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1. Introduction

In two-dimensional (2D) lattices, defects can be either 
zero-dimensional (0D), such as vacancies, dopants or 
functional chemical groups, or one-dimensional (1D), 
such as dislocations or crystallite borders, the latter 
appearing during growth and enclosing a crystallite area 
[1, 2]. This simple geometrical distinction determines 
defect functionality and their influence on materials 
properties [3–7]. Defects in the 2D sp2 honeycomb 
carbon lattice dictate structural amorphization 
from pristine graphene or graphite down to more 
complex structures, such as amorphous carbon, 
black carbon, charcoal, biochar or, to a larger extent, 
organic molecules. One can idealize the transition from 
graphene to amorphous sp2 carbon materials either by 
cutting graphene into smaller and smaller pieces, or by 
adding more and more point defects.

From the synthesis procedures to the integration 
of graphene into devices, from amorphous carbon to 
highly oriented pyrolytic graphite (HOPG), Raman 
spectroscopy is the preferred tool to identify and 
quantify defects [8–33]. Structural characterization of 
defects in graphene by Raman spectroscopy has already 
produced well-established protocols for the quantifica-
tion of both point-defect concentrations [19, 20, 24] 
and crystallite sizes [14, 30] separately. However, most 
graphene samples, e.g. generated by chemical vapor 
deposition (CVD) or liquid phase exfoliation, are likely 
to exhibit both types of defects, and a method to dis-
entangle and differentiate between 0D and 1D defects 
in such systems has not been developed until now. 
Here we show it is possible to disentangle the contrib-
ution of defects with distinct dimensionalities in the 
sp2 carbon Raman spectra. We develop a procedure 
that enables researchers to use Raman spectroscopy to 
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Abstract
The transition from graphene to a fully disordered sp2 carbon material can be idealized by either 
cutting graphene into smaller and smaller pieces, or adding more and more point defects. In other 
words, from the dimensionality standpoint, defects in two-dimensional (2D) systems can be either 
one- (1D) or zero-dimensional (0D). From an application point of view, both in terms of bottom-up 
as well as top-down approaches, the discrimination between these two structural disorder in  
two-dimensional systems is urgently desired. In graphene, both types of defects produce changes in 
the Raman spectrum, but identifying separately the contribution from each defect-type has not yet 
been achieved. Here we show that a diagram can be built for disentangling contributions of point-
like and line-like defects to the Raman spectra of graphene-related materials embracing, from the 
topology point of view, all possible structures from perfect to fully disordered sp2 bonded carbons. 
Two sets of graphene-related samples, produced by well-established protocols that generate either  
0D or 1D defects in a controlled way, are analysed with our model and used to parameterize the 
limiting values of the phase space. We then discuss the limitations and apply our new methodology 
to analyse the structure of two-dimensional nanocarbons generated from renewable gas, used to 
produce inks and conducting coatings.
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determine quantitatively and simultaneously point-
defect concentration and crystallite size in graphene-
related materials, a necessary tool to study the effect of 
point and line defects on the properties of carbon sp2 
materials. The methodology has limitations, mostly for 
samples with low defect concentrations, where doping, 
strain and number of layers add significant additional 
parameters that have to be taken into account to prop-
erly parameterize the protocol proposed here. Other-
wise, the procedure may help to identify suitable start-
ing carbon materials for dispersion, or for mat erials 
applications, and also to adjust process parameters to 
boost properties such as electrical and thermal conduc-
tivity in deposited graphene films.

2. Statement of the problem

To identify the spectral features that allow the 
disentanglement of 0D and 1D defects in the Raman 
spectrum of graphitic materials, we studied 25 different 
graphene samples, grouped in two sets. These two sets 
correspond to standard reference materials varying 
from pristine 2D hexagonal sp2 carbon lattices to highly 
disordered structures, following two different routes:

 • Sample set 1 starts as pristine graphene prepared 
by the mechanical exfoliation method of HOPG, 
and it is ion-bombarded with different ion doses, 
generating an increasing number of 0D defects, 
down to a fully disordered structure [19, 20, 24].  
From now on these samples are referred to 
as ‘samples with point-defects’, and they are 
characterized by the average distance between 
nearest defects (LD) or by the defect density 

( /σ = L1 D
2 ). This type of system is illustrated in 

figure 1(a). Pristine graphene has →∞LD , and 
fully disordered graphene has →L 0D ;

 • Sample set 2 starts as a fully amorphous carbon 
material prepared by laser ablation of HOPG, and 
it is heat treated at different temperatures, thus 
generating sp2 crystalline structures of increasingly 
larger crystallite sizes, up to a highly crystalline 
turbostratic graphitic structure for the highest heat 
treatment temperature [14, 30]. Geometrically, this 
sample can be thought as a graphene layer ‘cut’ by 
several 1D defects, or an ensemble of nanographite 
crystallites delimited by their borders, as illustrated 
in figure 1(b). From now on these samples are 
referred to as ‘samples with line-defects’, and 
they are characterized by their average crystallite 

size (La), or by the crystallite area (La
2). Pristine 

graphene has →∞La , and fully disordered 
graphene has →L 0a .

To date, these two sets of samples have been treated 
separately in Raman spectroscopy studies. The most ordi-
nary protocols are based on the intensity ratio between 
the disorder-induced D band (∼ 1350 cm−1) and the first-
order allowed bond-stretching G band (∼ 1580 cm−1), 

namely /I ID G. As in [14, 30] we use the integrated intensity 
(peak area) ratio rather than the intensity ratio, because 
the area under each peak represents the probability of the 
process, and the differences between the spectral informa-
tion from samples with point versus line defects are bet-
ter represented. Different from our previous publications 
[14, 30], here we use /A AD G rather than /I ID G to make it 
clear we are accounting for the area ratio.

