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1 INTRODUÇÃO GERAL 

1.1 Espécies endêmicas restritas 

Analisando toda a biodiversidade de plantas vasculares documentadas do planeta, estima-se que 

aproximadamente 36% são raras (Enquist et al. 2019). Para avaliar o status de raridade de uma 

espécie são observadas três características: distribuição geográfica, tamanho populacional local 

e especificidade de habitat (Rabinowitz 1981). De acordo com o conceito proposto por 

Rabinowitz (1981), espécies comuns são localmente abundantes e amplamente distribuídas em 

diversos habitats, dessa forma, todas as demais combinações das características supracitadas 

resultam em uma das sete formas de raridade existentes (i.e., endêmica, amplamente distribuída 

em populações pequenas; endêmica, com distribuição ampla em populações grandes; endêmica, 

restrita mas com populações grandes; cosmopolita amplamente distribuída em populações 

pequenas; cosmopolita, geograficamente restrita em populações pequenas; e cosmopolita, 

geograficamente restrita mas com populações grandes; e endêmica, geograficamente restrita 

em populações pequenas). Espécies endêmicas e restritas são consideradas raridades clássicas, 

e usualmente possuem como agravante o fato de ocorrerem em populações muito pequenas 

(López-Pujol et al. 2013). 

Uma das principais preocupações em relação as espécies endêmicas e restritas refere-se 

a sua susceptibilidade à extinção em decorrência de efeitos genéticos, principalmente se 

tratando das espécies que ocorrem em populações pequenas e isoladas, as quais, de acordo com 

os preceitos teóricos da genética de populações, são mais propensas a sofrerem efeitos 

estocásticos (i.e., mutação, deriva genética e fluxo gênico) e determinísticos (i.e.,  seleção 

natural), ocasionando aumento da homozigosidade em razão da fixação de alelos, e a ocorrência 

de endogamia, possibilitando a redução do potencial adaptativo devido à perda de variabilidade 

genética (Holsinger e Gottlieb 1991, Barret e Kohn 1991, Ouborg et al. 2010).  

Neste contexto, estratégias de conservação efetivas para promover a sobrevivência de 

espécies caracterizadas por populações pequenas e isoladas, como as endêmicas restritas, 

dependem de informações obtidas em estudos genéticos e/ou ecológicos e da implementação 

de planos de manejo que visem o crescimento ou a estabilidade demográfica populacional 

(Ralls et al. 2018). 
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1.2 Mimosa catharinensis - Um endemismo extremamente restrito da Mata Atlântica 

Considerado um hotspot mundial de biodiversidade (Myers et al. 2000), a Mata Atlântica é a 

segunda maior floresta pluvial tropical do continente americano e um dos biomas mais 

ameaçados do planeta (e.g., Myers et al. 2000, Tambarelli et al. 2005, Ribeiro et al. 2009, 

Ribeiro et al. 2011, Scarano e Ceotto 2015). Ocupando aproximadamente 7% de sua área 

original, a distribuição atual do bioma é caracterizada por áreas fragmentadas, pequenas e 

geograficamente isoladas (Ranta et al, 1998, Gascon et al. 2000, Myers et al. 2000, Ribeiro et 

al. 2009). No entanto, apesar de possuir um longo histórico de degradação, resultante em perdas 

relevantes de sua biota, a Mata Atlântica ainda abriga cerca de 20.000 espécies de plantas, das 

quais, mais de 8.000 são endêmicas (Mittermeier et al. 2005, Joly et al. 2014). Apesar dos 

esforços para a conservação dos remanescentes de Mata Atlântica, evidenciados pelo elevado 

número de áreas legalmente protegidas no bioma, a efetividade de unidades de conservação em 

reduzir as ameaças à extinção de espécies é questionada, tendo em vista que áreas protegidas 

podem ser vulneráveis a invasões antrópicas, incêndios e outros estresses ambientais (Bruner 

et al. 2001, Joppa et al. 2008, Laurance et al. 2012). 

Incluída na diversidade de plantas endêmicas da Mata Atlântica, Mimosa catharinensis 

(Fabaceae) é uma espécie arbustiva lianosa que possui, como agravantes ao seu risco de 

extinção, tamanho populacional reduzido e distribuição extremamente restrita, apresentando 

ocorrência confirmada apenas em uma área de Restinga (>1 km²), na região litorânea do 

Município de Florianópolis, SC (Burkart 1979). Por ser uma espécie rara e endêmica, M. 

catharinensis é avaliada como Criticamente Ameaçada (CR) na lista de espécies ameaçadas do 

estado de Santa Catarina (Resolução CONSEMA 51/2014).  

Descrita em 1964, a única população conhecida da espécie M. catharinensis está 

localizada no Parque Estadual do Rio Vermelho - PAERVE, reconhecido como unidade de 

proteção integral em 2007 (Burkart 1979, Ferreira 2010). O histórico da área de abrangência do 

PAERVE envolve longos períodos de exploração da vegetação e uso do solo e mais 

recentemente descaracterização da vegetação nativa remanescente para o plantio de espécies 

exóticas potencialmente invasivas, cuja ocupação perdura até os dias atuais, constituindo uma 

das principais ameaças a biodiversidade nativa da restinga da Ilha de Santa Catarina (Ferreira 

2010). Assim como os demais ecossistemas incluídos no domínio da Mata Atlântica, a Restinga 

tem sofrido fragmentação massiva devido a ocupação antrópica em áreas costeiras, e em 

decorrência de sua heterogeneidade característica, seu grau de ameaça pode ser ainda maior se 

avaliada isoladamente (Neves et al. 2017). 
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Pesquisas elaboradas para subsidiar o plano de manejo do PAERVE (Ferreira 2010) 

chamam atenção para evidências de desmatamento dentro e nas regiões adjacentes a área do 

parque, despejo de resíduos em locais frequentados por visitantes e impactos na vegetação 

resultantes da prática de esportes e acesso por veículos automotores dentro dos limites da 

unidade de conservação, inclusive na estrada de acesso à praia de Moçambique, onde a 

população de M. catharinensis está localizada.  

Em face do iminente risco de extinção associado ao alto grau de endemismo e ao tamanho 

populacional reduzido, medidas efetivas para assegurar a conservação dos indivíduos 

remanescentes de M. catharinensis são extremamente necessárias, e devem ser pautadas em 

estudos genéticos e/ou ecológicos. 

 

1.3 Genômica da conservação 

A redução dos custos das tecnologias de Sequenciamento de Alto Rendimento (High-

throughput DNA sequencing) e o avanço nas ferramentas para lidar com dados obtidos por tais 

tecnologias propiciaram um aumento significativo na utilização de dados genômicos em 

estudos populacionais, dando início a era da genômica populacional (Allendorf et al. 2010, 

Ralls et al. 2018, Wright et al. 2019).  

Em um sentido amplo, o termo genômica populacional refere-se ao estudo que incorpora 

uma grande quantidade de loci ou regiões genômicas com o objetivo de entender com maior 

precisão a forma com que os processos microevolutivos (i.e., mutação, fluxo gênico, deriva 

genética e seleção natural) influenciam a estrutura genética de populações naturais (Garner et 

al. 2016). Estudos de genômica populacional permitem o aumento da compreensão dos 

impactos genéticos e evolutivos das mudanças climáticas e ambientais em populações naturais, 

fornecendo também informações importantes sobre as bases genômicas relacionadas à 

adaptação local, bem como de parâmetros genéticos populacionais (e.g., diversidade e estrutura 

genética, tamanho efetivo populacional, taxas de fluxo gênico, endogamia), possuindo enorme 

potencial de utilização no desenvolvimento de estratégias mais efetivas para a conservação de 

espécies (Rajora 2019, Hohenlohe et al. 2021). 

