.00 863.22 99.80
AMH 1153.41 0.00 1184.42 0.00 1186.54 0.00
Frank 918.79 0.10 942.14 0.00 941.79 0.20
GH 1103.06 0.00 1073.34 0.00 1069.41 0.00
Joe 1228.08 0.00 1190.76 0.00 1187.42 0.00

Frank Frank 855.11 100.00 886.63 99.90 886.84 99.70
AMH 1196.81 0.00 1223.97 0.00 1224.00 0.00
Clayton 986.97 0.00 980.67 0.00 983.04 0.20
GH 992.36 0.00 978.60 0.10 974.68 0.10
Joe 1093.19 0.00 1056.09 0.00 1053.50 0.00

GH GH 737.48 100.00 768.85 99.70 777.60 99.50
AMH 1192.60 0.00 1220.47 0.00 1225.71 0.00
Clayton 978.45 0.00 980.49 0.00 984.59 0.00
Frank 831.72 0.00 854.81 0.00 858.42 0.00
Joe 773.32 0.00 797.05 0.30 804.95 0.50

Joe Joe 611.89 99.90 643.56 99.80 664.46 99.60
AMH 1229.83 0.00 1253.97 0.00 1256.33 0.00
Clayton 1070.57 0.00 1033.88 0.00 1037.84 0.00
Frank 785.61 0.00 804.59 0.00 809.09 0.00
GH 663.13 0.10 681.19 0.20 702.33 0.40
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Table A.7: MC statistics for Kendall's tau estimates of �tted survival copula models over generated data
from each copula model with Weibull PH margins (n = 500; τ = 0.5)

True Copula
Weibull PH BP PH PE PH

AE ARB (%) AE ARB (%) AE ARB (%)

AMH AMH 0.3220 -3.4062 0.3282 -1.5478 0.3276 -1.7089
Clayton 0.3362 0.8722 0.3368 1.0382 0.3389 1.6829
Frank 0.3112 -6.6528 0.3127 -6.1951 0.3158 -5.2609
GH 0.2332 -30.0266 0.2564 -23.0925 0.2677 -19.6754
Joe 0.1428 -57.1482 0.1661 -50.1684 0.1800 -46.0020

Clayton Clayton 0.5015 0.3036 0.5026 0.5144 0.5048 0.9697
AMH 0.3331 -33.3833 0.3333 -33.3352 0.3333 -33.3358
Frank 0.4709 -5.8137 0.4758 -4.8308 0.4796 -4.0829
GH 0.3648 -27.0300 0.4067 -18.6528 0.4130 -17.3993
Joe 0.2492 -50.1590 0.2973 -40.5371 0.3043 -39.1408

Frank Frank 0.5010 0.1903 0.5013 0.2678 0.5047 0.9433
AMH 0.3180 -36.3973 0.3205 -35.8930 0.3205 -35.9086
Clayton 0.4575 -8.4912 0.4717 -5.6685 0.4735 -5.3081
GH 0.4135 -17.3090 0.4401 -11.9863 0.4465 -10.7064
Joe 0.3177 -36.4568 0.3608 -27.8485 0.3660 -26.8084

GH GH 0.4991 -0.1771 0.5013 0.2568 0.5152 3.0417
AMH 0.3172 -36.5664 0.3205 -35.9061 0.3205 -35.9054
Clayton 0.4548 -9.0452 0.4744 -5.1241 0.4757 -4.8610
Frank 0.5222 4.4368 0.5249 4.9847 0.5277 5.5367
Joe 0.4328 -13.4483 0.4459 -10.8135 0.4582 -8.3633

Joe Joe 0.5011 0.2251 0.5038 0.7587 0.5168 3.3671
AMH 0.2980 -40.3908 0.3015 -39.6924 0.3021 -39.5850
Clayton 0.4364 -12.7182 0.4718 -5.6342 0.4731 -5.3778
Frank 0.5488 9.7649 0.5542 10.8388 0.5567 11.3301
GH 0.5439 8.7749 0.5395 7.9063 0.5549 10.9711

Table A.8: MC statistics for Kendall's tau estimates of �tted survival copula models over generated data
from each copula model with Weibull PO margins (n = 500; τ = 0.5)

True Copula
Weibull PO BP PO PE PO

AE ARB (%) AE ARB (%) AE ARB (%)

AMH AMH 0.3260 -2.2133 0.3280 -1.6142 0.3277 -1.6795
Clayton 0.3386 1.5695 0.3361 0.8199 0.3382 1.4541
Frank 0.3136 -5.9237 0.3207 -3.7856 0.3238 -2.8488
GH 0.2265 -32.0564 0.2700 -18.9882 0.2817 -15.4985
Joe 0.1312 -60.6462 0.1748 -47.5518 0.1898 -43.0519

Clayton Clayton 0.5022 0.4429 0.5025 0.4989 0.5039 0.7865
AMH 0.3331 -33.3767 0.3333 -33.3343 0.3333 -33.3367
Frank 0.4741 -5.1774 0.4877 -2.4636 0.4913 -1.7413
GH 0.3576 -28.4744 0.4270 -14.5947 0.4315 -13.6969
Joe 0.2355 -52.9053 0.3150 -36.9930 0.3201 -35.9767

Frank Frank 0.4997 -0.0627 0.5016 0.3111 0.5048 0.9645
AMH 0.3171 -36.5883 0.3191 -36.1737 0.3197 -36.0676
Clayton 0.4438 -11.2458 0.4540 -9.1993 0.4555 -8.9088
GH 0.4036 -19.2762 0.4455 -10.8943 0.4514 -9.7204
Joe 0.3038 -39.2328 0.3716 -25.6797 0.3750 -25.0064

GH GH 0.4922 -1.5584 0.5014 0.2753 0.5157 3.1428
AMH 0.3170 -36.6061 0.3186 -36.2735 0.3195 -36.1094
Clayton 0.4415 -11.7094 0.4533 -9.3312 0.4540 -9.2068
Frank 0.5207 4.1334 0.5252 5.0352 0.5269 5.3886
Joe 0.4230 -15.3910 0.4514 -9.7166 0.4638 -7.2416

Joe Joe 0.4925 -1.4927 0.5042 0.8323 0.5180 3.5968
AMH 0.2961 -40.7871 0.2979 -40.4198 0.2986 -40.2799
Clayton 0.4171 -16.5855 0.4416 -11.6760 0.4421 -11.5736
Frank 0.5457 9.1309 0.5512 10.2497 0.5524 10.4741
GH 0.5356 7.1229 0.5335 6.7053 0.5496 9.9213
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Table A.9: MC statistics for Kendall's tau estimates of �tted survival copula models over generated data
from each copula model with Weibull YP margins (n = 500; τ = 0.5)

True Copula
Weibull YP BP YP PE YP

AE ARB (%) AE ARB (%) AE ARB (%)

AMH AMH 0.3291 -1.2604 0.3286 -1.4134 0.3265 -2.0618
Clayton 0.3364 0.9205 0.3372 1.1611 0.3385 1.5572
Frank 0.3172 -4.8475 0.3219 -3.4215 0.3246 -2.6318
GH 0.2435 -26.9446 0.2730 -18.1096 0.2839 -14.8252
Joe 0.1483 -55.5071 0.1774 -46.7665 0.1919 -42.4151

Clayton Clayton 0.5020 0.3954 0.5040 0.8008 0.5049 0.9776
AMH 0.3333 -33.3356 0.3333 -33.3365 0.3333 -33.3396
Frank 0.4793 -4.1396 0.4902 -1.9665 0.4933 -1.3437
GH 0.3796 -24.0859 0.4321 -13.5711 0.4357 -12.8521
Joe 0.2589 -48.2225 0.3211 -35.7896 0.3248 -35.0371

Frank Frank 0.5012 0.2377 0.5020 0.4077 0.5049 0.9743
AMH 0.3167 -36.6525 0.3206 -35.8744 0.3200 -35.9962
Clayton 0.4444 -11.1239 0.4609 -7.8243 0.4618 -7.6478
GH 0.4198 -16.0481 0.4474 -10.5108 0.4527 -9.4699
Joe 0.3258 -34.8346 0.3753 -24.9443 0.3776 -24.4769

GH GH 0.4997 -0.0686 0.5020 0.3980 0.5160 3.2085
AMH 0.3175 -36.4954 0.3208 -35.8440 0.3200 -35.9918
Clayton 0.4424 -11.5208 0.4610 -7.7972 0.4610 -7.8097
Frank 0.5198 3.9543 0.5263 5.2640 0.5279 5.5895
Joe 0.4360 -12.8032 0.4527 -9.4686 0.4647 -7.0535