These protocols are summarized in figures 1(c) 
and (d), which present theoretical plots of /A AD G as a 
function of  LD  [19, 24] and La [14, 30], respectively, 
for three distinct values of excitation laser energies, EL 
(see figure legends). Although the spectral differences 
between the two sets are clearly shown in the plots, one 
can expect ambiguities when the two parameters of dis-
order, La and LD, come into play simultaneously in sam-
ples containing both 1D and 0D defects, as illustrated 
in figure 1(e). The reason is simple: two parameters of 
disorder (La and LD) cannot be univocally extracted 
from one spectral information ( /A AD G). Indeed, the 
plots shown in figures 1(c) and (d) are based on the 
assumptions →∞La , and →∞LD , respectively. How-
ever, none of these two assumptions apply for samples 
containing both 1D and 0D defects. Therefore, to dis-
entangle the information about point and line defects 
in such a system, a second different spectral informa-
tion has to be taken into account. In the next section, we 
show that the G-band line width, ΓG, serves the purpose.

3. The Raman diagram

Figure 2(a) shows the plot of /A AD G as a function ΓG. 

Actually, /A AD G is multiplied by the fourth power of the 

excitation laser energy (EL
4) in order to compare results 

obtained using different laser energies, once it has already 

been established that the /A AD G ratio scales with −EL
4 

[14, 17, 24]. Filled symbols stand for samples with point 
defects (set 1) and open symbols stand for samples with 
line defects (set 2), both obtained with different excitation 
laser lines (see figure legend). Exemplary spectra along 
the amorphization trajectories for samples with line and 

point defects can be found in appendix A. Figures 2(b) 

and (c) plot ΓG and ( / )A A ED G L
4 separately, as a function 

of the structural parameters that define the sample 
degree of disorder, LD for the sample with point-defects 
(as illustrated in figure 1(a)), and La for the sample with 

line-defects (as illustrated in figure 1(b)). It is clear that 

ΓG and ( / )A A ED G L
4 follow different functions of LD and 

La, depending on the defect dimensionality, except for the 
two extremes ( → ∞L L, 0,a D ), where the values converge. 
Therefore, the two spectral features, /A AD G and ΓG, which 
are precisely the features that have been broadly studied 
to quantify defects in graphitic materials [8–15, 17–21, 
23, 24, 26–30], form a pair of variables that can be used to 
disentangle the contribution from point and line defects 
in the Raman spectra of samples where these two types 
of structural disorder are intermixed, as illustrated in 
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figure 1(e). In this sense, the plot presented in figure 2(a) 
can be referred as a Raman diagram for graphene.

3.1. Definition of the relevant parameters
Lines and down-triangles in figure 2 are results from 
the theoretical modeling that explains how to build 
the Raman diagram. Modeling the amorphization 

routes shown in figure 2 requires the definition of the 
parameters ruling the inelastic light scattering process 
via phonons in graphene:

 • Structural parameters: point-defects—rS is the 
radius of the structurally-damaged area (S-region, 
illustrated as red circles in figures 1(a) and (e)) 

Figure 1. Illustrations of graphene samples with point defects (a), and line defects (b). ((c) and (d)) Theoretical plots of A AD G/  as 
a function of LD  [19, 24] and La  [14, 30], respectively, for three distinct values of excitation laser energies, EL, as indicated in the 
legends. (e) Illustrations of a graphene sample containing both point and line defects. The red circles in ((a) and (e)) define the 
structurally-damaged area (S-region) surrounding a point defect [19]. These circles have radii rS. The red lines in ((b) and (e)) are 
structurally-damaged ribbons (S-regions) of width lS. The ribbons define the borders of crystallites in polycrystalline graphene [30]. 
The green circles and lines in ((a), (b) and (e)) are activated area (A-regions) surrounding structural defects where the D band is 
active [19, 30]. The extents of these A-regions (radii of circles or widths of lines) are defined by the electron coherence length �e  
[19, 22, 30].

2D Mater. 4 (2017) 025039
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around a point-like defect, important for LD 
determination [19, 20]; line-defects—lS is the width 
of the structurally-damaged ribbon (illustrated as 
red lines in figures 1(b) and (e)) near a crystallite 
border in a polycrystalline sample, important for La 
determination [30].

 • Dynamical parameters: electron [19, 22] and 
phonon [30, 34–36] coherence lengths in graphene, 
labeled here as �e and �ph, respectively. These two 
quantities are important for the Raman linewidth 
broadening, due the combined effects of quantum 
confinement and the uncertainty principle, and 
also for the D to G intensity ratio, by defining the 
region surrounding a structural defect where the D 
band is active (A-region, illustrated as green areas 

(circles and lines) in figures 1(a), (b) and (e))  
[19, 20, 30].

 • Raman cross-section ratios: The differential 
Raman cross-section ratios between D and G bands 
are described by four coefficients (CS

0D, CS
1D, C A

0D 
and C A

1D), taking into account the contributions 

to the D and G bands from either the S− or 
A−regions, for either point (0D) or line (1D) 
defects.

The G band linewidth (ΓG) increases exponentially as 
the phonon localization length ξ decreases with respect 
to the phonon coherence length �ph, as proposed by 
Ribeiro-Soares et al [30]:

( ) ( ) /Γ = Γ ∞ + ξ
Γ
− �L L C, e .G a D G

ph (1)

Figure 2. Spectral behavior for the amorphization routes in graphene materials. (a) A A ED G L
4( / )  as a function of ΓG. The solid line is 

a plot of the one-by-one correlation between the values obtained from equation (1) (with ξ = La) and (2), for La ranging from 4 to 
1,000 nm in steps of 0.01 nm. Similarly, the dashed line correlates the values obtained from equation (1) (with ξ = L10 D) and (3), for 
LD ranging from 0.01 to 1,000 nm in steps of 0.01 nm. (b) ΓG as a function of La and LD, separately. The solid and dashed lines are the 

plots of equation (1) as a function of La (ξ = La) and LD (ξ = L10 D), respectively. (c) A A ED G L
4( / )  as a function of La and LD, separately. 

