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Resumo

O reposicionamento de medicamentos (também conhecido como reaproveitamento)
pode ser definido como a renovação de medicamentos não aprovados (com uso se-
guro comprovado, mas não demonstrou eficácia na indicação primária) e a expansão de
uso dos medicamentos aprovados, desenvolvendo novos usos terapêuticos, que estão
além dos seus usos originais inicialmente aprovados. Os medicamentos reposiciona-
dos representam aproximadamente 30% dos medicamentos aprovados pela Food and
Drug Administration (FDA) dos EUA nos últimos anos. Um fármaco reposicionado usa
compostos de menor risco, podendo ir diretamente para testes pré-clínicos e ensaios
clínicos, fornecendo assim alternativas mais baratas comparando ao pipeline caro do
desenvolvimento de novos fármacos.

Um efeito farmacológico de um medicamento nas células, órgãos e sistemas
refere-se à interação bioquímica específica produzida por um medicamento, também
chamado como mecanismo de ação. Existem várias abordagens para a identificação
de novas oportunidades de reposicionamento, como correspondência de assinatura,
docagem molecular (acoplamento molecular, or ancoragem molecular) e associação
genética na literatura. Neste trabalho, apresentamos um novo método baseado em
um modelo de representações não supervisionadas de grafos multi-relacionais que
aprende representações latentes de medicamentos (mecanismo de ação) e doenças, de
modo que a distância entre essas representações revele oportunidades de reposiciona-
mento. Uma vez obtidas representações de medicamentos e doenças, aprendemos a
predizer a probabilidade de novas indicações entre medicamentos e doenças. As indi-
cações conhecidas de medicamentos são usadas para aprender um modelo que prediz
potenciais novas indicações de medicamentos. Comparado com os métodos existentes
de representações não supervisionadas de grafos, nosso método mostra desempenho
superior em termos de área abaixo da curva ROC (area under the ROC curve ). Tam-
bém apresentamos exemplos de oportunidades de reposicionamento encontradas na
literatura biomédica recente que também foram previstas pelo nosso método.

Palavras-chave: Aprendizado por Representação, Reaproveitamento de Medicamento,
Reposicionamento de Medicamento.



Abstract

Drug repositioning (aka repurposing) can be defined as renewing failed drugs (proved
safety but failed to show efficacy for their primary indication) and expanding successful
ones by developing new therapeutic uses that are beyond their original uses or initial
approved indications. Repositioned drugs account for approximately 30% of the US
Food and Drug Administration (FDA) approved drugs in recent years. A repositioned
drug uses de-risked compounds, going directly to preclinical testing and clinical tri-
als, thus providing inexpensive alternatives to the costly pipeline associated with the
development of new drugs.

A pharmacological effect of a drug on cells, organs and systems refers to the spe-
cific biochemical interaction produced by a drug substance, which is called its mech-
anism of action. There are several approaches for novel repositioning opportunities
identification, such as signature matching, molecular docking and genetic association
in literature. In this work, we present a novel method based on a multi-relation unsu-
pervised graph embedding model that learns latent representations for drugs (mecha-
nisms of action) and diseases so that the distance between these representations reveals
repositioning opportunities. Once representations for drugs and diseases are obtained
we learn the likelihood of new links (that is, new indications) between drugs and dis-
eases. Known drug indications are used for learning a model that predicts potential
indications. Compared with existing unsupervised graph embedding methods our
method shows superior prediction performance in terms of area under the ROC curve,
and we present examples of repositioning opportunities found on recent biomedical
literature that were also predicted by our method.

Palavras-chave: Representation Learning, Drug Repurposing, Drug Repositioning.
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Chapter 1

Introdution

The global pharmaceutical industry is facing several challenges, such as the escalating
cost and length of time required for new drug development. A study of Berger et al.
(2014) has showed that for every dollar spent on drug research and development, less
than a dollar of value is returned on average. Furthermore, it takes 10 to 17 years to
bring new drugs to the market, from the drug discover to the marketed drug (Ashburn
and Thor, 2004). Accordingly, biopharmaceutical companies investigate and attempt
to increase productivity through other strategies, in particular, drug repositioning.

The process of renewing failed drugs (proved safety but failed to show efficacy
for their primary indication) and expanding successful ones by developing new ther-
apeutic uses that are beyond their original uses or initial approved indications is also
known as drug repositioning (repurposing, redirecting or reprofiling). Repositioned
drugs account for approximately 30% of the US Food and Drug Administration (FDA)
approved drugs in recent years (Jin and Wong, 2014). A repositioned drug uses de-
risked compounds, going directly to preclinical testing and clinical trials, thus provid-
ing inexpensive alternatives to the costly pipeline associated with the development of
new drugs. One of the well-known examples is sildenafil citrate (brand name: Viagra),
which was repositioned from a common hypertension drug to a therapy for erectile
dysfunction (Renaud and Xuereb, 2002).

Figure 1.1 illustrates the biochemical interaction that gives rise to the pharmaco-
logical effect of a drug. This paper is motivated by the problem of finding drug repo-
sitioning opportunities by modeling the mechanisms of action of drugs (Iorio et al.,
2010a). For instance, different biological solutions might be considered in order to
chemically decrease the blood pressure such as removing the excess of salt from the
body, thereby decreasing the tension in the vessels, or inhibiting the vasoconstrictive
signalling of a hormone, or acting directly on the cells physically narrowing the ves-
sels and preventing their unwanted action this way (Ong et al., 2007). Each of the
aforementioned solutions requires a different mechanism of action. The same drug
can have several mechanisms of action and therefore it can potentially play a multitude
of roles by interacting with proteins involved in various biological processes, which are
accountable for the drug polypharmacology (Car, 2012). Thus, drug repositioning is a
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interacts with involved in
chemical

compound protein biological
process

some some

mechanism of action

Figure 1.1. A chemical is assigned as a treatment to a disease because it exhibits a
particular mechanism of action that affects biological processes associated with the
disease. Repositioning opportunities exist because the same drug interacts with
multiple proteins themselves involved in multiple biological processes.

direct application of drug polypharmacology (Zhang et al., 2016).

