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Resumo

A maioria dos algoritmos de aprendizado de máquina exige como entrada um vetor
de tamanho fixo. Isso torna a área de representação de texto uma área desafiadora
de pesquisa em Processamento de Linguagem Natural (NLP), e seus resultados são
altamente dependentes da aplicação em questão. Para tarefas de NLP, esse vetor de
tamanho fixo geralmente representa uma frase ou um parágrafo. No entanto, construir
representações de sentença capazes de capturar as informações semânticas e específicas
de um contexto não é uma tarefa fácil. Neste trabalho propomos uma metodologia para
resolver um problema real: a identificação de objetos únicos de licitação em bases de
dados do Ministério Público Federal de Minas Gerais. Esse cenário traz desafios que vão
além dos comumente conhecidos na área de representação de texto, uma vez que quer-
emos agrupar descrições de produtos ou serviços. Essas descrições no geral não seguem
a estrutura gramatical de uma sentença na língua portuguesa, já que são formadas
em sua maioria por substantivos, adjetivos, e quantidades, essas últimas descrevendo
a quantidade de itens comprada/contratada ou a unidade de medida que descreve o
item. Dentro do arcabouço proposto, damos ênfase ao problema de representação de
texto para algoritmos não-supervisionados. Propomos uma estratégia simples de ex-
tração de informações para melhorar a qualidade dos vetores de sentenças, com foco
em termos específicos como números e substantivos, e apresentamos uma modificação
do Sentence-BERT, que pode ser usada de forma não-supervisionada para geração de
embeddings que carregam informações semânticas e sintáticas das descrições. Também
identificamos termos numéricos e unidades de medida como os dois componentes princi-
pais neste contexto, e mostramos que um método simples de padronização de números
tem um efeito significativo nos resultados. Resultados experimentais mostram ganhos
do arcabouço proposto em relação a métodos estado-da-arte.

Palavras-chave: Representação de texto, Agrupamento de texto, Vetores de palavras.



Abstract

Most machine learning algorithms require a fixed-size vector as input. This makes the
area of text representation a challenging one in Natural Language Processing (NLP)
tasks, and its results are highly dependent on the target application. For NLP tasks,
this fixed-size vector usually represents a sentence or a paragraph. However, building
text representations capable of capturing semantic and context-specific information
is not a simple task. In this work, we propose a methodology to solve a real-world
problem: the identification of unique objects from public procurement stored in the
databases of the Federal Public Ministry of Minas Gerais. These scenarios pose chal-
lenges that go beyond those commonly known in the text representation area, as we
want to group descriptions of products or services. These descriptions in general do not
follow the grammatical structure of a sentence in the Portuguese language, as they are
mostly formed by nouns, adjectives, and quantities, the latter describing the quantity
of items purchased/contracted or the unit of measure that describes the item. Within
the proposed framework, we emphasize the text representation problem for unsuper-
vised algorithms. We propose a simple information extraction strategy to improve the
quality of sentence vectors, focusing on specific terms such as numbers and nouns, and
present a modification of the BERT siamese network, which can be used in an unsuper-
vised way to generate embeddings that carry semantic and syntactic information from
descriptions. We also identify numerical terms and measurement units as the two main
components in this context, and show that a simple method of standardizing numbers
has a significant effect on the results. Experimental results show improvements from
the proposed framework in relation to state-of-the-art methods.

Palavras-chave: Text representation, Text clustering, Word embeddings.
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Chapter 1

Introduction

The rising of the Web and social media has increased the volume of text produced by
people dramatically. Texts are present in a variety of contexts, such as social networks
(e.g. Twitter, Facebook, Linkedin), short messages services (SMS), chat messages
(eg. WhatsApp, Telegram), product reviews and descriptions (e.g. Amazon, Walmart,
MercadoLivre), news (e.g. CNN, BBC), electronic health records (EHR), among others.
Given the large volume of text produced worldwide and the difficulty of understanding
complex texts, there is a need to build automated processes to extract and analyze
useful information from them in several contexts.

Because of that, the use of Natural Language Processing (NLP) tasks, such as
text classification [Radford et al., 2018], text disambiguation [Li et al., 2013], named
entity recognition (NER) [Peters et al., 2018], part-of-speech tagging (POS-tagging)
[Owoputi et al., 2013] and question answering (QA) [Devlin et al., 2019; Peters et al.,
2018] is growing in many areas. One of the most essential and challenging tasks in
this area, regardless of the target task, is to choose a suitable representation for text
[Conneau et al., 2017]. For example, if we want to perform the task of text clustering
it would be more appropriate to adopt a vector representation instead of the textual
representation itself, since there is a distance relationship between scalar and vector
values that can be exploited by clustering algorithms. On this matter, there is a
number of approaches that can build vector representation for texts, in particular for
sentences and paragraphs, such as bag-of-words, tf-idf and embeddings [Kiros et al.,
2015; Logeswaran and Lee, 2018; Le and Mikolov, 2014].

Embedded representations are, in particular, mostly produced by methods based
on deep artificial neural networks. Deep neural networks (DNNs) are methods inspired
by the structure and functioning of the brain, and are able to learn feature hierarchies
through multiple stacked layers of neurons [Schifano et al., 2018; Rumelhart et al.,
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1986]. The hierarchy of concepts makes it possible for DNNs to learn complicated
relationships within the data.

In the context of NLP, DNNs have been revolutionizing the field, as they can build
models that are able to learn robust and meaningful representations for text, capturing
semantic and syntax relationships between words [Mikolov et al., 2013a; Bojanowski
et al., 2017; Pennington et al., 2014a]. These models can be used in an unsupervised
manner to build representation for sequences of tokens [Pennington et al., 2014a] or in
a supervised way through fine-tuning [Reimers and Gurevych, 2019]. Since pre-trained
models and representations can be saved for future usage, the research of NLP tasks is
constantly growing.

DNNs can achieve state-of-art results in several NLP tasks through a number
of architectures, such as Convolutional Neural Networks (CNN) [Wang et al., 2016],
Hierarchical Attention Networks (HAN) [Yang et al., 2016], Long short-term memory
(LSTM) [Conneau et al., 2017] and Bidirectional Transformers (BERT) [Devlin et al.,
2019]. Although there is a number of different deep neural architectures that can
be used to build vector representation for sentences, it is not clear which of these
models is more suitable for domain-specific contexts. Regardless of the architecture
chosen, most studies in the NLP research field focus on supervised tasks, including
text classification [Radford et al., 2018], named entity recognition [Peters et al., 2018],
and question answering [Devlin et al., 2019; Peters et al., 2018]. However, there are
few works that leverage the quality of different sentence representation on unsupervised
tasks, such as text clustering.

Clustering is one of the most popular data mining techniques to deal with un-
labeled data and has many applications, such as identifying meaningful patterns and
visualization. This task has been used for solving real-word problems, such as detec-
tion of cyber-anomalies and policy violations [Sarker et al., 2020a,b]. In short, the idea
behind text clustering is to group similar text together based on their meaning.

This dissertation is motivated by a text clustering task to solve a real-world
problem, namely the detection of overpriced products and services (also called items
or objects) in public procurement. The main difficulty of the problem comes from the
fact that only the item descriptions and their prices are available. In addition, product
descriptions usually do not follow the same grammatical structures of sentences and
have a lot of scalar information, which can represent the number of objects required
or a particular specification for the object (e.g., “100 folhas de papel A4”). More
precisely, the used dataset extracted from the Public Ministry of the stare includes
196,747 public procurements (e.g., bidding) held between 2015 and 2018 in the state
of Minas Gerais, Brazil. The data embraces all areas of public administration and
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objects from a variety of areas. Hence, the collection of item descriptions comprises a
large variety of words and do not follow any standardized format.

In recent years, the task of generating representation for sentences has been ex-
plored as a supervised task, in which deep neural networks are trained on large corpora
to later derive sentence embeddings in an unsupervised manner [Reimers and Gurevych,
2019; Conneau et al., 2017]. Most of the methods that explore this strategy are based
on a siamese network trained on common semantic textual similarity tasks. Since it is
difficult to evaluate the quality of representations on low-level tasks like text clustering,
sentence similarity also comes as an alternative way to evaluate the quality of sentence
representations obtained by different methods proposed in the literature, as well as the
novel approach proposed in this work.

1.1 Motivation

This work is motivated by the problem of building representations for text, particularly
for sentences and paragraphs, in tasks where the sentences do not follow a traditional
grammatical structure. Despite the growth of deep neural networks (DNNs) to solve
similar problems, we are far from reaching a consensus on how to build text represen-
tation for unsupervised tasks [Reimers and Gurevych, 2019; Allahyari et al., 2017].

The most commonly used strategy for building embedded representations for sen-
tences is to average word embeddings, which yields rather ineffective results [Penning-
ton et al., 2014b]. Trying to improve the quality of sentence representations, researchers
have started to use DNNs to learn sentence representations directly. BERT [Devlin
et al., 2019], in particular, set new state-of-the-art performance on various sentence
classification and sentence-pair regression tasks, such as semantic textual similarity
(STS). Another common strategy to generate sentence embeddings is to derive fixed-
size vectors using pre-trained models in an unsupervised way [Reimers and Gurevych,
2019; Conneau et al., 2016]. These models are commonly called encoders and have
been extensively explored in recent years. Two main questions need to be answered
to build an encoder: what is the best neural network architecture for the target task,
and how and on which task should this network be trained for. Most approaches learn
sentence encoding in an unsupervised manner, like SkipThought [Kiros et al., 2015] and
FastSent [Hill et al., 2016]. However, more recently researchers have been investigating
how supervised learning can be used instead.

One of the proposed supervised methods for building sentence representations is
Sentence-BERT (SBERT), a modification of the pre-trained BERT network that uses
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a siamese network structure to derive semantically meaningful sentence embeddings.
This model can be fine-tuned on context-specific data and used to map sentences to a
vector space in an unsupervised manner, which can be used by clustering algorithms
and other machine learning models. In its seminal paper, SBERT explored natural
language inference (NLI) data for training the encoder. In this study, we are also inter-
ested in building vector representation for sequences of tokens. However, as previously
mentioned, we focus on product descriptions, which have many singular properties
and offer more technical challenges in the context of text representation. In addition,
conventional language models, such as word2vec [Mikolov et al., 2013a] and GloVe [Pen-
nington et al., 2014a], do not capture efficiently numeric information in text, which are
widely present in item descriptions.

As far as we are concerned, this is the first study that focus on improving text
representation using semantic and syntax information for supervised and unsupervised
tasks. The lack of research in unsupervised NLP tasks, particularly on text clustering,
highlights the importance of this work.

1.2 Objectives

The main goal of this work is to investigate an compare methods currently used for
building sentence representation, explore new strategies based on semantic and syn-
tactic features for improving the quality of sentence representations, and develop a
framework for clustering similar items together based on their descriptions. Following
the most popular works on text representation, this study focuses on sentence repre-
sentation models trained on supervised data. In contrast to most NLP studies, this
dissertation focuses on using sentence representations in a unsupervised manner and
discusses how these can be applied to solve text clustering, more specifically, in the
context of item descriptions. In addition, for investigating the currently used text rep-
resentation algorithms, we designed and conducted extensive experiments to validate
and compare the performance of different models and their respective architectures.
The general objective of this work can be narrowed down into three specific goals,
driven by the following research questions:

Research Question 1 (RQ1): Which are the most appropriate strategies for gener-
ating sentence vectors representations for unsupervised tasks, such as text clustering?

We investigate both simple strategies and more sophisticated methods to gener-
ate sentence representations in an unsupervised manner for text clustering. We also
leverage the quality of these representations on common semantic textual similarity
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tasks, which are used to train most of the models presented in this work. Among the
discussed approaches for building sentence vectors are bag-of-words, word embeddings
averaging, SIF (Smooth Inverse Frequency) [Arora et al., 2017], InferSent [Conneau
et al., 2017], and SBERT [Reimers and Gurevych, 2019].

Research Question 2 (RQ2): Can we enhance language models with semantic and
syntax information, such as part-of-speech tags and named entities?

This question arises from the idea that standard models do not adequately address
a general linguistic fact, that is, different text components serve diverse roles in the
meaning of a sentence. In general, the subject, predicate, and object serve the most
important roles of a sentence, as they represent the primary meaning of it. However,
this does not apply to item descriptions, the main context of this study. They usually
do not follow a grammatical structure as sentences and paragraphs. Nevertheless, item
descriptions often contain numbers and units of measure which are very important,
as they carry information about the scalar magnitude of objects. Hence, we propose
the usage of a supervised sentence representation method that explores the numeric
components of item descriptions. We also exploit the usage of these models in other
datasets. The main idea is to take advantage of the main components of a specific
context to enhance the quality of sentence representations.

Research Question 3 (RQ3): Can we model real-world problems and achieve state-
of-the-art results in text clustering in the context of item descriptions?

We propose and evaluate methods more suitable to deal with item descriptions,
as they have singular properties in comparison to other sequences of words. Item
descriptions usually do not follow the same grammatical structure of sentences and
contain information about the scalar magnitudes of objects, providing more technical
challenges to build robust sentence representations. We focus on the fact that conven-
tional language models, like word2vec [Mikolov et al., 2013a] and fastText [Bojanowski
et al., 2017], do not capture this information effectively.

1.3 Main Contributions

This dissertation presents contributions to the fields of text representation and text
clustering, according to the research questions stated in Section 1.2. They are listed
below.

A General framework for text clustering and text representation (RQ1):
This framework can be used to solve problems that involves text clustering. In this
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study, in particular, we group similar items based on their descriptions, solving a real-
word problem related to the detection of overpricing in public procurement. As the
sentence representations used for these tasks were derived in an unsupervised manner,
they can also be used to solve other NLP tasks.

Strategies for improving sentence representations based on exploiting se-
mantic and syntactic information (RQ2): We propose a simple method based
on arithmetic operations and component focusing to improve sentence representations
using semantic and syntax information. The proposed method is trained on supervised
data and can be later used to derive sentence embeddings in an unsupervised manner.

Evaluation of sentence representation models in text clustering (RQ3): The
clustering framework was evaluated together with nine different sentence representation
models.

A strategy for building synthetic datasets of item descriptions (RQ4): In
order to train and evaluate sentence representations obtained by different methods on
the context of item descriptions, synthetic datasets were designed. These dataset were
created with focus on numbers and units of measure, as they play a crucial role in the
meaning of an object description.

Comprehensive experimental evaluation: The numerous approaches that have
been presented in the literature motivated us to preform an extensive and compre-
hensive experimental evaluation, in particular for common semantic textual similarity
tasks, which use classification and regression objective functions.

1.4 Text Organization

This dissertation is organized as follows. Chapter 2 presents works from the literature
that are related to our research, such as deep neural networks, sentence representation
methods and text clustering. Chapter 3 describes the proposed methodology for solving
the problem of clustering item descriptions in a real-word dataset. Chapter 4 describes
our experimental methodology for sentence representation methods, presenting the
datasets characteristics, the experimental setup and the results of the currently used
approaches. Next, Chapter 5 presents the new method proposed in this dissertation
and discusses our results on semantic textual similarity tasks. Chapter 6 presents and
discusses the final clustering results. Finally, Chapter 7 draws conclusions and points
out directions of future work.
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Chapter 2

Background and Related Work

This study comprises several methods to generate text representations for words and
sentences. It involves building language models with a large corpora as well as evaluat-
ing the representations in sentence similarity tasks and using them for text clustering.
For this reason, this chapter presents previous work on the four main sides of our
research: neural architectures (Section 2.1), word embeddings representations (Sec-
tion 2.2.1), sentence embeddings representations (Section 2.2.2), and text clustering
(Section 2.4).

2.1 Neural Architectures

This section presents and discusses a few neural network architectures. We clarify that
deep learning architectures have many theories, concepts and details and the focus of
our work is to compare the performance of existing algorithms, rather than explaining
each architecture in detail. For a more in-depth understanding of the methods, the
reader is encouraged to read the references cited in this work. Specifically, we focus
on four types of architectures: convolutional neural networks (CNNs), recurrent neural
networks (RNNs), attention models, and transformers.

But before going into detail into these architectures, we briefly review a Mul-
tilayer perceptron, which is the simplest example of a deep learning model. Neural
networks are formed by many single units called artificial neurons. Particularly, each
neuron receives inputs, weights them on the basis of their importance, computes a
weighted sum of the inputs and finally, adds up an additional input b called bias to
properly tune its output value. The output of a neuron is ni = �(wi · x + bi), where
wi and bi are the weights and bias of the linear transformation and � is a nonlinear
activation function. The nonlinear activation function enables the neural network to
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model complex non-linearities of the underlying relations between the inputs and the
target variable [Schifano et al., 2018]. As shown in Figure 2.1, a MLP is composed
of an input layer, an output layer that makes a prediction about the input and, in
between those two, an arbitrary number of hidden layers.

,QSXW�/D\HU +LGGHQ�/D\HUV
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Figure 2.1: Multilayer Perceptron - MLP.