The solid and dashed lines are the plots of equations (2) and (3) as a function of La and LD, respectively. In all panels, filled and open 
symbols represent samples with point- and line-defects, respectively. Same definition for dashed and solid lines, respectively. The 
value of EL for each experimental data set is displayed in the legends, in eV units. The data represented by diamonds in (a) were 
generated for this work. The bullets and open squares were extracted from [19] and [30] , respectively. The filled up-triangles were 
taken from [24]. The empty and filled down-triangles are data obtained from numerical simulation with ∞La →  and ∞LD → , 
respectively. Exemplary Raman spectra can be found in appendix A.

2D Mater. 4 (2017) 025039
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For samples with only line defects ξ = La (since 
phonons are confined within a crystallite of size La), 
while for samples with pure point defects ξ α= LD. It 
will be shown that α> 1, which is expected because 
point defects are less effective in localizing phonons 
when compared to line defects.

The ( / )A A ED G L
4 ratio for each sample is computed 

by summing contributions for the D and G bands from 
S−  and A−regions. S−regions are either circles of radius 
rS at each point defect, or ribbons of widths lS at crystal-

lite edges. These two regions define the area that contrib-

ute ( )
( )C fS

0D,1D
S, 0D,1D  to ( / )A A ED G L

4, where ( )fS, 0D,1D  is the 

fraction of total sample area occupied by the S−region 

in (0D,1D) defects. In A−regions, contributions to 

( / )A A ED G L
4 are calculated by assuming that the probabil-

ity of D band scattering decreases exponentially with the 
distance from the S−region (see appendix B), with decay 
length �e (electron coherence length) [22, 30].

3.2. Simulations
Next, we determine all these parameters from 
simulations for the reference cases of samples with only 
point defects or samples with only line defects, and use 
them to predict the behavior of the more general case of 
samples containing both kinds of defects.

3.2.1. Simulations for samples with line defects
In this case, for a given average crystallite size La, we 
take an ensemble of 20 square crystallites with sizes 
La randomly chosen from a Gaussian distribution 
centered at La, and with a standard deviation of /L 4a . 
This is roughly the width of crystallite size distributions 
of polycrystalline graphite [30]. The G band linewidth 
for each crystallite is calculated using equation (1), 
with ξ = La. In figure 2(b), our simulation results 
(open down-triangles) are plotted together with 
experimental data (see legend and caption). We 
find that =� 16ph  nm, =ΓC 87 −cm 1 and Γ ∞ =G( )   

−15 c m 1 fit well the experimental data (these parameters 
are summarized in table 1). The analytical expression 

( )Γ LG a  obtained simply by substituting La by the average 
value La in equation (1) also fits the experimental data 

satisfactorily (solid line in figure 2(b)).
The open triangles in figure 2(c) are results from 

simulations for ( / )A A ED G L
4, obtained with the param-

eters =C 30.3S
1D  eV4, =C 30.4A

1D  eV4, =l 2. 0S  nm 
and =� 4.1e  nm (these parameters are summarized in 
table 1). An analytical approximation to the simula-
tion data can be obtained (see appendix B), and it is 
given by

( ) ( ) ( )= − + −

× − −
−

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢
⎢

⎛

⎝
⎜

⎞

⎠
⎟
⎤

⎦
⎥
⎥

�

�

A

A
E L

L
C l L l C L l

1
4 2 2

1 e .
L l

D

G
L
4

a

a
2 S

1D
S a S A

1D
e a S

2a S

e

 

(2)

This analytical function fits both experimental and 
simulation data, as shown by the solid line in figure 2(c).

3.2.2. Simulations for samples with point defects
In this case, we consider borderless graphene with 
periodic boundary conditions and a target point 
defect concentration σ, which defines the average 

distance between defects LD as /σ = L1 D
2 . We consider 

20 realizations of random defect distributions for each 
value of LD. The G band linewidth for a given LD is given 
by equation (1), with ξ α= LD. We find that α = 10 
reproduces the experimental data, showing that point-
defect disorder leads to G band phonon localization 
lengths that are approximately 10 times larger than the 
average distance between defects. This is consistent with 
calculated localization lengths for K-point phonons in 
graphene with a disordered distribution of vacancies 
[37]. The remaining parameters ( ( )Γ ∞G , ΓC  and �ph) are 
the same as in the case of line defects. Simulation data are 
the filled down-triangles in figure 2(b), and once again 
an analytical approximation given by the substitution 
of LD by the average value LD in equation (1) fits well the 
experimental data (dashed line in figure 2(b)).

For computing the ( / )A A ED G L
4 ratio, S–regions 

are now randomly-distributed disks of radii rS which 
may overlap each other. Results from the simulations 
are indicated by filled down-triangles in figure 2(c), 

obtained with parameters =C 51S
0D  eV4, =C 26. 5A

0D  
eV4, =r 2. 2S  nm and =� 3. 7e  nm (these parameters 
are summarized in table 1). Notice that the values  
of �e obtained by fitting the experimental data for sam-
ples with line and point defects are quite similar, which 
gives us confidence to associate them with the same phys-
ical quantity (electron coherence length) [19, 22, 30].

