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Increasing returns to scale, technological 
catch-up and research intensity: 
endogenising the Verdoorn coefficient

João P. Romero and Gustavo Britto*

This paper examines the importance of output growth and research intensity for 
productivity growth. Two hypotheses are tested. First, the paper investigates the 
impact of the two variables on productivity growth when simultaneously consid-
ered, assessing whether the basic Kaldorian and Schumpeterian models can be 
combined. Second, it examines whether research intensity impacts on the magni-
tude of returns to scale, assessing if countries with higher research intensity benefit 
from higher returns to scale. The tests reported in the paper provide strong evidence 
of the importance of demand growth for productivity growth, and on the existence 
of increasing returns to scale in manufacturing, while also recognizing the relevance 
of research intensity for productivity growth. Most importantly, the test results sug-
gest that research intensity has a more relevant impact on the magnitude of returns 
to scale than on productivity growth directly.
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catch-up, Kaldor-Verdoorn’s Law
JEL classification: O11, O30, O47

1.  Introduction

Following Keynes’s (1936) demand-led approach, Kaldorian works emphasise the 
importance of the growth of autonomous demand for productivity growth. The Dutch 
economist Petrus Verdoorn (1949) was the first to observe a positive relationship 
between output and productivity growth in the manufacturing sector. Nonetheless, 
it was Kaldor (1966) who brought attention to the relevance of this finding, point-
ing out that a positive impact of output growth on productivity growth indicates the 
existence of increasing returns to scale in the manufacturing sector. Furthermore, 
following Allyn Young (1928), Kaldor (1966) emphasised that a considerable part of 
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this impact should be attributed to technical progress induced by expanding demand.  
After Kaldor’s influential lecture in 1966, the relationship between output growth and 
productivity growth, known as Kaldor-Verdoorn’s Law, was scrutinised and elaborated 
further (see McCombie, 2002). Most importantly, a large number of empirical works 
have found support for the law (e.g. McCombie and De Ridder, 1983, 1984; Angeriz 
et al., 2008, 2009).

In parallel to the Kaldorian demand-led approach, however, Schumpeterian works 
emphasise the importance of supply-side factors for technical progress. The impor-
tance of research intensity for technical progress represents the main foundation of 
Schumpeterian models of economic growth (e.g. Romer, 1990; Aghion and Howitt, 
1992, 1998; Ha and Howitt, 2007; Madsen, 2008). According to Schumpeter (1943), 
innovations create temporary monopolies, providing a strong incentive for firms 
to invest in research and development (R&D) in pursuit of innovations. Moreover, 
technological transfer is yet another determinant of productivity growth emphasised 
by Schumpeterian works (e.g. Posner, 1961; Verspagen, 1991; Griffith et  al., 2004; 
Vanderbussche et al., 2006). Transposing Schumpeter’s (1934, 1943) microeconomic 
ideas on innovation and imitation to a macroeconomic setting, these works stress that 
follower economies may benefit from their backwardness and increase productivity 
growth through technological absorption, given that absorbing (imitating) existing 
technology is less costly than investing in uncertain innovations. Thus, the existence of 
differences in productivity between countries opens up the opportunity for technologi-
cal transfer from frontier to follower countries, providing an interesting explanation for 
conditional convergence.

Given the strong theoretical and empirical foundations of these two influential 
schools of thought, therefore, their combination should contribute to a better under-
standing of the dynamics involved in the process of productivity growth. In effect, the 
two approaches present a certain degree of complementarity. While Kaldorian theory 
emphasises the importance of demand growth for long-term growth, putting less stress 
on the importance of supply-side factors, the opposite holds true for Schumpeterian 
theory. Still, this difference does create an important difficulty, since bringing these 
theories together can subvert one of the two by attributing a final role to either demand 
or to supply alone. Indeed, perhaps because of this difficulty, in spite of the large 
number of Kaldorian and Schumpeterian works that have investigated the determi-
nants of productivity growth, there have been only a few attempts to reconcile the two 
approaches (e.g. Léon-Ledesma, 2002).

The purpose of this paper, therefore, is to assess the impacts of output growth and 
research intensity on productivity growth. Two hypotheses are tested. First, the paper 
investigates whether the two variables have significant impacts on productivity growth 
when considered simultaneously, in order to determine if the basic Kaldorian and 
Schumpeterian models can be combined. Second, the paper examines whether research 
intensity impacts on the degree of returns to scale, assessing if countries with higher 
research intensity benefit from higher returns to scale. The intuition behind this hypothe-
sis is that higher research intensity generates faster knowledge accumulation, which allows 
faster technical progress (or dynamic returns to scale) in response to output growth.

The empirical investigation reported in this paper is based on disaggregated data on 
patents and productivity not explored to date. The data used to calculate the growth 
rate of total factor productivity (TFP) comes from the EU KLEMS Database, and 
comprises 12 manufacturing industries in up to 15 OECD countries over the period 
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1976–2006. The data on patents used to calculate research intensity for each country, 
industry and year is from the United States Patent and Trademark Office (USPTO), 
and was aggregated by industry using the methodology developed by Lybbert and 
Zolas (2014). Thus, the investigation presented in this paper extends previous works 
carried out using EU KLEMS data by incorporating innovation indicators into the 
database, as suggested by O’Mahony and Timmer (2009, p. F396).

The remainder of the paper is organised as follows. Section 2 presents the model. 
Section 3 describes the empirical investigation and discusses the results. Section 4 
presents the concluding remarks.

