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Resumo

Otimização estocástica é uma área de pesquisa fértil e entusiástica. Seus métodos buscam

soluções ótimas ou quase ótimas de problemas em que a incerteza não pode ser negli-

genciada. A otimização estocástica pode ser utilizada para modelar uma vasta gama de

problemas, como sistemas de energia, manutenção, indústria qúımica, suporte a tomada

de decisão, geociências, saúde, cadeias de suprimentos, gestão de risco e gestão de filas.

A despeito de sua abrangente aplicabilidade, a literatura atual indica uma demanda clara

por técnicas mais eficientes que possam lidar com problemas mais complexos e de larga

escala. Nós abordamos (i) a questão da dependência dos modelos em escolhas de usuários

sobre parâmetros de entrada, que podem levar a modelagens ruins; (ii) exploramos o po-

tencial de técnicas de redução de variância para aumentar a eficiência da simulação de

Monte Carlo embutida nos algoritmos; (iii) e investigamos problemas de otimização em

grandes dimensões. Para posicionar esta pesquisa na literatura atual, oferecemos uma

revisão abrangente sobre métodos de otimização estocástica. Em particular, introduzimos

as principais caracteŕısticas de cada método, suas técnicas mais utilizadas, seus benef́ıcios

e limitações, as tendências atuais de pesquisa, e discutimos algumas lacunas ainda a serem

investigadas. Em seguida, oferecemos três contribuições inter-relacionadas. Primeiro, um

novo modelo de Metamodeling baseado em control variates é apresentado. A principal

contribuição é propor uma formulação de metamodelo que é, ao mesmo tempo, computa-

cionalmente eficiente e flex́ıvel o suficiente para possibilitar aplicação a uma ampla classe

de problemas, com diferentes formatos da função objetivo e de comportamentos de in-

certeza (variância). A formulação proposta é menos dependente de parâmetros de entrada

que os atuais metamodelos dispońıveis. Nossa segunda contribuição é propor um procedi-

mento via control variates para melhorar a eficiência de um método de busca aleatória. A

novidade deste nosso procedimento h́ıbrido é usar as sáıdas de pontos já amostrados para

guiar a redução de variância em pontos a serem amostrados. O procedimento proposto é

genérico no sentido de que pode ser aplicado a um conjunto mais amplo de métodos de

otimização estocástica. Finalmente, mergulhamos em espaços de grandes dimensões para

possibilitar o desenvolvimento de métodos de otimização estocástica mais sofisticados que

possam lidar eficientemente com o aumento dimensional que caracteriza aplicações reais.



Abstract

Stochastic optimization is a fertile and exciting area of research. These methods aim at

finding optimal or near optimal solutions of problems for which uncertainty cannot be

neglected. Stochastic optimization can be used to model a vast range of problems, such as

power system, maintenance, chemical industry, decision support, geosciences, health care,

supply chain, risk management and queuing system. In spite of its wide applicability,

current literature indicates a clear demand for efficient techniques that can handle large-

scale and more complex problems. We address (i) the issue of model dependence at

practitioners choice on input parameters which can lead to poor models; (ii) we explore

potentials of variance reduction techniques to increase efficiency of Monte Carlo simulation

embedded in algorithms; (iii) and we investigate high-dimensional optimization problems.

To position this research on the current literature, we offer a comprehensive survey on

stochastic optimization methods. In particular, we introduce the main features of each

method, their most commonly used techniques, their benefits and limitations, explore

current research trends, and discuss some gaps yet to be investigated. Then we offer

three interrelated contributions. First, a novel Metamodeling framework based on vontrol

variates is presented. The main contribution is to propose a metamodel formulation which

is, at the same time, computationally efficient and flexible enough so that it can be applied

to large class of problems, characterized by different shapes of objective function and

uncertainty behavior (variance). We remark the proposed formulation is less dependent

on practitioners choice on input parameters than the current available metamodels. Our

second contribution is to propose a procedure via control variates to improve the efficiency

of a random search method in finding optimal values. The novelty of our hybrid procedure

is to use the output of already sampled points to guide a reduction of variance of the new

sampled points. We remark that the proposed procedure is generic in the sense that it can

be applied to a larger set of stochastic optimization methods. Finally, we take a deep dive

into optimization in high-dimensional space. We derive properties of high-dimensional

space to guide the design of more sophisticated stochastic optimization methods that can

efficiently handle the dimensionality increase that characterize real applications.
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Chapter 1

Introduction

There is a vast of situations in human activities where one must choose among available

options the one that delivers the best response. Such situations are easily found in many

fields, such as decision support, risk management, reliability, industry, health care, chem-

istry, supply chain, power system, among others. There may be an infinity number of

options (or decision variables). Furthermore, the response is typically involved with some

uncertainty. That is, the outcome of a choice is associated with a probabilistic distribution.

The major goal of stochastic optimization methods is to find such decision variables

that give the best expected value of an objective function within a limiting budget (i.e.,

usually time or computational effort). More formally, the methods are looking for a solu-

tion x∗ in the feasible space Θ such that:

J(x∗) = min
x∈Θ

E[Y (x,w)],

where J is the objective function, Y is the response variable, and the expectation is with

respect to the stochastic vector (or noise) w. The only assumption on Y is that it can

be modeled as a simulation system. That is, one can observe the system performance

Y by running simulation experiments at x and randomly generating w according to the

underlying probability measure.

The stochastic optimization methods have foundations on two areas of research that

did not communicate much until recently: simulation, and deterministic optimization.

Since the demand increased for methods that are able to handle more complex problem
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within tractable computational time, the integration of deterministic optimization and

simulation techniques became a very attractive area of research.

The cost (or effort) in generating each observation of the system response increases as

problem complexity gets higher. Therefore, it is of great interest to take advantage of all

the intrinsic information of system’s outputs. The knowledge on how to extract and how

to exploit such information draws on two broad strategies for increasing the efficiency of

stochastic optimization methods: achieving better solutions (i.e., increasing the average

on the values of best solutions found); and enhancing the ability of consistently finding

good solutions at different noise outcomes (i.e., decreasing the variance on the values of

best solutions found).

In this thesis, we focus on variance reduction techniques for increasing the efficiency

of Monte Carlo simulations embedded in stochastic optimization methods. The main goal

of this research is to provide flexible formulations for stochastic optimization methods

that enable a greater exploitation of the information collected in all outputs of system’s

response.

The “control variates is among the most effective and broadly applicable technique

for improving the efficiency of Monte Carlo simulation” (Glasserman (2004)). It allows

the exploitation of information about the errors in estimates of a modeled system with

known expectations (named control variables) to reduce the error in an estimate of an-

other modeled system with unknown expected response (named variables of interest). The

effectiveness of the control variates technique is determined by the strength of the corre-

lation between the control variable and variable of interest. That is, the correlation is one

measure that captures how informative are the errors of one variable to explain the errors

of the variable of interest.

However, the requirement of known means for the control model limits its potential

scope. Typically, the available variables that are very explicative about the variable of

interest (i.e., highly correlated) are of a similar nature, and likewise do not have known

means. Recently, in Zhao et al. (2007), Borogovac and Vakili (2008) and Borogovac (2009),

proposed a control variates approach that relax the assumption of known control means.

Such an approach is suitable for solving parametric estimation problems that requires

estimating the same function at multiple parameter values.
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In the context of stochastic optimization, the parametric estimation problem can be

seen as estimating the stochastic function to be optimized at different decision variables

(or solution points). We see the opportunity to invest computational effort in simulation

outputs of a particular set of solution points in a stochastic optimization problem to

make the estimation of function value at other solution points less costly. “The idea is

to computationally learn to be computationally more efficient” (see Borogovac (2009),

Chapter 5).

Next, we consider high-dimensional optimization problems, which is one of the most

frequently barriers of stochastic optimization methods. There is a growing demand of

unsolved stochastic optimization problems because current methods can not scale-up well

as dimensions increase. The poor performance of stochastic optimization methods in high-

dimensional space is also related to our difficulties in visualizing more than 3-dimensional

spaces. ”Such a limit hinders the development of intuitive sampling approaches, and also

hinders our understanding of such a vast space” (see Shan and Wang (2010)).

A deeper theoretical analysis of the high-dimensional space is felt needed. It could guide

the development of more efficient/generic simulation and optimization techniques. We go

further on a deep dive into such a vast space to understand the effects of problem dimension

on the value of output’s information. We bring light into the roots of why the performance

of stochastic optimization methods deteriorates with an increase of dimensionality.

1.1 Contributions of the Thesis

Our main contributions regarding the frontier of stochastic optimization and variance

reduction techniques is twofold: (i) we derive a metamodeling formulation that has control

variates in its foundations; (ii) and we provide a procedure that enables the use of control

variates technique to a wide set of stochastic optimization methods. Further, we conduct a

seminal investigation on the effects of problem dimension on the performance of stochastic

optimization algorithms.

A Metamodeling Based on Control Variates

Metamodeling is one of the most commonly used tools for stochastic optimization. We

3



formulate a novel metamodel based on the variance reduction technique of control variates.

Our formulation is flexible in the sense that it can be applicable to a large set of objective

functions without requiring assumptions such as smooth surfaces or homogeneous noise.

The formulation is less dependent on input parameters in comparison to current popular

metamodels, and therefore is less susceptible to model misspecifications.

In the core of our formulation, we use database control variates technique to reduce

the variance of response estimates at prediction points. As control variables, we use the

outputs of a set of design points. In other words, the formulation consists in allocating a

larger effort (more simulation outputs) in estimating the response value at a set of design

points. Then, we use the correlation between design and prediction outputs to guide a

variance reduction on the estimates at the latter points. Results show significant gain in

both model accuracy (lower mean squared errors) and robustness (lower standard deviation

of mean squared errors).

Moreover, we conduct a thorough analysis on using multiple controls in our metamodel.

In particular, we investigate the negative effects that multicollinearity can cause in the

estimates when the outputs of more than one design point are used to guide the variance

reduction at a prediction point. Finally, we provide a procedure for better choosing the

location and set size of design points. The intuition is that more design points are needed

in regions of the surface with low correlations, whereas redundant design points can be

discarded in regions with high correlations. The goal is to allocate in a more efficient

manner the simulation budget among design and prediction point.

A Hybrid Fomulation of Random Search Method and Control Variates

We propose a hybrid method that combines random search stochastic optimization to

database control variates. Random search is a method under the umbrella of the meta-

heuristic class of stochastic optimization that aims at solving highly complex problems

such as NP-hard ones. Our main contributions lies in the proposal of general framework

that allows the direct application of database control variates to a larger set of stochastic

optimization methods.

In random search, such as in other stochastic optimization methods, a solution can be

revisited. That is, as the algorithm runs, a solution may receive additional samples (or

4



outputs). The intuition of our hybrid framework is to use the outputs of solutions that

have received larger simulation effort to play the role of controls, in the database control

variates technique. Therefore, the errors raised between outputs and estimated function

value at these control points can guide a variance reduction of the estimates at solutions

that have received a lower number of samples.

Experimental results on canonical problems show a notable gain in the ability of the

hybrid method of consistently finding good solutions at different replications in comparison

to a standard random search procedure.

A Finite Time Analysis of the High-Dimensional Space

We conduct a seminal analysis of optimization in high-dimensional problems under the

perspective of finite time measure in contrast to the asymptotic convergence rate measure.

In the essence, we believe that the latter measure tell us how the algorithm behaves once

it has reached the vicinity of the optimum. That is, it does not give us an idea of how

the algorithm moves from an arbitrary starting point to somewhere close to optimum. In

particular, we are interested in understanding how dimensions influences such finite time

measure.

We first introduce an elementary algorithm of gradient-based optimization with a single

sample that nonetheless captures some key elements of the effects of the problem dimension

on their performance. In our findings, we derive the probability of the algorithm in not

detecting a better solution within a single iteration, and the amount of movement it can

achieve. We demonstrate that the key element of why the optimization algorithm may be

very inefficient in high-dimensional problem is the effect on dimension on the cosine of the

angle between the random direction of movement and the gradient direction.

Moreover, we introduce an elementary algorithm based on linear approximation with

multiple samples. We demonstrate that there is a tradeoff between obtaining more ac-

curate estimates of the gradient which provides a longer step towards the optimum, and

moving based on more noisy estimates of the gradient that requires smaller expenditure

of computational resources.
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1.2 Organization of the Thesis

In Chapter 2, we review stochastic optimization methods. Because this field of research is

relatively new, the few available surveys do not cover all classes of techniques. We were

careful to present the very recent and important developments to guarantee update of this

thesis to the state-of-art because stochastic optimization is evolving rapidly. We organize

our survey on five sections dedicating each one to a class: stochastic approximation, meta-

modeling, sample average approximation, ranking and selection, and metaheuristics. The

survey offers main characteristics, limitations and benefits of the most commonly used

tools for stochastic optimization problems. We give perspectives of future developments

for each tool. It is important to understand their differences to allow comprehension of

where our proposed approaches can be applied. Moreover, we offer our view on global

potential directions of research in stochastic optimization based on the knowledge we have

learned while reviewing the references herein. We use these global directions as guide for

our proposals in the next chapters.

In Chapter 3 we present our main results from using a variance reduction technique as

foundations to formulate a new metamodel framework. We examined our framework at

four template deterministic functions by adding four type of noise to each one of them. We

also utilize two classical stochastic problem - path-dependent options and M/M/1 queues

- to illustrate practical applications. To conduct the experimental analysis, we utilized

four performance measures that evaluate local and global prediction accuracy, robustness

and efficiency of our metamodel. We compare the performance measures to the stochastic

kriging tool, which is the metamodel that most drew attention in the past few years.

Specific contributions of this Chapter are:

◦ Proposal of a metamodel tool based on database control variates. In our framework,

the output of design points are used as control when estimating the function value

at prediction points. Our metamodel is flexible in the sense that it does not require

as many input parameters as in other metamodels. That is, the performance of

our metamodel is less dependent on practitioner choices, which are sources of model

misspecification that can lead to poor predictions.

◦ We investigate the possibility of using multiple controls in our metamodel. Using
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connections to linear regression, in particular to multicollinearity theory, we demon-

strate the reasons why using multiple controls is not appropriate. The induced cor-

relation raised from the use of Common Random Numbers in the database control

variates can increase significantly the variance of control variates coefficient.

◦ We introduce a procedure to iteratively select location and number of design points.

A well-chosen location guarantees a minimal level of correlation between design

points and prediction points, which improves the efficient of the control variates

technique. By choosing carefully locations, redundant design points can be elimi-

nated. Therefore, more simulation budget can be allocated to relevant design points,

improving the quality of control mean estimates.

In Chapter 4, we propose a hybrid method of database control variates and random

search to improve efficiency of the latter stochastic optimization method in finding the op-

timal solution. Analyzes are conducted using five template problems: inventory manage-

ment problem, multimodal problem, singular function problem, high-dimensional problem,

and high-dimensional multimodal problem. The performance measures are: average abil-

ity in finding good solutions, best and worst solutions among all replications, and standard

deviation of solutions. Specific contributions of this Chapter are:

◦ We provide a variance reduction procedure embedded in a random search algorithm

to improve its efficiency. In general, random search methods, which falls into the

stochastic optimization class of metaheuristics, revisit a considerable number of times

some solution points of the design space. We utilize these points as control variates

to improve efficiency in estimating function value at other points as the algorithm

randomly evolves towards the optimum. Experimental results show that our proce-

dure has brought benefits not only at finding better solutions within small simulation

budgets, but also to the robustness of search. That is, consistently finding better

good solutions at different replications.

◦ The procedure is very general in the sense that it can be applicable to a larger

set of stochastic optimization methods, such as: stochastic approximations, sample

average approximation and metamodeling, and ranking and selection.
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In Chapter 5 we analyze two elementary algorithms of gradient-based optimization.

The objective is to better understand why algorithms may be very inefficient in high-

dimensional search spaces. In particular, we propose a theoretical analysis of effects of

dimension under the perspective of finite time measures in contrast to the asymptotic rate

of convergence measure. Specific contributions of this Chapter are:

◦ We introduce two elementary algorithms that allows simplicity in capturing some key

elements of the influence of the dimension of the search space on their performance.

◦ We provide finite time measures to analyze the performance of the two algorithms in

each iteration. Our goal is to understand a local behavior of optimization algorithms

under the effects of dimension. In particular, we derive the probability of finding a

better solution in each iteration, and we derive the length of movement the algorithm

can achieve in each iteration.

◦ We conduct experimental analyzes to better illustrate the relevant implications of

dimension in the latter two finite time measures on the performance of the algorithms.

In Chapter 6 we summarize the key messages of each Chapter. Perspectives on research

directions are discussed.
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Chapter 2

Survey on Stochastic Optimization

Stochastic optimization is one of the most exciting research areas, due to its mathematical

foundations and practical applications (see Fu et al. (2015)). It offers opportunities and

challenges for researchers in many fields, from operations research/management science

to mathematics to statistics to computer science to economics to most engineering fields

(Chau et al. (2014)). It has also been referred to as simulation-based optimization, sim-

ulation optimization, parametric optimization, black-box optimization, and Optimization

via Simulation, where the continuous and discrete versions are accordingly known as Con-

tinuous Optimization via Simulation and Discrete Optimization via Simulation (Amaran

et al. (2014)).

Stochastic optimization approaches are a class of techniques that aims at solving opti-

mization problems on set of decision variables associated to a performance function using

simulation outputs or real-life experimentation. Many times the performance function and

also its gradient (or higher order derivatives) are not known analytically, however, noisy

samples obtained from simulation are available. The problem of interest is to perform op-

timization under such ‘noisy’ information, many times without knowing the system model

(Bhatnagar and Prashanth (2015)).

In real applications, most processes are highly complex, making it impossible to de-

velop realistic analytical models of the system, thus computer models become one of the

best choices to represent these real complex systems (Yuan et al. (2013)). In the past 5

years, stochastic optimization approaches have been applied to a vast number of practi-
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cal problems such as power systems, renewable energy, maintenance, chemical industry,

decision support, geosciences, health care, supply chain, transportation, manufacturing,

reliability, structural systems, risk management and queue systems.

The main goal of this Chapter is to position this thesis in the current literature. Because

combining simulation and optimization techniques is a relatively new area of research, there

has not been many surveys that cover a large part of stochastic optimization methods.

We based our survey on the Handbook Fu (2014), on recent surveys that treat only some

methods such as Fu (2002), Schueller and Jensen (2008), Wang and Shi (2013), Barrientos

et al. (2014), Amaran et al. (2014), Chau et al. (2014) and Viana et al. (2014), and specially

on a great number of published papers in the past few years.

There are many methods under the umbrella of stochastic optimization. Similarly

to Fu (2014), we divide stochastic optimization methods into five categories: stochastic

approximation (Section 2.1), Metamodeling (Section 2.2), sample average approximation

(Section 2.3), ranking and section (Section 2.4) and metaheuristics (Section 2.5). Specifi-

cally, we provide an overview of each category by introducing their most commonly used

tools and discuss the pros and cons of each of the described methods. In addition, we

explore current research trends and highlight opportunities for future research. We close

this Chapter by assessing the key aspects of each optimization category, drawing special

attention to their respective research trends, and then connecting each one of the thesis’

Chapters to the gaps in the literature.

2.1 Stochastic Approximation

The stochastic approximation method was introduced by Robbins and Monro (1951) to

solve noisy root-finding problems. It mimics the deterministic descent method using un-

biased direct gradient estimates. The stochastic zeroth-order method addressed by Kiefer

and Wolfowitz (1952) uses the finite-difference gradient estimates. It differs from the

Robbins-Monro algorithm in that it does not require additional information on the system

dynamics or input distributions (Chau et al. (2014))

The stochastic approximation approach has been widely used to solve the problems on

which the only information available of the objective function is noisy observations. Com-
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pared to other methods such as genetic algorithm (see 2.5.1, metaheuristics), it is easier to

understand, implement, and automate. Moreover, this approach can generally find good

solutions within a reasonable computational search time (Yuan et al. (2013)). Because the

data used in this approach is directly obtained from the simulation model, it avoids the

bias introduced when building metamodels (Yuan et al. (2013)). According to Chau et al.

(2014), the stochastic approximation requires very little memory and is currently one of

the most widely applicable and most useful methods for stochastic optimization.

The main limitations of stochastic approximation procedures include, but are not lim-

ited to: some techniques are not suitable for large-scale problems; for problems with quick

changes in the gradient and in the objective function, some techniques may present slow

convergence or may diverge; and a performance dependence on the choice of initial pa-

rameters.

Nowadays, stochastic approximation has a wide variety of applications in areas such

as adaptive signal processing, adaptive resource allocation in communication networks,

system identification, adaptive control, and others (Granichin (2015)). Many well-known

techniques are special cases of such a method, including neural network backpropagation,

perturbation analysis for discrete-event systems, recursive least squares and least mean

squares and some forms of simulated annealing (Spall (2000)). An overview of stochastic

approximation can be found in Chau et al. (2014).

2.1.1 Stochastic Approximation Methods

The most commonly used variations of stochastic approximation methods are: finite-

difference stochastic approximation; simultaneous perturbation stochastic approximation;

iterate averaging (also referred to as robust stochastic approximation); and Kesten’s rule.

Next, we introduce each of the above techniques.

Finite-difference stochastic approximation

Finite-difference stochastic approximation (Spall (2003)) is a gradient based optimization

algorithm designed to optimize objective functions under uncertainty. This method can

be thought of as a generalization of line search optimization algorithms for stochastic

objective functions (McGill et al. (2015)). It uses the finite-difference method to estimate
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the gradient of the objective function and, thus, it has its basis on the Kiefer-Wolffowitiz

algorithm.

This method perturbs the control variables only once at a time, so that its computa-

tional cost in every iteration is proportional to the number of control variables. In other

words, it requires 2d simulations for one estimate of the performance gradient with respect

to an d-dimensional decision variable optimization (see Glasserman (2004) for a review on

finite-difference approximations). Therefore, it is difficult to use in high-dimensional prob-

lems (Zhou et al. (2013b)).

There have not been many recent developments in the finite-difference stochastic ap-

proximation algorithm. We can cite Yan and Reynolds (2014), that proposes an algo-

rithm in which the components of largest magnitude of the stochastic gradient are re-

placed by a finite-difference approximation of the pertinent partial derivatives. Samadi

et al. (2014) propose an iterative approach to design two real-time pricing algorithms

based on finite-difference and simultaneous perturbation methods, respectively. In Khong

et al. (2015), three discrete-time multivariate stochastic approximation algorithms (finite-

difference stochastic approximation, random directions stochastic approximation, and si-

multaneous perturbation stochastic approximation) are adapted within a periodic sample-

data framework .

Simultaneous perturbation stochastic approximation

An alternative approach to finite-difference stochastic approximation is the simultaneous

perturbation stochastic approximation, initially proposed by Spall (1992) and success-

fully applied in the optimization of a variety of stochastic systems. The method ap-

proximates the gradient with only two successive measurements of the objective function

independently of the dimension d, and therefore significantly saves computational time

for large-scale problems over traditional stochastic approximation methods, in which the

computational time directly depends on the problem dimension (Lu et al. (2015)).

The theoretical convergence of the simultaneous perturbation stochastic approximation

algorithm along with several variations of it - including discrete simultaneous perturbation

stochastic approximation (Wang and Spall (2013)), adaptive (second-order) simultaneous

perturbation stochastic approximation (Spall (2000)), and global search simultaneous per-
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turbation stochastic approximation (Maryak and Chin (2008)) - has been reported in the

literature (Li et al. (2013)).

Due to the fact that this method is less impacted by the problem’s dimensionality,

it has been extensively investigated as one of the most suitable stochastic approxima-

tion methods to handle high-dimensional problems. However, current limitations of this

method needs to be overcome in order to apply it to some of the open high-dimensional

problems. In Chapter 5, we make a thorough discussion on why the performance are

deeply affected by the increase of dimensions. Next, we discuss main disadvantages of

simultaneous perturbation stochastic approximation.

While simultaneous perturbation stochastic approximation is relatively simple to im-

plement, its performance depends on a set of parameters that need to be properly deter-

mined. For example, its performance is sensitive to the selection of the initial algorithmic

parameters, the scale of decision variables, and the shape of response surface (i.e., objec-

tive function) and associated gradient. Another limitation is that the choice of the step

size for updating the solution and other parameters can make the algorithm very slow if

the function is steep. As a result, especially in cases where the gradient changes quickly,

simultaneous perturbation stochastic approximation may not be as stable or even diverge

(Tympakianaki et al. (2015)).

Now, we highlight the research considered more relevant to our thesis, among recent

work on simultaneous perturbation stochastic approximation. Zhou et al. (2013a) proposed

an improved simultaneous perturbation stochastic approximation method guided by a

finite-difference gradient. The method adjusts the ratio among perturbation steps during

the iterations, in order to guarantee similar magnitude contributions of different decision

variables to the overall change in the objective function.

Lu et al. (2015) presents a simultaneous perturbation stochastic approximation al-

gorithm that incorporates the information of spatial and temporal correlation in traffic

network with a weight matrix to reduce the gradient approximation error and improve

convergence and robustness. In Tympakianaki et al. (2015), a modified simultaneous per-

turbation stochastic approximation is proposed in order to improve its convergence and

stability. The main idea of the modified algorithm is the clustering of the unknown vari-

ables into a small number of “homogeneous” clusters (based for example on their initial
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values).

In Bhatnagar and Prashanth (2015), a new Hessian estimator based on simultaneous

perturbation procedure is present. The estimator requires only three system simulation

regardless of the decision variable dimension (the original second-order simultaneous per-

turbation stochastic approximation proposed by Spall (2000) requires four system simula-

tions to estimate the Hessian). This Hessian estimator is used in Newton’s-based stochastic

optimization algorithms.