1.1 Thesis Statement

Creating new drugs is an expensive procedure, instead, repositioning an exis-
tent drug is much cheaper. In this master thesis, we introduce a novel approach for
identifying drug repositioning opportunities based on unsupervised graph embed-
ding. The main idea of our method is embedding the mechanism-of-action of drugs
into vector representations, afterwards, train a classifier to predict drug reposition-
ing candidates. Furthermore, the multi-relation graph (drug-disease interactions and
drug-protein interactions) is a three-layered graph, thereby, we devised an efficient
unsupervised graph embedding to exploit this specific structure. Finally, we show the
efficiency of our algorithm and also provide several improvements to achieve a better
performance.

1.2 Our Solution

Our main goal is to discover new relations between current drugs and diseases
by utilising existing public drug-disease-protein interactions. The main three steps of
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our proposed method are as follows.
In the first step, we built a large and heterogeneous graph comprising drug, dis-

ease, and protein entities that are linked according to information collected from the
biomedical literature, as shown in Figure 1.2. Specifically, we formulate the drug repo-
sitioning problem as a three layer multi-relation directed graph 𝒢 = (𝒱, ℛ, 𝐸), where 𝒱
is the set of entities (i.e., drugs, diseases and proteins), ℛ is a set of relations (i.e., drug-
protein, drug-disease and protein-protein), and 𝐸 is a set of edges connecting different
entities in 𝒱 . In the graph, mechanisms of action are represented by relations involv-
ing drugs and proteins and repositioning opportunities are represented by (hidden)
relations involving drugs and diseases. The graph also contains protein-protein inter-
actions in order to increase connectivity and information propagation while learning
node representations. The datasets used to build the graph are described in Section 3.1.

diseases □ □ □ … … □ □

drugs △ △ … … △ △

proteins ○ ○ ○ ○ … … ○ ○

Figure 1.2. Multi-relation graph, composed of drug-protein, drug-disease and
protein-protein interactions. A drug (△) interacts with some proteins (○) and this
drug is indicated to certain diseases (□). A single drug may interacts with differ-
ent proteins, and these proteins may also interact. Further, the same drug may be
indicated to different diseases. Links may provide evidence for repositioning op-
portunities (i.e., dotted links).

In the second step, our goal is to find a low-dimensional latent representation for
drugs and diseases, so that the latent representation embeds the relationship between
mechanisms of action and drug indications. Drug-protein and drug-disease interac-
tion graphs usually exhibit a particular structure with many isolated sub-graphs, and
often a protein is linked to drugs residing in different parts of a graph. We employ
a SkipGram based algorithm (Mikolov et al., 2013) to learn node representations in
an unsupervised way, but instead of performing deep random walks to produce con-
texts (Grover and Leskovec, 2016; Perozzi et al., 2014), we employ a restricted number
of permutations over the immediate neighborhood of a node as context to generate its
representation (Pimentel et al., 2018). This choice is motivated by the particularly sparse
structure of drug-disease and drug-protein interaction graphs. Further, we exploit the
multi-relation nature of the graph by employing two types of contexts while learning
node representations: contexts composed of drugs and proteins (i.e., mechanisms of
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action) and contexts composed of drugs and diseases (i.e., drug indications). This re-
sults in an embedding for each drug and for each disease, so that adjacent entities are
placed close to each other in the vector space, while unconnected entities are pushed
apart. As a result, drugs and diseases that have a similar distribution of neighbors will
end up being nearby in the vector space. Details for obtaining node embeddings can
be seen in Section 3.2.

In the third step, we learn the likelihood of new links between drugs and dis-
eases, as representations for drugs and diseases were obtained in previous step. Known
drug indications are used for learning a parametric model which predicts other likely
indications. Our evaluation follows the typical cross-validation framework, in which
a subset of the known drug uses are hidden. Details of the experimental setup can be
seen in Section 4.1 and the results obtained by different embedding algorithms we used
can be seen in Section 4.2.

1.3 Contributions

In the following we briefly summarize our contributions:

• We employ interaction graphs involving drugs, diseases and proteins in order
to learn suitable vector representations for drugs and diseases. The input graph
presents particular characteristics, such as high sparsity and low connectivity, so
that contextual information based on the immediate neighborhood is likely to
produce better representations than typical random walk approaches.

• Given the vector representations for drugs and diseases, we build a parametric
model learned to identify if a specific drug is indicated to a specific disease.

• We evaluate the effectiveness of our model on predicting repositioning opportu-
nities under a cross-validation framework. Our model reaches an area under the
curve of +0.98, being significantly superior than predictive models built using
contextual information produced by deep random walks.

• Finally, we compared our specific findings with repositioning opportunities re-
ported in the recent biomedical literature. We present some interesting cases that
were predicted by our model, including the use of Amitriptyline for relief of Fi-
bromyalgia in adults. Amitriptyline is an antidepressant that is now being re-
ported in the literature to treat Fibromyalgia if used at doses below those at which
the drugs act as antidepressants.
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1.4 Organization

The rest part of this thesis is organized as follow: in Chapter 2, we review prin-
cipal related works on drug repositioning, graph embeddings approaches and graph
embeddings applied in bioinformatics, such as drug repositioning and polypharmacy
side effects modelling; In Chapter 3, we present our collected and compiled data, which
is used in this work, and our graph embedding algorithm; In chapter 4, we describe the
experimental setup and then present the results; In chapter 5, we provide several fur-
ther analysis; Finally, in Chapter , we present the concluding remarks and future work.
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Chapter 2

Related Work

2.1 Drug Repositioning

Drug repositioning (aka drug repurposing, reprofiling, or re‐tasking) is a pro-
cess of identifying new uses outside the scope of the original medical indication for
existing drugs (Ashburn and Thor, 2004; Pushpakom et al., 2019). This strategy can
offer a better risk-versus-reward trade-off as compared with other drug development
strategies, such as drug discovery, due to by using existing drugs which are previ-
ously tested. Furthermore, repositioning drugs have a reduced time, 3 to 12 years to
be available in the market, while new drugs development process can take 10 to 17
years (Ashburn and Thor, 2004).