2. The Model

2.1.  Kaldor-Verdoorn’s Law

Kaldor-Verdoorn’s Law postulates that faster output growth generates productivity growth 
due to increasing returns. The law can be derived from a production function such as

	 Y A e K Lg tA= 0
α β

	 (1)

where Y is total value added, K is the stock of capital, L is labour, A is a constant and 
gA is the rate of technological progress. Moreover, α  and β  are respectively the output 
elasticities of capital and labour, so that ( ) [ ’ ( ’)]α β γ α α+ = + −1 , where γ  is a measure 
of the degree of static returns to scale and α ’ is the share of capital in total value added 
(Angeriz et al., 2009).

In contrast with the Schumpeterian growth models developed by Romer 
(1990), Grossman and Helpman (1991) and Aghion and Howitt (1998), in the 
Kaldorian approach it is demand growth that determines technological progress. 
Hence, assuming that the growth of factor inputs is driven by demand growth (i.e. 
[ ’ ( ’) ] ( )),α αK L f Y^ ^ ^+ − =1  a faster growth of weighted factor inputs induces a faster 
rate of technical progress, so that

	
g K LA = + + −ϕ η α α[ ( ’) ]’ ^ ^1

	
(2)

where ϕ  is the exogenous technical progress and η is the elasticity of induced techno-
logical progress. The circumflex over the variables indicates growth rates.

Thus, substituting equation (2) into the production function (1), taking logarithms, 
differentiating with respect to time and rearranging gives the dynamic demand-side 
Kaldor-Verdoon Law:1

	
TFP

v v
Yˆ ˆ= 






 + −








ϕ
1

1

	
(3)

where v = +γ η. The growth rate of TFP is defined as TFP Y TFIˆ ˆ ˆ≡ − , where 
TFI K Lˆ ’ ˆ ( ’) ˆ≡ + −α α1  is the growth rate of Total Factor Inputs (TFI).

1  In the Kaldorian literature there is a long-lasting debate about the direction of normalization of equation 
(3). This debate is not pursued here. For a detailed discussion of this debate, see McCombie (2002) and 
McCombie and Roberts (2007).
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Equation (3) indicates that productivity growth is determined by the growth of value 
added, which is in turn driven by the growth of demand. Thus, if γ >1 (i.e. β α> −1 ),  
there are static increasing returns to scale, while if η > 0 there are dynamic increasing 
returns to scale. Consequently, if γ >1, or ηi > 0, or both, then the second term between 
parentheses in the right side of equation (3) is positive, which indicates the existence 
of increasing returns to scale. This specification is different from the original specifica-
tion of Kaldor-Verdoorn’s Law, given by ˆ ˆP a bY= +  (where P̂  is the growth of labour 
productivity and b is the Verdoorn coefficient), due to the fact that equation (3) takes 
explicit account of capital accumulation. Nonetheless, the interpretation of the two rela-
tionships is similar, and should in fact present the same results in terms of the magnitude 
of returns to scale. Hence, it is possible to consider that the second term between paren-
theses in the right side of equation (3) as analogous to the original Verdoorn coefficient. 

2.2.  Expanded Kaldor-Verdoorn’s Law

Notwithstanding the importance of demand for productivity growth, other factors 
might influence the speed of productivity growth across countries and industries. A 
number of supply-side factors can be considered possible explanations for productiv-
ity growth. Just to mention a few examples, there is a large literature that emphasises 
the importance of institutions for economic growth (e.g. Acemoglu et al., 2001), while 
there are also works that discuss the importance of the rise of information and com-
munication technology (ICT) for productivity growth (e.g. O’Mahony and Timmer, 
2009). Nonetheless, although it is important to take these debates into account, and 
seek to control for the effect of such variables, this paper’s investigation focuses on the 
main factors emphasised in the Schumpeterian literature.

The Schumpeterian literature places considerable emphasis on the role played by 
innovation in income growth (e.g. Nelson, 1993; Fagerberg, 1994; Freeman, 1995).2 
In Schumpeterian growth models, research intensity is the main determinant of pro-
ductivity growth (see Madsen, 2008).3 The share of resources devoted to research, 
therefore, becomes the key determinant of productivity growth in this approach. It is 
important to note, however, that research intensity cannot increase indefinitely, given 
that resources must be divided between research and production (see Ha and Howitt, 
2007). Consequently, when research intensity is held fixed, technical progress can only 
increase if the efficiency of research increases. Yet, according to the Schumpeterian lit-
erature, the growth rate of technical progress can be indefinitely positive, given that 
knowledge accumulation is assumed to face constant marginal returns (Romer, 1990). 
This generates increasing returns to scale, pushing economies towards divergence. As 

2  It is important to stress that Schumpeter’s (1934, 1943) works have inspired research from different per-
spectives. On the one hand, Nelson and Winter (1982), Dosi (1982) and others have explored Schumpeter’s 
ideas using an evolutionary framework. On the other hand, Grossman and Helpman (1991), Aghion and 
Howitt (1992, 1998) and others have explored Schumpeter’s ideas using growth models with endogenous 
technical progress. Still, in spite of the sharp differences in the microeconomic foundations of these tradi-
tions, the macroeconomic application of Schumpeter’s insights is considerably similar between the two 
(see Verspagen, 2005, p.  504). In terms of the macroeconomic analysis of the determinants of innova-
tion and growth, authors from both streams emphasise the importance of technology transfer (e.g. Griffith 
et al., 2004; Verspagen, 1991), finance (e.g. Levine et al., 2000; Fagerberg and Srholec, 2008), research and 
development (R&D) (e.g. Madsen, 2008; Cohen and Levinthal, 1990; Fagerberg et al., 2007; Archibugi 
and Coco, 2005) and institutions (e.g. Acemolgu et al., 2006; Lundval, 1992; Nelson, 1993; Metcalfe and 
Ramlogan, 2008).