Again, an analytical approximation to the sim-
ulation data can be obtained by solving the rate  
equations for the evolution of S−  and A−regions, in a 
similar manner to [19]. The resulting equation is

Table 1. Numerical values (central column) for the fitting 
parameters found in this work (left column), after fitting 
experimental data with the proposed equations (indicated in the 
last column).

Parameter Value (unit) Equation

ΓC 87 cm−1 (1)

Γ ∞G( ) 15 cm−1 (1)

�ph 16 nm (1)

CS
1D 30.3 eV4 (2) and (4)

C A
1D 30.4 eV4 (2) and (4)

�e 4.1 nm (2) and (4)

lS 2 nm (2) and (4)

�e 3.7 nm (3)

CS
0D 51 eV4 (3) and (4)

C A
0D 26.5 eV4 (3) and (4)

rS 2.2 nm (3)

2D Mater. 4 (2017) 025039
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which is displayed in dashed lines in figure 2(c).

3.2.3. Simulations for samples with point and line  
defects
With parameters obtained from the simulations 
for the reference cases of  purely point or line 
defects, simulations in which both kinds of defects 
are present simultaneously can be performed. The 

resulting ΓG and ( / )A A ED G L
4 are then functions of both 

La and LD (from now on we drop the overline symbol 

that indicates average). We map both functions in a 
dense grid of ×20 20 values of ×L La D. For each pair 
( )L L,a D , 20 realizations of disorder are considered 

and average values for both ΓG and ( / )A A ED G L
4 are 

calculated.
Since now both crystallite size and point defects 

contribute to phonon localization, the localization 
length ξ is chosen as the minimum value between La 

and αLD. Determination of ( / )A A ED G L
4 proceeds as 

before, by considering a random distribution of disks, 
but now for crystallites of finite size La. The results are 
summarized in figure 3. Both top and bottom panels 

show the same ΓG versus ( / )A A ED G L
4 data, but organized 

in different manner, as described in the caption. The 
same symbol is used for samples with a fixed value of 
La (panel (a)) or LD (panel (b)) (values displayed in the 
legends, in nm units).

Figure 3. Theoretical calculation for the A A ED G L
4( / )  as a function of the G band spectral linewidth ΓG. The symbols were obtained 

from numerical simulations (see text). In (a), equal symbols connected by lines represent samples with a given La value (indicated 
in the legend), with decreasing LD distances from smaller to larger ΓG values. (b) The opposite: equal symbols connected by lines 
represent samples with a given LD value (indicated in the legend), with decreasing La distances from smaller to larger ΓG values. The 

dashed lines in (a) and (b) are the same plot of A A ED G L
4( / )  as a function of ΓG obtained from equations (4) and (1), respectively, by 

varying LD and considering a fixed value of La  =  500 nm. The solid lines correlate A A ED G L
4( / )  with ΓG (obtained from equations (4) 

and (1), respectively) for different values of La, with LD fixed at 500 nm.

2D Mater. 4 (2017) 025039
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Once again, an analytical approximation to the 

( / )A A ED G L
4 simulation data can be obtained by solving 

the approximate rate equations for evolution of S−  and 
A−regions, as described in detail in appendix C, result-
ing in the following equation:

( ) ( )

( ) ( )

( )

π

= − +
−

+
+

−
−

+
−

−

π π
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(4)

with all numerical parameters, which were found in this 
work, summarized in table 1.

The dashed lines in figures 3(a) and (b) are the 

plot of ( / )A A ED G L
4 as a function of ΓG obtained from  

equations (4) and (1), respectively, by varying LD and 
considering a fixed value of La  =  500 nm. This curve 
falls in the limit ��La e, which reproduces →∞La  
(pure point defects). Similarly, the solid lines in  

figures 3(a) and (b) correlate ( / )A A ED G L
4 with ΓG 

(obtained from equations (4) and (1), respectively) for 
different values of La, with LD fixed at 500 nm ( ��LD e, 
reproducing pure line defects). These two curves delimit 
a phase space that embraces samples with 0D and 1D 
defects, and the plots in figure 3 provide a user-friendly 
diagram for the defects quantification.

Notice that, in the largest portion of the Raman dia-

gram shown in figure 3, a given point [ ( / ) ]Γ A A E,G D G L
4  

determines unambiguously the pair ( )L L,a D  and there-
fore allows disentanglement of the contributions from 
point and line defects, fully based on the D and G 
Raman spectral information. However, in small parts 
of the Raman diagram, where different line trajectories 
cross, there is ambiguity in defining (La, LD) and the 
disentanglement is not possible.

In addition, researchers have to be careful when 
using figure 3 and related equations for estimating 
the concentrations of point and line defects in the 
extreme-left side of the diagram. Within this region, 
ΓG changes between 15 and 20 −cm 1 for La between 
infinity and 45 nm, or LD between infinity and 4.5 nm. 
Definitive (La,LD) assignments are not accurate here 
because ΓG changes within this range also because of 
strain, doping, and number of layers [38, 39]. At this 
extreme, the Tuinstra–Koenig\Cançado relation [8, 14], 

( / ) ( / )/=A A E L560D G L
4

a (La in nm units), still broadly 
used to quantify defects in graphene, is valid for 1D 
defects, which is on top of the solid lines in figures 2(a) 
and 3(a) and (b), from the lowest value of ΓG up to 
Γ ∼ 20G  −cm 1. For <L 10a  nm, or in the presence of 
point defects, the Tuinstra–Koenig\Cançado relation is 
not valid. For samples with only point defects, another 
simple relation was introduced in [19, 24], which is 

( / ) ( / )/=A A E L4300D G L
4

D
2  (LD in nm units). This rela-

tion is also restricted, valid only on top of the dashed 

line in figures 2(a) and 3(a), (b), from the lowest value 
of ΓG up to Γ ∼ 20G  −cm 1 as well. This is equivalent to 
graphene with average distance among defects down 
to ∼L 4.5D  nm. For <L 4.5D  nm or in the presence of 
line defects, the relation is not valid either. For samples 
with >L 4.5D  nm and/or >L 45a  nm, accurate disen-
tanglement of point and line defects requires systematic 
work for addressing the effects of doping, strain and the 
number of layers in the relevant spectral parameters. 
For samples outside these limited ranges, figure 3 and 
the related equations can be used to quantify and iden-
tify defect dimensionality.

