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Abstract

This article deals with a non-Gaussian state space model (NGSSM) which is attractive because the likelihood can be analytically
computed. The paper focuses on stochastic volatility models in the NGSSM, where the observation equation is modeled with
heavy tailed distributions such as Log-gamma, Log-normal and Weibull. Parameter point estimation can be accomplished either
using Bayesian or classical procedures and a simulation study shows that both methods lead to satisfactory results. In a real data
application, the proposed stochastic volatility models in the NGSSM are compared with the traditional autoregressive conditionally
heteroscedastic, its exponential version, and stochastic volatility models using South and North American stock price indexes.
c⃝ 2015 Published by Elsevier B.V. on behalf of International Association for Mathematics and Computers in Simulation (IMACS).
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1. Introduction

The global financial crisis has generated a significant instability in the prices of financial assets and particularly in
the stock market. For this reason, a major concern among economists, fund managers and investment researchers is
how long this crisis will impact the variability of asset prices. For this reason, researches focusing on the study and
modeling of volatility have been intensified in the last few years.

Relying on the fact that the unconditional distribution of daily returns has fatter tails than the normal distribution,
the usual time series models that assume normality and homoscedasticity are not appropriate to model volatility.
Thus, more adequate procedures, especially the ones presenting conditional variance evolving on time, have been
proposed. The most known approaches are the ones concerning conditional heteroscedastic models, such as ARCH [1],
GARCH [2], EGARCH [3], TGARCH [4] and multivariate GARCH [5].

Taylor [6] proposed the first stochastic volatility model, where the volatility is a stochastic function of the past
volatility. Several studies on this approach have been developed, such as [7–11] and [12].
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Recently, a non-Gaussian state space model was proposed by [13]. This procedure is a generalization of a result
of [14], who proposed an exponential observation model with an exact evolution equation for the state. The work
of [13] allows for analytical computation of the marginal likelihood, which increases the applicability of the model
and enables its use with a wide class of distributions for observational time series. Additionally, this model allows the
relaxation of the normality and heteroscedasticity assumptions.

According to [15], one of the main characteristics of volatility is that it evolves over time in a continuous way and
it always varies within a fixed range. This means that volatility is often stationary. Due to the structure used in the
model proposed by [13], the only stochastic component is the level of the series, and it is built in a way similar to
the local level model of [16]. Thus, the model is highly recommended to be applied to stationary series. Any other
component, such as seasonality or structural breaks should be inserted as covariates.

There are some recent contributions in the literature that employ the state space approach to handle non-linear and
non-Gaussian time series. Some examples are the works of [17], extended by [18] for Bayesian estimation, that uses
a local scale procedure for modeling volatility. Ferrante and Vidoni [19] and Vidoni [20] introduce non-linear and
non-Gaussian state space models with analytic updating recursions for filtering and prediction.

Thus, the purpose of this work is to present new models in the non-Gaussian state space family that can be used
to model volatility. Among them, there is the class of heavy tailed distributions, much employed in the volatility
literature, as in the works of [21] and [22]. Then, the first contribution in this paper is to show that the Fréchet,
Lévy, Log-gamma, Log-normal, and the Generalized Error Distribution (GED) can be written as a NGSSM to model
volatility and they are used in many applications of the financial market. In addition, the Pareto and Weibull models,
already considered in [13], are also presented.

The second contribution is on Monte Carlo results for Bayesian and classical methods of inference in the parameter
estimation of the distributions cited above in the non-Gaussian state space model.

Additionally, as another contribution of the paper, the NGSSM addressed here is used to model the most
known stock exchange indexes in North and South America and the fits are compared to the classical generalized
autoregressive conditional heteroscedasticity (GARCH) [2] models, its exponential counterpart (EGARCH) [3] and
the stochastic volatility model [10].

The paper is organized as follows. Section 2 defines the NGSSM and presents the inference procedures. Section 3
shows how to write the heavy tailed distributions cited above in the NGSSM form. Section 4 shows the results of
the Monte Carlo simulation studies and Section 5 presents an application of heavy tailed models in the NGSSM to
estimate the volatility of several stock exchange indexes. Section 6 concludes the work.

2. A non-Gaussian state space model

Gamerman et al. [13] define a new family of non-Gaussian state space models, which is a generalization of the
works of [14] and [23]. Let {yt }

n
t=1 be a time series with probability function given by

p ( yt | µt , ϕ) =


q (yt , ϕ) µ

r(yt ,ϕ)
t exp {−µt s (yt , ϕ)} , yt ∈ H (ϕ) ⊂ R

0, otherwise,
(1)

where ϕ is a p-dimensional parameter vector, ϕ =

ϕ1, . . . , ϕp

′, and functions q (yt , ϕ), r (yt , ϕ), s (yt , ϕ) and
H (ϕ) are such that p (yt |µt , ϕ) > 0 and the Lebesgue–Stieltjes integral


p ( yt | µt , ϕ) dyt = 1. If r (yt , ϕ) =

r (ϕ), s (yt , ϕ) = s (ϕ) and H (ϕ) is a constant function (it does not depend on ϕ), the distribution family becomes a
special case of the exponential family.

The NGSSM considers {yt }
n
t=1 following the distribution in Eq. (1) with the state given by

µt = λt g (xt , β) , for t = 1, . . . , n,

where g is the link function, xt is a vector of covariates and β (one of the components of ϕ) is the regression coefficient
vector.

The dynamic level λt is given by the evolution equation λt = ω−1λt−1ςt , with the prior specification λ0| Y0 ∼

Gamma (a0; b0). In this case, ςt ∼ Beta (ωat−1, (1 − ω) at−1), that is

ω
λt

λt−1

 λt−1, Yt−1 ∼ Beta (ωat−1, (1 − ω) at−1) , for t = 1, . . . , n,
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where Yt−1 = {yt−1, . . . , y1} for t > 1, 0 < ω < 1 and Y0 is the initial information. Parameter ω has the function of
increasing multiplicatively the variance over time.

Taking the logarithm of the evolution equation, λt , it can be seen that it is the random walk equation used for the
local level model [16], that is

ln (λt ) = ln (λt−1) + ξt ,

where ξt = ln (ςt/ω) ∈ R.
Theorem 1 in [13] presents the equations for the exact evolution of the dynamic level and the predictive density

function for the NGSSM, which are as follows.

1. The prior distribution λt | Yt−1,ϕ ∼ Gamma

a t |t−1; b t |t−1


, where

a t |t−1 = ωat−1 and b t |t−1 = ωbt−1.

2. The prior distribution µt | Yt−1,ϕ ∼ Gamma

c t |t−1; d t |t−1


, where

c t |t−1 = ωat−1 and d t |t−1 = ωbt−1 [g (xt , β)]−1 .

They are easily obtained from Eq. (1) and the scale property of the Gamma distribution.

3. The posterior distribution λt = µt [g (xt , β)]−1
 Yt,ϕ ∼ Gamma (at ; bt ) where

at = a t |t−1 + r (yt , ϕ) and bt = b t |t−1 + s (yt , ϕ) g (xt , β) .

4. The posterior distribution µt | Yt,ϕ ∼ Gamma (ct ; dt ), where

ct = c t |t−1 + r (yt , ϕ) and dt = d t |t−1 + s (yt , ϕ) .

5. The predictive density function is given by

p ( yt | Yt−1, ϕ) =
Γ


r (yt , ϕ) + c t |t−1


q (yt , ϕ) d

c t |t−1
t |t−1 I(yt ∈H(ϕ))

Γ

c t |t−1

 
s (yt , ϕ) + d t |t−1

r(yt ,ϕ)+c t |t−1
. (2)

2.1. Inference procedure

Parameter inference in the NGSSM can be performed either using Bayesian or classical procedures. Both are based
on the likelihood function

L (ϕ; Yn) =

n
t=1

p ( yt | Yt−1, ϕ) ,

where p ( yt | Yt−1, ϕ) is given in Eq. (2).