3  Note that Schumpeterian models are different from the semi-endogenous models (e.g. Jones, 1995), 
which assume a relationship between inputs devoted to R&D and productivity growth.
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Young (1998) argued, however, product proliferation can offset these scale effects, which 
means knowledge accumulation may not necessarily translate into productivity growth.

The Schumpeterian literature also stresses the importance of technological transfer 
for productivity growth (e.g. Nelson and Phelps, 1966; Fagerberg, 1987, 1988; Griffith 
et al., 2004; Acemoglu et al., 2006). This literature emphasises that differences in pro-
ductivity growth rates between countries can be partially explained by the existence 
of technology gaps, which allow backward countries to absorb foreign technology and 
grow at higher rates than advanced countries.4 Indeed, controlling for technological 
transfer is now commonplace in the Kaldorian literature (e.g. León-Ledesma, 2002; 
Angeriz et al., 2008, 2009), given that it is crucial to avoid spurious correlation between 
output growth and productivity growth (see McCombie, 1983; Bairam, 1987).

A straightforward way of incorporating the Schumpeterian insights discussed above 
into the model presented in the previous section is to introduce research intensity and 
the technology gap as determinants of autonomous technical progress, so that equa-
tion (2) becomes

	
g K L T GA t= + + − + − −ϕ η α α µ σ[ ’ ( ’) ]^ ^1 1 	 (4)

where T is research intensity and G=TFP/TFPF is the technology gap, where the sub-
script F denotes the leading economy in each particular industry.

Thus, substituting equation (4) into equation (1) yields an expanded 
Kaldor-Verdoorn’s Law:

	
TFP

v
Y

v
T

v
Gt

ˆ ˆ= 



 + + 



 − 



 −

ϕ δ µ σ
1

	
(5)

where δ = −( / )1 1 v .
Nonetheless, if research intensity fosters technical progress, then higher research 

intensity should also increase the response of technical progress to output growth, 
influencing the magnitude of returns to scale. The Verdoorn coefficient is a meas-
ure of encompassing returns to scale, including induced technical progress, internal 
economies of scale and the division of labour broadly defined. Thus, a higher value 
of the coefficient reflects a greater effect of the growth of output in raising (inducing) 
the growth of productivity. Consequently, assuming that research intensity makes the 
industry’s productivity growth more responsive to demand growth, the Verdoorn coef-
ficient becomes positively related to the degree of research intensity. Formally, this 
means that the Verdoorn coefficient δ in equation (5) becomes endogenous, given by

	 δ ρ ε= + T 	 (6)

Thus, substituting (6) into (5) yields

	
TFP

v v
G Y

v
T TYt

ˆ ˆ ˆ= 



 − 



 + + 



 +−

ϕ σ ρ µ ε1
	 (7)

4  Recent studies have been exploring the impact of different variables on the speed of technological catch 
up (e.g. Griffith et al., 2004; Acemoglu et al., 2006; Vanderbussche et al., 2006).
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Equation (7) indicates that productivity growth depends not only on output growth 
and on the technology gap, but that it also depends on the interaction between output 
growth and research intensity. Hence, this means that countries with higher levels of 
research intensity benefit from higher increasing returns when output grows.

In this model, therefore, research intensity is assumed to be an exogenous variable. 
Schmookler (1966) has found evidence of a strong relationship between investment 
in capital goods user industries and patent applications by capital goods producing 
industries, which suggests that patenting is a function of effective demand (‘demand 
pull’ hypothesis). However, this finding is not free from problems. For example, in a re-
examination of Schmookler’s findings using data from the Dutch economy, Kleinknecht 
and Verspagen (1990, p.  394) found evidence of a mutual dependence between 
demand and innovations, which suggests that not only demand may favour innova-
tion, but also innovation may induce extra demand. Moreover, in León-Ledemsma’s 
(2002) tests, demand has no significant contemporaneous impact on research inten-
sity. Consequently, although the relationship between demand and research intensity 
deserves further investigation, it is reasonable to consider that research intensity has an 
exogenous impact on the magnitude of returns to scale.

3.  Empirical Investigation

3.1.  Econometric Specification

Similarly to Griffith et al. (2004), the regressions reported in this chapter were esti-
mated using panel data models for industries i in countries j at time t.5 A preliminary 
investigation was carried out to assess the basic Kaldorian and Schumpeterian models, 
and then equations (5) and (7) were tested. The estimated regressions were

	
TFP Y uijt ijt ijt
ˆ ˆ= + +β β0 1 	 (8)

	 TFP G T uijt ijt ijt ijt
ˆ ln= − + +−β β β0 1 1 3 	 (9)

	 TFP G Y T uijt ijt ijt ijt ijt
ˆ ln ˆ= − + + +−β β β β0 1 1 2 3 	 (10)

	 TFP G Y T T Y uijt ijt ijt ijt ijt ijt ijt
ˆ ln ˆ ˆ= − + + + +−β β β β β0 1 1 2 3 4 	 (11)

There are three econometric issues involved in estimating these equations. First, it is 
necessary to control for unobserved fixed effects (FE). Second, it is also necessary to 
control for possible measurement errors in the variables, especially TFP and research 
intensity. Third, it is necessary to deal with endogeneity due to simultaneity between the 
dependent variable and (i) the technology gap, given that TFP TFP TFPijt ijt ijt

ˆ ln ln= − −1 
and ln ln lnG TFP TFPijt ijt Fjt− − −= −1 1 1; (ii) the growth rate of value added, given that 