During the training of such models, the weights are usually initialized to small
random values and the bias to zero. After that, each input is passed from layer to
the next until it reaches the output layer. In this phase, the network computes the
output and the error corresponding to the input. The error is calculated on a training
or validation set, and then propagated backward changing the values of weights and
bias in order to reduce the error itself [Schifano et al., 2018].

An input layer is determined by the number of features in the dataset. For textual
data, it can be words or characters. The output layer for classification problems can
have n neurons for n-way classification and utilize a softmax function to output the
probability of an example to belong to each class. There are other hyperparameters that
should be chosen - via cross-validation or in a trial-and-error setting. Hyperparameters
are numerical presets that have their values defined prior to the start of the learning
process. It is very difficult to determine their optimal values. Most hyperparameters
optimization algorithms depend on searching a generic range of values and these are
imposed blindly on all sequences [Dong et al., 2018]. Following, we describe some
important hyperparameters that can be tuned in the training process of deep learning
architectures.:

• Learning rate: controls how much to change the model in response to the esti-
mated error each time the model weights are updated.

• Optimization algorithm: is used to learn the weights of the network. Specifically,
it is the process that minimize the error and adjusts the network weights. The
most used algorithms are based on gradient descents, each one applying different
types of improvement, such as Adagrad, Adam and RMSProp Graves [2013].
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• Dropout regularization probability: dropout is a regularization technique for re-
ducing overfitting and improving the generalization of deep neural networks. It is
implemented by randomly selecting nodes to be dropped-out from the network,
with a given probability, at each weight update cycle.

• Weight initialization: In most cases, weights are initialized randomly. In some
finely-tuned settings, weights are initialized using a pre-trained model strategy.

These same hyperparameters are present in CNNs, RNNs and all other neural
network architectures. More complex architectures have many different hyperparam-
eters and they are very sensitive to even small changes to them. There are many
possible values, which brings a lot of complexity to the process of tuning or choosing
the parameters.

2.1.1 Convolutional Neural Networks (CNN)

CNNs were initially created to recognize shapes and patterns in images and audio [Lee
et al., 2009; Masci et al., 2013], but later started to be used to train language models
and other NLP tasks [Mikolov et al., 2013b; Zhang et al., 2015; Conneau et al., 2016].
Convolutions were first applied to natural language processing tasks by Collobert et al.
[2011] in semantic role labelling and later by Kim [2014] in sentiment and question
classification. When applied to text instead of images, we have a 1-dimensional array
representing the text. Figure 2.2 illustrate how a CNN works with word-based inputs.
Each word is represented by a vectorized encoded representation, that might be one-hot
encoded or even a real-valued representation.

The network in Figure 2.2 has three different layers that define a CNN: an input
layer, a convolution layer and a pooling layer. The convolution layer is where most
of the computational operations are. Convolution is a linear operation that involves
the multiplication of a set of weights with the input. As illustrated in Figure 2.3, the
convolution operation begins at the top of the input matrix. Then the values of the
input matrix are multiplied by the corresponding values in the convolution filter (or
kernel). All of the multiplied values are added together resulting in a single scalar,
which is placed in the convoluted feature vector. After that, the kernel moves down by
the length of x pixels, where x is called stride (a parameter of the CNN structure).

This process is repeated until it convolutes the whole input matrix. This archi-
tecture allows the network to concentrate on low-level features in the first hidden layer,
before assembling them into higher-level features in the next hidden layer, and so on
[Conneau et al., 2016; Zhang et al., 2015]. The process of convolution over text can
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Figure 2.2: Convolutional Neural Network for NLP.

capture k-grams from the sequence of m vectors [Goldberg, 2017]. CNNs might have
many layers, as each layer gets distinct feature maps. Its most important hyperparam-
eters are number of kernels and their dimensions, number of convolutions, and types
of pooling.
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Figure 2.3: Convolution operation.

Figure 2.4 exemplifies the process of pooling over a sentence, performed by the
last layer of Figure 2.2. The pooling layer reduces the size of the resulting feature
map through an aggregation operation. A pooling neuron does not have weights. It
aggregates the inputs using an aggregation function, such as max or mean. Specifically,
the pooling layer summarized the features learned in the previous layers, which helps to
prevent overfitting. The advantage of the pooling layer is its ability to inject location
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invariance into the network, which means that features can be detected by the network
wherever they are on the input.
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Figure 2.4: Pooling operation.

2.1.2 Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) were created for solving problems where the se-
quence is more important than the individual items themselves. These deep learning
algorithms are commonly used for ordinal or temporal problems, such as language
translation [Cho et al., 2014], speech recognition [Rao et al., 2017], and image caption-
ing [Mao et al., 2014]. As RNNs were designed for sequential data, they are used in
many natural language processing applications [Conneau et al., 2017; Rao and Spaso-
jevic, 2016]. Sequential data is basically ordered data in which related inputs follow
each other, such as DNA sequence and time series.

Figure 2.5 shows a recurrent neural network. Each RNN neuron/unit takes two
inputs at each time step: the input xt and a hidden state ht�1. In the case of natural
language processing tasks the input is one word from the input sentence. The word,
however, is represented by a vector. With the input and the hidden state, the RNN
unit creates the output yt and a hidden state ht, which is used in next time step. A
loop allows information to be passed from one step of the network to the next.
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Figure 2.5: Recurrent neural network in compact and expanded representations.
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RNNs have many variants. In this study, we will focus on Long short-term
memory networks (LSTM) [Hochreiter and Schmidhuber, 1997; Conneau et al., 2017].
LSTMs are a special kind of RNN capable of learning long-term dependencies. They
are known to work very well on a large variety of problems [Conneau et al., 2017]. In
standard RNNs, the repeating module has a very simple structure, like a single tanh
layer. LSTMs also have this chain like-structure, but the repeating module is composed
by many neural network layers.

RNNs encouraged the development of the sequence-to-sequence (or encoder-
decoder) models. These models are a relatively recent architecture that has opened
many possibilities for machine translation, speech recognition and text summarization.
Both the encoder and the decoder tend to be recurrent neural networks. An encoder-
decoder maps an input sequence to an output sequence, which can be of a different
length [Salvaris et al., 2018]. In these models, the last hidden state produced by the
encoder is also called context, which is used as the first hidden state by the decoder.

2.1.3 Attention and Transformers

In encoder-decoder models, when the sentence becomes large, the information from its
beginning might not be learned well, as the network struggles to retain all available
information. Attention mechanisms were introduced in order to solve this problem
[Vaswani et al., 2017], and they allow the model to focus on the relevant parts of the
input sequence.
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Figure 2.6: Attention at time step t.

Attention models were first introduced in NLP for machine translation tasks
[Bahdanau et al., 2014; Luong et al., 2015]. Figures 2.6 and 2.7 illustrate how attention
works in a sequence-to-sequence model in a high level. Attention models can also be
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used as a tool for interpreting the behavior of neural networks. The first stage of the
attention is the encoding, where a set of RNNs receive text as input data and process it
to become basically a vector of numbers (hidden states). After that, the encoder passes
the hidden states to the decoder, which receives a current word yt and a hidden state
(initially hinit). Then the RNN processes its inputs, producing an output and a new
hidden state vector (ht). Once the RNN outputs ht, it uses the hidden states from the
encoder plus ht to calculate a context vector ct, which represents the scores from the
words around the current word, for the current time step. They are both concatenated
into one vector, passing through a feedforward neural network. The output of this
network is the word (yt+1) for this time step. This process is repeated for each time
step (next words). In that way, the encoder passes all the hidden states to the decoder.
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Figure 2.7: Sequence-to-sequence model with attention.

The use of attention has increased the computational complexity for training
these networks, as they need to compute a separate context vector for every step of the
decoder. Transformers were proposed to mitigate this problem [Vaswani et al., 2017],
being an evolution of attention models that do not rely on recurrent units. As shown
in Figure 2.8, a transformer has stacked layers of encoders and decoders. The encoder
is composed by a self-attention model and a feed forward neural network and the
decoder has 3 layers: a self-attention, a encoder-decoder attention and a feed forward
layer. Self-attention is defined as an attention mechanism relating different position
of a single sequence in order to compute a representation of the sequence. In short,
self-attention allows the model to look at the other words in the input sequence to get
a better understanding of a certain word in the sequence. The transformer computes
self-attention multiple times, thus they name this process as Multi-head Attention.
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Figure 2.8: Transformer architecture [Vaswani et al., 2017].

Transformers have demonstrated to be a huge improvement over current DNN
architectures and the most recent technique applied to NLP tasks. They have overcome
many problems but they also have limitations, such as the fixed-length of text input,
which leads to context fragmentation. This means that important sentences might be
split without considering the semantics.

2.2 Text Representation

This section discusses relevant related work that generates text representations by
training language models with large corpora. Mainly, we highlight the word and sen-
tence embeddings methods and discuss briefly how each one of them works. As the focus
of our work is on building sentence embeddings representation, we do not explain the
word embeddings algorithms in depth, and only give an overview of word2vec [Mikolov
et al., 2013a], fastText [Bojanowski et al., 2017] and GloVe [Pennington et al., 2014a].
On the other hand, for sentence embeddings representations, we focus on showing sim-
ple strategies like bag-of-words (BoW) [Salton et al., 1975] and tf-idf [Beel et al., 2016]
and more robust methods, such as sent2vec [Pagliardini et al., 2018], SIF [Arora et al.,
2017], InferSent [Conneau et al., 2017] and SentenceBERT [Reimers and Gurevych,
2019].
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2.2.1 Word Embeddings Representations

Text representation is an area of research in NLP that has always been broadly studied,
and is currently benefitting from the use of neural networks to generate these represen-
tations [Devlin et al., 2019; Pennington et al., 2014b; Mikolov et al., 2013b; Melamud
et al., 2016]. There are many methods for generating word vectors [Brown et al., 1992;
Ando and Zhang, 2005; Blitzer et al., 2006]. By using these algorithms on a large cor-
pus of words, we can capture relationships between words, such as gender, verb tense,
or country-capital relationships, which have not been possible in early years. Many
frameworks for creating word embeddings are currently available as pre-trained vec-
tors to be incorporated into deep learning models in a fully automatic way. Therefore,
the use of pre-trained embeddings is an essential part of NLP algorithms nowadays,
as they have allowed significant performance improvements in several NLP tasks when
compared to simpler embeddings [Turian et al., 2010].

One of the pioneer works in NLP, well-known as word2vec, was proposed in 2013
[Mikolov et al., 2013a]. Word2vec is a two-layer neural network that processes text.
Its input is a text corpus and its output is a set of vectors: feature vectors for words
in that corpus, also called word embeddings. Mikolov et al. propose the continuous
bag-of-words (CBOW), which uses context to predict a target word, and skip-gram,
which uses a word to predict a target context [Mikolov et al., 2013b]. CBOW and
skip-gram are models created to efficiently construct high-quality distributed vector
representations.

As shown in Figure 2.9a, the objective of CBOW is to infer a missing word in
a given context of size C. The context is made of a set of words, except the target
missing word. As the order of words in the context is not relevant, the model is named
“bag of words". The input of the model are C one-hot encoding vectors of size V

(the vocabulary size), one for each word in the context (w1, w2, w3, ..., wC). The
desired output is a one-hot encoding vector of size V representing the target missing
word, with the actual output being a multinomial distribution achieved by a sofmax
regression function.

The objective of skip-gram is to learn the opposite task of CBOW: given a word,
infer its surrounding context. The skip-gram architecture is illustrated in Figure 2.9b.
The input of the model is a word w (one-hot encoding of size V , the vocabulary size)
and the output is a set of words (each word one-hot encoded) within a context window
of size C (w1, w2, w3, ..., wC).

Another type of word embedding that emerged along with word2vec is a count-
base model, called Global Vectors (GloVe) [Pennington et al., 2014b]. In summary,
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Figure 2.9: Neural network architectures.

GloVe generates word embeddings by aggregating the global word-word co-occurrence
matrix from a corpus. It is important to note that although GloVe obtains the best
results when compared to other state-of-the-art methods, the computational cost of
training GloVe word vectors is much higher, specially because it includes the generation
of the full co-occurrence matrix for the corpus.

Both word2vec and GloVe ignore the morphology of words, by assigning a distinct
vector to each word of the corpus. This is a limitation for language with large vocabu-
lary and many rare words. To solve this problem, Bojanowski et al. [2017] proposed a
new method based on the skip-gram model, where each word is represented as a bag of
characters n-grams. A vector representation is associated to each character n-gram and
the words are represented by the sum of its n-grams. When n = 3, the word where is
represented by the character n-grams <wh, whe, her, ere, re> and the special sequence
<where>. The authors also propose a different scoring function to take into account
the internal structure of words and training optimizations, such as hierarchical softmax
and hashing n-gram features, to significantly accelerate the training process.

Peters et al. [2018] proposed a new way to generate more robust and representative
embeddings, named ELMo (Embeddings from Language Models). It extracts features
using a left-to-right model and a right-to-left model. The representation of each word
is equivalent to the concatenation of left-to-right and right-to-left representations. By
using ELMo for specific NLP tasks in text, Peters et al. [2018] were able to obtain state-
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of-the-art results for several benchmarks, including: Question Answering, sentiment
analysis, and named entity recognition. Melamud et al. [2016] also proposed to generate
representations with the task of predicting a word from its left and right contexts
using LSTMs. Analogous to ELMo, the model is based on features and is not directly
bidirectional.

A break-through in this was a new language model called BERT (Bidirectional
Encoder Representations from Transformers) [Devlin et al., 2019], capable of generat-
ing representations through left and right context using unlabeled data. BERT involves
two steps: pre-training and fine-tuning. In the pre-training step, the model is trained
from unlabeled data in two NLP tasks. In the fine-tuning step, the model is initialized
with the parameters resulting from the pre-training, and then all parameters are opti-
mized using labeled data in various NLP tasks. BERT obtains state-of-the-art results
for various NLP tasks, such as text inference and question answering. In this work,
we study and compare the performance of different word representations on common
semantic textual similarity tasks and text clustering.

2.2.2 Sentence Embeddings Representations

In addition to word vectors, there are other denser text representations, such as sentence
vectors [Kiros et al., 2015; Logeswaran and Lee, 2018] and paragraph vectors [Le and
Mikolov, 2014]. While there seems to be a consensus concerning the usefulness of word
embeddings and how to use them, this is not clear for representations that carry the
meaning of a full sentence [Conneau et al., 2017]. Nowadays, the study of how to derive
semantically meaningful sentence embeddings is still a relevant open research question
[Conneau et al., 2017; Reimers and Gurevych, 2019].

Table 2.1: Research papers on sentence embedded representations ordered by year.

Method Paper Year Architecture Input Level Embeddings
tf-idf Salton et al. 1975 - words -
Average Pennington et al. 2014 - words GloVe
Weighted average (SIF) Arora et al. 2017 MLP words word2vec
Sent2vec Pagliardini et al. 2018 MLP sentence -
InferSent Conneau et al. 2017 BiLSTM sentence GloVe
SentenceBERT Reimers and Gurevych 2019 BERT sentence -

Table 2.1 summarizes important information about a few sentence embeddings
methods, including the year, type of architecture for DNN-based methods, input of
the method (words, chars or sentences) and if the input of DNN-based methods uses
pre-trained word embeddings. The classic text representation model is bag-of-words
in which each sentence is represented as a binary vector, considering the presence or
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absence of word in the sentence. Another popular representation model is the TF-IDF
(Term frequency - Inverse document frequency), which considers the frequency of terms
in the documents and the rarity of terms in the corpus [Salton et al., 1975]. Although
there are many methods for generating sentence vectors, TF-IDF is still a widely used
text representation model due to its simplicity [Beel et al., 2016]. It is known that
this representation is widely used when the data correspond to a set of documents
[Yogatama et al., 2015]. In this case, the sentence is represented by a vocabulary1 size
vector, where all elements are equal to zero except the ones associated with the words
that occur in the sentence, which are equal to the TF-IDF values of the terms: TF ⇥
IDF. Term frequence (TF) represents the importance of a term t in a document d, and
is defined as:

tf(t, d) =
#times the term t appears in the document d

#terms in document d
(2.1)

Inverse document frequency (idf) of a term t represents the weight of the term
considering all documents in the corpus, and is defined as:

idf(t) = log

✓
#documents

#documents that have the term t

◆
(2.2)

Despite being a simple representation, TF-IDF is very sparse and does not add
context. It is also important to highlight that this representation could be insufficient
for solving a NLP task if all words have low frequency. To mitigate these issues,
many methods have been proposed for generating sentence vectors. Most approaches
for sentence representation learning are unsupervised, mainly because there is not a
consensus about the best supervised task for embedding the semantics of a whole
sentence [Hill et al., 2016]. Several works have proposed to use labelled datasets of
paraphrase pairs to obtain sentence embeddings in a supervised manner. Another
challenge of learning vectors for sentences using supervised tasks is the fact that neural
networks can capture the biases of the task on which they are trained, and forget the
overall information of the input data. In contrast, learning models on unsupervised
tasks makes it harder for the model to specialize [Conneau et al., 2017].

