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Jamming and percolation of dimers in restricted-valence random sequential adsorption
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Restricted-valence random sequential adsorption is studied in its pure and disordered versions on the square
and triangular lattices. For the simplest case (pure on the square lattice) we prove the absence of percolation
for maximum valence Vmax = 2. In other cases, Monte Carlo simulations are used to investigate the percolation
threshold, universality class, and jamming limit. Our results reveal a continuous transition for the majority of
the cases studied. The percolation threshold is computed through finite-size scaling analysis of seven properties;
its value increases with the average valency. Scaling plots and data-collapse analyses show that the transition
belongs to the standard percolation universality class even in disordered cases.
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I. INTRODUCTION

Percolation [1] is characterized by the formation of a
spanning cluster in a system composed of elements (sites
and/or bonds), each present independently with probability
p. The probability of a spanning or percolating cluster is
only nonzero for p > pc, the percolation threshold, marking a
continuous phase transition with associated critical exponents
[2–4]. Percolation has found a huge variety of applications,
such as granular materials [5], forest fires [6], polymers
[7–10], porous media [11,12], and biological evolution [13].

Random sequential adsorption (RSA) [2,14] is a stochas-
tic process consisting in irreversible deposition of immobile
objects onto an initially empty substrate such that each object
excludes a certain area from further occupation. A realization
of RSA stops when no further deposition events are possible,
at which point the system is said to be jammed. Introducing
a deposition attempt rate (per unit area, or per site, on a
lattice) of unity, a time can be associated with each deposition
event in a given realization. Letting the coverage ρ denote
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the fraction of the substrate occupied by deposited objects,
we define ρ(t ) as the mean coverage (over all realizations) at
time t . Of particular interest is the jamming or saturation cov-
erage ρ∞ ≡ limt→∞ ρ(t ). RSA of objects of diverse formats
(disks [15], linear k-mers [16,17], ellipsoids [18], tetrahedral
particles [19], etc.) has been used to model a wide range of
physical processes such as ion implantation in semiconductors
[20], protein adsorption [2], as well as the original car-parking
problem [21].

Consider RSA on a two-dimensional lattice, of objects
occupying two or more sites. As the coverage increases, it
may be possible for the set of deposited objects to “percolate,”
i.e., to form a spanning cluster, in which case the mean cov-
erage at percolation is a quantity of interest. (While RSA of
monomers — objects occupying a single site — is trivial,
percolation of monomers is a classic problem, and pc has been
determined, exactly or numerically, for a wide variety of lat-
tices [22–27].) RSA of extended objects, such as rods or linear
lattice k-mers, is a problem of current interest. Cherkasova
et al. [28] showed that the percolation threshold for dimers
(k-mers with k = 2) is smaller than for monomers. As ex-
pected, the universality class does not depend on the length
k. In addition, these authors observed that when the dimers
can only align along one direction, the percolation threshold
increases.

Cornette et al. [29,30] studied the influence of k in the
percolation threshold via Monte Carlo simulation (MC) and
Bethe lattice analysis. They confirmed that pc decreases
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(a) (b) (c)

FIG. 1. Solid lines, dashed lines, and circles represent occupied edges, unoccupied edges, and occupied sites, respectively. Panels (a), (b),
and (c) show possible configurations of systems with Vmax = 1, 2, and 3, respectively.

monotonically with k for 1 � k � 16 and that the universality
class of the transition is standard percolation, independent of
k. Leroyer and Pommiers [31] demonstrated that the percola-
tion threshold pc decreases with increasing segment length,
reaches a minimum value, and then increases for k � 15.
Tarasevich et al. [32,33] conjectured, based on simulation, that
for k-mers of sufficient length (k � 1.2 × 104) percolation
does not occur. More recently, Kondrat et al. [34] developed a
rigorous proof refuting this conjecture. They showed that for
nonoverlapping k-mers, the jammed configuration includes a
percolating cluster. This assertion was confirmed by Slutskii
et al. [26] in an extensive computational study.

Although deposition of particles or k-mers on a regular
substrate has attracted much attention, this model needs to
be extended to describe more realistic situations. In many
systems, the substrate includes impurities and/or defects that
affect the deposition process. A simple realization of substrate
disorder involves randomly excluding a fraction of sites from
the deposition process, resulting in a diluted system. For ex-
ample, Cornette et al. [35] studied deposition of polyatomic
structures on diluted lattices, observing that the percolation
threshold increases with dilution and that for dilutions greater
than a certain value, there is no percolation [33,35]. Following
a similar line, Lebovka et al. [36] considered a RSA process
with defects on the substrate as well as on the k-mers. They
observed that the defects hinder the percolation process even
at low concentration and that for sufficiently large values of k,
percolation does not occur.