4. Application of the method

An example of how the methodology developed here 
can enhance significantly the importance of using 
Raman spectroscopy to characterize graphene-related 
technologies is given now. Hof et al [40] reported 
the production of graphitic nanoparticles from a 
sustainable carbon feedstock for ink and conductive 
coating applications. This work is specifically interesting 
to be analyzed here, not only because of its technological 
importance, but also because it brings an extensive 
characterization of their samples, performed with 
different techniques. More specifically, five different 
samples were produced by the cracking of methane/
CO2 mixtures into graphitic carbon and hydrogen, 
via the cold microwave plasma method, by setting 
different initial CO2 contents, namely 0% (NC0), 0.4% 
(NC1), 1.7% (NC2), 4.9% (NC3) and 7.4% (NC4). The 
synthesis was followed by a controlled heat-treatment 
at 500° C for 6 h, for sample purification [40]. Besides 
Raman spectroscopy, the authors performed resistivity 
measurements, and demonstrated that the lower average 
resistivity of the films produced from these nanocarbon 
materials was obtained for NC2, followed by NC1. They 
also performed thermogravimetric analysis, showing 
that the mass loss was minimized for NC1, followed 
by NC2. X-ray diffraction experiments indicated the 
highest crystallinity for NC1, followed by NC0 and then 
NC2. Sample NC4 exhibited the highest average volume 
resistance, highest mass loss, and lowest crystallinity.

Figure 4(a) shows the Raman diagram (plot of 

the ( / )A A ED G L
4 as a function of ΓG) extracted from 

the Raman spectra of the as-grown NC samples. The 
data points are average values extracted from 1681 
spectra taken from different regions in each sample, 
and our results are fully consistent with the Raman 
results reported in [40], where one can find exem-
plary Raman spectra. The effect of changing the CO2 
contents can be better understood by transforming 

the (( / )A A ED G L
4, ΓG) data of figure 4(a) into the plot of 

defect density ( /σ = L1 D
2 ) versus crystallite area (La

2), 
shown in figure 4(b), where the respective (La,LD) val-
ues are extracted from figure 3. The samples occupy dif-
ferent positions on the 0D versus 1D defect diagram, 
and this information can be used to get insights into 
the quality of the resulting material. Sample NC4 is 
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the most defective, exhibiting the worse compromise 
between density of point defects (highest) and crystal-
lite size (lowest). This is in agreement with the results 
reported by Hof et al [40]. With respect to crystallinity, 
sample NC0 appears as being superior to NC2 and NC3, 
and this is not because the density of point defects is 
small, but because the crystallite sizes for the samples 
obtained without the CO2 additive are considerably 
higher than the ones obtained with the CO2 additive. 
The mass loss observed by Hof et al [40] scales very 
nicely with the density of point defects. Finally, the aver-
age volume resistivity is observed to be best for sample 
NC2, which shows the best compromise between lower 
amount of defects and larger crystallite sizes, i.e. the 

best compromise on minimizing the amount of one 
and two-dimensional defects together. On this sense, 
the Raman diagram shown in figure 4(b) suggests that 
a fine tunning should be performed with samples where 
the CO2 additive varies between 0% (NC0) and 1.7% 
(NC2), trying to populate the low-right quadrant of the 
Raman diagram in figure 4(b).

5. Conclusions

In summary, figure 3 and the related equations contain 
clear specifications for the quantification of defects, 
establishing a protocol for disentangling the contributions 
of point-like and line-like defects to the Raman spectra of 

Figure 4. Characterization of graphene-related samples produced by the cracking of a methane/CO2 mixture into graphitic carbon 
and hydrogen via the cold microwave plasma method. [40] The five distinct samples were produced by setting different initial CO2 

contents, namely 0% (NC0), 0.4% (NC1), 1.7% (NC2), 4.9% (NC3) and 7.4% (NC4).(a) A A ED G L
4( / )  as a function of ΓG. Data points 

correspond to average values extracted from 1681 spectra taken from different regions in each sample. The lengths of the error bars 
resemble the standard deviation. The solid and dashed lines are the same as in figure 3, reproduced here for reference. The inset is a 
zoom within the experimental data. (b) Plot of the defect density (σ = L1 D

2/ ) versus crystallite area (La
2), with the respective (La, LD) 

values are extracted from figure 3. Exemplary Raman spectra can be found in [40].

2D Mater. 4 (2017) 025039
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2D sp2 carbon materials. It can be useful for understanding 
and optimizing processes of synthesis, purification, and 
functionalization, where both La and LD can change, as 
demonstrated here for graphitic nanocarbon made for 
inks and conductive coatings. La and LD appear as the 
significant structural parameters that rule transition 
between perfect graphene to amorphous carbon, and 
figure 3 can be used to identify their values.
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Appendix A. Exemplary Raman spectra 
along the amorphization trajectory for 
samples with line and point defects

Figure A1 shows exemplary spectra within the 
Raman phase diagram of figure 2(a), following the 
amorphization routes with only line or only point 
defects (see figure legend). From figure A1, one has a 
good feeling of the spectral changes in ( / )A AD G  and ΓG 
within the Raman phase diagram.