The works on generating sentence embeddings comprise models that compose
word embeddings [Le and Mikolov, 2014; Arora et al., 2017] and models based on
complex neural network architectures [Conneau et al., 2017; Reimers and Gurevych,
2019]. Kiros et al. [2015] proposed a method called SkipThought, which uses an ob-
jective function that adapts the skip-gram model for words to the sentence level, and

1Vocabulary: single words in a Corpus (text set).
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trains an encoder-decoder model to predict the surrounding sentences. Hill et al. [2016]
proposed a method called FastSent, which is a sentence-level log-linear bag-of-words
model. Like SkipThought, FastSent uses adjacent sentences as the prediction target
and is trained in an unsupervised fashion.

While methods like SkiptThought and FastSent require ordered text, where the
next sentence is a logical continuation of the previous one, methods like sent2vec
[Pagliardini et al., 2018] rely only on an unordered collection of sentences. Sent2vec
is a simple unsupervised model that allows to compose sentence embeddings using
word vectors along with n-gram embeddings, simultaneously training the composition
and the embedding vectors themselves. The sent2vec model is depicted in Figure 2.10
(adaptation of the sent2vec figure from Agibetov et al. [2018]). Conceptually, the model
can be interpreted as a natural extension of the word-contexts from CBOW [Mikolov
et al., 2013a] to a larger sentence context. Another way to think about sent2vec is as
an unsupervised version of the fastText classification model [Joulin et al., 2017], where
the entire sentence is the context and the possible class labels are all vocabulary words.
More specifically, the sentence embedding is defined as the average of the word em-
beddings of its constituent words and the n-gram embeddings present in the sentence.
In this way, sent2vec has training and inference complexity as low as simple averaging
methods. When using sent2vec, the sentence embedding vs for S is calculated as:

vs =
1

|R(S)|
X

w2R(S)

vw (2.3)

where R(S) is the list of n-grams (including unigrams) present in sentence S.

7KH�TXLFN��EURZQ�IR[���RYHU�WKH�OD]\�GRJ

$YHUDJLQJ

+LGGHQ�/D\HUV

2XWSXW

MXPSV

Figure 2.10: Sent2vec model: the context corresponds to the entire sentence.

It has been shown in the literature that the use of naive methods, such as word
embeddings averaging, to obtain sentence embeddings can outperform more sophisti-
cated algorithms [Wieting et al., 2016; Pennington et al., 2014b; Arora et al., 2017].
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Pennington et al. [2014b] proposed the use of plain averaging of unigrams vectors to
obtain sentence embeddings. On the other hand, Arora et al. [2017] proposed a model
where the sentences are represented as a weighted average of pre-trained word vectors,
followed by a post-processing step of subtracting the principal component.

There are multiple methods to encode sentences using neural networks, such as
InterSent [Conneau et al., 2016], Sentece-BERT [Reimers and Gurevych, 2019] and
convolutional neural networks [Kim, 2014; Kalchbrenner et al., 2014; Hu et al., 2014].
As previously described, CNNs use convolutional filters to capture local dependencies
in terms of context windows and apply a pooling layer to extract global features. In-
ferSent uses labeled data of the Stanford Natural Language Inference dataset [Bowman
et al., 2015] and the NLI datasets [Williams et al., 2018] to train a siamese BiLSTM
network with max-pooling over the output. Conneau et al. [2017] showed that InferSent
outperforms unsupervised methods like SkipThought, and found that NLI datasets are
suitable for training sentence embeddings. As illustrated in Figure 2.11, the archi-
tecture of InferSent uses a shared sentence encoder (siamese network) that outputs a
representation for two sentences A and B. Once the vectors are generated, 3 matching
methods are applied to extract relations between sentence representations u and v: (i)
concatenation of the two representations (u, v); (ii) element-wise product u ⇤ v; and
(iii) absolute element-wise difference |u�v|. The resulting vector is fed into a classifier
consisting of a linear and a softmax layer.

%L/670 %L/670

0D[�SRROLQJ 0D[�SRROLQJ

X Y

�X��Y��_X�Y_��X
Y�

6RIWPD[�FODVVLILHU

6HQWHQFH�$ 6HQWHQFH�%

Figure 2.11: InferSent architecture: BiLSTM with max pooling. The two BiLSTM
networks have tied weights (siamese network structure).

Other works discuss the generation of sentence embeddings through fine-tuning
methods. Sentence encoders and sentences that generate text representations can be
pre-trained from unlabeled text and optimized for supervised tasks [Dai and Le, 2015;
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Howard and Ruder, 2018; Radford et al., 2018]. One of the advantages of this approach
is that few parameters need to be optimized. Reimers and Gurevych [2019] developed
a method called Sentence-BERT (SBERT) for generating sentence vectors. Like Con-
neau et al. [2017], Reimers and Gurevych [2019] use a siamese network structure and
the NLI datasets (including SNLI and Multi-Genre NLI)) for training sentence embed-
dings. But instead of using a BiLSTM, they use BERT with 3 different structures and
objective functions: (i) classification objective function, (ii) regression objective func-
tion, and (iii) triplet objective function. The objective function depends on the avail-
able training data. Another difference between InferSent and SBERT is the matching
methods applied to the resultant vectors u and v. SBERT only considers two methods:
concatenation of the two representations (u, v) and absolute element-wise difference
|u�v|. SBERT embeddings were particularly evaluated using a similarity measure like
cosine-similarity and Manhattan/Euclidean distance, and common semantic similarity
(STS) tasks. In that way, Reimers and Gurevych [2019] were able to show that SBERT
outperforms other state-of-the-art sentence embeddings methods.

Our study comprehends a comparative analysis of the aforementioned sentence
embeddings methods as well as the generation of vectors for product descriptions (par-
ticularly of public procurement data). To our knowledge, this work is the first attempt
to exploit a dataset composed by product descriptions for building generic sentence
encoders using supervised and unsupervised methods.

2.3 Text Representation Enhancement

Several works have proposed enhancements for word and sentence representations using
simple strategies, such as multimodal models [Rahman et al., 2020] and component
focusing [Yin et al., 2020]. Multimodal models are typically applied when the input
data is not only text but also nonverbal data (visual and acoustic). These models
usually generate a shift to the text representation based on its visual and acoustic
modalities.

Rahman et al. [2020], for instance, proposed an attachment to BERT called Mul-
timodal Adaptation Gate (MAG), which allows BERT to receive multimodal nonverbal
data as input, as shown in Figure 2.12. This component receives as input the lexical
vector (word embedding) as well as its visual (Vi) and acoustic (Ai) accompaniments.
The vectors are combined through an attention gate into a new vector that is added
(shifting) to the input lexical vector to produce the final representation. In our study,
we follow a similar idea. But, instead of using acoustic and visual inputs, we use text
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information about the lexical input, such as part of speech and named entities.
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Figure 2.12: Multimodal Adaptation Gate (MAG), which takes as input a lexical input
vector with visual and acoustic correspondents.

Also exploring other aspects of text, Yin et al. [2020] proposed a modification
of Sentence-BERT which uses component focusing (CF-BERT). Figure 2.13 shows the
overall architecture of the proposed sentence representation model. In that manner, the
sentence representation is obtained by the basic sentence part Sbasic, and a component-
enhanced sentence part Scf . The basic sentence part Sbasic contains the complete
sentence information, whereas the component-enhanced part Scf contains the crucial
sentence information. More precisely, CF-BERT uses dependency parsing to obtain
Scf , keeping only the subject, predicate and object of the sentence. As Reimers and
Gurevych [2019], Yin et al. [2020] also trained the sentence representation model using
the NLI datasets and used common sentence similarity benchmarks to evaluate the
final sentence vectors.

We used the sentence representation model proposed by Yin et al. [2020] with
a few modifications. Following a similar idea, our study also considers other text
information to build the component-enhancement part, such as named entities and
part-of-speech tags, and other datasets to train and evaluate the model. As one of our
goals is to generate vector representations for product descriptions, we focus on numer-
ical terms and units of measure. In the context of text representation enhancement,
we also consider the method of canonizing numbers proposed by Zhang et al. [2020].
They showed that a simple algorithm of canonizing numbers from the input data can
have a great effect on the results. In view of its crucial relevance to our study, Chapter
5 gives a more detailed explanation of this proposed sentence representation model.
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Figure 2.13: The overall architecture of the component focusing bidirectional encoder
representations from transformers (CF-BERT) model.

2.4 Text Clustering

Sentence vectors obtained by different text representation methods can be used in
several natural language processing tasks, supervised and unsupervised [Allahyari et al.,
2017]. Unsupervised learning methods comprehend techniques that try to find hidden
structure out of unlabeled data. In the context of text data, the most popular data
mining algorithms are clustering and topic modeling. Therefore, a common method to
address text clustering and semantic search is to map each sentence to a vector space
such that semantically similar sentences can be clustered (grouped) together without
manual effort. In this way, a collection of sentences can be segmented into partitions,
where sentences in the same cluster are more similar to each other than those in other
groups.

Text clustering embraces a wide range of applications, such as in classification
[Bekkerman et al., 2001], visualization [Cadez et al., 2003], and sentence organization
[Zeng et al., 2004]. Clustering algorithms can be applied to different levels of text
granularities, which can be paragraphs, sentences, terms (tokens) or descriptions.

Naive methods to obtain vector representation for sentences, like bag-of-words
and TF-IDF, can achieve poor results in comparison to more sophisticated methods
[Radu et al., 2020]. There are three main aspects that need to be considered when
generating sentence vectors for text clustering:

1. Dimensionalty: as text data is sparse, the bag-of-words and TF-IDF represen-
tations can have a very large dimensionality. In other words, even though the
sentence may have only a few words, its vector can be very large due to the size
of the vocabulary.
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2. Context: words of the vocabulary of a given collection of sentences are commonly
correlated with each other. Thus, it is necessary to use algorithms which take
word correlations into consideration.

3. Normalization: since the number of terms in a sentence can vary, normalizing
the sentences vectors before the clustering process is crucial.

In principal, any clustering method can be used in the context of text data, in-
cluding k-means, x-means [Pelleg and Moore, 2000], DBSCAN [Ester et al., 1996a],
HDBSCAN [Campello et al., 2013]. They have varied trade-offs in terms of effective-
ness and efficiency. In our study, we focus on three clustering algorithms: x-means
[Pelleg and Moore, 2000], HDBSCAN [Campello et al., 2013] and SBERT [Reimers
and Gurevych, 2019].

K-means clustering is one of the partitioning algorithms (or flat-centroid based)
which is widely used in data mining. This method partitions a collection of sentences
into k clusters, finding k centroids used to assign a cluster to each one of the sentences
based on similarity. K-means suffers from three main problems: the number of clusters
is supplied by the user; the single partitioning of the data enables the assignment of
noise to clusters; and the implicit assumption that clusters have Gaussian distributions.
In an attempt to solve the first problem Pelleg and Moore [2000] proposed X-means,
which does not require a pre-defined number of clusters k.

In contrast, DBSCAN (Density-Based Spatial Clustering of Applications with
Noise) [Ester et al., 1996a] is a density-based clustering algorithm capable of find-
ing noise within the data. However, being a density-based approach, DBSCAN suffers
from the difficulty of parameter selection. Trying to solve this problem, Campello et al.
[2013] propose HDBSCAN, the hierarchical version of DBSCAN. HDBSCAN generates
a complete density-based clustering hierarchy from where a simplified hierarchy com-
posed only of the most significant clusters can be easily extracted.
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Chapter 3

Identifying Unique Objects from

Brazilian Public Procurements

The main objective of this dissertation is to solve a real-world problem, which is the
identification of unique items and an estimate of their price within a set of descriptions
of items previously purchased in public procurements. This chapter describes the
problem and the methodology proposed to solve it.

When a public procurement for purchase or contracting is opened, the institution
must establish a reference value (price) to guide competitors in setting the prices of their
products. The reference price has several purposes, such as establishing support for the
expense budgeting process, substantiating the criteria for acceptability of proposals,
substantiating the economicity of the purchase or contract, among others. Besides,
reference prices can be used as parameters for identifying overpricing in future public
procurements.

The data we work with consists of a collection of items collected from the system
of the Public Ministry of the State of Minas Gerais, and is written in Portuguese.
The system currently contains a set of 196,747 public procurement held between 2015
and 2018. These public procurements embrace all areas of public administration and
objects of the most varied natures. In addition, they can be part of different modalities,
such as invitation, electronic auction, and face-to-face auction. Particularly, we focused
on the items whose descriptions have at least one numeric term or unit of measure, as
one of the main focus of our study relies on these components. The items collected are
quite diverse, not restricted to any type of items.

Furthermore, text clustering can be used to group similar items together based on
their descriptions, and reference prices for specific products or services can be defined
according to the cost of the objects that compose the groups. Therefore, this value



42

can then be used as a parameter for analyzing and diagnosing possible overpricing in
public procurement.

This chapter characterizes the item descriptions and introduces the methodology
proposed to solve the problem, which details its four major phases: (i) data cleaning,
(ii) information extraction, (iii) text representation and (iv) grouping.

3.1 Characterization of Item Descriptions

The dataset we work with comprises 2,149,533 items, where 2,096,664 are unique (i.e.,
with a unique description according to an exact match). From the collection of de-
scriptions, we identified 156,311 unique tokens. Since a large number of items have
repeated words, we removed the duplicate tokens from all of them. For example, the
description "LIXA FERRO 36 LIXA FERRO 36" has 3 unique tokens, "lixa", "ferro"
and "36", resulting in the description "lixa ferro 36".

Figure 3.1a shows the histogram for description length. We can observe that
most descriptions are formed by up to 15 tokens (1,587,769 descriptions - 73.87%) and
a significant amount has 20 tokens (364,715 descriptions - 16.97%). The descriptions
have an average size of 10.85 and the the smallest descriptions have 2 tokens. It is
important to mention that this characterization considers the descriptions after data
cleaning, as detailed in Section 3.2.

(a) Item descriptions length. (b) Tokens length

Figure 3.1: Histograms.

Figure 3.1b shows the histogram for token length, i.e., number of characters a
token has. Observe that a considerable number of tokens has size equal to 1 (1,884,646
tokens - 8.08%). Furthermore, 91.58% of the tokens (21,366,891) have up to 10 char-
acters.
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Figure 3.2 shows the word cloud for the 2,149,533 item descriptions present in the
dataset. The size of the words is proportional to their frequency. For a better visual-
ization, all numeric terms were removed, as they have high occurrence in the dataset.
We can observe that words that indicate the characteristics of objects are recurrent:
"cor", "branco", "plastico", "papel", "caixa", "tipo", "largura" and "tamanho". It is
interesting to note that words indicating quantity (units of measure) also occur very
often. Some of them are: "ml", "cm", "unidade", "caixa" and "embalagem". This
demonstrates the importance of considering numbers to differentiate items, since an
object can have in its description "100 mg" or "20000 mg", which are very different.

Figure 3.2: Word cloud of item descriptions. The size of words is proportional to the
their frequency in the dataset, and colors do not encode information.

Figure 3.3 presents the word cloud of the most representative bigrams of the item
descriptions. Again, the size of bigrams is proportional to their frequency. Some of the
most frequent bigrams are: "aco inoxidavel", "pacote com", "cor branco", "prestacao
servico", "para uso", "mg comprimido", "embalagem com" and "tamanho cm". Note
that one of the most frequent bigrams is "prestacao servico", which means that an item
can also refer to a service provision, such as equipment leasing, maintenance, cleaning,
security, gardening, and repairs.

3.2 Proposed Methodology

For grouping similar objects we propose a methodology that consists of four major
phases, shown in Figure 3.4: (i) data cleaning, (ii) information extraction. (iii) text
representation and (iv) grouping. Each of these phases comprises a set of operations,
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Figure 3.3: Word cloud of the most representative bigrams in the item descriptions.
The size of words are proportional to the their frequency in the dataset, and colors do
not encode information.

where dotted boxes correspond to optional steps. The next sections present in detail
each of the steps of the proposed framework.

3.2.1 Text Cleaning

The first step of the proposed methodology is text cleaning, which involves four ba-
sic macro-operations: (i) preprocessing, (ii) tokenization, (iii) spellchecking, and (iv)
lemmatization. The main objective of this phase is to improve the quality of the input
dataset. As a preprocessing step, all descriptions were lower-cased and stop words,
accents, punctuation and tokens with more than 20 characters were eliminated. In
addition, repeated words were also removed, since a lot of items have repeated terms
in the beginning of their descriptions. In summary, six operations are applied in the
item descriptions in the preprocessing step:

1. Lower case: all characters are lower cased.

2. Stop-words removal: meaningless words are removed. Among them are articles,
prepositions and conjunctions.

3. Punctuation removal: all punctuation marks are removed from descriptions.

4. Non-alphanumeric characters removal: characters like ’#’, ’’, ’&’, ’$’ are removed
from the descriptions.

5. Long terms removal: words that have more than 20 characters are removed.
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Figure 3.4: Clustering Framework.

6. Canonicalizing numbers: replace all numbers with their representation in scien-
tific notation, a combination of an exponent and a power (for example 314.0 is
represented as 3.14e+02).