• Classical inference

Classical inference for the parameters of the NGSSM is performed through maximum likelihood estimation. The
log-likelihood function is calculated as

ℓ (ϕ; Yn) =

n
t=1

ln Γ

r (yt , ϕ) + c t |t−1


+

n
t=1

ln (q (yt , ϕ))

−

n
t=1

ln Γ

c t |t−1


+

n
t=1

c t |t−1 ln

b t |t−1


−

n
t=1


r (yt , ϕ) + c t |t−1


ln


s (yt , ϕ) + d t |t−1


,

where a0 > 0 and b0 > 0 (see [13]). Thus, the maximum likelihood estimator (MLE) for ϕ is given by

ϕ̂M L = arg max
ϕ

ℓ (ϕ; Yn) .
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Due to the fact that ℓ (ϕ; Yn) is a non-linear function of ϕ, numerical procedures such as the BFGS algorithm [24]
should be used.

The asymptotic confidence interval for ϕ is built based on a numerical approximation for the Fisher information
matrix In(ϕ), using In(ϕ) ∼= −G(ϕ), where −G(ϕ) is the matrix of second derivatives of the log-likelihood function
with respect to the parameters. Let ϕi , i = 1, . . . , p, be any component of ϕ. Then, an asymptotic confidence interval
of 100(1 − κ)% for ϕi is given by

ϕ̂i ± zκ/2

Var(ϕ̂i ),

where zκ/2 is the κ/2 percentile of the standard normal distribution and V ar(ϕ̂i ) is obtained from the diagonal
elements of the Fisher information matrix.

• Bayesian inference

The posterior distribution π (ϕ| Yn) of the parameter vector ϕ is given by

π (ϕ| Yn) =
L (ϕ; Yn) π (ϕ)

L (ϕ; Yn) π (ϕ) dϕ
,

where L (ϕ; Yn) is the likelihood function and π (ϕ) is the prior distribution for ϕ. In this paper a proper and non
informative Uniform distribution with respect to Bayes–Laplace is used. It is given by π (ϕ) = c for all possible
values of ϕ in a determined range and 0 otherwise. The Bayesian estimates of the posterior mean (BE-Mean), the
posterior median (BE-Median) and the credibility interval are obtained from a sample of the posterior distribution.
The adaptive random walk Metropolis (ARWM) algorithm proposed by [25], (see also [26]) has been used to sample
from the posterior distribution.

The ARWM works as follows. Suppose that given some initial ϕ0 from π(ϕ|Yn), the j − 1 iterates ϕ1, . . . ,ϕ j−1
have been generated. The j th iterate ϕ j is generated from the proposal density η j (ϕ|ψ) which may also depend on
some other value of ϕ which is called ψ . Let ϕ p

j be the proposed value of ϕ j generated from η j (ϕ|ϕ j−1). Then

ϕ j = ϕ
p
j is taken with probability

α(ϕ
p
j ,ϕ j−1) = min


1,

π(ϕ
p
j |Y j )

π(ϕ j−1)

η j (ϕ j−1|ϕ
p
j )

η j (ϕ
p
j |ϕ j−1)


, (3)

and ϕ j = ϕ j−1 otherwise. In adaptive sampling the parameters of η j (ϕ|ψ) are estimated from the iterates ϕ1, . . . ,

ϕ j−2. Under appropriate regularity conditions the sequence of iterates ϕ j , j > 1, converges to draws from the target
distribution π(ϕ|Yn). The proposal distribution in the ARWM algorithm used in this paper is given by a mixture of
two normal distributions with mean components given by ϕ j−1. The first component has a small weight and a fixed
covariance matrix while the second component has more weight, say 0.95, and a covariance matrix that is updated as
iteration goes. For more details see [25].

Credibility intervals for ϕi , i = 1, . . . , p are built as follows. Given a value 0 < κ < 1, the interval [c1, c2]

satisfying c2

c1

π(ϕi | Yn) dϕi = 1 − κ

is a credibility interval for ϕi with level 100(1 − κ)%.

• Model selection

The adequacy of the model should be checked after fitting a model to data set. There are many methods of diagnosis
suggested in the literature, and some of them are described below.

Harvey and Fernandes [23] suggested a diagnosis method based on the standardized residuals, also known as
Pearson residuals, which are defined as:

r p
t =

yt − E (yt |Yt−1,ϕ )
Var (yt |Yt−1,ϕ )

. (4)
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The authors propose the following residual analysis:

1. Examine the plot of residuals vs. time and residuals vs. an estimate of the level component.
2. Verify if the sample variance of the standardized residuals is close 1. A value greater than 1 indicates

overdispersion.

Another alternative is to use the deviance residuals [27], which are given by:

rd
t =

2 ln

 p (yt |yt ,ϕ )

p


yt

φ̂t ,ϕ



1
2

,

where φ̂t = E (yt |Yt−1,ϕ ).
When two or more models present reasonable fits to the data, it is necessary to choose one of them. According

to [16] the AIC and BIC criteria proposed, respectively, by [28] and [29], are suitable procedures. They are defined by:

AI C = −2l

ϕ̂

+ 2k and B I C = −2l


ϕ̂

+ k ln (n) ,

where l (·) is the log-likelihood function, k the number of parameters and n the number of observations. For the
Bayesian approach, ϕ̂ was considered as the posterior mean. Instead of AIC, it was used the AICc [30], given by

AI Cc = AI C +
2k (k + 1)

n − k − 1
.

3. Heavy tailed distributions in the NGSSM

In this section, some of the most used heavy tailed distributions, such as the Fréchet, Lévy, Log-gamma, Log-
normal, Pareto, Skew Generalized Normal (Skew GED), and Weibull, are discussed and they are proved to belong to
the NGSSM.

The main characteristic of this kind of distribution is that it presents heavier tails than the normal distribution. The
formal definition, found in [31], is as follows.

Definition 3.1. A distribution function, FX , of a random variable X belongs to the class of heavy right tail if limx→∞

eλx [1 − FX (x)] = ∞, for all λ > 0. This is equivalent to state that the moment generating function, FX (s), of F is
infinite for all s > 0.

Teugels [32], Embrechts et al. [33] and Goldie and Klüppelberg [34], among others, presented a wide discussion
about heavy tailed distribution properties and applications. Neyman and Scott [35] and Green [36] showed that there
is a close relationship between the heavy tailed distribution family and the absolute or relative distribution outliers
prone. That is, probability distributions that are contained in the heavy tailed distribution family are more likely to
generate outliers.

For each model described below, the µt component, which corresponds to the state equation in the NGSSM, is
either the precision or the scale parameter of the respective distribution. Note that the variance of yt given µt depends
directly on µt and not on all the past information Yt−1. Thus, given the prior µt |Yt−1,ϕ, the variance of yt |µt remains
unchanged in terms of notation, i.e. Var(yt |µt ) = Var(yt |µt , Yt−1). This feature is highly appealing with respect of
the use of these models to describe volatility.

3.1. Fréchet model

If a time series {yt }
n
t=1 is generated from a Maximum Fréchet distribution with shape parameter αt = α, location

parameter γt = γ , unknown and invariant in time, and scale parameter µα
t , restricted to γ < yt , α > 0 and µα

t > 0,
then

p ( yt | µt , ϕ) = αµ−1
t


µt

yt − γ

α+1

exp


−


µt

yt − γ

α+1


I(γ<yt <∞),

where µα
t = λt g (xt , β) and ϕ = (ω, β, α, γ )′.
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The Maximum Fréchet model can be written in the NGSSM form as

q (yt , ϕ) = α (yt − γ )−α−1 , r (yt , ϕ) = 1 and s (yt , ϕ) = (yt − γ )−α .