Joe Joe 0.5013 0.2676 0.5045 0.8998 0.5179 3.5893
AMH 0.2948 -41.0462 0.2998 -40.0415 0.3001 -39.9724
Clayton 0.4195 -16.1001 0.4555 -8.9031 0.4551 -8.9761
Frank 0.5430 8.6092 0.5524 10.4785 0.5535 10.6905
GH 0.5402 8.0495 0.5340 6.8086 0.5496 9.9168

Table A.10: MC statistics for Kendall's tau estimates of �tted survival copula models over generated data
from each copula model with Weibull PH margins (n = 500; τ = 0.75)

True Copula
Weibull PH BP PH PE PH

AE ARB (%) AE ARB (%) AE ARB (%)

AMH AMH 0.3221 -3.3792 0.3282 -1.5478 0.3277 -1.7030
Clayton 0.3362 0.8537 0.3368 1.0377 0.3390 1.6855
Frank 0.3110 -6.7011 0.3127 -6.1951 0.3157 -5.2786
GH 0.2333 -30.0249 0.2564 -23.0861 0.2677 -19.6924
Joe 0.1428 -57.1554 0.1661 -50.1810 0.1801 -45.9683

Clayton Clayton 0.7507 0.0904 0.7524 0.3205 0.7543 0.5694
AMH 0.3333 -55.5556 0.3333 -55.5556 0.3333 -55.5556
Frank 0.7275 -2.9980 0.7345 -2.0621 0.7375 -1.6648
GH 0.5764 -23.1459 0.6306 -15.9143 0.6341 -15.4594
Joe 0.4369 -41.7473 0.5075 -32.3322 0.5117 -31.7711

Frank Frank 0.7508 0.1123 0.7517 0.2258 0.7547 0.6202
AMH 0.3310 -55.8678 0.3322 -55.7126 0.3321 -55.7233
Clayton 0.7279 -2.9435 0.7381 -1.5885 0.7392 -1.4341
GH 0.6417 -14.4442 0.6710 -10.5390 0.6735 -10.2023
Joe 0.5222 -30.3682 0.5747 -23.3741 0.5778 -22.9646

GH GH 0.7500 0.0026 0.7517 0.2233 0.7576 1.0197
AMH 0.3324 -55.6829 0.3331 -55.5851 0.3330 -55.5933
Clayton 0.7331 -2.2491 0.7502 0.0232 0.7517 0.2226
Frank 0.7691 2.5463 0.7718 2.9078 0.7752 3.3637
Joe 0.6850 -8.6639 0.6967 -7.1132 0.6998 -6.6908

Joe Joe 0.7511 0.1532 0.7527 0.3660 0.7528 0.3691
AMH 0.3275 -56.3328 0.3296 -56.0485 0.3296 -56.0533
Clayton 0.7241 -3.4482 0.7658 2.1090 0.7674 2.3145
Frank 0.7978 6.3718 0.8002 6.6925 0.8031 7.0832
GH 0.7862 4.8273 0.7839 4.5156 0.7892 5.2226
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Table A.11: MC statistics for Kendall's tau estimates of �tted survival copula models over generated data
from each copula model with Weibull PO margins (n = 500; τ = 0.75)

True Copula
Weibull PO BP PO PE PO

AE ARB (%) AE ARB (%) AE ARB (%)

AMH AMH 0.3260 -2.2133 0.3279 -1.6163 0.3277 -1.6812
Clayton 0.3385 1.5647 0.3361 0.8395 0.3382 1.4686
Frank 0.3136 -5.9252 0.3207 -3.7802 0.3238 -2.8499
GH 0.2265 -32.0619 0.2700 -18.9882 0.2816 -15.5298
Joe 0.1312 -60.6543 0.1748 -47.5524 0.1899 -43.0420

Clayton Clayton 0.7488 -0.1603 0.7527 0.3605 0.7541 0.5402
AMH 0.3333 -55.5560 0.3333 -55.5556 0.3333 -55.5556
Frank 0.7316 -2.4596 0.7458 -0.5646 0.7487 -0.1763
GH 0.5703 -23.9658 0.6537 -12.8340 0.6534 -12.8815
Joe 0.4231 -43.5931 0.5343 -28.7640 0.5334 -28.8789

Frank Frank 0.7496 -0.0499 0.7518 0.2371 0.7547 0.6247
AMH 0.3310 -55.8714 0.3327 -55.6359 0.3325 -55.6650
Clayton 0.7087 -5.5005 0.7173 -4.3655 0.7181 -4.2475
GH 0.6344 -15.4142 0.6790 -9.4699 0.6792 -9.4355
Joe 0.5097 -32.0430 0.5908 -21.2294 0.5895 -21.4028

GH GH 0.7461 -0.5147 0.7518 0.2385 0.7577 1.0267
AMH 0.3324 -55.6784 0.3332 -55.5674 0.3332 -55.5779
Clayton 0.7146 -4.7150 0.7277 -2.9725 0.7274 -3.0138
Frank 0.7667 2.2306 0.7724 2.9835 0.7751 3.3462
Joe 0.6802 -9.3046 0.7047 -6.0403 0.7061 -5.8487

Joe Joe 0.7473 -0.3654 0.7530 0.4022 0.7525 0.3363
AMH 0.3270 -56.4040 0.3303 -55.9561 0.3302 -55.9748
Clayton 0.6906 -7.9159 0.7292 -2.7677 0.7288 -2.8201
Frank 0.7935 5.8018 0.7964 6.1846 0.7984 6.4582
GH 0.7798 3.9743 0.7777 3.6996 0.7831 4.4197

Table A.12: MC statistics for Kendall's tau estimates of �tted survival copula models over generated data
from each copula model with Weibull YP margins (n = 500; τ = 0.75)

True Copula
Weibull YP BP YP PE YP

AE ARB (%) AE ARB (%) AE ARB (%)

AMH AMH 0.3291 -1.2631 0.3286 -1.4159 0.3265 -2.0618
Clayton 0.3364 0.9127 0.3372 1.1471 0.3385 1.5550
Frank 0.3172 -4.8445 0.3219 -3.4248 0.3246 -2.6302
GH 0.2435 -26.9506 0.2730 -18.1096 0.2839 -14.8343
Joe 0.1484 -55.4932 0.1774 -46.7665 0.1919 -42.4175

Clayton Clayton 0.7515 0.2021 0.7539 0.5215 0.7547 0.6242
AMH 0.3333 -55.5556 0.3333 -55.5556 0.3333 -55.5556
Frank 0.7358 -1.8996 0.7476 -0.3164 0.7503 0.0342
GH 0.5962 -20.5039 0.6587 -12.1719 0.6584 -12.2122
Joe 0.4531 -39.5873 0.5400 -27.9963 0.5396 -28.0487

Frank Frank 0.7513 0.1719 0.7521 0.2767 0.7548 0.6436
AMH 0.3317 -55.7770 0.3330 -55.5993 0.3327 -55.6459
Clayton 0.7145 -4.7300 0.7232 -3.5716 0.7236 -3.5190
GH 0.6520 -13.0664 0.6809 -9.2197 0.6807 -9.2390
Joe 0.5372 -28.3751 0.5937 -20.8409 0.5924 -21.0181

GH GH 0.7504 0.0583 0.7523 0.3058 0.7579 1.0500
AMH 0.3330 -55.5949 0.3333 -55.5631 0.3332 -55.5713
Clayton 0.7205 -3.9280 0.7324 -2.3480 0.7320 -2.3987
Frank 0.7668 2.2443 0.7731 3.0739 0.7758 3.4362
Joe 0.6886 -8.1820 0.7057 -5.9092 0.7070 -5.7396

Joe Joe 0.7515 0.2026 0.7533 0.4373 0.7526 0.3419
AMH 0.3277 -56.3037 0.3316 -55.7852 0.3310 -55.8704
Clayton 0.7049 -6.0130 0.7417 -1.1064 0.7411 -1.1917
Frank 0.7927 5.6965 0.7964 6.1887 0.7987 6.4986
GH 0.7827 4.3545 0.7788 3.8416 0.7841 4.5458
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Figure A.1: Kendall's τ estimates for �tted survival copula models over data generated from each copula
model with Weibull PH margins (n = 500; τ = 0.5)
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Figure A.2: Kendall's τ estimates for �tted survival copula models over data generated from each copula
model with Weibull PO margins (n = 500; τ = 0.5)
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Figure A.3: Kendall's τ estimates for �tted survival copula models over data generated from each copula
model with Weibull YP margins (n = 500; τ = 0.5)
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Figure A.4: Kendall's τ estimates for �tted survival copula models over data generated from each copula
model with Weibull PH margins (n = 500; τ = 0.75)
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Figure A.5: Kendall's τ estimates for �tted survival copula models over data generated from each copula
model with Weibull PO margins (n = 500; τ = 0.75)
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Figure A.6: Kendall's τ estimates for �tted survival copula models over data generated from each copula
model with Weibull YP margins (n = 500; τ = 0.75)
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Table A.13: LR tests for PH and PO classes against YP class, given �tted survival copula models over
generated data from each copula model with Weibull PH margins (n = 500; τ = 0.5)