Iterate averaging

Iterate averaging approaches stochastic approximation from a different angle. Instead of

fine-tuning the step sizes to adapt the function characteristics, it takes a larger step size

to make estimates oscillating around the optimum, so the average of iterates will result

in a good approximation to the true optimum. The idea of such a technique is simple,

can be very effective, and is easy to adapt for other stochastic optimization methods. In

order to be efficient, iterates must surround the optimum in a balanced manner, and the

domain for which iterates oscillate must decrease as the number of samples increases. It is

also expected that averaging trajectories reduces the sensitivity to initial step size choice

(Chau and Fu (2014)).

The benefits of iterate averaging algorithms can be summarized by the following items:

(i) the technique reduces the dependence on the choice of step size sequences by providing

a systematic approach; (ii) with the use of a large step size the algorithm forces estimates

to move towards the optimal decision variables more quickly; (iii) it alleviates the noise

effect and reduces its variance (Yin et al. (2013)).

However, it is important to note that if averaging starts before oscillation, the average

estimates might be worse than the standard procedure (Swersky et al. (2010)). In other

words, the iterate averaging is dependent on the choice of when the averaging process

starts, which is an practitioner choice. A recent overview of the iterate averaging can be

found in Kushner and Yin (2003) and Chau and Fu (2014).

There has not been much research on iterate averaging recently. In our search, we

highlight Lee and Wright (2013), that propose a method based on Iterate averaging as a

subgradient algorithm for training support vector machines; and Yin et al. (2013), which
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introduced a post-averaging algorithm to achieve asymptotic optimality in convergence

rates of stochastic approximation algorithms with constraints. This algorithm involves

two stages: (i) a coarse approximation obtained using a sequence of large step size; and

(ii) a refinement by averaging iterates from the first stage. A weighted version of iterate-

averaging can be found in Nedic and Lee (2014).

Kesten’s rule

It is well-known that the choice of step size sequences has a significant impact on the per-

formance of stochastic approximation algorithms (Chau et al. (2013)). Therefore, it could

be advantageous to consider adaptive step sizes that make adjusts based on the ongoing

performance of the algorithm. The main idea is to adapt the step size to characteristics of

the response surface at the current decision variables, and in the neighborhood of optimal

solution. The most used adaptive rule is the one proposed by Kesten (1958).

The notion behind Kesten’s rule is that, if the iterates continue in the same direction,

there is a reason to believe they are reaching the vicinity of the optimum, and the step size

should not be decreased in order to accelerate the convergence. If the errors in estimate

values change signs, it is an indication that either the step size is too large and the iterates

are experiencing long oscillation periods, or iterates are in the vicinity of true optimum;

either way, the step size should be reduced to get closer to optimum (Chau and Fu (2014)).

The multi-dimensional variant of Kesten’s Rule is provided in Delyon and Juditsky (1993).

One important limitation of Kesten’s rule is its dependence to initial parameters values

(Chau et al. (2013)). In Xu and Dai (2012), such a method is compared to other three

stochastic approximation algorithms with adaptive step size. The results show that the

proposed algorithms are more efficient than the Kesten’s algorithm in most cases. An

overview on Kesten’s rule can be found in George and Powell (2006) and Chau and Fu

(2014). A recent analysis of step size selection in stochastic approximation algorithms can

be found in Wang (2015).

There are a few studies on the Kesten’s rule. More recently, Chau et al. (2013) con-

ducted an empirical investigation of the sensitivity of Kesten’s rule. In this research,

problem characteristics that exert a strong impact on the algorithm performance were

identified, even in the presence of theoretical guarantees. Wang et al. (2015) considered
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the multi-dimensional Kesten’s rule. The latter research established convergence guaran-

tees for the algorithm studied in Xu and Dai (2012).

2.1.2 Research Trends

Based on the references herein, we sort opportunity directions of stochastic approximation

method in two topics: (i) comparison to other studies to assess overall performance; (ii)

and broadly improvement of SA methods. In the first topic - comparison to other studies

to check overall performance - we remark as future work: carrying out experiments of the

stochastic approximation models on a larger set of template problems, over a large number

replications, and to a variety of noise characteristics (Swersky et al. (2010)); comparing

the proposed discrete simultaneous perturbation stochastic approximation results with

the rate of convergence of other algorithms (Wang and Spall (2013)); benchmark the

presented results of stochastic approximation method against the performance of current

best practices in stochastic optimization (Li and Reveliotis (2015));

The second topic - improvement of stochastic approximation methods in a general

manner - we remark as future work: developing quasi-Newton algorithms for stochastic

optimization, and studying their performance characteristics as quasi-Newton algorithms

are known to have lower computational requirements than pure Newton methods (Bhat-

nagar and Prashanth (2015)); reducing the search space and improving the convergence

of simultaneous perturbation stochastic approximation by using information about the

bounds of variables, and using parallel processing to improve computational efficiency (Lu

et al. (2015)).

Final remarks on stochastic approximation

Stochastic approximation is one of the first methods developed to optimize problems under

uncertainty. Recently, the simultaneous perturbations stochastic approximation algorithm

has gain significant attention due to its good performance in high-dimensional problems.

This method have still a long way to go to become a robust approach: there is a dependence

on a set of initial parameters that need to be properly determined, mainly based on practi-

tioner experience; the algorithm may be slow or diverge according to the response surface.

Stochastic approximation research on accelerated approach, such as iterate-averaging and
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Kesten’s rule, has demonstrated improvement in the results when combined with other

methods.

2.2 Metamodeling

The general idea of metamodeling (or surrogate modeling) is an analytical approxima-

tion of the objective function. In other words, it is a model of the model (Kusiak et al.

(2015)). Traditionally, there are two essential procedures in metamodel optimization meth-

ods. First, the metamodel is fitted based on a set of simulated observations. Second, an

optimization procedure is conduct and generates a trial point. The objective function at

the trial point can be evaluated by simulation, which leads to new observations. As new

observations become available, the accuracy of the metamodel can be improved. As result,

better trial points are detected (Osorio and Bierlaire (2013)). Metamodeling techniques

are often classified as being either global or local methods: global approximations are valid

throughout the entire design space (or a large portion of it); whereas local approximations

are only valid in the neighborhood of a particular point (Viana et al. (2014)). A nice

review of metamodeling can be found in Viana et al. (2014). In Tabatabaei et al. (2015),

is presented an overview and comparison of metamodeling methods.

In Chapter 3, we propose a metamodel based on variance reduction techniques. The

intuitions to develop such a framework lies on current limitations of the available meta-

modeling tools. These limitations are discussed in the following section, while we introduce

most used metamodeling tools.

2.2.1 Metamodel Methods

There exists a vast of metamodeling methods developed in literature. The most used

ones in stochastic optimization context are: response surface methodology (also known

as lower-order regression method), stochastic kriging, radial basis functions, multivariate

adaptive regression splines, neural networks and support vector regression. A comparison

of response surface methodology, stochastic kriging and artificial neural network can be

found in Kusiak et al. (2015). Next, we describe each one of the above methods based on

the latter research and Jin et al. (2001). An overview on various metamodeling techniques
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can be found in Wang and Shan (2007).

Response surface methodology

The response surface methodology is one of the more popular methods in stochastic op-

timization. It was first proposed by Box and Wilson (1951). It is a stepwise heuristic

that uses first-order polynomial regression to approximate the response surface locally.

An estimated of local gradient is provided by the metamodel, and is utilized in steepest

descent (or ascent) to decide on the next local experiment. When the method approaches

the neighborhood of the optimum, the first-order polynomial regression is replaced by

a second-order one, and a stochastic variation of Newton’s method is applied (Kleijnen

(2014)). The main assumptions of response surface methodology are: independent and

normally distributed outputs; constant variance over the design space; and a number of

observed points larger than problem dimension. As far as we know, there has been no con-

vergence proofs. An overview of response surface methodology can be found in Kleijnen

(2014).

Stochastic kriging

Stochastic kriging (also known as the Gaussian process model) is a very popular metamodel

form for stochastic optimization. It aims to eliminate a basic difficulty in using response

surface methodology: the selection of appropriate basis function. Such a method is based

on the idea that the value of a given point can be estimated on the basis of an average

of known values in the neighboring points. It is assumed that the influences of these

points are proportional to the distance to the considered point. In other words, the

approximation procedure has to follow the trends of experimental data, and the metamodel

function should increase if an increment is observed in the outputs of vicinity points

(Kusiak et al. (2015)). An important limitation of stochastic kriging is its dependence

on spatial parameters, that must be subjectively chosen and this choice can be time-

consuming. An overview on stochastic kriging can be found in Staum (2009). An object-

oriented stochastic kriging implementation can be found in Couckuty et al. (2014).

Radial basis function
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Radial basis function has been developed for scattered multivariate data interpolation.

Such a method uses linear combinations of a radially symmetric function based on Eu-

clidean distance or other metric to approximate the objective function. Radial basis func-

tion have been shown to produce good fits to different objective function (Jin et al. (2001)).

The most commonly used radial functions are: Gauss function, second-order function, and

inverse second-order function (Kusiak et al. (2015)). One of the main interesting features

of this method is that the resulting optimization problem can be efficiently divided into

linear and nonlinear subproblems (Cheng et al. (2015)). On the other hand, the basic

difficulty in using radial basis function is the selection of an appropriate base function.

If not well specified, the fitted base function may result in the increase of approximation

error (Kusiak et al. (2015)). An extensive study on radial basis function can be found in

Buhmann (2003).

Multivariate adaptive regression splines

Multivariate adaptive regression splines was proposed by Friedman (1991) for high-dimensional

modeling. It provides a flexible statistical modeling method that employs forward and

backward search algorithms to identify the combination of basis functions that best fits

the data, and simultaneously conducts a search for best decision variables. After se-

lection of the basis function is complete, the method applies a smoothing procedure to

achieve continuity in the approximated function (Martinez et al. (2015)). Compared to

other techniques, the use of such a method is relatively new. The major advantages of

using multivariate adaptive regression splines is gain in prediction accuracy and less com-

putational effort required when constructing the metamodel. However, its performance

deteriorates significantly when simulation budget becomes small. Moreover, users need to

configure initial parameters, which may deteriorate its performance depending on problem

features (Jin et al. (2001)). An overview on multivariate adaptive regression splines can

be found in Martinez et al. (2015).

Artificial neural networks

(Kusiak et al. (2015)) describe the artificial neural network as follows: it is an information

processing system built with a given number of single elements called artificial neurons.
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The neuron input vector is composed of a finite number of signals and each of these signals

is multiplied by a synaptic weight coefficient. These weight parameters control the impact

of the input signal on the neuron output. The goal of the artificial neuron is to generate

the proper output signal that depends on the input signal, and that is close to the observed

output of objective function. The neuron output signal depends on its activation function

and the synaptic weights. While activation function is selected at the first step of the

neuron design, the weight parameters undergo the variations during the neuron learning

process. The learning target is to estimate the value of weight parameters that enables

the trained neuron to react to the input signals as well as the response surface. The

main benefit of such a method is its ability of learning and, as a consequence, achieving

a good prediction capacity of nonlinear stochastic functions. Therefore, has been useful

in modeling complex systems, and also computationally efficient. However it is worth

noting that, in the case of artificial neural network metamodeling, the location of design

points plays important role in the accuracy of prediction. According to Cheng et al.

(2015), artificial neural network metamodeling is heavily dependent on the structure of

the underlying network, and as a result require considerable tuning, similar to previously

metamodel that dependent on a basis function. A guideline on artificial neural networks

for engineering applications can be found in Rafiq et al. (2001).

Support vector regression

Support vector machine is a kind of machine learning technique with successful applica-

tions in regression. As described by (Chen and Yu (2014)), support vector regression is

specifically used to predict unknown stochastic functions through nonlinear Kernel func-

tions and a number of identified support vectors. Basically, such a method searches for

the nonlinear regression function that is linear in high-dimensional space by solving a

quadratic programming problem. The formulation embodies structural risk minimization

principle, which has been shown to be superior to traditional empirical risk minimiza-

tion principle employed by typical artificial neural networks. Therefore, support vector

regression has enhanced ability in prediction and can avoid over-fitting issue. However,

according to Kazem et al. (2013), the main challenge of support vector regression is de-

termining its hyperparameters, which requires practitioner experience. Unsuitably chosen
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Kernel functions or hyperparameters setting may lead to significant poor performance.

2.2.2 Research Trends

There are many recent developments on metamodelling approaches/research. We focus on

two research streams: enhancing stochastic kriging, and variable-fidelity metamodeling.

Both topics are discussed in Chapter 3, when we introduce a novel metamodel formula-

tion. We use the insights gained while revising variable-fidelity metamodel to build our

framework. Further, we compare the performance of our metamodel with stochastic krig-

ing, which is the method that has mostly draw research focus in the past years. We close

this subsection by discussing future research trends that were highlighted in the recent

literature on metamodeling.

Enhancing Kriging

Stochastic kriging enhancement, in the context of stochastic optimization, is an active area

of metamodeling research. Recently, Quan et al. (2013) investigates the incorporation of

optimal computing budget allocation techniques in kriging method. In Sun et al. (2014),

a sequential sampling approach was introduced to improve the fitness accuracy of such a

metamodel. Chen and Kim (2014) proposed a stochastic kriging extension in recognition

of bias present in simulation response estimates. The associated impact of the standard

stochastic kriging predictors on the mean squared error is analyzed. Error estimation of

stochastic kriging in the focus in Hernandez and Grover (2013). It provides an analysis of

the error estimation properties in stochastic kriging when the simulated data observations

contain measurement noise.

There is a number of research focusing in combining stochastic kriging with other tech-

niques. For example, such a method is combined with principal component analysis in Jia

and Taflanidis (2013) for solving problems with high-dimensional outputs. The principal

component analysis is used to extract a much smaller number of latent outputs to approx-

imate the initial high-dimensional response. A separate metamodel is then developed for

each latent output. In Okobiah et al. (2014), an algorithm based on simulated annealing

(see Section 2.5.1, metaheuristics) is used to optimize the stochastic kriging metamodel.
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Variable-fidelity

Variable-fidelity metamodeling, which has gained increasing popularity, is a modeling pro-

cess enhanced through the incorporation of knowledge (Zadeh et al. (2009)). In this

approach, the model is hierarchical, in the sense that one set of data (the experiments)

is considered to be more reliable and it is labeled as high-fidelity data; and the other set

(the simulations) is labeled as low-fidelity data. As example of recent applications, we

cite the approach developed in Zheng et al. (2014) where low-fidelity output serves as a

prior-knowledge of the real response function and is used as inputs of the least squares

support vector regression. Zhou et al. (2015) developed a generalized objective-oriented

sampling strategy to adaptively probe and sample more points in the interesting regions,

where the differences between the high-fidelity and low-fidelity models are multi-model,

non-smooth and have abrupt changes. In Colosimo et al. (2015), data coming from simu-

lation (low-fidelity) are used to produce a first stage metamodel with a kriging predictor.

Then, a second-stage model is used in order to correct the prediction of the first model

according to real experimental data observed (high-fidelity).

Research trends

Among the research oportunities we present next, we emphasize the need of: more efficient

metamodels to handle more complex problems in general (addressed in Chapters 3, 4 and

5); procedures for selecting design points (addressed in Chapter 3); variance reduction

techniques applicable to Metamodeling methods (addressed in Chapters 3 and 4); suitable

metamodels for high-dimensional problems (addressed in Chapter 5).

According to Viana et al. (2014), Metamodeling and optimization have still a long

way to go to become common tool in industry. Five challenges on future research in

Metamodeling are posted: (i) the curse of dimensionality still exists as problems have

just gotten larger; (ii) computational complexity still exists as problems have gotten more

complex and/or we are trying to do more; (iii) there are still issues with numerical noise,

which appear to be getting worse due to added computational complexity of many analysis

and also poses additional challenge when performing model validation; (iv) the challenge

of handling mixed discrete/continuous variables still exists, and may have gotten worse
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due to the nature of problems now being investigate; and (v) validation of metamodels

and the underlying model is as critical as before.

The following challenges in future research directions are identified in Tabatabaei et al.

(2015): (i) handling noisy black-box function; (ii) capturing a nonconvex and disconnected

Pareto frontier; (iii) handling a high number of objective and constraint functions as

well as decision variables; (iv) providing the most preferred solution for a decision maker

when solving computationally expensive multi-objective optimization problems; and (v)

developing computationally expensive benchmark problems.

Quan et al. (2013) presents two possible avenues for future research in Kigring: (i) de-

veloping adaptive schemes that dynamically distributes the budget for each iteration; and

(ii) studying in detail the convergence results of the Kriging algorithm. Similarly, Chen

and Kim (2014) include in potential future research in Kriging: (i) a full theoretical treat-

ment of stochastic kriging; (ii) selection of design points; (iii) effects of estimation spatial

parameters, in particular when simulated responses are biased; and (iv) Metamodeling for

steady-state simulations.

Regarding Metamodeling uncertainty, Zhang et al. (2013) proposes: (i) developing

new sequential sampling techniques that consider the compound effect of Metamodeling

and parametric uncertainty; and (ii) extending its proposed formulation to problems with

uncertainty in noise variables rather than in design variables. Dimensionality limitations

have been recently reported in Chang et al. (2013), Okobiah et al. (2014) and Hannah et al.

(2014). Multi-objective and multi-constraints designs have been reported as a possible

research direction in Okobiah et al. (2014), Chang et al. (2014), Chang (2015) and Zhou

et al. (2015). The use of variance reduction techniques in future research has been cited in

Chang et al. (2013), Hsieh et al. (2014) and Chang et al. (2014). Future research involving

adaptations for solving quantile objective function have been reported in Chang et al.

(2014), Chang (2015) and Kersaudy et al. (2015). The theoretical properties, in especial

accuracy measurement, are pointed as potential research in Hernandez and Grover (2013)

and Acar (2015).

Final remarks on metamodeling

Metamodeling is the most popular method to address stochastic optimization problems
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most due to its user-friendly algorithms. Although demonstrates good results for low-

dimension problems, such a method is not suitable for the high-dimensional ones. That

is, an exponential computational time is added when dimension d is increased. Moreover,

similarly to other approaches, metamodels usually have a heavy dependence on initial

parameters, which are selected based on practitioner experience. Remarkably, there are

no convergence proofs so far for it most used procedure (response surface methodology).

2.3 Sample Average Approximation

Sample average approximation (also referred to as the sample path optimization or the

retrospective method) is a well-known method from stochastic programming for solving

optimization problems under uncertainty via Monte Carlo simulation. In this technique,

the objective function is approximated by a sample average estimate derived from sim-

ulation outputs. The approximated objective function, which is deterministic, can then

be solved either by special purpose algorithms or by standard deterministic optimization

techniques. By repeating the optimization with different outputs, feasible solutions and

statistical estimates of their optimality gaps can be obtained (Evers et al. (2014)) .

The sample average approximation theoretical analysis appeared in the 1990s. Under

relatively mild assumptions global and local minimizers, the values of the approximated

function almost surely tend to the original values of the stochastic program as the sample

size increases to infinity. The asymptotic distribution of minimizers, minimum values,

and related quantities for the sample average problem are also known under additional

assumptions (Royset and Szechtman (2013)).

The standard procedure, while effectively used in many applications, can lead to poor

solution quality if the simulation budget is not sufficiently large. On the other hand,

larger sample sizes become intractable due to the significant computational effort required.

Moreover, it is important to note that the sample average approximation procedure selects

the best performing sampled solution and discards the remaining outputs, which contain

valuable information about the problem’s uncertainty (Aydin and Murat (2013)). Such

a method induces sampling error, caused by replacing an expectation by an ordinary

sample average; as well as an optimization error due to approximating the solution of the

24



underlying sample average problem (Royset and Szechtman (2013)).

Therefore, the sample average approximation method could benefit from variance re-

duction techniques while performing Monte Carlo simulation mainly by using the infor-

mation of discarded outputs. We explore this possibility of performance gain in Chapter

4.

For a guide in SAA, see Kim et al. (2014). For more details, see Shapiro (2003), Shapiro

et al. (2014) and Shapiro (2013).

2.3.1 Research Trends

Recent Developments in Sample Average Approximation

The combination of sample average approximation with other optimization techniques is

the target of some interesting research in the last years. Examples of hybrid approaches are:

Shapiro et al. (2013) proposed a multistage stochastic programming problems based on the

stochastic dual dynamic programming where the true problem is approximated via sample

average approximation. A hybrid method that combines the particle swarm (see Section

2.5, metaheuristics) and sample average approximation is proposed in Aydin and Murat

(2013). In Ozdemir et al. (2013), a capacitated supply scenario is formulated as a network

flow problem embedded in a stochastic optimization problem, which is solved through a

sample average approximation method. In Huan and Marzouk (2014), a gradient-based

stochastic optimization method combined with sample average approximation for design

of experiments on a continuous decision variable space is developed.

Research opportunities

Based on the references herein, we highlight three opportunities in sample average ap-

proximation research: (i) the use of variance reduction techniques (addressed in Chapter

4), (i) taking correlation behavior into account (also addressed in Chapter 4), (iii) and

multiperiod extensions (addressed in Chapter 5).

Regarding (i) variance reduction techniques, Huan and Marzouk (2014) remark po-

tential future work as employing a common random approach to obtain a lower variance

estimate of optimality gap. According to Long et al. (2015), a possible direction is to ex-
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plore new hybrid efficient designs in order to enhance the performance of sample average

approximation methods combined with Latin hypercube sampling.

Regarding (ii) taking correlation into account, (Benyoucef et al. (2013)) remark the

need to consider correlation of demand in distribution network design, which could lead to

more realistic but very complex joint facility location and supplier selection models based

on sample average approximation. Similarly, Osmani and Zhang (2014) report potential

future research including the development of sample average approximation to correlate

biomass price with supply/demand level;

Regarding (iii) multiperiod extensions, we have as example: multiperiod network de-

sign and the convergence properties of the sample average approximation algorithm need

to be investigated (Benyoucef et al. (2013)); multiperiod alternatives are also considered

as potential research in Aydin and Murat (2013) under the context of sample average

approximation combined with particle swarm; multiperiod extensions combined with the

integer L-shaped method is considered as a research direction in Chen et al. (2015).

Final remarks on sample average approximation

Sample average approximation may be a good option for practitioners used to determinist

optimization. This method uses brute force to approximate the objective function via

Monte Carlo simulation and, consequentially, turning it into a deterministic problem.

Then, sophisticated tools of mathematical programming may be applied. Because of its

significant computational time required, the method is not suitable for small computational

budget.

2.4 Ranking and Selection

Ranking and selection procedures aim to select the best decision variables from a set of

competing ones. One important assumption is the possibility to simulate all solutions at

least a few times. The search for the best solution is exhaustive and the central problem

is controlling statistical selection error. A comprehensive review of procedures is available

in Kim and Nelson (2006). More recently, an overview is presented in Fu (2014).

The methods are applied in problems with finite and relatively small number of so-
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lutions. The “relative small” number is considered by literature up to 1,000 solutions

(e.g., Fu (2014), Hong et al. (2015) and Kim and Nelson (2006)). However, depending

on how much it takes to simulate an alternative, there are some recent reports of proce-

dures solving practical problems with more than 20,000 feasible solutions (e.g., Luo et al.

(2015)).

Typically, ranking and selection procedures require a normality assumption of output

data distribution (e.g., Mattila and Virtanen (2015), Hong et al. (2015), Xiao et al. (2015)

and Diaz et al. (2016)). General output distributions, on the other hand, acknowledge

only a few procedures (e.g.,Hunter and Pasupathy (2013), Lee and Nelson (2014) and

Pasupathy et al. (2014)).

Classical results in ranking and selection procedures focuses on asymptotic convergence

properties of the estimated best system (e.g., Wang and Kim (2013), Hunter and Pasupathy

(2013), Lee and Nelson (2014), Pasupathy et al. (2014), Barut and Powell (2014), Xiao

et al. (2014), Cheng et al. (2015), Xiao et al. (2015)). Regarding finite-time convergence

properties of procedures, relatively little has been written (e.g., Andradottir and Kim

(2010), Batur and Kim (2010), Healey et al. (2013) and Healey et al. (2014)).

2.4.1 Ranking and Selection Methods

Prior research on ranking and selection may be classified under one of four categories:

the indifference-zone procedure; the value information procedure; the optimal computing

budget allocation; and the large-deviations formulation. Similar grouping can be found in

Hunter and Pasupathy (2013), Frazier (2014), Xiao et al. (2014) and Xiao et al. (2015).

Basic procedure examples of each of these categories can be found in Chau et al. (2014).

The indifference-zone procedure was first formulated by Bechhofer (1954). In this

procedure, a difference between designs is considered to be significant if it is larger than

a specified indifference-zone parameter. The probability of correct selection guarantee is

with respect to the probability of selecting the true best, subject to the condition that

the mean of the true best is better than the mean of all of the other alternatives by at

least the indifference-zone parameter (Chen et al. (2014)). Recent research on indifference-

zone procedures includes: finding the best decision variables under a primary performance

measure, while also satisfying stochastic constraints on secondary performance measures
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(e.g., Healey et al. (2013), Healey et al. (2014), Hong et al. (2015) and Healey et al. (2015));

using hybrid approaches to solve particular problems (e.g., Tsai and Zheng (2013) and

Diaz et al. (2016)); adapting of ranking and selection procedures to a high-performance

(parallel) computing setting (e.g., Ni et al. (2013) and Ni et al. (2014)); tightening bounds

on probability of correct selection (e.g., Wang and Kim (2013) and Frazier (2014)); and

general-purpose ranking and selection regarding the system performance measure and

assumed output distribution (e.g., Lee and Nelson (2014)).

The value information procedure was first proposed by Gupta and Miescke (1996) and

subsequently developed by Frazier et al. (2008). It uses the Bayesian posterior distri-

bution to describe the evidence of correct selection, and allocates further replications by

maximizing the value information. Recent research on value information procedure in-

cludes: combining such a method with response surface methodology to improve efficiency

(Barut and Powell (2014) and Cheng et al. (2015)); adapting of ranking and selection

procedures to a high-performance (parallel) computing setting (e.g., Kaminski and Szufel

(2014)); determining upper bounds of best function value (e.g., Xie and Frazier (2013));

and improving learning probabilities (Kaminski (2015)).