Thus the likelihood function L (ϕ; Yn) is given by

L (ϕ; Yn) =

n
t=1


Γ


1 + c t |t−1


α (yt − γ )−α−1 

d t |t−1
c t |t−1 I(γ<yt <∞)

Γ

c t |t−1

 
(yt − γ )−α

+ d t |t−1
1+c t |t−1


.

The Minimum Fréchet model can also be easily written in the NGSSM form, just changing (yt − γ ) for (γ − yt )

and using the restriction γ > yt instead of γ < yt .

3.2. Lévy model

If a time series {yt }
n
t=1 is generated from a Lévy distribution with location parameter γt = γ , unknown and

invariant in time, and precision parameter µt , restricted to µt > 0 and yt > γ , then

p ( yt | µt , ϕ) =
µ

1
2
t

2π (yt − γ )3
exp


−µt [2 (yt − γ )]−1


I(γ<yt <∞),

where µt = λt g (xt , β) and ϕ = (ω, β, γ )′.
The Lévy model can be written in the NGSSM form as

q (yt ,ϕ) = (2π)−1/2(yt − γ )−3/2, r (yt ,ϕ) =
1
2

and s (yt ,ϕ) = [2 (yt − γ )]−1 .

Thus the likelihood function L (ϕ; Yn) is given by

L (ϕ; Yn) =

n
t=1

Γ


1
2 + c t |t−1


(yt − γ )]−3/2


d t |t−1

c t |t−1 I(γ<yt <∞)

(2π)1/2Γ

c t |t−1

 
[2 (yt − γ )]−1

+ d t |t−1
 1

2 +c t |t−1

 .

3.3. Log-gamma model

The Log-gamma distribution was presented by [37]. If a time series {yt }
n
t=1 is generated from a Log-gamma

distribution with shape parameter αt = α, unknown and invariant in time, and scale parameter αµt , restricted to
α > 0 and αµt > 0, then

p ( yt | µt , ϕ) =
(αµt )

α [ln (yt )]α−1

Γ (α) yαµt +1
t

I(1<yt <∞),

where µt = λt g (xt , β) and ϕ = (ω, β, α)′.
The Log-gamma model can be written in the NGSSM form as

q (yt , ϕ) = αα [ln (yt )]α−1 [Γ (α) yt ]−1 , r (yt , ϕ) = α and s (yt , ϕ) = α ln (yt ) .

Thus the likelihood function L (ϕ; Yn) is given by

L (ϕ; Yn) =

n
t=1


Γ


α + c t |t−1


αα [ln (yt )]α−1 [Γ (α) yt ]−1 d

c t |t−1
t |t−1 I(1<yt <∞)

Γ

c t |t−1

 
α ln (yt ) + d t |t−1

α+c t |t−1


.

3.4. Log-normal model

If a time series {yt }
n
t=1 is generated from a Log-normal distribution with location parameter δt = δ, shape

parameter γt = γ , unknown and invariant in time, and precision parameter σ−2
t , restricted to σ−2

t = µt > 0
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and γ < yt , then

p ( yt | µt , ϕ) =
µ

1
2
t

(yt − γ )
√

2π
exp


−µt

[ln (yt − γ ) − δ]2

2


I(γ<yt <∞),

where µt = λt g (xt , β) and ϕ = (ω, β, δ, γ )′.
The Log-normal model can be written in the NGSSM form as

q (yt , ϕ) = (yt − γ )−1/
√

2π, r (yt , ϕ) =
1
2

and s (yt , ϕ) =
[ln (yt − γ ) − δ]2

2
.

Thus the likelihood function L (ϕ; Yn) is given by

L (ϕ; Yn) =

n
t=1


Γ


1
2 + c t |t−1

 
(yt − γ )

√
2π

−1
d

c t |t−1
t |t−1 I(γ<yt <∞)

Γ

c t |t−1

 
d t |t−1 + [ln (yt − γ ) − δ]2 /2

 1
2 +c t |t−1

 .

3.5. Pareto model

If a time series {yt }
n
t=1 is generated from a Pareto distribution with scale parameter µt , restricted to yt > 1, then

p ( yt | µt , ϕ) = µt y−µt −1
t I(1<yt <∞),

where µt = λt g (xt , β) and ϕ = (ω, β)′.
The Pareto model can be written in the NGSSM form as

q (yt , ϕ) = y−1
t , r (yt , ϕ) = 1 and s (yt , ϕ) = ln (yt ) .

Thus the likelihood function L (ϕ; Yn) is given by

L (ϕ; Yn) =

n
t=1


Γ


1 + c t |t−1


y−1

t d
c t |t−1
t |t−1 I(1<yt <∞)

Γ

c t |t−1

 
ln (yt ) + d t |t−1

1+c t |t−1


.

3.6. Skew GED model

The Skew Generalized Normal Distribution (Skew GED) is also known as the Skew Exponential Power
Distribution. If a time series {yt }

n
t=1 is generated from a Skew GED distribution with location parameter δt = δ,

shape parameter αt = α and asymmetry parameter κt = κ , all of them unknown and invariant in time, and precision
parameter µt , restricted to α > 0, κ > 0 and µt > 0, then

p ( yt | µt , ϕ) =
κµ

1
α
t

Γ

1 + α−1

 
1 + κ2

 exp

−µt


κz+

t

α
+


z−

t /κ
α

I(yt ∈ℜ),

where zt = yt − δ, µt = λt g (xt , β) and ϕ = (ω, β, δ, α, κ)′ ,

u+
=


u, if u > 0
0, if u < 0

and u−
=


−u, if u 6 0
0, if u > 0.

The Skew GED includes the Skew Normal distribution (α = 2, κ ≠ 1), the Normal distribution (α = 2, κ = 1),
the Skew Laplace distribution (α = 1, κ ≠ 1), the Laplace distribution (α = 1, κ = 1) and the Uniform distribution
(α → ∞).

The Skew GED model can be written in the NGSSM form as

q (yt , ϕ) =
κ

Γ

1 + α−1

 
1 + κ2

 , r (yt , ϕ) =
1
α

and s (yt , ϕ) =

κz+

t

α
+


z−

t /κ
α

,

with zt = yt − δ.
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Thus the likelihood function L (ϕ; Yn) is given by

L (ϕ; Yn) =

n
t=1

Γ

1/α + c t |t−1


κ


Γ


1 + α−1

 
1 + κ2

−1
d

c t |t−1
t |t−1 Iyt ∈ℜ

Γ

c t |t−1

 
κz+

t
α

+

z−

t /κ
α

+ d t |t−1
1/α+c t |t−1

 .

For details about Skew GED random number generator see [38].

3.7. Weibull model

If a time series {yt }
n
t=1 is generated from a Weibull distribution with location parameter υt = υ, unknown and

invariant in time, and precision parameter µt , restricted to υ > 0, µt > 0 and yt > 0, then

p ( yt | µt , ϕ) = υµt yυ−1
t exp


−µt yυ

t


I(0<yt <∞),

where µt = λt g (xt , β) and ϕ = (ω, β, υ)′.
The Weibull model can be written in the NGSSM form as

q (yt , ϕ) = υyυ−1
t , r (yt , ϕ) = 1 and s (yt , ϕ) = yυ

t .

Thus the likelihood function L (ϕ; Yn) is given by

L (ϕ; Yn) =

n
t=1


Γ


1 + c t |t−1


υyυ−1

t d
c t |t−1
t |t−1 I(0<yt <∞)

Γ

c t |t−1

 
yυ

t + d t |t−1
1+c t |t−1


.

4. Monte Carlo study

In this section the performance of the Fréchet, Lévy, Log-gamma, Log-normal, Pareto, Skew GED and Weibull
models is evaluated through a Monte Carlo experiment, using the maximum likelihood estimator (MLE) and the
Bayesian estimators, posterior mean (BE-Mean) and posterior median (BE-Median). Asymptotic confidence interval
and credibility interval for the parameter vectors are also presented and they are compared with respect to the coverage
rates, for a fixed level of 95%.