Appendix B. Calculation of (AD/AG)  for 
a single crystallite without point defects

The ( / )A A ED G L
4 ratio for a single crystallite is computed 

by summing contributions from S−  and A−regions. 

S−regions are ribbons of width lS at crystallite edges and 

they contribute C fS
1D

S,1D to ( / )A A ED G L
4, where fS,1D is the 

fraction of total crystallite area occupied by the S−region:

( )
=

−
f

l L l

L

4
.S, 1D

S a S

a
2 (B.1)

In A−regions, contributions to ( / )A A ED G L
4  are 

calculated by assuming that the probability of D band 
scattering decreases exponentially with the distance 
from the S−region, with decay length �e (electron 
coherence length) [30]. Polarization effects are taken 
into account by considering electric fields polarized 
along y, which means that only distances from the left 
and right vertical S−region ribbons are relevant [30]. 

The contribution to ( / )A A ED G L
4 from a square crystallite 

of size La is then given by:

( )

∫

=

+ +−
| − |

−
| − − |

⎛
⎝
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E L C f
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1
e e dA ,

x l L l x

D

G
L
4

a S
1D

S,1D

a
2 A A

1D
S

e

a S

e

 

(B.2)

where x is the horizontal coordinate of a point inside 
the crystallite and the integral is taken over the A-region 
(which is the whole crystallite except the S-region).

The analytical approximation given in equation (2) 
of the main text is obtained by substituting La for the 
average value La and performing the integration in 
equation (B.2).

Appendix C. Calculation of (AD/AG)  for 
single crystallites with point defects

We start our analysis with the assumption that the 

( / )A A ED G L
4 intensity ratio is composed by the sum of 

three contributions

( ) ( ) ( )

= + +
⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟A

A
E

A

A

A

A

A

A
,D

G
L
4 D

G 0D

S
D

G 1D

S
D

G 0D,1D

A

 (C.1)

where ( / )( )A AD G 0D
S  is the contribution from S-regions 

around point defects, ( / )( )A AD G 1D
S  is the contribution 

from S-regions near borders, and ( / )( )A AD G 0D,1D
A  is the 

contribution from A-regions (including activation due 
to both, point defects and borders).

C.1. Calculation of ( / )( )A AD G 0D
S

This is exactly the same as in the case of an infinite 
graphene sheet [19]

( )
( )

σ=
⎛
⎝
⎜

⎞
⎠
⎟A

A
C f ,D

G 0D

S

S
0D

S,0D (C.2)

where ( )σfS,0D  is the fraction of the total area occupied 
by point-defect S-regions

( )σ = − π σ−f 1 e ,r
S,0D

S
2

 (C.3)

with /σ = L1 D
2  being the defect density.

C.2. Calculation of ( / )( )A AD G 1D
S

If a point defect is located near a border, it will remove 
some of the border’s contribution to the overall D band 
intensity. In this case, ( / )( )A AD G 1D

S  will be a function of σ 
on the form

( )
( )

σ=
⎛
⎝
⎜

⎞
⎠
⎟A

A
C f ,D

G 1D

S

S
1D

S,1D (C.4)

where ( )σfS,1D  is the ratio between the S-region near the 
borders (AB), and the total area AT, which is

( )σ =f
A

A
.S,1D

B

T
 (C.5)

The σ-dependency of ( )σfS,1D  comes from the fact that 

each point defect near a border removes an area πrS
2 

from the AB area generating D band scattering, that is

π= −
A

N
r

A

A

d

d
,B

S
2 B

T
 (C.6)

with N being the total number of point defects. This 
equation can be readly integrated to give

( ) ( )σ = π σ−A A 0 e ,r
B B S

2
 (C.7)
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where we have used /σ = N AT. Dividing both sides of 
equation (C.7) by AT yields

( ) ( )σ = π σ−f f 0 e .r
S,1D S,1D

S
2

 (C.8)

We now recall that fS,1D(0) is the initial value of fS,1D, 
where no point defects are present (equation (B.1)). As 
a final step, equations (B.1) and (C.8) can be inserted 
into equation (C.4), which assumes the form

( )( )

=
− π σ−⎛

⎝
⎜

⎞
⎠
⎟A

A
C

l L l

L

4
e .rD

G 1D

S

S
1D S a S

a
2

S
2

 (C.9)

C.3. Calculation of ( / )( )A AD G 0D,1D
A

We start our analysis by considering the quantity 
( )∆0D,1D
A , the contribution to ( / )( )A AD G 0D,1D

A  from a single 
point defect:

( ) ( )/∫ π∆ = − − �C r r2 e d .
r

r
r r

0D,1D
A

A
0D

S

c
S e (C.10)

Here, the cutoff radius rc is determined by the condition 
that the area of integration is the same for a circular 
region and a square cluster of side −L l2a S , that is

( )π = −r L l2 .c
2

a S
2 (C.11)

Figure A1. Exemplary Raman spectra within the Raman phase diagram of figure 2. (a) Reproduces the A A ED G L
4( / )  as a function 

of ΓG theoretical diagram (lines), showing only the experimental data points related to the Raman spectra shown in (b) and (c). 
(b) Exemplary Raman spectra for samples following the amorphization route of pure line defects. (c) Exemplary Raman spectra for 
samples following the amorphization route of pure point defects. The letters/numbers correlate the specific spectrum in (b)/(c) with 
the spectral location at the Raman phase diagram in (a).
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Back to equation (C.10), the integration yields

[ ( ) ]( ) ( )/π∆ = + − + − −� � � �C r r2 e .r r
0D,1D
A

A
0D

e e S e c
c S e

 (C.12)

The rate equation for ( / )( )A AD G 0D,1D
A  is

[ ( ) ( )]
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(C.13)