Some stop words were not removed, as they can play an important role to the
meaning of a particular item. This is the case of "para", "com" and "sem", which are
helpful to identify item characteristics, such as “agua com gas”, “agua sem gas”, “pano
para pia” or “jogo de soletrar nao recomendavel para menores de 12 anos”. Furthermore,
it is important to highlight that numbers are very important to describe objects, as they
carry information about scalar magnitudes. However, some tokens match a sequence of
digits (1 to 9) followed by a sequence of characters, such as "100mg" "200mm", "50cm".
Many of these tokens correspond to numbers that occur next to a unit of measure. In
this way, we defined as a preprocessing step the inclusion of spaces between numbers
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and units of measure.
Table 3.1 presents some examples of item descriptions. The first and second

columns show the descriptions before and after text cleaning, respectively. We can
see that the descriptions have a lot of noise (repeated words, sequence of digits and
meaningless characters, non-alphanumeric characters) and that there is no pattern. For
example, the object "005499 Topiramato 100mg" after preprocessing becomes "5499
Topiramato 100mg". From this text it is possible to identify four tokens: "5499",
"topiramate", "100" and "mg". In this case, preprocessing was unable to remove the
"5499" token from the sentence, since it is interpreted as a word. We highlight that
even after text cleaning, some tokens that do not add information to the objects occur
in the descriptions.

Table 3.1: Example of item descriptions.

Description Description after preprocessing
COLAGENASE 0,6UI/G colagenase 0.6 ui g
CAMPO OPERATÓRIO 45CMX50CM campo operatorio 45 cm x 50
Diclofenaco de Sodio - 75mg /3ml diclofenaco sodio 75 mg 3 ml
Serviço de Recapagem de Pneus Misto 1100 x 22 servico recapagem pneu misto 1100 x 22
PAPEL SULFITE, OFICIO 9,7G/M2,
216X330MM 500FOLHAS papel sulfite oficio 9.7 g m2 216 x 330 mm 500 folha

SOLUCAO DE BICARBONATO DE SODIO 8,4%
250ML SIST.FECHADO solucao bicarbonato sodio 8.4 % 250 ml sist fechado

SULFADIAZINA DE PRATA 120 GRAMAS sulfadiazina prata 120 grama
CATETER INTRAVENOSO PERIFÉRICO Nº 14,
COM SISTEMA DE PROTEÇÃO. cateter intravenoso periferico n 14 com sistema protecao

CIPROFLOXACINO, 500 MG ciprofloxacino 500 mg
005499 Topiramato 100mg 5499 topiramato 100 mg

The next step of text cleaning involves tokenization, spell checking, and lemma-
tization (in that order). Basically, tokenization turns a pre-processed description into
a vector of words (i.e., tokens1). The lemmatization step consists of replacing each
word with its canonical form. Suppose w is a word and c is its canonical form. The
lemmatization process is equivalent to applying a function C for each word w in the
database such that C(w) = c. It is interesting to apply word lemmatization, since
most of the words present in the database correspond to variations of canonical words
in gender, number and degree. To perform the lemmatization, a dictionary2 of inflected
portuguese words was used. The dictionary has 880,000 inflected words and 9,072,338
inflections. In addition to the word lemma, the dictionary also shows the part-of-speech
tag of the words. As the same canonical form can contain different variations, noun
variations were given priority.

1Token is a part of the text structure and can be a phrase, word, punctuation, etc.
2
http://www.nilc.icmc.usp.br/nilc/projects/unitex-pb/web/files/Formato_DELAF_PB.

pdf

http://www.nilc.icmc.usp.br/nilc/projects/unitex-pb/web/files/Formato_DELAF_PB.pdf
http://www.nilc.icmc.usp.br/nilc/projects/unitex-pb/web/files/Formato_DELAF_PB.pdf
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Spellchecking corrects misspellings in the words. The corrector used for this task
is based on the Levenshtein distance (or editing distance). The Levenshtein distance
between two words A and B corresponds to the minimum number of operations needed
to transform one word into another (A -> B or B -> A). For this distance, the operations
allowed are insertion, removal and replacement of characters. The spellchecking was
applied only in words that are not in the dictionary3. More precisely, we consider that
similar words have a distance of up to 2 operations. Each term that does not occur in
the word dictionary is replaced with the most similar word from the corresponding list
of words.

3.2.2 Information Extraction

After text cleaning, the proposed framework extracts some relevant information from
the set of tokens output. The idea of this step is to identify the category of each term
in the item descriptions, which is our case can be categories related to item descriptions
or POS tagging. This information can be used later on to build representations for
items, as explained in Chapter 5. For this step we considered the following categories,
defined after an initial characterization of the dataset:

1. Unit of measurement (Unidades de medida): "litro", "litros", "gramas",
"miligrama", "ml", "kg", "v", "cm".

2. Colors (Cores): "preto", "branco", "azul", "vermelho", "claro", "escuro", "roxo".

3. Materials (Materiais): terms that describe different types of materials that com-
pose an item. For example: "plastico", "aco", "metal", "inox", "inoxidavel",
"madeira", "pvc", "prata", "ouro".

4. Numbers (Números): all numeric terms. Ex.: "14", "1", "2015", "500", "300",
"one", "two", "ten", "II", "IV".

5. Size (Tamanho): "pequeno", "grande", "medio".

6. Quantity (Quantidade): terms that describe the form of presentation of the items
and/or their quantities. For example: “pacote”, “pct”, “comprimido”, “cartela”,
“unidade”, “und”.

3Corpus NILC/São Carlos: https://www.linguateca.pt/acesso/corpus.php?corpus=

SAOCARLOS.

https://www.linguateca.pt/acesso/corpus.php?corpus=SAOCARLOS
https://www.linguateca.pt/acesso/corpus.php?corpus=SAOCARLOS


48

7. Words (Palavras): any term that does not belong to any of the above categories.
For example: "papel", "pneu", "dipirona", "dea", "mascara", "servico", "carne",
"banana".

The token categorization was implemented using a dictionary of words. Tokens
that do not belong to any specific category are automatically included in the “Words”
category. Table 3.2 presents some examples of structured descriptions.

Table 3.2: Item descriptions after the word categorization step.

Description Description after word categorization

cloridrato piridoxina 10 mg

{"palavras": ["cloridrato", "piridoxina"],

"unidades_medida": ["mg"],

"números": ["10"],

"cores": [],

"materiais": [],

"tamanho": [],

"quantidade": [] }

rodo grande 60 cm

{"palavras": ["rodo"],

"unidades_medida": ["cm"],

"números": ["60"],

"cores": [],

"materiais": []

"tamanho": []

"quantidade": [ "grande"] }

fita adesiva autoclave 19 mm x 30 m

{"palavras": ["fita", "adesiva", "autoclave", "x"],

"unidades_medida": ["mm", "m"],

"números": ["19", "30"],

"cores": [],

"materiais": [],

"tamanho": [],

"quantidade": [] }

infra pedestal dimmer fisioterapia

termoterapia lampada

220 v vermelho

{"palavras": ["infra", "pedestal", "dimmer",

"fisioterapia", "termoterapia", "lampada"],

"unidades_medida": ["v"],

"números": ["220"],

"cores": ["vermelho"],

"materiais": [],

"tamanho": [],

"quantidade": [] }

In order to validate the predefined word categories, we ask 8 people to manually
label words of item descriptions. To perform this validation, we generated four items
samples, each containing 150 descriptions. The samples were generated following a
distribution of part-of-speech tags and medications. We focused on medication de-
scriptions since they are very frequent in the dataset and often have units of measure.
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Moreover, medications often have tokens that can be mislabelled in other descriptions,
such as "ferro", "cobre", "zinco", among others. The four samples have the following
distribution: 20% of the descriptions containing only nouns; 20% of descriptions con-
taining only medications; 20% of descriptions containing only nouns and medications;
20% of descriptions containing some noun and/or medicine; and 20% of descriptions
containing words without a part-of-speech tag.

Furthermore, the samples were created in a stratified way according to the sizes
of the descriptions. The following description size ranges were uniformly defined for
choosing the set of 150 descriptions: [1,2], [3-6], [7,11], [12, 20] and [20, max(size) ].
Each one of the four samples do not have common items and were evaluated by two
different people. The evaluation consisted of the inclusion or exclusion of terms in
one of the predefined category. After the validation, new words were included in the
dictionary of word. In addition to the word categorization, the clustering framework
also runs POS-tagging.

3.2.3 Text representation

The next step in the methodology is to build a vector representation for the item de-
scriptions to cluster them afterwards. Note that here we receive the description already
categorized in terms of word categories and POS, and the first step here is to select
which POS tagging classes and word categories will be used for text representation.

As described in Chapter 2, different types of representations can be used to encode
the sentence, including bag-of-words, word embedding, and sentence embeddings. Our
focus is on sentence embeddings based on neural networks, and the methods considered
in this study were chosen based on two criteria: (i) their popularity in academia; (ii)
the easiness of reproducing the implementations as faithfully as possible to the original
publication.

We chose a set of five supervised and unsupervised methods for sentence repre-
sentation, namely SIF, Sent2vev, CNN, InferSent and SBERT. In addition, we also
consider the sentence representation model proposed in Chapter 4, a modification of
SBERT that focuses on specific components of text to enhance the quality of the out-
put vectors. All methods selected involve the use of a siamese network to train the
model using common sentence similarity tasks. This structure is depicted in Figure
3.5.

Having said that, it is important to mention that the most common task used
in the literature to evaluate sentence representation methods is sentence similarity.
Given a pair of sentences, the method can return two types of information: whether
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the sentences are the same (0 or 1) or their level of similarity (a score). In the first
case the problem is modeled as a classification task, and in the second as a regression
task. The choice of how to model the problem depends on the available training data.
As showed later, we have also evaluated the selected methods in other traditional
datasets from the literature for sentence similarity considering both a classification
and a regression problem.
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Figure 3.5: Siamese network architecture for classification (left) and regression (right).
The two models have tied weights.

Since we want to compare the sentence representation methods, we did not explore
in depth the architecture of the models. Hence, for SBERT and InferSent we used the
same architecture presented in the original papers and explained in Section 2.2.2. For
CNN we implemented a simple architecture that consists of 3 stacked layers, where each
one of them has different convolving kernel sizes: 1, 3 and 5. For InferSent, we used
10 epochs, a batch-size of 16, 512 hidden features, Adam optimizer with learning rate
1e-3, a linear learning rate warm-up over 10% of the training data and max pooling.
For SBERT, we used 4 epochs, a batch-size of 16, Adam optimizer with learning rate
2e-5, a linear learning rate warm-up over 10% of the training data and mean pooling.
All CNN, InferSent and SIF models use the fastText word embeddings trained on the
dataset of item descriptions with 300 dimensions. We chose fastText over GloVe and
word2vec, as it uses character ngrams information to train the word embeddings.

For classification, we optimize the cross-entropy loss over the output o. The out-
put is calculated by concatenating the sentence embeddings u and v with the element-
wise difference |u� v| and multiplying it with the trainable weight Wt 2 R3n⇥k:

o = softmax(Wt(u, v, |u� v|)) (3.1)
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where n is the dimension of sentence embeddings and k the number of labels.
For the regression task, we calculate the cosine similarity between the two sen-

tence embeddings u and v and use the mean squared error loss to optimize the model.

3.2.4 Grouping

After the construction of the representation for item descriptions (using one of the ap-
proaches described above), the last step of the proposed approach starts by performing
normalization and dimensionality reduction. We observed that these two steps have
great impact on the quality of clustering, but they are optional.

A distance function is one of the main components of distance-based clustering
algorithms. Normally, the distance between word embeddings is done using the cosine
distance instead of the Euclidean distance [Hartmann et al., 2017]. However, not all
implementations of clustering algorithms allow the choice of cosine distance. To get
around this situation, it is possible to use a strategy in such a way that the result
of clustering using Euclidean distance is proportional to that given by the cosine dis-
tance. Normalization transforms the item vectors into vectors whose lengths in the
vector space are equal to 1. In other words, when using a normalization, the space
corresponding to the data is transformed into a spherical format. From the normaliza-
tion, it can be seen that the cosine distance (1 - cos(x), where x is the angle between
the vectors) is directly proportional to the Euclidean distance, since the scalar product
of two unit vectors is simply the cosine of the angle between them. This is due to the
dot product formula, since the lengths of both vectors are 1.

After the normalization phase, the dimensionality reduction of the vectors is per-
formed to obtain denser vectors. To perform this step, the UMAP (Uniform Man-
ifold Approximation and Projection) is used [McInnes et al., 2018]. Given a set
of X-dimensional item vectors, UMAP transforms each vector of this set into a Y-
dimensional vector, where Y < X. Therefore, using UMAP, it is possible to represent
the information contained in X dimensions in a more condensed way. This can also
reduce or even remove the noise caused by highly correlated variables and, in this way,
the clustering algorithm will have a greater ability to group similar items together.
In this study, the item representations were reduced to 15 dimensions, according to a
manual analysis. It is important to highlight that the normalization and dimensionality
reduction steps are performed for both sparse vectors generated by bag-of-words and
for dense vectors generated by word embeddings and sentence representation models.

The final step is the clustering process itself. In datasets such as the one used
in this paper, where the variety of items is huge, there are advantages in using simple
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heuristics to generate preliminary groups. This initial grouping process is helpful as:
(i) due to the large number of items, clustering algorithms can take a long time to run;
(ii) some items have similar descriptions, but do not correspond to the same product,
which can lead to poor results; (iii) to understand the difficulties of grouping item
descriptions, having less chaotic and smaller numbers of groups helps; (iv) it sets a
baseline approach for grouping items. These heuristics are described next.

3.2.4.1 Heuristics for pre-grouping item descriptions

In this section, five heuristics for grouping items based on their descriptions are pre-
sented. Three methods consider unigrams (one token) and two consider bigrams (two
tokens). These heuristics are very simple and do not involve any sophisticated NLP or
machine learning techniques. Fundamentally, they group the descriptions according to
the exact match between unigrams or bigrams representing the descriptions. The im-
plemented strategies use only the tokens in the category "Words" ("Palavras") of the
descriptions. It is important to highlight that these heuristics were first implemented
before we had a complete understanding of the problem that we need to solve. They
are:
Most Frequent Token A simple way to represent a particular item is by the most
important word present in its description. We arbitrarily defined that the most impor-
tant word of an item description is the most frequent word in the dataset. For example,
consider the description "pinca biopsia aco inox". Initially, the object is represented
by 4 tokens: "pinca", "biopsia", "aco" and "inox". Suppose the most frequent token
in the dataset of this description is "aco". Thus, the most important token of the
description is "aco" and the object is represented only by this unigram (term).
Two Most Frequent Tokens Another way to group objects is using the two most
frequent words in their descriptions. In this case, similarly to the previous approach,
the most important words consist of the two words with the highest frequency in the
dataset. For example, consider again the description "pinca biopsia aco inox". Suppose
the most frequent token in the dataset is "aco", and the second most frequent is "inox".
Thus, the most important tokens of the description are "aco" and "inox" and the object
is only represented by the bigram {"aco", "inox"}. If the description has only one word,
just the first token is considered.
First Token The third approach consists of selecting the first token of the descriptions.
In this case, the most important word in a description is the word in the first position.
For example, for the item "pinca biopsia aco inox", the token "pinca" would be selected,
different from what happens in the first and second heristics.
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First and Second Token Another simple way to represent a given object is by its first
and second tokens. In this case, the most important words of a description correspond
to the first and second word. For example, for the descriptions "pinca biopsia aco
inox", the tokens "pinca" and "biopsia" are selected, different from what happens in
the first approach where the tokens "aco" and "inox" are selected.
Most Frequent Bigram A simple way to represent a particular object is by the most
important (in this case, frequent) bigram in its description. Again, for the description
"pinca biopsia aco inox", it is possible to identify 3 bigrams: {"pinca", "biopsia"},
{"biopsia", "aco"} and {"aco", "inox"}. Suppose the most frequent bigram in the
dataset is {"aco", "inox"}. Thus, the item is only represented by this bigram.

We present a comparison of the strategies described above. This comparison in-
volves both quantitative (i.e., statistics regarding the groups obtained) and qualitative
(i.e., which descriptions were actually grouped following each strategy) analysis. Ta-
bles 3.3 and 3.4 present the quantitative comparisons between the proposed approaches.
Analyzing the results shown in these two tables, we highlight the following:

• The Most Frequent Token heuristic generated 11,719 groups, and 43.12% of them
include a single item description. Its largest group is described by the stopword
"com", with 516,846 objects. The Two Most Frequent Tokens, in turn, generated
157,130 groups, 50.52% formed by only one item. The groups have an average of
13.7 items and the largest group has 122,333 items.

• The First Token heuristic generated 26,648 groups, 46.97% formed by only one
item. The groups have an average of 80.64 items and the group sizes present a
much smaller variance (equal to 540,657.45) in comparison to the most frequent
token. In addition, the largest group is "papel" and comprises 37,486 items. The
First and second token heuristic generated 227,778 groups, with an average of
9.43 objects per group. Its largest group has 9,580 items.