The number of Monte Carlo replications was set equal to 1000 for time series of size n = {100; 200; 500}, gener-
ated under the prior specification λ0| Y0 ∼ Gamma (100.0; 1.0), with a covariate xt = sin (2π t/12), t = 1, . . . , n.

For all distributions β = 1.0 and ω = (0.90, 0.95) but only results for ω = 0.90 are presented here, as they were
very similar to the case ω = 0.95.

Specific parameters were set as follows: Fréchet(α = 5); Log-gamma(α = 5); Log-normal(δ = 5); Skew
GED(δ = 5, α = 1.5, κ = 1); Weibull (υ = 5.0). For the Fréchet, Lévy and Log-normal, models the parameter γ was
fixed at 0.0. For the Skew GED model the parameter α was fixed at 1.5, thus, there is a distribution with a tail heavier
than the Skew Normal (α = 2.0) and lighter than the Skew Laplace (both are particular cases of the Skew GED).

To calculate the maximum likelihood estimator, the BFGS algorithm assumed, as initial state condition λ0| Y0 ∼

Gamma (0.01; 0.01), ω0 = 0.50 and β0 = δ0 = α0 = υ0 = κ0 = 0.01.
For the Bayesian estimation using the ARWM algorithm, chains of size 20,000 were generated with burn in of

5000. The Uniform (−5000; 5000) and Uniform (0; 10,000) are used as the prior distribution for the parameters
that are defined in ℜ and ℜ

+, respectively. More details about the initial conditions in the ARWM algorithm and the
Bayesian approach are available from the authors upon request.

Most of the codes for NGSSM were developed by the authors in Ox Metrics R⃝. A few others, specially for the real
data applications, were done in R and MATLAB R⃝.

4.1. Empirical distribution of the estimators

In this subsection, the empirical distributions of the MLE and Bayesian estimators for the parameters of the heavy
tailed distribution in the NGSSM are investigated for time series of sizes n = 100, 200 and 500. As the empirical
distribution of the estimators for ω, β and the third parameter (α for Fréchet and Log-gamma, δ for Log-normal and
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Fig. 1. Histograms of the estimates (MLE, BE-Mean and BE-Median) of ω for time series generated from the Log-normal model with
(ω = 0.90; β = 1.0; δ = 5.0) with sizes 100, 200 and 500.

Skew GED, and υ for Weibull) are very similar for all studied models, then only the results for the Log-normal model
are presented here.

Fig. 1 shows the empirical distribution based on 1000 replications of the MLE, BE-Mean and BE-Median estimates
for parameter ω. Series of small size shows an asymmetric behavior, always overestimating ω. It can be noted that
the mode for the MLE is equal to 1.0. For larger series, the empirical distribution appears symmetric around the real
value of the parameter. As expected, the variance decreases as the sample sizes increase.

Figs. 2 and 3 present the empirical distribution of the estimates of parameters β and δ, respectively, for the Log-
normal model. The histograms are symmetric around the real value of the parameter for all sample sizes. For parameter
δ, the MLE presents larger variability than the Bayesian estimators (this behavior only occurs in the Log-normal and
Skew GED models). It can also be observed, as expected, that the variance of the estimates decreases with the increase
of the sample size. (See Tables 1–3.)
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Fig. 2. Histograms of the estimates (MLE, BE-Mean and BE-Median) of β for time series generated from the Log-normal model with
(ω = 0.90; β = 1.0; δ = 5.0) with sizes 100, 200 and 500.

4.2. Point and interval estimation

In this section, point and interval estimation for parameters of the models described in Section 3 are presented.
Tables 4–7 show, respectively, the results for the Fréchet, Lévy, Log-gamma, Log-normal, Pareto, Skew GED and
Weibull models. The average of 1,000 Monte Carlo replications of the MLE, BE-Mean and BE-Median, along with
the mean square error (MSE), are presented. The tables also show the lower and upper limits and coverage rates (Cov
Rate) of the asymptotic confidence intervals (Conf Int) and of the confidence credibility intervals (Cred Int). Parameter
γ for Féchet, Lévy and Log-normal, and parameter α for the Skew GED distributions were kept fixed in the estimation
stage.

The patterns are very similar for the parameter estimation in all models and therefore the conclusions will be jointly
summarized for all cases. It can be observed that the estimation procedures seem consistent, as the MSE decreases as
the sample sizes increase.
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Fig. 3. Histograms of the estimates (MLE, BE-Mean and BE-Median) of δ for time series generated from the Log-normal model with
(ω = 0.90; β = 1.0; δ = 5.0) with sizes 100, 200 and 500.

Concerning parameter ω (the first line in all tables and all sample sizes), the MLE seems to consistently
overestimate the true value, presenting larger bias and MSE than the Bayesian estimators, for small sample sizes.
With respect to the Bayesian estimators, there is not much difference between BE-Mean and BE-Median and they are
quite close to the true value of ω even for small samples. Concerning the intervals, it is interesting to note that, for
all series of size n = 100, the coverage rate of the asymptotic confidence intervals is below the nominal rate and the
coverage rate of the credibility intervals is above the nominal rate. For larger sample sizes, the coverage rates of both
intervals are close to the 95% level, except the confidence interval for the Log-gamma model with n = 200.

Estimates of parameter β (the second parameter in all tables and all sample sizes) do not differ for the MLE and
Bayesian estimators and are very close to the real value β = 1.0 for all models. The Lévy and Log-normal models
present the largest MSE values for all sample sizes, while the Log-gamma possesses the smallest ones. Therefore,
the limits of the asymptotic confidence and credibility intervals are larger for the Lévy and Log-normal models. The
Fréchet, Pareto, Skew GED and Weibull models show the same pattern for the MSE, which are smaller than the values
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Table 1
Monte Carlo study for the Fréchet model with (ω = 0.9; β = 1; α = 5).

n ϕ MLE BE-Mean BE-Median Conf Int Cred Int
(MSE) (MSE) (MSE) Cov Rate Cov Rate

ω 0.9204 0.9021 0.9096 [0.7391; 0.9681] [0.7880; 0.9740]
(0.0029) (0.0016) (0.0018) 0.920 0.983

100 β 1.0093 1.0157 1.0145 [0.6752; 1.3433] [0.6834; 1.3544]
(0.0312) (0.0288) (0.0287) 0.938 0.957

α 5.0368 5.1230 5.1143 [4.2355; 5.8381] [4.3475; 5.9506]
(0.1741) (0.1719) (0.1698) 0.940 0.944

ω 0.9102 0.8988 0.9024 [0.8199; 0.9519] [0.8263; 0.9509]
(0.0012) (0.0010) (0.0010) 0.954 0.955

200 β 1.0046 1.0141 1.0134 [0.9518; 1.2407] [0.7776; 1.2543]
(0.0137) (0.0161) (0.0161) 0.956 0.935

α 5.0106 5.0677 5.0631 [4.4404; 5.5808] [4.5087; 5.6565]
(0.0865) (0.0892) (0.0889) 0.956 0.946

ω 0.9028 0.9002 0.9017 [0.8589; 0.9331] [0.8592; 0.9328]
(0.0004) (0.0004) (0.0004) 0.945 0.941

500 β 1.0004 1.0046 1.0044 [0.8514; 1.1494] [0.8559; 1.1543]
(0.0057) (0.0059) (0.0059) 0.949 0.949

α 5.0062 5.0212 5.0190 [4.6437; 5.3688] [4.6653; 5.3879]
(0.0336) (0.0352) (0.0354) 0.957 0.947

Table 2
Monte Carlo study for the Lévy model with (ω = 0.9; β = 1).