The optimal computing budget allocation, proposed by He et al. (2007), focuses on

the efficiency of simulation by intelligently allocating further replications based on mean

and variance. It aims to maximize the lower bound of correct selection probability (Xiao

et al. (2014)). The procedures are often easy to apply and have a good empirical perfor-

mance (Frazier (2014)). Recent research on optimal computing budget allocation includes:

combining such a method with response surface methodology to improve efficiency (e.g.,

Brantley et al. (2014) and Xiao et al. (2015)); combining optimal computing budget al-

location with genetic algorithm to improve efficiency (e.g., Xiao and Lee (2014)); finding

the best decision variables with multiple objective functions through the usage of weights

(e.g., Mattila and Virtanen (2015)); adapting the procedure to apply on microgrid prob-

lems (Bastani et al. (2014)); improving efficiency to solve complete ranking problems (Xiao

et al. (2014)).

The large-deviations approach, formulated by Glynn and Juneja (2004), provides an

asymptotically optimal sample allocation in the context of general light-tailed distributions

(Hunter and Pasupathy (2013)). That is, the procedures do not request normal output
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distribution. They are designed to maximize the probability of correct selection in an

asymptotic sense as the sample size grows large (Frazier (2014)). Examples of recent

research on large-deviations approach are Hunter and Pasupathy (2013) and Pasupathy

et al. (2014).

2.4.2 Research Trends

There are several potential avenues of research on ranking and selection procedure reported

in the references herein. For example, the research in Ni et al. (2013) includes matching

problem features to efficient parallel algorithm designs and creating new algorithms ex-

plicitly designed to exploit parallel platforms. Additional improvements in efficiency of

the ranking and selection algorithm are also possible by employing variance reduction

techniques (Tsai and Zheng (2013)), which we address in Chapter 4. Tsai and Zheng

(2013) remark as possible extension the development of more efficient ranking and selec-

tion procedures to determine the feasibility of candidate solution to reduce the sampling

cost.

Better stopping rule that consider the tradeoff between optimality of the obtained

solution and the required sample size is suggested as development opportunity on ranking

and selection procedures in Tsai and Zheng (2013). The need of comparison sampling

strategies to other optimal computing budget allocation-based methods is remarked in

Healey et al. (2013).

Research trend on hybrid methods include: integrating the proposed ranking and se-

lection method with some multi-dimensional search one (which we address in Chapter 5)

as the stochastic trust region gradient-free method (Brantley et al. (2014)). Ranking and

selection procedures that are able to deal with higher dimensional problems are reported

as promising research in Bastani et al. (2014) and Cheng et al. (2015). Rigorous theoreti-

cal analysis of procedures as complementation to numerical comparison is pointed out as

literature gap in Kaminski (2015).

Final remarks on ranking and selection

The main limitation of ranking and selection is the need to sample at least a few times each

feasible solution. Therefore, recent research on this topic include how to use computational

29



budget in a more efficient way, and how to address problems with greater number of

solutions. Because ranking and selection treats solutions as categorical, it may be one

interesting method for problems with such a type of decision variables.

2.5 Metaheuristics

When the problem complexity is high, such as NP-hard problems, it is generally useful

to apply metaheuristics methods because of their ability to support managers in decision-

making with approximate solutions to complex problems in a quick way. Metaheuristic

methods also produce quality solutions in the multi-objective context, but this is usually

at the expense of longer computation times (Banos et al. (2013)).

Metaheuristic are the most commonly used methods in simulation software. When

combining them with simulation models, the latter can be seen as a black box, i.e., some

decision variables are defined in the black box. Then the simulation models provide some

observations or outputs, which can be used to guide the search process (Wang and Shi

(2013)).

Recent studies have demonstrated that hybrid metaheuristics work better than indi-

vidual one for solving nonlinear models (Diabat (2014)). In the particular case of this

thesis, we propose a hybrid formulation that combines ametaheuristic method with vari-

ance reduction techniques. We introduce our hybrid stochastic optimization method in

Chapter 4.

2.5.1 Metaheuristic Methods

There is a vast of approaches based on deterministic methods that falls under the um-

brella of metaheuristics, including: simulated annealing, genetic algorithms, tabu search,

particle swarm, pattern search, Nelder-mead simplex (or downhill simplex), ant colony

optimization, nested partitions, stochastic branch-and-bound methods, adaptive random

search, controlled random search, differential evolution, coordinate search, scatter search

and harmony search algorithm. For more regarding metaheuristics, see Fu (2014) and the

references therein. Next, the two most commonly used algorithms are presented: simulated

annealing and genetic algorithm.

30



Simulated annealing

With the first archaeological records dating back more than 6000 years, thermal annealing

is likely to be the oldest optimization method in human history. First heating a material

and then letting it cool down slowly can relieve internal stresses and allow the material

to achieve a lower-energy state (Heim et al. (2015)). Inspired by thermal annealing, the

simulated annealing algorithm dates back to the pioneering work by Metropolis et al.

(1953). Since then, a large literature has appeared on simulated annealing, including

important work by Kirkpatrick et al. (1983), Mitra et al. (1986), Hajek (1988), and others

(Andradottir (2014)). An overview of simulated annealing can be found in Andradottir

(2014). For a recent guide, see Yang (2014).

As described by (Wang and Shi (2013)), simulated annealing can be seen as a global

optimization method based on the simulation of the physical annealing process to solve

combinatorial optimization problems. The search process moves from one solution to the

next until the terminating condition is satisfied. To avoid local optimum, a inferior solution

is accepted with a probability. That is, for each iteration, the probability that a solution

is accepted follows an exponential distribution. If it is inferior, it may be accepted or

rejected according to a probability that is inversely proportional to the difference between

the performance values of the two solutions, and proportional to the current temperature.

Even though simulated annealing is commonly used to solve the deterministic optimization

problems, there are numerous studies about its applications to stochastic optimization

ones.

Implementation of simulated annealing procedures requires choosing parameters such

as the initial and final temperatures, the rate of cooling, and number of function evaluations

at each temperature. Implementing a simulated annealing procedure is an easy task and it

remains a popular technique used by several commercial simulation optimization packages

(Amaran et al. (2014)). It is important to remark that the size of its initial population

must be large, which means the time to calculate the efficiency of every solution is also

very long (Zhang et al. (2016)).

There is a vast literature on simulated annealing. Some recent research focuses on solv-

ing complex problems through adaptations and combinations of the simulated annealing
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algorithm. For example, in Zhang et al. (2016) simulated annealing was combined with the

Rosen projection method to optimize the parameters of an heliostat field. An algorithm

that couples metamodeling procedures with evolutionary search, simulated annealing and

elder-mean simplex is introduced in Tsoukalas et al. (2016). In Diabat (2014), a hybrid

genetic and simulated annealing algorithm is proposed to address the vendor managed

inventory issue, which has a nonlinear and non-convex objective function.

Genetic algorithm

As described in Amaran et al. (2014), genetic algorithms (Whitley (1994) and Reeves

(1997)) use concepts of mutation and selection from theory of evolution. In general, the

algorithm creates a population of strings and each of these strings are called chromo-

somes. Each of these chromosome strings is basically a vector of decision variables in the

feasible space. New chromosomes are created by using selection, mutation and crossover

functions. The selection process is guided by evaluating the objective function (or system

performance) of each chromosome and selecting the chromosomes according to their func-

tion values. Additional chromosomes are then generated using crossover and mutation

functions. The cross over and mutation functions ensures that a diversity of solutions is

maintained.

The genetic algorithm is very popular, known to have the ability of generating good

solutions when the feasible space is very large. The other attractive feature is that it is

simple to code (Fu (2014)). Moreover, the method is used in several commercial simulation

optimization software packages (Amaran et al. (2014)). The main difference between the

genetic algorithm and other metaheuristics is that a population of solutions, rather than

a single one, is manipulated (Wang and Shi (2013)).

There has been recently a great number of research combining genetic algorithms

with other methods in order to solve complex problems. For example, Huajun et al.

(2016) proposed a method that combines generic algorithm with simultaneous perturbation

stochastic approximation to solve stochastic optimization problem with linear constraints.

Such an hybrid method uses the genetic algorithm to search for optimum over the whole

feasible region, and simultaneous perturbation stochastic approximation to search at local

region.
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An hybrid approach combining genetic algorithms and artificial neural network is pro-

posed in Chandwani et al. (2014). In order to solve the multi-objective model, the non-

dominant sorting of genetic algorithm is employed by Rajabi-Bahaabadi et al. (2015) and

its parameters are tuned by the Taguchi method. Moreover, a dynamic n-point crossover

(instead of the traditional one-point crossover) is developed to enhance the search capa-

bility of the the genetic algorithm.

2.5.2 Research Trends

Some of the interesting research trends reported in the references herein on metaheuristics

tools are now presented. The inclusion of more realistic elements is remark as future

work in Diabat (2014), Rajabi-Bahaabadi et al. (2015), Li and Demeulemeester (2016),

Nogueira et al. (2016) and Yang et al. (2016). Developing a multi-objective of the proposed

metaheuristics algorithm is reported as interesting future work in Aydemir-Karadag and

Turkbey (2013), Rajabi-Bahaabadi et al. (2015) and Tsoukalas et al. (2016).

Because of lack of a similar problem in literature, the results in Li and Demeulemeester

(2016) must be used as a benchmark for future similar studies. Taking spatial correlation

among the variable distributions is pointed out as future work in Rajabi-Bahaabadi et al.

(2015). The extension of the proposed metaheuristics to a parallel computing approach

is remarked as promising future research to speed up the solution process and improve

solution quality.

Final remarks on metaheuristics

There is a vast number of methods under the umbrella of metaheuristics, which have

been used to deal with high complexity problems, such as NP-hard problems. There is

little probabilistic or statistical consideration incorporated in these methods. Usually, the

algorithms are not easy to understand, require longer computational budget and provide

no performance guarantees.
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2.6 Final Discussion

We close this Chapter with a discussion on key opportunities of research on stochastic

optimization. The gaps in literature that we present next are general in the sense that

they embrace most stochastic optimization categories. To position this thesis, we remark

the connections between each Chapter and the associated research opportunity we are

investigating.

◦ Using Paul Glasserman words in Glasserman (2004), it is easier to survey the topic

of stochastic optimization than to answer the question that brings a reader to such

a survey: “Which technique should I use?” That is rarely a simple answer to this

question. Therefore, it strengthens the need to establish template problems in which

the comparison between different algorithms and approaches can be foment. Many

factors have direct impact on the choice of the stochastic optimization technique,

including: the behavior of objective functions; the type of variance across control

variables; the presence of correlation among control variables; the source of data,

that it, from direct experiments or from computational simulations; the amount

of computational budget; problem dimensionality; discrete or continuous control

variables; numerical or categorical control variables. Building such templates is not

an easy task, but a relevant one to guide effort on promising directions.

The numerical problems we use in Chapters 3 and 4 to analyze and illustrate the proposed

formulations have been also utilized in other research. We referred to them as “templates”.

These templates allow us to conduct a fair comparison of our research to others. Simi-

larly, we make use of performance measures proposed by other investigations in stochastic

optimization. We make specific reference to them when appropriate.

◦ Variance reduction techniques are frequently used in problems where Monte Carlo

simulation are applied. It is interesting to note that there are only a few stochastic

optimization studies making use/analysis of such methods, although many of them

have Monte Carlo simulations embedded in their algorithms. Exploiting specific

features of algorithms or building a generic procedure to reduce variance of simulation

may be one latent potential avenue for stochastic optimization research.
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Variance reduction techniques play special role in this thesis. In Chapter 3, we propose

an efficient metamodeling formulation based on control variates technique. In Chapter

4, we propose a hybrid method that combines a random search algorithm with a control

variance technique.

◦ Most current research on stochastic optimization have based the quality and effi-

ciency of the underlying approach on numerical results and limited comparisons to

other methods. Quality measures are usually based on expected value. It could be

also interesting to have alternatives. For example, evaluating the risk associated to

the best solution. Moreover, there is a lack of research on analytical results that

could improve the reliability on these methods.

Although finite-time properties are difficult to characterize, they provide important ana-

lyzes for the development or more efficient/sophisticated stochastic optimization methods.

In Chapter 5, we use finite time theory to analyze the effects of high-dimensional space in

the performance of optimization algorithms.

◦ Many recent studies have resorted to one common approach: ensemble/hybrid algo-

rithms. They have demonstrated that ensemble/hybrid methods work better than

individual ones for solving more complex problems. Algorithms with strong global

search ability have been combined to the ones with local search ability (e.g., ge-

netic algorithm and simulated annealing). To increase both fitting and predictive

capacity of response surface models, several Metamodels have been combined. Re-

garding techniques that deal with noisy gradient estimates, for example, there has

been proposed the use of finite-difference gradient to guide Simultaneous Perturba-

tion Stochastic Approximation method. Sample average approximation have been

combined to metamodels, metamodels have been combined to metaheuristics, meta-

heuristics have been combined to ranking and selection. Possibilities seem to be

infinity.

In Chapter 4, we propose a hybrid formulation that combines a metaheuristic and variance

reduction techniques. We remark that our formulation is generic in the sense that it can
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easily be extended to a larger set of stochastic optimization methods, such as stochastic

approximation, metamodeling, sample average approximation and ranking and selection.

◦ There is a vast demand on the development of stochastic optimization algorithms

that can handle large-scale and more complex problems, which naturally continue

to arise in real applications. Some generic examples are: taking into account multi-

objectives; developing multi-period models, modeling complex behavior and/or ele-

ments; and adding stochastic constraints to the model.

Chapter 5 is dedicated to a deeper understanding of the high-dimensional space and its

implications to the performance of stochastic optimization methods. One of the specific

contributions of this Chapter is to provide solid insights to guide the design of more so-

phisticated stochastic optimization methods that can efficiently handle the dimensionality

increase that rises from real applications.

Complementary suggestions for future research can be found in Wang and Shi (2013),

Amaran et al. (2014) and Homem-de Mello and Bayraksan (2014). A recent discussion on

the state of art in stochastic optimization can be found in Fu et al. (2015).
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Chapter 3

Metamodeling via Control

Variates

Among techniques that combine simulation and optimization, the large most used is re-

sponse surface methodology (a.k.a. lower-order regression method). This method falls

under the umbrella of Metamodeling, a class of stochastic optimization in which the main

characteristic is building an analytical approximation of the stochastic objective function.

Despite being very popular and user friendly, response surface methodology has well-

known limitations and drawbacks. For instance, it is suitable to deal with low-dimensional

problems and smooth objective functions. However, the method’ becomes intractable in

higher-dimensional problems and/or with highly nonlinear responses.

Recently, kriging (also known as the Gaussian process) and its variants such as stochas-

tic kriging (see Staum (2009)) have draw attention in stochastic optimization research.

Among the research that shows kriging performance overtake response surface methodol-

ogy are Staum (2009), Li et al. (2010), Qu and Fu (2012), Elsayed and Lacor (2014) and

Chen and Kim (2014).

Although its recent popularity for stochastic optimization applications, kriging vari-

ants have important limitations and require significant prior knowledge to be used in real

applications. In order to apply kriging techniques, one must choose to use or not a model

trend (i.e., to use a linear combination of the components of a known function, likewise

response surface metamodeling) based on prior knowledge about the underlying prob-
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lem. Also, kriging modeling requires the choice of a spatial correlation function, which

includes the Gaussian, exponential, generalized exponential, linear, spherical, and cubic

spline functions.

Moreover, once the structure of the Gaussian random field of kriging method is spec-

ified, one must determine parameters of the correlation function. This step requires a

nonlinear optimization, in which one of the main inputs is a starting point. A bad choice

of parameter starting point can lead to a poor model. Therefore, there are many sources

of practitioner’s choice, and the possibility of model misspecification (i.e., failure of as-

sumptions to describe the data well) must not be neglected.

Variance reduction techniques are frequently used in problems where Monte Carlo sim-

ulation is applied. It is interesting to note that there are only a few stochastic optimization

studies that use/analyzes such methods, although many of them have Monte Carlo simu-

lation embedded in their algorithms. Exploiting specific features of algorithms or building

a generic procedure to reduce variance of simulation has been frequently pointed out as

one potential avenue for stochastic optimization research (e.g., Chang et al. (2013), Tsai

and Zheng (2013), Wang and Shi (2013), Hsieh et al. (2014), Amaran et al. (2014) and Fu

(2014)).

The main contribution of this Chapter is the proposal of a metamodeling method based

on a variance reduction technique. Our goal is to use the information of samples at design

to estimate at function value at prediction points via CV technique. Control variates have

proven useful in a broadly applications of Monte Carlo simulation, as it has been effective

is reduction the variance of estimates. It takes advantage of the sampled error between

outputs and known means of a simulation system to correct the outputs of other one for

which means are unknown and must be estimated (for details, see Glasserman (2004)).

We build on the work Borogovac and Vakili (2008), and Rosenbaum and Staum (2016).

In our approach, metamodeling is seen as a control variable estimation problem, in which

the same technique of response approximation is performed on a set of multiple decision

variables (i.e., on a set of design points). In such situations, as argued in Borogovac

(2009), even a large prior investment of computational effort on estimation at one or more

control variable values is justified if it makes estimation at predict points less costly or

time-consuming, in which “the idea is to computationally learn to be computationally more
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efficient”.

Our approach is similar to variable-fidelity metamodeling (e.g., Zadeh et al. (2009),

Zheng et al. (2014), Zhou et al. (2015) and Colosimo et al. (2015)), where the modeling

process is enhanced through the incorporation of knowledge (Zadeh et al. (2009)). The

model is hierarchical, in the sense that one set of data (the experiments) is considered to

be more reliable and it is labeled as high-fidelity, and the other set (the simulations) is

labeled as low-fidelity. We propose to use a small set of design points (high-fidelity data)

as controls to better estimate the underlying stochastic function at a larger set of points

(low-fidelity data).

This Chapter is structured as follows. First, we review key elements of classical CV

technique and its variants in Section 3.1. In Section 3.2 we formulate the design of our

metamodel and evaluate its performance. Section 3.3 considers the effects of multicollinear-

ity on a CV metamodel with multiple controls. An iterative allocation rule is presented in

Section 3.4. A final discussion and directions for future research are provided in Section

3.5.

3.1 Preliminaries

Now, we introduce the main properties of classical control variates (Section 3.1.1) and

three of its variants: (i) biased control variates (Section 3.1.2), (ii) estimated control

variates (Section 3.1.3), and (iii) database control variates (Section 3.1.4). The following

reviews are used as basis: Schmeiser et al. (2001), Glasserman (2004), Zhao et al. (2007),

Borogovac and Vakili (2008), Borogovac (2009) and Pasupathy et al. (2012). We make

reference to these reviews when appropriate.

3.1.1 Classical Control Variates

The CV technique (see Glasserman (2004) for details) exploits the error information of a

tractable simulation model to adjusts the outputs of an intractable model. We describe

the classic CV assuming, for simplicity, that a single control Z is used. Let w1, ..., wn be

some noise. Let Y = {Y (w1), ..., Y (wn)} be a vector with the output from n replications

of a simulation model, and Ȳ be its ordinary sample average. Suppose that the objective
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is to estimate E[Y ]. Suppose also that we can generate Z along with the same set of noise

(Z = {Z(w1), ..., Z(wn)}, Z̄ be its ordinary sample average), and that the expectation

E[Z] is known. Then, for any fixed β, we can compute the estimator

Ŷ (β) = Ȳ − β(Z̄ − E[Z]). (3.1)

This is the CV estimator, in which the observed error Z(wi)− E[Z] serves as a control in

estimating E[Y ]. Each Ŷ (wi, β) has variance

Var[Y (wi, β)] = Var [Y(wi)− β(Z(wi)− E[Z])]

= Var[Y ] + β2Var[Z]− 2βCov[Z, Y ].

The optimal coefficient β∗ that minimizes the variance (3.2) is given by

β∗ =
Cov[Z, Y ]

Var[Z]
. (3.2)

Hence, the variance of the CV estimator given by β∗ is

Var[Ŷ ] = Var[Y ](1− Corr2[Z, Y ]) (3.3)

It is important to note that the effectiveness of a CV, as measured by the variance reduction

rate 1 − Corr2[Z, Y ], is determined by the magnitude of correlation between the variable

of interest Y and the control Z. In practice, typically the measures Var[Y ] and Cov[Z, Y ]

are known. In spite of this, an estimate of β∗ has proven to be advantageous. As reported

in Glasserman (2004), a frequently accepted estimator for this case is

β̂ =
Cov[Z,Y ]

Var[Z]
. (3.4)

A discussion of classical CV can be found in Lavenberg and Welch (1981), Nelson

(1990) and Glasserman (2004), and includes estimation of the minimal-variance coefficient

β∗, its link between linear regression, and extensions to higher dimensions. It is important

to observe that, in order to apply the classical CV, the control mean E[Z] must be known.
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At the same time, there are not many variables with known means that are informative

about variable Y (i.e., are highly correlated to Y ) because usually they are of similar type

and complexity as Y . Therefore, the assumption of known mean is often difficult to satisfy

and hinders the applicability of the technique. There are three approaches for relaxing

such fundamental requirement: (i) biased control variates (see Schmeiser et al. (2001) for

details); (ii) estimated control variates (see Pasupathy et al. (2012) for details); and (iii)

database control variates (see Zhao et al. (2007) for details). The key features of these

techniques will be now introduced.

3.1.2 Biased Control Variates

In the biased control variates approach (Schmeiser et al. (2001)), the control mean E[Z] is

replaced by an approximation µ̂B. It can be yield from a numeric or closed-form analysis

of an approximated model of the true model of variable Z. As remarked in Borogovac

and Vakili (2008), although the current method relax the assumption of known mean,

it assumes the existence of an approximated simulation model for which means can be

computed analytically. That is, a new strong assumption is required.

It is important to note that, in the biased CV approach, the expectation of the ap-

proximated control mean does not equal the original mean (i.e., E[µB] 6= E[Z]). This fact

adds a bias to the controlled estimators proportional to the approximation error µ̂B−E[Z].

Since the approximation µ̂B is exogenous to sampled data (i.e., computed prior to the joint

simulation of (Y, Z)), obtaining more samples (i.e., increasing n) to reduce the variance

does not decrease the approximation error. According to Borogovac (2009), the biased

CV approach is beneficial only if the bias raised by the approximated model is sufficiently

small compared to the gains in variance reduction.

The biased CV coefficient is given by

ŶB(βB) = Ȳ − βB(Z̄ − µ̂B).

Ŷ is a biased estimator of E[Y ] with bias βB(µ̂B − E[Y ]) and the mean squared error
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(MSE) of the estimator is

MSE(ŶB(βB)) = Var[ŶB(βB)] + [βB(µ̂B − E[Y ])]2 . (3.5)

The optimal coefficient β∗B is the one that minimizes the mean squared error in (3.5) and,

as in classical CV, needs to be estimated from sampled data. The performance of β∗B and

the classical β̂ (3.4) is compared in Schmeiser et al. (2001). It is reported that coefficient β̂

performs better than β∗B if the bias raised from the approximation error is small compared

to Var[X]/n.

3.1.3 Estimated Control Variates

Differently from biased CV, the true simulation model of Z is used to estimate the control

mean E[Z] in the estimated CV approach. It begins with a set-up stage that estimates

the control mean. That is, the control mean estimator µ̂E is estimated prior to the joint

simulation of (Y, Z), such as in biased CV.

In the set-up stage, a set {w1, ..., wN} of noise is generated according to the underlying

probability measure. Note that the sample size of the set-up stage is different from the

estimation stage, with N >> n. In this case, the use of effort in estimating µ̂E can only

be justified if the resulting variance reduction is large enough. Let Z(w1), ..., Z(wN ) be

the underlying output of variable Z. Then, the estimate of E[Z] is the following ordinary

sample average

µ̂E =
1

N

N∑
i=1

Z(wi).

The estimation error µ̂E − E[Z] is, as in biased CV, fixed and unknown. However, in

estimated CV E[µE ] = E[Z].

The estimation stage of estimated CV, likewise in classical and biased versions, is

performed with sample size n. The ECV coefficient is defined as

ŶE(βE) = Ȳ − βE(Z̄ − µ̂E). (3.6)
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The mean squared error of the estimator is

MSE(ŶE(βE)) =
Var[Y ]

n
+ β2

E

Var[Z]

2
− 2βE

Cov[Z, Y ]

n
+ β2

E

Var[Z]

N
,

and the minimizer coefficient is given by

β∗E =
Cov[Z, Y ]

Var[Z]

(
N

N + n

)
.

The MSE of the estimator with β∗E is of the form

MSE(ŶE(β∗E)) =
Var[Y ]

n

[
1− Corr2[Z, Y ]

(
N

N + n

)]
.

Hence, variance expression is similar to the classical one (3.3), except of the correlation

loss factor N/(N +n). Likewise, the expression for the MSE using the classical coefficient

β (3.2) is as follows:

MSE(ŶE(β)) =
Var[Y ]

n

[
1− Corr2[Z, Y ]

(
N − n
N

)]
.

This fact induces an acceptable use of the estimated coefficient from classical CV (3.4)

instead of βE in (3.6).

3.1.4 Database Control Variates

In the database CV approach, the problem of estimating control mean is replaced by a

transformed one, for which we may calculate control means exactly, and it is rich enough

to closely approximate the original problem. This is accomplished by replacing the original

probability measure P that rules all simulation variables by an approximating measure PW

on which integration is tractable. The procedure that allows the chance in probability

measure is now introduced.

The main difference between estimated CV and database is that, for the latter, the

noise samples of the set-up stage (i.e., the set {w1, ..., wN}) are stored into a database W to

enable its retrieval in the estimation stage (estimating E[Y ]). The output Z(w1), ..., Z(wN )

may also be stored in Z, which is advantageous in simulations with a high cost per sample.
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The estimate of E[Z] in the set-up stage is equal to the one in estimated CV (i.e., µ̂D = µ̂E):

µ̂D =
1

N

N∑
i=1

Z(wi).