5  Note that when country-sector panels are regressed, the equation estimated is actually similar to 
Fabricant’s (1942) Law, instead of Kaldor-Verdoorn’s Law. The difference between the two is that the for-
mer assesses the relationship between output and productivity growth across industries, while the later 
assesses this relationship across countries. This estimation strategy eliminates endogeneity problems, since it 
holds constant country- and industry-specific characteristics.
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TFP Y TFIijt ijt ijt
ˆ ˆ ˆ= − ; (iii) research intensity, since higher productivity growth can gener-

ate more resources to be invested on research.6

In the tests reported in this paper, these problems were addressed employing the 
System Generalised Method of Moments (SYS-GMM) approach of Blundell and 
Bond (2000). This method, which has been used in a number of studies (e.g. Baltagi 
et al., 2000; Griffith et al., 2006), employs a system of equations in levels and in dif-
ferences to estimate the parameters, using as instruments the lags of the variables in 
differences and in levels, respectively (see Roodman, 2009A, p. 114). This estimator is 
a Two-Step Feasible Efficient System GMM estimator, which controls for fixed effects 
via first differences. The two-step approach is used to obtain a feasible efficient GMM 
estimator, given that GMM is inefficient in the presence of heteroskedasticity. In the 
first step a Two-Stage Least Square (2SLS) is regressed. The residuals from the first 
stage are then employed to form the weighting matrix that is used to eliminate het-
eroskedasticity, while in the second step the parameters are estimated satisfying the 
orthogonality conditions of the instruments, i.e. minimising the L moment conditions 
E Z uijt ijt[ ] = 0, where Z is the matrix that contains the L included and excluded instru-
ments. However, the identification of the parameters using the System GMM estima-
tor not only requires overidentification, tested using Hansen’s J test, but requires also 
no autocorrelation, which is tested using Arellano and Bond’s (1991) Autoregressive 
(AR) Test.7

3.2.  Data description

Kaldor-Verdoorn’s Law was estimated using data from the EU KLEMS Database. The 
sample used comprises up to 15 OECD countries (Australia, Austria, Czech Republic, 
Denmark, Finland, Germany, Italy, Japan, the Netherlands, Portugal, Slovenia, Spain, 
Sweden, the USA, and the UK), for which data on value added, capital stock, and 
number of hours worked by persons engaged in production is consistently available for 
12 manufacturing industries over the period 1976–2006 (see O’Mahony and Timmer, 
2009). Capital stock is the most restrictive variable in the database (O’Mahony and 
Timmer, 2009, p. F401), and therefore guides the selection of the countries and time 
periods adopted in this paper’s investigation. To assess the consistency of the data, the 
value-added accounting identity was checked for each industry, year and country (see 
Felipe et al., 2008).

The 12 industries were split into two samples following the OECD technological 
classification (OECD, 2003). The first sample, henceforth called low-tech indus-
tries, comprises five low-tech industries (Food, Textiles, Wood, Paper and Other 
Manufactures) plus three medium-low-tech industries (Plastics, Minerals and 
Metals). The second sample, henceforth called high-tech industries, comprises three 

6  Kaldor advocated the importance of mechanisms of cumulative causation in the process of economic 
growth. In this paper’s estimates, however, simultaneity between different variables is addressed using 
instrumental variables to isolate the effect of one particular variable over the other. An alternative to this 
approach would be to use simultaneous equations. However, using instruments allows to control for addi-
tional econometric problems. In this case, therefore, the effects of cumulative causation have to be analysed 
via the mechanisms of the model. Yet, in theory, unbiased estimates found using different methods should 
be similar.

7  As Roodman (2009A, p. 119) argues, ‘negative first-order serial correlation is expected in differences 
and evidence of it is uninformative’. Hence, the relevant test is the AR(2) or higher, depending on the first 
lag used as instrument (Roodman, 2009A, pp. 108, 124).
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medium-high industries (Chemicals, Machinery and Transport) plus the high-tech 
industry (Electrical).8 Table A1, in the appendix, presents this classification.

Data on real value added and capital stocks in 1995 US dollars, labour shares, and 
number of hours worked by persons engaged in production were used to calculate TFP 
growth rates. Variables in constant 1995 prices were transformed from national cur-
rencies to 1995 US dollars using industry-specific PPPs from the Groningen Growth 
and Development Centre (GGDC) Productivity Level Database (Inklaar and Timmer, 
2008).9

TFPs were calculated using the log-level index number approach, which is more 
commonly used in the literature, while capital stocks were divided into two types 
of assets: information and communication technology (ICT) assets, and Non-ICT 
assets. The difference between the measures of ICT and Non-ICT assets is twofold: 
(i) the investment prices used for each asset are different; and (ii) the depreciation 
rates used for each asset are different as well. No assumptions were made about the 
returns of each asset, so that the total capital stock of each country is simply calcu-
lated as the weighted average of the two types of assets, where the weights are their 
respective shares in capital compensation. As McCombie (2002, p. 71) argues, this 
form of weighting does not necessarily imply that factors are paid according to their 
marginal productivities. Instead, these weights are only used for practical reasons 
without a particular theoretical justification. Using two different types of capital, 
however, should generate more accurate measures of capital stocks, especially due 
to the fact that the depreciation rate of ICT assets is higher than the depreciation 
rate of Non-ICT assets. Nonetheless, the average correlation between the capital 
stock calculated using this separation and the capital stock calculated based on 
gross fixed capital formation for all assets is still very high (0.943).10 Hence, TFP 
growth was calculated as

TFP
Y

Y

K

Kijt

ijt

ijt
ijt ijt

ijt

ijt

ˆ ln ( )ln=








 − +








−
−

−1
1

1

1
2

α α

 − +









−

−

1
2 1

1

( )α αICT
ijt

ICT
ijt

ijt
ICT

ijt
ICT

K

K
In

�

(12)

− − + + +











− −

−

1
1
2 1 1

1

( ) lnα α α αijt ijt ijt
ICT

ijt
ICT ijt

ijt

L

L 


8 The Fuels industry was excluded from the investigation, given that TFP movements in this industry 
present extremely high volatility, possibly due to measurement errors.