n ϕ MLE BE-Mean BE-Median Conf Int Cred Int
(MSE) (MSE) (MSE) Cov Rate Cov Rate

100 ω 0.9188 0.9115 0.9174 [0.7438; 0.9638] [0.8155; 0.9740]
(0.0026) (0.0014) (0.0017) 0.925 0.987

β 0.9917 0.9897 0.9900 [0.5671; 1.4164] [0.5607; 1.4176]
(0.0496) (0.0480) (0.0480) 0.949 0.954

200 ω 0.9090 0.9040 0.9068 [0.8299; 0.9482] [0.8481; 0.9364]
(0.0010) (0.0007) (0.0008) 0.959 0.953

β 0.9961 0.9454 0.9455 [0.6966; 1.2956] [0.9508; 1.2283]
(0.0238) (0.0218) (0.0218) 0.938 0.963

500 ω 0.9035 0.9015 0.9027 [0.8658; 0.9308] [0.8658; 0.9306]
(0.0003) (0.0003) (0.0003) 0.950 0.948

β 0.9989 0.9938 0.9938 [0.8102; 1.1875] [0.8049; 1.1827]
(0.0100) (0.0089) (0.0089) 0.944 0.962

in the Log-normal but larger than the ones in the Log-gamma models. Nevertheless, the coverage rates are all very
close to the 95% fixed level, for all models and all sample sizes.

The third parameter, which depends on the distribution employed, was set equal to 5.0 for all cases, except in
the Lévy and Pareto models, where there is no extra parameter. For the Log-normal model, the behavior is the same
for all methods and the estimates are very close to 5.0, with very small MSE. The intervals show coverage rates
very close to 95% and small width. For the Log-gamma model, the MLE presents a better performance compared
to the Bayesian estimators, with smaller MSE. The coverage rates of the intervals are below the 95% nominal level
and the widths are the largest ones. The Fréchet and Weibull models present a very similar behavior, with the same
magnitude for the estimates. In this case, the MLE is again the procedure with the best performance (smaller bias and
MSE).
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Table 3
Monte Carlo study for the Log-gamma model with (ω = 0.9; β = 1; α = 5).

n ϕ MLE BE-Mean BE-Median Conf Int Cred Int
(MSE) (MSE) (MSE) Cov Rate Cov Rate

ω 0.9245 0.8844 0.8935 [0.7673; 0.9687] [0.7506; 0.9669]
(0.0044) (0.0026) (0.0026) 0.794 0.960

100 β 0.9977 0.9983 0.9984 [0.8705; 1.1249] [0.8695; 1.1273]
(0.0043) (0.0041) (0.0041) 0.949 0.954

α 5.1396 5.3720 5.3265 [3.6782; 6.6009] [3.9632; 7.0443]
(0.6493) (0.7823) (0.7375) 0.936 0.941

ω 0.9128 0.8921 0.8964 [0.8286; 0.9536] [0.8110; 0.9487]
(0.0020) (0.0012) (0.0012) 0.869 0.952

200 β 0.9987 0.9975 0.9975 [0.9084; 1.0890] [0.9066; 1.0883]
(0.0021) (0.0023) (0.0023) 0.943 0.947

α 5.0630 5.1783 5.1577 [4.0494; 6.0765] [4.1986; 6.2794]
(0.3097) (0.3310) (0.3213) 0.937 0.939

ω 0.9026 0.8970 0.8987 [0.8559; 0.9343] [0.8523; 0.9320]
(0.0004) (0.0004) (0.0004) 0.952 0.952

500 β 0.9995 1.0000 1.0000 [0.9425; 1.0565] [0.9430; 1.0570]
(0.0008) (0.0008) (0.0008) 0.948 0.953

α 5.0292 5.0667 5.0591 [4.3923; 5.6661] [4.4519; 5.7283]
(0.1085) (0.1151) (0.1139) 0.949 0.938

Concerning the fourth parameter in the Skew GED model, the MSE is larger for the MLE compared to the Bayesian
estimators for all sample sizes, although its bias is smaller for sample sizes 100 and 500. The coverage rates are close
to the 95% fixed level for all sample sizes.

5. Application to South and North American stock exchange indexes

Heavy tailed models in the NGSSM were fitted to the volatility of the following stock exchange indexes: S&P 500
and NASDAQ (USA), INMEX (Mexico), IBOVESPA (Brazil), MERVAL (Argentina) and IPSA (Chile) comprising
the period 02/01/2007 to 05/16/2011. Considering only working days, each series possesses 1101, 1101, 1098, 1078,
1074 and 1092 observations, respectively. Let rt be the log-return for each of the stock exchange indexes. Then, the
square of the log returns yt = r2

t were fitted for each NGSSM with the own series rt with an one-day delay as a
covariate (xt = rt−1) and the exponential link function, g(rt−1, β) = exp{βrt−1}.

With the purpose of comparing the models in the NGSSM with some known procedures in the literature,
GARCH [2], EGARCH [3] and stochastic volatility models [10] were also fitted to the series.

The GARCH is defined as follows,

yt = σtϵt , t = 1, . . . , n, (5)

σ 2
t = η +

p
j=1

φ jσ
2
t− j +

q
i=1

θiϵ
2
t−1, (6)

where η > 0, θi ≥ 0, φ j ≥ 0 and
r

k=1 (θk + φk) < 1 with i = 1, . . . , p, j = 1, . . . , q and r = max (p, q).
The EGARCH has the same Eq. (5), but with the Eq. (6) replaced by

log(σ 2
t ) = η +

p
j=1

φ j log(σ 2
t− j ) +

q
i=1

θi [|ϵt | − E(|ϵt |)] +

q
i=1

ξiϵt .

The following distributions were assumed for ϵt : Gaussian, Skew Gaussian, Student-t and Skew Student-t, but only
results for the skew versions are presented for brevity.
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Table 4
Monte Carlo study for the Log-normal model with (ω = 0.9; β = 1; δ = 5).

n ϕ MLE BE-Mean BE-Median Conf Int Cred Int
(MSE) (MSE) (MSE) Cov Rate Cov Rate

ω 0.9206 0.9090 0.9149 [0.7407; 0.9644] [0.8121; 0.9728]
(0.0028) (0.0013) (0.0016) 0.916 0.983

100 β 0.9955 0.9915 0.9922 [0.5619; 1.4291] [0.5575; 1.4223]
(0.0507) (0.0436) (0.0436) 0.948 0.962

δ 5.0006 5.0001 5.0001 [4.9441; 5.0570] [4.9792; 5.0209]
(0.0024) (0.0001) (0.0001) 0.932 0.951

ω 0.9098 0.9039 0.9067 [0.8325; 0.9484] [0.8429; 0.9490]
(0.0011) (0.0008) (0.0009) 0.958 0.944

200 β 1.0032 1.0029 1.0030 [0.7031; 1.3033] [0.7011; 1.3045]
(0.0239) (0.0246) (0.0247) 0.944 0.940

δ 4.9980 5.0002 5.0002 [4.9489; 5.0471] [4.9832; 5.0171]
(0.0020) (0.0001) (0.0001) 0.946 0.951

ω 0.9038 0.9006 0.9018 [0.8659; 0.9311] [0.8651; 0.9296]
(0.0003) (0.0003) (0.0003) 0.949 0.953

500 β 1.0021 1.0076 1.0074 [0.8136; 1.1906] [0.8183; 1.1968]
(0.0090) (0.0102) (0.0102) 0.951 0.937

δ 4.9996 4.9999 4.9999 [4.9586; 5.0406] [4.9847; 5.0151]
(0.0025) (0.0001) (0.0001) 0.944 0.948

Table 5
Monte Carlo study for the Pareto model with (ω = 0.9; β = 1).