Copula Class
Weibull Fitting BP Fitting PE Fitting

LR stat. P-value LR stat. P-value LR stat. P-value

AMH PH 4.0786 0.4915 4.2633 0.4733 3.9422 0.5066
PO 53.6566 < 0.0001 37.5120 0.0002 35.9249 0.0001

Clayton PH 4.1552 0.4866 4.0848 0.4888 3.9933 0.4998
PO 52.1819 < 0.0001 37.0372 0.0002 37.1081 0.0001

Frank PH 4.1845 0.4789 4.1552 0.4793 4.0751 0.4859
PO 46.9079 < 0.0001 33.7010 0.0003 33.8977 0.0002

GH PH 4.0814 0.4958 4.1157 0.4876 3.9735 0.5023
PO 46.9448 < 0.0001 33.8404 0.0005 34.3718 0.0003

Joe PH 4.1289 0.4872 4.3066 0.4701 4.1924 0.4786
PO 47.5744 < 0.0001 34.0852 0.0004 35.2987 0.0002

Table A.14: LR tests for PH and PO classes against YP class, given �tted survival copula models over
generated data from each copula model with Weibull PO margins (n = 500; τ = 0.5)

Copula Class
Weibull Fitting BP Fitting PE Fitting

LR stat. P-value LR stat. P-value LR stat. P-value

AMH PH 31.4730 0.0012 23.6811 0.0104 24.5327 0.0084
PO 5.8156 0.3537 4.1720 0.4915 5.4295 0.3392

Clayton PH 30.5809 0.0013 23.9132 0.0083 25.3416 0.0051
PO 5.6386 0.3562 4.0893 0.4942 5.3627 0.3428

Frank PH 29.4902 0.0016 23.2168 0.0106 24.3390 0.0074
PO 5.5510 0.3632 4.1485 0.4870 5.3165 0.3471

GH PH 29.4416 0.0026 23.2887 0.0106 23.9788 0.0082
PO 5.6593 0.3622 4.3634 0.4732 5.5595 0.3342

Joe PH 32.2492 0.0015 25.1835 0.0103 25.4390 0.0084
PO 5.5502 0.3721 4.2044 0.4806 5.4813 0.3285

Table A.15: LR tests for PH and PO classes against YP class, given �tted survival copula models over
generated data from each copula model with Weibull YP margins (n = 500; τ = 0.5)

Copula Class
Weibull Fitting BP Fitting PE Fitting

LR stat. P-value LR stat. P-value LR stat. P-value

AMH PH 129.6494 < 0.0001 112.7223 < 0.0001 114.8362 < 0.0001
PO 101.2200 < 0.0001 86.4514 < 0.0001 88.9593 < 0.0001

Clayton PH 130.4050 < 0.0001 115.8957 < 0.0001 117.6691 < 0.0001
PO 113.6766 < 0.0001 97.1271 < 0.0001 99.9802 < 0.0001

Frank PH 119.8104 < 0.0001 105.9319 < 0.0001 107.5134 < 0.0001
PO 94.5675 < 0.0001 81.2991 < 0.0001 83.4815 < 0.0001

GH PH 119.5611 < 0.0001 105.2201 < 0.0001 106.0989 < 0.0001
PO 92.3302 < 0.0001 78.9427 < 0.0001 80.5208 < 0.0001

Joe PH 127.9855 < 0.0001 111.9543 < 0.0001 113.1972 < 0.0001
PO 96.6103 < 0.0001 81.6008 < 0.0001 83.4350 < 0.0001
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Table A.16: LR tests for PH and PO classes against YP class, given �tted survival copula models over
generated data from each copula model with Weibull PH margins (n = 500; τ = 0.75)

Copula Class
Weibull Fitting BP Fitting PE Fitting

LR stat. P-value LR stat. P-value LR stat. P-value

AMH PH 4.0679 0.4927 4.2633 0.4733 3.9458 0.5062
PO 53.6867 < 0.0001 37.5177 0.0002 35.8834 0.0001

Clayton PH 4.2530 0.4732 4.3030 0.4674 4.2003 0.4789
PO 59.3317 < 0.0001 38.8624 0.0002 38.8464 0.0001

Frank PH 4.1085 0.4952 4.1176 0.4912 4.0613 0.4965
PO 46.6895 < 0.0001 31.9956 0.0006 32.0962 0.0005

GH PH 4.0969 0.4947 4.2173 0.4808 4.2422 0.4814
PO 48.3851 < 0.0001 34.5418 0.0004 35.4898 0.0002

Joe PH 4.1397 0.4869 4.2477 0.4767 4.4248 0.4602
PO 48.1058 0.0001 34.5065 0.0003 36.0928 0.0003

Table A.17: LR tests for PH and PO classes against YP class, given �tted survival copula models over
generated data from each copula model with Weibull PO margins (n = 500; τ = 0.75)

Copula Class
Weibull Fitting BP Fitting PE Fitting

LR stat. P-value LR stat. P-value LR stat. P-value

AMH PH 31.4746 0.0012 23.6687 0.0104 24.5679 0.0084
PO 5.8156 0.3537 4.1670 0.4921 5.4246 0.3397

Clayton PH 34.1277 0.0006 25.1576 0.0072 27.3388 0.0037
PO 5.8548 0.3422 4.2676 0.4816 5.5711 0.3310

Frank PH 31.9510 0.0010 24.4964 0.0079 25.6515 0.0051
PO 5.6419 0.3590 4.2079 0.4825 5.4412 0.3370

GH PH 33.2654 0.0008 25.3660 0.0093 25.8902 0.0070
PO 5.9434 0.3465 4.3894 0.4705 5.8142 0.3159

Joe PH 37.9297 0.0005 27.9655 0.0051 28.1033 0.0034
PO 6.0286 0.3396 4.0225 0.4971 5.5462 0.3283

Table A.18: LR tests for PH and PO classes against YP class, given �tted survival copula models over
generated data from each copula model with Weibull YP margins (n = 500; τ = 0.75)

Copula Class
Weibull Fitting BP Fitting PE Fitting

LR stat. P-value LR stat. P-value LR stat. P-value

AMH PH 129.5452 < 0.0001 112.6162 < 0.0001 114.8362 < 0.0001
PO 101.2151 < 0.0001 86.4675 < 0.0001 88.8835 < 0.0001

Clayton PH 156.1917 < 0.0001 138.7861 < 0.0001 141.6539 < 0.0001
PO 136.5450 < 0.0001 118.2574 < 0.0001 121.5292 < 0.0001

Frank PH 128.1955 < 0.0001 113.4838 < 0.0001 115.5439 < 0.0001
PO 95.3431 < 0.0001 82.5949 < 0.0001 84.7231 < 0.0001

GH PH 129.0373 < 0.0001 112.5214 < 0.0001 112.5278 < 0.0001
PO 94.5899 < 0.0001 80.8641 < 0.0001 82.1328 < 0.0001

Joe PH 141.7503 < 0.0001 122.4834 < 0.0001 122.2895 < 0.0001
PO 96.1089 < 0.0001 81.3977 < 0.0001 83.1340 < 0.0001



APPENDIX B

Additional Results for Generated Copulas with EW Baseline

B.1 Akaike Information Criteria

Results in this appendix for the AIC consist of tables on two statistics, the mean AIC and the proportion

of choice by the least AIC, for each �tted copula model (among AMH, Clayton, Frank, GH and Joe), given

a speci�cation for the baseline distribution (Weibull, BP or PE) and regression model class (PH, PO or YP),

on Scenarios S2 (n = 500, τ = 0.5) and S3 (n = 500, τ = 0.75).

B.2 Correlation Estimates

Results for the Kendall's τ correlation estimates in this appendix comprehend tables of two statistics (AE

and ARB), and boxplots of the relative biases, for all Archimedean copulas addressed in this work (AMH,

Clayton, Frank, GH and Joe), given each combination of �tted baseline distribution (Weibull, BP or PE) and

regression model class (PH, PO or YP), on Scenarios S2 and S3.