Several strategies have been proposed for drug repositioning, such as chemical
structure based, transcriptional signatures based, molecular ligand based and network
mapping. Structured based methods are based on the idea that similar proteins have
similar functionality, through a similarity comparison it is possible to find secondary
targets of an already existing drugs (Ehrt et al., 2016). Molecular transcriptional signa-
tures can be compared to create relations between drugs and new disease indications.
These relations provide useful information for finding new uses of known drugs (Lamb
et al., 2006). Ligand based approaches are based upon the concept that similar com-
pounds tend to have similar biological properties. In drug repositioning, this method
has been widely used to analyze and identify the activity of ligands for new disease
indications (Liu et al., 2010). However, drug repositioning approaches can be divided
into three categories, computational, experimental and mixed. Generally, computa-
tional approaches are largely data-driven, based on systematic analysis on data such
as gene expression, chemical structure, genotype or proteomic data and experimental
methods are based on chemical/biological experiments and analysis. While mixed ap-
proaches combine both. In this work, we focus mainly on computational approaches.
In following subsections, we present main works on computational approaches in lit-
erature.
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2.1.1 Signature Matching

Signature matching is a technique based on the comparison of the characteristics
(or signature) of a drug against another drug, disease or clinical phenotype (Hierony-
mus et al., 2006; Keiser et al., 2009; Pushpakom et al., 2019). The signature of a drug
can be derived from three general types of data: transcriptomic (RNA), proteomic or
metabolomic data; chemical structures; or adverse event profiles.

Transcriptomic signatures. This type of signature can be obtained by observing
the effect of a drug or a disease on the gene expression profile of biological material,
such as a cell or a tissue. The effect (or the change) on the gene expression profile is
considered as the drug’s signature or the disease’s signature. A example usage of these
signatures is, if there is a pair of a drug and a disease shares a negative correlation,
which means the drug’s signature is opposite of the disease’s signature, following the
signature reversion principle (SRP), where it is assumed that if a drug can reverse the
expression pattern of a given disease phenotype, then that drug might be able to revert
the disease phenotype itself (Pushpakom et al., 2019). This method has been studied
and demonstrated a promising results in the works Wagner et al. (2015); Hsieh et al.
(2016). Another usage of these signatures is comparing dissimilar drugs’ signatures.
Two dissimilar drugs are initially designed for different sets of diseases or clinical ap-
plications, a shared transcriptomic signatures may imply that they are repositioning
candidates for each other, according to the principle of guilt by association (Chiang and
Butte, 2009). These works Iorio et al. (2010b,a) have demonstrated that this method is
also promising in finding repositioning opportunities.

Chemical signatures. Chemical signatures are based on chemical structures of
drugs and their relationship to biological activity. With the chemical signatures of
drugs, comparing them to see whether there are chemical similarities and then suggest
repositioning opportunities (Pushpakom et al., 2019). In order to obtain the chemical
signature, a drug’s chemical structure is analyzed and a set of structural features is se-
lected as their signature. However, this is a complicated process due to the importance
and the sensibility of selected features on repositioning candidate finding.

Adverse effect signatures. Since every drug present a relatively unique adverse
effect profile, it raises a hypothesis that two drugs with the same adverse effects may
be effective on a same target or on the same biological activity (Dudley et al., 2011;
Pushpakom et al., 2019). Based on this hypothesis, it emerges adverse effect signature
matching. Some works Campillos et al. (2008); Yang and Agarwal (2011) have shown
the effectiveness of this method. However, there are still some problems for this ap-
proach: mining large adverse effect information of drugs, lack of well-defined adverse
effect profile and causality assessment of adverse effects and drugs(Dudley et al., 2011).
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2.1.2 Molecular Docking

Molecular docking is a structure-based computational method, it aims to pre-
dict binding site complementarity between the ligand, such as a drug, and the target, a
receptor (Kitchen et al., 2004). This approach also depends on the prior knowledge of
receptors involved in diseases. Once we have the knowledge of a disease and its corre-
sponding receptor, it is possible to exploit docking algorithms to perform molecular fit
computations to find feasible drugs. If there is a novel interaction between a drug and
a disease-related receptor, it can be taken forward repositioning.

2.1.3 Genetic Association

Recent advances in genotyping technology and reduction of the cost of genotyp-
ing have contributed to the growth of genome-wide association studies (GWAS) over
the past 10 years (Pushpakom et al., 2019). The goal of GWAS is to identify genetic
variants associated with diseases and thereby provide insights in the biology of dis-
eases (Pushpakom et al., 2019). This information may also help to identify reposition-
ing opportunities, if the genotypes of two diseases are shared and one is treated by a
specific drug, then this drug may also be effective with another disease. However, there
still remains problems to be solved before taking fully advantage of GWAS: identifica-
tion of causal gene and/or gene variants is still a complex work (Sanseau et al., 2012);
another issue is that there is still unknown the right direction of the effect of the gene
variant whether it has to be activator or a suppressor to control the disease (Sanseau
et al., 2012).

2.1.4 Retrospective Clinical Analysis

Retrospective clinical analysis are another useful resource for drug reposition-
ing. A systematic analysis on clinical data is increasingly suggested for identifying
drug repositioning opportunities (Jensen et al., 2012). Electronic health records (EHRs)
contain an enormous amount of data on patient outcomes, such as results of labora-
tory tests, drug prescribing data, clinical descriptions of patient symptoms and signs



2. Related Work 21

and imaging data (Pushpakom et al., 2019). These records could be used as a source
for identifying signals for drug repositioning (Hurle et al., 2013). Additionally, the
enormous amount of EHR data also provides high statistical power (Paik et al., 2015).
The work Paik et al. (2015) has analyzed over 13 years of EHRs from a tertiary hospital
and extracted clinical signatures, they were able to identify over 17, 000 known drug–
disease associations and identified terbutaline sulfate, an anti-asthmatic, as a promising
candidate for the treatment of amyotrophic lateral sclerosis (ALS).