n ϕ MLE BE-Mean BE-Median Conf Int Cred Int
(MSE) (MSE) (MSE) Cov Rate Cov Rate

100 ω 0.9183 0.9048 0.9115 [0.7351; 0.9655] [0.8004; 0.9721]
(0.0026) (0.0014) (0.0017) 0.937 0.991

β 0.9990 0.9941 0.9943 [0.7065; 1.2915] [0.6967; 1.2899]
(0.0227) (0.0221) (0.0221) 0.952 0.959

200 ω 0.9079 0.9016 0.9049 [0.8239; 0.9486] [0.8346; 0.9500]
(0.0011) (0.0008) (0.0009) 0.964 0.961

β 0.9961 0.9995 0.9996 [0.7893; 1.2028] [0.7914; 1.2073]
(0.0110) (0.0108) (0.0108) 0.950 0.958

500 ω 0.9043 0.8996 0.9009 [0.8640; 0.9329] [0.8609; 0.9307]
(0.0003) (0.0003) (0.0003) 0.952 0.959

β 1.0014 1.0013 1.0013 [0.8713; 1.1315] [0.8709; 1.1318]
(0.0043) (0.0046) (0.0046) 0.955 0.942

The stochastic volatility (SV) model for yt is defined as follows,

(yt |ht ) ∼ Log-normal(ξ, htλ
−1
t ), t = 1, . . . , n

ht = α + φ(ht−1 − α) + εt , where εt ∼ Normal(0, σ 2)

h1 ∼ Normal(α, σ 2/(1 − φ2))

ξ ∼ Normal(0, 104)

α ∼ Normal(0, 104)

φ ∼ Beta(20, 1.5)

σ−2
∼ Gamma(0.001, 0.001)

λt ∼ Gamma(ν/2, ν/2)

ν ∼ Uniform(2, 100),
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Table 6
Monte Carlo study for the Skew GED model with (ω = 0.9; β = 1; δ = 5; κ = 1).

n ϕ MLE BE-Mean BE-Median Conf Int Cred Int
(MSE) (MSE) (MSE) Cov Rate Cov Rate

ω 0.9330 0.9051 0.9075 [0.7359; 0.9728] [0.8321; 0.9631]
(0.0031) (0.0012) (0.0015) 0.913 0.975

β 1.0113 1.0043 1.0051 [0.6468; 1.3758] [0.8554; 1.1494]
100 (0.0344) (0.0057) (0.0062) 0.945 0.969

δ 5.0000 4.9998 4.9998 [4.9897; 5.0103] [4.9981; 5.0016]
(0.00003) (0.00000) (0.00000) 0.931 0.946

κ 1.0058 1.0206 1.0226 [0.8152; 1.1963] [0.9618; 1.0474]
(0.0100) (0.0035) (0.0044) 0.945 0.944

ω 0.9131 0.9045 0.9057 [0.8284; 0.9516] [0.8527; 0.9539]
(0.0011) (0.0006) (0.0009) 0.962 0.982

β 1.0063 1.0037 0.0039 [0.7491; 1.2636] [0.9151; 1.0933]
200 (0.0190) (0.0038) (0.0043) 0.934 0.949

δ 4.9998 4.9999 4.9999 [4.9918; 5.0079] [4.9988; 5.0013]
(0.00002) (0.00000) (0.00000) 0.945 0.947

κ 0.9986 1.0119 0.0124 [0.8755; 1.1217] [0.9860; 1.0377]
(0.0041) (0.0012) (0.0014) 0.943 0.938

ω 0.9039 0.9011 0.9014 [0.8650; 0.9319] [0.8773; 0.9235]
(0.0003) (0.0003) (0.0004) 0.9440 0.958

β 0.9989 1.0028 1.0027 [0.8374; 1.1605] [0.9755; 1.0406]
500 (0.0067) (0.0010) (0.0011) 0.9560 0.968

δ 5.0000 5.0001 5.0001 [4.9938; 5.0061] [4.9990; 5.0012]
(0.00001) (0.00000) (0.00000) 0.9320 0.941

κ 1.0015 1.0108 1.0112 [0.9327; 1.0703] [0.9941; 1.0255]
(0.0014) (0.0004) (0.0004) 0.9440 0.939

Table 7
Monte Carlo study for the Weibull model with (ω = 0.9; β = 1; υ = 5).

n ϕ MLE BE-Mean BE-Median Conf Int Cred Int
(MSE) (MSE) (MSE) Cov Rate Cov Rate

ω 0.9233 0.8969 0.9041 [0.7409; 0.9684] [0.7823; 0.9711]
(0.0034) (0.0017) (0.0019) 0.892 0.972

100 β 1.0018 1.0294 1.0282 [0.6689; 1.3347] [0.6943; 1.3711]
(0.0284) (0.0318) (0.0317) 0.953 0.942

υ 5.0204 5.1499 5.1412 [4.2224; 5.8183] [4.3678; 5.9844]
(0.1706) (0.1939) (0.1913) 0.949 0.944

ω 0.9083 0.9008 0.9045 [0.8163; 0.9504] [0.8285; 0.9521]
(0.0012) (0.0010) (0.0010) 0.961 0.951

200 β 0.9979 1.0054 1.0049 [0.7620; 1.2338] [0.7697; 1.2444]
(0.0142) (0.0149) (0.0149) 0.952 0.949

υ 5.0100 5.0490 5.0444 [4.4404; 5.5795] [4.4940; 5.6320]
(0.0872) (0.0839) (0.0835) 0.944 0.952

ω 0.9035 0.8991 0.9005 [0.8599; 0.9337] [0.8581; 0.9317]
(0.0004) (0.0003) (0.0003) 0.939 0.960

500 β 1.0020 1.0058 1.0054 [0.8531; 1.1509] [0.8574; 1.1557]
(0.0056) (0.0061) (0.0061) 0.949 0.946

υ 5.0133 5.0244 5.0222 [4.6503; 5.3764] [4.6696; 5.3921]
(0.0352) (0.0389) (0.0389) 0.951 0.935
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which defines an SV model with Log-Student-t distribution through a scale mixture of Log-normal and Gamma
distributions, and the degrees of freedom also being estimated.

Two chains of 500,000 iterations each were generated with convergence properly checked. The first 100,000 draws
of each chain were discarded and the remaining 400,000 were kept with thinning of 400. The summary of the posterior
distribution are then based on 2000 draws.

According to the results of the simulation study in Section 4, for large sample sizes the MLE and Bayesian
estimators are very similar in the NGSSM. Thus, for the comparison with GARCH, EGARCH and SV models
(Table 8), only the results of the MLE are presented.

The programs developed by the authors in Ox Metrics R⃝ were used to estimate the NGSSM, while the stochastic
volatility model was implemented in OpenBUGS. For GARCH and EGARCH models, it was employed the rugarch
package in R. For more details see [39].

For the Fréchet, Lévy and Log-normal models the parameter γ was fixed at 0.0 and, consequently, not estimated.
For the Log-gamma and Pareto models there is a constraint that the series should have values greater than 1.0. Thus,
for these models a constant value 1.0 was added to the observations of all series.

Fig. 4 presents the indexes and the log-returns of the six series. It can be observed, in all cases, an increase in the
volatility around observations 400 and 500, which corresponds to the second semester of 2008, period of the Global
Financial Crisis in 2008.

For in-sample analysis, model comparison was performed using the AICc, BIC and log-likelihood (LN LIKE) crite-
ria, shown in Table 8. According to the three criteria, the Log-gamma and Weibull NGSSM are the best models, except
for the MERVAL index, where the SV model is slightly better. The GARCH and EGARCH models present worse re-
sults than the NGSSM with Log-gamma and Weibull distributions, but perform better than the other NGSSM models.