While the first term considers the increase of activation 
in the A-region, the second accounts for the decrease in 
activation due to the increase of S-regions. Next, we use 

/σ = N AT, ( )σ = − π σ−f 1 e r
S

S
2

 (equation (C.3)), and 

( ) ( )σ = π σ−f f 0 e r
S,1D S,1D

S
2

 (equation (C.8)) to rewrite 

(C.13) in the form:
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(C.14)

We propose a solution to (C.14) of the type

( )

=
σ

π σ−⎛
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⎜
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 (C.15)

and we find the following rate equation for ( / )σA AD G :

[ ( )]( )

σ
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with the general a solution

[ ( )]( ) σ β= ∆ − +
σ
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f1 0 .D

G
0D,1D
A

S,1D (C.17)

β is a constant determined by the initial condition 
( / ) ( / )( )β = =A A A A LD G 0 D G a , with ( / )( )A A LD G a  being 

the D band intensity for samples with borders only (no 
point defects). This quantity has been calculated before 
(second term at the right-hand side of equation (B.2)), 
and has the form

( ) ( ) [ ]( )/= − − − −
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 (C.18)

We can finally group and substitute equations (B.1), 
(C.12), (C.17) and (C.18) into equation (C.15) to have
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References

	[1]	 Banhart F, Kotakoski J and Krasheninnikov A V 2010 
ACS Nano 5 26

	[2]	 Yazyev O V and Chen Y P 2014 Nat. Nanotechnol.  
9 755

	[3]	 Vicarelli L, Heerema S J, Dekker C and Zandbergen H W 2015 
ACS Nano 9 3428

	[4]	 Zhao W, Wang Y, Wu Z, Wang W, Bi K, Liang Z, Yang J, Chen Y, 
Xu Z and Ni Z 2015 Sci. Rep. 5 11962

	[5]	 Song J C, Reizer M Y and Levitov L S 2012 Phys. Rev. Lett. 
109 106602

	[6]	 López-Polín G, Gómez-Navarro C, Parente V, Guinea F, 
Katsnelson M, Pérez-Murano F and Gómez-Herrero J 2015 
Nat. Phys. 11 26

	[7]	 Koepke J C, Wood J D, Estrada D, Ong Z Y, He K T, Pop E and 
Lyding J W 2013 ACS Nano 7 75

	[8]	 Tuinstra F and Koenig J L 1970 J. Chem. Phys. 53 1126
	[9]	 Dresselhaus M S, Dresselhaus G, Sugihara K, Spain I L and 

Goldberg H A 2013 Graphite Fibers and Filaments vol 5  
(Berlin: Springer)

	[10]	Dresselhaus M S and Kalish R 2013 Ion Implantation in 
Diamond, Graphite and Related Materials vol 22 (Berlin: 
Springer)

	[11]	Ferrari A and Robertson J 2000 Phys. Rev. B 61 14095
	[12]	Takai K, Oga M, Sato H, Enoki T, Ohki Y, Taomoto A, 

Suenaga K and Iijima S 2003 Phys. Rev. B 67 214202
	[13]	Ferrari A and Robertson J 2004 Phil. Trans. R. Soc. A  362 2477
	[14]	Cançado L G, Takai K, Enoki T, Endo M, Kim Y A, Mizusaki H, 

Jorio A, Coelho L N, Magalhes Paniago R and Pimenta M A 
2006 Appl. Phys. Lett. 88 163106

	[15]	Ferrari A 2007 Solid State Commun. 143 47
	[16]	Casiraghi C, Hartschuh A, Qian H, Piscanec S, Georgi C, 

Fasoli A, Novoselov K, Basko D and Ferrari A 2009 Nano Lett. 
9 1433

	[17]	Pimenta M A, Dresselhaus G, Dresselhaus M S, Cancado L G, 
Jorio A and Saito R 2007 Phys. Chem. Chem. Phys. 9 1276

	[18]	Dresselhaus M S, Jorio A, Hofmann M, Dresselhaus G and 
Saito R 2010 Nano Lett. 10 751

	[19]	Lucchese M M, Stavale F, Ferreira E H M, Vilani C, 
Moutinho M V O, Capaz R B, Achete C A and Jorio A 2010 
Carbon 48 1592

	[20]	Ferreira E M, Moutinho M V, Stavale F, Lucchese M, Capaz R B, 
Achete C and Jorio A 2010 Phys. Rev. B 82 125429

	[21]	Jorio A, Lucchese M M, Stavale F, Ferreira E H M, 
Moutinho M V, Capaz R B and Achete C A 2010 J. Phys.: 
Condens. Matter. 22 334204

	[22]	Beams R, Cançado L G and Novotny L 2011 Nano Lett. 
11 1177

	[23]	Jorio A, Dresselhaus M, Ricchiro S and Dresselhaus G 2011 
Raman Spectroscopy in Graphene Related Systems (Weinheim: 
Wiley)

	[24]	Cançado L, Jorio A, Ferreira E M, Stavale F, Achete C, Capaz R, 
Moutinho M, Lombardo A, Kulmala T and Ferrari A 2011 
Nano Lett. 11 3190

	[25]	Eckmann A, Felten A, Mishchenko A, Britnell L, Krupke R, 
Novoselov K S and Casiraghi C 2012 Nano Lett. 12 3925

	[26]	Jorio A 2012 ISRN Nanotechnol. 2012
	[27]	Jorio A and Cançado L G 2012 Phys. Chem. Chem. Phys. 