In standard dimer RSA, a given site can be occupied by
at most one monomer, and only one dimer can be incident
upon an occupied site. A way of softening this restriction,
while still prohibiting arbitrarily high densities is to allow up
to Vmax dimers to be incident on a given site. In the resulting
restricted-valence RSA process, each lattice edge can be oc-
cupied by at most one dimer. Here, Vmax ranges from unity (the
usual dimer RSA problem) up to q, the lattice coordination
number. (In the latter case, the RSA process is trivial since
all edges are eventually occupied.) Restricted-valence RSA is
analogous to a self-avoiding random walk (SAW) in which
the walk is allowed to visit the same site up to K times.
Krawczyk et al. [37] showed that the existence and nature of
phase transitions in these models depends on the details and
dimensionality. For example, in case of forbidden reversal on

the cubic lattice, discontinuous and continuous transitions are
observed, with the continuous transition of the same type as
in interacting self-avoiding walk collapse (ISAW) [38]. On the
other hand, for allowed reversal on the square lattice, these au-
thors do not find any indication of a phase transition. Oliveira
et al. [39] studied SAWs with K = 2 using Husimi and Bethe
lattice solutions. They found a rich phase diagram with regular
polymerized, nonpolymerized, and pair-polymerized stable
phases, a tricritical point, and a critical endpoint. The tran-
sition between polymerized and nonpolymerized phases can
be continuous or discontinuous, depending on the region of
the phase diagram.

We consider restricted-valence RSA (and the associated
percolation problem) on the square and triangle lattices, in
both their pure form (all sites having the same maximum
valence) and with disorder, such that the maximum valences
at each site are independent, identically distributed random
variables. Our objective is to understand how percolation
thresholds and jamming limits depend on the valence re-
strictions. We verify that percolation transitions, when they
exist, belong to the standard percolation universality class. In
addition, we develop a proof for the absence of percolation for
a maximum valence of 2.

The remainder of this paper is organized as follows. In
Sec. II we detail the restricted-valence RSA model. Simula-
tion methods are presented in Sec. III, followed by results in
Sec. IV. Finally, in Sec. V we present our conclusions. The
proof is given in the Appendix.

II. MODEL

We study RSA of dimers on a regular lattice under the
restriction that the number of dimers that can attach to a vertex
(its valence) cannot exceed Vmax. In case Vmax = q, with q the
coordination number of the lattice, there is no restriction and
all edges of the lattice are eventually covered by a dimer. The
cases Vmax = 1, 2, and 3 on the square lattice are shown in
Figs. 1(a), 1(b) and 1(c), respectively. For Vmax = 1, we have
the usual irreversible dimer or domino tiling problem [40], in
which only isolated edges may be occupied [see Fig. 1(a)].
For Vmax = 2, a vertex may have a maximum of two incident
edges, giving rise to open or closed nonbranching paths, as
shown in Fig. 1(b). Figure 1(c) shows a typical configuration

043027-2



JAMMING AND PERCOLATION OF DIMERS IN … PHYSICAL REVIEW RESEARCH 2, 043027 (2020)

for Vmax = 3. In Fig. 1 the bonds denoted by dashed lines can-
not be occupied, as this would violate the maximum-valence
condition. Vertices with valence Vmax are said to be saturated.

The RSA process is conveniently represented by associ-
ating times ti to each edge i of the lattice. The ti, which
are chosen anew at each realization of the process, are in-
dependent, identically distributed random variables, uniform
on (0,1]. At time zero the lattice is empty (all edges unoccu-
pied). At time tmin ≡ mini{ti} the edge corresponding to tmin

becomes occupied. Subsequently, edges are visited according
to their associated times and occupied if this does not violate
the maximum-valence conditions. Occupation is irreversible.
Thus an unoccupied edge with one or more saturated vertices
can never be occupied. Although percolating configurations
exist for Vmax = 2, the percolation probability is zero in this
case, as shown in the Appendix.

In simulations on a periodic lattice of N sites, there are
Ne = Nq/2 edges. The edges are ranked in order of increasing
time and occupied (if permitted by the maximum-valence
restrictions) in that order. We associate a discrete time pi =
ni/Ne with edge i, where ni ∈ {1, ..., Ne} is the position of
edge i on the ordered list. Thus for discrete time p = 0.5, half
the edges have been visited in the RSA process. The process
terminates when the system is jammed, which happens for
some (sample-dependent) pfinal � 1.

III. SIMULATION

We use a variation of the union-find algorithm of Newman
and Ziff [41,42] (NZ) to generate the RSA configurations effi-
ciently and to estimate the percolation point. In this algorithm
we first create a list of pairs of neighboring vertices associated
with each edge on the lattice. For each realization of the RSA
process, we generate a random ordering of this list. In the
usual NZ algorithm we go down this list one pair at a time
and add the bonds to the system, using the “find” routine to
find the roots of the two clusters at the ends of the new bond
and then the “union” step to join two clusters if their roots are
currently marked as distinct. Ordering the bonds beforehand
is very useful for the RSA problem, since we can just go
down this list, thus considering each bond just once. For the
restricted-valence models, we modify this program to keep

track of the valence of each site and only occupy a bond if
the valences of its two sites are less than Vmax.