The advantage of the NGSSM over the SV model, which is based on Gaussian state evolution, is that it does
not require approximations in the estimation process, as it allows for exact computation of the marginal likelihood
function. Thus, it renders significant reduction in the computational time taking just a few seconds to compute the
maximum likelihood estimator. The Bayesian estimation of the NGSSM is usually ten times faster than the SV-Log-t
model. Moreover, for the NGSSM, the convergence of the Markov chain Monte Carlo scheme, employed in this work,
is much faster since the states are integrated out, whilst for the SV-Log-t model it is slower, due to the sampling from
the highly correlated states and parameters at the same time.

For the out-of-sample analysis, model comparison was accomplished only for the best fitted models, through the
square root of the prediction mean square error (SRPMSE). Thus, Table 9 shows the SRPMSE for the three best fitted
models (NGSSM-Log-gamma, NGSSM-Weibull and SV-Log-t). The SRPMSE was computed using one-step ahead
forecast ŷt+1, through the Bayesian approach, where the parameters were estimated along with ŷt+1 leaving the last
five observations out, then the last four observations out, and so on until the last observation out. Finally, the SRPMSE
was computed as ((1/5)

5
j=1(yt+ j − ŷt+ j )

2)1/2, where the index j varies over the last five observations. From
the results, it can be observed that the NGSSM with Log-gamma or Weibull distribution is better than the SV-Log-t
model, with the NGSSM Log-gamma providing the best one-step-ahead predictions in most cases.

Table 10 presents the MLE and BE-Mean for parameters, along with their respective standard errors, of the Log-
gamma model fitted to the volatility series of all indexes. Bayesian and MLE produce almost the same results due to
the large sample size, but the standard errors for β in the Bayesian estimation are usually larger than the MLE. Most
of the β’s are statistically significant. The fit of the Log-gamma model was assessed by the Pearson residual for all
series and it was not observed any evidence of inadequacy.

It is interesting to note that the parameter estimates are relatively close for all models, except for IPSA. Values of
ω are between 0.89 and 0.94 for all indexes and this indicates a smaller impact of the crisis in the variance of the level
of this series, as can be visualized in Fig. 4.

6. Conclusion

Due to the recent instability in the global economic scenario, a great variety of procedures to model volatility are
being proposed in the econometric literature. In order to accommodate the main characteristics of this kind of series,
the models need to, necessarily, incorporate heteroscedasticity and non-normality assumptions.

Thus, the main objective of this work was to present some particular models in a non-Gaussian state space family
(NGSSM), proposed by [13], whose distribution function is contained in the family of heavy tailed distributions, such
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Fig. 4. The index and the log-return of S&P 500, NASDAQ, INMEX, IBOVESPA, MERVAL and IPSA, in the period from 02/01/2007 to
05/16/2011.

as the Fréchet, Lévy, Log-gamma, Log-normal, Pareto, Skew GED and Weibull. The NGSSM, when combined with
heavy tailed distributions, can produce better results than the classical methodologies often employed in econometric
studies, such as the GARCH and EGARCH like families.

The superiority of the method addressed here was confirmed through the fit of the methodology to the main return
indexes of North and South America, when compared to different GARCH and EGARCH models and the Log-t SV
model. The paper also presents the results of a Monte Carlo study comparing classical and Bayesian estimation
for some heavy tailed distributions in the NGSSM. In general, the estimation procedures show very satisfactory
results.
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Table 8
Fitted models for the North and South American stock indexes.

SERIES NGSSM AICc BIC LN LIKE E/GARCH and SV AICc BIC LN LIKE

FRÉCHET −15.54 −15.52 8556.7 GARCH-SKEW NORMAL −16.05 −16.02 8834.5
LÉVY −15.02 −15.01 8269.3 GARCH-SKEW t −16.05 −16.01 8836.0

LOG-GAMMA −16.22 −16.21 8934.4 EGARCH-SKEW NORMAL −16.11 −16.07 8870.3
S&P 500 LOG-NORMAL −15.88 −15.87 8744.7 EGARCH-SKEW t −16.12 −16.07 8873.6

PARETO −15.64 −15.63 8612.3 SV-LOG-t −16.08 −16.05 8855.0
SKEW GED −15.60 −15.58 8592.1
WEIBULL −16.23 −16.22 8938.9

FRÉCHET −15.12 −15.11 8327.5 GARCH-SKEW NORMAL −15.66 −15.63 8621.0
LÉVY −14.64 −14.63 8060.3 GARCH-SKEW t −15.67 −15.63 8627.4

LOG-GAMMA −15.83 −15.81 8715.0 EGARCH-SKEW NORMAL −15.73 −15.70 8661.6
NASDAQ LOG-NORMAL −15.47 −15.46 8521.3 EGARCH-SKEW t −15.75 −15.71 8672.9

PARETO −15.28 −15.27 8411.3 SV-LOG-t −15.70 −15.67 8645.0
SKEW GED −15.25 −15.23 8398.4
WEIBULL −15.82 −15.80 8708.9

FRÉCHET −14.94 −14.92 8202.3 GARCH-SKEW NORMAL −15.49 −15.46 8504.3
LÉVY −14.42 −14.41 7918.0 GARCH-SKEW t −15.53 −15.49 8527.2

LOG-GAMMA −15.72 −15.70 8631.8 EGARCH-SKEW NORMAL −15.56 −15.52 8540.8
INMEX LOG-NORMAL −15.34 −15.32 8421.9 EGARCH-SKEW t −15.61 −15.57 8572.3

PARETO −15.26 −15.26 8381.9 SV-LOG-t −15.72 −15.70 8635.0
SKEW GED −15.24 −15.22 8372.0
WEIBULL −15.71 −15.70 8627.5

FRÉCHET −14.01 −13.99 7551.8 GARCH-SKEW NORMAL −14.60 −14.57 7872.0
LÉVY −13.57 −13.56 7315.1 GARCH-SKEW t −14.63 −14.59 7887.6

LOG-GAMMA −14.75 −14.74 7955.5 EGARCH-SKEW NORMAL −14.67 −14.63 7908.1
IBOVESPA LOG-NORMAL −14.44 −14.42 7784.3 EGARCH-SKEW t −14.71 −14.66 7928.4

PARETO −14.31 −14.31 7717.2 SV-LOG-t −14.70 −14.68 7930.0
SKEW GED −14.30 −14.28 7711.3
WEIBULL −14.75 −14.73 7951.5

FRÉCHET −14.29 −14.27 7674.4 GARCH-SKEW NORMAL −14.92 −14.88 8010.2
LÉVY −13.69 −13.68 7351.7 GARCH-SKEW t −14.93 −14.90 8019.7

LOG-GAMMA −15.04 −15.03 8081.8 EGARCH-SKEW NORMAL −14.95 −14.91 8028.5
MERVAL LOG-NORMAL −14.73 −14.72 7915.0 EGARCH-SKEW t −14.98 −14.93 8043.8

PARETO −14.47 −14.46 7771.5 SV-LOG-t −15.06 −15.03 8090.0
SKEW GED −14.45 −14.44 7765.9
WEIBULL −15.04 −15.02 8078.1

FRÉCHET −16.05 −16.04 8768.2 GARCH-SKEW NORMAL −16.62 −16.59 9075.1
LÉVY −15.63 −15.62 8534.3 GARCH-SKEW t −16.64 −16.60 9083.1

LOG-GAMMA −16.74 −16.72 9141.9 EGARCH-SKEW NORMAL −16.69 −16.65 9112.7
IPSA LOG-NORMAL −16.45 −16.44 8986.5 EGARCH-SKEW t −16.72 −16.67 9129.0

PARETO −16.35 −16.34 8928.1 SV-LOG-t −16.69 −16.67 9120.0
SKEW GED −16.32 −16.30 8916.1
WEIBULL −16.73 −16.72 9138.7

Future research encompasses the improvement of the maximum likelihood method to properly estimate ω for small
samples and hypothesis test for the parameters, and also other features of stochastic volatility models such as leverage
effects (which would result in a likelihood in known closed form).
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Table 9
Comparison for the out-of-sample forecasts of the three best fitted models for the North and South American stock indexes. SRPMSE stands for
the square root of the prediction mean square error and was computed using one-step ahead forecast for the last five observations of each series.