B.3 Likelihood Ratio Tests

Finally, results for the LR tests in this appendix comprehend tables of means for the LR statistic and its

corresponding p-value for nested �tted models with respect to the regression model class, given each one of

the �ve Archimedean copulas discussed in this work (AMH, Clayton, Frank, GH and Joe), combined with a

�tted baseline distribution (BP or PE), on Scenarios S2 and S3, given a regression model class (PH, PO or

YP) used for marginal data generation.
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Table B.1: Mean AIC and choice proportion for all �tted survival copula models over generated data from
each copula with EW PH margins (n = 500; τ = 0.5)

True Fitted
Weibull PH BP PH PE PH

AIC Choice (%) AIC Choice (%) AIC Choice (%)

AMH AMH 842.56 0.64 850.72 16.70 802.05 15.00
Clayton 850.63 99.11 852.00 82.90 802.23 84.30
Frank 881.37 0.25 878.98 0.40 827.68 0.70
GH 926.95 0.00 934.18 0.00 877.91 0.00
Joe 946.44 0.00 954.14 0.00 903.66 0.00

Clayton Clayton 702.77 99.87 701.82 99.90 651.68 99.50
AMH 803.74 0.00 735.21 0.00 690.01 0.30
Frank 761.95 0.13 750.58 0.10 698.17 0.20
GH 858.61 0.00 863.57 0.00 796.70 0.00
Joe 904.09 0.00 913.12 0.00 855.55 0.00

Frank Frank 707.85 87.98 710.45 99.70 660.28 99.60
AMH 772.43 0.00 775.52 0.00 729.26 0.00
Clayton 724.39 12.02 757.29 0.30 708.41 0.40
GH 794.01 0.00 803.56 0.00 743.56 0.00
Joe 840.97 0.00 850.66 0.00 793.14 0.00

GH GH 639.04 97.84 648.97 76.60 601.30 76.70
AMH 773.86 0.00 783.19 0.00 737.88 0.00
Clayton 728.58 0.00 764.18 0.00 715.86 0.00
Frank 678.92 2.16 691.74 23.40 640.59 22.90
Joe 669.14 0.00 679.74 0.00 626.96 0.40

Joe Joe 551.53 22.25 570.15 19.20 517.03 56.60
AMH 788.05 0.00 794.36 0.00 746.84 0.00
Clayton 736.63 0.00 781.67 0.00 731.61 0.00
Frank 636.36 0.00 656.86 23.60 604.01 23.60
GH 545.64 77.75 564.73 57.20 521.68 19.80

Table B.2: Mean AIC and choice proportion for all �tted survival copula models over generated data from
each copula with EW PO margins (n = 500; τ = 0.5)

True Fitted
Weibull PO BP PO PE PO

AIC Choice (%) AIC Choice (%) AIC Choice (%)

AMH AMH 734.86 0.00 726.86 17.60 691.26 12.30
Clayton 755.49 98.98 727.74 82.20 690.47 87.10
Frank 793.76 1.02 759.09 0.20 720.15 0.60
GH 843.30 0.00 818.43 0.00 774.23 0.00
Joe 862.69 0.00 841.86 0.00 803.00 0.00

Clayton Clayton 597.16 99.87 567.32 100.00 529.63 99.10
AMH 706.61 0.00 606.02 0.00 582.36 0.00
Frank 670.28 0.13 623.11 0.00 582.12 0.90
GH 775.24 0.00 743.61 0.00 688.42 0.00
Joe 822.36 0.00 800.38 0.00 753.79 0.00

Frank Frank 611.48 72.51 588.85 99.90 550.81 99.90
AMH 677.36 0.00 655.69 0.00 620.67 0.00
Clayton 621.10 27.49 638.64 0.10 601.85 0.10
GH 707.12 0.00 685.44 0.00 636.92 0.00
Joe 757.64 0.00 737.07 0.00 690.16 0.00

GH GH 542.96 96.82 529.58 75.90 492.91 76.90
AMH 695.28 0.00 664.12 0.00 631.09 0.00
Clayton 627.88 0.00 647.41 0.00 612.13 0.20
Frank 581.73 3.05 569.02 24.10 532.17 22.60
Joe 578.46 0.13 562.97 0.00 520.31 0.30

Joe Joe 456.97 7.33 453.20 23.40 411.62 54.10
AMH 684.34 0.00 677.61 0.00 642.47 0.10
Clayton 641.04 0.00 670.92 0.00 634.22 0.10
Frank 538.36 0.00 535.79 23.60 498.61 23.40
GH 445.47 92.67 448.68 53.00 416.65 22.30
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Table B.3: Mean AIC and choice proportion for all �tted survival copula models over generated data from
each copula with EW YP margins (n = 500; τ = 0.5)

True Fitted
Weibull YP BP YP PE YP

AIC Choice (%) AIC Choice (%) AIC Choice (%)

AMH AMH 685.86 0.76 695.67 18.50 650.93 14.30
Clayton 684.72 99.11 694.66 81.30 653.92 85.40
Frank 722.60 0.13 726.71 0.20 684.22 0.30
GH 769.73 0.00 788.14 0.00 739.25 0.00
Joe 792.61 0.00 811.19 0.00 768.72 0.00

Clayton Clayton 523.68 99.87 532.18 100.00 492.09 99.70
AMH 566.81 0.13 572.94 0.00 532.07 0.20
Frank 594.39 0.00 589.46 0.00 545.28 0.10
GH 693.66 0.00 712.85 0.00 653.01 0.00
Joe 747.08 0.00 770.06 0.00 720.27 0.00

Frank Frank 540.38 87.08 556.35 99.60 515.92 99.70
AMH 590.93 0.00 624.04 0.00 586.54 0.00
Clayton 556.60 12.92 604.32 0.40 564.38 0.30
GH 624.90 0.00 654.00 0.00 602.32 0.00
Joe 678.84 0.00 705.78 0.00 656.20 0.00

GH GH 473.05 98.98 496.04 75.70 456.36 77.10
AMH 599.54 0.00 631.57 0.00 594.39 0.00
Clayton 566.23 0.00 611.94 0.00 574.01 0.00
Frank 517.60 0.76 535.43 24.30 495.89 22.60
Joe 505.78 0.25 529.91 0.00 484.93 0.30

Joe Joe 386.90 27.49 419.35 20.60 375.56 53.20
AMH 612.85 0.00 645.73 0.00 607.06 0.00
Clayton 580.97 0.00 633.78 0.00 594.59 0.00
Frank 477.73 0.00 501.88 23.60 462.29 23.60
GH 381.78 72.51 413.62 55.80 379.89 23.20

Table B.4: Mean AIC and choice proportion for all �tted survival copula models over generated data from
each copula with EW PH margins (n = 500; τ = 0.75)

True Fitted
Weibull PH BP PH PE PH

AIC Choice (%) AIC Choice (%) AIC Choice (%)

AMH AMH 842.56 0.64 850.86 16.50 801.92 14.90
Clayton 850.93 98.85 851.91 82.90 802.18 84.60
Frank 881.43 0.51 878.89 0.60 827.96 0.50
GH 927.17 0.00 934.18 0.00 878.21 0.00
Joe 946.53 0.00 954.14 0.00 903.62 0.00

Clayton Clayton 303.09 100.00 291.48 100.00 241.33 99.70
AMH 614.28 0.00 594.49 0.00 555.18 0.00
Frank 402.83 0.00 369.01 0.00 315.15 0.30
GH 638.26 0.00 632.67 0.00 551.67 0.00
Joe 740.24 0.00 741.07 0.00 668.82 0.00

Frank Frank 287.89 97.92 285.51 100.00 233.54 99.90
AMH 619.94 0.00 627.32 0.00 586.77 0.00
Clayton 329.95 2.08 377.84 0.00 329.94 0.10
GH 496.40 0.00 500.74 0.00 435.10 0.00
Joe 602.79 0.00 601.33 0.00 535.25 0.00

GH GH 169.28 99.62 193.98 79.40 133.32 79.50
AMH 618.75 0.00 625.37 0.00 585.38 0.00
Clayton 326.77 0.00 374.75 0.00 323.05 0.10
Frank 242.81 0.25 261.93 20.50 195.93 20.40
Joe 232.78 0.13 257.48 0.10 181.85 0.00