• In the most frequent bigram heuristic, 52.08% of the 147,028 groups generated
have only one item. The mean and the variance of the group sizes are similar to
the two most frequent tokens heuristic, and its largest group has 15,437 objects.

Table 3.5 presents examples of groups for each grouping strategy. We can observe
that frequency-based approaches (i.e., Most Frequent Token, Two Most Frequent To-
kens, and Most Frequent Bigram) are able to group well items in small and medium-size
groups. The same is not true for larger groups, where it is common to find terms that
represent qualifiers and quantifiers, such as "cor" and "tamanho". While these tokens
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Table 3.3: Number of groups found by each grouping strategy.

Group
Size

Grouping Strategy
Most Frequent

Token
2 Most Frequent

Tokens 1º Token Most Frequent
Bigram 1º and 2º Token

1 5,053 (43.12%) 79,384 (50.52%) 12,517 (46.97%) 76,574 (52.08%) 121,632 (53.40%)
(1, 5] 3,070 (26.20%) 47,131 (29.99%) 6,762 (25.38%) 42,959 (29.22%) 66,751 (29.31%)
(5, 10] 932 (7.95%) 11,974 (7.62%) 1,962 (7.36%) 10,397 (7.07%) 15,922 (6.99%)

(10, 100] 1,763 (15.04%) 15,988 (10,18%) 3,565 (13.38%) 14,109 (9.60%) 20,149 (8.85%)
(100, 1000] 673 (5.74%) 2,457 (1,56%) 1,429 (5.36%) 2,712 (1.84%) 3,150 (1.38%)

>1000 228 (1.95%) 196 (0,12%) 413 (1.55%) 277 (0.19%) 174 (0.08%)
Total 11,719 157,130 26,648 147,028 227,778

Table 3.4: Statistics for each grouping approach.

Statistics Grouping Strategy
Most Frequent

Word
2 Most Frequent

Words 1º Token Most Frequent
Bigram 1º and 2º Token

Mean 183.36 13.67 80.64 14.62 9.43
First quartile 1.00 1.00 1.00 1.00 1.00

Median 2.00 1.00 2.00 1.00 1.00
Third

quartile 9.00 4.00 7.00 4.00 3.00

Standard
deviation 5,277.42 360.23 735.29 150.78 73.42

Variance 27,851,178.19 129,763.75 540,657.45 22,734.94 5,390.04
Max 516,846 122,333 37,486 15,437 9.580
Min 1 1 1 1 1

are relevant to the descriptions, they are not capable of representing well a collection
of items, since they are very generic. On the other hand, grouping strategies based on
the first token or on the first and second tokens tend to lead to more domain specific
groups. In general, the first token of an item description is the name of the product
the description is referring to.

Considering both quantitative and qualitative analysis, we understand that the
first token (third heuristic) tends to better represent groups of items. We chose to
use this approach to perform an initial grouping of the items for 5 main reasons: (i)
it is the approach with the second lowest number of groups formed by only one item;
(ii) despite the high variance of group sizes, we believe that it is adequate given the
varied collection of descriptions; (iii) high average of items per group; (iv) it obtained
a reasonable number of groups (26,648); (v) the obtained groups represent well the
collection of items.

However, this heuristic has some drawbacks. We observed that most of the groups
that have only one item correspond to objects whose description has spelling errors or
two words not separated by space. Another limitation is the fact that items with
similar descriptions but referring to different objects are grouped together, such as
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Table 3.5: Examples of groups generated by each grouping strategy.

Group
Size

Grouping Strategy

Most Frequent Word 2 Most Frequent
Words 1º Token Most Frequent

Bigram 1º and 2º Token

1
’hodrocortizona’,

’telescopico’,
’citoprofeno’

(’oficio’, ’pm2’),
(’fitomonadiona’),
(’basico’, ’farinha’)

’fitomonadiona’,
’flauda’,

’iodoforno’,

(’iogurt’, ’light’),
(’ficha’, ’famila’),

(’luva’, ’roscalvel’),

(’iogurt’, ’light’),
(’condimento’, ’corante’),

(’flauda’, ’geriatrico’),

(1, 5]
’lavanda’,
’feijoada’,
’varal’,

(’diazepam’, ’dosagem’),
(’ferro’, ’largura’),

(’eixo’, ’tras’),

’amendoa’,
’neosaldina’,
’fluconozol’

(’diazepam’, ’dosagem’),
(’aco’, ’martelo’),

(’externar’, ’boca’),

(’fio’, ’triplex’),
(’confeccao’, ’grelha’),
(’vasilha’, ’leiteiro’)

(5, 10]
’banheira’,
’reuquinol’,
’capacete’,

(’diesel’, ’locacao’),
(’duplo’, ’rosca’),

(’corante’, ’natural’),

’rolha’,
’capota’,

’fomulario’,

(’duplo’, ’paralelo’),
(’aprox’, ’caixa’),
(’cinarina’, ’cpr’),

(’diazepam’, ’dosagem’),
(’jarra’, ’temperado’),
(’camisa’, ’coronel’)

(10, 100]
’hipoclorito’,
’bandeira’,
’cartilha’

(’aluminio’, ’fio’),
(’porta’, ’sem’),
(’interno’, ’uso’)

’abafador’,
’conversor’,

’dedetizacao’

(’alcool’, ’gasolina’),
(’aluminio’, ’caneco’),

(’lombo’, ’largo’),

(’equipamento’, ’informatica’),
(’extensao’, ’cabo’),
(’microfone’, ’mao’),

(100, 1000]
’pilha’,

’tesoura’,
’coletor’

(’ext’, ’parafuso’),
(’alcalino’, ’pilha’),

(’cabo’, ’item’),

’diazepam’,
’feixe’,

’azeitona’,

(’parafuso’, ’ext’),
(’caminhao’, ’mercedes’),

(’para’, ’rede’),

(’veiculo’, ’automotor’),
(’broca’, ’esferico’),

(’servico’, ’mecanico’),

>1000
’com’,
’sem’,
’uso’

(’com’, ’embalagem’),
(’com’, ’para’),

(’para’, ’servico’)

’parafuso’,
’fio’,

’alcool’

(’acucar’, ’cristal’),
(’data’, ’fabricacao’),
(’alcool’, ’etilico’),

(’alcool’, ’etilico’),
(’pilha’, ’alcalino’),
(’soro’, ’fisiologico’),

"papel toalha" and "papel higiênico". Although they define different products, they
are present in the same group "papel". However, this is something we expect, otherwise
the application of a clustering algorithms would be worthless.

3.2.4.2 Clustering pre-grouped items

To refine the groups generated by the heuristics proposed, we use the HDBSCAN (Hi-
erarchical Density-Based Spatial Clustering of Applications with Noise) algorithm. It
is a hierarchical clustering algorithm that runs DBSCAN [Ester et al., 1996b] for mul-
tiple values of epsilon (eps) and combines the results to find clusters that offer the best
stability. The epsilon parameter defines the maximum distance between two instances
for one to be considered as in the neighborhood of the other. This relationship goes
from instances (in our case, descriptions) that are fully connected (i.e., totally similar)
to instances that are totally disconnected by the defined value of epsilon. Running DB-
SCAN for multiple epsilon values allows HDBSCAN to find groups of varied densities
(unlike DBSCAN, which has fixed density). The smaller the epsilon value, the greater
the number of divisions performed on the collection of points (instances). It is worth
mentioning that HDBSCAN has a module that identifies instances that are considered
as outliers (i.e., noise). HDBSCAN is applied for each group generated using the first
token (FToken) strategy that contains at least min_size items, where these minimal
cluster size is a user-defined parameter.
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Chapter 4

Evaluating Models for Sentence

Representation

One of the main objectives of this study is to find the most appropriate sentence
representation model for semantic textual similarity tasks and text clustering (Research
question 1). In this chapter, our main goal is to reproduce the most frequent used
sentence representation algorithms in a controlled experimental environment in order
to evaluate their contribution to the chosen task. Note that we define a sentence as a
text of any size.

We first provide a description of the datasets, including the process followed to
generate synthetic datasets where we were able to evaluate the representations. Next,
we detail experimental setup and parameter tuning, followed by an overview on how
to deal with numeric tokens. Finally, we present the results considering the problem
of sentence similarity under a regression and classification perspectives.

4.1 Datasets

We assess the effectiveness of sentence representation models considering two scenarios:
a classification and a regression setup. In the literature, the datasets used to evaluate
these tasks are different, and we have used the same setup used in previous studies for
both tasks. For the experiments where sentence similarity seem as a classification task,
we consider four datasets: the NLI dataset [Williams et al., 2018], the Amazon-Walmart
dataset [Mudgal et al., 2018], and the Portuguese and English synthetic datasets of item
description pairs generated as part of this dissertation. For the regression task, we also
consider our two synthetic datasets and two others: the Semantic Textual Similarity
benchmark (STSb) and the SICK-Relatedness dataset, as detailed below.



57

4.1.1 Benchmarks from the Literature

As previously mentioned, Reimers and Gurevych [2019] and Conneau et al. [2016] used
the NLI (Natural Language Inference) datasets [Bowman et al., 2015; Williams et al.,
2018] to train their proposed models, namely Sentence-BERT and InferSent. As these
works confirmed that NLI datasets are suited for training sentence representations
models, we also consider them to train and evaluate the performance of the models.

Natural Language Inference (NLI) is the task of deciding if a premise entails
the hypothesis, if they are contradictory or if they are neutral. Commonly used NLI
datasets are SNLI and MultiNLI. SNLI embrace a collection of 570,000 English sen-
tences pairs manually annotated considering the follow categories: contradiction, en-
tailment, and neutral. Table 4.1 shows one example of sentence pairs for each label.
MultiNLI contains 430,000 sentence pairs and covers a range of genres of spoken and
written text. Like Reimers and Gurevych [2019], we also combine SNLI and MultiNLI
(which we just call NLI), in order to have a larger dataset.

Table 4.1: Sentence pairs of NLI dataset (SNLI + Multi-Genre).

Sentence A (Premise) Sentence B (Hypothesis) Label
A soccer game with multiple males playing. Some men are playing a sport. entailment

An older and younger man smiling. Two men are smiling and laughing at the cats
playing on the floor. neutral

A man inspects the uniform of a figure in
some East Asian country. The man is sleeping. contradiction

The second dataset used is the Amazon-walmart dataset1, which was originally
designed for the entity matching task [Das et al., 2017; Mudgal et al., 2018], which finds
data instances that refer to the same real-world entity. More precisely, this dataset
comprises 12,694 product-title pairs of two labels: duplicate and non-duplicate. For
performance reasons, we undersampled the non-duplicate product-titles pairs, ending
up with a dataset composed by 3,462 product titles pairs, where 2,308 (67%) pairs are
non-duplicate items.

Table 4.2 describes the class distribution for each dataset considered for the clas-
sification objective function. The large scale datasets are balanced and the small ones
unbalanced. Table 4.3 summarizes the distribution of words for each dataset.

For the regression setup, as in Reimers and Gurevych [2019], we also evaluate the
performance of the sentence embeddings models considering common Semantic Textual
Similarity (STS) tasks in a supervised manner. More precisely, we considered the STS
benchmark (STSb) [Cer et al., 2017] and the SICK-Relatedness dataset [Marelli et al.,

1
https://sites.google.com/site/anhaidgroup/useful-stuff/data

https://sites.google.com/site/anhaidgroup/useful-stuff/data
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Table 4.2: Datasets Statistics.

Dataset Size # sentences Vocabulary size # Classes Minor class Major class
NLI 981,382 1,962,764 84,423 3 326,370 327,954
Amazon-walmart 3,433 6,866 6,045 2 1,143 2,290
Synthetic-en 100,000 200,000 17,082 2 30,000 70,000
Synthetic-pt 100,000 200,000 17,045 2 30,000 70,000
Synthetic-en (regression) 100,000 200,000 17,439 1 - -
Synthetic-pt (regression) 100,000 200,000 17,419 1 - -
SICK-Relatedness 9,927 19,854 2,460 1 - -
STS benchmark 8,628 17,256 21,964 1 - -

Table 4.3: Datasets Vocabulary Statistics.

Words distribution
Dataset Minor 1st Quartile Median Mean 3rd Quartile Major
NLI 0.00 7.00 10.00 12.39 15.00 401
Amazon-walmart 1.00 7.00 10.00 11.42 14.00 82.00
Synthetic-en 3.00 3.00 3.00 3.51 4.00 5.00
Synthetic-pt 3.00 3.00 3.00 3.64 4.00 6.00
Synthetic-en (regression) 3.00 3.00 3.00 3.51 4.00 5.00
Synthetic-pt (regression) 3.00 3.00 3.00 3.65 4.00 6

2014]. These datasets provide labels between 0 and 5 on the semantic relatedness of
sentence pairs. The STS benchmark (STSb) is a popular dataset to evaluate supervised
semantic textual similarity systems. The data includes 8,628 sentences pairs from
three categories: captions, news, and forums, which are divided into training (5,749),
validation (1,500) and test (1,379) splits. The SICK-Relatedness dataset contains 9,927
pairs of sentences, where 4,500 are for training, 4,927 for test, and 500 for validation.
We provide a description and sample instances of these datasets in Table 4.4.

Table 4.4: Semantic Textual Similarity (STS) tasks description and samples.

Dataset Task Sentence A Sentence B Output
Sentences Involving

Compositional
Knowledge Semantic

Relatedness
(SICK-R)

To measure the degree of
semantic relatedness
between sentences from 0
(not related) to 5 (related)

A woman with a
ponytail is climbing
a wall of rock.

The climbing
equipment to rescue a
man is hanging from a
white, vertical rock.

1.8

Semantic Textual
Similarity
Benchmark

(STSb)

To measure the degree of
semantic similarity
between two sentences
from 0 (not similar) to 5
(very similar)

A woman picks up and
holds a baby kangaroo.

A woman picks up
and holds a baby
kangaroo in her arms.

4.6

4.1.2 Synthetic Dataset

As explained before, the main objective of this dissertation is to work with uncon-
ventional sentences, which do not necessarily follow the grammatical rules and other
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patterns of traditional sentences. Table 4.5 presents examples of item descriptions
from our real-world dataset. We can observe that these descriptions do not follow any
pattern and often involve numbers and units of measure. We hypothesize that simple
methods are unable to generate reasonable representations for these item descriptions.

Table 4.5: Examples of item description from real-world dataset.

Description
COLAGENASE 0,6UI/G
VINAGRE 750 ML.
SACO P/LIXO 30 LT
PARAFUSO 35 X 25MM
Serviço de Recapagem de Pneus Misto 1100 x 22
PAR DE BIELETAS DA SUSPENSAO
DIANTEIRA SPACEFOX 2011/2012
COLA BRANCA 90G, 1 QUALIDADE, LAVAVEL
BANDEJA PAPEL DESC. RETANGULAR.
APRAZ 0,5 MG 30CPR
BANANA PRATA

In this context, one of our main objectives is to generate sentence representations
that capture information about the scalar magnitudes of objects. Having that in mind,
we designed synthetic datasets in English and Portuguese that focus on numerical terms
and units of measure, such that the representations generated can carry information
about these types of components. For generating the synthetic dataset, we considered
pairs of units of measure and the conversion value between them, as well as random
items descriptions. In other words, for pairs of the same object we could have a
description with different measures but that are equivalent in their conversions.

We considered nine physical quantities, which are summarized in Table 4.7:
length, volume, mass, area, time, computational, energy, potency, frequency. It is
important to highlight that the selected items were chosen based on their appearance
in real-world datasets, such as the amazon-walmart dataset.

Table 4.6: Synthetic datasets description and samples.

Dataset Task Description A Description B Output
Synthetic-en for

Classification Objective
Function

To predict the label of two
descriptions: 0 (non-duplicates)

and 1 (duplicates)
electrical wire 25.9 m electrical wire 27,600 in 0

gasoline 727 l gasoline 722,000,000 mm3 1
Synthetic-en for

Regression Objective
Function

To measure the degree of semantic similarity
between two descriptions from

0 (not similar) to 1(very similar)
electrical wire 718 cm electrical wire 1.17 dam 0.37

gasoline 11.5 l gasoline 1,500,000 mm3 0.87

The generated synthetic dataset comprises a collection of 100,000 product descrip-
tions pairs, where each of the 9 physical quantities have the same number of instances
(approximately 11%). For each physical quantity, we also defined a proportion of 30%
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duplicate and 70% non-duplicate product pairs. To generate a pair of items for a given
physical quantity, we considered all possible combinations of units of measure and their
conversion values. More precisely, for a given pair of units we considered a value in the
range [1, 1000] to obtain the correspondent equivalency. Furthermore, for the duplicate
pairs, we increased or decreased the conversion value by 5% with a 50% probability.
Therefore, even if the values of a given item pair are slightly different, they can be
duplicates. The generation of the synthetic dataset for classification is described in
Algorithm 1.