Ademais, embora técnicas tradicionais de genética de populações permitam estimativas 

de diversidade genética, estrutura populacional e demografia histórica, dados genômicos 

proporcionam um aumento significativo na densidade de marcadores distribuídos ao longo de 

todo o genoma, aumentando o poder estatístico das inferências e fornecendo estimativas mais 
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acuradas (Allendorf et al. 2010, Shafer et al. 2015) podendo em alguns casos resultar em 

diferentes recomendações para a conservação (Supple e Shapiro 2018). 

 

1.4 Marcadores moleculares em estudos genômicos populacionais  

Técnicas baseadas no Sequenciamento de Alto Rendimento têm possibilitado a obtenção de 

milhares de marcadores SNPs (Single Nucleotide Polymorphisms) em escala populacional, 

oferecendo diversas vantagens em relação aos marcadores comumente empregados nos estudos 

em genética de populações, como os marcadores microssatélites (Davey et al. 2011). 

Marcadores SNPs são polimorfismos de base única, e constituem o marcador mais abundante 

no genoma das espécies, sendo o seu uso muito vantajoso nos estudos genéticos (Brooks 1999). 

Dentre as estratégias mais utilizadas em estudos de genômica populacional, destacam-se 

as metodologias de sequenciamento de representação reduzida do genoma - RRS, tendo em 

vista que as principais questões biológicas a serem acessadas dentro e entre populações podem 

ser respondidas com informações de polimorfismos ao longo do genoma, evitando custos 

excessivos com sequenciamentos de genomas completos (Davey et al. 2011).  

 As metodologias de RRS mais utilizadas para à identificação de marcadores SNPs 

aplicados nos estudos populacionais pertencem à família de protocolos de sequenciamento de 

DNA associado a sítios de restrição - RADseq (Andrews et al. 2016). Em geral, protocolos de 

RADseq apresentam algumas características comuns: fragmentação do DNA genômico 

utilizando endonucleases; ligação dos fragmentos de DNA a adaptadores e a sequências de 

identificação (i.e., barcodes); seleção de fragmentos de DNA de tamanho específico (Andrews 

et al. 2016). As principais diferenças técnicas entre os protocolos de RADseq estão relacionadas 

à quantidade e tipo de enzimas de restrição utilizadas e a metodologia empregada para a seleção 

dos fragmentos (i.e., manual ou automática). Ademais, os custos para a preparação da biblioteca 

genômica e os dados produzidos por cada método podem variar (Andrews et al. 2016). A maior 

vantagem da utilização de metodologias RADseq consiste no fato de que não requerem 

informações genômicas prévias da espécie a ser estudada. Dessa forma, permitindo a aplicação 

da técnica mesmo em espécies não-modelos (Andrews et al. 2016).  

Dentre as metodologias RADseq, o protocolo ddRADseq (double-digestion Restriction 

Site associated DNA) desenvolvido por Peterson et al. (2012), um dos mais utilizados 

atualmente, é caracterizado pela utilização de duas enzimas de restrição e tem se mostrado uma 

metodologia muito vantajosa, tendo em vista a alta eficiência na descoberta e genotipagem de 
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SNPs a um custo mais baixo em comparação com outras técnicas de representação reduzida do 

genoma (e.g., GBS, CRoPS, ezRAD, e CUTseq; Andrews et al. 2016, Zhang et al. 2019). 

 

2 OBJETIVO 

2.1 Objetivo geral 

Gerar informações genéticas com o intuito de subsidiar a conservação e a redução do risco de 

extinção de Mimosa catharinensis. 

 

2.2 Objetivos específicos 

a) Estimar os níveis de diversidade genética intrapopulacional; 

b) Avaliar o efeito de dados faltantes nos parâmetros genéticos; 

c) Determinar os parâmetros do sistema reprodutivo da espécie, como as taxas de cruzamento 

e autofecundação; 

d) Investigar a ocorrência de reprodução clonal; 

e) Investigar a história demográfica de M. catharinensis. 
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3 CAPÍTULO I 

 

One step away from extinction: a population genomic analysis of a narrow endemic, 

tropical plant species 
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3.1 ABSTRACT 

Intraspecific genetic variation plays a fundamental role in maintaining the evolutionary 

potential of wild populations. Hence, the assessment of genetic diversity patterns becomes 

essential to guide biodiversity conservation policies, particularly for threatened species. To 

inform management strategies for conservation of Mimosa catharinensis – a narrow endemic, 

critically endangered plant species – we identified 1,497 unlinked SNP markers derived from a 

reduced representation sequencing method (i.e., double digest restriction site associated DNA 

sequencing, or ddRADseq). This set of molecular markers was employed to assess 

intrapopulation genetic parameters and the demographic history of one extremely small 

population of M. catharinensis (N=33) located in the Brazilian Atlantic Forest. Contrary to 

what is expected for narrow endemic and threatened species with small population sizes, we 

observed a moderate level of genetic diversity for M. catharinensis [uHE(0%missing data)=0.205, 

95%CI (0.160, 0.250); uHE(30%missing data)=0.233, 95%CI (0.174, 0.292)]. Interestingly, M. 

catharinensis, which is a lianescent shrub with no indication of seed production for at least two 

decades, presented high levels of outcrossing (t(0%missing data)=0.883, SE ± 0.0483; t(30%missing 

data)=0.909, SE ± 0.011) and an apparent absence of inbreeding [FIS(0%missing data)=-0.145, 95%CI 

(-0.189, -0.101); FIS (30%missing data)=-0.105,  95%CI (-0.199, -0.011)]. However, the 

reconstruction of demographic history of M. catharinensis indicated that the population should 

be suffered a recent bottleneck. Our population genomic study tackles a central issue in 

evolution and conservation biology and we expect that it will be useful to help safeguard the 

remaining genetic diversity reported for this unique genetic resource. 
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3.2 INTRODUCTION 

Differences in DNA sequences among individuals within a population represent its 

genetic diversity, a key component for the long-term survival of natural populations that is 

related to the maintenance of its evolutionary potential in the face of environmental change 

(e.g., Huenneke 1991, Reed and Frankham 2003, Spielman et al. 2004, Elegren and Galtier 

2016, Frankham et al. 2017; but see Zimmermann et al. 2018). As a matter of fact, the impact 

of the loss of genetic variation on increasing risk of extinction for wild populations has been 

extensively debated in the past (e.g., Lande 1988, Caro and Laurenson 1994, Frankham 1995, 

Hedrick et al. 1995, Caughley and Gunn 1996, Frankham and Ralls 1998, Dobson 1999), 

suggesting that demographic parameters (e.g., population size, density, sex ratio, age structure, 

fecundity; see Tarsi and Tuff 2012) associated with stochastic and deterministic events should 

affect species on the verge of extinction before microevolutionary forces take effect (e.g., 

Frankham et al. 2010). Nonetheless, Spielman et al. (2004) reported that most threatened taxa, 

including plant species, present lower levels of genetic diversity than closely related non-

threatened taxa, implying a higher risk of (local) extinction due to small population sizes, and 

as a consequence, a reduction in reproductive fitness.  