Joe Joe 33.27 33.59 81.57 23.00 11.32 63.00
AMH 651.64 0.00 654.62 0.00 610.17 0.00
Clayton 353.38 0.00 411.45 0.00 357.59 0.30
Frank 157.93 0.00 192.39 23.20 121.21 22.90
GH 27.53 66.41 74.34 53.80 24.13 13.80
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Table B.5: Mean AIC and choice proportion for all �tted survival copula models over generated data from
each copula with EW PO margins (n = 500; τ = 0.75)

True Fitted
Weibull PO BP PO PE PO

AIC Choice (%) AIC Choice (%) AIC Choice (%)

AMH AMH 734.86 0.00 726.86 17.70 691.13 12.20
Clayton 755.84 99.75 727.86 82.10 690.55 87.40
Frank 793.77 0.25 759.20 0.20 720.44 0.40
GH 843.54 0.00 818.46 0.00 774.13 0.00
Joe 862.72 0.00 841.86 0.00 802.98 0.00

Clayton Clayton 162.89 99.87 124.73 100.00 87.62 99.70
AMH 544.66 0.00 457.87 0.00 449.90 0.00
Frank 287.96 0.13 213.85 0.00 170.12 0.30
GH 548.95 0.00 497.96 0.00 425.81 0.00
Joe 658.42 0.00 619.97 0.00 555.68 0.00

Frank Frank 166.10 93.37 139.96 99.80 101.36 99.70
AMH 500.44 0.00 495.77 0.00 474.38 0.00
Clayton 200.65 6.63 239.27 0.20 205.45 0.30
GH 398.96 0.00 365.54 0.00 309.41 0.00
Joe 516.11 0.00 476.02 0.00 418.25 0.00

GH GH 51.21 99.87 50.77 79.40 3.95 79.60
AMH 563.20 0.00 495.28 0.00 482.83 0.00
Clayton 205.34 0.00 240.06 0.00 206.00 0.00
Frank 123.35 0.13 111.70 20.60 64.96 20.30
Joe 130.48 0.00 121.87 0.00 59.17 0.10

Joe Joe -80.26 7.16 -59.29 23.20 -110.98 59.90
AMH 542.06 0.00 525.90 0.00 498.44 0.00
Clayton 246.09 0.00 294.65 0.00 260.46 0.30
Frank 32.09 0.00 43.53 23.20 -2.59 22.90
GH -99.85 92.84 -66.94 53.60 -100.52 16.90

Table B.6: Mean AIC and choice proportion for all �tted survival copula models over generated data from
each copula with EW YP margins (n = 500; τ = 0.75)

True Fitted
Weibull YP BP YP PE YP

AIC Choice (%) AIC Choice (%) AIC Choice (%)

AMH AMH 685.84 0.76 695.62 18.50 650.93 14.50
Clayton 684.58 98.98 694.66 81.30 653.89 84.90
Frank 722.54 0.25 726.67 0.20 684.30 0.60
GH 769.89 0.00 788.48 0.00 739.49 0.00
Joe 792.61 0.00 811.19 0.00 768.76 0.00

Clayton Clayton 84.58 99.62 84.45 99.90 45.15 99.80
AMH 419.09 0.00 426.76 0.00 389.07 0.00
Frank 205.33 0.38 176.61 0.10 130.66 0.20
GH 446.87 0.00 467.12 0.00 388.71 0.00
Joe 566.64 0.00 590.34 0.00 520.84 0.00

Frank Frank 90.70 98.06 103.51 100.00 63.31 100.00
AMH 434.66 0.00 465.30 0.00 424.96 0.00
Clayton 136.26 1.94 194.74 0.00 158.68 0.00
GH 296.89 0.00 332.11 0.00 272.12 0.00
Joe 420.13 0.00 443.50 0.00 381.88 0.00

GH GH -24.73 99.87 15.25 79.30 -34.76 79.70
AMH 437.08 0.00 461.79 0.00 428.65 0.00
Clayton 144.52 0.00 194.57 0.00 158.87 0.10
Frank 59.44 0.00 72.91 20.70 24.73 20.20
Joe 47.32 0.13 87.72 0.00 21.86 0.00

Joe Joe -159.69 31.12 -94.18 18.50 -149.06 56.30
AMH 458.61 0.00 492.42 0.00 453.93 0.00
Clayton 183.45 0.00 237.63 0.00 202.13 0.00
Frank -25.67 0.00 5.68 23.20 -42.27 23.20
GH -166.78 68.88 -104.06 58.30 -140.43 20.50
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Table B.7: MC statistics for Kendall's tau estimates of �tted survival copula models over generated data
from each copula model with EW PH margins (n = 500; τ = 0.5)

True Copula
Weibull PH BP PH PE PH

AE ARB (%) AE ARB (%) AE ARB (%)

AMH AMH 0.3221 -3.3813 0.3273 -1.8142 0.3283 -1.5075
Clayton 0.3594 7.8141 0.3274 -1.7819 0.3369 1.0617
Frank 0.2908 -12.7635 0.2946 -11.6201 0.3099 -7.0195
GH 0.1583 -52.5150 0.1371 -58.8716 0.1919 -42.4344
Joe 0.0782 -76.5306 0.0606 -81.8244 0.0952 -71.4277

Clayton Clayton 0.5101 2.0300 0.4912 -1.7667 0.5018 0.3514
AMH 0.3330 -33.4079 0.3333 -33.3345 0.3333 -33.3346
Frank 0.4429 -11.4296 0.4539 -9.2264 0.4721 -5.5748
GH 0.2750 -45.0039 0.2481 -50.3802 0.3230 -35.4001
Joe 0.1582 -68.3677 0.1334 -73.3255 0.1956 -60.8703

Frank Frank 0.4902 -1.9591 0.4834 -3.3172 0.4989 -0.2294
AMH 0.3284 -34.3240 0.3197 -36.0549 0.3211 -35.7877
Clayton 0.5097 1.9375 0.4662 -6.7536 0.4745 -5.0923
GH 0.3397 -32.0500 0.3010 -39.8037 0.3636 -27.2833
Joe 0.2285 -54.2924 0.1987 -60.2656 0.2615 -47.7025

GH GH 0.4473 -10.5415 0.4072 -18.5656 0.4632 -7.3610
AMH 0.3287 -34.2597 0.3201 -35.9727 0.3216 -35.6778
Clayton 0.5179 3.5857 0.4694 -6.1148 0.4792 -4.1502
Frank 0.5199 3.9782 0.5033 0.6619 0.5254 5.0701
Joe 0.3560 -28.8078 0.3174 -36.5214 0.3855 -22.8934

Joe Joe 0.4368 -12.6338 0.3898 -22.0366 0.4563 -8.7415
AMH 0.3214 -35.7296 0.3010 -39.7963 0.3028 -39.4341
Clayton 0.5250 5.0068 0.4713 -5.7466 0.4801 -3.9762
Frank 0.5557 11.1423 0.5327 6.5444 0.5572 11.4379
GH 0.5091 1.8175 0.4643 -7.1373 0.5137 2.7330

Table B.8: MC statistics for Kendall's tau estimates of �tted survival copula models over generated data
from each copula model with EW PO margins (n = 500; τ = 0.5)

True Copula
Weibull PO BP PO PE PO

AE ARB (%) AE ARB (%) AE ARB (%)

AMH AMH 0.3277 -1.7005 0.3276 -1.7089 0.3279 -1.6237
Clayton 0.3561 6.8446 0.3288 -1.3677 0.3356 0.6947
Frank 0.2855 -14.3436 0.3046 -8.6209 0.3170 -4.8964
GH 0.1469 -55.9160 0.1512 -54.6419 0.1999 -40.0417
Joe 0.0683 -79.5094 0.0656 -80.3158 0.0976 -70.7279

Clayton Clayton 0.5028 0.5610 0.4927 -1.4592 0.5002 0.0363
AMH 0.3333 -33.3333 0.3333 -33.3344 0.3333 -33.3340
Frank 0.4379 -12.4202 0.4675 -6.4930 0.4828 -3.4345
GH 0.2618 -47.6453 0.2677 -46.4700 0.3346 -33.0834
Joe 0.1435 -71.3062 0.1440 -71.2094 0.2014 -59.7295

Frank Frank 0.4859 -2.8244 0.4874 -2.5122 0.4986 -0.2830
AMH 0.3313 -33.7380 0.3194 -36.1217 0.3214 -35.7201
Clayton 0.4935 -1.3085 0.4513 -9.7494 0.4570 -8.5962
GH 0.3273 -34.5401 0.3141 -37.1847 0.3664 -26.7288
Joe 0.2130 -57.3960 0.2096 -58.0860 0.2644 -47.1251