We study lattices of linear size L = 32, 48, 64, 96, 128,
192, 256, 384, 512, and 768 corresponding to N = (q/2)L2

bonds, where q = 4 (6) for square (triangular) lattices. To
estimate the properties of interest we average over 106 inde-
pendent realizations starting from an empty lattice.

IV. RESULTS

In this section we report results for the percolation
threshold, critical exponents, and jamming coverage for
restricted-valence RSA on the square and triangle lattices. The
properties of interest are exhibited as functions of the control
parameter p, i.e., the fraction of bonds visited. In percolation,
the order parameter is usually defined as [43]

�(p, L) ≡ 〈smax〉/Ld , (1)

where smax is the number of sites in the largest cluster, d is the
dimensionality, and the angular brackets denote an average
over realizations. The percolation threshold of the infinite
lattice p∞

c is estimated via finite-size scaling (FSS) analysis
[1] and is expected to follow

p∞
c − pc(L) ∼ L−1/ν, (2)

where pc(L) is the pseudocritical value for lattice size L and
ν is the critical exponent governing the correlation length.
The pseudocritical value is commonly determined through the
position of the maximum of some “diverging” quantity, or of
a crossing point for different system sizes. In this work we
analyze a set of seven quantities; five are moment ratios of the
form

Q js
ir (p, L) ≡ Mn(p, L)

Mi
r (p, L)M j

s (p, L)
with ir + js = n, (3)

where the moments Mk are defined as Mk (p, L) ≡ 〈sk〉 and
k = 1, . . . , 4,

Q11
11 = M2

M2
1

, Q
1
2 2
12 = M3

M3/2
2

, Q12
12 = M4

M2
2

,

Q11
21 = M3

M3
1

, Q11
12 = M3

M1M2
.

FIG. 2. Typical jammed configurations on a 32 × 32 lattice for Vmax = 2(a) and Vmax = 3(b).
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We also study the second cumulant K2(p, L):

K2(p, L) = L−2
�
M2 − M2

1

�
. (4)

This property, also called the susceptibility χ (p, L), provides
information about the fluctuations in the average size of all the
clusters. Finally, we analyze M ′

2(p, L), defined as the differ-
ence between the second moment of s, denoted by M2(p, L),
and the mean fraction of sites in the largest cluster:

M ′
2(p, L) = 1

Ld

� �
i|si<smax

s2
i

�
= M2(p, L) −

�
s2

max

�
L2

, (5)

where

M2(p, L) =
�

s

s2ns = 1

L2

�
i

s2
i . (6)

In Eqs. (5) and (6), si denotes the size of cluster i and ns the
average number of clusters of size s.

The FSS theory of percolating systems [44] states that at
the critical point p = p∞

c , �(p, L), M ′
2(p, L), and K2(p, L)

obey the relations

�
�
p∞

c , L
� ∼ L−β/νU (εL1/ν ), (7)

M ′
2

�
p∞

c , L
� ∼ L−γ /νM(εL1/ν ), (8)

and

K2
�
p∞

c , L
� ∼ L−γ /νK(εL1/ν ), (9)

where β, γ , and ν are critical exponents, and ε ≡ p − pc rep-
resents the distance to the critical point. The scaling functions
U (x), M(x), and K(x) exhibit universal behavior.

A. Square lattice

1. Determination of p∞
c

As mentioned in Sec. II, for maximum valence Vmax = 1
on the square lattice there is no percolation. For Vmax = 2 a
typical jammed configuration is shown in Fig. 2(a). In this
case there is no percolation for large systems, as shown in the
Appendix. On the other hand, for Vmax = 3 [see Fig. 2(b)],
there are large connected regions.

Results for the properties mentioned above (for Vmax = 3)
are shown in Fig. 3. The abrupt increase of �(p, L) [Fig. 3(a)]
suggests a phase transition at some value of p between 0.40
and 0.60. Figure 3(b) shows an expanded plot of the order
parameter multiplied by the factor Lβ/ν , where β = 5/36
and ν = 4/3 correspond to the standard two-dimensional per-
colation critical exponents. A crossing point is evident at
p ≈ 0.532. Figure 3(c), which shows the moment ratio Q12

12,
again suggests a continuous transition with a crossing point
for p ≈ 0.53. The panel (d) shows that Q11

11 exhibits similar
behavior. The moment ratios exhibit strong finite-size effects,
with the pseudocritical values of Q increasing substantially
with system size. Figure 3(e) shows the second cumulant K2,
which also exhibits signatures of a continuous transition. The
peaks occur in the range 0.51 < p < 0.54, in agreement with
the other properties. Panel (f) shows the second cumulant
scaled by Lγ /ν , with γ = 43/18 the critical exponent that gov-
erns the fluctuations in the largest cluster size. Although we
observe some discrepancies for L = 32 and 48, the curves for
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FIG. 3. Results for Vmax = 3. (a) Order parameter �(p, L) vs p,
with system size increasing from left to right. (b) Lβ/ν� vs p near
the crossing point (vertical line); (c), (d) moment ratios Q12