Clearly, the estimation error µ̂D−E[Z] has the same properties of the one in estimated CV.

As remarked in Borogovac and Vakili (2008), µ̂D can be viewed as the expected value of

random variable Z restricted to the probability space W with respect to a uniform measure

PW on a discrete probability space. Thus

µ̂D = EW[Z], (3.7)

where EW denotes expectation with respect to PW.

For this reason, in the estimation stage, the underlying probability measure P is re-

placed by the uniform measure PW with probability space W, where

PW(w) =
1

N
, ∀ w ∈ W.

Therefore, let us denote the set of noise W = {w1, ..., wn} as the n uniformly selected

elements from W. Let us now retrieve from Z the correspondent vectorZ = Z(w1), ..., Z(wn)

and the ordinary sample average Z̄. Accordingly, evaluate Y = Y (w1), ..., Y (wn) and

compute the ordinary sample average Ȳ . Then, the DCV estimated coefficient is the CV

one:

β̂ =
Cov[Z,Y ]

Var[Z]
.

The DCV estimator is given by:

ŶD(β̂) = Ȳ − β̂(Z̄ − µ̂D). (3.8)

The mean squared error of the estimator using the classical one in (3.2) is given by:

MSE(ŶD(β)) =
Var[Y ]

n

(
1− Corr2[Z, Y ]

)
+

Var[Y ]

N
, (3.9)

which is the variance of the classical CV estimator plus a term (Var[Y ]/N) that arise from
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the error EW[Z] − E[Z]. Such as in estimated CV, we know that this error approximates

one sample of the normal N (0,Var[Y ]/N).

3.2 The Control Variate Metamodel

In this Section, we propose a metamodel based on Control variates technique. In general,

the CV metamodel has no requirement on the underlying function and little dependence

on practitioner’s choice in comparison to stochastic kriging. The formulation, which is

presented in Section 3.2.1, is performed in two phases: a sampling procedure at the design

points, and a sampling procedure at low-fidelity points. The performance measures and

a thorough comparison to SK is presented in Section 3.2.2. Results show that overall

performance of the CV metamodeling is notably better than the SK one.

3.2.1 Method Procedure

Stochastic optimization methods aim at finding a configuration or design that minimizes

the following objective function

min
x∈X

J(x) = E[Y (x, w)],

where x is a vector of dimension d and denotes the decision variables (also referred to

as input variables or parameters) of the simulation model, Y is the model output, w is

the noise and represents the sample path of the simulation model, and J is the objective

function. In real applications, J is frequently of complex nature without explicitly known

form. Stochastic optimization methods, including the metamodeling class, often serve the

purpose of optimizing J very well. Our goal in this Chapter is to build a CV metamodel

that efficiently approximates E[Y (x,w)] in a bounded space X.

Defining Design Points

Similarly to response surface methodology and SK, one must choose a set of design points

X̃ = {x̃1, ..., x̃K} which constitutes the experiment design. In our metamodel, the design

points (or high-fidelity points) play the role of control in the CV technique.
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In both response surface methodology and SK, the total simulation budget (i.e., the

total number of computational output) is totally allocated to design points. The amount

of simulation budget that is allocated among these points can be optimized and is not the

focus of our study (for example, see Quan et al. (2013) for optimal computation budget

allocation in SK).

In our CV metamodel, the total budget is divided in two equal shares. One allocated

in estimating Y at design points, and other allocated in a set of low-fidelity points (which

will be soon introduced). Let N be the number of simulation output allocated at each

design points, and thus 2NK be the total simulation budget.

Defining Low-Fidelity Points

Choose a set of low-fidelity points X = {x1, ..., xL}, where L� K. The simulation budget

allocated at each low-fidelity is n = b(NK)/Lc, with n� N .

Simulation at Design Points

The scheme version of the algorithm is given below. Note that we are using common

random numbers to simulate Y at different points. In a few steps, the vector W will be

used again to induce correlation.

Simulation Algorithm at Design Points

0 Generate a set {w1, ..., wN} according to the underlying probability measure, and

store into a vector W to enable retrieval.

1 For k = 1, ...,K

1.1 Perform a simulation with effort N at design point x̃k, generating

{Y (x̃k, w1), ..., Y (x̃k, wN )}.

1.2 Compute the estimator

µ̂(x̃k) =
1

N

N∑
i=1

Y (x̃k, wi). (3.10)
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1.3 Now, compute a vector using the first n outputs Ỹk = {Y (x̃k, w1), ..., Y (x̃k, wn)}.

1.4 Compute the ordinary sample average

¯̃Yk =
1

n

n∑
i=1

Y (x̃k, wi).

Simulation at Low-Fidelity Points

For each low-fidelity point, we apply the CV method choosing as control the design point

that presents the higher correlation to the current low-fidelity point. It is important to

note that only one at a time control is used to enhance estimation at each low-fidelity point.

The use of multiple controls is further discussed in Section 3.3. As mentioned before, the

first elements {w1, ..., wn} are retrieved from the vector W in order to induce correlation

between the CV (design points) and the low-fidelity points to enhance CV efficiency. A

scheme version of the simulation step is given below.

Simulation Algorithm at Low-Fidelity Points

0 Retrieve from W the first n elements {w1, ..., wN}.

1 For l = 1, ..., L

1.1 Compute the following vector and sample average

Yl = {Y (xl, w1), ..., Y (xl, wn)} and Ȳl =
1

n

n∑
i=1

Y (xl, wi).

1.2 Set

k∗ = arg max
k=1,...,K

Corr[Ỹk, Yl].

1.3 Compute the CV coefficient:

β̂ =
Cov[Ỹk∗ , Yl]

Var[Ỹk∗ ]
. (3.11)
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1.4 The estimator of E[Y (xl)] is given by

Ŷ (xl) = Ȳl − β̂
(

¯̃Yk∗ − µ̂(x̃k∗)
)
.

3.2.2 Test on Metamodeling Performance

The performance measures and simulation problems used here are based on Li et al. (2010),

where stochastic kriging is extensively compared to other popular metamodeling techniques

(artificial neural network, radial basis function, support vector regression, and multivariate

adaptive regression splines). The motivation for using such a comparison framework lies

on the need of template problems to facilitate and foment the understanding of different

metamodeling algorithms, and guide the effort on subsequent research.

We utilize the four canonical determinist problems used in Li et al. (2010) as basis

for constructing performance tests and comparisons. They are: (i) P1: 4 dimensional

welded beam design (Rao (1996)); (ii) P2: 3 dimensional helical compression spring (Arora

(1989)); (iii) P3: 2 dimensional sinusoidal function (Hussain et al. (2002)); and (iv) P4:

8 dimensional asymmetric function (Nicolai and Dekker (2009)). Theses functions are

known to be complex with varying degrees of nonlinearity and dimensionality.

We add four different noisy terms onto each deterministic problem to produce four

different stochastic problem types because the noise type of the underlying function (ho-

mogeneous / heterogeneous) and the noise size (large / small) are two important character-

istics of stochastic behavior (see Li et al. (2010)). They are named as small+homogeneous

noise (S+Ho), small+heterogeneous noise (S+He), large+homogeneous noise (L+Ho), and

large+heterogeneous noise (L+He). Thus, there are a total of 16 stochastic problems.

Moreover, we evaluate two classical problems from finance (pricing an Asian call op-

tion), and from queue theory (M/M/1 queue problem). The motivation to evaluate the

SK and CV methods in these two additional problems lies on the fact that all template

problems in Li et al. (2010) have noise incorporated to a determinist function in an addi-

tive form. As a consequence, the correlation between outputs at different solution points is

typically very high. On the other hand, correlation at the first two classical problems may
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not be as high. We recall that a high magnitude of correlation between outputs is a key

factor for the effectiveness of database CV (see equation (3.9)). Therefore, it is important

to analyze the performance of CV metamodel in objective functions where noise is not

incorporated in an additive form.

Next, we provide a succinct description of each determinist problem, and its noise

properties can be found in Table 3.1. Likewise, we provide a description of the Asian call

option and M/M/1 queue system.

Welded beam design

The welded beam design problem is taken from Rao (1996) and utilized in Li et al. (2010).

A welded beam is designed for minimum cost while subjected to constraints on shear stress

(τ), bending stress in the beam (σ), bucking load on the bar (Pc), end deflection on the

beam (δ), and side constraints. There are four decision variables (x = (x1, ..., x4)>). The

problem can be represented as:

minx∈X J(x) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2)

Subject to:

τ(x)− τmax ≤ 0

σ(x)− σmax ≤ 0

0.10471x2
1 + 0.04811x3x4(14.0 + x2)− 5 ≤ 0

δ(x)− δmax ≤ 0

P − Pc(x) ≤ 0

0.1 ≤ x1 ≤ 1

2 ≤ x2 ≤ 10

6 ≤ x3 ≤ 8

0.3 ≤ x4 ≤ 0.8

where

τ(x) =
√

(τ ′)2 + 2τ ′τ ′′ x22R + (τ ′′)2

τ ′ = P√
2x1x2

, τ ′′ = MR
Q

M = P
(
L+ x2

2

)
, R =

√
x22
4 +

(
x1+x3

2

)2
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Q = 2
{√

2x1x2

[
x22
12 +

(
x1+x3

2

)2]}
σ(x) = 6PL

x23x4

δ(x) = 4PL3

Ex33x4

Pc =
4.013E

√
x23x

6
4

36

L2

(
1− x3

2L

√
E
4G

)
P = 6000lb, L = 14in, E = 3.0× 107psi, G = 1.2× 107psi, τmax = 1.36× 104psi,

σmax = 3.0× 104psi, δmax = 0.25in

The noise is incorporated in the objective function in an additive form, as follows:

J(x) = 1.10471x2
1x2 + 0.04811x3x4(14.0 + x2) +W,

where W is the stochastic component. Table 3.1 shows four different definitions of W and

their corresponding problem types.

Helical compression spring

This problem is taken from Arora (1989). The objective is to minimize the weight of

a tension/compression spring. The design constraints are on minimum deflection, shear

stress, surge frequency, and outside diameter. The design variables are the wire diameter

(x1), the mean coil diameter (x2), and the number of active coils (x3). The problem can

be represented as:

min
x∈X

J(x) = (x3 + 2)x2x
2
1

Subject to:

1− x32x3
71785x41

≤ 0

4x22−x1x2
12566(x1x32−x41)

+ 1
5108x21

− 1 ≤ 0

1− 140.45x1
x32x3

≤ 0

x1+x2
1.5 − 1 ≤ 0

The noise is incorporated in the objective function in an additive form, as follows:

J(x) = (x3 + 2)x2x
2
1 +W,
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where W is the stochastic component. Table 3.1 shows four different definitions of W and

their corresponding problem types.

Sinusoidal function

This problem is taken from Hussain et al. (2002). The design variables are x1 and x2, and

the problem can be represented as:

min
x∈X

J(x) = x1 sin(x2) + x2 sin(x1)

Subject to:

−2π ≤ x1 ≤ 2π

−2π ≤ x2 ≤ 2π,

The noise is incorporated in the objective function in an additive form, as follows:

J(x) = x1 sin(x2) + x2 sin(x1) +W,

where W is the stochastic component. Table 3.1 shows four different definitions of W and

their corresponding problem types.

Asymmetric function

This problem is taken from Nicolai and Dekker (2009). The design variables are x1, ..., x8,

and the problem can be represented as:

min
x∈X

J(x) =
∑8

i=1

[
2xi−4 + (6− xi)

]
Subject to:

0 ≤ xi ≤ 10, i = 1, 2, ...8

The noise is incorporated in the objective function in an additive form, as follows:

J(x) =
8∑
i=1

[
2xi−4 + (6− xi)

]
+W,

where W is the stochastic component. Table 3.1 shows four different definitions of W and
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their corresponding problem types.

Asian Call Option

The details of this problem can be found in Glasserman (2004). An Asian option is an

option on a time average of the underlying asset. Asian calls have payoffs (S̄−K)+, where

the strike price K is constant.

S̄ =
1

n

m∑
i=1

S(ti)

is the average price of the underlying asset over the discrete set of monitoring dates 0 <

t1 < ... < tm = T , with T the date at which the payoff is received.

S(tj+1) = S(tj) exp

[
(µ− 1

2
σ2)(tj+1 − tj) + σ

√
tj+1 − tjZj+1

]
,

is the price of the asset at time tj+1, Z1, ..., Zm are independent standard normal random

variable. S(0), T and K are given. The variables of interest are x = (µ, σ), where µ is the

rate of change in the asset price, σ is the volatility of the asset price. The objective is to

option price (function value) is

J(µ, σ) = exp(−µT )[S̄ −K]+.

M/M/1 queue

This problem is taken from Staum (2009). Consider a M/M/1 queue with arrival rate

1 and service rate x. The steady-state time is positive with probability 1/x and, given

that it is positive, is conditionally exponential with mean 1/(x − 1). Its means is y(x) =

1/(x(x−1)). Each simulation run is initialized in steady-state (which avoids bias from the

initial conditions) and simulates a fixed number of costumers. Its output is their average

waiting time.

Performance measures

The computational efficiency is critical to define a metamodel’s performance. In order to
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Table 3.1: Noise definitions in different bed problems
Noise type Weld beam Compression Sinusoidal Asymmetric
S+Ho W ∼N (0, 2) W ∼N (0, 0.08) W ∼N (0, 1) W ∼N (0, 7)
S+He W ∼x1−N (0, 2) W ∼x1−N (0, 0.08) W ∼x1−N (0, 1) W ∼x1−N (0, 7)
L+Ho W ∼N (0, 10) W ∼N (0, 0.4) W ∼N (0, 5) W ∼N (0, 35)
L+He W ∼x1−N (0, 10) W ∼x1−N (0, 0.4) W ∼x1−N (0, 5) W ∼x1−N (0, 35)

compare the two approaches, both stochastic kriging and control variates Metamodeling

are applied to each problem with the same computational budget. Each stochastic problem

runs with a total computational budget of 100.000 simulation output. 25 replication runs

are taken. 100 design points are used in SK, with 1.000 simulation outputs in each. In the

CV method, 10 design points are used with 5.000 simulation outputs in each. Moreover,

1.000 low-fidelity points with 50 simulation outputs are used in the second step of the CV

method. 1.000 prediction points are used in both methods. The results will formulate a

group of quality measures for which we evaluate the accuracy, robustness and efficiency of

the methods. The measures were proposed in Li et al. (2010).

The accuracy is intended to reflect the deviation between the metamodel output Ŷ (x)

and the expectation E[Y (x)]. Both global and local accuracy are considered. The mean

squared error (MSE) provides a general evaluation of the overall prediction accuracy, and

is given as follows:

MSE =
1

L

L∑
l=1

(
Ŷ (xl)− E[Y (xl)]

)2
, (3.12)

where L is the number of prediction points. Figure 3.1 shows the MSE under the 16

different stochastic problem for both SK and CV metamodels. In 14 of the 16 problems it

is clear that CV metamodel achieves the best global accuracy measured by the MSE. The

only two exceptions are Large+Homogenous noise in P2 and P3, where the CV accuracy

is near the SK one. It can be explained by arguing that the estimated expectation µ̂ in the

CV method is direct dependent on the variance of the samples. Because the exceptions

happen on a scenario with large noise, the estimator µ̂ delivers a poorer performance

compared to the scenarios with small variance. In the scenario with Large+Heterogenous

noise, the accuracy of CV method is slightly poorer than in Large+Homogenous. However,

the performance of SK method decreases significantly in this particular scenario (L+He).

A worse performance of SK at the scenario (L+He) is expected because this is the most
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difficult case. It is important to observe that the CV metamodel’s efficiency in reducing

the variance at prediction points is remarkable, in particular at the latter scenario.

Figure 3.1: Mean Squared Error under different stochastic problems

The average absolute error (AAE) also assess the global accuracy, and is given as

follows:

AAE =
1

L

L∑
l=1

|Ŷ (xl)− E[Y (xl)]|

Figure 3.2 shows the AAE under the different stochastic problem of SK and CV metamodel

results. Similarly to MSE measure, the global performance of the CV method measured

by the average absolute error is clearly better than the SK performance under different

problems and noise type. Two exceptions remain (L+Ho in P2 and P3). It is interesting

to note that the MSE and AAE of SK method is more affected by the “topology” of the

noise than by the “intensity” of the noise. That is, the MSE and AAE of SK in scenarios

with Homogenous noise are small and similar, and the MSE and AAE in the scenarios

with Heterogeneous noise are high and similar. On the other hand, the CV method is

more affected by the “intensity” of the noise. The MSE and AAE of CV method are small

and similar in scenarios with Small variance of noise, and high and similar in the scenarios

with a large variance of noise.

The maximum absolute error (MAE) reflects the presence of poor prediction in local
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Figure 3.2: Average Absolute Error under different stochastic problems

areas, and is given as follows:

MAE = max|Ŷ (xl)− E[Y (xl)]|

Figure 3.3 shows the MAE under the 16 different stochastic problems of SK and CV

metamodel results. The worst estimate among prediction points of CV metamodel is

significantly better than the SK one at all 16 problems. That is an important measure,

and indicates that the CV metamodel has a better ability in consistently estimating the

objective function among all prediction points. It is a direct effect of the gain in variance

reduction provided by the database CV.

Robustness is another important indicator of performance as it represents each method’s

ability to consistently achieve similar accuracies at different replications. Robustness is

defined as the standard deviation of the mean squared error in (3.12), and its formula is

given as follows:

robustness = std.[MSE]

Figure 3.4 shows the standard deviation of MSE under the 16 different stochastic problems.

In 15 of the 16 problems, CV metamodel exhibits a robustness performance better than

SK metamodel. In particular, for P3 and P4. As expected, the robustness of CV method

decreases with the intensity of noise variance, and the robustness of SK method decreases
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Figure 3.3: Maximum Absolute Error under different stochastic problems

with noise topology. It is worth noting that the robustness of CV is better than SK in

L+Ho in P2 and P3, which indicates that CV overall performance in both accuracy and

robustness is above SK overall perfomance.

Figure 3.4: standard deviation of mean squared error under different stochastic problems

Path-Dependent Options

We illustrate the application of control variates metamodeling in a classical problem raised

from finance engineering, which is the Asian call option problem. Because it is a path-

56



dependent problem, there is no analytical solution and one must resort to stochastic tools

to estimate the option value at each decision variable. Its function value has an interesting

characteristic regarding its variance. Decision variables are x = (µ, σ), where µ is the rate

of change in the asset price, and σ is its volatility. Thus, the objective function has

heterogeneous variance.

The importance of this canonical example is that, differently from previous determinis-

tic template problems, the noise in the objective function is not in an additive form. In the

current problem, the standard normal noise is multiplied by a volatility and time-passage

term, and is embedded on an exponential function of the asset’s price expression. The

stochastic structure of this particular function has a direct and negative impact on the

strength of correlation between design points and low-fidelity ones. We recall that one of

the key elements that determined the efficiency of database CV is the correlation between

control (design-points) and variable of interest (low-fidelity points).

Figure 3.5: Performance measures of stochastic kriging, and control variates metamodeling
in the Asian call option problem

Figure 3.5 shows the measure performance of the SK and CV metamodel. In this

example, the initial asset price is S(0) = 100, the strike price is K = 100, m = 30 days.

The design space of the experiment is 0.1 ≤ µ ≤ 0.5, and 0.05 ≤ σ ≤ 0.25. For stochastic
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kriging, 100 design points are used with 1,000 simulation outputs in each, and 1,000

predication points. For CV metamodel, 10 design points are used with 5,000 simulation

outputs in each, and 1,000 low-fidelity points are used with 50 simulation outputs in each.

Thus both metamodels have a total simulation budget of 100,000 outputs. 25 replications

of each metamodel are used to construct the boxplots of MSE, AAE and MAE, and to

compute the standard deviation of MSE.

The global (top panels) and local (bottom left panel) performance of CV metamodel

is better than SK method performance. The same is valid for the robustness performance

illustrated in the bottom right panel. It is interesting to observe that the MSE of CV

metamodel is close to zero. As consequence, the other three measures exhibit the same

pattern. That is, they are also close to zero. The overall performance exhibited by the

CV metamodel indicates that this method is suitable for this canonical problem. The gain

in efficiency by utilizing the CV metamodel can be significant even in a problem where

correlation among outputs at different solution point may not be very high.

M/M/1 Queue

Another canonical stochastic class of problem where metamodeling is frequently used is

in queue’s applications. We choose the M/M/1 simulation example from Staum (2009).

It is a simple model, but illustrates some of the key features that are commonly found

in simulation models used in operations research, but are non-standard in some relevant

fields of statistics: (i) the response surface of variable Y (waiting time in line) is smooth

and monotone; (ii) the variance over the surface is heterogeneous; (iii) the variability of

expected value E[Y ] is much larger over some parts of the domain than over others.

One interesting aspect of this problem is that there are four sources of randomness when

computing the objective function via simulation: one must generate a uniform random

variable U(0, 1), and three exponential random variables Exponential (1/(service rate -

arrival rate)), Exponential (1/(service rate)), and Exponential (1/(arrival rate)). The

implication of multiple source of noise to the control variates metamodeling is that the

correlation induced by common random numbers is not so strong as in problems with

additive noise or with only one source of noise.

Figure 3.6 shows performance measures of the two algorithms (i) stochastic kriging
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Figure 3.6: Performance measures of stochastic kriging, and control variates metamodeling
in the M/M/1 problem

using 100 design points with 1.000 outputs at each design point and, 1.000 prediction

points; (ii) and control variates metamodel using 10 design points with 5.000 outputs at

each design point, and 1.000 low-fidelity points with 50 outputs at each. A simulation

run of 1.000 customers is taken in all algorithms, and each output is their average waiting

time. 25 replications of each metamodel is used to construct the boxplots of mean squared

error, average absolute error and maximum absolute error, and to compute the standard

deviation of mean squared error.

It is interesting to note that, even in problems with multiple sources of noise, all four

performance measures of SK are overtaken by the ones of CV metamodeling. Again, we

remark that the correlation among outputs in the M/M/1 queue problem is not as high as

it was in the first 4 template problems. The reason why correlation is weaker lies on the

structure of noise in this problem. There are three sources of noise (defined previously)

and the connections between them are not straightforward. Although nature events are

equal among solutions because we are using common random numbers, the effects of noise

(i.e., nature) on each solution depend on how the random outcomes are interrelated. It is

one more example that illustrates the flexibility and efficiency of the CV metamodeling at
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problems with different topology of noise.

3.2.3 Analysis of Estimated Coefficient β̂

The control variates metamodeling performance is directed related to the estimation of

coefficient β̂ in equation (3.11). When the objective function has noise in an additive

form, such as in the first four problems previously discussed, the estimated β̂ has always

value 1 because the noise from output distributions of control and of low-fidelity point

is the same. Moreover, it is important to note that, in the case of additive noise, the

estimated coefficient is also the optimal β∗. Therefore, the control variates metamodeling

performance is only affected by the error raised from estimating the control mean µ̂(x̃k)

in equation (3.10).

Figure 3.7: MSE for a fixed interval of β, and MSE of estimated β̂ according to equation
(3.11) after 10,000 replications - Asian Call Option example

The top panels in Figure 3.7 show the MSE of a fixed range of β values in the black line,

and the MSE of 10,000 estimated β̂ at different points of the objective function from the

Asian Call Option problem in the red bullets. The bottom panels show the corresponding

histograms of β̂. At x = (0.11, 0.47) and x = (0.16, 0.13), the same design point is selected

as control at each of the 1,000 replications. Therefore, the underlying histograms show

shapes close to a normal distribution with mean centered in the optimal β∗.

On the other hand at x = (0.08, 0.21) and x = (0.20, 0.36), three different design points
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are selected as control in different occasions of the 1,000 replications. The left and right

histograms show a shape of three normal distributions, where only one of them is centered

at the optimal coefficient. It is worth noting that although a fraction of the estimated β̂ is

not centered in the optimal coefficient, their values are sufficiently close to it so that CV

Metamodeling can delivery a low MSE.

Figure 3.8: MSE for a fixed interval of β, and MSE of estimated β̂ according to equation
(3.11) after 1,000 replications - M/M/1 example

Figure 3.8 shows the same analysis for the M/M/1 example after 1,000 replications.

We observe that more than one design point is selected as control at most low-fidelity

points among the 1,000 replication. It can be easy explained by the fact that there are

two design points with a strong correlation to the underlying points. In the replications,

sampled correlation varies according to sampled noise. Therefore, at some replications

a particular design point has stronger sampled correlation to the underlying predication

point, whereas in other replications the underlying prediction point has stronger sampled

correlation to other design point.

In this example, the variance of the objective function is larger at low values of x,

and is smaller at high values. As consequence, the fraction of estimated β̂ which is not

centered in the optimal β∗ at x = 1.28 delivers a higher mean squared error than the

ones at x = 1.82. However, histograms at the bottom panels show that the frequency

of estimated β̂s for which their distribution are not centered in the optimal β∗ is smaller
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when compared to the ones which are centered in the optimal coefficient.

3.3 Multiple Controls and Multicollinearity

Here, we extend the multiple CV analysis as in Rosenbaum and Staum (2016). As de-

scribed in the latter paper, it seems to be attractive to use more than one design point as

control variates to the larger set of low-fidelity points in the CV metamodel. However, it

may have drawbacks in estimating the coefficient β.

The idea of this section is to analyze CV metamodeling with multiple controls through

linear regression. In particular, we want to understand the multicollinearity effects that

can arise when more than one control is available and are added to the CV estimator

model. As reference, we resort to Glasserman (2004) as basis to control variance theory,

and to Montgomery and Peck (2001), as basis to linear regression theory.