GH GH 0.4362 -12.7570 0.4189 -16.2286 0.4621 -7.5747
AMH 0.3308 -33.8352 0.3185 -36.2935 0.3209 -35.8154
Clayton 0.4967 -0.6532 0.4509 -9.8115 0.4567 -8.6664
Frank 0.5139 2.7886 0.5093 1.8588 0.5238 4.7651
Joe 0.3410 -31.7927 0.3304 -33.9206 0.3867 -22.6625

Joe Joe 0.4241 -15.1818 0.4024 -19.5212 0.4545 -9.0913
AMH 0.3250 -34.9994 0.2990 -40.2011 0.3001 -39.9732
Clayton 0.4960 -0.7913 0.4440 -11.2092 0.4481 -10.3868
Frank 0.5505 10.1061 0.5379 7.5739 0.5524 10.4874
GH 0.4991 -0.1808 0.4723 -5.5423 0.5079 1.5737
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Table B.9: MC statistics for Kendall's tau estimates of �tted survival copula models over generated data
from each copula model with EW YP margins (n = 500; τ = 0.5)

True Copula
Weibull YP BP YP PE YP

AE ARB (%) AE ARB (%) AE ARB (%)

AMH AMH 0.3330 -0.0954 0.3279 -1.6380 0.3279 -1.6435
Clayton 0.3465 3.9355 0.3317 -0.5027 0.3368 1.0399
Frank 0.2876 -13.7059 0.3068 -7.9671 0.3187 -4.3908
GH 0.1672 -49.8368 0.1488 -55.3711 0.2006 -39.8056
Joe 0.0821 -75.3779 0.0637 -80.8966 0.0971 -70.8818

Clayton Clayton 0.4951 -0.9845 0.4964 -0.7135 0.5016 0.3173
AMH 0.3333 -33.3335 0.3333 -33.3357 0.3333 -33.3356
Frank 0.4413 -11.7491 0.4708 -5.8330 0.4853 -2.9483
GH 0.2902 -41.9507 0.2656 -46.8750 0.3369 -32.6190
Joe 0.1671 -66.5758 0.1412 -71.7619 0.2019 -59.6159

Frank Frank 0.4840 -3.1984 0.4889 -2.2195 0.4993 -0.1305
AMH 0.3325 -33.4963 0.3210 -35.8042 0.3220 -35.6049
Clayton 0.4855 -2.9045 0.4606 -7.8819 0.4641 -7.1763
GH 0.3502 -29.9540 0.3115 -37.7095 0.3662 -26.7697
Joe 0.2383 -52.3378 0.2068 -58.6479 0.2643 -47.1435

GH GH 0.4464 -10.7109 0.4170 -16.6046 0.4621 -7.5788
AMH 0.3326 -33.4714 0.3208 -35.8474 0.3217 -35.6558
Clayton 0.4876 -2.4710 0.4617 -7.6549 0.4643 -7.1484
Frank 0.5080 1.5981 0.5116 2.3242 0.5254 5.0764
Joe 0.3590 -28.2099 0.3276 -34.4782 0.3866 -22.6761

Joe Joe 0.4374 -12.5158 0.4000 -19.9959 0.4542 -9.1671
AMH 0.3254 -34.9201 0.3007 -39.8611 0.3014 -39.7111
Clayton 0.4889 -2.2172 0.4614 -7.7300 0.4621 -7.5874
Frank 0.5420 8.3904 0.5402 8.0402 0.5542 10.8416
GH 0.5041 0.8269 0.4713 -5.7431 0.5079 1.5827

Table B.10: MC statistics for Kendall's tau estimates of �tted survival copula models over generated data
from each copula model with EW PH margins (n = 500; τ = 0.75)

True Copula
Weibull PH BP PH PE PH

AE ARB (%) AE ARB (%) AE ARB (%)

AMH AMH 0.3221 -3.3813 0.3273 -1.8053 0.3283 -1.4998
Clayton 0.3593 7.7998 0.3273 -1.8054 0.3368 1.0476
Frank 0.2908 -12.7639 0.2946 -11.6259 0.3098 -7.0459
GH 0.1583 -52.5037 0.1371 -58.8716 0.1918 -42.4585
Joe 0.0782 -76.5351 0.0606 -81.8244 0.0952 -71.4451

Clayton Clayton 0.7334 -2.2172 0.7420 -1.0648 0.7506 0.0863
AMH 0.3333 -55.5556 0.3333 -55.5556 0.3333 -55.5556
Frank 0.7006 -6.5810 0.7188 -4.1590 0.7310 -2.5295
GH 0.4854 -35.2798 0.4522 -39.7042 0.5335 -28.8725
Joe 0.3291 -56.1143 0.3026 -59.6582 0.3854 -48.6103

Frank Frank 0.7397 -1.3668 0.7381 -1.5877 0.7496 -0.0594
AMH 0.3324 -55.6797 0.3321 -55.7184 0.3321 -55.7138
Clayton 0.7409 -1.2134 0.7298 -2.6994 0.7394 -1.4112
GH 0.5712 -23.8451 0.5259 -29.8808 0.5858 -21.8877
Joe 0.4221 -43.7227 0.3893 -48.0877 0.4595 -38.7304

GH GH 0.7154 -4.6170 0.6725 -10.3275 0.7214 -3.8096
AMH 0.3329 -55.6159 0.3331 -55.5857 0.3331 -55.5914
Clayton 0.7511 0.1438 0.7379 -1.6089 0.7553 0.7106
Frank 0.7611 1.4755 0.7480 -0.2660 0.7729 3.0595
Joe 0.6261 -16.5184 0.5721 -23.7207 0.6428 -14.2867

Joe Joe 0.7120 -5.0613 0.6523 -13.0299 0.7079 -5.6068
AMH 0.3315 -55.7970 0.3294 -56.0785 0.3298 -56.0309
Clayton 0.7656 2.0832 0.7554 0.7141 0.7759 3.4570
Frank 0.7955 6.0650 0.7767 3.5554 0.8027 7.0242
GH 0.7692 2.5605 0.7258 -3.2215 0.7618 1.5691
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Table B.11: MC statistics for Kendall's tau estimates of �tted survival copula models over generated data
from each copula model with EW PO margins (n = 500; τ = 0.75)

True Copula
Weibull PO BP PO PE PO

AE ARB (%) AE ARB (%) AE ARB (%)

AMH AMH 0.3277 -1.7005 0.3276 -1.7089 0.3279 -1.6254
Clayton 0.3562 6.8618 0.3288 -1.3718 0.3358 0.7301
Frank 0.2855 -14.3553 0.3046 -8.6308 0.3172 -4.8510
GH 0.1469 -55.9233 0.1511 -54.6557 0.1998 -40.0464
Joe 0.0683 -79.5077 0.0656 -80.3158 0.0976 -70.7147

Clayton Clayton 0.7273 -3.0267 0.7436 -0.8499 0.7500 0.0059
AMH 0.3333 -55.5556 0.3333 -55.5556 0.3333 -55.5556
Frank 0.7017 -6.4432 0.7309 -2.5486 0.7413 -1.1569
GH 0.4733 -36.8897 0.4738 -36.8210 0.5465 -27.1354
Joe 0.3110 -58.5379 0.3196 -57.3883 0.3961 -47.1868

Frank Frank 0.7395 -1.4031 0.7413 -1.1645 0.7495 -0.0647
AMH 0.3330 -55.6035 0.3328 -55.6254 0.3327 -55.6415
Clayton 0.7244 -3.4182 0.7130 -4.9328 0.7192 -4.1033
GH 0.5612 -25.1724 0.5411 -27.8595 0.5908 -21.2210
Joe 0.4046 -46.0471 0.4045 -46.0689 0.4659 -37.8841

GH GH 0.7097 -5.3715 0.6837 -8.8412 0.7207 -3.9075
AMH 0.3332 -55.5722 0.3333 -55.5649 0.3332 -55.5727
Clayton 0.7301 -2.6486 0.7216 -3.7830 0.7311 -2.5208
Frank 0.7582 1.0998 0.7548 0.6393 0.7722 2.9653
Joe 0.6163 -17.8222 0.5871 -21.7265 0.6455 -13.9398

Joe Joe 0.7068 -5.7593 0.6651 -11.3244 0.7065 -5.7990
AMH 0.3327 -55.6392 0.3307 -55.9093 0.3311 -55.8543
Clayton 0.7350 -2.0020 0.7278 -2.9556 0.7384 -1.5432
Frank 0.7937 5.8288 0.7822 4.2868 0.7983 6.4384
GH 0.7645 1.9371 0.7332 -2.2438 0.7568 0.9121