12 and Q11
11,

respectively, vs p. The system size decreases from right to left. (e) K2

as function of p and (f) detail of the crossing region of the scaled K2;
the dashed line marks the crossing point; (g), (h) similar to (f) and
(e), but for M ′

2. In (e) and (g), system size increases from bottom to
top.

larger systems intersect at p ≈ 0.532. M ′
2, plotted in Fig. 3(g),

follows the same tendencies as the other properties, exhibiting
maxima that increase systematically with system size. The
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12 , Q11

12,
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2, and K2. Inset: Detail of the limiting (L → ∞) region.
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TABLE I. For Vmax = 3, estimates for the pseudocritical points for each system size L and quantity analyzed. The final line reports
extrapolated (L → ∞) estimates for the critical point. Numbers in parentheses denote uncertainties.

L Q11
11 Q12

12 Q
1
2 2
12 Q11

21 Q11
12 K2 M ′

2

32 0.46112(1) 0.4460(1) 0.45122(2) 0.45629(5) 0.45385(3) 0.5058(1) 0.48366(4)
48 0.47923(1) 0.4677(1) 0.47188(4) 0.4757(1) 0.47381(6) 0.51310(4) 0.49663(4)
64 0.489401(9) 0.4795(1) 0.48343(2) 0.48650(6) 0.48477(4) 0.51687(4) 0.50362(2)
96 0.500547(6) 0.4935(1) 0.49565(1) 0.49828(4) 0.49678(4) 0.52112(4) 0.51112(1)
128 0.506917(6) 0.50105(8) 0.50287(1) 0.50466(4) 0.50366(3) 0.52327(2) 0.51526(1)
192 0.513341(6) 0.50887(8) 0.51066(1) 0.51192(3) 0.51126(2) 0.52572(2) 0.51976(1)
256 0.516989(8) 0.51359(5) 0.51446(1) 0.51588(3) 0.51541(1) 0.52700(3) 0.522269(9)
384 0.520888(3) 0.51837(4) 0.519221(5) 0.52015(2) 0.51964(1) 0.52842(1) 0.524864(8)
512 0.523199(3) 0.52104(5) 0.52177(1) 0.52248(2) 0.52207(1) 0.52916(1) 0.526303(8)
768 0.525601(4) 0.52400(3) 0.524578(7) 0.525048(1) 0.52478(1) 0.53003(1) 0.527896(6)

∞ 0.5322(1) 0.5323(1) 0.5322(1) 0.53228(4) 0.5322(1) 0.53233(3) 0.53222(5)

peaks appear in the range 0.50 < p < 0.54. The scaling plot
(h) shows a crossing at p = 0.532.

FSS analysis of the pseudocritical points, shown in Fig. 4,
reveals that for each property, pc(L) is well fit by a straight
line when plotted versus L−1/ν . Here the pseudocritical points
pc for each quantity are estimated using a polynomial fit to
approximately 10 points around the global maximum. (The
order of the polynomial is chosen as the lowest order that
yields residuals without systematic behavior. In most cases
fourth-order polynomials are used.) The uncertainty in the
position of the maximum was estimated through the root-
mean-square deviation (RMSD); in the worst case, the RMSD
∼10−4 (see Table I).

In the limit L → ∞ all the estimates for the percolation
threshold converge to very similar values (see Fig. 4 and
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FIG. 5. Panels (a), (b), (c), and (d) exhibit data collapses for
�, M ′

2, K2, and Q11
11, respectively. Insets are log-log plots of the

aforementioned properties at the critical point. Exact critical expo-
nent values for standard percolation in two dimensions are used in
the data-collapse analysis. Symbols ◦, �, �, �, �, ♦, ×, �, �,
� correspond to system sizes L = 32, 48, 64, 96, 128, 192, 256,
384, 512, and 768, respectively. Dashed (solid) curves correspond
to L = 32 (768).

Table I). The final estimate for the percolation threshold
p∞

c is obtained through a weighted average of the estimates
associated with each property with weights ∝ 1/σ 2, where
σ represents the uncertainty of each estimate, yielding a fi-
nal estimate of p∞

c = 0.5323(1) for Vmax = 3 on the square
lattice.