2.2 Graph Embedding

Uncountable real-world problems can be solved using graph algorithms due to
their graph-structured nature. This has made graph an important data representation
structure. However, the increasing volume of available information has made graph
processing a hard and costly task. Many studies have been conducted to find efficient
ways to deal with large graphs. Thus, graph embeddings methods have emerged and
they aim to obtain a low-dimensional vector representation of graph, while preserving
their properties, and thereby solve problems with these representations.

Graph embedding algorithms can be divided into 3 categories: node embed-
ding, edge embedding and whole-graph embedding (Cai et al., 2018). Node embed-
ding refers to the process of mapping the nodes of a graph into low dimensional vector
space, each node is represented by a unique vector. Edge embedding, different from
node embedding, it aims to embed graph’s edges into vector space and therefore, in-
stead of nodes, each edge is represented by a vector. Meanwhile, whole-graph embed-
ding intends to embed a whole graph into a single vector. In this work, we only focus
on node embedding.

Historically, node embedding has been widely studied and it shows being effec-
tive in many real-world applications (Cai et al., 2018; Goyal and Ferrara, 2018), such
as friendship or content recommendation in social networks (social graphs) (Liben-
Nowell and Kleinberg, 2007), Protein-Protein interaction networks analysis (biology
graphs) (Theocharidis et al., 2009). Nonetheless, there are three principal node embed-
dings strategies: factorization methods, random walk techniques and deep learning
methods. Each of these strategies will be presented in following subsections.
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2.2.1 Factorization Methods

Factorization (or matrix factorization) based node embedding represents graph’s
nodes in the form of a matrix and then factorize this matrix to obtain node represen-
tation (Cai et al., 2018). There are several types of matrices that can be used to rep-
resent graphs: adjacency matrix, Laplacian matrix, node transition probability matrix,
and Katz similarity matrix, and so on. Matrix factorization methods are different de-
pending on the representation matrix used. Nevertheless, there are two main factor-
ization approaches: eigenvalue decomposition and gradient descent, the former can
be used only when the matrix is positive semidefinite and the latter can be applied to
both structured and unstructured matrices. Some representative works in factorization
based node embedding are Locally Linear Embedding (Roweis and Saul, 2000), Lapla-
cian Eigenmaps (Belkin and Niyogi, 2002), Cauchy Graph Embedding (Luo et al., 2011)
and Structure Preserving Embedding (Shaw and Jebara, 2009).

2.2.2 Random Walk Based Methods

Random walk based embedding methods adopt a neural language model (Skip-
Gram (Mikolov et al., 2013)) for embedding, the main difference of these is usually
in the way the algorithm use to generate random walks. The idea behind of random
walk based embedding is that given a node’s embedding, the probability of observ-
ing its neighbourhood should be maximized, preserving second-order proximity be-
tween the nodes. Intuitively, the second-order proximity compares the similarity of the
nodes’ neighbourhood structures. The more similar two nodes’ neighbourhoods are,
the larger the second-order proximity value between them (Cai et al., 2018). Two more
representative random walk based embeddings are DeepWalk (Perozzi et al., 2014) and
Node2Vec (Grover and Leskovec, 2016), the former uses a normal random walk algo-
rithm and the latter uses a biased random walk algorithm with two user-defined pa-
rameters, which takes breadth and depth of the walk into account.
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2.2.3 Deep Learning Methods

With the fast growth of research in deep learning, several deep neural networks
have been applied in graph embedding. One example of this is structural deep net-
work embedding (SDNE) (Wang et al., 2016), it combines deep autoencoders (Bengio
et al., 2013) and Laplacian Eigenmaps (Belkin and Niyogi, 2002), the autoencoder aims
at finding an embedding for a node which can reconstruct its neighborhood and the
Laplacian Eigenmaps is applied to ensure that similar nodes are mapped close from
each other in the embedding space. Graph convolutional networks (GCN) (Kipf and
Welling, 2016), different from SDNE that takes the whole graph (adjacency matrix)
as input, is optimized for large graphs through convolution operations. GCN itera-
tively aggregates the embeddings of neighbors for a node and uses a function of the
obtained embedding and its embedding at previous iteration to obtain the new embed-
ding. Aggregating embedding of only local neighborhood makes it scalable and multi-
ple iterations allows the learned embedding of a node to characterize global neighbor-
hood (Goyal and Ferrara, 2018).

2.3 Graph Embedding in Bioinformatics

In recent years, machine learning has been vastly employed in drug reposition-
ing. Kumar et al. (2019) used a fully connected deep neural networks for training the
model using transcriptional data at gene level to predict drug therapeutics and to use
them in drug repositioning. They analyzed the confusion matrix and found out that
the miss-classified cases can indeed be considered as an indication of their potential
in novel uses. Donner et al. (2018) has proposed ligand based approach based on the
learning of embeddings of gene expression profiles using deep neural networks and
considered it as a measure of compound functional similarity for drug repositioning.
Hu and Agarwal (2009) created a disease-drug network using publicly available gene
expression. By defining a new network component called cancer-signaling bridge, Jin
et al. (2012) presented a new computational method for off-target drug repositioning.