Although the amount of genetic diversity in a population is commonly linked to its size 

and range (e.g., Frankham 1996, Hamrick and Godt 1996, Elegren and Galtier 2016), a better 

understanding is needed of the susceptibility of species that are rare, endemic, and with small 

population sizes to extinction due to reductions in genetic diversity. Species that present small 

population sizes and a restricted geographic range (i.e., narrow endemic) tend to present lower 

levels of genetic diversity than those with larger population sizes and wide distribution (Kimura 

and Crow 1964, Hamrick and Godt 1989, Honnay and Jacquemyn 2007; but see Ellis et al. 

2006, Turchetto et al. 2016; Forrest et al. 2017, Martel et al. 2021). For instance, Honnay and 

Jacquemyn (2007) highlight significantly lower levels of genetic variation in small plant 

populations compared to large populations. The same pattern (i.e., low levels of genetic 

diversity) has been reported for threatened plant species with a history of fragmentation and/or 

population decline (e.g., Jiménez etal. 2014, Bupp et al. 2017, Simmons et al. 2018, Downey 

and Baskauf, 2020). In addition, high levels of inbreeding are expected for plant species with 

small and isolated populations (e.g., Falconer 1989, Barret and Kohn 1991, Allendorf and 

Luikart 2007, Frankham et al 2014, Oleas et al. 2014, Perrier et al. 2017, Rhoads et al. 2017, 

Toczydlowski and Waller 2019; but see Nazareno and Carvalho 2009, Guidugli et al. 2016), 

making the effects of genetic drift more pronounced. As a result, such populations are 
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particularly prone to (local) extinction, as they lose variability more readily when compared to 

populations in which drift is an unexpressive microevolutionary force (e.g., Barret and Kohn 

1991, Bani et al. 2018, Toczydlowski and Waller 2019). In addition to genetic factors, small 

populations are subject to rapid decline and extinction due to demographic fluctuations and 

environmental changes (e.g., Primack and Rodrigues 2001, Frankham et al. 2010). 

In this study, we aimed to assess the levels of genetic diversity and demographic history 

of a unique population of Mimosa catharinensis Burkart (Fabaceae), a rare, critically 

endangered (CONSEMA 2014), and narrow endemic species that occurs in a small area (~700 

m2) in the Brazilian Atlantic Forest (Burkart 1979). Considering the vulnerability of M. 

catharinensis to extinction and its unique reproductive biology (i.e., a plant species that is 

ecologically sterile), and based on the assumptions of population theory and the findings of 

empirical studies about genetic diversity in rare and endemic plant species occurring in small 

populations, we expected to find low levels of genetic diversity for M. catharinensis. Further, 

we expected to find indications of population retraction given the historic threats that have 

occurred in its biome (presented in the below section). To this end, and to contribute to in situ 

and ex situ conservation strategies, we used a high-throughput sequencing approach (i.e., double 

digest restriction site associated DNA sequencing, ddRADseq; Peterson et al. 2012) to identify 

unlinked and neutral SNP markers. This reduced representation sequencing method had been 

used extensively for species conservation studies (e.g., Nazareno et al. 2017, Chattopadhyay et 

al. 2019, Amor et al. 2020, Wright et al. 2020, Bard et al. 2021, Nazareno and Knowles 2021) 

mainly due to its robustness to generate thousands of neutral and non- neutral molecular 

markers at a relative low cost. Our population genomic study tackles a central issue in evolution 

and conservation biology and we expect that it will be useful to safeguard the genetic diversity 

reported for the only remaining population of M. catharinensis. The approach applied in this 

study can also be used to guide conservation efforts for other plant species on the brink of 

extinction. 

 

3.3 MATERIALS AND METHODS  

3.3.1 Species description 

Mimosa catharinensis is a plant species endemic to the Brazilian Atlantic Rainforest with an 

extremely restricted distribution, limited to one population located in the Rio Vermelho State 
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Park (Parque Estadual do Rio Vermelho – PAERVE; Figure 1), Santa Catarina State, Southern 

Brazil (Burkart 1979, Ferreira 2010). The only documented population of M. catharinensis 

(~700m²) occurs in one of the most heavily impacted areas of the PAERVE (Figure 1) due to 

deforestation and environmental degradation for over 200 years (Berenhauser, n.d.). This 

narrow endemic and critically endangered plant species (CONSEMA 2014) is a lianescent 

shrub that produces masculine and hermaphrodite white, glabrous, and tetramerous flowers 

(Burkart 1979). Pollen dispersal occurs via zoophily (e.g., Apis mellifera; Silva et al. 2005), 

although nectar-dependent visitors are infrequent due to a lack of floral nectar (Silva et al. 

2005). The pods are of the indehiscent craspedium type and are linear-oblong with curved 

prickles on the margins (Medeiros and Stefani 2018). Although the reproductive structures of 

M. catharinensis have been characterized morphologically, pods without seeds were observed 

during field collection in 2019. Based on herbarium records, the lack of seed production in M. 

catharinensis was first recorded in 1994 (Voucher 30,482; FLOR herbarium, UFSC). As no 

seedlings were found in its area of occurrence, M. catharinensis may be considered an 

ecologically sterile plant species (i.e., a plant species in which the recruitment rate over time is 

nil as a consequence of lack of sexual reproduction). As successful in vitro pollen germination 

had been reported for M. catharinensis (Silva et al. 2005), further pollination studies are needed 

to improve our understanding of its reproductive biology. 

Although there are efforts by the Santa Catarina State government (Gasper et al . 2012) 

to generate genetic and ecological data to inform conservation efforts and to safeguard plant 

species threatened with extinction, no previous evolutionary studies – including phylogenetic 

analysis and genomic characterization – have been conducted on this critically endangered 

species. 

 

3.3.2 History of the research area 

Since 2002, the PAERVE has been recognized by UNESCO as one of the core areas of the 

Atlantic Forest Biosphere Reserve and consists of 1,530 hectares of Atlantic Rainforest biome 

(Ferreira 2010, Bechara et al. 2013). The introduction of pine and eucalyptus into the park has 

brought about significant changes to its restinga (sandy plains) vegetation and is the main cause 

of degradation of the coastal ecosystem of Santa Catarina Island (Ferreira 2010). Currently, it 

is estimated that 750ha of the park are covered by Pinus spp., of which about 33% are located 

in dunes and sandbanks that have been progressively invaded since pine was first introduced 
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(Bechara et al. 2013). Nevertheless, approximately 400ha of dense rainforest and 250ha of 

restinga vegetation fragments remain protected in the park (Bechara et al. 2013), the latter 

located mainly at the southern and northern tips of the conservation area (Ferreira 2010).  

 

3.3.3 Population sampling 

We collected leaf samples from all 33 identified adult individuals of unknown age that 

constitute the only remaining M. catharinensis population. Leaves were stored in silica gel for 

later extraction. One voucher (FLOR30482) is deposited at the FLOR herbarium at the Federal 

University of Santa Catarina – UFSC. 

 

3.3.4 Genomic library preparation and sequencing 

DNA was extracted from leaf samples of all collected individuals employing the NucleoSpin® 

kit (Machereney-Nagel GmbH & Co. KG) following manufacture’s guidelines. After 

extraction, the quality of each sample was verified using Thermo Scientific NanoDrop 2000 

Spectrophotometer (Thermo Fisher Scientific Inc.) and the concentration of double-strand DNA 

(dsDNA) was obtained by using Qubit dsDNA Assay Kit (Invitrogen). The genomic library 

was prepared using a double-digest restriction site-associated DNA sequencing (i.e., 

ddRADseq) protocol (Peterson et al. 2012) with modifications proposed by Nazareno et al. 