SERIES MODEL SRPMSE SERIES MODEL SRPMSE

NGSSM-LOG-GAMMA 0.000167 NGSSM-LOG-GAMMA 0.000217
S&P 500 NGSSM-WEIBULL 0.000172 NASDAQ NGSSM-WEIBULL 0.000198

SV-LOG-t 0.011710 SV-LOG-t 0.023418

NGSSM-LOG-GAMMA 0.000138 NGSSM-LOG-GAMMA 0.000259
INMEX NGSSM-WEIBULL 0.000146 IBOVESPA NGSSM-WEIBULL 0.000289

SV-LOG-t 0.340632 SV-LOG-t 0.037606

NGSSM-LOG-GAMMA 0.000341 NGSSM-LOG-GAMMA 0.000098
MERVAL NGSSM-WEIBULL 0.000368 IPSA NGSSM-WEIBULL 0.000104

SV-LOG-t 0.715625 SV-LOG-t 0.014071

Table 10
Parameter estimates of the Log-gamma models for the volatility of the indexes. The standard errors are between brackets.

NGSSM Parameter MLE BE-Mean NGSSM Parameter MLE BE-Mean

ω 0.9210 0.9180 ω 0.9315 0.9276
(0.0110) (0.0115) (0.0107) (0.0109)

S&P 500 β 6.7938 4.0215 NASDAQ β 8.1367 4.9696
(3.5117) (7.0122) (2.6491) (7.2484)

α 0.4388 0.4389 α 0.4497 0.4492
(0.0138) (0.0156) (0.0162) (0.0160)

ω 0.9189 0.9147 ω 0.9256 0.9210
(0.0116) (0.0123) (0.0117) (0.0120)

INMEX β 6.7530 6.1239 IBOVESPA β 8.4150 6.8293
(2.7749) (5.0525) (2.4464) (4.7735)

α 0.4744 0.4750 α 0.4811 0.4795
(0.0156) (0.0174) (0.0168) (0.0177)

ω 0.9098 0.9066 ω 0.8963 0.8869
(0.0118) (0.0134) (0.0111) (0.0129)

MERVAL β 6.5492 5.2754 IPSA β 15.2041 2.8329
(2.3339) (4.3531) (2.9900) (5.4234)

α 0.4307 0.4304 α 0.4947 0.4924
(0.0159) (0.0161) (0.0178) (0.0183)
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de Minas Gerais (FAPEMIG) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) for financial
support.

References

[1] R.F. Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflations, Econometrica 50
(1982) 987–1007.

[2] T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, J. Appl. Econometrics 31 (1986) 307–327.
[3] D.B. Nelson, Conditional heteroskedasticity in asset returns: A new approach, Econometrica 59 (1991) 347–370.
[4] J.M. Zakoian, Threshold heteroscedastic models, J. Econom. Dynam. Control 18 (1994) 931–955.
[5] L. Bauwens, S. Laurent, J.V.K. Rombouts, Multivariate GARCH models: A survey, J. Appl. Econom. 21 (2006) 79–109.
[6] S.J. Taylor, Modelling Financial Time Series, John Wiley & Sons, 1986.

http://refhub.elsevier.com/S0378-4754(15)00157-3/sbref1
http://refhub.elsevier.com/S0378-4754(15)00157-3/sbref2
http://refhub.elsevier.com/S0378-4754(15)00157-3/sbref3
http://refhub.elsevier.com/S0378-4754(15)00157-3/sbref4
http://refhub.elsevier.com/S0378-4754(15)00157-3/sbref5
http://refhub.elsevier.com/S0378-4754(15)00157-3/sbref6


F.M. de Pinho et al. / Mathematics and Computers in Simulation 119 (2016) 108–127 127

[7] A. Melino, S.M. Turnbull, Pricing foreign currency options with stochastic volatility, J. Appl. Econom. 45 (1990) 239–265.
[8] S.J. Taylor, Modelling stochastic volatility: A review and comparative study, Math. Finance 4 (1994) 183–204.
[9] A.C. Harvey, E. Ruiz, N. Shephard, Multivariate stochastic variance models, Rev. Econ. Stud. 61 (1994) 247–264.

[10] E. Jacquier, N.G. Polson, P. Rossi, Bayesian analysis of stochastic volatility models (with discussion), J. Bus. Econom. Statist. 12 (1994)
371–417.

[11] B. Eraker, M. Johanners, N.G. Polson, The impact of jumps in returns and volatility, J. Financ. 53 (2003) 1269–1330.
[12] D. Raggi, S. Bordignon, Comparing stochastic volatility models through Monte Carlo simulations, Comput. Statist. Data Anal. 50 (2006)

1678–1699.
[13] D. Gamerman, T.R. Santos, G.C. Franco, A non-Gaussian family of state-space models with exact marginal likelihood, J. Time Ser. Anal. 34

(2013) 625–645.
[14] R.L. Smith, J.E. Miller, A non-Gaussian state space model and application to prediction of records, J. Roy. Stat. Soc. B 48 (1986) 79–88.
[15] R.S. Tsay, Analysis of Financial Time Series, John Wiley & Sons, New Jersey, 2005.
[16] A.C. Harvey, Forecasting, Structural Time Series Models and the Kalman Filter, Cambridge University Press, Cambridge, 1989.
[17] N. Shephard, Local scale model: state space alternative to integrated GARCH processes, J. Appl. Econom. 60 (1994) 181–202.
[18] P.K. Deschamps, Bayesian estimation of an extended local scale stochastic volatility model, J. Appl. Econom. 162 (2011) 369–382.
[19] M. Ferrante, P. Vidoni, Finite dimensional filters for nonlinear stochastic difference equations with multiplicative noises, Stochastic Process.

Appl. 77 (1998) 69–81.
[20] P. Vidoni, Exponential family state space models based on conjugate latent process, J. Roy. Statist Soc. Ser. B 61 (1999) 213–221.
[21] J. Anderson, On the normal inverse Gaussian stochastic volatility model, J. Bus. Econom. Statist. 19 (2001) 44–54.
[22] S. Chib, F. Nardari, N. Shephard, Markov chain Monte Carlo methods for stochastic volatility models, J. Appl. Econom. 108 (2002) 281–316.
[23] A.C. Harvey, C. Fernandes, Time series models for count or qualitative observations, J. Bus. Econom. Statist. 7 (1989) 407–417.
[24] M. Avriel, Nonlinear Programming: Analysis and Methods, Dover Publications, 2003.
[25] G.O. Roberts, J.S. Rosenthal, Examples of adaptive MCMC, J. Comput. Graph. Statist 18 (2009) 349–367.
[26] H. Haario, F. Saksman, J. Tamminen, An adaptive Metropolis algorithm, Bernoulli 7 (2001) 223–242.
[27] P. McCullagh, J.A. Nelder, Generalized Linear Models, Chapman and Hall, London, 1989.
[28] H. Akaike, A new look at the statistical model identification, IEEE Trans. Automat. Control 19 (1974) 716–723.
[29] G.E. Schwarz, Estimating the dimension of a model, Ann. Statist 6 (1978) 461–464.
[30] C.M. Hurvich, C.L. Tsai, A corrected Akaike information criterion for vector autoregressive model selection, J. Time Ser. Anal. 14 (1993)

271–279.
[31] S. Asmussen, Applied Probability and Queues, Springer, Berlin, 2003.
[32] J.L. Teugels, The class of subexponential distributions, Ann. Probab. 3 (1975) 1000–1011.
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