Graphs are the typical structures used to model the relation between drugs and
diseases. The major challenge is to find a way to incorporate complex structures like
graphs into the existing machine learning algorithms. Therefore, we can take advan-
tages of graph embedding algorithms (described in Section 2.2), which are able to trans-
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form graphs into low dimensional vector without losing their graph properties. In or-
der to model the polypharmacy side effects, Zitnik et al. (2018) trained convolutional
neural networks on a graph, with proteins and drugs as its nodes and drug-protein and
drug-drug interaction as its edges. Deepika and Geetha (2018) used node2vec (Grover
and Leskovec, 2016) representation along with bagging Support Vector Machine (SVM)
to predict drug-drug interactions. Gao et al. (2018) applied Long Short-term Memory
Neural Networks (LSTM) and graph-based convolutional neural network to obtain a
low dimensional representation of protein and drug structures. These representations
were then engaged in the prediction of drug-target interaction. Cheng et al. (2012) pre-
dicted new drug candidates using a network obtained from DrugBank (Wishart et al.,
2008). Wang et al. (2014) applied an information-flow approach on a heterogeneous
network of drug-drug and disease-disease similarities along with the known disease-
drug relations. The algorithm updates the disease-drug relations through several it-
erations and finally converges to stationary scores in predicting the network connec-
tions. Yamanishi et al. (2008) introduced a bipartite graph-learning method based on
kernel regression in order to learn a co-mapping of drugs and proteins into a com-
mon pharmacological space. In the pharmacological space, the correlation between
compound-protein pairs can be conveniently calculated to predict their interactions for
drug re-positioning. Zheng et al. (2013) proposed a method to factorize the existing
drug-target relations so as to predict the new relations constrained by the drug-drug
and disease-disease similarity networks. Additionally, Xia et al. (2010) proposed a man-
ifold regularization semi-supervised learning method in which two classifiers in drug
and disease space are learned and then combined together to give a final score for drug-
disease interaction prediction.

Recent neural representation learning methods include neural fingerprints (Du-
venaud et al., 2015), graph convolutional networks (Hamilton et al., 2017), message
passing networks (Gilmer et al., 2017) etc.) are a related line of research. However,
these graph embedding methods do not apply in our setting, since they solve a (super-
vised) graph classification task and/or embed entire graphs while we embed individual
nodes.
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Chapter 3

Learning Mechanisms of Action

In this Chapter, we present our novel drug repositioning method based on modelling
mechanism of action of drugs. At first, we present the data that we collected. After-
wards, the unsupervised graph embedding algorithm is presented.

3.1 Data

In this section, we discuss the datasets used to build the graph presented in
Figure 1.2. As in Zitnik et al. (2018), we used the human protein-protein interac-
tion (PPI) network compiled by Menche et al. (2015); Chatr-aryamontri et al. (2015),
integrated with additional PPI information from Szklarczyk et al. (2017). The PPI
graph contains physical interactions experimentally documented in humans, such as
metabolic enzyme-coupled interactions and signaling interactions. The network is un-
weighted and undirected with 19,085 proteins and 719,402 physical interactions. Table
3.1 presents statistics about the data from which we built two graphs:

1. For the graph drug-protein, we obtained relationships between drugs and pro-
teins from the STITCH database (Chatr-aryamontri et al., 2015). This database
integrates various chemical and protein networks and there were over 8,083,600
interactions present between 8,934 proteins and 519,022 chemicals. We consid-
ered only the interactions between chemicals (i.e., drugs) and proteins that had
been experimentally verified, which comprises 16,546 proteins and 584 drugs,
and there are 1,824,204 interactions amongst them.

2. Drugbank (Wishart et al., 2008) was used to retrieve known drug-disease links.
DrugBank is a bioinformatics and cheminformatics resource that provides a
knowledge-base for drugs, drug actions and drug targets. We focused on 600
drugs that were indicated to 508 diseases, resulting in a total of 2,836 drug-disease
links.
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Table 3.1. Basic statistics of the data.

drug-protein

# of drugs 584
# of proteins 16,546
# of interactions 1,824,204

drug-disease known indications

# of drugs 600
# of diseases 508
# of interactions 2,836

To represent the proteins, we used Ensembl protein ID (e.g. ensp00000200652), and for
the drugs, we used a unified identification (e.g. cids00441300). Finally, for the diseases,
we used their name (e.g. fibromyalgia) in the Unified Medical Language System. Since
we unified the identification for proteins, drugs and diseases, we were able to join the
two different graphs together to build a large and heterogeneous graph.

3.2 Unsupervised Node Embedding

In this section we aim to learn representations for drugs and diseases that best
preserve the original graph structure, generalizing mechanisms of action in order to
find novel uses and repositioning opportunities. Graph embedding consists in finding
a continuous vector space representation for entities in the set of nodes 𝒱 . The task is to
learn a dictionary 𝑍 ∈ ℝ|𝒱|×𝑑, with one 𝑑−dimensional embedding for each node in 𝒱 .
In other words, graph embeddings are the transformation of a graph to a set of vectors,
by capturing the graph structure as well as node-to-node relationship. Unsupervised
learning of graph embeddings has benefited from the information contained in con-
texts (Pimentel et al., 2018), and thus embedding methods usually work by simulating
contexts and operate in two steps:

1. They sample pair-wise relationships from the graph through random walks. Each
random walk generates a sequence of nodes, simulating a context.

2. They train an embedding model, e.g. using Skipgram algorithm (Mikolov et al.,
2013), to learn representations that encode pairwise node similarities.

Figure 3.1 illustrates the representation learning process that gives each node a
unique embedding in the same vector space. Embedding methods differentiate mainly
on the first step, as there are many possible ways to extract context from a graph. The
best strategy for producing context depends on specific characteristics of the graph.
In this work the contexts are based solely on the first order neighborhoods of nodes,
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Multi-Relation Graph Groups

Sampling

( )

( )

( )

( )

( )

( )

( )
… …

Embeddings

SkipGram

: [0.1, 0.2, …, 0.9]
: [0.4, 0.3, …, 0.3]
: [0.7, 0.1, …, 0.3]

: [0.3, 0.2, …, 0.4]

: [0.5, 0.5, …, 0.1]

: [0.6, 0.4, …, 0.8]

: [0.1, 0.1, …, 0.7]
: [0.5, 0.3, …, 0.6]
: [0.4, 0.2, …, 0.5]

… …

Figure 3.1. Representation learning process, it takes a multi-relation graph as input.
△ represent drugs, ○ are proteins and □ are diseases. At the first step, several
groups of node are sampled using random permutation. Afterwards, SkipGram
is applied to learning embeddings for each node. The group size is controlled by
parameter 𝑘 and the embedding size by 𝑑.

defined here as the nodes that are directly connected. Consequently, nodes’ represen-
tations will be mainly defined by their first order neighborhoods and nodes with simi-
lar neighborhoods (contexts) will be associated with similar representations (Pimentel
et al., 2019). This results in embeddings focused mainly on the first-order proximity.
More specifically, we first separate a node neighborhood in small groups and then we
maximize the log likelihood of predicting a node given another in such a group (Pi-
mentel et al., 2017).