(2017). Digestions reactions were performed using 0.5μg of genomic DNA, 5,000 units of MseI, 

5,000 units of HF-EcoRI, and 1x CutSmart buffer (New England Biolabs) in a total 20μl 

reaction volume for 3h at 37°C, ending with a 20min deactivation step at 65°C (Nazareno et al. 

2017). Reactions products were cleaned using Agencourt AMPure XP system (Beckman 

Coulter) according to manufacturer’s recommendations. The dsDNA was quantified using 

Qubit and the amount of DNA was standardized before to procedure with the ligation. We used 

80ng DNA, 1M of MseI adaptor, 0.33M of EcoRI double-strand adaptor unique for each sample, 

1U of T4 DNA ligase (New England Biolabs) and 1.40μl of T4 ligase buffer in 30μl ligation 

reaction that was stored at a room temperature (23°C) for 30min After, heat-killed the reaction 

at 65°C for 10min and then, slowly cooled until reach room temperature. Details of barcode 

sequences can be found in Nazareno et al. (2017). Products of the ligation reaction were purified 

using the Agencourt AMPure XP system and used in PCR reactions. PCR reactions were carried 
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out in a total volume of 20μl, containing 13.5μl of ligation product, 0.2M dNTPs, 1.0μM MgCl2 

0.5U iProof™ High-Fidelity DNA Polymerase (Bio-Rad) and 2X of iProof buffer. The PCR 

protocol (98°C for 30s, 20 cycles of 98°C for 20s, 60°C for 30s and 72°C for 40s, followed by 

a final extension at 72°C for 10min) was performed in an Eppendorf System. The amplicons 

were cleaned with the Agencourt AMPure XP system and quantified using Qubit dsDNA assay 

Kit. We used an automated size-selection technology (i.e., Pippin Prep; Sage Science, Beverly, 

MA, United States) at 2% agarose cartridge to select DNA fragments at a target range size of 

375–475bp. The library was sequenced (100-bp single-end) on a lane of Illumina HiSeq 2,500 

flow cell (Illumina Inc., San Diego, CA, United States) at The Centre for Applied Genomics in 

Toronto, Canada. 

 

3.3.5 Raw data processing and SNPs identification 

Data quality was checked using the program FastQC version: 0.11.8 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The file containing raw sequence 

reads was analyzed in Stacks 2.41 (Catchen et al. 2011; Catchen et al. 2013, Rochette et al. 

2019) using de novo assembly. Initially, we used the process_radtags program in Stacks to 

examine individual barcodes, enzyme cutsite integrity and to demultiplex the data. For barcodes 

rescue we admitted at most two mismatches (− barcode_dist 1 2). We filtered raw reads using 

the phred score 33 and used the option −t to trim all of it at 85 base pairs (−phred 33, −t85). 

With the process_radtags output, we run the Ustacks program, that uses a maximum likelihood 

framework to aligns short-read sequences and create putative alleles (stacks). The maximum 

distance allowed between “stacks” was two nucleotides. The minimum depth of coverage 

required to create a “stack” and the maximum number of stacks at a single de novo locus was 

set as three. We enabled the deleveraging algorithm (−d) to solve merged tags, and a bounded-

error model to identify SNPs. An alpha value of 0.05 and an upper bound of 0.1 were used. In 

the next step, we performed Cstacks to merge alleles of all samples and create a catalog of 

consensus loci. Three mismatches were allowed between loci in catalog build. Each individual 

sample loci were then compared against the catalog through the Sstacks program. We ran 

tsv2bam program to organize the single-end reads by locus, instead by sample, creating a BAM 

file that was used as input to the Gstacks program. Gstacks uses the single-reads to build contigs 

and merges them into loci. It also aligns reads to the loci using Ukkonen’s algorithm, identifies 

SNPs for each locus and each individual genotype and converts SNPs into phased haplotypes. 
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Finally, we used POPULATIONS in Stacks (Catchen et al. 2011, Catchen et al. 2013, Rochette 

et al. 2019) to generate and export the SNP data set, as well as FASTA files containing the per-

locus consensus sequences, and individual loci sequences, that were applied in the further 

analyses. To assess the effects of missing data on genetic estimates, we run POPULATIONS 

several times with a Minor Allele Frequency (MAF) of 5% (−min_maf 0.05), a maximum 

heterozygosity (−max_obs_het) of 0.65, and the percentage of missing data varying from 0 to 

30%. All data sets include one random SNP per locus. To avoid potential bias sources in the 

forward genetic analyses, Hardy–Weinberg (H–W) equilibrium tests was done using the 

adegenet and pegas packages (https://CRAN.R- project.org/package=adegenet; Jombart 2008, 

Paradis 2010, Jombart and Ahmed 2011) implemented in R. In addition, linkage disequilibrium 

(LD) between loci was tested using Arlequin 3.5.2 (Excoffier and Lischer 2010). Type I error 

rates for these tests were corrected for multiple comparisons using the sequential Bonferroni 

procedure (Rice 1989), and SNPs that failed the H–W equilibrium test and/or SNP pairs in LD 

were excluded from further analyses. To exclude non-nuclear loci, the per-locus consensus 

sequences were aligned against reference chloroplast and mitochondrial genomes using Acacia 

dealbata (NCBI accession number KX852435) and Acacia ligulata (NCBI accession number 

MH933866), respectively. We used the BLASTn program (http://blast.ncbi.nlm.nih.gov) 

removing loci that presented identity greater than or equal to 80%. 

 

3.3.6 Genetic diversity 

To assess the influence of missing data on genetic diversity estimates, we used the “BasicStats” 

function in the DiveRsity package in the R software environment (https://CRAN.R- 

project.org/package=diveRsity; Keenan et al. 2013). We estimated unbiased expected genetic 

diversity (uHE; Nei and Roychoudhury 1974), observed heterozygosity (HO), and the inbreeding 

coefficient (Wright’s Fixation Index FIS; Wright 1943). Population genetics statistics were 

averaged across loci using the DiveRsity package in R (Keenan et al. 2013). Confidence 

intervals at 95% were obtained to evaluate differences among means of genetic parameters 

estimated for all data sets. We used the final data set to calculate minor allele frequencies using 

the adegenet package in R (Jombart 2008, Jombart and Ahmed 2011). 
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3.3.7 Mating system of Mimosa catharinensis 

We used the kinship coefficient (Loiselle et al. 1995) implemented in the SPAGeDi program 

(version 1.5; Hardy and Vekemans 2002) to estimate random outcrossing rates (1-s, where s 

indicates the estimated selfing rate) based on standardized identity disequilibrium for all data 

sets. Significance for the identity disequilibrium coefficient was obtained with 1,000 

permutations, and a jackknife over loci approach was applied to calculate the standard error of 

outcrossing estimates. 

 

3.3.8 Clonality assessment 

We evaluated the power of discrimination (PD) for the complete single nucleotide 

polymorphism (SNP) data set (i.e., the data set without missing data; MD) using the equation 

1-PI, where PI represents the probability that two individuals drawn at random from a 

population will have the same genotype at multiple loci (Waits et al. 2001). This analysis was 

performed in GeneAlEx 6.5 program (Peakall and Smouse 2012). Taking into account that 

clonal reproduction has been reported for plant species of the Fabaceae family (e.g., Dev et al . 