9  Industry-specific PPPs are available for the benchmark year of 1997 (see Inklaar and Timmer, 2008). 
Thus, PPPs for the year 1995 were calculated following Timmer et al. (2007, pp. 50–51), using the formula 

PPP P P PPPijt ijt USjt ij≡ ( / ) * 1997, where P are price indexes with base year 1997, and PPPij1997 is the benchmark 
PPP. Capital stocks were transformed to US dollars using capital PPPs, which implies assuming that capital 
efficiency is equal across countries, since PPPs compare the prices of the same good. Although this is a 
stringent assumption, capital PPPs were used assuming they better represent the relative prices of capital 
goods than value-added PPPs.

10  Although it would be important to take into account differences in labour quality as well, data on dif-
ferent types of labour categories (e.g. gender, age, education) has not yet been made available in the EU 
KLEMS Database. Although this data was used in the calculations of TFP provided by the EU KLEMS 
project, these estimates assume that relative marginal products equal relative wages, which is a hypothesis 
avoided in this paper.
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Similarly, the technology gap was calculated as11

	
ln ln ( )lnG

Y

Y

K

Kijt
ijt

Fjt
ijt Fjt

ijt

Fjt

=








 − +









 −

1
2
α α 11

1
2

− +















( ) lnα αijt Fjt

ijt

Fjt

L

L
�
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Finally, the ratio of patents to the number of millions of hours worked by persons 
engaged in production was used as a measure of research intensity in each industry 
i, country j and period t.12 It is common to use patent data gathered from a single 
patent office to avoid differences in patent legislations between countries (see Soete, 
1981; Nagaoca et al., 2010). USPTO is normally the most common choice, given 
that the USA has the biggest market in the world, so that most high-value patents are 
registered there. Patents registered at the USPTO were gathered individually, and the 
first four digits of the respective International Patent Classification (IPC) codes were 
extracted from each patent registration along with the country of origin of the first 
author of the patent and the year the patent was granted.13 Collecting information 
from each individual patent from the USPTO allowed employing the correspondence 
table between the IPC 2-digits and the International Standard Industrial Classification 
(ISIC) (Revision 3) 2-digits developed by Lybbert and Zolas (2014) to find the num-
ber of patents from each country in each of the industries of the KLEMS Database. 
The number of hours worked by persons engaged in production (in millions) used to 
calculate research intensity is from the EU KLEMS Database.

3.3.  Main results

Table  1 presents the results of the basic Kaldorian and Schumpeterian models, as 
in equations (8) and (9). Columns (i) to (iii) present the results found using OLS, 
while columns (iv) to (vi) present the estimates found employing SYS-GMM. In all 
the models Hansen’s J test indicates the instruments are valid at the 10% level of 
significance, while Arellano and Bond’s (1991) AR test indicates that there is no auto-
correlation in the lags used as instruments. All the variables are significant and have 
the anticipated signs. As expected, the technology gap has a negative impact on TFP 
growth. This impact, however, is small in all the models, and only significant in three of 
the six regressions, indicating that the gap is not very relevant in the sample analysed.

Columns (i) and (iv) report tests of the basic Schumpeterian model. The results 
indicate that research intensity has a positive and significant impact on TFP growth. 
The magnitude of the variable is slightly lower than the 0.03 to 0.09 coefficients com-
monly found in the literature (see Griliches, 1990; Madsen, 2008; Chang et al., 2013).

Columns (ii) and (v), in turn, report tests of the basic Kaldorian model. The results 
indicate that output growth has a positive and significant impact on TFP growth. 
Verdoorn (1949) estimated the relationship between productivity and output growth 

11 This form of measuring the technology gap is widely used in the growth literature (e.g. León-Ledesma, 
2002; Griffith et al., 2004; Acemoglu et al., 2006).

12  See Griliches (1990) and OECD (2008) for detailed discussions on patent data.
13 There are 4,860,384 patents registered at the USPTO between 1976 and 2012. Using this methodol-

ogy of data collection led to a sample of 4,187,766 patents, which represents around 86% of the total num-
ber of patents registered at the USPTO. The difference between the two numbers is due to patents that did 
not present the information required for the analysis (IPC, country and year). Patents granted is a better 
indicator when data from USPTO is used, given that the number of patent applications only started to be 
disclosed in 1999 in USA (see Nagaoca et al., 2010, p. 1087).
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and found the coefficient equal to 0.573, which indicates the existence of consid-
erably large increasing returns to scale, equal to 1/(1–b)=2.341 (see Section 2.1).  
Kaldor (1966), in turn, found a coefficient of 0.484, which suggests increasing returns 
of 1.937. The magnitudes of the coefficients of columns (ii) and (v) (0.728 and 
0.666) are higher than Verdoorn’s (1949) and Kaldor’s (1966) estimates, as well as 
Tharnpanish and McCombie’s (2014), indicating returns to scale equal to 3.676 and 
2.994, respectively. Nonetheless, these figures are similar to the estimates found in 
some previous works (e.g. Angeriz et al., 2008, 2009). Thus, following Millemaci and 
Ofria (2014) and Romero and McCombie (in press), the first lag of output growth 
and of TFP growth were introduced to capture short-term effects. This reduces the 
magnitude of the Verdoorn coefficient to 0.578 and 0.412, and the returns to scale to 
2.37 and 1.7, respectively, which are figures closer to the original estimates of Verdoorn 
(1949) and Kaldor (1966).14

Table 2, in turn, presents the results of regressing equations (10) and (11) using 
both OLS and SYS-GMM. The OLS results, presented in columns (i) to (iv), provide 
benchmark results to be compared with the estimates found using the robust SYS-
GMM, which are presented in columns (v) to (viii).