Data: U units of measure pairs, P list of products, Y physical quantity

Input : c class, p probability of noise, x min value, y max value

Output: {P1, P2} product descriptions pair

p getUnitsPair(U, Y );
u getConversionV alue(p);
d getItem(I, Y );
w1  random([x, y]);
if c is duplicate then

P1  d+ w1 + p1;
w2  w1 ⇤ u ⇤ random([0.95, 1.05]);
P2  d+ w2 + p2;

else

P1  d+ w1 + p1;
w2  random([x, y]) ⇤ u < 0.95 ⇤ r or random([x, y]) ⇤ u > 1.05;
P2  d+ w2 + p2;

end

Algorithm 1: Synthetic Dataset Generation for Classification.

For the regression dataset we also considered the items and units of measure
shown in Table 4.7. However, instead of assigning a class (duplicate or non-duplicate)
to each product pair, the algorithm assigns a score that represents how similar the two
sentences are. Particularly, for each item pair we define a score in the range [0.1, 1.0]
such that the higher the score the more similar are the sentences. The generation of
the synthetic dataset for regression is described by the Algorithm 2. As the synthetic
dataset for classification, this dataset also contains 100,000 product pairs such that
each one of the 9 physical quantities have the same number of instances. We provide
a description and sample instances of the synthetic datasets in Table 4.6.

4.1.3 Data Preprocessing

All datasets were submitted to the following preprocessing steps:
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Data: U units of measure pairs, P list of products, Y physical quantity

Input : x min value, y max value

Output: {P1, P2} product descriptions pair

p getUnitsPair(U, Y );
u getConversionV alue(p);
d getItem(I, Y );
w1  random([x, y]);
score random([0.1, 1.0]);
w2  random([x, y]) ⇤ (1� score) or random([x, y]) ⇤ (2� score);
P1  d+ w1 + p1;
P2  d+ w2 + p2;

Algorithm 2: Synthetic Dataset Generation for Regression.

1. Standardization of text to lowercase: this is important to avoid semantic differ-
entiation of similar words based on case.

2. Removal of stop words: words that are not relevant to the meaning of the text,
such as articles, prepositions, some verbs among others.

3. Removal of non-alphabetic characters: this procedure is also related to avoiding
semantic differentiation of similar words in free natural text (e.g. minimizing
differentiation by errors in word accentuation) and exclusion of characters that
are not informative to the current application (e.g. punctuation).

4. Removal of words longer than 20 characters: minimizing the chance of occurring
"noise" words in text.

5. Canonizing numbers: replace all numbers with their representation in scientific
notation, a combination of an exponent and a potency (for example 314.0 is
represented as 3.14e+02) -see Section 4.4.

After that, the following operations are also applied to text: tokenization, spell
checking and lemmatization transforms a pre-processed description into a vector of
words (i.e., tokens). Lemmatization, on the other hand, finds and transforms the
words of the descriptions into its base words. Thus, lemmatization further increases
the degree of standardization of the database.

Spelling correction corrects errors in the words of the descriptions (missing or
excessive letters). The corrector used for this task is based on the Levenshtein distance
(or editing distance) between two words. The Levenshtein distance between two words
A and B corresponds to the minimum number of operations needed to transform one
word into another (A -> B or B -> A). In the definition used for this distance, the
operations allowed are insertion, removal and replacement of characters. From the
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Table 4.7: Items and units of measure considered for each physical quantity.

Physical Quantity Items Units of measure #Units

Length

flexible cable, electrical wire, craft foam ball, triplex cable,
pvc pipe, duplex wire, silk rope, plastic ruler, steel metal ruler,
floor squeegee, adhesive tape, foam roller, wall mount fan,
cleaning cloth, foam insulating tape, dental floss,
thread seal tape, masking tape, metallic matrix tape, tape,
barbed wire, black canvas, paper roll, blue paper roll,
green paper roll, crepe paper roll, toilet paper roll, garden hose

km
hm
dam
m
dm
cm
mm
yd
ft
in

10

Volume
gasoline, ethanol, diesel, juice, soda, water, disinfectant,
bleach, garbage bag, acrylic paint, liquid hand soap, milk,
alcohol, chlorine, water tank, oxygen

in3
ft3
gallon
l
m3
ml
mm3
cm3

8

Mass
bean, rice, soy, potato, carrot, banana, apple, grape,
pineapple, tomato, corn, cement, brick, carbamazepine,
omeprazole, hydrochlorothiazide

kg
g
mg
tonne
lb
oz

6

Area
card, paper card, cloth, ceramics, bond paper, blue bond paper,
red bond paper ,laminated paper, pvc liner, cardboard sheets,
tissue paper

cm2
m2
km2
yd2
ft2
in2

6

Time service, consultancy, construction, contract, cd, dvd

s
min
hour
day
week
month

6

Computer notebook, computer, cell phone, hard drive, external hd,
video card

bit
byte
kb
mb
gb
tb

6

Energy defibrillator, air conditioner

kWh
btu
cal
joule

4

Potency power supply, fluorescent lamp, reactor, electronic reactor,
electric generator, lighting system

hp
kw
BTU/s
joule/s
watt

5

Frequency memory, computer, notebook, processor, engine, antenna,
tonner cartridge, fan, motor, ultrasound, microcomputer

hz
khz
mhz
ghz
thz

5

spell checker, you can get the list of words that have a distance less than or equal to
x for a given word A. The spell checker is applied only to words that do not match in
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a word dictionary. For pre-processing, we consider that similar words have a distance
of up to 2 operations in relation to the target word. Each term that does not occur in
the word dictionary is replaced with the most similar word from the corresponding list
of similar words. In this way, it is possible to correct part of the spelling errors that
occur in object descriptions.

4.2 Experimental Setup

In our experiment we use the K-fold cross-validation, which consists of randomly split-
ting the data into K independent folds. At each iteration, one fold is retained as the
test set, and the remaining K � 1 are used as training set. Figure 4.1 gives a practical
example: if we split a dataset into 5-folds we obtain 5 different splits, where each split
has 80% of the data as training and 20% as testing. The experiments presented in this
work were executed using a 5-fold cross-validation procedure.

We focus on sentence representation methods that are based on neural networks.
However, since word embeddings averaging and bag-of-words are able to achieve results
comparable to state-of-the-art algorithms in some tasks, we also used them as baselines.
Concerning methods that use pre-trained word embeddings we considered word vectors
generated by three different methods: word2vec, fastText, and GloVe, with vector size
equals to 300. For fastText, the size of the context window was defined as 10, with
negative sampling (5 negative examples) and default initial learning rate of 0.025.

In the case of bag-of-words and word embeddings averaging, as they are simpler
algorithms, we added two dense layers after the pooling layer of the networks presented
in Figure 3.5. Particularly, for bag-of-words the pooling layer is omitted, since in this
method we only take the frequency of the words in the sentences to build the input
vectors.

For BERT, the official Google artificial intelligence (AI) team provides a variety
of pre-trained models for different languages and different model sizes. As Reimers
and Gurevych [2019], we also experiments SBERT with two setups: only training on
specific NLP tasks, e.e.g, NLI, and then on specific NLP tasks.

To evaluate the broader utility of the different sentence representation models, we
evaluate their performance for common semantic textual similarity tasks. For classifica-
tion, all models are compared using micro-averaged F1 (MicroF1) and macro-averaged
F1 (MacroF1), which are standard information retrieval measures [Yang, 1999]. On
the one hand, macro-averaged F1 corresponds to averaging the F1 score over all classes,
which in turn is the harmonic mean between precision and recall for each class c, as



64

shown in Equation 4.1:

F1(c) =
2⇥ Precision(c)⇥Recall(c)

Precision(c) +Recall(c)
(4.1)

Precision(c) is the fraction of correct predictions for c, according to Equation 4.2,
where tpr(c) is the true positive rate for c and fpr(c) the false positive rate. Recall(c)

is the fraction of instances of c that were correctly predicted (Equation 4.3), where
fnr(c) is the false negative rate.

Precision(c) =
tpr(c)

tpr(c) + fpr(c)
(4.2)

Precision(c) =
tpr(c)

tpr(c) + fnr(c)
(4.3)

On the other hand, micro-averaged F1 consists of the global harmonic mean
between precision and recall, considering all classes C = {c1, c2, ..., ck}, which is defined
as:

MicroF1(c) =
2⇥ Precision(C)⇥Recall(C)

Precision(C) +Recall(C)
(4.4)

As MicroF1 aggregates the contributions of all classes to compute the average
metric, and the value tends to be dominated by the classifier’s performance of the
most frequent classes. In contrast, the value of MacroF1 is more influenced by the
performance on rare classes. Thus, MacroF1 is more suited for imbalanced datasets.

For regression, we compute Pearson and Spearman’s rank correlation between the
cosine similarity of the sentence embeddings and the ground truth. A high correlation
between cosine similarity and the ground truth means that the model is generating
good representations for the input text. On the other hand, a low correlation means
that the representations produced by the model are badly suited for the dataset. The
Pearson correlation between x and y values id defined as:

r =

P
(xi � x)(yi � y)pP

(xi � x)2
P

(yi � y)2
(4.5)

where x and y represent the mean of the values of the x-variable and y-variable, re-
spectively. Spearman’s rank correlation is defined as:

⇢ = 1� 6
P

di
2

n(n2 � 1)
(4.6)

where di is the difference between the two ranks of each observation and n is the number
of observations.
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4.3 Parameter Tuning

We have tuned the sentence representations methods based on neural networks con-
sidering a set of hyperparameters. As neural networks have many hyperparameters to
be tuned, and it is computationally infeasible to use a grid-search or a random-search
over all of them. We have chosen a few hyperparameters to be tuned in the considered
methods. Table 4.8 shows the range we select for each method and hyperparameter.
Each range shown in the table was chosen in a trial-and-error process, where the best
set was chosen to perform tuning.

Table 4.8: Hyperparameters of the embedding methods.

Methods Hyperparameters Range

All

Optimizer Adam, AdamW, Adagrad, SGD
learning rate 1⇥ 10�2, 1⇥ 10�3, 1⇥ 10�4, 2⇥ 10�5

Dropout prob. 0.0, 0.1, 0.3, 0.5, 0.7
batch size 16, 32, 64

InferSent
(BiLSTM + max-pooling) Hidden dim. 512, 1024

CNN Number of filters per layer 128, 256, 512
SBERT Hidden dropout prob. 0.0, 0.1, 0.3, 0.5, 0.7

During the optimization process, drawn in Figure 4.1, we defined 20 trials of
different sets of parameters. Thus, 20 different models were created in order to find
the best model. The optimization process chooses the best set of parameters for each
dataset and method using cross-validation (CV). At the beginning of this process sev-
eral parameters are given and they can be randomly chosen to create new models.
We use the Hyperopt2 library for tuning, which implements an algorithm called Tree
of Parzen Estimators (TPE). It basically searches for the best set of parameters that
minimizes a loss function, which in our case is -1 ⇥ macro-averaged F1. Figure 4.1
illustrates how the process works. A dataset is split into 5 folds for training and 5 folds
for testing in a stratified manner, which guarantees the same distribution of classes in
all folds. At the end, we measure the mean of the macro-averaged F1 (our loss function)
of each CV across 20 trials and obtain the highest value to perform the final model.

4.4 Dealing with Numbers

Wallace et al. [2019] showed that BERT has a limited amount of numerical reasoning
ability when restricted to numbers of small magnitude. Zhang et al. [2020] proposed to

2urlhttp://hyperopt.github.io/hyperopt/
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Figure 4.1: Tuning process of the selected methods.

replace every instance of a number in the data with its representation in scientific nota-
tion, a combination of an exponent and mantissa: 314.1 is represented as 3141[EXP]2
where [EXP] is a new token introduced into the vocabulary. According to them, this
strategy enables BERT to associate objects in the sentence directly with the magnitude
expressed in the exponent more easily.

As an attempt to examine and improve the effect of numbers for sentence repre-
sentations, in particular for item descriptions, we follow a similar approach but evaluat-
ing its effectiveness on semantic textual similarity tasks. We also replace the numbers
with their scientific notation, but we do not introduce a new token to represent the
exponent. For example, 0.000000123 can be written as 1.23e-07, where “e” represents
the exponent. Table 4.9 illustrates examples of item descriptions after the application
of this approach.

Table 4.9: Example of item descriptions after canonicalizing numbers.

Before After
electrical wire 718 c electrical wire 7.18e+02 c
triplex cable 0.00455 hm triplex cable 4.55e-03 hm

Table 4.10 shows results for the synthetic dataset considering both cases, with
and without replacing numbers with their scientific notation. We can clearly see that
canonicalizing number has a huge effect on the results, not only for SBERT model.
Therefore, all the subsequent results presented in this dissertation were obtained con-
sidering this operation.
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Table 4.10: MicroF1 and MacroF1 results on the English synthetic dataset after canon-
icalizing numbers.

Model
Synthetic-en

(canonicalizing numbers) Synthetic-en

microF1 macroF1 microF1 macroF1
CNN 78.54 73.50 65.41 55.02
InferSent 81.05 76.79 65.01 54.63
SBERT 97.46 97.03 92.54 90.95

4.5 Regression Results

State-of-the-art methods often learn a regression function that maps sentence embed-
dings to a similarity score. In this study, we use the cosine-similarity to compare the
similarity between two sentence embeddings. We also conducted experiments with
other distances, such as Manhattan and Euclidean, but the results for all approaches
remained roughly the same. The results of Pearson (r) and Spearman correlation (⇢)
are depicted in Table 4.11. Performance is reported by convention as r ⇥ 100 and
⇢⇥ 100. The results in bold represent the best of all methods. For SBERT, we experi-
mented with two setups: training the embeddings on the target dataset, or training the
embedding on NLI and then training on the target dataset. As Reimers and Gurevych
[2019], we observe that the later strategy leads to a slight improvement of correlations.

The results show that directly using the average of word embeddings leads to
rather poor performances when compared to the results obtained by more sophisticated
algorithms, such as InferSent and SBERT. The results of average word embeddings are
even worse for the synthetic datasets, where the most relevant terms of the sentence
are the numbers and the units of measure. In general, the best results were obtained by
SBERT, which is the current state-of-the-art method for common sentence similarity
tasks. It is also important to highlight that even InferSent and CNN were not able
to achieve good results for the synthetic datasets. We argue that word embeddings
are not capable of capturing the information about the scalar magnitude of objects
and understanding the relationship between two units of measure of the same physical
quantity. We can also observe that the bag-of-words model obtained better results than
InferSent for STS benchmark and the SICK dataset. However, this strategy achieves
poor results for the two synthetic datasets.

4.6 Classification Results

The results of different representations for sentence similarity over a classification per-
spective can be found in Table 4.12. For performance reasons, we did not run bag-of-
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Table 4.11: Pearson correlations (r) and Spearman correlations (⇢) for STS tasks and
synthetic datasets.

Model SICK-R STSb Synthetic-en Synthetic-pt
r ⇢ r ⇢ r ⇢ r ⇢

Avg. word2vec embeddings 76.43 65.76 67.57 63.54 - - - -
Avg. GloVe embeddings 75.53 63.75 69.51 68.05 0.64 0.14 -0.59 -0.22
Avg. fastText embeddings 75.91 65.26 70.04 67.03 4.01 4.40 8.20 7.86
Bag-of-words (tf-idf) 81.18 75.53 69.82 69.09 0.31 -0.31 -1.20 -0.43
CNN 78.32 69.26 62.48 62.15 11.01 11.29 15.82 15.40
InferSent 81.54 73.00 63.81 63.13 19.45 19.42 43.77 42.99
SBERT (target dataset) 88.66 83.77 84.44 83.70 70.67 70.49 70.41 70.17
SBERT (NLI-target dataset) 88.90 84.59 84.19 84.99 71.63 71.57 70.85 70.77

words for the NLI dataset, which has the largest vocabulary, with 84,423 words. We
also did not run word embeddings averaging for the synthetic dataset due to the lack
of pre-trained models available online and the necessity of fine tuning the embedding
on the datasets. As we did not find any word2vec pre-trained models to fine-tune on
domain-specific data, we do not report the results of word2vec embeddings averaging
on the synthetic datasets. However, we report the results using fastText, which is more
robust than word2vec, since it considers ngrams to train the model and build the word
vectors.

Table 4.12: F1-score results for the NLI, amazon-walmart and synthetic datasets.