14 15246
	[28]	Jorio A, Ribeiro-Soares J, Cançado L, Falcao N, Dos Santos H, 

Baptista D, Ferreira E M, Archanjo B and Achete C 2012 
Soil Till. Res. 122 61

	[29]	Ribeiro-Soares J, Cançado L, Falcao N, Martins Ferreira E, 
Achete C and Jorio A 2013 J. Raman Spectrosc. 44 283

	[30]	Ribeiro-Soares J et al 2015 Carbon 95 646
	[31]	Beams R, Cançado L G and Novotny L 2015 J. Phys.:  

Condens. Matter 27 083002
	[32]	Ahlberg P, Johansson F, Zhang Z B, Jansson U, Zhang S L, 

Lindblad A and Nyberg T 2016 APL Mater. 4 046104
	[33]	Zeng J, Liu J, Yao H, Zhai P, Zhang S, Guo H, Hu P, Duan J, 

Mo D, Hou M and Sun Y M 2016 Carbon 100 16

2D Mater. 4 (2017) 025039

https://doi.org/10.1021/nn102598m
https://doi.org/10.1021/nn102598m
https://doi.org/10.1038/nnano.2014.166
https://doi.org/10.1038/nnano.2014.166
https://doi.org/10.1021/acsnano.5b01762
https://doi.org/10.1021/acsnano.5b01762
https://doi.org/10.1038/srep11962
https://doi.org/10.1038/srep11962
https://doi.org/10.1103/PhysRevLett.109.106602
https://doi.org/10.1103/PhysRevLett.109.106602
https://doi.org/10.1038/nphys3183
https://doi.org/10.1038/nphys3183
https://doi.org/10.1021/nn302064p
https://doi.org/10.1021/nn302064p
https://doi.org/10.1063/1.1674108
https://doi.org/10.1063/1.1674108
https://doi.org/10.1103/PhysRevB.61.14095
https://doi.org/10.1103/PhysRevB.61.14095
https://doi.org/10.1103/PhysRevB.67.214202
https://doi.org/10.1103/PhysRevB.67.214202
https://doi.org/10.1098/rsta.2004.1452
https://doi.org/10.1098/rsta.2004.1452
https://doi.org/10.1063/1.2196057
https://doi.org/10.1063/1.2196057
https://doi.org/10.1016/j.ssc.2007.03.052
https://doi.org/10.1016/j.ssc.2007.03.052
https://doi.org/10.1021/nl8032697
https://doi.org/10.1021/nl8032697
https://doi.org/10.1039/B613962K
https://doi.org/10.1039/B613962K
https://doi.org/10.1021/nl904286r
https://doi.org/10.1021/nl904286r
https://doi.org/10.1016/j.carbon.2009.12.057
https://doi.org/10.1016/j.carbon.2009.12.057
https://doi.org/10.1103/PhysRevB.82.125429
https://doi.org/10.1103/PhysRevB.82.125429
https://doi.org/10.1088/0953-8984/22/33/334204
https://doi.org/10.1088/0953-8984/22/33/334204
https://doi.org/10.1021/nl104134a
https://doi.org/10.1021/nl104134a
https://doi.org/10.1021/nl201432g
https://doi.org/10.1021/nl201432g
https://doi.org/10.1021/nl300901a
https://doi.org/10.1021/nl300901a
https://doi.org/10.5402/2012/234216
https://doi.org/10.1039/c2cp42621h
https://doi.org/10.1039/c2cp42621h
https://doi.org/10.1016/j.still.2012.02.009
https://doi.org/10.1016/j.still.2012.02.009
https://doi.org/10.1002/jrs.4191
https://doi.org/10.1002/jrs.4191
https://doi.org/10.1016/j.carbon.2015.08.020
https://doi.org/10.1016/j.carbon.2015.08.020
https://doi.org/10.1088/0953-8984/27/8/083002
https://doi.org/10.1088/0953-8984/27/8/083002
https://doi.org/10.1063/1.4945587
https://doi.org/10.1063/1.4945587
https://doi.org/10.1016/j.carbon.2015.12.101
https://doi.org/10.1016/j.carbon.2015.12.101


12

L G Cançado et al

	[34]	Maximiano R V, Beams R, Novotny L, Jorio A and Cançado L G 
2012 Phys. Rev. B 85 235434

	[35]	Beams R, Cançado L G, Oh S H, Jorio A and Novotny L 2014 
Phys. Rev. Lett. 113 186101

	[36]	Cançado L G, Beams R, Jorio A and Novotny L 2014 Phys. Rev. X 
4 031054

	[37]	Islam M S, Rahaman M T, Bhuiyan A G and Hashimoto A 2015 
J. Circuits Syst. Comput. 24 1540002

	[38]	Shin Y, Lozada-Hidalgo M, Sambricio J L, Grigorieva I V, 
Geim A K and Casiraghi C 2016 Appl. Phys. Lett.  
108 221907

	[39]	Pisana S, Lazzeri M, Casiraghi C, Novoselov K S, Geim A K, 
Ferrari A C and Mauri F 2007 Nat. Mater. 6 198

	[40]	Hof F, Kampioti K, Huang K, Jaillet C, Derré A, Poulin P, 
Yusof H, White T, Koziol K, Paukner C and Pénicaud A 2017 
Carbon 111 142

2D Mater. 4 (2017) 025039

https://doi.org/10.1103/PhysRevB.85.235434
https://doi.org/10.1103/PhysRevB.85.235434
https://doi.org/10.1103/PhysRevLett.113.186101
https://doi.org/10.1103/PhysRevLett.113.186101
https://doi.org/10.1142/S0218126615400022
https://doi.org/10.1142/S0218126615400022
https://doi.org/10.1063/1.4952972
https://doi.org/10.1063/1.4952972
https://doi.org/10.1038/nmat1846
https://doi.org/10.1038/nmat1846
https://doi.org/10.1016/j.carbon.2016.09.052
https://doi.org/10.1016/j.carbon.2016.09.052