3.3.1 Connection to Linear Regression

The link between control variates and regression is useful in the statistical analysis of

the control variates estimator. There is an alternative form of the simple linear regression

model that is occasionally useful and is described in Montgomery and Peck (2001). Suppose

that we define the regressor variable Z(wi) (recall that Z is our control variable in the

control variates technique) as the deviation from its own average, say Z(wi) − Z̄ as in

(3.8). The regression model then becomes

Y (wi) = β0 + β1Z(wi)εi

= β0 + β1(Z(wi)− Z̄) + β1Z̄ + εi

= (β0 + β1Z̄) + β1(Z(wi)− Z̄) + εi

= β′0 + β1(Z(wi)− Z̄) + εi,

(3.13)

where β0 and β1 are the least-squared estimators, and εi is a random error component.

Note that redefining the regressor variable in (3.13) has shifted the origin of the Z’s from

zero to Z̄. It is easy to show that the least-squares estimator of the transformed intercept
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is β̂′0 = Ȳ . The estimator of the slope is unaffected by the transformation. This alternate

form of the regression model has some advantages. First, the least-squared estimators

β̂′0 = Ȳ , and β̂1 = −Cov[Z,Y ]

Var[Z]

are uncorrelated. This will help some applications of the model, such as finding confidence

intervals on the mean of Y . Therefore, the fitted model is

Ŷ = Ȳ + β̂1(Z − Z̄). (3.14)

The Classical CV model (3.1) is very similar to (3.14). The expression in (3.4) is the slope

of the least-squares regression throught points (Y (wi), Z(wi)), i = 1, ..., n, which is the

least-squares estimator β̂1 of the alternate model.

3.3.2 Multiple Controls

Suppose that a simulation produces outputs

Y =


Y (w1)

...

Y (wn)

 , Z =



Z(1)(w1) Z(2)(w1) · · · Z(K)(w1)

Z(1)(w2) Z(2)(w2) · · · Z(K)(w2)

...
...

...

Z(1)(wn) Z(2)(wn) · · · Z(K)(wn)


, β =


β1

...

βd

 ,

and suppose that the vector of expectations E[Z] is known or can be somehow estimated.

Assume that the pair (Y (wi), Zi), i = 1, ..., n are i.i.d with covariance matrix

 ΣZ ΣZY

Σ>ZY σ2
Y

 ,

where ΣZ is K ×K, ΣZY is K × 1, and the scalar σ2
Y is the variance of the Y (wi). The

control variate estimator in this case is given by:

Ŷ (β) = Ȳ − β>(Z̄ − E[Z]),
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with Ȳ and Z̄ being the ordinary sample average scalar and vector respectively. The

optimal coefficient vector is

β∗ = Σ−1
Z ΣZY . (3.15)

In practice, the optimal vector of coeffcient β∗ is unknown but may be estimated. The

least-squares normal equation is

(Z>Z)β̂ = Z>Y . (3.16)

The number of controls K is ordinarily not very large so size is not an obstacle in inverting

(Z>Z), but if linear combinations of some of the control are highly correlated this matrix

may be nearly singular. This should be considered in choosing multiple controls and is

the topic of the next Section.

3.3.3 Multicollinearity Effects

If there are near-linear dependencies among the regressors (i.e., they are not orthogonal),

the problem of multicollinearity is said to exist. When the method of least squares is

applied to non-orthogonal data, very poor estimates of the regression coefficients can be

obtained. The variance of the least-squares estimates β may be considered inflated, and

the length of the vector of least-squares parameter estimates is too long on the average.

This implies that the absolute value of the least squares estimates are too large and that

they might be unstable. That is, their magnitudes and signs may change considerably

given a different sample.

Let us go back to inverting matrix (Z>Z) in equation (3.16). For simplicity, suppose

K = 2. We have:

C = (Z>Z)−1 =


1

1−ρ212
−ρ12
1−ρ212

−ρ12
1−ρ212

1
1−ρ212

 , (3.17)

where ρ12 is the simple correlation between Z(1) and Z(2). The estimates of the regression

coefficients are

β̂1 =
ρ1Y − ρ12ρ2Y

1− ρ2
12

, β̂2 =
ρ2Y − ρ12ρ1Y

1− ρ2
12

,
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where ρ1Y and ρ2Y are the respective correlations between Y and Z(1) and Z(2). If there

is strong multicollinearity between Z(1) and Z(2), then the correlation coefficient ρ12 will

be large. From (3.17) we see that as |ρ12| → 1,

Var[β̂j ] = CjjVar[Y ]→∞, and Cov[β̂1, β̂2] = C12Var[Y ]→ ±∞.

Therefore, strong multicollinearity between Z(1) and Z(2) results in large variances and

covariance for the least-squares estimators of the regression coefficients. This implies that

different samples taken at the same Z levels could lead to widely different estimates of

model parameters. Multicollinearity produces similar effects when there are more than

two regression variables (i.e., more than two controls used).

Detecting and dealing with multicollinearity

Several techniques have been proposed for detecting multicollinearity. Among them, Mont-

gomery and Peck (2001) introduces examination of correlation matrix, Eigen system anal-

ysis and variance inflation factors. Examining the simple correlations ρij between the

regressors (i.e., controls) is helpful in detecting near-linear dependence between pair of re-

gressors. Unfortunately, when more than two regressors are involved in linear dependences,

there is no assurance that any of the pairwise correlations ρij will be large.

Here we briefly describe the variance inflation factors method, in which the diagonal

elements of C = (Z>Z)−1 matrix in (3.17) are used in detecting multicollinearity. It can

be shown that the diagonal elements of the C matrix are

Cjj =
1

1−R2
j

, j = 1, 2, ...,K

where R2
j is the coefficient of multiple determination from the regression of Z(j) on the

remaining K − 1 regressor variables. If there is strong multicollinearity between Z(j)

and any subset of the other K − 1 regressors, then the value of R2
j will be close to unit.

Therefore, Cjj will be large and the variance of its estimated regression coefficient Var[β̂j ] =

CjjVar[Y ] will be also very large. Thus, Cjj can be viewed as the factor by which the

variance of β̂j is increased due to near-linear dependences among regressors. The variance
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inflator factor (VIF) in then given by:

VIFj = Cjj =
(
1−R2

j

)−1
. (3.18)

The VIF for each term in the model measures the combined effect of the dependences

among regressors on the variance of that term. One or more large VIFs indicates mul-

ticollinearity. According to Montgomery and Peck (2001), practical experience indicates

that if any of the VIFs exceeds 5 or 10, it is indication that the associated regression

coefficients are poorly estimated because of multicollinearity. Furthermore, VIFs can help

identifying which regressors are involved in multicollinearity. It is expected that those

with large VIFs are associated with near-linear dependences.

3.3.4 CV Metamodel With Multiple Control

When common random numbers are used for sampling the outputs at design points and

low-fidelity points, correlation between all sampled points are induced. There is a strong

implication of the existence of multicollinearity in the control variates metamodel. If more

than one design point are used as controls for a low-fidelity point output, the effects of

multicollinearity must be examined.

We examine such an effect in two experiments. We note that the first four experiments

discussed in Section 3.2.2 have noise in an additive form in the function of interest J . With

common random numbers, the induced correlation between samples is always 1. Thus,

only one control can be used because no variance reduction is achieved using more than

one. Therefore, in our first experiment, we adapt the stochastic version of the welded

beam problem so that noise is inserted not in an additive form.

Then, we analyze the M/M/1 queue problem. As discussed previously, such a problem

has three sources of noises, which are interrelated. As consequence, it may be interesting

to use the outputs of more than one control to guide the variance reduction of the outputs

at a prediction point. That is, there is no control that can fully explain the errors between

the mean and observations of prediction point because correlation is not 1.

Experiment 1 - adapted welded beam problem
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The adapted the Welded Beam objective function is given by

J(X) = 1.10471(x1 +W1)2(x2 +W2) + 0.04811(x3 +W3)(x4 +W4)[14.0 + (x2 +W2)],

where

Wi ∼ N (0, 0.4), ∀ i = 1, ..., 4.

Since now there are four independent source of noise, the induced correlation is not 1,

although it is still high.

Figure 3.9: Performance measures of stochastic kriging (SK), and control variates meta-
model with one (CV) and more (CV M > 0.90) controls in the adapted welded beam
problem

Figure 3.9 shows boxplots of mean squared error, average absolute error, maximum

absolute error, and standard deviation of mean squared error after 25 replications of three

algorithms. The first is stochastic kriging (labeled as SK) using 100 design points with

1.000 outputs at each design point, and 1000 prediction points. The second is control

variates metamodel (labeled as CV) using 10 design points with 5000 outputs at each

design point, 1000 low-fidelity points with 50 outputs at each, and only one design point
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can be used as control. The third is a control variates metamodel (labeled as CV M

> 0.90) with the same configuration as the previously algorithm, however design points

with correlation higher than 0.90 are qualified to be control, controls are selected according

to (3.18), and coefficient β̂ is computed according to (3.15).

All panels show that, as expected, the CV metamodel with only one control has a

better global performance than SK. The top panels show that using more than one con-

trol does not improve the CV metamodeling global performance. The bottom left panel

shows that the local performance of the CV method can be significantly impacted by

multicollinearity effects even if controls are selected according to the method described

in Section 3.3.3. Moreover, multicollinearity also has an important negative effect on the

robustness performance, which is shown at the bottom right panel.

Experiment 2 - M/M/1 queue system

We complement the illustration of the effects that multicollinearity may cause in the CV

metamodeling by examining the M/M/1 queue system of Staum (2009). Since there are

four source of noise embedded in this problem, the multicollinearity effects can be evaluated

in a scenario where correlation raised by using common random numbers is not as strong

as in problems with additive noise or with only one source of noise (e.g., Asian call option).

Figure 3.10 shows boxplots of mean squared error, average absolute error, maximum

absolute error, and standard deviation of mean squared error after 25 replications of four

algorithms. The first algorithm is stochastic kriging (labeled as SK) using 100 design points

with 1000 outputs at each design point and, 1000 prediction points. The second is control

variates metamodel (labeled as CV) using 10 design points with 5000 outputs at each design

point, 1000 low-fidelity points with 50 outputs at each, and only one design point used as

control. The third one is a control variates metamodel (labeled as CV M > 0.80) with

the same configuration as previously algorithm, however design points with correlation

higher than 0.80 are qualified to be control, controls are selected according to (3.18), and

coefficient β̂ is computed according to (3.15). The fourth algorithm is a control variates

metamodel (labeled as CV M > 0.90) with same configuration as previously algorithm,

however correlation threshold is 0.90. A simulation run of 1000 customers is taken in all
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Figure 3.10: Performance measures of stochastic kriging, and control variates metamodel
with one and more controls in the M/M/1 problem

algorithms, and each output is the average waiting time of customers.

All panels show that multicollinearity effects raised from induced correlation have

a significant impact in estimating coefficient β̂ when more than one control is used in

the CV metamodel. The results are in line with the first experiment (adapted welded

beam problem). Top left and right panels show that the global performance of a CV

metamodel with multiple controls is worse than the performance of stochastic kriging

and CV metamodel with one control. On the other hand, the maximum absolute error

panel shows that the local performance of SK is worse than CV metamodel even with

multicollinearity effects. The last panel (bottom right) shows that the robustness of CV

metamodel is significant affected by multicollinearity.

The experiments corroborates to the argument that the induced correlation via com-

mon random numbers hinders the use of multiple controls in the CV metamodel. That

is, the performance of CV metamodel may not improve or even worsen in the attempt of

increasing accuracy of the estimate by adding more controls.
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3.4 Iterative Allocation in the CV Metamodel

One of the opportunities in research on metamodeling, discussed in Chapter 2, is the

selection of design points. In this section, we provide an investigation on the choice of

design points in the control variates metamodel.

The mean squared error of control variates metamodeling is given by the mean squared

error of database control variates in (3.9):

MSE(ŶD(β)) =
Var[Y ]

n

(
1− Corr2[Z, Y ]

)
+

Var[Y ]

N
,

Equation (3.9) demonstrates that the effectiveness of CV Metamodeling is related to four

aspects: (i) the intrinsic variance of underlying interest Y (i.e., Var[Y ]); (ii) the correlation

between control Z and the quantity of interest Y (i.e., Corr[Z, Y ]); (iii) the sampled size n

when estimating Ŷ at low-fidelity points; and (iv) sampled size N when estimating control

mean E[Z].

Regarding the correlation aspect (ii), the variance reduction factor (1 − Corr2[Z, Y ])

increases very sharply as |Corr[Z, Y ]| approaches 1 and, accordingly, it drops of quickly

as |Corr[Z, Y ]| decreases away from 1. Thus, a high degree of correlation is needed for

a control variates to yield substantial benefits. As discussed in Section 3.2.2, the use of

common random numbers induces the correlation between design points and low-fidelity

points. This indicates that the number of design points may be chosen according to its

correlation to low-fidelity points. That is, if correlation between a particular design point

and a group of low-fidelity points is high enough, there is no need to allocate budget to

other design point.

In this Section, we present a procedure to improve simulation budget allocation among

design points. The idea is to carefully choose the amount and location of design points so

that correlation to all low-fidelity points is always above a high and predefined threshold,

and no waste of budget is allocated to ’redundant’ design points. By following such a

procedure, the expected result is preserving correlation Corr2[Z, Y ] above a predefined

threshold ρ in the same time that the value of N (number of simulation output allocated

at each design point) is increased. The main goal is to reduce the MSE in (3.9).
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3.4.1 The Procedure

The iterative allocation procedure is based on the two steps described in Section 3.2.1.

The main difference is that simulation outputs of low-fidelity points are generated before

generating outputs of design points. In this way, an estimated correlation between points

can be used to guide the definition of design points. One or more low-fidelity points are

iteratively selected and promoted to design point. The steps are as follows:

Defining low-fidelity points

Let L be the number of low-fidelity points, and let B be the total simulation budget.

Then, the simulation budget allocated to each low-fidelity point is n = bB/(2L)c. Note

that the simulation budget to be allocated among design point (B/2) is equal to the

simulation budget allocated among low-fidelity points. Choose a set of low-fidelity points

X = {x1, ..., xL} in a way that these points are well distributed in the design space. For

example, using Latin hypercube technique (see Glasserman (2004) for details).

Simulation at low-fidelity points and definition of design points

Differently from Section 3.2.1, the outputs simulated at low-fidelity points are now stored

in a database Y. The elements of this database are used to compute the correlation between

already selected design points and low-fidelity points. If correlations of a particular low-

fidelity point to all already selected design points are under a predefined threshold ρ, then

this low-fidelity point is selected as design point. The set of design points and its size are

defined when the procedure is completed. The scheme version of this step is given below.

Simulation Algorithm at Low-Fidelity Points

0 Generate a set {w1, ..., wn} according to the underlying probability measure.

1 Let I be a vector to store the index of low-fidelity points promoted to design-points.

Start with I = {1}. Let K be the size of this vector, starting with K = 1.

1 For l = 1, ..., L
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1.1 Perform a simulation effort n at low-fidelity point xl generating

Yl = {Y (xl, w1), ..., Y (xl, wn)}

and store these outputs in a n× L database Y to enable retrieval.

1.2 For k = 1, ...,K compute the correlation between outputs from current low-

fidelity point xl and already selected design points:

C(k) = Corr[Yl, YI(k)].

1.3 If no element of C is above correlation threshold ρ, add index l to set I, and

let K = K + 1.

Simulation at design points

In this step, the goal is to estimate the control mean of each design point. Let us name

the design point set as X̃ = {x̃1, ..., x̃K}, where x̃1 = x1, x̃2 = xI(2), ... , x̃K = xI(K). The

simulation budget allocated to each design point is N = bB/(2K)c. The control mean is

estimated with total budget of N + n because we can use the outputs from database Y

of promoted low-fidelity points. The corresponding scheme version of this step is given

below.

Simulation Algorithm at Design Points

0 Generate a set {w1, ..., wN} according to the underlying probability measure.

1 For k = 1, ...,K

1.1 Perform a simulation with effort N at design point x̃k generating

{Y (x̃k, w1), ..., Y (x̃k, wN )}.
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1.2 Compute the estimator

µ̂(x̃k) =
1

N + n

[
n∑
i=1

YI(k)(i) +
N∑
i=1

Y (x̃k, wi)

]

1.3 Compute the ordinary sample average

¯̃Yk =
1

n

n∑
i=1

YI(k)(i).

Estimation at low-fidelity points

In this step, the objective function value at each low-fidelity point is estimated. A scheme

version of this step is given below.

Estimation Algorithm at Low-Fidelity Points

1 For l = 1, ..., L

1.1 Using the database Y, compute the following sample average

Ȳl =
1

n

n∑
i=1

Yl(i).

1.2 Set

k∗ = arg max
k=1,...,K

Corr[YI(k), Yl].

1.3 Compute the CV coefficient:

β̂ =
Cov[YI(k∗), Yl]

Var[YI(k∗)]
.

1.4 The estimator of E[Y (xl)] is given by

Ŷ (xl) = Ȳl − β̂
(

¯̃Yk∗ − µ̂(x̃k∗)
)
.
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3.4.2 Experimental Results

We illustrate the application of an iterative allocation in CV metamodeling using three of

previously discussed problems: the welded beam problem, the Asian call option problem,

and the M/M/1 queue problem.

Experiment 1 - welded beam problem

When the stochastic objective function has noise in an additive form, the induced correla-

tion between design points and low-fidelity points in the CV metamodel is 1. Thus, there

is no need to have more than one design point as option to be used as control. It indicates

that the simulation budget distribution among design points can be improved. That is, if

the available budget to all design points is allocated in only one making the value of term

N increase, the performance of CV Metamodeling is expected to improve.

Figure 3.11: Performance measures of standard CV metamodel, and CV metamodel with
iterative allocation (ρ = 0.95) after 25 replications - welded beam problem with variance
scenario ’L+Ho’

Figure 3.11 shows that the main gain applying the iterative CV metamodel in a problem

with additive noise is on robustness of the algorithm. It can be explained by noting that

the variance of control mean estimate µ̂ has decrease because N increased. That is, we

are allocating more simulation budget to the set-up phase of database control variates.

Therefore, the resulting variance of estimate at low-fidelity points is also reduced. The

effect is a gain in the ability of the CV metamodel in consistently achieving good estimates

of the objective function at different replications.

Experiment 2 - Asian call option

The second experiment we use to illustrate the effects of an iterative allocation rule of
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simulation budget on the control variates metamodel regards the Asian call option. We

conduct 25 replications of the standard procedure of CV metamodel, and the CV meta-

model with iterative allocation with correlation threshold of ρ = 0.95.

Figure 3.12: Histograms of correlation between design points and low-fidelity points with-
out iterative allocation (right panel), and with iterative allocation (left panel) - Asian Call
Option problem

Figure 3.12 shows histograms of correlation between design points and low-fidelity

points. We can see that when iterative allocation is applied to CV metamodeling, the

frequency of correlations between 0.98 and 1 is increased. As consequence, the frequency

of correlations that are close to 1 decreases. It is a direct result of choosing a smaller set of

design points. Since the size of control candidates is smaller, the correlations between

design and predication points are expected to decrease. However, such a decrease is

controlled because there is a lower bound (i.e., a threshold) that guarantees a minimal

correlation factor.

Figure 3.13: Performance measures of CV Metamodeling and CV Metamodeling with
iterative allocation (ρ = 0.95) - Asian Call Option problem

At the same time, we observe that the results illustrated in Figure 3.13 indicates that

the impact of such decrease in induced correlation has no significant effect on local and

global performances of the CV metamodel. There is a gain achieved by increasing the

sample size N in the set-up phase of database control variates. Such a gain comes with
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a cost of selecting a smaller set of design points, and thus decrease correlation factor.

However, experimental results show that the gain in robustness compensates the loss in

correlation strength. Similarly to the welded beam example, the main gain of iterative

allocation in the CV metamodel is on robustness.

Experiment 3 - M/M/1 queue

Although the nature of noise in the M/M/1 queue problem has different characteristics

from the noise of the Asian call option problem, their performance results when applying

iterative allocation to CV metamodeling are similar (see 3.13 and 3.14).

Figure 3.14: Performance measures of CV Metamodeling and CV Metamodeling with
iterative allocation (ρ = 0.95) - M/M/1 problem

Figure 3.15: Histograms of correlation between design points and low-fidelity points of
standard control variates metamodel (right panel), and iterative allocation with ρ = 0.95
(left panel) - M/M/1 queue problem

The main difference can be seen at Figure 3.15. The minimum correlation using CV

metamodel is close to 0.96, whereas it is close to 0.97 in the iterative allocation. Exper-

imental results show that Iterative allocation CV metamodel can improve not only the

choice on set size of design points, but also their locations. In this example, the variance

of Y is larger at low values of X, and correlation drops more quickly at this region. There-

fore, design points are selected closer to each other in the region with larger variance, and

farther in the regions with smaller variances.
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The results from the three experiments corroborates to the argument that the per-

formance of CV metamodel can be significantly improved by choosing the set size and

location of design points (or controls) based on the correlation among prediction points.

In particular, the procedure we propose for choosing the design points aims at increasing

the sample size N in the set-up phase of the database control variates by discarding redun-

dant control candidates. Therefore, the main objective is to better estimate control means

in (3.10) of the CV metamodel algorithm (i.e., decreasing the underlying error EW[Z]−E[Z]

from equation (3.7) of database control variates’ algorithm).

We propose a correlation threshold (ρ) that guarantees a minimal strength between

correlation of design and prediction points. It ensures a good performance of the CV

metamodel while redundant design points are discarded. The main gain of using our

procedure for choosing design points is a significant improvement in the metamodel’s

robustness. That is, the ability on consistently achieving a good estimate of the underlying

stochastic function at different replications.

3.5 Final Discussion

In this Chapter, we introduce a novel metamodeling formulation based on the variance

reduction technique of control variates. We argue that our control variates metamodel

is an efficient method, which requires little input parameter and is flexible enough to

be applied to a range of different problems such as queue’s and path-dependent options.

The indicators of metamodel performance include measures of local and global accuracy,

robustness and efficiency. Experimental results show that control variates metamodel out-

performs stochastic kriging (which is current the most popular metamodeling framework)

in canonical problems raised from real metamodeling applications.

In addition, we extend the multiple control variates analysis of Rosenbaum and Staum

(2016). We carefully examined the presence and effects of multicollinearity in the control

variates metamodel. Strong multicollinearity, which may arise when common random

numbers are used, results in large variances and covariance for least-squares estimators

of regression coefficient. We show that the use multiple controls, although it may seems

to be attractive, has significant consequences in estimating the CV coefficient β̂ due to
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multicollinearity effects. It has a direct impact on the four performance measures, in

particular at robustness.

Moreover, we develop an adaptive scheme that dynamically selects design points to

better allocating simulation budget, guided by correlation among low-fidelity points. The

selection criterion takes into consideration not only the amount of design points, but also

their location so that the correlation between controls and prediction points is always above

a predefined threshold. Results show that the main gain of using the iterative allocation

rule is in prediction robustness.

As future work, we note that the performance sensibility to the available simulation

budget must be evaluated. It is expected a worse performance of CV metamodel in a small

simulation budget because the estimation of control means depends on a large enough sam-

ple size. Regarding deriving the approximate interval of confidence of the CV metamodel,

we believe that such interval is of the nature of the database control variates one, which

can be assessed by (3.9).

Regarding the complexity of the CV metamodel, one can find a discussion on the

computational cost of database control variates in Borogovac and Vakili (2008). In the

latter discussion, the sample sizeN of setup stage is assumed to be large so that the induced

bias raised from (3.7) can be disregarded. In our CV metamodel, one cannot make such

assumption because in this case N is just “large enough” so that the bias from setup

stage is compensated by the variance reduction rate from estimation stage. Therefore, we

believe that the complexity of CV metamodel must be thoroughly investigated.

Another important analysis to be done is the prediction capacity of the control variates

metamodel outside the experiment design space. It is known that the performance of

response surface methodology may deteriorate significantly at outside points. The need

of a function trend is one of the causes of such a behavior, which is not expected in the

control variates framework. The latter formulation is not dependent on any auxiliary

function, only at the correlation between design points and prediction points. Therefore,

the CV metamodel performance at regions outside the experiment design that have high

correlations to design points should be good. Preliminary results of ongoing research shows

that the prediction capacity of CV metamodel at neighboring points is much better than

the one of stochastic kriging and response surface methodology.
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Chapter 4

Stochastic Optimization and

Control Variates

Variance reduction techniques are frequently used in problems where Monte Carlo simu-

lation is applied. It is worth noting that there are only a few (and very recent) stochastic

optimization studies making use/analysis of such methods, although many of them have

Monte Carlo simulations embedded in their algorithms. The need of more thorough anal-

ysis on the use of variance reduction technique in stochastic optimization is evidenced and

discussed in Chapter 2.

Stochastic optimization research applying variance reduction techniques include, but

are not limited to: Nelson and Staum (2006) and Tsai and Nelson (2010), where control

variates technique is employed to random and selection method; Anderson et al. (2006),

applying common random numbers and antithetic variates to scatter search method; and

Sen and Bhattacharya (2015), in which subset simulations and importance sampling is

employed to genetic algorithms. In Homem-De-Mello and Bayraksan (2015), one can find

a review on the use of variance reduction techniques in the stochastic optimization setting.

According to Borogovac and Vakili (2008), a critical barrier to finding effective con-

trols (and consequently applying control variates techniques) is that control means needs

to be available to the user (i.e., known, which is the case of Nelson and Staum (2006) and

Tsai and Nelson (2010)). In database Monte Carlo (Borogovac and Vakili (2008)), this

requirement is no longer needed. The main idea is that “computational effort invested
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in one estimation problem may lead to more precise or computationally efficient estima-

tors for related problems”. In our view, many stochastic optimization techniques involve

estimating the same response surface under different configurations of decision variables.

One may use the already existing knowledge of the response on set of decision variables

to improve (the accuracy or the efficiency) the estimate of response at other sets by using

database Monte Carlo.