The results for the scaled values of �, K2, and M ′
2 sug-

gest that the transition belongs to the standard percolation
universality class (SPUC). We verify this conclusion via data-
collapse analyses, as shown in Fig. 5. Panel (a) shows that
the SPUC critical exponents yield a good collapse of the
simulation data for different system sizes. The log-log plot
of the order parameter [inset (a)] provides β/ν = 0.109(3),
quite close to the exact value, β/ν = 0.104 166 . . . [1], for
SPUC in two dimensions. The data collapse of M ′

2 [see panel
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FIG. 6. Valence disorder on square lattice. (a) K2(p, L) vs con-
centration p. Different line patterns denote different system sizes,
while the three groups of lines correspond (from left to right) to
(Vi,Vj ) = (3, 4), (2, 4), and (1, 4). Case (2, 3) (not shown) exhibits
similar behavior. The inset shows the crossing points of K2, scaled
using standard percolation exponents, for case (3, 4). (b) Similar to
(a), but for M ′
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(left to right) (3, 4), (2, 4), (2, 3), and (1, 4). (d) Pseudocritical points
vs L−1/ν for cases (2, 3), (2, 4) and (3, 4) (upper to lower).
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FIG. 7. Typical jammed configurations for disordered cases (1,2), (1,3), (1,4), (2,3), (2,4), and (3,4) (panels a–f, respectively) for L = 32.
Color scales denote valences. Solid lines denote occupied bonds.

(b)] also exhibits a good overlap, although slight deviations
are observed for L = 32 and L = 48 in the vicinity of the
critical point. The log-log plots provide a slope of 1.800(1), in
agreement with the theoretical prediction of the ratio γ /ν for
SPUC. For K2 [see Fig. 5(c)], the data points and the log-log
plots (see inset) provide a slope of 1.782(8), again in agree-
ment with the exact result γ /ν = 1.7916 . . . [1]. The ratios
β/ν and γ /ν satisfy the hyperscaling relation dν = γ + 2β

within uncertainty.

2. Valence disorder

We now analyze restricted-valence RSA with valence dis-
order, in which the valences associated with each site are
taken as independent, identically distributed random vari-
ables. We consider valence distributions uniform on the set
{Vi, . . . ,Vj}. At each realization, a new set of valences is
generated. On the square lattice we considered (Vi,Vj ) =
(1, 4), (1, 3), (1, 2), (2, 4), (2, 3), and (3, 4), with each
valence Vi occurring with equal probability.
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There is no percolation for cases (1, 3) and (1, 4). While
disorder alters the percolation thresholds and jamming cov-
erages, it does not appear to affect the critical exponents.
According to the Harris criterion [45,46], disorder is relevant
if dν � 2. Since the transition in the pure system belongs to
the SPUC with dν = 2(4/3) > 2, disorder is indeed expected
to be irrelevant. The quantities K2(p, L), M ′

2(p, L), and Q11
11 in

the presence of disorder are shown in Figs. 6(a), 6(b) and 6(c),
respectively.

Figure 6 shows clear evidence of a continuous percolation
transition, as in the pure case. The insets of Figs. 6(a) and
6(b) exhibit crossings using the standard percolation critical
exponents, suggesting that disorder does not affect the uni-
versality class of the transition. Note as well that the crossing
value of Q11

11 is the same as for the pure case. As expected,
the percolation threshold moves to lower values of p as the
mean valence increases. For example, for (3,4) [blue lines in
Figs. 6(a)–6(c)], half the sites have maximum valence 3 and
half maximum valence 4. Both valences percolate, and the
percolation threshold occurs at a value between those for the
pure cases.

Our estimates for the percolation threshold are obtained
via FSS as shown in Fig. 6(d), providing p∞

c = 0.7283(5),
0.6099(1), 0.5120(2) for the cases (2,3), (2,4), and (3,4), re-
spectively. The analyses follow the same lines as the pure
cases (3, 3) and (4, 4). It is worth noting that although (1, 4)
and (2, 3) possess the same mean valence, the latter percolates
while the former does not.

3. Coverage density and jamming state

Without disorder, case (1,1) is the most restrictive and
hence the lowest jamming coverage is obtained. In this case
each absorbed bond prevents all its neighbor bonds from being
occupied, so that in a perfectly regular pattern corresponding
to full coverage of sites, only 1/4 of the bonds are occupied.
Analysis of this case goes back to the work of Nord and
Evans [47], who obtained a saturation coverage of 0.9068.
Subsequently, de Oliveira et al. [48] obtained 0.906 77(6)
via series expansions and simulation. Our approach provides
0.906 814(5) (a deviation of less than 0.0045% compared with
[48]). For (3,3) the insertion of a bond blocks two of its six
neighbors and thus, in a regular pattern, 3/4 of bonds can
be occupied. In this case we find a coverage of 0.999 391(1).
Case (4,4) is trivial since all edges are occupied by bonds.

Typical jammed configurations for disordered cases are
shown in Fig. 7. For (1,2) [Fig. 7(a)], only sites with valence
1 and 2 are permitted. Since half the sites have valence 1,
there are isolated bonds and terminal points. Figure 7(c) shows
(1, 4), which is the most heterogeneous. All possibilities are
observed in the snapshot, from isolated bonds to sites with
the maximum number of bonds. Case (3, 4) [Fig. 7(f)] has
the highest density of bonds; nevertheless, there are sites with
valence 4 that have only two incident bonds.