3.2.1 Generating Contextual Groups

The first step is to group nodes based on their neighborhoods, so that context can
be exploited. There are two main challenges in forming groups from neighborhoods,
as follows:

• Nodes have different degrees, so groups containing all the neighbors from a node
are difficult to treat.

• There is no explicit order in the nodes in a neighborhood. So there is no clear way
to choose the order in which they would appear in a group.
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To deal with these challenges, we create small groups with only 𝑘 neighbors in
each, using random permutations of their neighborhoods (Pimentel et al., 2018). The
number of permutations 𝑛 is specified and controls the trade-off between training time
and increasing the training dataset. Selecting a higher value for 𝑛 creates a more uni-
form distribution on possible neighborhood groups, but also increases training time.

3.2.2 Learning Representations

The first step results in a set of groups 𝑆, where each member of 𝑆 is a node in the
graph. Then, we learn vector representations of nodes by maximizing the log likelihood
of predicting a node given another node in a group and given a set of representations
𝑟, making each node in a group predict all the others. The log likelihood to maximize
is given by:

max𝑟
1
|𝑆| ∑

𝑠∈𝑆
(log (𝑝 (𝑠|𝑟))) (3.1)

where 𝑝 (𝑠|𝑟) is the probability of each group, given as:

log (𝑝 (𝑠|𝑟)) = 1
|𝑠| ∑

𝑖∈𝑠

⎛⎜⎜
⎝

∑
𝑗∈𝑠,𝑗≠𝑖

(log (𝑝 (𝑣𝑗|𝑣𝑖, 𝑟)))⎞⎟⎟
⎠

(3.2)

where 𝑣𝑖 is a node in the graph and 𝑣𝑗 are the other nodes in the same group. The
probabilities in this model are learned using the feature vectors 𝑟𝑣𝑖

, which are then
used as the node representations. The probability 𝑝 (𝑣𝑗|𝑣𝑖, 𝑟) is given by:

𝑝 (𝑣𝑗|𝑣𝑖, 𝑟) =
exp (𝑟′𝑇𝑣𝑗

× 𝑟𝑣𝑖
)

∑𝑣∈𝑉 (exp (𝑟′𝑇𝑣 × 𝑟𝑣𝑖
))

(3.3)

where 𝑟′𝑇𝑣𝑗
is the transposed output feature vector of node 𝑗, used to make predic-

tions. The representations 𝑟′𝑣 and 𝑟𝑣 are learned simultaneously by optimizing Equa-
tion 3.1.Essentially, by optimizing this log probability the algorithm maximizes the like-
lihood of predicting a neighbor given a node, creating node embeddings so that nodes
with similar neighborhoods have similar representations. Since there is more than one
neighbor in each group, this model also makes connected nodes having similar rep-
resentations, because they will both predict each others neighbors, resulting in repre-
sentations also with first order similarities. A trade-off between first and second order
proximities can be achieved by changing the parameter 𝑘, which controls the number
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of nodes within each group.
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Chapter 4

Experiments and Results

4.1 Experimental Setup

Our data is a multi-relation graph compose of drug-protein and drug-disease
interactions. Thus, in order to learn our models, it is necessary to select an efficient em-
bedding space in order to better exploit the information within the graph. We discuss
the choice for an appropriate embedding space which includes evaluating different
graph-embedding algorithms and their corresponding hyper-parameters.

4.1.1 Learning the Embedding Space

We first find an efficient embedding space for the different node embedding al-
gorithms that will be compared in our experiments. This involves 25 hyperparameter
combinations that were randomly selected for each algorithm and embedding mod-
els are then learned in an unsupervised way. We considered three graph-embedding
algorithms in our experiments: (i) DeepWalk (Perozzi et al., 2014), where the best hy-
perparameters are: window size of 12, number and length of walks were set to 7 and
25, respectively; (ii) Node2Vec (Grover and Leskovec, 2016), with window size, num-
ber and length of walks equal to 5, 57 and 73, respectively; (iii) NBNE (Pimentel et al.,
2018), with hyperparameters: window size of 6 and number of permutations set to 30.
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Table 4.1. Number of positive and negative examples used to learn the embedding
space and to train the parametric model.

Steps Interactions Examples
Learning Embedding Space 1,827,040 −
Model Evaluation − 2,836 (+) 30,196 (-)

4.1.2 Model Evaluation

We used the Multilayer Perceptron (MLP) as a binary classifier, which predicts
possible links between drugs and diseases using the embedding space. Specifically, the
vector of a drug and the vector of a possible indication (i.e., a disease) to the drug are
concatenated, and the MLP model takes the final vector as input and makes a predic-
tion (in this case, the output is the probability of a link existing between the drug and
the disease). As shown in Table 3.1, the known indications that form the drug-disease
interaction graph contains 2,836 links. We used 5-fold cross-validation to assess the em-
bedding’s quality. Thus, we divided 2,836 into five folds, each time one of them is used
for the validation and the rest for the training. As the known indications data contains
only positive examples, we have generated 30,196 negative examples using the comple-
mentary graph of the known indications in order to learn the MLP model (de Oliveira Jr.
et al., 2014), as shown in Table 4.1. It is worth mentioning that there are more negative
occurrences than positive ones in the real-world scenario, because drugs are produced
for a small group of diseases or health issues, being ineffective for others. As can be
seen in the table, the data is highly imbalanced, thus making our experiment close to
a real-world scenario. Finaly, we used area under the curve (AUROC score) as the basic
measure for assessing the performance of the algorithms (Marczewski et al., 2017).

4.2 Results

In this section we report results obtained by the three embedding algorithms
DeepWalk, Node2Vec and NBNE. We also discuss examples of drug repositioning op-
portunities endorsed by recent biomedical literature.