The main contribution of this Chapter is to propose a hybrid formulation, resorting

to database control variates (a variation of database Monte Carlo proposed in Zhao et al.

(2007), Borogovac and Vakili (2008) and Borogovac (2009)) to improve the performance

of a random search method named adaptive hyperbox algorithm (AHA) proposed in (Xu

et al. (2013)). As remarked in Chapter 2, random search methods have been used as

tool to provide an approximate solution (i.e., best solution found as opposite to optimal

solution) at high complexity problems such as NP-hard problems.

It is worth mentioning that our hybrid proposal is general, in the sense that it can

be employed to a larger set of stochastic optimization methods. That is, our formulation

can be easily adapted to many stochastic optimization methods other than random search

methods. In the AHA method, likewise in many discrete stochastic optimization methods,

some solution points (decision variables) can be revisited many times. That is, there are

some points in the design space where more simulation outputs have been sampled than

others. As the algorithm runs, more simulations can be taken in a particular solution

point. The novelty of our hybrid method is the use of outputs from points with many

samples to improve the efficiency (by reducing the variance of Monte Carlo simulations

via database control variates) in estimating the function value at other points which have

enough correlation associated.

To conduct the analysis, we use the five templates of stochastic optimization prob-

lems utilized in Xu et al. (2013). Moreover, we propose three different instances of each

template changing the noise configurations. These templates are interesting because they

reflex the challenges of many real applications, and embrace different variance structures

(homogeneous, heterogeneous, large, and small variances).

The results demonstrate that our hybrid formulation can be beneficial in finding the

optimal solution of a stochastic objective function, in particular at the case of large vari-
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ance. Moreover, the main gain of combining control variates technique to a random search

method is to improve the algorithm’s ability at consistently finding good solution at dif-

ferent replications (i.e., at different outcomes of noise). Experiments on high-dimensional

problems indicate that our hybrid formulation can scale-up well with the increase of deci-

sion variables.

The rest of the Chapter is organized as follows. The AHA and database control vari-

ates methods are introduced in Section 4.1. In Section 4.2, we introduce the AHA-DCV

formulation and discuss its main features. On going experimental results are given in

Section 4.3. Section 4.4 is dedicate to a future research and final discussion.

4.1 Preliminaries

We address the problem of optimizing an unknown response surface of a system modeled

by a stochastic simulation. System performance is a random variable Y (x) that changes

according to D-dimensional decision variables x. We assume the design space is θ = Φ∩ID,

where Φ is convex and compact, and ID denotes the D-dimensional integer lattice. If the

problem is a minimization one, formally we have:

minimize J(x) = E [Y (x)]

with x ∈ θ.

Next, we introduce the adaptive hyperbox algorithm proposed in Xu et al. (2010b),

which is an adaptive random search method under the metaheuristic umbrella. Then,

we introduce the database control variates by Zhao et al. (2007), Borogovac and Vakili

(2008), and Borogovac (2009), which is a flexible variance reduction technique. These two

algorithms constitute the foundations of our hybrid method, which is introduced in 4.2.

4.1.1 Adaptive Hyperbox Algorithm

First, let us start by describing how, in general, an adaptive random search algorithm for

discrete stochastic optimization operates. The key element is to construct a most promising

area (MPA) at each iteration. That is, defining a set of feasible solutions that are more
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likely to be the optimal one. The main difference between algorithms is how this MPA is

constructed. Aside the MPA, two main procedures take places: a sampling procedure, and

a estimation procedure. The sampling procedure consists in, at each iteration, randomly

selecting a set of feasible solutions from the MPA. To accomplish such a task, a probability

distribution defined on the MPA is used. For example, a uniform distribution, in which

all solutions in the MPA are equally likely to be chosen. The size of MPA is expected to

decrease as the algorithm evolves. Therefore, it is possible that there are duplicates in

the set of selected solutions, and they must be removed. In the estimation procedure, the

performance of the system is evaluated multiple times. That is, a number of outputs are

sampled at each solution in the selected set. These outputs are stored. The performance

is estimated by an ordinary average using the total number of outputs that a selected

solution has received up to the current iteration.

We observe that our proposal formulation links the estimation procedure of an adaptive

random search algorithm to database control variates. The main goal is to reduce the

variance (i.e., to improve efficiency) in estimating the system performance at solutions with

fewer samples by using the outputs of solutions that have received a sufficient amount of

samples. We continue on building the intuitions behind our hybrid formulation in a further

discussion at Section 4.1.2, when the database control variates is introduced.

Now, let us introduce AHA, which is an adaptive random search algorithm for solving

high-dimensional discrete optimization problem via simulation models proposed in Xu

et al. (2013). It constructs a most promising area (MPA) that takes the form of a hyperbox.

Let x be a visited solution, with x(d) be its dth coordinate for d = 1, ..., D. The current

best solution is labeled as x̂∗k. Let I (k) be the set of unique sampled solutions up to

iteration k. Let Lk = (l
(1)
k , ..., l

(D)
k ) and Uk = (u

(1)
k , ..., u

(D)
k ) be respectively the lower and

upper dimension bounds of the MPA at iteration k = 1, ...K, where

l
(d)
k = max

x∈I (k), x6=x̂∗
k

{
x(d) : x(d) < x̂

∗(d)
k

}
if it exists; otherwise l

(d)
k = −∞, (4.1)

and similarly

u
(d)
k = min

x∈I (k), x6=x̂∗
k

{
x(d) : x(d) > x̂

∗(d)
k

}
if it exists; otherwise u

(d)
k =∞. (4.2)
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The hyperbox is given by

Hk =
{
x : l

(d)
k ≤ x(d) ≤ u

(d)
k , d = 1, ..., D

}
, (4.3)

and the MPA at iteration k is defined by Ck = Hk ∩ θ. The AHA algorithm is described

below

Adaptive Hyperbox Algorithm

0 Let x0 be a starting solution provided by the user. Set the iteration counter k = 0.

Let I be the set of unique sampled solutions on iteration k starting with I (0) =

{x0} and x̂k
∗ = x0. Let Ek be the set of solutions to be evaluated at iteration k,

starting with E0 = {x0}. For simplicity, take s observations from x0. Let nk(x)

denote the total number of simulation outputs x has received up to iteration k. Set

n0(x0) = s, and calculate the ordinary average Ȳ0(x0).

1 Let k = k+1. Determine Lk (lower dimension bounds in 4.1), Uk (upper dimension

bounds in 4.2), Hk (hyperbox in 4.1) and the MPA Ck = Hk ∩ θ (for k = 1,

Ck = θ ). Let m denote the number of solutions to be randomly chosen from the

MPA. Choose xk1, ...,xkm independently from Ck using, for simplicity, a uniform

distribution. Remove any duplicates from xk1, ...,xkm, and let Ik be the remaining

set. Update the set of unique sampled solutions I (k) = I (k − 1) ∪Ik.

2 Let Ek = Ik ∪ {x̂∗k−1}. For all x ∈ Ek, take s simulation observations, update total

number of samples nk(x) = nk−1(x) + s, and update the ordinary average Ȳk(x)

using all samples.

3 Let x̂∗k = arg minx∈Ek
Ȳk(x).

4.1.2 Database Control Variates

In Chapter 3, we introduced the classical control variates, which is one of the most effec-

tive and broadly applicable variance reduction technique for improving the efficiency of
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Monte Carlo simulation (see Glasserman (2004) for details). In section 3.1, we presented

a key assumption of control variates technique, which is the requirement of known control

means. Usually, the set of control variables Z that are very informative about the variable

of interest (Y ) typically contains the same complexity as Y . That is, typically E[Z] is

also unknown, which hinders the applicability of control variates technique. One flexible

approach that relax this assumption is database control variates, proposed in Zhao et al.

(2007), Borogovac and Vakili (2008), and Borogovac (2009).

There are two stages in the database control variates: the set-up stage where control

means (E[Z]) are defined, and the estimation stage where the mean of variable of interest

(E[Y ]) is estimated.

In the set-up stage, N outputs of control variable Z are generated via Monte Carlo

simulation. Suppose we can model Z as a stochastic function of w, the latter representing

the underlying noise. That is, we generate a set w1, ..., wN , of i.i.d. random variables

according to the underlying probability measure P defined on Z. Then, we generate the

set of outputs Z(w1), ..., Z(wN ). The noise samples must be stored into a database W to

enable retrieval in the estimation stage. Outputs of Z may also be stored in a database

Z, which is advantageous in simulations with a high cost per sample (the case of many

simulation models). The control means computed in the set-up stage is given by the

following ordinary average:

µ̂ =
1

N

N∑
i=1

Z(wi). (4.4)

The estimation error µ̂−E[Z] is fixed, unknown and E[µ̂] = E[Z] (for details, see Borogovac

(2009)). As remarked in Borogovac and Vakili (2008), µ̂ can be viewed as the expected

value of random variable Z restricted to the probability space W (the database containing

noise samples) with respect to a uniform measure PW on this discrete probability space.

That is,

µ̂ = EW[Z],

where EW denotes expectation with respect to PW.

For this reason, in the estimation stage, the underlying probability measure P is re-
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placed by the uniform measure PW with probability space W, where

PW(w) =
1

N
, ∀ w ∈ W.

Therefore, let us denote a vector of noise w = (w1, ..., wn)> as the n uniformly se-

lected elements from W. Let us now retrieve from Z the corresponding vector Z =

(Z(w1), ..., Z(wn))>, and compute the ordinary sample average Z̄. Accordingly, evalu-

ate the vector Y = (Y (w1), ..., Y (wn))> and compute the ordinary sample average Ȳ . The

estimated coefficient of database control variates is the classical control variates one:

β̂ =
Cov[Z,Y ]

Var[Z]
. (4.5)

The database control variates estimator is given by:

Ŷ (β̂) = Ȳ − β̂(Z̄ − µ̂).

The mean squared error of the database control variates estimator using the classical

CV coefficient in (4.5) is given by:

MSE(Ŷ (β)) =
Var[Y ]

n

(
1− Corr2[Z, Y ]

)
+

Var[Y ]

N
, (4.6)

which is the variance of the classical control variates estimator plus a term (Var[Y ]/N)

that arise from the error EW[Z]− E[Z].

In the previous section, an adaptive random search was introduced. In this algorithm,

the total number of samples is different between solutions. That is, as the algorithm

evolves, some solutions receive more simulation outputs than others. In our proposal

formulation, which is described in the next section, we label solutions that have a total

simulation output higher than a sample size threshold as control candidates. That is,

we take solutions with a large sampled size as candidates to play the role of control

variables Z. Then, if the correlation between a solution to be sampled at current iteration

and a control candidate is above a correlation threshold, we apply the database control

variates technique to reduce variance of estimated system performance at the solution to
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be sampled. That is, we see solutions to be sampled as potential variable of interest Y in

the database control variates context.

4.2 The AHA-DCV Fomulation

In this section, we propose our hybrid formulation (named AHA-DCV) for adaptive ran-

dom search algorithms using database control variates for improving the estimation of

system performance. We present a scheme of the AHA-DCV algorithm bellow, and after

we discuss its main features.

Adaptive Hyperbox Algorithm with Database Control Variates (AHA-DCV)

0 Set a correlation threshold %. Let x0 be a starting solution provided by the user. Set

iteration counter k = 0. Make the set of unique sampled solutions as I (0) = {x0}

and x̂∗k = x0. Let the set of solutions to be evaluated at current iteration start as

E0 = {x0}. Let p be the number of noise sources. Generate η p-dimensional vectors

of noise {w1, ...,wη} according to the underlying probability measure P defined on

Y . Store the noise vectors into a database W to enable retieval. Take η observations

{Y (x0,w1), ..., Y (x0,wη)}, also store these simulation outputs at Y. Set n0(x0) = η,

and calculate the ordinary average Ȳ0(x0).

1 Let k = k + 1. Determine Lk (lower dimension bounds of MPA in 4.1), Uk (upper

dimension bounds of MPA in 4.2), Hk (hyperbox in 4.3) and MPA Ck = Hk ∩θ (for

k = 1, Ck = θ ). Choose xk1, ...,xkm independently from Ck using, for simplicity, an

uniform distribution. Remove any duplicates from xk1, ...,xkm, and let Ik be the

remaining set. Update the set of unique sampled solutions I (k) = I (k − 1) ∪I .

2 Let the ith control candidate x
(i)
CV be the ith visited solution listed in I (k− 1) with

nk−1 ≥ η, i = 1, ..., I, I being the number of visited solution that have been sampled

more than η times. Let Ek = Ik ∪ {x̂∗k−1}. For all x ∈ Ek:

2.1 Take s simulation observations at x using as noise the corresponding vector of

random variables w at W. That is, recover from W the elements at positions a =
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nk−1(x)+1 to b = nk−1(x)+s so that common random number are used among

all sampled solutions. Compute and store the vector of observations Yab(x) =

(Y (x,wa), ..., Y (x,wb))
>. Update total number of observations nk(x) = b, and

update the ordinary average Ȳk(x) using all b observations.

2.2 If x = x
(i)
CV for any i, go to the next element of Ek. Else, compute

ρ(i) = Corr[Y1b(x), Y1b(x
(i)
CV )] ∀ i = 1, ..., I.

Let i∗ = arg maxi=1,...,I ρ
(i). If ρ(i∗) < %, go to the next element of Ek. Else x 6=

x
(i)
CV for all i = 1..., I, and ρ(i∗) ≥ %. In this case, update the ordinary average

Ȳk(x) = Ŷ (x, β̂) using the following database control variates estimator:

Ŷ (x, β̂) = Ȳ1b(x)− β̂
[
Ȳ1b(x

(i∗)
CV )− Ȳk−1(x

(i∗)
CV )

]

where

β̂ =
Cov[Y1b(x), Y1b(x

(i∗)
CV )]

Var[Y1b(x
(i∗)
CV )]

.

3 Let x̂∗k = arg minx∈Ek
Ȳk(x).

The algorithm starts with a user choice on two parameters. First % is chosen, a correla-

tion threshold between control and variable of interest. Because control variates efficiency

depend on a high correlation factor (see (4.6)) and is very sensitive to it, usually % > 0.9

is an acceptable measure. Taking a very high threshold may discard “good” controls.

On the other hand, taking a low correlation threshold may lead to poor control variates

estimations (see Glasserman (2004) for details).

The second parameter is η, the minimal sample size of control candidates. Parameter

η is direct related to the sample size N at the set-up stage of database control variates.

The larger η is, the more accurate is the control mean (see (4.4)). Let us label the total

number of outputs taken at any control candidate i = 1, ..., I as N (i) = nk(x
(i)
CV ). Since

the sample size of all control candidates must be equal or larger than η (i.e., N (i) ≥ η for

all i = 1, .., I), this parameter has relevant impact on algorithm’s performance (see (4.6)).
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Similarly, a small η may also lead to poor control variate estimations because it can

increase the error EW[Y (x
(i)
CV )]−E[Y (x

(i)
CV )], for all i = 1, ..., I (see 4.6). It is important to

note that the sample size of control candidates N (i) can increase with iterations. Depend-

ing on response surface (system performance function) characteristics, a solution may be

visited many times, which can improve the AHA-DCV performance by better estimating

control means.

The AHA-DCV formulation requires storing noise vectors in a database for two reasons.

First, to enable the problem transformation from probability measure P to PW as required

by database control variates. Secondly, to enable the use of common random numbers

among simulations, inducing higher correlation among the outputs of controls (Y (x
(i)
CV ,w),

w ∈ W) and variables of interest (Y (x,w), x ∈ Ek and w ∈ W). However, storing w

requires memory space, which grows linearly with total simulation budget. It is important

to note that although storing outputs Y (x,w) on the database Y can be advantageous in

a simulation with a high cost per sample, it is not an algorithm’s requirement.

We observe that it is a choice to start the algorithm by taking η observations at initial

point x0. Depending on the response surface, the algorithm can start by taking only

s << η samples at initial point and wait until a solution is visited more than η times

to have the first control candidate. However, there is no guarantee that any solution

will receive that many observations in this case. That is, there is no guarantee that a

control candidate will be found until is termination if n0(x0) = s. As consequence, the

performance of our hybrid algorithm AHA-DCV would be exactly the same as stand alone

AHA one because there is no available control.

Up to this moment, no special stooping rule has been discussed. We assume the

algorithm stops when total simulation budget is consumed. We can add a random jump to

avoid local minimal at any solution x ∈ θ if no performance improvement was experienced

in the last iterations. There are many other more sophisticated strategies to avoid getting

trapped at local minima. Because it is not the focus of this research to evaluate different

strategies that avoid local optimum, we use this simple one without loss of generality.
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4.3 Numerical Experiments

In order to provide a proper analysis of an adaptive random search method combined to

a variance reduction technique, we use as template the test problems utilized in Xu and

Nelson (2013) and Xu et al. (2010b) (all discrete problems from stochastic optimization).

We give a description of these problems and real application examples that can be illus-

trated by these templates. For each problem, we tested three instances to observe the

method behavior at different variance magnitudes and topology. The default for sample

size threshold is η = 100, and for correlation threshold is % = 0.9. The default for sample

size is s = 10, and for size of selected solutions from most promising area is m = 10.

Since computational effort is critical to evaluate the method’s efficiency, we run both

stand alone AHA and AHA-DCV under a range of simulation budged. A total of 100

replications are taken for each tested problem under each simulation budget. Four perfor-

mance measures are used to conduct the analysis. They are adapted from Li et al. (2010).

The first one is the average among replications of best solution found, which reflects the

global accuracy in the search of optimum. The second one is the standard deviation among

replications of best solution found, which reflects the model robustness or ability to con-

sistently achieve similar accuracies at different replications. The third one is best solution

found among replication, and the fourth one is the worst solution found among replication.

They reflect the presence of good/poor solutions and its range.

4.3.1 Inventory Problem

We start with the inventory problem, which delivered the best AHA-DCV performance

compared to stand alone AHA among all canonical examples. It is an inventory man-

agement problem with dynamic consumer distribution adapted from Mahajan and van

Ryzin (2001). In this problem, the analytic optimal solution is not available, which is the

most common case in real stochastic optimization applications. It is a one-shot inventory

stocking decision taken by a retailer for D product variants at the beginning of a season.

Let xd for d = 1, ..., D be the initial inventory level. It is assumed that replenishment is

not allowed, and there is no salvage product value. Pricing is assumed to be an exogenous

decision. The unit price of each variant is labeled as pd, and its cost is cd. The objective is
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to maximize the expected proft (total revenue minus total cost). The number of customers

follows a Poisson distribution. Each customer t = 1, ..., T chooses from the variant that

are in-stock when he/she arrives and there is a no-purchase option. Customer’s choice is

modeled by a multinomial logit model Utd = ad − pd + ξtd, where ad is a variant quality

index, and ξtd follows a Gumbel distribution. Thus, there are two sources of noise in this

system: the total number of customers; and a noise that is added to the customer’s utility

in an additive form.

In our tests we have: D = 6, pd = 6, cd = 3, a0 = 4 (variat quality index of no-purchase

option), and ad = 12.25− 0.5(d− 1) for d = 1, ..., D. There are three instances:

(i) 0 ≤ xd ≤ 100, T ∼ Poisson(100), and ξtd ∼ Gumbel(1, 1).

(ii) 0 ≤ xd ≤ 100, T ∼ Poisson(100), and ξtd ∼ Gumbel(0.5, 0.5).

(iii) 0 ≤ xd ≤ 1000, T ∼ Poisson(1000), and ξtd ∼ Gumbel(0.5, 0.5).

Because no optimal analytic solution is known, an estimate of “true” value is taken based

on 10,000 replications for each algorithm run (i.e., for each best solution found).

Figure 4.1 shows performance plots for the three instances of the inventory management

problem. The first row of panels shows that AHA-DCV converges to a better solution faster

than stand-alone AHA for all three problem’s instances. It is interesting to note that even

in the range of small budget (B ≤ 10, 000), control variates method delivered a better

average best solution. That is, the gain in efficiency by using database control variates

is significant even in a scenario where the total number of outputs sampled at control

candidate points may not be very large and therefore there are relatively small number of

outputs to compute control means.

The AHA-DCV accuracy performance is, on average at all range of simulation budget,

4.9%, 6.5%, and 6.3% better than stand-alone AHA respectively for each instance. The

AHA-DCV accuracy performance is, at the best, 9%, 12%, and 8% better than stand-

alone AHA respectively for each instance. It occurred when the simulation budget is 4000,

4000 and 7000 respectively for each instance. That is, within relatively small simulation

budgets. As budget increases, the stand alone AHA performance approximates AHA-

DCV. Because there are more simulations available, eventually stand alone AHA ends up

finding a solution that is as good as the one in AHA-DCV.
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Figure 4.1: Performance measures for the Inventory Management problem

Moreover, there is a significant difference in the robustness performance, as showed in

the second row in Figure 4.1. We recall that the robustness performance is computed as the

standard deviation of the objective function at best solution found. In the first and second

instances, the major difference occurred within an intermediary budget level (5, 000 ≤

B ≤ 20, 000). On the other hand, the major difference between method’s robustness in

the third instance is within the largest budget, with 40,000 outputs. We observe that

the third instance is the one with lower variance. Further, we make a discussion on both

method behaviors at the different instances.
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This significant gain in robustness achieved by the AHA-DCV is directly reflected in

the worst replication measures, showed in the fourth row at Figure 4.1. On average, the

performance of AHA-DCV in robustness is 56%, 66% and 38% better that stand alone

AHA. While best replication (fifth row at Figure 4.1) differences between the two methods

are not significant (AHA is 1.0%, 1.1%, and 0.2% better on average), the performance of

AHA-DCV in the worst replication draws attention (AHA-DCV is 148%, 501%, and 59%

better on average respectively).

That is a notable gain in robustness. It means that, in our experiment with 100

replications, the AHA-DCV has consistently found good solutions at all replications. As

opposite to it, in some replications, the solution found in stand alone AHA were very

poor in comparison to AHA-DCV. It is important to note that the noise vectors randomly

generated in each replication are the same for both stand alone AHA and AHA-DCV,

which guarantees a fair comparison of methods within a replication.

It is also worth noting that the overall performance of stand-alone AHA has improved

compared to the AHA-DCV in the third instance. Because the expected number of cus-

tomers is higher at this particular instance, it is expected that the problem variance

decrease. That is, a lower variance is expected in simulation experiments where the run

length is larger. This fact indicates a better performance of AHA-DCV in environments

with large magnitude of variance.

After evaluating the performance measures of stand alone AHA and AHA-DCV at the

inventory management problem, we state that adaptive random search methods have a

potential to take advantage of database control variates. We observe an improvement not

only in the global efficiency at searching the optimum, but also a significantly improvement

in its robustness by consistently finding a good solution at different replications.

4.3.2 Multimodal Problem

The second problem is a multimodal function. A multimodal optimization deals with

searching multiple local and global optimal of many functions, in opposite to finding a

single optimal solution. A nice survey on stochastic optimization techniques for solving

multimodal optimization can be found in Dasa et al. (2011). According to this survey, it

may be interesting in real application problems to switch among local and global solutions
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without significantly perturbing the system performance (objective function).

“As practical example, consider the problem of locating the resonance points

in a mechanical or electrical system (Back et al. (1997)). If the fitness func-

tion gives a resonant amplitude of the system under particular conditions, one

may be interested in detecting all resonant frequencies with amplitudes above

a particular threshold and not simply the frequency of greatest resonance. Fre-

quencies of large resonance need to be identified because the designer generally

wishes to minimize or maximize all such resonances, depending on the appli-

cation.”

We test the following two-dimensional multimodal function utilized in Xu et al. (2013),

which is an adaptation of the multimodal function F2 proposed by Deb and Goldberg

(1989). The function is given by:

g(x1, x2) = − (F (x1) + F (x2)) ,

where

F (x) =
sin6(0.05πx)

22((x−10)/80)2
,

x1, x2 ∈ θ = (0, 100), x integer.

There are 25 local optimum and the global optimal function value is −2. We propose and

test three problem instances, which are:

(i) minx E[g(x1, x2)+N (0, 0.3)], with a threshold of control mean sample size of η = 100.

(ii) minx E[g(x1, x2) +N (0, 3)], with a threshold of control mean sample size of η = 100.

(iii) minx E[g(x1, x2) +N (0, 3)], with a threshold of control mean sample size of η = 500.

The first row in Figure 4.2 shows the performance on global accuracy, which is accessed

by the average of objective value at best solution found among replications for each of the

instances. In the first instance, the global accuracy in finding a good solution of AHA-DCV

is, on average, 0.9% better than stand alone AHA. Similarly to the inventory problem,

both methods performed close in the instance with lower variance (first instance). This
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Figure 4.2: Performance measures for the multimodal problem

behavior indicates that, in objective functions with small variance, the AHA ability at

finding a good solution approximates the one at AHA-DCV. In a environment with small

variance, there is no space to improve efficiency in the estimation of function value via

database control variates.

In the instances with larger variances (second and third), the AHA-DCV performance

on global accuracy is significant better than the stand alone AHA. On average, the AHA-

DCV is 15.8% and 14.4% better than stand alone AHA in the second and third instances

respectively. The AHA-DCV is, at best, 17.7% and 18.0% better than stand alone AHA
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in the second and third instances respectively. It occurred when the simulation budget

is 12,000 and 33,000 respectively for each of these instances. It indicates that, for the

multimodal problem with the specified variance of second and third instances, the stand

alone AHA requires a larger simulation budget to approximate the performance of AHA-

DCV in comparison to the inventory management problem.

We observe that in the experiments with smaller simulation budget, both stand alone

AHA and AHA-DCV performance in global accuracy was poor. It was expected because

the algorithms were not able to “walk” much. The interesting part is that, in spite of a

small samples in the set-up stage, (i.e., small total number of samples at control candidate’s

solutions) the error raised in computing control means was not large enough to impact the

AHA-DCV performance in comparison to the AHA performance. On average, AHA-CV

performance on global accuracy in the first instance is 0.9% better than stand alone AHA.