Results for the coverage density ρ as a function of p and the
jamming coverage are shown in Fig. 8. Figure 8(a) exhibits the
density of occupied bonds as a function of p. The red dashed
line represents the limiting case (4,4) in which all bonds are
occupied. While the curves are generally similar, those for
(1,4) and (2,2) cross near p = 0.60, suggesting that the rate at

0.0 0.3 0.6 0.9
p

0.00

0.25

0.50

0.75

1.00

ρ

(a)

1 2 3 4
V̄

0.2

0.4

0.6

0.8

1.0

ρj

(b)

FIG. 8. (a) Coverage density ρ vs p for L = 128 and distinct
combinations of valences. From bottom to top, (1, 1), (1, 2), (1, 3),
(1, 4), (2, 2), (2, 3) (solid lines) and (2, 4), (3, 3), (3, 4), and (4, 4)
(dashed lines). (b) Scatter plot of the jamming fraction vs average
valence. Full (open) symbols correspond to solid (dashed) lines in
(a). The dashed line is a least-squares linear fit to the points.

which bonds are occupied changes in a nontrivial manner as p
varies. In Fig. 8(d) we plot the jamming density versus V̄ , the
arithmetic average of the valencies in the range {Vi, . . . ,Vj};
p j increases approximately linearly with V̄ .

4. Percolation thresholds

We determine the bond occupation fractions at the pseudo-
critical percolation points ρc(L), which, when extrapolated to
infinite system size, furnish estimates for the bond percolation
densities ρc for the different cases of pure and mixed valences
(see Table II). Pure valence 4 is simply bond percolation on
the square lattice, and our result is consistent with the exact
value, ρc = 1/2 [4]. At the other extreme (2, 3), ρc is clearly
larger than one-half. Recalling that the pure valence-2 system
does not percolate, ρc > 1/2 can be understood qualitatively
by noting that many occupied bonds falling in regions rich
in valence-2 sites cannot contribute to percolation. A simi-
lar observation applies to the (2, 4) mixture. For (3, 3) the
deviation from ρc = 1/2 is barely significant, while for (3,
4) our result is consistent with a percolation density of 1/2.
It is nonetheless surprising that the percolation density for
(3, 3) is smaller than 1/2. While we defer a detailed study
of this case to future work, we note that in all cases except
(4, 4), the occupation of bonds incident upon a given site

TABLE II. Simulation results for p∞
c , pj , θsites, and ρ∞

c for the
square lattice. The horizontal lines in the first column correspond to
cases without percolation.

(Vi,Vj ) p∞
c ρ j θsites ρ∞

c

(1,1) – 0.226705(3) 0.906814(5) –
(1,2) – 0.332928(2) 0.958746(1) –
(1,3) – 0.432512(6) 0.982236(1) –
(1,4) – 0.517817(6) 0.992235(2) –
(2,2) – 0.465780(5) 0.987851(9) –
(2,3) 0.7283(5) 0.572630(2) 0.995678(9) 0.512(2)
(2,4) 0.6099(1) 0.664237(1) 0.998557(9) 0.5070(6)
(3,3) 0.5323(1) 0.710935(1) 0.999391(1) 0.496(2)
(3,4) 0.5120(2) 0.816074(5) 0.999903(3) 0.498(3)
(4,4) 0.5000(1) 1.00000000 1.00000000 0.5000(1)
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TABLE III. Estimates for the pseudocritical points and other quantities for each system size L for (4, 4). The final line reports extrapolated
(L → ∞) estimates for critical values. Numbers in parentheses denote uncertainties.

L Q11
11 Q12

12 Q
1
2 2
12 Q11

21 Q11
12 K2 M ′

2

32 0.30009(3) 0.2887(1) 0.29211(4) 0.297392(4) 0.29445(6) 0.33240(2) 0.319581(2)
48 0.31363(2) 0.3050(2) 0.30789(4) 0.307626(2) 0.30875(7) 0.33753(9) 0.328151(1)
64 0.32089(2) 0.3148(1) 0.31601(2) 0.318307(1) 0.31754(7) 0.34056(3) 0.3311319(5)
96 0.32892(2) 0.3234(2) 0.32586(3) 0.327910(1) 0.32617(5) 0.34345(6) 0.3367670(4)
128 0.33325(1) 0.3292(1) 0.3301(4) 0.332074(1) 0.33126(4) 0.34520(1) 0.3393849(7)
192 0.33817(1) 0.3350(1) 0.3361(4) 0.336908(1) 0.33636(3) 0.34706(1) 0.3425698(7)
256 0.34082(1) 0.33839(9) 0.3393(3) 0.340100(1) 0.33937(4) 0.34795(1) 0.3445013(4)
384 0.34364(1) 0.34190(8) 0.3424(1) 0.3429443(9) 0.34273(2) 0.34903(9) 0.3464356(3)
512 0.34528(1) 0.34375(7) 0.34433(1) 0.3447238(7) 0.34447(1) 0.34964(2) 0.3475288(7)
768 0.34705(1) 0.34584(4) 0.3462(1) 0.346731(3) 0.346494(1) 0.35030(7) 0.348957(9)

∞ 0.3518(5) 0.3516(3) 0.3518(5) 0.35172(1) 0.35177(7) 0.3519(7) 0.35175(1)

are not independent events, so that deviations from standard
independent percolation are possible in principle.