Model NLI Amazon-walmart Synthetic-en Synthetic-pt
microF1 macroF1 microF1 macroF1 microF1 macroF1 microF1 macroF1

Avg. word2vec embeddings 55.29 55.09 71.51 53.80 - - - -
Avg. GloVe embeddings 56.43 56.43 75.73 65.15 69.94 41.15 70.29 41.28
Avg. fastText embeddings 54.57 54.38 68.17 44.92 74.29 57.16 76.96 66.11
Bag-of-words (tf-idf) - - 71.51 65.95 69.94 41.15 70.29 41.28
CNN 61.89 61.78 85.47 82.48 78.66 73.59 74.59 68.69
InferSent 67.30 67.26 87.96 85.04 81.15 76.88 85.31 81.99
SBERT-base 79.36 79.31 78.63 74.98 97.29 96.83 97.56 97.12
SBERT-NLI-base - - 78.78 74.98 97.66 97.24 97.49 97.04

As in the case of regression, we observe that simple algorithms, such as bag-
of-words and word embeddings averaging, give poor results in comparison to more
sophisticated methods. This is particularly true for the synthetic datasets, where the
simple strategies lead to low MacroF1 score, which suggests that the model cannot
predict well in general. Whereas the best results for the NLI and synthetic datasets were
obtained by SBERT, the best results for the amazon-walmart dataset were obtained
by InterSent (BiLSTM + max polling). This may be due to the higher complexity of
SBERT over InferSent, as InferSent is based solely on the BiLSTM architecture, which
in turn is easier to tune. Overall, training SBERT first on NLI did not show significant
improvements.
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Chapter 5

Text Representation Enhancement

Currently, bidirecional encoder representations from transformers (BERT) have at-
tracted a lot of attention in NLP, as they achieve state-of-the-art results on a variety
of tasks. Even though BERT is effective on many NLP tasks, it ignores a general
linguistic fact, that is, different sentence components serve diverse roles in the meaning
of a sentence. For example, in “standard” sentences, it is known that the most crucial
parts are the subject, predicate and object, as they represent the primary meaning of
a sentence. In addition, words in a sentence are also related to each other by syntactic
and semantic relations. In this context, this chapter investigates and proposes a new
strategy based on BERT to enhance sentence vectors for supervised and unsupervised
tasks.

The proposed strategy divides the original description or sentence into two parts:
one refers to the complete text, while the component-focused includes the terms that
play a major role in the meaning of the sentences. For item descriptions, these terms
can be the number and units of measure, since they carry information about the scalar
magnitude of the objects. For other types of sentences, such as sentences and para-
graphs, the component-focused part can comprise terms that are related to specific
part-of-speech tag or named-entity. In this case, instead of focusing in numbers and
units of measure, the model can focus on terms that are person names, quantities,
ordinals or cardinals.

5.1 Model Architecture

Our model is deeply inspired by CF-BERT [Yin et al., 2020], a model created to focus
on crucial components and syntactic relations of a sentence to get a more powerful rep-
resentation that yields better performance in downstream natural language processing
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(NLP) tasks. While Yin et al. [2020] explores only the main syntactic relations of a
sentence, extracting the subject, predicate and object, we also consider other types of
words to enhance the sentence representation. As one of the main objectives of this
study is to find better representations for product descriptions, we consider the most
important components for this context. We explore the fact that items descriptions do
not follow the same syntactic structure of a standard sentence or paragraph, and also
have information about the scalar magnitudes of objects. Thus, we argue that numeric
terms and units of measure serve a crucial role in the meaning of item descriptions,
and can have a strong influence on the quality of vector representations in this context.
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Figure 5.1: Enhancement architecture for classification (left) and regression (right).

The structure of the enhancement representation model is depicted in Figure 5.1.
First, the two input sentences are passed to the model to generate fixed-size sentence
embeddings considering the whole text. In parallel, the model performs information
extraction for each sentence to obtain their component-enhanced parts and generate
their embeddings. Hence, for each input sentence we have two vectors: the embeddings
for the complete sentence Ecomplete and the embedding for the component-enhanced part
Eenhanced. For each sentence we generate the final embedding E as:

E = � ⇥ Eenhanced + Ecomplete (5.1)

where � is a weight factor that adjusts the ratio of the component-enhanced part
embedding to generate the final sentence representation.
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5.2 Information Extraction

As previously mentioned, the component-enhanced part of the model carries the cru-
cial information in the sentence. For extracting the most important components of a
sentence we applied two of the most frequently used NLP tasks: part-of-speech tag-
ging (POS tagging) and named-entity recognition. For both tasks we used the library
Spacy1, which provides models pre-trained on the OntoNotes corpus2.

POS tagging associates words in a text with their corresponding part of speech
(tag), based on both its definition and its context. The POS-tagging tool used includes
20 tags: adjective (ADJ), adposition (ADP), adverb (ADV), auxiliary (AUX), con-
junction(CONJ), coordinating conjunction (CCONJ), determiner (DET), interjection
(INTJ), noun (NOUN), numeral (NUM), particle (PART), pronoun (PRON), proper
noun (PROPN), punctuation (PUNT), subordinating conjunction (SCONJ), symbol
(SYM), verb (VERB), other (X), end of line (EOL) and space (SPACE). As we focus
on the context of product/item descriptions, nouns tend to be more relevant to identify
the object in question than other tags.

Named-entity recognition (NER) consists of locating and classifying named enti-
ties present in a text into pre-defined categories, such as persons names, organizations,
locations, quantities and percentages. Unlike Yin et al. [2020], in the context of our
task, we argue that some named entities can correspond to the most crucial part of a
sentence, even if they are not present in the subject, predicate or object. The named-
entity recognition tool used is able to identify 19 named entities. Among them, we
list:

• PERSON: People, including fictional.

• NORP: Nationalities or religious or political group.

• PRODUCT: Objects, vehicles, foods, etc.

• LANGUAGE: Any named language.

• PERCENT: Percentage, including "%".

• QUANTITY: Measurements, as of weight or distance.

• ORDINAL: first, second, etc.

• CARDINAL: Numerals that do not fall under another type.
1
https://spacy.io

2
https://catalog.ldc.upenn.edu/LDC2013T19

https://spacy.io
https://catalog.ldc.upenn.edu/LDC2013T19
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It is very important to highlight that different than Yin et al. [2020], we do not
consider the subject, object and predicate of the sentence for the component-enhanced
part of the representation. For STSb and SICK-R, in particular, the component-
enhanced part, extracted by the information extraction step, consists of nouns and
terms that are part of one of the entities: PERSON, QUANTITY, ORDINAL, or
CARDINAL. On the other hand, for the synthetic datasets, the component-enhanced
part of the representation corresponds to numbers and units of measure, since the in-
stance consists of item descriptions. The same applies to the Amazon-Walmart dataset,
in which we extracted numbers and units of measure as well as the terms that are part
of the entities: PRODUCT, QUANTITY, ORDINAL and CARDINAL. Some exam-
ples of the two parts of the representation - base (Sbase) and component-enhanced (Scf )
for each dataset are listed in Table 5.1.

Table 5.1: Examples of component-enhanced part for sentences and item descriptions.

Dataset Sbase Scf

Synthetic-en

gasoline 792 in3 792 in3
lighting system 249 watt 249 watt
external hd 70.8 tb 70.8 tb
fluorescent lamp 502 kw 502 kw
blue paper roll 644 in 644 in
cement 1.48 lb 1.48 lb

SICK-R

A group of kids is playing in a yard and an old man
is standing in the background group kids yard man background

The young boys are playing outdoors and the man
is smiling nearby boys man

Two dogs are fighting Two dogs
A woman is wearing an Egyptian hat on her head woman hat head
A hiker is on top of the mountain and is dancing hiker top mountain
The black woman is wearing glasses over the headdress woman glasses headdress

Amazon-walmart

lorex vq2121 100 ft high intensity night vision
ir illuminator 100 ft

slappa sl nsv 122 10 inch lady damask netbook
sleeve black black 122 10 inch

hp envy 100 e all in one d 410 a printer cn 517 a b 1 h hp 100 in d 410 517 1 h
belkin 6 firewire cable 4 pin 6 pin 6 4 6
trendnet 2 port usb kvm switch kit with audio includes
2 x kvm cables tk 209 k blue 2 2 209 k

5.3 Experimental Evaluation

To evaluate the results of the proposed strategy, we considered the datasets described
in Section 4.1, except NLI, since it has already been used to train the models. In
Chapter 4, we observed that by first training SBERT on NLI and then on specific
NLP tasks yields better results than only training SBERT on the specific NLP tasks.
Therefore, in this section we only report the results using this approach. In other
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words, the models used were instantiated from pre-trained BERT model fine-tuned
with mean-tokens pooling on the NLI dataset. The results were obtained by training
the models with 5 random seeds. Experiments were repeated 5 times with a 5-fold cross
validation, totalizing 25 results per experiment. To compare the average results of our
repeated experiments, we assess their statistical significance by applying a paired t-test
with 95% confidence.

The proposed strategy requires an additional parameter, the weight factor �. Its
value was set to 1.0, 0.5 and 0.2 for the Portuguese synthetic dataset, English synthetic
dataset and STS datasets (STSb and SICK-R), respectively, after performing a grid
search.

5.3.1 Regression Task

As in Chapter 4, we use both the Pearson correlation and Spearman correlation as
similarity correlation measures to evaluate the results, reported in Table 5.2. Results
are reported by convention as r⇥100 and ⇢⇥100, and numbers in bold represent the best
of all methods. Table 5.2 indicates that the addition of the component-enhancement
representation has improved the quality of the representation in the synthetic datasets.
For the English and Portuguese synthetic datasets, the Pearson correlation improved
by approximately 1.27 and 1.51, respectively, compared to the results obtained by
SBERT. This can be explained by the fact that, for the synthetic datasets, numbers
and units of measure play the most important role in the meaning of item descriptions.
The same was not observed for the STS tasks, where there was no improvement in
comparison to the results obtained by SBERT. However, we expect the representations
obtained by SBERT fine-tuned with information extraction for item descriptions to be
more robust than those obtained by SBERT fine-tuned only on the NLI dataset. It is
important to observe that the results achieved by SBERT with enhancement are just
slightly worse than those achieved by SBERT, which shows that the enhancement can
be used without significant loss of performance.

Differently, Yin et al. [2020] observed that CF-BERT (first training of NLI, then
training on specific dataset via component focusing) was able to achieve better results
on STSb and SICK-R datasets, when using dependency parsing to get the component-
enhanced part. This highlight the importance of the subject, object and predicate for
the meaning of a sentence, which is not necessarily true for item descriptions.
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Table 5.2: Pearson correlations (r) and Spearman correlations (⇢) results on the STS
tasks and on the synthetic datasets when using enhancement. Results in bold are the
best according to the statistical tests.

Dataset Metric Model
SBERT Enhancement

SICK-R r 88.90 ± 0.04 88.71 ± 0.03
⇢ 84.51 ± 0.06 84.20 ± 0.03

STSb r 84.22 ± 0.16 84.00 ± 0.06
⇢ 85.03 ± 0.16 84.81 ± 0.09

Synthetic-en r 71.71 ± 0.11 72.98 ± 0.22
⇢ 71.69 ± 0.13 72.95 ± 0.24

Synthetic-pt r 71.11 ± 0.18 72.62 ± 0.18
⇢ 71.02 ± 0.18 72.61 ± 0.19

5.3.2 Classification Task

Table 5.3 shows the results of MicroF1 and MacroF1 on the Amazon-walmart dataset
and on the synthetic datasets. The application of the enhancement on the Amazon-
walmart dataset achieved an improvement of 1.75 for MicroF1 and 2.08 points for
MacroF1. Besides the Amazon-walmart dataset, SBERT model with enhancement
did not achieved a significant improvement over SBERT. However, it is important to
highlight that SBERT has already achieved good results on the synthetic datasets, with
both MicroF1 and MacroF1, having values close to 100. In this case, improving further
the results is much more difficult than in the Amazon-walmart dataset. In addition,
we can argue that the enhancement on Amazon-walmart achieved better results due
to the characteristic of the dataset, which is very small and has a lot of information
about the considered categories for the component-focused part of the model.

Table 5.3: MicroF1 and MacroF1 results on the Amazon-walmart dataset and on the
synthetic datasets when using enhancement. Results in bold are the best according to
a paired t-test.

Dataset Metric Model
SBERT Enhancement

Amazon-walmart microF1 80.09 ± 1.77 81.84 ± 1.94
macroF1 76.13 ± 2.51 78.21 + 2.12

Synthetic-en microF1 97.29 ± 0.18 97.56 ± 0.05
macroF1 96.83 ± 0.20 97.14 + 0.06

Synthetic-pt microF1 97.50 ± 0.10 97.49 ± 0.06
macroF1 97.05 ± 0.12 97.03 ± 0.07
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Chapter 6

Evaluation of Unique Objects

Clustering

In this chapter we describe the results of our experiments on text clustering with differ-
ent sentence representations: bag-of-words, word embeddings averaging, SIF (smooth
inverse frequency), Sent2vec, CNN, InferSent, Sentence-BERT and the method pro-
posed in this study (presented in Chapter 5). We considered the real-word dataset
extracted from the public ministry of the state of Minas Gerais in Brazil.

6.1 Experimental Setup

Table 6.1 presents a summary of a subset of experiments performed by instantiating
the proposed methodology. Cells that have a dash ("-") represent situations where
hyperparameters do not apply to the strategy. In order to find the best sentence
representation method and clustering algorithm for item descriptions, we conducted a
varied range of experiments. For each sentence representation model, we selected the
most appropriate pooling strategy and embedding size. Most experiments considered
the HDBSCAN algorithm, as it gave the best results for our dataset. We also show
the results of X-Means after grouping the description by their first token, in order to
compare the results with those obtained by HDBSCAN.

6.1.1 Evaluation Metrics

Four evaluation metrics were considered to assess the quality of the groups obtained by
each clustering strategy depicted in Table 6.1. The first metric measures the percentage
of items (i.e., descriptions) considered outliers. A low percentage of noise (i.e., outliers)
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Table 6.1: Clustering experiments.

Algorithm Representation Pooling Strategy Embedding Size
HDBSCAN SBERT-NLI-synthetic_pt Mean 728

HDBSCAN EnhancementBERT-NLI-
synthetic_pt Mean 728

FToken + HDBSCAN GloVe emb. averaging Mean 300
FToken + HDBSCAN fastText emb. averaging Mean 300
FToken + HDBSCAN bag-of-words - Vocabulary size
FToken + HDBSCAN SIF Weighted average 300
FToken + HDBSCAN Sent2vec - 700
FToken + HDBSCAN CNN Mean 364
FToken + HDBSCAN InferSent Max 1,024
FToken + HDBSCAN SBERT-NLI Mean 728
FToken + HDBSCAN SBERT-NLI-synthetic_pt Mean 728

FToken + HDBSCAN EnhancementBERT-NLI-
synthetic_pt Mean 728

FToken + X-means SBERT-NLI-synthetic_pt Mean 728

indicates good grouping quality. For HDBSCAN, in particular, instances considered
noise were assigned to group "-1". Noises are instances that cannot be attributed to
any of the groups found by HDBSCAN, as they are very different in comparison to the
other instances.

The second metric is the Davies-Bouldin score, defined as the average similarity
of each group with its most similar group. The similarity of a group is a ratio between
intra-group distances to inter-group distances, defined by the pairwise distance between
centers belonging to different groups. Thus, clusters which are farther apart and less
dispersed will result in a better score. The minimum score is zero, with lower values
indicating better clustering.

The Calinski and Harabasz score was also considered, as it assesses the ratio
between intra-group dispersion and inter-group dispersion. It is also known as the
Variance Ratio Criterion. The higher its value, the better the groups generated by the
clustering algorithm. Basically, high values of this measure indicate that the groups
are dense and well separated.

Finally, we report the Silhouette Coefficient, which measures the cohesion and
separation of groups. It is based on the difference between the distance an instance has
from other instances in its cluster and from other clusters. This coefficient is calculated
using the mean intra-cluster distance (a) and the mean nearest-cluster distance (b) for
each sample. The Silhouette Coefficient for a sample is si = (b - a)/max(a, b), where:

• a is the average distance between a point and all other points in the same group;
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• b is the distance between a point and the nearest group to which the point does
not belong.

The silhouette Coefficient is defined as the average of the values si over all items.
Note that this coefficient is only defined if the number of clusters is greater than or
equal to two and less than or equal to the number of samples minus one. The Silhouette
Coefficient value of an item is in the range [-1, 1]. The best value is 1 and the worst
value is -1. A silhouette coefficient close to 1 indicates that the instance xi is much
closer to items in its own cluster and is far from other clusters. A silhouette coefficient
close to zero indicates that xi is close to the boundary between two clusters, indicating
overlapping clusters. Finally, a negative value indicates that a sample has been assigned
to the wrong cluster, since a different cluster is more similar.

6.1.2 Setting Hyperparameters

Apart from the parameter min_cluster_size, which controls the minimum size of
clusters, the parameters min_samples and metric of HDBSCAN were analyzed.
min_samples defines the number of samples in a neighbourhood for a point to be
considered a core point, and metric the metric to be used to calculate the distance
between the points.

The minimum size of clusters was set to 30 after analysing Figure 6.1, where we
observed that 3.90% of the groups generated by the first token grouping have less than
31 items.

Figure 6.1: Cumulative Distribution of the number of items by group size for the groups
obtained by the first tokens. The figure on the left represents the complete distribution.
The figure on the right represents a zoom up to 3000. The red vertical line represents
group size 30.
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For the minimum number of samples (min_samples), the higher its value the
more conservative is the clustering and the greater the amount of noise generated. In
this way, as the value of min_samples increases, the groups become denser. It was
possible to observe that indeed the smaller the value of min_samples, the smaller the
number of items classified as outliers (noise) and the worse the quality of the groups
found, since they have more points distant from the core points. Thus, we chose to
keep the default value for the parameter min_samples, which is None. The metric
parameter was kept as Euclidean, since the vectors are normalized.