Columns (i) and (v) report the estimates of equation (10). These results indicate that 
both output growth and research intensity are significant determinants of TFP growth, 
even when endogeneity due to fixed effects and simultaneity is controlled for. In the 
SYS-GMM regression, the Hansen test and the Arellano-Bond AR test indicate the 
validity of the instruments used. Interestingly, the returns to scale found using SYS-
GMM and introducing research intensity (1.377) are much lower than the returns 
to scale found using OLS (3.636). One possible explanation for this finding is that 
movements in research intensity capture short-term fluctuation of output, bringing the 
returns to scale to a magnitude similar to the one found when controlling for short-term 
movements in output and TFP growth, as presented in columns (iii) and (vi) of Table 1.

Columns (ii) and (vi) report the estimates of equation (11). Output growth and the 
interaction term between output growth and research intensity are significant, while 
research intensity alone is not significant in the SYS-GMM regression. This corrobo-
rates the initial hypothesis, suggesting that the effect of research intensity on productivity 
growth is indeed stronger when combined with output growth. In other words, this find-
ing indicates that although output growth generates productivity growth through increas-
ing returns to scale, when the country has higher research intensity, the magnitude of 
the increasing returns is higher. In these regressions, the long-term coefficient that links 
output growth to productivity growth can be calculated using equation (6). Thus, taking 
into account that in the sample used the average number of patents per millions of hours 
worked is 0.333, using this number and the coefficients estimated it is possible to calcu-
late the Verdoorn coefficient δ  using equation (6). From this coefficient it is possible to 
calculate the degree of returns to scale v, given that δ = −( / )1 1 v . The degree of returns to 
scale found in column (vi) of Table 2 (1.802) is similar to the degree found in column (vi) 
of Table 1, and not too distant from the seminal estimates of Kaldor (1966).

Columns (iii), (iv), (vii) and (viii) report the results of estimating equation (11), 
but dividing the sample of sectors into low-tech and high-tech industries, follow-
ing the OECD classification. In both the OLS and the SYS-GMM regressions, the 

14  Note that the Verdoorn coefficient is now calculated as n v= − = − −( / ) ( ) / ( )1 1 12 3 4β β β , where β3 and β4 
are the coefficients of the lags of output and productivity growth, respectively (see Millemaci and Ofria, 2014).
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magnitude of the Verdoorn coefficient is higher for high-tech industries (0.68 and 
0.726 for OLS, and 0.266 and 0.426 for SYS-GMM, respectively). This shows that 
returns to scale are higher in high-tech industries for other reasons than its higher level 
of research intensity, which is being controlled for. Nonetheless, for the coefficient of 
the interaction between research intensity and output growth, the magnitude is higher 
for high-tech industries when using OLS (0.056 and 0.098, respectively), but simi-
lar when using SYS-GMM (0.330 and 0.295, respectively). Hence, this result shows 
that although high-tech industries enjoy higher returns to scale, the effect of research 
intensity on productivity growth is roughly the same in both low-tech and high-tech 
industries. Still, for low-tech industries, Hansen’s J test rejects the validity of the instru-
ments at the 5% level.

Finally, using the parameters reported in columns (vii) and (viii) and the average 
number of patents per millions of hours worked of the countries analysed as the proxy 
for research intensity, it is possible to estimate the changes in the magnitude of increas-
ing returns through time following equation (6). Research intensity increased from an 
average number of patents per millions of hours worked of 0.09 in 1976 to 0.40 in 
2006 in the low-tech sector, while in the high-tech sector it went from 0.22 to 1.08. 
This led to changes in returns to scale in these two sectors from 1.420 to 1.661, and 
from 1.965 to 3.937, respectively. Thus, this investigation reveals that not only the 
degree of returns to scale is higher in the high-tech sector than in the low-tech sec-
tor, but that the difference in the returns to scale between the two sectors has been 
widening through time. Hence, these figures corroborate the findings of Romero and 
McCombie (in press), which suggested that the degree of returns to scale in manufac-
turing has increased from the 1970s and 1980s to the 1990s and 2000s, mainly due 
to an increase in the scale economies observed in high-tech industries. Yet, this paper’s 
analysis indicates that such increase has resulted from increases in the level of research 
intensity in the high-tech sector.

3.4.  Robustness assessment

3.4.1 Influential outliers.  In order to assess whether the results presented in the previ-
ous sections were driven by influential outliers, SYS-GMM models were re-estimated 
excluding one and two industries at a time, and also excluding one country at a time. 
All the regressions generated results similar to the ones reported in column (vi) of 
Table 2.15

3.4.2 Four-year averages.  Kaldor-Verdoorn’s Law is normally estimated using five-
year averages to remove short-term fluctuations and avoid that the estimates capture 
Okun’s Law, which reflects the short-term correlation between productivity and output 
growth that stems from the existence of employment rigidities (due to contracts and 
institutional factors) in the downward phase of the business cycle. The first three col-
umns of Table 3 report estimates of equation (11) using four-year averages.16 Column 
(i) shows that using four-year averages increases the magnitude of the Verdoorn coef-
ficient, while research intensity alone and its interaction with output growth are no 
longer significant. Still, columns (ii) and (iii) indicate that for low-tech industries, 

15 These results are available from the authors.
16  Four-year averages are used instead of five-year averages in order to increase the number of time peri-

ods available in the panel.
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although the interaction between research intensity and output growth is still not sig-
nificant, research intensity is, the opposite applying to high-tech industries. Hence, 
the results presented in the first three columns of Table 3 provide some support to the 
results reported in Table 2. Yet, it seems that using four-year averages tends to increase 
the magnitude of the Verdoorn coefficient and reduce the effect of research intensity 
on productivity growth.