Regarding robustness performance, the AHA-DCV method performed on average 9.7%,

46.0% and 40.0% better than stand alone AHA in each instance respectively. It is inter-

esting to note that, even in the instance with lower variance, the robustness performance

of AHA-DCV is 9% better. It is a gain in robustness that cannot be neglected. On the

other hand, the gain in robustness in the second and third instances (which exhibits larger

variance) is remarkable. Again, this pattern is similar to the ones observed in the inventory

management problem. The use of database control variates to exploit the deviations on

outputs of most sampled solutions and guide a variance reduction in solutions with fewer

samples has a direct and positive impact on the variance of best solution found among

replications.

The third row in Figure 4.2 shows the best solution found among replications for each

simulation budget. In all cases, the best solution found is the optimal one. The fourth

low in Figure 4.2 shows the worst solution found among replications for each simulation

budget. In this measure, the performance of AHA-DCV is on average 11.2%, 569% and

96% better than stand alone AHA in each instance respectively. It indicates that the

interval of function value at solution found in each simulation budget is much tighter in

AHA-DCV than in stand alone AHA. The implications of these measures are very similar

to the implications of the robustness measure.

We note that in third instance, we increase the required total number of samples
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a solution has received to be selected as control candidate. The variance remains the

same as in the second instance. Therefore in third instance, a solution is classified as

control candidate if it has been observed at least 500 times. The standard threshold is

η = 100. The motivation to increase this sampled size is to observe how the AHA-DCV

performance is affected in the multimodal problem. The overall performance of AHA-DCV

in this instance is similar to, but a little worse than the second instance. The effects are

more evident within the interval of 3,000 to 15,000 of simulation budget. This behavior

indicates that establishing a high threshold on minimal number of samples a solution must

receive to become candidate may discard some good potential candidates. Moreover, it

also indicates that the gain in accuracy when computing control means is not sufficient to

overcome the loss of discarding potential control candidates.

The analysis of the multimodal problem corroborates with the final discussion on the

inventory management problem. For these two canonical examples, the performance of

our hybrid method overcame the one of a stand one adaptive random search method. A

considerable gain in both global accuracy and robustness is observed for simulation budget

larger than 4,000 outputs. Moreover, the AHA-DCV performance on multimodal problems

with larger variance in comparison to the one of stand alone AHA is noteworthy.

4.3.3 Powell Singular Function

The third tested problem is a four dimensional Powell singular function, introduced by

Powell (1962) as an unconstrained optimization problem. It is a classical test function for

global optimization techniques and is considered a difficult case (for details, see Steihaug

and Suleiman (2013)). The function is in the form of:

g(x1, x2, x3, x4) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4 + 1.

In the discrete case, this function has two local minima, and the global optimal function

value is 1. We assume that decision variable xi ranges from -100 to 100 for i = 1, ..., 4.

The three tested instances are:

(i) minx E[g(x1, x2, x3, x4) +N (0, 30)].
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(ii) minx E[g(x1, x2, x3, x4) +N (0, 3)].

(iii) minx E[g(x1, x2, x3, x4) +N (0, 3000)].

Figure 4.3: Performance measures for the Powell Singular Function

The first row in Figure 4.3 shows the plots of global accuracy for each instance. As

expected, the performances of both algorithms in this problem are very similar at instances

with small variances (first and second). On average, stand alone AHA performance on

global accuracy is 6.4% and 0.5% better than AHA-DCV at these two instances respec-

tively. Within a simulation budget of 1,000 (lowest) and 40,000 (highest) respectively, the

stand alone AHA achieved its maximum performance in comparison to AHA-CH (12.3%
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and 5.1% better respectively for each instance). On the other hand, AHA-DCV achieved

its maximum performance within a simulation budget of 8,000 and 24,000 outputs respec-

tively (6.7% and 7.5% better respectively for each instance).

It is worth to note a poorer AHA-DCV performance in global accuracy at the smallest

simulation budget (1,000 outputs) for all instances in the three test problems evaluated

up to this moment (inventory management, multimodal problem, and Powell singular

function). This behavior is a consequence of the choice on the sample size of initial solution

n0(x0) = η. In a scenario with very small simulation budget, the outputs allocated to

initial solution in order to guarantee at least one control candidate are worthless. That

is, in the case of very low budget, is better to make n0(x0) = s, which is the procedure

in stand alone AHA. The outputs saved by taking fewer samples in initial solution are

reallocated to the random search.

In the instance with higher variance (third instance), the AHA-DCV performance in

global accuracy overcame the stand alone one. If we consider a range of simulation budget

between 2,000 and 40,000 outputs (disregarding the lowest one of 1,000 outputs), the

AHA-DCV performance is 4.3% better on average. We observe that within simulation

budget of 1,000 outputs, stand alone AHA performed 16.2% better. Within a range

of simulation budget of 2,000 to 10,000 outputs, AHA-DCV performed 3.8% better on

average. Within a range of simulation budget of 11,000 to 20,000 outputs, AHA-DCV

performed 2.8% better on average. Within a range of simulation budget of 21,000 to 30,000

outputs, AHA-DCV performed 6.8% better. Finally, within a range of simulation budget

of 31,000 to 40,000 outputs, AHA-DCV performed 15.3% better on average. Therefore,

AHA-DCV performance is increasing as budget increases. It is expected that, similarly to

the inventory problem, the differences between both method’s performance increase from

a very low budget to an intermediary one. Then, from an intermediary budget to a very

large one, the differences between performances are expected to decrease.

The second row in Figure 4.3 shows that the performance in robustness is very similar

for both methods at all instances. On average, stand alone AHA is 0.4% better in the

first instance. In the second and third instances, AHA-DCV is on average 1.5% and

0.3% better respectively at these two instances. Directly related to this behavior is the

range of function value found among replications, illustrated in the third (best replication)
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and fourth (worst replication) rows. Regarding the best replication, stand alone AHA

performance is on average better in the first instance (2.5% better). In the second instance

(lowest variance), the performances on best replication are equal (both methods were able

to find the optimal solution in all range of simulation budget). In the third instance

(largest variance), AHA-DCV performance is 26.1% on average better.

Regarding the worst replications, stand alone AHA performed better on average at

all instances (0.2%, 1.4% and 10.7% respectively). It is interesting to note that a similar

behavior is not observed in the inventory management problem and in the multimodal

problem. For these latter test problems, the gains by utilizing AHA-DCV formulation in

robustness are remarkable. We observe that the magnitude of variance in all instances

in comparison to the function value is relatively small. A fact that corroborates with

is argument is that the performance of AHA-CV is better in the instance with higher

variance (third one), and also increases as function value at best solution found decreases.

4.3.4 High-Dimensional Problem

The fifth problem is a high-dimensional functions to compare stand-alone AHA and AHA-

DCV performance in high-dimensional space. The function is proposed in Xu et al.

(2010a), and it is designed as a test function to evaluate the impact of increasing di-

mension in a optimization algorithm. The high-dimensional function is of the form:

g(x1, ..., xD) = −α exp

[
−γ

D∑
d=1

(xd − λ)2

]
.

The response surface has the shape of an inveted multivariate normal density function

with a single optimal function value of −α. The feasible region is the hyperbox defined by

xd ∈

{
−ω

1/D

2
,
ω1/D

2

}
.

In our tests, we have: D = 20, ω = 1020, α = 10, 000, γ = 0.001 and λ = 0. The three

instances are:

(i) minx E[g(x) +N (0, 100)].

(ii) minx E[g(x) +N (0, 1000)].
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(iii) minx E[g(x) +N (0, 10000)].

Figure 4.4: Performance measures for the High Dimensional with 20 dimensions

The results illustrated in Figure 4.4 indicates that the performance of our hybrid

method can scales-up well with a high-dimensional problem. In line with previously tests,

the AHA-DCV method works better than stand alone AHA in the instances with larger

variance (second and third one). Similarly, both algorithms performance are very close at

an instance with small variance (first one). Moreover, the main gain exhibit by AHA-CV

in the high-dimensional experiment is the consistence at finding good solutions among

replications (i.e., in robustness).

The first row in Figure 4.4 shows the plots of global accuracy. AHA-DCV performance
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in this measure is 0.0%, 1.2% and 2.4% on average better than stand alone AHA respec-

tively for each instance. Although AHA-DCV method generates is a consistent gain in

global accuracy, the differences between both methods are not significant. However, it is

worth to mention that AHA-DCV performance at very low simulation budget is better

than stand alone AHA for the instances with higher variances. Such a behavior is not ob-

served in previously experiments (inventory management, multimodal problem and Powell

singular function). Therefore, it can indicate that AHA-DCV may be more suitable than

stand alone AHA for high-dimensional problems with large variances even in situations

with very small simulation budget.

In spite of a similar performance in global accuracy, the gain in robustness promoted by

AHA-DCV is significant. The second row in Figure 4.4 shows the results of each instances

at the latter measure. On average, AHA-DCV is 11.0%, 78.0% and 81.2% better than

stand alone AHA respectively for each instance. While the range of solution found by

stand alone AHA remains similar with the increase of simulation budget, the range of

AHA-DCV solutions consistently decreases. That is, the variance reduction provided by

the database control variates combined with the random search algorithm is notable even

in high-dimensional problems.

A direct effect of the gain in variance reduction is illustrated by the forth row in Figure

4.4. The second and third panels show that the worse solution found by AHA-DCV among

all replications approximates the optimal solution as budget increases. On the other hand,

the worse solution found by stand alone AHA remains the same as budget increases. As

illustrated in the third row of Figure 4.4, the best solution found by the both methods

among replications are very close within all range of simulation budget.

4.3.5 High-Dimensional Multimodal Problem

In the last template problem, algorithm performances are tested on the following high-

dimensional multimodal function:

g(x1, ..., xD) = −
D∑
d+1

{
α1 exp

[
−γ1 (xd − λ1)2

]
+ α2 exp

[
−γ2 (xd − λ2)2

]}
.
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In our tests, we have: α1 = 300, α2 = 500, γ1 = 0.001, γ2 = 0.005, λ1 = −38 and λ2 = 56.

The three instances are:

(i) g(x) +N (0, 1).

(ii) g(x) +N (0, 1000).

(iii) g(x) +N (0, 0.1).

Figure 4.5: Performance measures for the High Dimensional Multimodal with 20 dimen-
sions

The first row in 4.5 shows that the performance of both methods in global accurary are

very similar among all three instances. The AHA-DCV perforamance is 3.8% on average
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better than the one in stand alone AHA in the second instance, which ehibits a variance

much larger than the first and thrid instances. The differences in performance at the first

and third instances are lower that 0.001% on average. AHA-CV is, at best, 0.05%, 4.8%

and 0.01% better than stand alone within simulation budgets of 30,000, 40,000 and 35,000

respectively for each instances. AHA is at best 0.4%, 0.6% and 0.03% better than stand

alone within simulation budgets of 1,000, 1,000 and 1,000 respectively for each instances.

Likewise in global accuracy measure, both methods performance in robustness at the

instances with lower variances are very similar. Stand alone AHA performance in ro-

bustness is 1.6% on average better than AHA-DCV in the first instance, and AHA-DCV

performance is 1.5% on average better than stand alone AHA in the thrid instance. In the

instance with higher variance (second instance), AHA-DCV performance in robustness is

27% better on average. Although the gain is robustes in this example is not as large such

as in previously examples, the AHA-DCV ability at consistently finding a good solution

among replication is significative in the instance with larger variance.

Following the trend on all examples, the gain in robustness is a consquecence of AHA-

DCV capacity to find good solutions among all replications. We observe that, as reported

in the plots on third and fourth rows in Figure 4.5, the best solution found among repli-

cations by both algorithms are very similar. The main difference between methods is on

the worst solution found among replications at the instance with large variance (second

one). In this instance, the worst solution found by the AHA-DCV method is, on average,

20% better than the one found by the stand alone AHA.

All observations on the current test problems are in line with the other canonical

examples. We remark that AHA-DCV overall performance in the high-dimensional multi-

modal problem overcame stand alone AHA. It indicates that AHA-DCV formulation can

be benefitial even in a high-dimensional multimodal problem with considerable variance.

4.4 Final Discussion

In this Chapter, we present a novel formulation for improving the efficiency of a random

search method in solving stochastic optimization problems. We provide a framework that

allows the interconnection between a random search method (adaptive hyperbox algorithm
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- AHA) and a flexible variance reduction technique (database control variates). The result

is a hybrid method labeled as AHA-DCV. The essence of our approach lies in the use of

outputs from already sampled solutions to better estimate the response surface at solutions

to be sampled. The use of such available information, which usually is discarded in most

common techniques, has proven to be very useful for reduction the variance of best solution

found by the algorithm.

There is a consistent evidence throughout the canonical experiments discussed at Sec-

tion 4.3 that our hybrid method is more suitable than stand alone AHA for solving stochas-

tic optimization problems with large variances. The AHA-CV performance on global ac-

curacy (i.e., the ability of algorithm at finding good solutions on average) overcame the

stand alone AHA is the vast majority instances for all tests, in particular at those with

larger variances. Moreover, the gains in robustness (i.e., the ability of algorithm at consis-

tently find a good solution among replication) are notable. It indicates that the range of

solutions found by the AHA-CH is significantly tighter than the one in stand alone AHA,

in particular for the worst replication.

We remark that the hybrid formulation introduced in this Chapter can be easily

adapted to a vast of other stochastic optimization tools. However, its procedure may

vary depending on the underlying method. Key elements for adapting our formulation to

other stochastic optimization tool are: the sample procedure, the mechanism of optimal

search, and if the method addresses continuous or discrete. On going research include

adapting the AHA-DCV to simultaneous perturbation stochastic approximation, response

surface methodology and finite-difference stochastic approximation.

One possible limitation of our hybrid approach to stochastic optimization methods is

the requirement of using common random numbers among noisy sources. Depending on

problem complexity and nature, it may not be possible to use it in all sources of noise,

which can have a serious impact on the correlation magnitude between sampled solutions.

Another limiting aspect is the computational cost of storing the vectors of noise to enable

retrieval at each algorithm iteration. It may slow down computational time and may

require a large memory capacity, again depending on problem complexity and nature. It

may be that storing just initial seed of random generation might be enough to allow the

use of common random numbers.
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Although the discussed experiments provide rich insights, future research include the

analytical analysis, which is needed to deeper understand the behavior of a stochastic

optimization method embedded with a variance reduction technique. The development of

analytical properties at not only AHA-DCV, but also other stochastic optimization meth-

ods embedded with database control variates must be investigated. We suggest evaluating

the hybrid formulation at a very simple objective function, such as a quadratic one, to

observe fundamental behaviors.

Future theoretical analysis regarding the proposed hybrid formulation is twofold. First,

it is of great interest to derive the interval of confidence of the estimated function value at

sampled solutions. It is expected that such interval can be assessed by the mean squared

error of database control variates in (4.6). However, in the case of adaptive random search

algorithms, the sample size N in setup stage of database control variates can dynamically

change as the algorithm evolves. That is, N is not constant and can increase with iterations

because solutions can be revisited. Therefore, we must investigate how such interval of

confidence is affected as the random search algorithm evolves.

Second, the complexity of the hybrid algorithm is to be derived. The AHA complexity

is O(|L(k)| log(|L(k))) (see Xu et al. (2013) for details). Therefore, it is associated to the

size of the set of unique sampled solutions. On the other hand, the complexity of the

database control variates algorithm is associated with the number of controls (denoted by

I), sample size of setup stage (denoted by nk(xCV
(i))), and - likewise AHA - with the cost

of computing an output Y (x,w). We must investigate the connections between the two

algorithms to derive the order of complexity of the hybrid one.

We now make a discussion on specific challenges of the AHA-DCV formulation. First,

one must investigate if is there a more intelligent manner to choose initial point than

a pure random choice. The initial solution may the unique control candidate available if

solutions are not often revisited. Therefore, it would be good if initial solution were chosen

taking into consideration the correlation within the feasible space. Secondly, it may be

beneficial to investigate the choice on input parameters (initial sample size n0(x0), sample

size threshold η and correlation threshold %). For example, it may be interesting to let η

and % be dynamically chosen through iterations. Finally, a straightforward improvement

in AHA-DCV is to update current estimates in all/some solutions if a control candidate
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receive more samples. When more information about controls is available, the accuracy

on control means is improved. Therefore, the variance on estimates of the function value

is expected to decreases.
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Chapter 5

Optimization in High-Dimensional

Spaces

Let us begin by considering deterministic optimization algorithms. For example, con-

sider the basic steepest descent algorithm and a sample minimization problem, specified

as follows: Find x∗ ∈ Rd

J(x∗) = min
x∈Rd

J(x).

To simplify the discussion, assume such a global minimum exists and is unique. The

analysis of how well the steepest descent algorithm (and other minimization algorithms)

performs is often expressed in terms of the rate of convergence of the algorithm to the

minimum. In essence, this rate of convergence tells us how the algorithm behaves once

it has reached the vicinity of the optimum. The rate of convergence criterion does not

give us an idea of how the algorithm moves from an arbitrary starting point to somewhere

close to the optimum. One may argue that this latter criterion is an important measure

of the performance of the algorithm, perhaps more important than its rate of convergence

in practical contexts of specific applications. Let us refer to this second measure of per-

formance as finite time measure in contrast to the asymptotic convergence rate measure.

Furthermore, we would be interested in understanding how the dimension of the search

space, namely d, influences such a finite time measure.

Note that one possible reason for the selection of the rate of convergence criterion to
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assess the performance of optimization algorithms may be that this rate depends only on

the behavior of the cost function in the vicinity of the optimum while a finite time measure

depends on the global features of the cost function that are harder to characterize and

analyze.

Now let us turn to stochastic optimization problems and consider the counterpart of the

steepest descent algorithm in this context, namely the stochastic approximation algorithm.

In this case the gradient of the cost function can only be estimated and it always involves

some estimation noise. The setting, similar to the one we considered in the deterministic

case, can be described as follows: We are looking for x∗ in the search space Rd such that

J(x∗) = min
x∈Rd

E[L(x,W )],

where J , the cost function, is sufficiently well-behaved and the expectation is with respect

to the stochastic vector W . We assume that at any x we can estimate the gradient ∇J(x)

of the cost function. Let H(x,W ) be this estimator. Then, the stochastic optimization

algorithm is defined as follows:

xn+1 = xn − εnH(xn,Wn+1),

where, to ensure convergence, the sequence {εn;n ≥ 1} is required to satisfy (i) εn ≥ 0,

(ii)
∑∞

n=1 εn =∞, and (iii)
∑∞

n=1 ε
2
n <∞.

Note that condition (iii) implies that limn→∞ εn = 0. Therefore, the principle method

of dealing with estimation noise of the gradient in this approach is to gradually diminish

the effect of estimation noise using coefficients εn. Condition (ii) suggests that we should

not be reducing εn too fast so as to allow for the signal in the gradient to get us to the

optimum. Condition (iii) states that we should not be doing it too slowly so as to ensure

it does not lead us astray.

The key motivation in the work in this Chapter is to gain some seminal understanding

of the effect of the dimension of the search space on the finite time behavior of gradient-

based optimization algorithms. Given that in recent years in many application domains

108



ever more high dimensional problems are being considered, we believe such a study can be

beneficial. Our study is seminal in nature and to that end we consider the simplest possible

optimization problems that nonetheless captures some key elements of the influence of the

dimension of the search space on the performance of the algorithm.

The Chapter is organized as follows. In Section 5.1, we present the related literature

on optimization in high dimensions. Two elementary algorithms are introduced in Section

5.2, and the main analyzes in the effects of dimension on their performances are derived.

A final discussion and directions for future research are provided in Section 5.3.

5.1 Related Literature

In Shan and Wang (2010), a nice survey on modeling and optimization strategies to solve

high-dimensional problems can be found. This survey pointed out that research on this

topic is scarce and sporadic, partially due to its difficulty on the problem itself.

Strategies to tackle high-dimensionality include parallel computing (e.g., Wang et al.

(2013)), increasing computer power, reducing design space, screening significant variables

(e.g.,Chu et al. (2011b)), decomposing design problems into subproblems (e.g., Gardeux

et al. (2011) and Regis and Shoemaker (2013), mapping (e.g., Xu et al. (2013), (Jeff Hong

and Nelson (2006) and Hong et al. (2010)), and visualizing the variable/design space.

Other work on high-dimensional problems woth citing are: the robust optimization

study of Bandi and Bertsimas (2012); a differential evolution approach based on opposition-

based learning of Wang et al. (2011); and the swarm optimization approaches in Chu et al.

(2011a), Jia et al. (2011) and Imanian et al. (2014). Theses strategies tackle from different

angles the difficulties caused by the high-dimensionality.

According to Shan and Wang (2010), a deeper understanding of the high-dimensional

space is felt needed to develop more robust models. The limits of our imagination to

conceive more than 3-dimensional spaces hinders the development of intuitive sampling

approaches, and also hinders our understanding of such a vast space. In the latter survey,

two important questions are raised: (i) are there other properties and/or knowledge about

a high-dimensional space?; and (ii) and how to design sampling and modeling techniques

to take advantage of such a property?
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We aim to investigate the research gap highlighted in Shan and Wang (2010), that a

more in-depth theoretical study of high-dimensional space properties can guide the devel-

opment of more generic/sophisticate optimization techniques.

5.2 Elementary Algorithms

Consider the following simple deterministic optimization problem:

min J(x) = x>Qx, (5.1)

where x ∈ Rd and Q is a positive definite matrix. Problem (5.1) is an unconstrained

deterministic quadratic problem with optimal solution at x∗ = 0. Assume that in this

case we use finite-difference estimates of the gradient to be more in line with those more

general cases where computing the gradient of the cost function analytically is not feasible

and finite difference estimates are used. Note that the cost of estimating the gradient

corresponds to d + 1 function evaluations that increases linearly with d. We begin with

an algorithm that requires a minimum number of function evaluations, namely one, for

determining a potential direction for minimizing the cost function.

5.2.1 Algorithm 1 - Single Sample

We begin with the following simple random sampling algorithm:

Algorithm 1 - Single Sample

Step 0. Set iteration count k = 0. Let x0 be a starting point. Set J0 = J(x0).

Step 1. Randomly generate z, a jointly Gaussian random variable with mean 0 ∈ Rd and

covariance matrix I (identity d × d matrix). Then, the vector z/||z|| is uniformly

distributed over the surface of a unit d-ball.

Step 2. Let α be the step size of the algorithm. Set

J+
k = J

(
xk + α

z

||z||

)
.
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2.1. If J+
k < Jk, set xk+1 = xk + αz/||z||, and Jk+1 = J+

k .

2.2. Else, set

J−k = J

(
xk − α

z

||z||

)
.

2.3. If J−k < Jk, set xk+1 = xk − αz/||z||, and Jk+1 = J−k .

2.4. If J+
k , J

−
k ≥ Jk, set xk+1 = xk, and Jk+1 = Jk.

Step 3. Set k = k + 1 and go to Step 1.

Thus, the algorithm moves towards the optimal point by generating and testing random

points on the surface of a d-dimensional ball of radius α centered at the current point

xk. If the sampled new point is not better than the current one, the opposite direction of

movement is also tested. If the opposite point also shows no improvement, it is said that

the algorithm does not move and a new direction of movement z/||z|| is generated.

Probability of Movement And Its Length

We now evaluate the probability of moving to a better solution at an iteration of the

algorithm. Assume a current point x ∈ Rd, let z a d-vector of i.i.d. standard normal

random variables, and w = z
||z|| . Let us call the probability of finding a better solution at

the current point as P (moving). This probability is given by:

P (moving) = P (J (x+ αw) < J(x)) + P (J (x− αw) < J(x))

= P
(
x>Qw < −α

2

)
+ P

(
x>Qw >

α

2

)
= P

(
x

||x||
>
Qw < − α

2||x||

)
+ P

(
x

||x||
>
Qw >

α

2||x||

)
.

Consider the simple case of Q = I. In this case x
||x||
>Qw is the cosine of the angle between

vectors x and w. Let θ denote this angle. Note that in the more general case of a positive

definite matrix Q, with a change of coordinate system, we can interpret x
||x||
>Qw as the

cosine of the angle between two similarly relevant vectors. In the simple case of Q = I,
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the above derivation implies that the probability of not moving at an iteration is given by

− α

2||x||
≤ cos θ ≤ α

2||x||
. (5.2)

Clearly, both α and ||x|| do not depend on the problem dimension. Therefore, the key

element to why this optimization algorithm may be very inefficient in high-dimensional

problems may be the effect of dimension on cos θ.

Furthermore, in the simple case of Q = I, the amount of movement, once a better

solution is identified, is given by

h = α cos θ. (5.3)

Experimental Results

The first experiment we conduct intends to illustrate the effects of increasing dimension in

cos θ. We make a total of 21 experiments combining different instances of problem dimen-

sion (d = 2, 3, 4, 5, 10, 100, 1000) and starting points (||xk|| = 1, 100, 10000). Without loss

of generality, we assume Q = I. For each combination of dimension and starting point, we

run 10,000 replications of a single iteration of Algorithm 1. That is, a replication consists

in starting at xk and computing xk+1. Specifically, the algorithm generates a random

direction of movement wk. The goal of each experiment is to compute the probabilistic

distribution of the cosine of the angle θ between vector x and w.

Figure 5.1 shows the histograms of cos θ for each experiment. The dimension d of

experiments increases with rows, and the distance between current and optimal solution

(||xk||) increases with columns. The first behavior worth mentioning is that, clearly, cos θ

does not depend on the distance between the current solution and the optimal one. As

can be seen, the probabilistic distribution of cos θ remains the same as we change ||xk||

(columns). It implies that the amount of movement the algorithm can achieve in a single

iteration does not depend on how far from optimum the current solution is. We make a

thorough discussion on this topic in further experiments.