2010, Gui et al. 2013, Gaddis et al. 2014, Mori et al. 2018, Amor et al. 2020), including M. 

catharinensis (Rogalski et al. 2005), a clonality test was applied for M. catharinensis using the 

“poppr” package (Kamvar et al. 2014, Kamvar et al. 2015) in R version 3.5.3 (R development 

Core Team 2019). The “bitwise.dist” function was used to calculate a pairwise genetic distance 

matrix between individuals. Then, we ran the “mlg.filter” function to apply a threshold that 

defines the minimum distance to determine distinct multi-locus genotypes (MLGs; see Kamvar 

et al. 2015). Applying a threshold when using SNP markers is important in order to deal with 

the limited observable genetic differences between genets due to sporadic somatic mutations or 

issues associated with high-throughput sequencing technologies (e.g., genotyping errors and 

missing data; Kamvar et al. 2015, Mastretta-Yanes et al. 2015). We chose the average neighbor 

as the clustering algorithm with a threshold of 0.04, which has been shown to be sufficient to 

explain intra-clonal variation when SNPs derived from ddRADseq are used (Amor et al. 2020). 

In addition, a less conservative threshold of 0.06 was used to infer the numbers of MLGs in M. 

catharinensis. The threshold of 0.06 was chosen in order to minimize the limitation of our 

experimental design, which did not include replicates to estimate genotyping errors. To 
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visualize the number of putative lineages, we ran the “upgma” function (Phangorn package; 

Schliep 2011) to construct ultrametric trees. 

 

3.3.9 Demographic history 

The demographic history of M. catharinensis was inferred using a composite likelihood-based 

approach implemented in FastSimCoal v. 2.6 (Excoffier et al. 2013). VCF files were converted 

into the *.arp format using the program PGDSpider 2.1.1.5 (Lischer and Excoffier 2012). 

Assuming genetic distances of 0.04 and 0.06, we obtained two observed folded Site Frequency 

Spectrums (SFS based on minor allele frequency) for our filtered SNP data set using the 

Arlequin 3.5 program (Excoffier and Lischer, 2010). We tested four evolutionary scenarios: 

constant population size, bottleneck, population decline, and population expansion (Figure 2). 

We performed 100 replicates for each tested model and folded SFS. The parameters for each 

run were estimated based on 100,000 simulations and 40 ECM optimization cycles. We used 

an overall substitution rate of 7×10−9 per site/generation as reported for Arabdopsis thaliana 

(Ossowski et al. 2010). The maximum estimated likelihood for each demographic scenario and 

SFS were used to identify the model with the best fit, which was chosen based on Akaike’s 

Information Criterion (AIC; Akaike 1973, 1974) estimated as ΔAIC. All models were ranked, 

with the model with the lowest ΔAIC being considered the most plausible. It is important to 

note that models with ΔAIC ≤2 have substantial support (Burnham and Anderson, 2001). 

We also assessed the probability that each model is the best fit by estimating Akaike weights 

(wi). Once the best model was selected, its estimated parameters were used to simulate 100 SFS 

data sets to built confidence intervals based on bootstrap distribution.  

 

3.4  RESULTS 

3.4.1 Raw data processing and SNP calling 

The Illumina sequencing generated a total of 79,759,227 raw reads, of which less than 1% was 

discarded due to low quality. The average (±SE), minimum, and maximum retained reads were 

2,384,161 (±115,118 SE), 1,470,849, and 4,011,918. The total number of genotyped RADtag 

loci was 274,113 with a mean coverage depth of 12.7 (±2.7 SD). After Bonferroni adjustment, 

significant deviations from Hardy–Weinberg equilibrium were observed for all data sets 
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(Table 1). No linkage disequilibrium was observed between loci after Bonferroni correction for 

k tests (Table 1). After alignment, one locus matched the plastome of A. dealbata (96.47% 

identity) and it was excluded from the data set. The final numbers of unlinked SNPs used in 

each data set are shown in Table 1. 

 

3.4.2 Genetic diversity parameters, inbreeding coefficient, and outcrossing rate  

Genetic diversity parameters (uHE and HO) and Wright’s Fixation Index (FIS) for data sets with 

different percentages of missing data are shown in Table 1. For all genetic indices (uHE, HO, 

and FIS) obtained for the M. catharinensis population, no statistical differences were observed 

among the data sets (Table 1). Further analyses were performed using the data set without 

missing data, which presented a minor allele frequency (MAF) averaged at 0.125 (±0.093 SD). 

Based on mating system analysis for the data sets with different percentages of missing data 

(Table 1), the outcrossing rates varied from 0.883 (SE±0.0483) to 0.909 (SE±0.011). Although 

the outcrossing rate was inflated with an increase in MD, no statistical differences were 

observed among the data sets (Supplementary Table S1). 

 

3.4.3 Clonality Assessment 

The results of the PD analysis showed that at least 13 loci are enough to discriminate closely 

related individuals with high accuracy, indicating that the data set with 0% missing data (i.e., 

128 SNPs) has high discriminatory power to identify M. catharinensis individuals. The defined 

threshold of 0.04 did not cluster MLGs into multilocus lineages (MLLs; Figure 3A). While the 

genetic distance of 0.04 did not indicate the presence of clonal genotypes for M. catharinensis, 

the threshold of 0.06 indicates 23 putative MLLs (Figure 3B). 

 

 3.4.4 Demographic history 

 The highest likelihoods are summarized in Table 2, as well as the results for the Akaike 

estimates (ΔAIC and wi). The model with the best fit for the complete (N=33) and the reduced 

(n=23) data sets was the bottleneck (Table 2). The inferred parameters for the bottleneck model 

and the 95% CIs obtained for the data sets with different numbers of individuals are shown in 

Supplementary Table S2. The parameter estimates under the empirical SFS suggests that 
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population contraction occurred only a few generations ago (TBOTcompl= 82; TBOT33=10), with 

a continuous decline in population size after the bottleneck. However, the 95% CIs were wide 

and overlapping. 

 

3.5 DISCUSSION  

Genomic approaches are valuable as they can provide new insights and a better understanding 

of the amount, distribution, and functional significance of genetic variation in natural 

populations (Allendorf et al. 2010). As predicted by Funk et al. (2012), the use of genomic data 

is on the rise for species in relation to discussions around conservation (Hawkins et al. 2018, 

Huy et al. 2018, Lanes et al. 2018, Ball et al. 2020, Bao et al. 2020, Chen et al. 2020, Liu et al. 

2020, Zang et al. 2020, Zimmerman et al. 2020, Bradbury et al. 2021). Thus, such data can play 

a critical role in informing management strategies and policy for species on the verge of 

extinction, many of which are narrow endemics and prime targets for conservation genomic 

assessments (Silva et al. 2020). Considering that estimates of genetic parameters have a direct 

influence on conservation decision-making, we applied a reduced representation library 

approach (i.e., ddRADseq) to generate genomic data for M. catharinensis. This data was used 

to assess intrapopulation genetic variation, as well as the demographic history for this critically 

endangered, narrow endemic species of the Atlantic Rainforest. 