Table B.12: MC statistics for Kendall's tau estimates of �tted survival copula models over generated data
from each copula model with EW YP margins (n = 500; τ = 0.75)

True Copula
Weibull YP BP YP PE YP

AE ARB (%) AE ARB (%) AE ARB (%)

AMH AMH 0.3330 -0.0956 0.3279 -1.6380 0.3279 -1.6435
Clayton 0.3466 3.9656 0.3317 -0.5027 0.3367 1.0085
Frank 0.2877 -13.6999 0.3067 -7.9805 0.3187 -4.3913
GH 0.1671 -49.8642 0.1488 -55.3663 0.2008 -39.7735
Joe 0.0821 -75.3779 0.0637 -80.8966 0.0971 -70.8695

Clayton Clayton 0.7279 -2.9459 0.7464 -0.4780 0.7511 0.1439
AMH 0.3333 -55.5556 0.3333 -55.5556 0.3333 -55.5556
Frank 0.7049 -6.0117 0.7333 -2.2292 0.7430 -0.9386
GH 0.5087 -32.1729 0.4727 -36.9697 0.5494 -26.7411
Joe 0.3471 -53.7170 0.3178 -57.6248 0.3988 -46.8307

Frank Frank 0.7399 -1.3442 0.7426 -0.9854 0.7500 0.0003
AMH 0.3333 -55.5591 0.3330 -55.6007 0.3330 -55.5953
Clayton 0.7257 -3.2364 0.7212 -3.8377 0.7252 -3.3036
GH 0.5886 -21.5168 0.5397 -28.0397 0.5917 -21.1109
Joe 0.4413 -41.1621 0.4031 -46.2588 0.4670 -37.7399

GH GH 0.7154 -4.6153 0.6829 -8.9495 0.7211 -3.8553
AMH 0.3333 -55.5563 0.3333 -55.5643 0.3333 -55.5623
Clayton 0.7301 -2.6478 0.7295 -2.7376 0.7363 -1.8215
Frank 0.7558 0.7778 0.7570 0.9290 0.7735 3.1286
Joe 0.6303 -15.9590 0.5862 -21.8365 0.6467 -13.7793

Joe Joe 0.7140 -4.7942 0.6640 -11.4639 0.7070 -5.7289
AMH 0.3332 -55.5684 0.3318 -55.7664 0.3321 -55.7244
Clayton 0.7411 -1.1876 0.7431 -0.9180 0.7508 0.1130
Frank 0.7907 5.4267 0.7833 4.4432 0.7991 6.5496
GH 0.7677 2.3564 0.7331 -2.2577 0.7578 1.0396
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Figure B.1: Kendall's τ estimates for �tted survival copula models over data generated from each copula
model with EW PH margins (n = 500; τ = 0.5)
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Figure B.2: Kendall's τ estimates for �tted survival copula models over data generated from each copula
model with EW PO margins (n = 500; τ = 0.5)
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Figure B.3: Kendall's τ estimates for �tted survival copula models over data generated from each copula
model with EW YP margins (n = 500; τ = 0.5)
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Figure B.4: Kendall's τ estimates for �tted survival copula models over data generated from each copula
model with EW PH margins (n = 500; τ = 0.75)
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Figure B.5: Kendall's τ estimates for �tted survival copula models over data generated from each copula
model with EW PO margins (n = 500; τ = 0.75)
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Figure B.6: Kendall's τ estimates for �tted survival copula models over data generated from each copula
model with EW YP margins (n = 500; τ = 0.75)
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Table B.13: LR tests for PH and PO classes against YP class, given �tted survival copula models over
generated data from each copula model with EW PH margins (n = 500; τ = 0.5)

Copula Class
BP Fitting PE Fitting

LR stat. P-value LR stat. P-value

AMH PH 6.0366 0.3392 4.1335 0.4861
PO 29.3335 0.0135 33.2383 0.0007

Clayton PH 5.5854 0.3775 4.1538 0.4848
PO 29.5332 0.0093 34.1537 0.0005

Frank PH 6.0102 0.3560 4.1935 0.4756
PO 26.0691 0.0186 30.9635 0.0008

GH PH 5.9059 0.3522 4.2574 0.4698
PO 24.5219 0.0180 29.7684 0.0014

Joe PH 6.8017 0.3171 4.7982 0.4322
PO 20.8203 0.0519 28.3163 0.0019

Table B.14: LR tests for PH and PO classes against YP class, given �tted survival copula models over
generated data from each copula model with EW PO margins (n = 500; τ = 0.5)

Copula Class
BP Fitting PE Fitting

LR stat. P-value LR stat. P-value

AMH PH 27.2364 0.0085 26.6160 0.0060
PO 0.9229 0.7797 4.4759 0.4503

Clayton PH 27.4125 0.0049 27.1481 0.0034
PO 0.8394 0.7759 4.3992 0.4492

Frank PH 27.2115 0.0077 25.9299 0.0054
PO 1.2819 0.7457 4.4113 0.4541

GH PH 30.0100 0.0055 27.8126 0.0044
PO 1.7602 0.7161 4.6868 0.4252

Joe PH 35.2895 0.0017 31.3643 0.0022
PO 1.8001 0.7091 4.7699 0.4072

Table B.15: LR tests for PH and PO classes against YP class, given �tted survival copula models over
generated data from each copula model with EW YP margins (n = 500; τ = 0.5)

Copula Class
BP Fitting PE Fitting

LR stat. P-value LR stat. P-value

AMH PH 123.5398 < 0.0001 116.1681 < 0.0001
PO 92.1303 < 0.0001 88.9388 < 0.0001

Clayton PH 125.9010 < 0.0001 119.2945 < 0.0001
PO 103.1754 < 0.0001 99.9462 < 0.0001

Frank PH 115.6478 < 0.0001 109.0777 < 0.0001
PO 87.0588 < 0.0001 83.3261 < 0.0001

GH PH 117.8532 < 0.0001 110.4258 < 0.0001
PO 86.7865 < 0.0001 82.2861 < 0.0001

Joe PH 126.4209 < 0.0001 118.7282 < 0.0001
PO 92.0491 < 0.0001 87.0614 < 0.0001
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Table B.16: LR tests for PH and PO classes against YP class, given �tted survival copula models over
generated data from each copula model with EW PH margins (n = 500; τ = 0.75)

Copula Class
BP Fitting PE Fitting

LR stat. P-value LR stat. P-value

AMH PH 6.0405 0.3390 4.1592 0.4848
PO 29.2964 0.0134 33.3045 0.0007

Clayton PH 5.7289 0.3594 4.3249 0.4679
PO 30.6600 0.0108 35.6394 0.0011

Frank PH 6.5995 0.3241 4.1748 0.4871
PO 23.7234 0.0295 29.2761 0.0019

GH PH 7.6009 0.2631 4.7821 0.4350
PO 23.8162 0.0230 29.6960 0.0016

Joe PH 10.5771 0.1569 5.8501 0.3600
PO 18.5547 0.0638 27.0367 0.0030

Table B.17: LR tests for PH and PO classes against YP class, given �tted survival copula models over
generated data from each copula model with EW PO margins (n = 500; τ = 0.75)

Copula Class
BP Fitting PE Fitting

LR stat. P-value LR stat. P-value

AMH PH 27.2287 0.0086 26.5805 0.0060
PO 0.9229 0.7797 4.4834 0.4501

Clayton PH 28.6215 0.0060 29.7224 0.0025
PO 0.9756 0.7666 4.5895 0.4332

Frank PH 29.0585 0.0044 27.0385 0.0035
PO 1.4139 0.7319 4.5591 0.4366

GH PH 36.4658 0.0021 31.9641 0.0023
PO 1.4755 0.7189 4.9458 0.4063

Joe PH 46.1807 0.0001 38.6782 0.0005
PO 1.7272 0.7056 5.0648 0.4022

Table B.18: LR tests for PH and PO classes against YP class, given �tted survival copula models over
generated data from each copula model with EW YP margins (n = 500; τ = 0.75)

Copula Class
BP Fitting PE Fitting

LR stat. P-value LR stat. P-value

AMH PH 123.5554 < 0.0001 116.2059 < 0.0001
PO 92.0240 < 0.0001 88.9409 < 0.0001

Clayton PH 147.7122 < 0.0001 143.4252 < 0.0001
PO 123.3079 < 0.0001 121.3521 < 0.0001

Frank PH 122.9050 < 0.0001 116.6629 < 0.0001
PO 87.8778 < 0.0001 84.4777 < 0.0001