On the other hand, the distributions reported in the histograms change significantly

as problem dimension increases (rows). In the case of d = 2, we observe a larger frequency

of | cos θ| close to 1. Such a frequency is consistently decreasing as dimension increases.
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Figure 5.1: cos θ at different dimensions (d) and at different distance from optimal point
(||xk||)

Between d = 2 and d = 4, there is a change in the shape of histograms. It can be explained

by considering the area on the surface of a d-dimensional ball centered at xk for which

condition (5.2) is satisfied. When the dimension is increased, the proportion of the area

where the algorithm does not find a better solution over the area it does find increases.

As a consequence, the higher frequency of | cos θ| shifts from 1 torwards 0 as dimension

increases.

This behavior has two important implications to the performance of algorithms in
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problems with higher dimensions. First, the amount of movement that an algorithm can

achieve at a single iteration, which is given by equation (5.3), decreases as dimension

increases. That is, the algorithm becomes slower in high-dimensional spaces. Second,

the probability of moving, which is given by equation (5.2), also decreases as dimension

increases. That is, the ability of the algorithm in finding better solution becomes less

efficient as dimension increases.

||xk|| = 1 ||xk|| = 100 ||xk|| = 10, 000

d = 2 33.4% 0.4% 0.0%
d = 3 49.8% 0.5% 0.0%
d = 4 60.2% 0.7% 0.0%
d = 5 68.6% 0.7% 0.0%
d = 10 88.2% 1.2% 0.02%
d = 100 100.0% 4.0% 0.02%
d = 1000 100.0% 12.9% 0.08%

Table 5.1: Probability of not moving at different dimensions and points after 10,000 repli-
cations

Table 5.2.1 shows the probability of not moving, computed by simulation in each

experiment. As expected, the probability of not moving (i.e., the probability of not finding

a better solution) increases as the dimension increases. We also note that the increase in the

probability of not moving is inversely proportional to the current distance from optimum

(||xk||), which is a direct result from equation (5.2).

We observe that in the particular cases where d = 100 and d = 1000, the probability

of moving in the vicinity of the optimum is so small that the algorithm was not able to

improve the current solution after the 10,000 replications. In the next experiment, we

discuss more on the reasons why the probability of not moving increases as the algorithm

gets in the vicinity of the optimum.

Figure 5.2 shows the probabilistic distribution of the amount of movement of each

experiment, which can be accessed by equation (5.3). In the experiments, we consider

α = 1 for simplicity. It is interesting to note that, when the current solution is not in the

vicinity of the optimal, the length ||xk|| − ||xk+1|| has a direct connection to cos θ. It is

the projection of the direction of movement wk onto vector xk.
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Figure 5.2: The amount of movement given by equation (5.3) at different dimensions (d)
and at different distance from optimal point (||xk||). Negative values are with respect
to negative cos θ. Movements equal to zero (i.e., when the algorithm does not move) are
disregarded in these panels.

However, as the algorithm approaches the vicinity of the optimum, the distribution of

observed amount of movement changes. This can be easily explained by the fact that h

is large enough so that the d-dimensional ball with radius h centered at xk includes the

optimal point x∗. Therefore, if the distance between current point and the optimal one is

smaller than the radius of the d-dimensional ball, both the probability of moving and the

amount of movement decrease. In fact, it is easy to show that if the distance from current
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point to the optimal one is less than h/2, (i.e., ||xk|| ≤ h/2 for Q = I), then the algorithm

is not able to move.

Figure 5.3 shows the probabilistic distribution of the resulting movement torward the

optimum achieved by the algorithm in a single iteration (i.e., ||xk|| − ||xk+1||). We start

by observing that such a movement is equal to the absolute value of equation (5.3). It is a

direct consequence of testing the opposite direction of movement (i.e., checking if xk−wk

is a better solution than xk). Moreover, we remark that the results illustrated in this

figure include the cases in which the algorithm does not move. That is, when xk+1 = xk.

In each experiment, we provide the average (µ) and standard deviation σ of ||xk|| −

||xk+1||. As one can observe, the resulting movement achieved by the algorithm does not

change when the current solution is not in the vicinity of the optimum. On the other hand,

the probability of moving and amount of movement when closer to the optimal point are

small.

Now, we draw attention to the patterns in the second and third columns, when the

current point is far away from the optimum (||xk = 100 and xk|| = 10, 000). We observe

that when the problem dimension is d = 2, the probability that the algorithm achieves a

larger step (i.e., ||xk|| − ||xk+1||) towards the optimum is considerably larger than that of

achieving a small step. However, as the dimension gets higher, the range of the resulting

movement becomes tighter. Furthermore, as dimension increases, the chance of achieving

a small step becomes larger. Finally, there is an increasing frequency of cases in which the

algorithm does not move (i.e., ||xk|| − ||xk+1|| = 0) as the problem dimension increases.

As a consequence, the algorithm becomes slower by taking small steps towards the

optimum (although the step size is constant, α = 1), and less efficient in finding a better

solution as dimension increases.

5.2.2 Algorithm 2 - Multiple Samples

In the second algorithm, at each iteration, we consider evaluating the function J at a finite

number of randomly selected points on the surface of a unit sphere in Rd and selecting

the best direction for movement based on the collected information. The best direction

corresponds to the steepest descent direction of a linear approximation to J given the

collected information.
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Figure 5.3: The amount of movement at different dimensions (d) and at different distance
from optimal point (||xk||). It is the version of above figure with movements equal to zero.
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More specifically, let x be a point in Rd. Let J = J(x). Assume m random points

are selected on the unit sphere in Rd around x. Let wi = zi
||zi|| for i = 1, · · · ,m, where

zi, i = 1, · · · ,m are i.i.d. d-dimensional jointly normal random variables with zero mean

and covariance equal to identity matrix. Let

J (i) = J(x+wi), and ai = J (i) − J, i = 1, · · · ,m.

We consider points in Rd that are of the form

x+
m∑
i=1

ciwi, i = 1, · · · ,m and ‖
m∑
i=1

ciwi‖ = 1.

The linear/affine approximation to the function J on the above points is given by

L(x+
m∑
i=1

ciwi) = J +
m∑
i=1

ci(J
(i) − J) = J +

m∑
i=1

ciai.

Note that

L(x) = J(x), and L(x+wi) = J(x+wi), i = 1, · · · ,m.

We now look for a feasible direction that provides the smallest value of the function J .

Given that we do not know the values of function J in all directions that can be spanned

by w1, · · · ,wm, we use the direction that minimizes the linear approximation, namely, we

consider the following minimization problem:

min
c1,··· ,cm

{J (0) +
m∑
i=1

ciai; ‖
m∑
i=1

ciwi‖ = 1}.

The constraint ‖
∑m

i=1 ciwi‖ = 1 can be written as

‖
m∑

i,j=1

cicj〈wi,wj〉 = 1‖.

Define an m × m matrix M by Mij = 〈wi,wj〉 and m-dimensional vectors c =
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(c1, · · · , cm)T and a = (a1, · · · , am)T . To find the best direction, then, we need to solve

min
c
{cTa; cTMc = 1}.

Using a Lagrange multiplier λ we can transform the above constrained optimization to an

unconstrained one given by

min
c
{cTa+ λ(cTMc− 1)}.

Differentiating with respect to c, we have

a+ 2λMc = 0.

Therefore,

c∗ = αM−1a,

for a constant α. To find the constant, note that we have

c∗TMc∗ = 1 ⇒ α2aTM−1MM−1a = 1 ⇒ α2aTM−1a = 1.

In the above derivation, we have used the fact that M−1 is a positive definite matrix and

hence its transpose is equal to itself, i.e., M−1. Therefore, we have

c∗ = − 1

(aTM−1a)1/2
M−1a.

The vector c∗ identifies the direction of steepest descent of the linear approximation

function L and will be used in Algorithm 2 given below.

Algorithm 2 - Multiple Samples

Step 0. Set iteration counter k = 0. Let x0 be a starting point provided by the user.

Compute J (0) = J(x0).

Step 1. Randomly generate m d-vectors wi = zi/||zi|| for i =, · · · ,m, where zi is also a
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d-dimensional vector of jointly normal random variables with mean 0 ∈ Rd and

covariance matrix I (identity d× d matrix).

Step 2. Take m samples at each direction wi. That is, compute

J (i) = J(xk +wi), i = 1, · · · ,m.

Step 3. 3.1. Compute ai = J (i) − J (0), and Mij = 〈wi,wj〉, i, j = 1, · · · ,m.

3.2. Compute c∗ as follows.

c∗ = − 1

(aTM−1a)1/2
M−1a.

3.3. Let the best point function value found by the linear approximation be:

x∗k = xk +
m∑
i=1

c∗iwi.

Step 4. Compute J∗ = J(x∗k). If we have found a better solution, that is, if J∗ − J (0) < 0,

set xk+1 = x∗k, J
(0) = J∗. Else, set xk+1 = xk. Update k = k + 1, and go to step 1.

Experimental Results

To illustrate the effects of dimension d and sample size m on Algorithm 2, we conduct very

similar experiments to the ones regarding Algorithm 1. We make a total of 16 experiments

combining different problem dimensions (d = 5, 10, 50, 100) and different sample sizes (m)

according to the dimension. We assume Q = I, and run 10,000 replications of a single

iteration. The starting point is constant for all experiments, with ||xk|| = 10. The goal

of each experiment is to compute the resulting distance ||xk|| − ||xk−1|| achieved by the

algorithm towards the optimal point x∗ = 0.

We remark that our motivation to conduct a comparison between the two algorithms

lies on a deeper understanding of the search for the optimum in high-dimensional spaces

when only noisy estimates of the best direction of movement is available. Essentially,
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this is similar to the setting of stochastic optimization, in which the gradient can only be

estimated and it always involves some estimation noise. One of our key objectives here

is to provide some insight on why the performance of stochastic optimization algorithms

deteriorate in high dimensions.

Figure 5.4: Amount of movement at different dimensions d and different sample size (m)
of algorithm 2 after 10,000 replications.Q = I and ||xk|| = 10

In the first row of Figure 5.4, we have the histograms of probabilistic distribution on

the distance ||xk|| − ||xk−1|| when problem dimension is d = 5. The first plot reports

a higher frequency of movement close to 0.6, and lower frequencies at the edges (0 and

1). We observe that this is a different behavior in comparison to Algorithm 1. That is,

the estimate of the gradient computed by using a linear approximation with 2 sampled

points is closer to the true gradient in comparison to Algorithm 1, where a single partial

derivative is computed.

As we increase the sample size m used in the linear model, the error in estimating the

gradient decreases. That is, if more observations (i.e., more information) of the objective

function are available, Algorithm 2 improves its estimate of the true gradient computed
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by the linear model. As a consequence, the frequency of resulting distance achieved by

such an algorithm shifts toward 1 as sample size m approaches the problem dimension d

(columns).

On the other hand, as dimension increases, the quality of estimated gradient deteri-

orates within the same sample size. For example, in the first column, the sample size is

fixed (m = 2) and dimension is increased in each row. When dimension is d = 2, the

resulting distance ||xk||−||xk−1|| ranges from 0 to 1 with a higher probability of occurring

between 0.6 and 0.7. As dimension increases, the range gets tighter and closer to 0. In

other words, the algorithm losses its ability of finding a good direction of movement (or a

good estimate of the gradient) as dimension increases within a fixed sample size.

We can interpret such behaviors as the cost of computing a good estimate of the

gradient in a high-dimensional space. As dimension increases, more samples/observations

of the underlying objective function are required in order to keep-up the quality of gradient

estimate. The fundamental reasons that explain the poor performance of Algorithm 2 in

high-dimensional spaces remain the same of Algorithm 1. The analysis regarding the angle

between x and direction of movement are preserved.

In Algorithm 1, cos θ is given by angle between current point x and direction of move-

ment w = z/||z||. On the other hand in Algorithm 2, cos θ is given by the angle between

x and
∑m

i=1 c
∗
iwi. In the latter case, the intrinsic knowledge in c∗ guides the direction o

movement closer to the true gradient, which is the direction x. However, it comes with a

cost of m samples.

In Figure 5.5 we present the same experiments as in Figure 5.4 changing the matrix

Q. We set the main diagonal of Q as a d-dimensional vector of i.i.d. Uniform random

variables between 1 and 10. The elements outside the main diagonal are all zero. The

motivation is to understand the behavior of Algorithm 2 in different response surfaces,

maintaining as basis a quadratic function with unique optimal point.

The histograms in Figure 5.5 show a similar probabilistic distribution of ||xk||−||xk+1||.

That is, the analysis we make in the case where Q = I are also valid for a larger set of

quadratic and convex functions. We argue that, in general, one can make satisfactory local

approximations of more complex nonlinear function by using a quadratic function. That is,

the analyzes we conduct in this Chapter regarding the behavior of optimization algorithms

122



Figure 5.5: Amount of movement at different dimensions d and different sample size (m) of
algorithm 2 after 10,000 replications. Matrix Q has a random main diagonal and ||xk|| = 10

based on gradient in high-dimensional space are also valid for local interpretations on more

complex nonlinear function than a quadratic function.

In the final experiment, we let the algorithms run for a number of iteration, as opposed

to previously experiments were we considered one iteration only. That is, instead of

computing the resulting distance in a single iteration (i.e., ||xk|| − ||xk−1||), we set a

simulation budget and let the algorithms move until the budget is consumed. There is

a total of 6 experiments, combining different dimensions (d = 100, 1000) and different

simulation budgets (50, 100 and 1000 outputs). We take 10,000 runs of Algorithm 1,

Algorithm 2 with m = 2, and Algorithm 2 with m = 10. We start the algorithm by setting

||x0|| = 100 and compute the final distance from optimal. That is, we are interested in

observing how far from optimal point each algorithm has stopped. We set Q as in the

last experiment (i.e., its main diagonal is composed by i.i.d. uniform random variables

between 1 and 10).

In Figure 5.6 show the boxplot for each experiment. In the first column, we have
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Figure 5.6: Performance of Algorithm 1 and Algorithm 2 (with m = 2 and m = 10 in high
dimensional spaces)

d = 100, and d = 1000 in the second one. Simulation budget increases with the rows. We

observe a similar pattern in all experiments. The Algorithm 1 goes to a larger distance,

in comparison to Algorithm 2, however, it reports a larger variations on the distance from

optimal point. These results suggest that while Algorithm 1 takes a relatively smaller step

in each iteration, it requires fewer samples to estimate a direction of movement. Therefore,

it is able to get further because it is less costly. Moreover, Algorithm 1 presents a large

variance on the best solution found because the estimate of the gradient is less accurate.

It indicates that the algorithm’s path towards the optimum is less precise.

It is clear that the accuracy of the gradient estimate of Algorithm 2 and 10 are better

than Algorithm 1. However, it comes at the expense of m outputs. We observe that the
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Algorithm 2 with m = 10 has more information available to estimate the gradient. The

resulting distance achieved by this algorithm within a single iteration is larger in compar-

ison to the other two algorithms. However, because it consumes 10 samples per iteration,

it is not able to move much before the simulation budget is consumed. Therefore, the total

distance towards the optimum achieved is shorter in comparison to other algorithms.

5.3 Final Discussion

As stated early in this Chapter, our main purpose has been to gain some seminal under-

standing of the behavior of optimization algorithms in high dimensions. To this end we

have selected the simplest possible cost functions that nonetheless capture some of the

key features of the behavior of optimization algorithms in high dimension. The random

sampling component of the algorithms we considered, we believe, capture a basic aspect

of stochastic optimization algorithms, namely the fact that only partial information about

the gradient is available at each iteration and obtaining more information corresponds to

expenditure of additional computational resources.

Our efforts in this Chapter have mostly focused on analyzing the behavior of the

algorithms in each iteration, namely the local behavior of the algorithms. Note that in

this case, our assumption of a quadratic cost function is not overly restrictive and we

expect that our observations would be valid in more general settings.

We noted that there seems to be a tradeoff between (i) obtaining more accurate esti-

mates of the gradient which provides a longer step towards the optimum, and (ii) moving

based on more noisy estimates of the gradient that requires smaller expenditure of com-

putational resources. Such a tradeoff is generally not captured in asymptotic rates of

convergence.

One possible direction for further research is to provide an analysis of the finite horizon

behavior of the algorithms in high dimension. In ongoing research, we are analyzing the

behavior of such elementary algorithms by using a Markov chain model. We believe it

would be useful to derive the expected first passage time to the vicinity of the optimum

as a global measure of the performance of the algorithm. Although we believe that the

simplest cost functions capture the key features of high-dimensional space, it is important
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for the completeness of theoretical analyzes to considered a more general set of surfaces.
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Chapter 6

Conclusions

The survey on stochastic optimization provided groundwork to this thesis. We discoursed

on the main characteristics of the most used stochastic optimizations methods, together

with their benefits, limitations and especially research trends pointed out in the references

herein. We positioned our thesis among the very recent developments, linking each of our

main results to open gaps in the literature.

In this thesis, we make contributions to the development of more sophisticated/efficient

stochastic optimization methods. More specifically, our initial goal was to design a bridge

between such methods and variance reduction techniques. The research question to be

answered was: What can the algorithm learn from the current available outputs to better

estimate the function at other sets of decision variables? The idea was to explore as much

as possible all available information that is collected from simulation output at already

sampled decision variables.

The variance reduction technique of control variates is used to guide the knowledge

transfer from already sampled simulation outputs at a particular decision variable to oth-

ers. Because classical control variates request known control means, we resort to a variant

named database control variates. The importance of latter technique is that expectation

of control means no longer needs to be known exactly, and can be estimated in a setup

phase. To be effective, database control variates requires that the computational effort

allocated to the setup phase must be large enough so that estimation error raised in esti-

mating control means does not affect control variates performance. We explored a lacuna
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in stochastic optimization literature regarding the use of variance reduction techniques to

improve efficiency of methods. In particular, the use of control variates was restricted to

a few studies where the classical version is applied.

Moreover, we analyse the effects of dimension in gradient-based optimization algo-

rithms.

6.1 Main Results and Intuition

A Metamodeling Based on Control Variates

We observed that generally in metamodeling, a set of design points is chosen and from these

the function value is approximated at prediction points. Our intuition after understand

more about the most used metamodeling methods (response surface methodology, radial

basis function and stochastic kriging) was that we could use the outputs from design

points to more efficiently and with more accuracy estimate function value at prediction

points. Therefore, we started by developing a metamodel framework with database control

variates as its foundations.

We demonstrated that our control variates metamodel is very flexible. It less depen-

dent on initial parameters, and does not require a basis function as trend such as in current

metamodeling tools. To guide our analysis, we used as background performance measures

and template problems at Li et al. (2010). In this latter research, a systematic comparison

of five of the most popular metamodeling techniques for stochastic optimization is con-

ceived. The motivation behind this choice was to provide a fair comparison between our

proposed control variates metamodel and stochastic kriging, which is the technique that

has been receiving more attention in the past few years. Results show that the perfor-

mance of control variates metamodel overcame stochastic kriging in all measures (global

and local accuracy, robustness and efficiency) at all template problems. In addition, we

analyze the performance of both methods in two practical applications of human activities

to illustrate its potentials: path-dependent options, and M/M/1 queue problem. Again,

control variates metamodel performed significantly better than stochastic kriging.

Next, we evaluated the use of multiple controls in our control variates metamodeling.
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Because there is more than one candidate to be control (more than one design point), it is

natural to consider the possibility of using more controls to better estimate the function.

It is known that if there is linear dependence (correlations) among controls, adding more

control does not bring new information. Thus, there are no expectations of gains in

efficiency if controls are highly correlated.

However, we take this analysis further and demonstrate that using multiple controls

in the particular case of the control variates metamodel can be dangerous. We use control

variates connections with linear regression to conduct analyzes. We found that induced

correlation raised from common random numbers can cause multicollinearity when multi-

ple controls are used. The main drawback of multicollinearity in our case is the inflation

of control variates estimator’s variance, which can have a direct impact on the method’s

performance.

Once the control variates metamodeling framework was constructed, we noticed that

there were redundant design points in the method. In other words, we realize that correla-

tion among design points and prediction points could be maintained in a high level using

fewer design points. Then, we derived a procedure to select location of design points in

order to eliminate redundant ones. With such a produce, more simulation budged was al-

located to the setup phase of database control variates. Results show a significant increase

in the robustness performance of the algorithm, which is the ability of consistently make

good predictions at different replications.

A Hybrid Fomulation of Random Search Method and Control Variates

In the next step of research, the objective was to develop a more generic procedure based

on database control variates that could be applied to a larger set of stochastic optimization

methods. We proposed a hybrid procedure to combine the efficiency benefits of control

variates in Monte Carlo simulations to a recent developed random search method. In

random search methods, a solution point may be revisited (i.e., points that are more likely

to be the optimal have more chances to receive a larger simulation budget). Our intuition

was to select points with more number of simulation outputs (more visited) to be use as

control to better estimate the function to be optimized at points with smaller simulation

outputs.
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It is important to remark that simulation allocation among visited solution points is

determined by the stochastic optimization method, and not by the database control vari-

ates technique. The estimated control means are the ordinary average itself of simulation

outputs at most visited solution points. Therefore, there is no additional effort allocated

to the setup phase of database control variates. We believe this is the main benefit of

our proposed procedure. In other worlds, our framework does not require more simula-

tion budget than the original random search method for using database control variates

embedded in the Monte Carlo simulation.

Preliminary results corroborate to the argument that benefits of using a variance re-

duction procedure based on database control variates overcome the harm that small simu-

lation allocation to the setup phase can cause. We analyze the performance of AHA-DCV

procedure at five different stochastic optimization problems with three variants for each

one of them. In majority of them, the global accuracy performance of AHA-DCV was

better than stand-alone AHA or at least as good as. Only in particular cases, it was not

the case. Moreover, there was observed a significant improvement in the robustness of

the random search method. That is, the ability of consistently finding good solutions at

different replications.

A Finite Time Analysis of High-Dimensional Search Space

The final contribution of this thesis to stochastic optimization methods is to derive a better

understanding of high-dimension optimization problem. We bring light in the possible

causes of poor performances of gradient-based stochastic optimization methods in finding

good solutions when dimension of problems increases.

In particular, we first analyze the behavior of an elementary algorithm with a single

sample based on finite-difference. We derive the probability of moving and the length of

resulting movement for such an algorithm within a single iteration. We have found that the

key element to why this optimization algorithm may be very inefficient in high-dimensional

space lies in the cosine of the angle between the random direction of movement and the

gradient direction. Furthermore, we identify that the amount of movement in a single

iteration is also directly connect with such an angle. We conduct experiments to illustrate

important implications of these findings.
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We demonstrate that, as dimension increases, the algorithm becomes slower by taking

smaller steps toward the optimum. Similarly, it becomes less efficient in finding a better

solution. What happens is that the area in the surface of a d-dimensional ball for which

the condition of moving is satisfied decrease as dimension increases. The experimental

results corroborates with this argument.

Than we analyze an elementary algorithm based on linear approximation with multiple

samples. The intuitions on the effects of dimension raised in the first algorithm remain

when analyzing the second one. In the latter case, the experimental results corroborates to

the argument that as dimension increases, more samples are required in order to keep-up

the quality of the gradient estimate. We demonstrate that the fundamental reasons of

such behavior are also connected to the cosine of the angle between direction of movement

and the true gradient.

We end the Chapter by stating that there is a tradeoff between obtaining more ac-

curate estimates of the gradient which provides a longer step towards the optimum; and

moving based on more noisy estimates of the gradient that requires smaller expenditure

of computational resources. We remark that such tradeoff is generally not captured in the

asymptotic rates of convergence.

6.2 Possible Future Considerations

The next step of research on the control variates metamodel introduced in Chapter 3 is to

evaluate the prediction ability of metamodeling methods at outside regions of the exper-

iment design space. It is known that the performance of response surface methodology,

stochastic kriging and radial basis function is expected to deteriorates rapidly at outside

points. We argue that such a behavior may not be true for the control variates metamodel

mainly because there is no model dependence on trend functions. Therefore, the control

variates performance at outside regions that have high correlation to any design point

is expected to be good. Our partial results on ongoing research corroborates with this

argument.

In addition, also pretend to investigate the sensitivity of control variates metamodel to

the available simulation budget. A very low simulation budget direct impacts our method

131



in two moments: (i) in the setup phase - estimating function value at design points -

where control means are estimated. Low simulation allocation to this phase can lead to

poor control mean estimation increasing the variance of function value at prediction points.

Also (ii) a low simulation budget can inflate the variance of control variates coefficient in

the estimation phase. It is natural to expect that low simulation budget reflects negatively

on the performance of current Metamodel. An examination of the performance of control

variates metamodel under low simulation budget is felt needed.

There is a wide potential directions of research concerning our hybrid approach for

efficient stochastic optimization methods introduced in Chapter 4. Firstly, we plan to

analyze and derive more formal results to understand the effects on convergence proofs of

an embedded control variates technique on the random search algorithm. By accomplishing

this task, it may bring light to the type of stochastic optimization problems in which our

framework can be more beneficial.

Further, we want to adapt our hybrid approach to a larger set of stochastic optimization

methods, such as stochastic approximation, metamodeling, sampled average approxima-

tion and ranking and selection. The main challenge is to decide locations and budget

allocations of candidates for control in order to guarantee efficiency gains. For discrete

stochastic optimization methods, repeated visits to solution points favor our approach.

For continuous stochastic optimization methods, adaptation is less straightforward be-

cause there is no revisited to a same solution point. In this case, it is necessary to allocate

additional simulation budget to a set of solution points that are candidates to play the

role of control.

Regarding the theoretical analysis of the high-dimensional space in stochastic optimiza-

tion problems, there are two immediate directions on future research. First, is to provide

an analysis of the finite horizon behavior of the algorithms in high dimension. In ongoing

research, we are analyzing the behavior of such elementary algorithms by using a Markov

chain model. We believe it would be useful to derive the expected first passage time to

the vicinity of the optimum as a global measure of the performance of algorithm in finite

time. Second, it is important for the completeness of theoretical analyzes to considered a

more general set of surfaces. Our expectations are that our findings up to this moment

are valid for larger settings of stochastic problems.
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