6.2 Experimental Results

From the experiments depicted in Table 6.1, it is possible to identify the best clustering
strategy and the best sentence representation method for our dataset. The results for
each clustering strategy and sentence representation model are reported in Table 6.3,
and the evaluation of the clusters for each approach is depicted in Table 6.2.

It is possible to observe that the best results for the silhouette coefficient cal-
culated using cosine distance were obtained when the item representations were built
from the SIF model and when the first token grouping was applied (Silhouette co-
efficient of 0.836). On the other hand, the best results for the silhouette coefficient
using Euclidean distance were obtained by the description generated by the SBERT
model with enhancement, first trained on the NLI dataset and fine-tuned on the Por-
tuguese synthetic dataset of item descriptions. When only applied to HDBSCAN, this
representation obtained the best results for the Calinski and Harabasz score and the
Davies-bouldin score (Calinski and Harabasz score of 1,452,345.10 and Davies-boulding
score of 0.37). We believe this is due to the high number of items categorized as outliers
(43.14%), which are removed from the original collection of items for evaluating the
clustering results. As we observed for the semantic textual similarity tasks, discussed
in Chapter 4, the SBERT model first trained on the NLI datasets leads to better results
in general.

For the enhancement SBERT model, we considered units of measure and numbers,
as they play a crucial role in the meaning of the item descriptions, carrying information
about the scalar magnitude of objects. It is possible to note that the SBERT model
with enhancement presents no improvement in comparison to the results obtained by
SBERT, when the first token clustering is applied. In contrast, the enhancement model
achieved better results in the case where only HDBSCAN is executed. It is also impor-
tant to highlight that fine-tuning SBERT on the Portuguese-synthetic dataset improves
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the results for all metrics. This shows the importance of fine-tuning the sentence repre-
sentation model on domain-specific data before deriving vectors for unsupervised tasks
like text clustering.

Even though simple text representation strategies performed worse than SBERT,
they lead to reasonable results. For the silhouette coefficient calculated using cosine
distance, the best results were obtained by the SIF model (Silhouette coefficient of
0.836), which represents a sentence by a weighted average of word vectors in an unsu-
pervised manner. As shown by [Arora et al., 2017], the SIF model can generate better
sentence representations than sophisticated supervised methods including CNN and
InferSent. These methods gave the worst results considering all metrics. In addition,
although the bag-of-words representation is very simple, it still presents better results
than those obtained by CNN and InferSent. It is important to remember that SIF
gives more importance to words that have a low frequency in the dataset. As the
collection of item descriptions comprises several frequent numbers, they can have little
importance in the representation. This highlights that there is a trade-off between per-
formance and given importance to some tokens, such as number and units of measure,
which confirms that it is very difficult to generate robust vectors for terms that carry
numeracy information.

Table 6.2: Evaluation of clusters found by each clustering strategy.

Algorithm Representation Metrics
Avg.

Calinski
Avg.

Davies-bouldin
Avg.

Silhouette-cosine
Avg.

Silhouette-euclidean
HDBSCAN SBERT-NLI-synthetic_pt 1,236,776.30 0.39 0.72 0.61

HDBSCAN EnhancementBERT-NLI-
synthetic_pt 1,452,345.10 0.37 0.754 0.641

FToken + HDBSCAN GloVe emb. averaging 1,986.6 0.475 0.79 0.628
FToken + HDBSCAN fastText emb. averaging 2,295.4 0.45 0.802 0.643
FToken + HDBSCAN bag-of-words 2,018.6 0.48 0.787 0.621
FToken + HDBSCAN SIF 2,730.4 0.415 0.836 0.679
FToken + HDBSCAN Sent2vec 2,597.5 0.462 0.798 0.635
FToken + HDBSCAN CNN 1,836.2 0.476 0.785 0.621
FToken + HDBSCAN InferSent 1,742.8 0.48 0.783 0.618
FToken + HDBSCAN SBERT-NLI 2,360.5 0.445 0.799 0.641
FToken + HDBSCAN SBERT-NLI-synthetic_pt 3,565.9 0.421 0.828 0.685

FToken + HDBSCAN EnhancementBERT-NLI-
synthetic_pt 3,382.2 0.434 0.817 0.672

FToken + X-means SBERT-NLI-synthetic_pt 2,440.2 0.643 0.73 0.566

Regarding the clustering results, it is possible to observe that HDBSCAN leads
to a smaller number of groups than X-means, while also identifying outliers. We can
see that when only HDBSCAN is executed the number of clusters is much smaller
in comparison to the other strategies. However, the number of items identified as
outliers is much larger. This strategy leads to 5,160 groups and 45.02% of outliers
when SBERT model is used to derive vectors for the item descriptions. We can also
see that the results for the silhouette coefficients are significantly worse in comparison
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to when the first token grouping is used. We believe that silhouette coefficients are
the best metrics to measure the quality of clustering results as they consider the mean
intra-cluster distance and the mean nearest-cluster distance of all samples. Therefore,
we conclude that the application of a simple grouping strategy before the execution of
a clustering algorithm leads to better results. It is possible to better separate the items
in the dataset, with a significant improvement in the quality of the clusters found by
the first token grouping.

Table 6.3: Clustering results.

Algorithm Representation # groups outliers (%) excluded (%)
HDBSCAN SBERT-NLI-synthetic_pt 5,160 45.02 45.02

HDBSCAN EnhancementBERT-NLI-
synthetic_pt 5,925 43.14 43.14

FToken + HDBSCAN GloVe emb. averaging 33,565 22.62 26.52
FToken + HDBSCAN fastText emb. averaging 33,278 20.13 24.03
FToken + HDBSCAN bag-of-words 31,255 25.89 29.79
FToken + HDBSCAN SIF 36,086 23.58 27.48
FToken + HDBSCAN Sent2vec 32,415 19.78 23.68
FToken + HDBSCAN CNN 32,620 23.83 27.73
FToken + HDBSCAN InferSent 32,572 27.59 31.49
FToken + HDBSCAN SBERT-NLI 33,115 20.31 24.21
FToken + HDBSCAN SBERT-NLI-synthetic_pt 36,644 17.84 21.74

FToken + HDBSCAN EnhancementBERT-NLI-
synthetic_pt 36,800 20.00 23.9

FToken + X-means SBERT-NLI-synthetic_pt 91,569 0.00 3.90

In summary, we can see through this analysis of text clustering that there is
no significance using sophisticated supervised methods, such as CNN and InferSent,
besides SBERT, to derive vectors for unsupervised tasks. On the other hand, unsuper-
vised methods like SIF can give results comparable to those obtained by SBERT, which
highlights the efficiency of a simple strategy of weighted average for building sentence
representations, despite giving less importance for frequent tokens. We also confirm
that naive strategies, such as bag-of-words and word embeddings averaging lead to
worse results than sophisticated methods, such as SIF, Sent2vec and SBERT. More-
over, we clearly see that fine-tuning the SBERT model on the synthetic dataset gives
more suitable vector to item descriptions in comparison to other strategies, since it
achieves better results according to the clustering evaluation metrics on the real-world
dataset.
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6.2.1 Qualitative Analysis

This section presents a qualitative analysis of the groups of items obtained by applying
HDBSCAN after the first token grouping, using the representation obtained by SBERT
trained on the NLI dataset, then fine-tuned on the Portuguese synthetic dataset. This
analysis embraces both general and specific characteristics of groups.

Figure 6.2: Histogram of the number of subgroups generated by first token grouping.

Figure 6.2 shows the distribution of the number of subgroups generated from
the execution of HDBSCAN for each group obtained by the initial grouping. We can
observe that most groups were divided into a few subgroups. This is expected, since
HDBSCAN was not applied in most groups generated by the initial grouping. However,
we can note that a significant portion of the groups was split into 20 subgroups or more.
This is the case of the "caneta", "broca", "lampada", "disjuntor" and "tubo", which
comprises a large collection of items. After the execution of HDBSCAN, these groups
were divided into 31, 31, 34, 31 and 33 subgroups, respectively. This demonstrates that
the application of a clustering algorithm after the initial grouping manages to separate
items from generic groups into smaller and more specific subgroups.

We also analyze some characteristics of specific groups, selected arbitrarily based
on a collection of products that are frequently searched by content analysts. The groups
are related to the following topics: i) fuels and lubricants, ii) hospital and medicines
and iii) automotive parts. Table 6.4 presents examples of items for each topic. For
each group, we can see the number of items and the number of subgroups obtained by
the application of HDBSCAN.
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Table 6.4: Examples of groups: (i) fuels, (ii) hospital items and medicines, and (iii)
automotive parts.

First token # items # subgroups
alcool 5,214 16
querosene 84 2
oleo 19,339 18
luva 19,370 23
mascara 2,331 16
acido 3,738 22
sabonete 3,253 11
vitamina 699 8
dipirona 1,441 10
atenolol 370 5
estetoscopio 167 3
reanimador 228 5
pneu 16,700 25
freio 668 2
parabrisa 457 2
parachoque 123 2
roda 297 5
lampada 15,473 33
bateria 3,184 21
amortecedor 1,886 12

Table 6.5: Subgroups of "Máscara".

Máscara
Subgroup # items Most frequent tokens Example

mascara_1 490
"mascara", "5.00e+01", "c",
"elastico", "descartavel", "triplo",
"com", "cirurgico", "cx", "unidade"

mascara cirurgico descartavel caixa c 50 unid

mascara_6 279
"mascara", "1.00e+02", "descartavel",
"c", "elastico", "com", "polipropileno",
"cirurgico", "unidade", "camada"

mascara cirurgico descartavel c elastico caixa 100
unidade atoxicar

mascara_0 270
"mascara", "com", "para", "elastico",
"transparente", "descartavel", "facial",
"oxigenio", "alto", "reservatorio"

mascara laringeo usado paciente para controle via
aereo respiratorio

mascara_11 234
"mascara", "9.50e+01", "n", "com",
"descartavel", "filtro", "elastico",
"protecao", "%", "c"

mascara cirurgico protecao n 95 tamanho medio
contra bacilo tuberculose

mascara_9 198
"mascara", "3.00e+00", "descartavel",
"com", "c", "n", "camada", "laringeo",
"para", "3.00e+01"

mascara caruru descartavel cor branco confeccionada
falso tecido com 3 camada

Table 6.5 presents the largest subgroups for the first token "Máscara". The
group "Máscara" has 2,331 items. The application of HDBSCAN split this group into
16 subgroups, each one representing a specific variation of the product "Máscara". We
can see that four subgroups depicted in Table 6.5 have numbers as one of the most
frequent tokens, which highlights the importance of numbers for describing items. The
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Table 6.6: Subgroups of "Lâmpada".

Lâmpada
Subgroup # items Most frequent tokens Example

lampada_7 1,475
"lampada", "w", "1.27e+02",
"v", "x", "fluorescente", "compactar",
"4.00e+01", "1.00e+02", "3.40e+01"

lampada halogenar 100 w 127 v 2020

lampada_22 1,376
"lampada", "1.20e+01", "v",
"w", "polo", "1.00e+00", "led",
"1.10e+02", "2.00e+00", "2.01e+03"

lampada 1140 12 v fiat unir 2001

lampada_24 1,311
"lampada", "w", "2.50e+02", "v",
"2.20e+02", "2.50e+01", "misto",
"vapor", "2.40e+01", "x"

lampada h15 240 v placa alf 2570

lampada_9 1,171
"lampada", "w", "1.50e+01", "v",
"1.27e+02", "1.50e+02", "fluorescente",
"compactar", "x", "led"

lampada piscar doble 1.40 ano 2001

lampada_12 1,079
"lampada", "w", "2.00e+01",
"2.20e+02", "v", "fluorescente",
"led", "x", "5.00e+02", "2.40e+01"

lampada compactar economico 20 w 2020

same can be observed for the subgroups for the first token "Lâmpada" in Table 6.6.
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Chapter 7

Conclusions and Future Work

This dissertation approached a real-word problem related to the automatic detection of
overpricing in public procurement, i.e., checking whether the item that is being bought
by a public organization is overpriced. One of the main challenges of this problem
consists in the fact that only the item descriptions and the prices are available for
analysis. In this context, our work proposed a new methodology to solve this problem.
Particularly, we modeled this problem as a text clustering problem, where similar items
are grouped together based on their descriptions. From the groups of items found, we
can later calculate commonly used statistic measures for the item prices, which can
indicate whether an item is overpriced or not.

Another problem that comes with text clustering is to find the best sentence
representation method to map each instance to a vector in a semantic space. In an
attempt to come with a solution, our study comprises an analysis of the most popular
sentence representation models, which explore different strategies based on supervised
and unsupervised tasks. Some of these methods are the state-of-the-art in well-known
NLP tasks like semantic textual similarity (STS). We showed that simple strategies,
such as bag-of-words and word embeddings averaging, can lead to unsatisfactory results.
Therefore, we argue that the currently used sentence representation algorithms may
not be ideal for item descriptions as they are for sentences and paragraphs, since these
descriptions do not follow a grammatical structure (subject, object and predicate),
and often have numeric terms and units of measure. These types of terms usually
carry information about scalar magnitudes of objects. Hence, due to their singular
properties, item descriptions offer new challenges in the context of text representation.

Since our real-world dataset comprises item descriptions, our study focused on
this context. Trying to improve the quality of representations for item descriptions we
proposed a new method based on the CF-BERT model proposed by Yin et al. [2020]. In
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summary, the method consists of two major steps: information extraction and training
on semantic textual similarity tasks. For the information extraction part, we imple-
mented two well-known NLP tasks named part-of-speech tagging (POS-tagging) and
named-entity recognition (NER). The main idea of this step is to focus on the most im-
portant tokens for the task being solved. Knowing the part-of-speech tags and named
entities, we can focus on this information to enhance the sentence representations us-
ing the SBERT [Reimers and Gurevych, 2019] model, a modification of the pre-trained
BERT network that use siamese network structure to train and derive semantically
meaningful sentence embeddings. As we identified numeric terms and units of measure
as being the most important components of item descriptions, we focus on them to
enhance the item representations.

For the investigation of the best sentence representation method for item de-
scriptions, we designed synthetic datasets of product titles pairs, which can be used to
train the selected models taking into consideration classification or regression objec-
tive functions. Together with these datasets, we also considered the STS benchmark,
the SICK-Relatedness dataset, the NLI dataset and the Amazon-Walmart dataset to
evaluate the sentence representation models. In general, experiments showed that the
best method for all datasets consists of SBERT. Experiments also showed that a simple
strategy of enhancement can lead to better results in domain-specific datasets like the
synthetic dataset of item description pairs that we designed.

Following the exploratory study of sentence representation methods, our work
presented a new clustering framework for solving the real-word problem introduced,
which can also be used in other tasks. The framework corresponds to the four steps: (i)
Text cleaning, (ii) Information extraction, (iii) Text representation, and (iv) Grouping.
Regarding the text representation step, the framework covered bag-of-words, word em-
beddings averaging and pre-trained models trained on common STS tasks, which were
used to derive vectors for the item descriptions. For the grouping stage, we focused
on X-means and HDBSCAN (Hierarchical Density-Based Spatial Clustering of Appli-
cations with Noise). These algorithms were selected due to their opposite strategies
and the fact that we do not need to specify beforehand the number of clusters. While
X-means is a centroid-based and flat clustering algorithm, HDBSCAN is hierarchical
and density-based. HDBSCAN is, particularly, interesting for our application due to
its hierarchical nature and the ability of identifying outliers.

From the clustering results, we can conclude that simple text representation
strategies, such as bag-of-words and word embeddings averaging give poor results on
our dataset, considering all evaluation metrics. Besides, we also observed that first
applying first token grouping, then HDBSCAN, on item descriptions can lead to bet-
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ter results in comparison to when only HDBSCAN is used. In addition, we noticed
that SIF model obtained results comparable to the state-of-the-art method, and that
SBERT gives the best values overall.

7.1 Future Works

As a future work, we suggest a more comprehensive study of the clusters obtained by the
proposed framework, the execution and evaluation of other clustering algorithms that
do not necessarily follow the same idea of X-means and HDBSCAN and the application
of the proposed framework to other real-word datasets in different contexts. Moreover,
it might be interesting to explore the pre-trained sentence representation models in
other supervised and unsupervised natural language processing tasks.

In order to analyze and fully understand the clusters obtained by the clustering
strategy discussed in this dissertation, topic modeling could be a good direction as a
next step in the research. We could interpret the clusters as a topic and extract key-
words using the semantic space built from pre-trained sentence representation models.
By assuming that many semantically similar sentences are indicative of an underly-
ing topic, we can better understand the clustering results and use the framework to
semantic search.

Another important direction for our work is exploring the text enhancement
methodology for improving the quality of sentence representation in other contexts.
In this study, we focused on the context of item description, in which we observed
that numbers and units of measure are the most important components, since they
carry information about the scalar magnitude of objects. In other contexts, such as
product reviews and electronic health records (EHR), the most important components
can be different than those considered in this work, and may also be used to enhance
the quality of the sentence representations.
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