GH PH 129.2697 < 0.0001 120.1143 < 0.0001
PO 89.3218 < 0.0001 85.0889 < 0.0001

Joe PH 143.1140 < 0.0001 133.6036 < 0.0001
PO 94.9875 < 0.0001 89.4466 < 0.0001



APPENDIX C

The copSurv package

This chapter introduces the R package copSurv, with implemented routines for �tting and analyzing

survival copula models from the proposed class in this work. The package was created by integrating R

functions with the Stan platform (Carpenter et al., 2017), which is strongly based in the C++ programming

language, through the rstan R package (Stan Development Team, 2020a). This integration was done in order

to obtain faster estimation results from the log-likelihood maximization (compared to an implementation using

only the R language), and with lesser computational e�ort. In addition, the copSurv package imports speci�c

routines from other R packages to support its internal computations, such as the copula package (Hofert et al.,

2020) to generate from all Archimedean copulas and compute the Kendall's τ correlation from the original θ

estimates; the survival package (Therneau, 2021) to borrow functions for clustering subject information in

the regression structure and to analyze marginal survival functions; the snowfall package (Knaus, 2015) to

parallelize all MC computations through as many CPU cores as possible; and the tidyverse set of packages

(Wickham et al., 2019) to enhance data storage and manipulation. The copSurv package can be installed

through the link https://github.com/wrmfstat/copSurv. Then, open R and put the commands below:

install.packages("devtools")

devtools::install\_github("wrmfstat/copSurv")

library(copSurv)

The function survcop is the main routine from the copSurv package for �tting any particular survival

copula model belonging to the proposed class in this work. The formula argument in survcop takes the

same structure for variable speci�cation from the survival package to provide a more familiar environment

to the user. The data to be �tted is passed to the scope of survcop through a data.frame object class.

Additional arguments can be passed directly to Stan in order to apply a maximum likelihood method with

https://github.com/wrmfstat/copSurv
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rstan::optimizing, or a Markov Chain Monte Carlo method through rstan::sampling (to be developed),

inside the survcop routine. As seen in Chapter 2, the polynomial degree for a BP model �tting (i.e., the

highest basis order), or the number of intervals for a PE model, can be chosen in the m argument by the

user, but it must be an integer positive. If not speci�ed by the user, m is set as the smallest integer greater

than n0.4, where n is the sample size, following Osman and Ghosh (2012), and at most equal to 15. Setting

a degree value too high for a BP model can cause numerical instability and even to a failure in maximizing

the log-likelihood function. As with the number of baseline parameters m for a semiparametric model, some

arguments are optional to provide by the user, such as the vector of maximum times time_max and the list of

time grids rho for each copula margin, but they are computed internally if not. For any object being an output

from the survcop function, the class scm was de�ned to extend some S3 methods for inference and analysis

(including AIC computations and LR tests). The arguments for the survcop function are set as follows:

survcop(formula, data, d=2, approach=c("ML", "Bayes"),

copula=c("AMH", "Clayton", "Frank", "GH", "Joe"), baseline=c("W", "BP", "PE"),

time_max=NULL, m=NULL, rho=NULL, survreg=c("PH", "PO", "YP"),

hessian=TRUE, init=NULL,

hp=list(h1_psi=0, h2_psi=4, h1_phi=0, h2_phi=4, h1_gamma=0, h2_gamma=2), ...)

• formula: a survival copula object of class formula.

• data: an optional data frame containing all variables. If not speci�ed, they are taken from formula.

• d: dimension of the observed multivariate data (default is d=2).

• approach: the inference approach to be used (ML: maximum likelihood (frequentist); Bayes: Bayesian).

• copula: the Archimedean copula to be �tted.

• baseline: the baseline distribution for each copula margin.

• time_max: the vector of maximum times for each copula margin.

• m: the degree for the BP basis, or the number of intervals on the PE model for each copula margin.

• rho: a list with the time grids for the PE model.

• survreg: regression model class for each copula margin.

• hessian: logical. If TRUE (default), a hessian matrix is returned when approach="ML".

• init: initial value when approach="ML".

• h_ps: a list with hyperparameters when approach="Bayes". If not speci�ed, default values are used.

• ... : arguments passed to either rstan::optimizing or rstan::sampling.

To �t a survival copula model with the survcop function, consider the following code for the �best� model

�tted to the Ganzfried et al. (2013) ovarian cancer data in Chapter 6:

> fitGHPEYP = survcop(formula = Surv(time, status) ~ cxcl12 + pltx + margin + cluster(id),

data=data, approach="ML", copula="GH", baseline="PE", survreg="YP")
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Applying some proper S3 methods to the �tted model object (class scm), the following results are obtained:

> coef(gpeyp)

psi[1,1] psi[2,1] psi[1,2] psi[2,2] phi[1,1] phi[2,1] phi[1,2] phi[2,2] theta

0.0900 -1.7650 0.2372 -1.2938 1.8903 8.1402 -0.1160 -0.4670 1.4998

> se(gpeyp)

psi[1,1] psi[2,1] psi[1,2] psi[2,2] phi[1,1] phi[2,1] phi[1,2] phi[2,2] theta

0.0620 0.3898 0.1087 0.4460 0.7537 14.1470 0.1414 0.6098 0.1595

> confint(gpeyp)

2.5% 97.5%

psi[1,1] -0.0316 0.2116

psi[2,1] -2.5289 -1.0011

psi[1,2] 0.0241 0.4503

psi[2,2] -2.1680 -0.4196

phi[1,1] 0.4131 3.3675

phi[2,1] -19.5874 35.8678

phi[1,2] -0.3932 0.1612

phi[2,2] -1.6621 0.7281

theta 1.1871 1.8124

> AIC(gpeyp)

[1] 8467.78

> anova(gpeph, gpeyp)

Copula model: GH

Baseline distribution: PE

---

Model 1 ( PH ): Surv(time, status) ~ cxcl12 + pltx + margin + cluster(id)

Model 2 ( YP ): Surv(time, status) ~ cxcl12 + pltx + margin + cluster(id)

---

loglik LR df P-value

Model 1: -4234.70 19.62 4 0.000594 ***

Model 2: -4224.89 - - -

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

For the programmed code that yielded the results above, β(S) and β(L) are denoted by psi and phi,

respectively, following the notation of Demarqui and Mayrink (2021) for the YP model; psi[2,1] denotes the

β
(S)
12 regression term on table 6.3, i.e., the order of regression parameters and copula margins were exchanged

to ensure more general matrix operations in Stan. Finally, gpeph denotes a �tted GH PE PH model object.
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Visualization of Simulation Results in Shiny

In the pages that follows, Shiny tabs for some simulation results, given speci�c scenarios for data generation

and model �tting, are presented along with instructions on how to visualize other possible scenarios.

Starting from regression parameter estimates, boxplots for the relative bias and a table summarizing the

MC statistics are shown in Figure D.1. From the bars just below the title, the user can select one of the three

regression model classes (PH, PO or YP, being always the same for generation and �tting), three Kendall's τ

correlation values (0.25, 0.50 or 0.75), �ve Archimedean copulas used for generation (AMH, Clayton, Frank,

GH or Joe), and the same options for the �tted copula (including scenarios with distinct copulas for generation

and �tting). By default, all bars set their corresponding �rst option. On the left of the boxplots, the user can

mark one of (or both) the two generated baseline models (EW or Weibull, with the last denoted by W and set

the default), and one of the three �tted baseline models (Weibull, again denoted by W, BP or PE, with all of

them marked by default).

For the boxplots and MC statistics for AIC values in Figure D.2, the scheme is pretty much similar, except

that now is possible to visualize all �tted copula models (given one for generation) in the same plot (now

there is one measure instead of four, or eight, as seen for regression parameter estimates). Thus, the bar for

select of the �tted copula is replaced by a new mark section, which selects by default all �ve Archimedean

copulas. Since it is of interest to evaluate the proportion of choice for each �tted copula given the generated

one, a single �tted baseline is marked by default. For correlation estimates in Figure D.3, the same idea is

applied, but now all �tted baseline models are selected by default. Finally, for the LR results on Figure D.4,

the generated and �tted regression model classes can be di�erent instead of the copula model (which is always

the same). Thus, an additional mark section appear for select of the smaller class (PH or PO) to be tested

against the YP model (both are marked by default).
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Boxplots

MC Statistics

Figure D.1: Example of Shiny screen for regression parameter estimates
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Boxplots

MC Statistics

Figure D.2: Example of Shiny screen for AIC values
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Boxplots

MC Statistics

Figure D.3: Example of Shiny screen for correlation estimates
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MC Statistics

Figure D.4: Example of Shiny screen for LR tests
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