We summarize our results for the percolation threshold,
jamming coverage, and the density of occupied sites at jam-
ming for the square lattice in Table II.

B. Triangle lattice

We adopt the same approach as employed for the square
lattice; the scaling behaviors are quite similar, hence we only
report numerical values. For (1,1), (2,2), (1,2), and (1,3), va-
lence restrictions prohibit percolation. All other cases exhibit
a percolation transition characterized by size-dependent peaks
in M ′

2, K2, and the Q js
ir . Table III exhibits simulation values for

case (4,4).

TABLE IV. Simulation results for p∞
c , pj , θsites, and ρ∞

c for the
triangle lattice. The horizontal lines in the first column correspond to
cases without percolation.

(Vi,Vj ) p∞
c ρ j θsites ρ∞

c

(1,1) – 0.152338(1) 0.914028(2)
(1,2) – 0.229197(3) 0.966224(2)
(1,3) – 0.302104(5) 0.987364(7)
(1,4) 0.8582(5) 0.371539(2) 0.995508(5) 0.35(3)
(1,5) 0.6374(5) 0.434392(1) 0.998354(5) 0.35(1)
(1,6) 0.5489(4) 0.488033(5) 0.999309(9) 0.361(3)
(2,2) – 0.312030(7) 0.983257(6)
(2,3) 0.6133(8) 0.388466(6) 0.993781(7) 0.347(1)
(2,4) 0.4651(6) 0.460755(9) 0.997971(2) 0.346(2)
(2,5) 0.4217(8) 0.526968(8) 0.999383(2) 0.348(3)
(2,6) 0.4017(4) 0.583207(5) 0.999797(8) 0.346(2)
(3,3) 0.3980(1) 0.472670(3) 0.997277(9) 0.338(2)
(3,4) 0.3715(9) 0.548710(9) 0.999181(1) 0.341(1)
(3,5) 0.3625(0) 0.619447(1) 0.999802(7) 0.343(1)
(3,6) 0.3582(8) 0.678423(6) 0.999952(4) 0.344(1)
(4,4) 0.3517(1) 0.635157(1) 0.999720(1) 0.3438(5)
(4,5) 0.3496(5) 0.710952(4) 0.999948(9) 0.3455(3)
(4,6) 0.3488(4) 0.776258(6) 0.999993(5) 0.3464(9)
(5,5) 0.3475(1) 0.802231(3) 0.999990(1) 0.346(2)
(5,6) 0.3474(7) 0.876628(1) 0.999999(1) 0.347(1)
(6,6) 0.3472(5) 1.00000000 1.00000000 0.3472(5)

In the limiting case (6,6), the percolation threshold is
known exactly: pc = 2 sin(π/18) = 0.347 296 355... [22].
Our estimate of p∞

c (6, 6) = 0.3472(5) is in agreement with
this result. Estimates for the other cases are shown in Table IV.
Analysis of critical exponents again yields values consistent
with SPUC. For example, scaling plots of M ′

2 and � using
SPUC exponents exhibit crossings of curves at the percolation
threshold.

The jamming probability and coverage density are deter-
mined via the same techniques used for the square lattice. The
curves for the density of occupied bonds for (2,5) and (2,6)
cross the curve for (3,3), similar to cases (1,4) and (2,2) on the
square lattice. A compendium of results for the triangle lattice
is reported in Table IV. Different from the square lattice, here
all percolation thresholds are greater than or equal to the exact
value for the unrestricted triangle lattice.

V. CONCLUSIONS

We investigate restricted-valence random sequential ad-
sorption in its pure and disordered versions on the square
and triangle lattices. We show that there is no percolation for
Vmax = 2 on the square lattice. In other cases, Monte Carlo
simulations coupled with the Newman-Ziff algorithm are
used, revealing a continuous transition for cases (2,3), (2,4),
(3,3), (3,4), and (4,4). Finite-size scaling analysis of M ′

2, K2,
and Q js

ir is employed to estimate the percolation threshold.
Scaling analyses show that the critical exponents are in good
agreement with the standard percolation universality class, as
one might expect given that the correlations are local. In the
disordered cases, the universality class is preserved although
the percolation threshold naturally depends on the average
valence.