3.4.3 Alterative measure.   Table 3 also presents estimates using the ratio of R&D expendi-
ture to value added as an alternative measure of research intensity. The R&D data used 
in these tests was gathered from the OECD Analytical Business Enterprise Research 
and Development (ANBERD) Database, for the period 1976–2006. Data from 1987 to 
2006 is available classified according to ISIC Rev. 3, while from 1976 to 1986 data is at 
ISIC Rev. 2. Nonetheless, at the level of aggregation used this does not represent a prob-
lem, and it is straightforward to make the data compatible. The correspondence between 
the two classifications becomes more complex only at higher levels of disaggregation.

R&D to output has been used in a number of studies to measure research intensity, 
and although the results normally indicate that the variable has a positive impact on 
productivity growth, the estimated coefficients vary considerably. Zachariadis (2004) 
found that research intensity has a positive and significant impact on productivity 
growth, but the estimated effect varies from 0.47 to 1.69 using data for the economy 
as a whole, and from 0.24 to 0.32 using industry-level data. Griffith et al. (2004) found 
similar results using industry-level data, with coefficients varying from 0.34 to 0.86. In 
another study, Madsen (2008) examines a number of different measures of research 
intensity, including patents per capita and R&D to GDP ratio. For the latter measure, 
a positive and significant coefficient of 0.007 was found.

The regression reported in column (iv) of Table 3 replicates the test of the basic 
Schumpeterian models presented in Table 1. The result is similar to previous stud-
ies, and indicates that research intensity has a positive and significant effect on pro-
ductivity growth. Column (v) shows that when output growth is introduced in the 
regression research intensity is no longer significant. Multicolinearity between the two 
variables does not seem to pose a problem, since the correlation between them is 0.21. 
The interaction term, however, has a positive and significant impact on productivity 
growth. The magnitude of the estimated coefficient is higher than found in the tests 
that employed patents per millions of hours worked as a measure of research inten-
sity. However, this is because the level of the variables is different. In the sample, the 
average number of patents per millions of hours worked is 0.333, while the average 
R&D to value added ratio is 0.036. Consequently, using this average to calculate the  
returns to scale following equation (6), given that δ = −( / )1 1 v , the implied degree of 
returns to scale found using R&D to value added ratio (1.776) is indeed very similar to 
the degree found using patents per millions of hours worked (1.802). Thus, these tests 
provide additional support to the results reported in Table 2.

3.4.4 Different lags as instruments.  As Roodman (2009B) emphasised, SYS-GMM gen-
erates a large number of instruments and this instrument proliferation weakens the 
capacity of the Hansen J test to detect violation of the orthogonality hypothesis. One 
form of solving this problem, as Roodman (2009B) stressed, is to limit the lags used 
as instruments. Nonetheless, it is often the case that using different lags as instruments 
leads to marked changes in the estimated parameters, while Arellano and Bond’s AR 
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test and Hansen’s J test still indicate the validity of the instruments. In this case, it is 
difficult to assess what is the preferred specification.

Column (vi) shows the results found using SYS-GMM but instrumenting with lags 
that are different from those used in the tests reported in Table 2. The results are 
similar to the benchmark regression reported in column (vi) of Table 2, although the 
returns to scale found are higher (2.611) then in the other regressions, but still similar 
to Verdoorn’s (1949) original estimates.

3.4.5 Alternative sample.  As mentioned in Section 3.2, from 1995 onwards the basic 
data from EU KLEMS is available for four additional countries: Czech Republic, 
Portugal, Slovenia and Sweden. In the tests reported thus far, a sample of 11 OECD 
countries over the period 1976–2006 has been used.

Column (vii) of Table 3 presents the results found adding Portugal, Slovenia and 
Sweden to the sample, but considering only the period 1995–2006. Czech Republic 
was excluded from the sample, given that additional tests revealed that this country 
is an influential outlier. This shows that further work is necessary to assess whether 
the investigated relationship holds for more comprehensive samples of countries. This 
caveat notwithstanding, the results reported in column (vii) are similar to the results 
found in Table 2. Both output growth and the interaction term are significant and pre-
sent magnitudes similar to the previous tests.

3.4.6 Additional variables.  Table  3 reports also tests assessing the robustness of the 
results to the inclusion of three additional variables that might explain productivity 
growth: (i) human capital; (ii) government size; and (iii) quality of property rights.

A number of works emphasise the importance of human capital for productivity 
growth (e.g. Barro, 1991; Mankiw et  al., 1992; Krueger and Lindahl, 2001; Barro 
and Lee, 2013). Furthermore, the importance of human capital is also stressed in 
the Schumpeterian approach. Following the seminal approach of Nelson and Phelps 
(1966), human capital is considered not only important to generate innovations, but 
also to allow the absorption of foreign knowledge (e.g. Verspagen, 1991; Griffith et al., 
2004). In the same spirit, R&D intensity is regarded relevant for the absorption of for-
eign technology as well (e.g. Cohen and Levinthal, 1990; Griffith et al., 2004). There 
is evidence, however, that human capital is more important for countries closer to the 
technological frontier (Vanderbussche et al., 2006).