 Our findings show that, contrary to what is expected for narrow endemics (Kimura and 

Crow 1964, Hamrick and Godt 1989, Spielman et al. 2004, Honnay and Jacquemyn 2007), and 

despite its extremely small population size, M. catharinensis has moderate intrapopulation 

genetic diversity, expressed here by HE, with an apparent absence of inbreeding. Although the 

use of only one metric to assess genetic diversity is not an optimal condition, our results bring 

to light several factors that can influence the observed patterns of genetic diversity and 

inbreeding in relictual populations of threatened species. Our results underscore the importance 

of assessing the genetic patterns of each species in order to critically evaluate their genetic 

variability and the microevolutionary forces by which they are shaped (Amos and Harwood 

1998, Turchetto et al. 2016). Below, we discuss how our findings can inform conservation and 

management strategies for M. catharinensis. 
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3.5.1 Contradicting patterns of genetic diversity in small populations 

Despite the general expectation of low intrapopulation genetic variability and high 

susceptibility to inbreeding depression associated with pronounced effects of genetic drift in 

small populations (e.g., Kimura and Crow 1964, Hamrick and Godt 1989, Barret and Kohn 

1991, Ellstrand and Elam 1993, Honnay and Jacquemyn 2007), the results for M. catharinensis 

do not support the hypothesized loss of genetic diversity, which should reflect high levels of 

inbreeding, as a consequence of reduced population size and narrow endemism. Although 

contradictory to theoretical predictions, unexpectedly high levels of genetic diversity are not 

unusual for narrow endemics (e.g., Fernández-Mazuecos et al. 2014, Jiménez-Mejías et al. 

2015, Turchetto et al. 2016, Forrest et al. 2017, Goetze et al. 2018, Sękiewicz et al. 2020, Bard 

et al. 2021, Garcia-Jacas et al. 2021), creating an indistinct pattern for this kind of plant species. 

For instance, in the studies by Fernández-Mazuecos et al. (2014) and Jiménez-Mejías et al. 

(2015), the authors highlight the paradox of genetic diversity levels in narrow and extremely 

narrow endemic plant species from the Mediterranean. While Fernández-Mazuecos et al. (2014) 

found moderate levels of genetic diversity for Naufraga balearica, Jiménez-Mejías et al. (2015) 

reported high levels of genetic diversity for Pseudomisopates rivas-martinezii. In comparison 

to previous genetic assessments for narrow endemics in the same regions, the authors 

(Fernández-Mazuecos et al., 2014, Jiménez-Mejías et al. 2015) found that, although some 

species have low genetic variability, most species showed moderate to high levels of genetic 

diversity (e.g., Sales et al. 2001, Coppi et al.2008, Mameli et al. 2008, Mayol et al. 2012, De 

Castro et al. 2013, Forrest et al. 2017, Sękiewicz et al. 2020, Garcia-Jacas et al. 2021). Thus, 

narrow endemism does not always imply limited genetic diversity. However, such contrasting 

results may be due to differences in population size, distribution range, ecological traits, and 

evolutionary history (Fernández-Mazuecos et al. 2014).  

In addition, several studies have indicated that life-history traits (e.g., lifecycle, growth 

form, mating and breeding systems) strongly influence the amount and distribution of genetic 

variation in natural populations (e.g., Hamrick and Godt 1996, Ellis et al 2006, Elegren and 

Galtier 2016, Goetze et al. 2018, Bard et al. 2021, De Kort et al. 2021). For Aechmea kertesziae, 

a narrow endemic species of Brazilian Coastal restingas (sandy vegetation), traits such as self-

incompatibility, long-term persistence, clonal reproduction, and consistent population size may 

explain the high levels of genetic diversity observed for the species (Goetze et  al. 2018). 

Specifically for M. catharinensis, the predominance of historical outcrossing, as shown in our 

analysis, seems to be an important factor that contributes to the moderate levels of 
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intrapopulation genetic diversity. It is important to note that outcrossing plants are likely to 

present higher levels of intrapopulation genetic diversity than self-compatible species (Hamrick 

and Godt 1996, Glémin et al. 2006, Ball et al. 2020). Moreover, a lack of successful sexual 

reproduction in M. catharinensis (i.e., production of pods without seeds) suggests that the level 

of intrapopulation genetic diversity has remained static for at least two decades, even though 

our demographic inferences indicated a recent decline in population size.  

As life-history traits play a significant role in shaping the patterns of genetic diversity, it 

is important to compare the levels of genetic diversity among congeneric species in order to 

mitigate phylogenetic effects (Bevill and Louda 1999, Simon and Hay 2003). This is essential 

to better understand how features such as population sizes and geographic distribution ranges 

affect reproductive biology and, as a consequence, the genetic variability of closely related plant 

species. For example, population genetics studies indicate that Petunia secreta and Petunia 

exserta, both of which are narrow endemic species, have high genetic diversity indices; 

however, these indices are lower than those reported for its congener Petunia axillaris, which 

has a wider geographic distribution range (Turchetto et al. 2016). Beyond dissimilarities in the 

area of occurrence of these Petunia species, different floral syndromes and reproductive 

systems have been described as the probable causes of the observed genetic variation (Kokubun 

et al. 2006, Turchetto et al. 2016).  

Although Mimosa is one of the largest genera from Mimosoideae (Barneby 1991), there 

are few population genetics studies for species of this genus (Moreira et al. 2011, Pramual et 

al. 2011, Arruda et al. 2019, Araújo et al. 2020, Morales et al. 2020), and none of these previous 

studies used SNP markers. Nevertheless, genetic diversity has been estimated using markers 

such as RAPD (Mimosa pigra; Pramual et al. 2011), AFLP (Mimosa subser. Dolentes–

Brevipedes; Morales et al. 2020), ISSR (M. caesalpiniifolia Benth.; Araújo et al. 2020), and 

allozyme (Mimosa scabrella; Moreira et al. 2011, Arruda et al. 2019). In this context, M. 

catharinensis presented lower levels of intrapopulation genetic diversity than that reported for 

its widespread congener M. scabrella (HE=0.362 to 0.469; Moreira et al. 2011, Arruda et al. 

2019). 

  When comparing studies on narrow endemics assessed using SNPs, and considering the 

theoretical maximum heterozygosity for biallelic markers (HE=0.5), we are unable to make 

generalizations about the genetic diversity of narrow endemics. Indeed, M. catharinensis 

displays higher levels of genetic diversity than self-compatible (e.g., Ball et al. 2020) and clonal 

and functional sterile species (e.g., Amor et al. 2020). However, some tropical plant species 
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(e.g., Lanes et al. 2018, Ball et al. 2020) showed the most similar genetic diversity to M. 

catharinensis. 

 

3.5.2 Inbreeding and mating system of Mimosa catharinensis 

 Our findings indicate an excess of heterozygosity for this plant species, counteracting the 

theoretical expectation that reductions in population size will result in high levels of inbreeding. 

In terms of genetic variability, the levels of inbreeding in narrow endemic plant species with 

small population sizes vary according to individual features of each species/population 

(Angeloni et al. 2011). Reports for plant species with very small populations vary from high 

levels of inbreeding (Jiménez et al 2014, Finlay et al. 2017, Rodrigues et al. 2019, Wang 2020), 

to no evidence of inbreeding (Edwards et al. 2014, 2021, Spoladore et al. 2017), to an excess 

of heterozygotes (Cabrera-Toledo et al. 2008, Radosavljević et al. 2015, Amor et al. 2020) as 

found herein. Barret and Kohn (1991) emphasize that the mating pattern is a prime determinant 

of inbreeding levels in natural populations regardless of their size. In fact, self-compatible 

species can be more susceptible to inbreeding considering that self-incompatibility is likely to 

have evolved to prevent inbreeding depression (Charlesworth and Charlesworth, 1987). On the 

other hand, predominantly outcrossing species can suffer from inbreeding depression due to 

mating between relatives (Husband and Schemske 1996). 