The coverage densities and jamming coverages are esti-
mated for all cases. On the square lattice, our result for the
jamming of dimer RSA, θ = 0.906 814(5), is in agreement
with previous estimates of Nord and Evans [47] and of de
Oliveira and co-workers [48], and surpasses their precision.
The jamming fraction was estimated for all cases, with un-
certainties on the order of 10−6. Our estimates for percolation
thresholds in restricted-valence cases (i.e., some fraction of
sites having Vmax < 4) are �1/2, as expected, except for (3,3),
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where we find pc = 0.496(2). For the triangle lattice, our esti-
mate for pc is again in agreement with the known exact value.
The largest estimate for pc is for (1,4), with p∞

c = 0.8582(5).
Our study also provides an estimate for the jamming coverage
of dimer RSA on the triangle lattice: θ = 0.914 028(2). This
is consistent with, and considerable more precise than, the
previous estimate of 0.9142(12) obtained by Perino et al. [49].
Our results for the triangle lattice are again consistent with the
standard percolation universality class.

We expect our results to be of use in interpreting exper-
iments on irreversible deposition on substrates of reduced
functionality, and/or with disorder, and to the question of
percolation of the deposited structure. Our study of percola-
tion in mixed cases suggests several avenues for future work.
It should be possible, if perhaps challenging, to demonstrate
mathematically that on the square lattice, the (1, 4) mixture
does not percolate whereas the (2, 3) mixture does. More
generally, identifying the percolation threshold surface on
the simplex f1 + f2 + f3 + f4 = 1 (where the fi denote site
fractions with maximum valence i in a random mixture) is
an outstanding challenge. Similar open questions exist for the
triangle lattice.
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APPENDIX: NO PERCOLATION FOR Vmax = 2

Consider a final configuration of dimer deposition on Z2

with Vmax = 2. Let C be the set of sites connected to the origin,
O. C is the union of sites that are 1, 2,..., n steps from O,
along the path of occupied edges linking the sites to O. Let
X j ∈ {0, 1, 2} be the number of sites exactly j steps from O
in C. (In case C is a closed loop, we take j as the minimum
number of steps to O.) We note that X j is a nonincreasing
sequence, with X j = 0 for j > n. Let P(n) be the probability,
over the space of all final configurations, that the maximum
number of steps from O in the cluster containing the origin is
n. We aim to show that ∃ c < 1 such that P(n) < cn, so that
E n < ∞, i.e., there is no percolation.

Let Aj be the event X j = 2. We show that P(Aj+1|Aj ) < 1.
Given Aj , let x j be one of the sites that are j steps from O, let
z1, z2, and z3 be the sites neighboring x j distinct from x j−1,
and let yi be the edge linking sites x j and zi. Let Bj be the
event that edges y1, y2, and y3 are all unoccupied in the final
configuration. Occurrence of Bj implies that X j+1 < 2. Thus,
P(Bj ) > 0 implies P(Aj+1|Aj ) < 1.

We now argue that P(Bj ) > 0 for any j > 0. A sufficient
condition for occurrence of Bj is that sites z1, z2, and z3 are all
of valence 2 via edges ym /∈ {y1, y2, y3}. An example of such
a configuration is shown in Fig. 9. Recall that each edge y is
assigned a real time ty ∈ (0, 1]. Initially all edges are empty,
and edge y becomes occupied at time ty if permitted by the
maximum-valence rules; otherwise it remains empty for all
time.

Consider a site s and let u1, ..., u4 be the edges incident
on s, with t1, ..., t4 their associated times. Call e(s) the pair of

FIG. 9. A configuration corresponding to event Bj .

edges ui having the smallest and second-smallest times. For an
arbitrary edge y, let s1 and s2 be its terminal sites. A sufficient
(but not necessary) condition for y to be occupied in the final
configuration is that y belong to e(s1) and to e(s2). Using the
fact that the t j are i.i.d. uniformly distributed on (0,1], one
readily verifies that Prob[y ∈ e(s1) ∩ e(s2)] = 13/35.

Now consider the local configuration shown in Fig. 10. A
sufficient condition for the edges indicated by solid lines to
be occupied is that they belong to the sets e associated with

FIG. 10. Part of a configuration corresponding to event Bj . Num-
bers label the edges and associated times.
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the three sites upon which these edges are incident; these
conditions naturally imply certain restrictions on the ti. Inte-
grating over the ti, considering the diverse orderings allowed
by the above-mentioned constraints we find the probability
of the two-edge configuration shown in Fig. 10 to be at least
87/900 ≡ b1/3. It follows that P(Bj ) > b > 0. By the same

argument, if Xj = 1, there is a nonzero probability that Xj+1 =
0. Thus there is a finite constant C such that Prob[Xn > 0] <

C(1 − b)n, implying that the percolation probability is zero.
Although the argument is for the square lattice, it can be
adapted via straightforward modification to arbitrary lattices
of finite degree.
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