Prediction Performance: As shown in Figure 4.1, NBNE has obtained the best re-
sult. Specifically, NBNE achieved numbers as high as 0.98 in terms of AUROC, while
Node2vec and Deepwalk achieved 0.75 and 0.77, respectively. The improvement pro-
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vided by NBNE compared to Deepwalk and Node2Vec is significant − 27% and 28%
of improvement respectively. The main difference of NBNE from the other two al-
gorithms is the context generation approach, as NBNE is based on the neighborhood
while the other two algorithms are on random walks, as discussed in Section 3.2.1. It
seems that the neighborhood based approach generates more accurate representation
in the drug repositioning scenario.
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Figure 4.1. AUROC values for Deepwalk, Node2vec and NBNE.

Drugs
Diseases

Pain Related Diseases
Drugs

Diseases
Muscle Related Diseases

Figure 4.2. Proximity of related diseases. Left − Pain related diseases. Right −
Muscle related diseases.

Related Diseases in the Embedding Space: We employ t-SNE in order to visualize
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Drugs
Diseases

Drugs for Breathing Difficulty
Breathing Difficulty

Drugs
Diseases

Drugs for HIV
HIV

Figure 4.3. The proximity of diseases and their corresponding medications. Left −
Breathing Difficulty. Right − HIV. In general, drug indications and the correspond-
ing health problems are located closely.

the embedding space of drugs and diseases. T-SNE is a technique used to visual-
ize high-dimensional data by giving each data point a location in a two-dimensional
map (Maaten and Hinton, 2008). The visualization suggests some insights about the
reasons that lead to the good performance of our method. In order to have a clear visu-
alization, the drugs are represented by triangles (blue) and the diseases by rectangles
(green). Further, some points are also highlighted in the figures to demonstrate inter-
esting properties of the embedding space. Figure 4.2 shows that similar diseases have
close vector representations. Figure 4.2 (Left) shows a cluster of diseases (red points)
representing pain related diseases, while Figure 4.2 (Right) shows a cluster of muscle
related diseases. These visualizations suggest that our method generates meaningful
representations as related diseases are located close to each other in the embedding
space.

Diseases and their Corresponding Drugs in the Embedding Space: We have also
analysed the spatial relation of diseases and their corresponding drugs. Figure 4.3
(Left) highlights drugs which are used to treat Breathing Difficulty. In this case, most of
the indicated drugs are concentrated next to the disease. The same trend is observed
in Figure 4.3 (Right), where we highlighted the disease HIV − again, most of the indi-
cated drugs are placed next to the disease. These visualization give us a great insight
of the embedding space generated by NBNE. Furthermore, we observed the proximity
of Breathing Difficulty to HIV in the Embedding Space, and it may suggest a relation-
ship between these two diseases. One possibility is who is infected by HIV may suffer
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Table 4.2. List of some possible candidatesfor drug repositioning reported in
biomedical literature and found by our algorithm.

Medication Target disease Also appeared in
Gabapentin Bipolar II disorder Fullerton et al. (2010)

Naproxen Myofascial Pain Khalighi et al. (2016)
Amitriptyline Fibromyalgia Guymer and Littlejohn (2019)

Amlodipine High blood pressure Donato and Brown (2019)
Atorvastatin High blood pressure Bubnova et al. (2019)

Breathing Difficulty too.

Repositioning Opportunities and Biomedical Literature: Table 4.2 presents exam-
ples of repositioning opportunities. Our prediction model suggests Gabapentin as a
candidate for bipolar II disorder, which has been confirmed by Fullerton et al. (2010)
and in several other studies. While Naproxen is used in treating balance problems,
it can also be used for treating Myofascial Pain (Khalighi et al., 2016), which is con-
firmed by our model as it places these diseases and medications in the same group.
Recent studies show that fibromyalgia is associated with muscle tension and depres-
sion (Bosco et al., 2019). Recent research carried out by Guymer and Littlejohn (2019)
shows that Amitriptyline, which has been used in the treatment of muscle tension, is a
possible candidate for fibromyalgia. Lately, Bubnova et al. (2019) confirmed that both
Amlodipine and Atorvastatin caused significant improvement in patients with high
blood pressure which is in accordance with our results.
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Chapter 5

Further Analysis

In this chapter, we present various performance analysis over distinctive classifiers and
ensemble models, and embedding-level improvement by denoising node representa-
tion. Those analyses have revealed some interesting facts, such as embeddings gener-
ated by NBNE are more complex and needed a more powerful classifier to fully exploit
its hidden information, and MLP shows an outstanding generalization power.

5.1 Classifier Analysis

In the previous experiment, we have used only one classifier, MLP. Thus, we
are curious about how our algorithm will perform with other classifiers. To achieve
this goal, we run the previous experiment with several different classifiers: 1. Gaussian
Naive Bayes (GaussianNB), 2. Quadratic Discriminant Analysis (QDA), 3. AdaBoost,
4. Random Forest, 5. XGBoost. In case of AdaBoost, Random Forest and XGBoost, two
different size of ensembles are created, one with 50 weak classifiers and another, 100.

The experiment’s result is shown in Table 5.1. We found that the embedding
generated by Node2Vec and by DeepWalk with the classifier GaussianNB leads to the
worst performance, but in case of NBNE, the same classifier achieves a better result.
Additionally, Node2Vec and DeepWalk generally have close performances with differ-
ent classifiers. However, the best overall result is NBNE with MLP, which is used in
the earlier experiment. The other combinations that achieve a good result (+0.85) are
QDA+NBNE, RandomForest+NBNE, XGBoost+NBNE. The Random Forest with 100
Decision Trees has achieved the best result overall tested ensemble models.