In addition, several studies analyse the impact of the size of government on economic 
performance (e.g. Barro, 1991). The argument is normally that large governments 
generate inefficiencies, so that the higher the government expenditure in proportion to 
GDP, the lower the productivity growth.

Finally, a number of works have been exploring the relationship between the qual-
ity of institutions and productivity growth (e.g. La Porta et al., 1999; Acemoglu et al., 
2001; Djankov et al., 2002; Rodrik et al., 2004). This literature explores the relationship 
between productivity growth and different institutions, such as property rights, type of 
legal system, corruption and bureaucracy. The quality of property rights, however, is the 
most important variable used in this literature. Furthermore, apart from type of legal 
system, which is usually not significant, the other variables are highly correlated, so that 
countries with good property rights normally feature low corruption and low bureau-
cracy as well.
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The last three columns of Table 3, therefore, present the results of regressing equa-
tion (11), whereby each of these additional variables is introduced one at a time. 
Research intensity was dropped from these regressions, since it has been found to 
be not significant in most tests. The variables used in this analysis are the following. 
Human capital is the percentage of population with tertiary education, from Barro and 
Lee (2013).17 Government size is the share of government expenditure in GPD, from 
World Development Indicators. Quality of property rights is measured by the Property 
Rights Index from the Heritage Foundation, used by La Porta et al. (1999). Given that 
this variable is only available from 1995 onwards, the alternative sample is used when 
testing the effect of this variable.

Columns (viii) to (x) of Table 3 show that the results reported in the previous sec-
tions do not change significantly when human capital, government size and property 
rights are introduced in the estimated equation. Interestingly, the only variable that 
is significant is government size, which actually has a positive impact on productivity 
growth. A possible explanation for this positive effect is that higher public investment 
might foster innovation, which contributes to productivity growth.

4.  Concluding remarks

This paper investigated whether output growth and research intensity impact on pro-
ductivity growth, testing two alternative hypotheses. First, the simultaneous impact of 
the two variables on productivity growth was tested. This allowed assessing if the basic 
Kaldorian and Schumpeterian models can be combined. Second, it was examined 
whether research intensity impacts on the magnitude of returns to scale, assessing if 
countries with higher research intensity benefit from higher returns to scale.

This inquiry revealed that higher research intensity generates higher productivity 
growth (dynamic return to scale) when associated with output growth. This result is 
interpreted as an indication that higher research intensity generates higher knowledge, 
which allows faster technical progress in response to output growth. Research intensity 
alone, however, is rarely significant when the impact of output growth on productiv-
ity growth is controlled for. The results reported in the paper are robust to (i) the use 
of different econometric methods; (ii) different samples; (iii) different measures of 
research intensity; (iv) different instruments to control for endogeneity; and also (v) 
the inclusion of additional variables in the estimated equations.

However, in spite of the fact that research intensity influences the magnitude of 
returns to scale both in low-tech and in high-tech industries, the exogenous part of 
the Verdoorn coefficient (in relation to research intensity) is still higher in high-tech 
than in low-tech industries. In other words, although research intensity has a positive 
impact on scale economies, differences in supply-side characteristics generate distinct 
returns to scale in low-tech and high-tech industries. These results complement and 
reinforce the results found by Romero and McCombie (in press).

The results reported in this paper generate three main policy implications. First, the 
results suggest that fostering increases in research intensity contributes to increasing 
productivity growth in response to output growth. Second, policies should also aim to 

17  Although it would be preferable to use data from the EU KLEMS Database to measure human capital 
in each sector, this data (used in the calculations of TFP provided by the EU KLEMS project) is not avail-
able for the general public.
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sustain demand growth, given that this paper’s results suggest that research intensity 
only fosters productivity growth when associated with demand growth. Third, foster-
ing the production of high-tech products contributes to increase the economy’s overall 
productivity growth, given that these industries present higher returns to scale.

To sum up, the tests reported in this paper provide strong evidence of the importance 
of demand growth for productivity growth and of the existence of increasing returns 
to scale in manufacturing, while also recognising the relevance of research intensity for 
productivity growth. Most importantly, the test results suggest that research intensity has 
a more relevant impact on the degree of returns to scale than directly on productivity 
growth. Moreover, the tests indicate that returns to scale are higher in high-tech indus-
tries than in low-tech industries, notwithstanding the fact that the impact of research 
intensity on the magnitude of scale economies is similar in both groups of industries.
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Appendix

Table A1. EU KLEMS Database: manufacturing industries for which data is available

ISIC (Rev. 3)  
categories [KLEMS Code]

Description Resumed  
name

OECD Tech. 
Class.

15 to 16 Food products, beverages and Tabaco Food LTM
17 to 19 Textiles, textile products, leather and 

footwear
Textiles LTM

20 Wood and products of wood and cork Wood LTM
21 to 22 Pulp, paper, paper products, printing 

and publishing
Paper LTM

23 Coke, refined petroleum products and 
nuclear fuel

Fuels MLTM

24 Chemicals and chemical products Chemicals MHTM
25 Rubber and plastics products Plastics MLTM
26 Other non-metallic mineral products Minerals MLTM
27 to 28 Basic metals and fabricated metal 

products
Metals MLTM

29 Machinery, n.e.c. Machinery MHTM
30 to 33 Electrical and optical equipment Electrical HTM
34 to 35 Transport equipment Transport MHTM
36 to 37 Manufacturing n.e.c., recycling Recycling LTM

Note: LTM  =  Low-Tech Manufacturing; MLTM  =  Medium-Low Tech Manufacturing; 
MHTM = Medium-High Tech Manufacturing; HTM = High-Tech Manufacturing.

Source: Author’s elaboration based on O’Mahony and Timmer (2009, p. F400).
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