The (historical) outcrossing rate observed in M. catharinensis suggests that it has a mixed 

mating system, which is characterized as ranging from 5 to 95% depending on environmental 

conditions and pollination frequency (Karasawa 2015). Such a wide range in outcrossing rates 

for mixed-mating species are common and can change over time and space due to 

environmental conditions and intrinsic population features, such density and demographic 

structure (e.g., Wright et al. 2013). As with M. catharinensis, high outcrossing rates have been 

reported for many Neotropical plant species (e.g., Ward et al. 2005, Feres et al. 2012, 2021; 

Nazareno and Reis 2012, Spoladore et al. 2017, Godoy et al. 2018, Montagna et al. 2018, Sujii 

et al. 2021), including two congener Mimosa species (Moreira et al 2011, Arruda et al. 2020). 

Studies on populations of M. scabrella (Arruda et al. 2020), for instance, showed a similar 

reproductive pattern with high outcrossing rates (t=0.925/0.845) and low estimates of selfing 

(s=0.075/0.155). For M. catharinensis, the interpretation of negative FIS values coupled with 

high t values should be viewed with caution due to the distinct biology of the species (i.e., 

production of seedless pods and absence of seedlings in the study area). Such biological 
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characteristics observed for M. catharinensis suggest that a significant selective pressure 

against homozygotes must have occurred in previous generations, especially when taking into 

account the excesses of heterozygosity observed in its small population. As M. catharinensis 

population is constituted only by adult trees, a further study investigating inbreeding depression 

seems not to be a feasible task as a consequence of the lack of different ontogenic stages in its 

population.  

Although pollen grains have been reported as viable for M. catharinensis (Silva et al. 

2005), the apparent reproductive failure seems to be due to an extremely low frequency of floral 

visitors (Silva et al. 2005), implying low pollination efficiency. This phenomenon has been also 

described for other Mimosa species, such as Mimosa bimucronata (Seijo and Neffa, 2004). As 

with M. catharinensis, M. bimucronata does not produce nectar, however, its newly opened 

flowers exude a slight fruit odor to attract pollinators (Silva et al. 2011). Despite poor fruit set 

due to inefficient pollination, M. bimucronata produces viable fruits and seeds (Seijo and Neffa 

2004). In contrast, Mimosa pudica showed high pollination efficiency, mediated by A. 

mellifera, resulting in high fruit and seed yields and quality (Taimanga and Fohouo 2018). 

Further pollination biology studies are needed to clarify the causes of reproductive failure in M. 

catharinensis. 

 

 3.5.3 Reconstruction of the demographic history of Mimosa catharinensis 

The selection of the best demographic model was the main focus of the coalescent-based 

inference for M. catharinensis, considering a comparison of two data sets with different 

numbers of individuals and excluding putative clonal individuals based on their genetic 

distance. The fact that confidence intervals were wide and overlapping did not affect our results 

and can be related to the uncertainty of the estimated parameters and/ or the small SFS (Rödin-

Mörch et al. 2019). Nonetheless, the values presented in Supplementary Table S2 should be 

interpreted with caution. The generated SFS for both data sets suggest that a recent bottleneck 

is the best explanation for the current levels of genetic diversity in M. catharinensis. This 

corroborates our findings of excess heterozygosity for the species, which is a characteristic of 

populations that have experienced a recent bottleneck (Luikart et al. 1998). Of the factors that 

may have resulted in a drastic decrease in species population sizes in the restinga, the 

fragmentation of Santa Catarina Island’s native vegetation is particularly relevant, especially 

the degradation that occurred within the PAERVE before it was deemed a protected area. The 
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implementation of reforestation projects in the park using exotic, invasive species also resulted 

in fires, changes to the soil, and deforestation of native vegetation, all of which accentuated the 

damage occurring to such a heterogeneous vegetal formation (Heberle 2011). 

In contrast to the evidence of population contraction for M. catharinensis, the majority of 

studies on past demographic changes in tropical plant species from South America have 

reported indications of expansion during the Quaternary period (e.g., Turchetto-Zolet et al. 

2013). On the other hand, demographic stability has been suggested for the period for species 

from the Southern Brazil coastal restinga (Goetze et al. 2018). Therefore, further studies are 

needed to infer historical changes in population sizes of plant species exclusive to Santa 

Catarina Island (Hassemer et al. 2015), whose recent demographic changes may be similar to 

that reported herein for M. catharinensis.  

 

3.5.4 Implications for conservation  

The extremely small number of individuals (N = 33) in the only known M. catharinensis 

population, coupled with strong evidence for a lack of sexual reproduction, suggests that the 

conservation perspectives for this critically endangered species are concerning. Although no 

inbreeding was detected, the species is facing imminent risk of extinction because of its reduced 

population size, making it more susceptible to stochastic events. As a matter of fact, ex situ 

conservation activities must be implemented in order to safeguard the remaining genetic 

diversity of M. catharinensis. One potential strategy suggested in studies on biodiversity 

conservation of threatened species consists of the preservation of tissue culture, an in vitro 

cultivation of isolated live tissue, enabling the propagation of species facing difficulties with 

natural reproduction (Paiva and Paiva 2001, Santos et al. 2019). Protocols to apply tissue culture 

techniques for conservation of endangered species have been successfully developed (e.g., 

Sherif et al. 2018, Choudary et al. 2020, Lerin et al. 2021; Mishra et al. 2020), and such an 

approach has been used to conserve the narrow endemic species Styphelia longissima (Thomas 

et al. 2021).  

In addition, as in vitro germination tests show pollen grain viability (Silva et al. 2005), 

additional pollination biology studies (e.g., pollination treatments such as manual cross-

pollination and self-pollination) should be performed to test for viable seed production. The 

information available through pollination biology studies can help us to solve the puzzle of M. 

catharinensis reproduction, allowing us to better plan effective conservation measures for this 



37 
 

 

 

rare plant species. In terms of in situ conservation, the fact that the species is found in a 

protected area is a significant starting point, although to date this fact has been insufficient for 

its conservation. Today, the management of invasive, exotic species (e.g., Pinus spp. and 

Eucalyptus spp.), one of the main issues threatening the flora of PAERVE, should 

be prioritized. Furthermore, it is widely reported that adequate restoration of the contaminated 

areas of the park are urgently needed (Ferreira 2010, Bechara et al. 2013), and efforts to achieve 

this goal have been implemented according to the park’s Management Plan (IMA 2020). 

Moreover, although a robust floristic survey of Santa Catarina State has been conducted 

(Vibrans et al. 2012), not all the biodiversity present in the state was sampled. As such, 

biodiversity inventories within Brazil’s protected areas are crucial (Oliveira et al. 2017), and 

efforts on field surveys must be undertaken to verify the narrow occurrence of this critically 

endangered plant species. Likewise, we are committed to monitoring the M. catharinensis 

population size over time to avoid further losses in genetic diversity. 
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TABLE 1 Variation of genetic parameters (HO, observed heterozygosity; uHE, unbiased expected heterozygosity; F, Wright’s Fixation Index) 

according to changes in percent of missing data for the only known population of Mimosa catharinensis.  