We found that the combination with NBNE usually achieves a better result; this
may imply that the embedding generated by NBNE is more suitable for our work con-
text. Moreover, the embedding made by NBNE may present a more complex structure,
because only more robust classifiers produce a better result with it. Evidence to explain
this phenomenon is that QDA, RandomForest, XGBoost and MLP are more complex
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NBNE DeepWalk Node2Vec
GaussianNB 0.8106 0.7327 0.7373

QDA 0.8859 0.8130 0.8134
AdaBoost (50) 0.8342 0.7630 0.7643

AdaBoost (100) 0.8357 0.7910 0.7882
RandomForest (50) 0.9234 0.7947 0.7996

RandomForest (100) 0.9293 0.8044 0.8097
XGBoost (50) 0.8726 0.7970 0.7970

XGBoost (100) 0.9273 0.8120 0.8118
MLP 0.9800 0.7700 0.7500

Table 5.1. Best score (AUC) of each classifier on the embeddings generated by the
NBNE, DeepWalk and Node2Vec. The weak learner used in AdaBoost is Decision
Tree, AdaBoost (50) means an ensemble with 50 weak classifiers; the same applies
for Random Forest and XGBoost. As can be seen in the table, MLP+NBNE out-
performs other tested combinations. Another interesting phenomenon is that the
embedding generated by Node2Vec and DeepWalk leads to close results.

learning algorithms than GaussianNB and AdaBoost. Another proof for this is when
the number of weak learners of XGBoost increases from 50 to 100, which means higher
the classifier’s complexity, the accuracy with NBNE raises too.

5.2 Denoising Embedding

In our previous work (Chen et al., 2018), we have showed that node embedding
(NE) algorithms can introduce noise while they learn node’s representations due to the
randomness in the generation of walks or permutations, thus preventing the effective
use of all information in graphs to address real world problems. Therefore, we have
proposed a novel approach to reduce noises in the NE node’s representations by using
denoising autoencoders.

5.2.1 Denoising Architecture

We adapted the typical denoising autoencoder’s structure by using 𝑡𝑎𝑛ℎ (instead
of 𝑠𝑖𝑔𝑚𝑜𝑖𝑑) as the activation function and added noise to the input instead of dropping
out part of its features. By using 𝑡𝑎𝑛ℎ we preserve the representation’s value learned by
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NE algorithms between [−1, 1] and by adding noise we simulate real world noise that
is introduced during the process of representation learning.

The denoising steps of our approach are: (i) first corrupt the original input 𝑥 by
adding noises, ̃𝑥 ∶= 𝑥 + 𝑛𝑜𝑖𝑠𝑒𝑠, (ii) map the corrupted input into a latent space using an
encoder multi layer perceptron (MLP), generating a more efficient and robust hidden
representation of the input, ℎ ∶= 𝑓 ( ̃𝑥) = 𝑡𝑎𝑛ℎ(𝑊𝑛

𝑓 ...𝑡𝑎𝑛ℎ(𝑊0
𝑓 ̃𝑥 + 𝑏0

𝑓 ) + 𝑏𝑛
𝑓 ), where 𝑊𝑖

𝑓 are
weight matrices and 𝑏𝑖

𝑓 are bias vectors, both learned during the training process, (iii)
reconstruct the original input from the hidden representation using a decoder MLP,
̂𝑥 ∶= 𝑔(ℎ) = 𝑡𝑎𝑛ℎ(𝑊𝑛

𝑔 ...𝑡𝑎𝑛ℎ(𝑊0
𝑔ℎ + 𝑏0

𝑔) + 𝑏𝑛
𝑔), where 𝑊𝑖

𝑔 are weight matrices, and 𝑏𝑖
𝑔 are

bias vectors. Note that processing time increases linearly as the number of nodes rises.

NBNE DeepWalk Node2Vec
MLP 0.9800 0.7700 0.7500

MLP + Denoised 0.9842 0.7809 0.7691
Table 5.2. AUC score of MLP on the embeddings and on its denoised version. The
denoised embeddings have led to a small improvement. However, the increase is
minimal.

Table 5.2 shows the result of our denoising experiment. The denoised version
has led to a small improvement. These results are unexpected since we suppose that
the embedding generated may contain noises. Nevertheless, we suspect that MLP can
filter the noise due to its outstanding generalization power, so whether the embedding
is noisy or not, MLP can exploit almost the whole information in embeddings.
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Chapter 6

Conclusion and Future Work

In this chapter, we present the concluding remarks and several ideas for future works.

6.1 Conclusion

In this work, we proposed an multi-relation unsupervised graph embedding
based approach for drug repositioning opportunities identification. Our approach
takes advantages of multi-relation graph, learning drug’s indications and embedding
drug’s mechanisms of action into a continuous low dimensional vector. Further, a clas-
sifier is trained with these vector representations on known indications. Finally, the
trained classifier is used to predict other likely indications.

Additionally, we proposed various technique to improve the algorithm accuracy,
such as denoising node embedding to reduce noises introduced during embedding
process. We also have done a classifier analysis, comparing the performance of differ-
ent classifiers and ensemble models, and have found a insight about the embedding
algorithms, that the embedding of NBNE shows a more complex structure and it is
necessary to make use of more powerful classifier to fully exploit its potential.

Moreover, we searched from biomedical literature and confirmed that several
repositioning opportunities suggested by our model are truly new indications. This
shows that our algorithm is a promising tool to find novel off-targets for existing drugs,
since the first step of drug repositioning procedure is to identify potential repositioning
candidates. As mentioned before, new drug development takes much more time and
is usually costly, drug repositioning offers a cheaper and safer option.
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6.2 Future Work

In this section, we discuss future work directions as follows.

Including disease-protein interactions: Our graph contains only drug-disease, drug-
protein and protein-protein interactions. If we include disease-protein interactions,
it may help to generate better representations for the drugs and diseases and conse-
quently, leading a better and more accurate result. Therefore, a future work direction
is finding those interactions and do experiments with them in our graph.

Explainability: Although the evidences that we showed about the method reliability,
there is a need of a better understanding of the predictions. Deep learning algorithms
usually face an explainability problem, the vector representations that graph embed-
ding methods generated are not interpretable to human. Therefore, it is interesting to
use other tools to analyse the model and its predictions, even developing a new expla-
nation tool.

Combining more Strategies: Moreover, there are many other repositioning identifi-
cation strategies as mentioned in Section 2.1, many of them are suitable for applying
machine learning and deep learning algorithms. Therefore, it is an opportunity to ex-
plore more in this direction and it is possible to combine those different strategies to
obtain a more accurate model.
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