 

% 
MD 

SNPs HWE1 LD2 Blast3 
Filtered 
SNPs 

HO 95%CI uHE 95%CI F 95%CI 

0 139 (10); p < 3.6×10-5 
(00); k=9.59×104, 

p<5.2×10-7 
01 (cp) 128 0.245 0.183, 0.307 0.205 0.160, 0.250 -0.145 -0.189, -0.101 

5 283 (19); p < 1.8×10-5 
(00); k=3.99×105, 

p<1.2×10-7 
01 (cp) 263 0.269 0.201, 0.337 0.224 0.174, 0.274 -0.147 -0.207, -0.087 

10 591 (50); p < 8.5×10-6 
(00); k=1.74×106, 

p<2.9×10-8 
01 (cp) 540 0.283 0.210, 0.356 0.233 0.181, 0.285 -0.152 -0.221, -0.083 

15 733 (65); p < 6.8×10-6 
(00); k=2.68×106, 

p<1.9×10-8 
01 (cp) 667 0.287 0.213, 0.361 0.234 0.185, 0.291 -0.148 -0.221, -0.075 

20 1,019 (97); p < 4.9×10-6 
(00); k=5.18×106, 

p<9.6×10-9 
01 (cp) 921 0.293 0.217, 0.369 0.246 0.192, 0.300 -0.138 -0.223, -0.053 

25 1,404 (118); p < 3.6×10-6 
(00); k=9.84×106, 

p<5.1×10-9 
01 (cp) 1,285 0.277 0.199, 0.355 0.238 0.181, 0.295 -0.115 -0.206, -0.024 

30 1,634 (136); p < 3.1×10-6 (00); k=1.33×107 

p<3.74×10-9 01 (cp) 1,497 0.268 0.188, 0.348 0.233 0.174, 0.292 -0.105 -0.199, -0.011 

 

1Number of SNPs with significant departures from Hardy-Weinberg equilibrium (HWE) after a Bonferroni adjustment.  

2Number of SNPs with significant departures from Linkage Disequilibrium (LD) after a Bonferroni adjustment.  

3Number of SNPs that matched some regions of the chloroplast (cp) and/or mitochondrial (mt) reference genomes. 
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TABLE 2 Comparison among demographic models for the Mimosa catharinensis population. 

The most plausible demographic scenario for each dataset is in bold. 

 

I¹/Model k2  Max Est Lhood3 Max Obs Lhood4 AIC5 ΔAIC6 wi 
7 

33 

Neutral 1 -179.30 -148.16 823.72 9.50 8.0×10-4 

Bottleneck 7 -175.06 -148.16 814.21 0.00 1.0×100 

Expansion 4 -179.21 -148.16 833.31 19.09 7.1×10-6 

Decline 4 -179.23 -148.16 833.38 19.17 6.8×10-6 

23 

Neutral 1 -579.40 -143.06 1160.81 754.98 1.1×10-165
 

Bottleneck 7 -195.91 -143.06 405.82 0.00 1.0×100 

Expansion 4 -518.76 -143.06 1045.53 639.70 1.2×10-140 

Decline 4 -296.43 -143.06 600.876 195.05 4.4×10-44 
1Number of individuals used in the SFS (Site Frequency Spectrum) estimates. 
2Number of independently adjusted parameters within the model. 
3Maximum estimated likelihood. 
4Maximum observed likelihood. 
5Akaike’s information criterion (2k-2lnLhood). 

6Difference between the calculated AIC and the minimum AIC (AICi−AICmin). 
7Akaike’s weight. 
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TABLE S1 Selfing (s) and outcrossing (1-s) rates estimated for Mimosa catharinensis 

according to changes in percent of missing data (MD). 

 

MD % s 1-s 95% CI* 

0 0.116 0.883 0.789 - 0.977 

5 0.115 0.885 0.820 - 0.949 

10 0.100 0.900 0.862 - 0.937 

15 0.094 0.906 0.872 - 0.939 

20 0.102 0.898 0.870 - 0.925 

25 0.098 0.902 0.879 - 0.925 

30 0.091 0.909 0.887 - 0.930 

*95% confidence intervals calculated for 1-s. 
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TABLE S2 Inferred parameters for the bottleneck model for Mimosa catharinensis considering 

the complete (N=33) and the reduced (n=23) data sets. The 95% confidence intervals were 

obtained based on 100 parametric bootstraps. 

 

Parameter Complete 95%CI Reduced 95%CI 

NCUR1 2157.0 168.0 - 11082.5 530.0 13.0 - 18941.0 

NANC2 108210.0 49.0 - 105906.0 1045457.0 25.5 - 1045457.0 

NBOT3 13934.0 9198.5 - 97765.5 97872.0 10124.0 - 104697.5 

TBOT4 82.0 16.0 - 8106.0 10.0 13.5 - 9113.5 

1 Current population size. 
2 Ancestral population size. 
3 Population size at the end of the bottleneck. 
4 Number of generations since the bottleneck occurred. 
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3.11 FIGURE CAPTIONS 

FIGURE 1 Location of the extremely small and unique population of Mimosa 

catharinensis in Rio Vermelho State Park (Parque Estadual do Rio Vermelho; 

PAERVE), Santa Catarina State, Southern Brazil. 

 

FIGURE 2 Representation of the demographic scenarios tested for Mimosa 

catharinensis in FastSimCoal 2.6. Estimates include coalescent-based current 

(NCUR) and ancestral (NANC) population size, number of generations since the 

bottleneck occurred (TBOT), and population size at the end of the bottleneck (NBOT). 

 

FIGURE 3 The ultrametric topology trees for the Mimosa catharinensis population 

based on genetic distances (horizontal axis) and using a threshold of (A) 0.04 and (B) 

0.06. 
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FIGURE 2 
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FIGURE 3 
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4 CONSIDERAÇÕES FINAIS  

Avaliar as consequências genéticas e ecológicas de espécies com tamanhos populacionais 

reduzidos é de fundamental importância para o delineamento de políticas públicas de 

conservação eficientes, tanto in situ quanto ex situ. Para tanto, a utilização de metodologias 

genômicas tem se tornado cada vez mais frequente, devido ao alto poder estatístico e resolução 

para estimar parâmetros genéticos e demográficos relevantes para nortear o real posicionamento 

de ameaça de uma espécie e traçar estratégias para minimizar o seu risco de extinção. 

Os resultados obtidos neste trabalho, embora extremamente relevantes para o aumento do 

conhecimento dos níveis de diversidade genética e história demográfica da espécie, constituem 

um ponto inicial para o desenvolvimento de estratégias efetivas para a conservação da espécie 

M. catharinensis. Tendo em vista que fatores ecológicos e genéticos estão intimamente 

relacionados, estudos robustos a respeito da biologia reprodutiva da espécie devem ser 

conduzidos e priorizados para elucidar questões que não puderam ser esclarecidas com os dados 

obtidos neste trabalho.  

Enquanto planos efetivos de conservação para a espécie não forem elaborados, a espécie 

continuará apresentando um elevado risco de extinção. Apesar de não estar geneticamente 

depauperada, a ausência de reprodução sexual documentada para a espécie implica na 

impossibilidade desta espécie expandir sua variabilidade genética. Dessa forma, cabe à 

Administração do PAERVE elaborar, com base nas informações geradas, estratégias que 

busquem minimizar o declínio populacional, e consequentemente, a diversidade genética 

existente nos indivíduos remanescentes da espécie. 

. 
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