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Resumo

Este trabalho propõe uma nova família de modelos geoestatísticos que possuem carac-

terísticas que não podem ser adequadamente acomodadas por processos gaussianos tradi-

cionais. A família é especificada hierarquicamente e combina a dinâmica dimensional

infinita dos processos gaussianos com a de qualquer distribuição contínua multivariada.

Esta combinação é definida estocasticamente através de um processo de Poisson latente

e a nova família é denominada Processo de Mistura Poisson-Gaussiana - POGAMP. En-

quanto a tentativa de definir um processo geoestatístico designando algumas distribuições

contínuas arbitrárias como distribuições de dimensão finita geralmente leva a processos

não válidos, o POGAMP pode ter suas distribuições de dimensão finita arbitrariamente

próximas a qualquer distribuição contínua e ainda ser uma processo válido. São forneci-

dos resultados formais para estabelecer sua existência e outras propriedades importantes,

como continuidade absoluta em relação a uma medida de processo gaussiana. Além disso,

um algoritmo MCMC é cuidadosamente desenvolvido para realizar inferência Bayesiana

quando o POGAMP é observado discretamente em algum domínio do espaço. Simulações

são realizadas para investigar empiricamente as propriedades de modelagem do POGAMP

e a eficiência do algoritmo MCMC. Finalmente, um conjunto de dados real é analisado

para ilustrar a aplicabilidade da metodologia proposta.

Palavras-chave: Caudas pesadas; MCMC; Assimetria; Processo de Poisson.



Abstract

This work proposes a novel family of geostatistical models to account for features that

cannot be properly accommodated by traditional Gaussian processes. The family is spec-

ified hierarchically and combines the infinite dimensional dynamics of Gaussian processes

to that of any multivariate continuous distribution. This combination is stochastically de-

fined through a latent Poisson process and the new family is called the Poisson-Gaussian

Mixture Process - POGAMP. Whilst the attempt of defining a geostatistical process by

assigning some arbitrary continuous distributions to be the finite-dimension distributions

usually leads to non-valid processes, the POGAMP can have its finite-dimensional distri-

butions to be arbitrarily close to any continuous distribution and still be a valid process.

Formal results to establish its existence and other important properties, such as absolute

continuity with respect to a Gaussian process measure are provided. Also, a MCMC algo-

rithm is carefully devised to perform Bayesian inference when the POGAMP is discretely

observed in some space domain. Simulations are performed to empirically investigate the

modelling properties of the POGAMP and the efficiency of the MCMC algorithm. Fi-

nally, a real dataset is analysed to illustrate the applicability of the proposed methodology.

Keywords: Heavy tails; MCMC; Skewness; Poisson process.
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Chapter 1

Introduction

Continuous spatial statistical modelling, referred to as geostatistics, is an appealing ap-

proach to explain the probabilistic dynamics of some response variable observed over

a continuous region (Zareifard and Khaledi, 2013). Spatial prediction is an important

problem in fields such as petroleum engineering, civil engineering, mining, geography,

geology, environmental, hydrology and climate studies (Dubrule, 1989; Hohn, 1998; Kim

and Mallick, 2004; Cressie, 2015; Bevilacqua et al., 2021). Geostatistical problems con-

sider a partial realization of an underlying random field indexed by locations that vary

continuously through a fixed region in space and focus on predicting values at unobserved

locations or regions. The underlying random field is often assumed to be a Gaussian

processes (GP) (Palacios and Steel, 2006). This assumption facilitates prediction and

provides some justification for the use of the spatial prediction. In particular, a GP is

completely characterized by its mean and covariance functions. A GP measure implies

that the joint distribution at any finite collection of locations is a multivariate normal.

The stability of the multivariate normal distribution under summation and conditioning

offers tractability and simplicity (Alodat and Al-Rawwash, 2009), besides having closure

under marginal and conditional distributions (Alodat and Al-Momani, 2014; Alodat and

AL-Rawwash, 2014; Zareifard et al., 2018).

The GP inherits, through its finite dimensional distributions, the aforementioned prop-

erties of the normal distribution, which serves as a strong and convenient candidate to

solve numerous problems and case studies in real life. Nevertheless, traditional methodolo-

gies that assume normality sometimes fail. In practice, the normality assumption might

not be appropriate to fit real data, especially in the presence of heavy tailed or skewed
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behaviors. A common way to model this type of data is assuming that the random field of

interest is the result of an unknown nonlinear transformation of a Gaussian random field.

Nevertheless, this approach has some potential weaknesses. It may not be suitable due to

the fact that the Gaussianity and the correlation in data are not invariant under trans-

formation. Thus, considering more general models, which include many of the existing

models as special cases, is a remedy for skewed data. The problem of modeling skewed

data has been a subject of interest in recent years. Therefore, the question whether mul-

tivariate skewed distributions can be consistently extended to random field modeling is

of interest for many spatial and spatio-temporal applications. The skew-normal distribu-

tion family extends the widely employed family of normal distributions by introducing a

skewing function, and shares many statistical properties of the normal distribution family.

Different families of multivariate skewed distributions have been proposed in the litera-

ture, for more information see Alodat and AL-Rawwash (2014), Azzalini and Valle (1996)

and Mahmoudian (2017).

Another alternative to handle non-Gaussian geostatistical processes is the use of copu-

las (Nelsen, 2007). These separate the marginal distributions from the dependence struc-

ture, making the construction of non-Gaussian fields somewhat trivial. Prates et al. (2015)

and Hughes (2015) explored the use of copulas for real data, while Bárdossy (2006) first

used copulas to study groundwater quality from a geostatistical perspective. Later, other

works explored this direction (Bárdossy and Li, 2008; Kazianka and Pilz, 2010, 2011),

however, they all relied upon a restricted set of copula families to model the spatial pro-

cess, because many copula computations are impracticable in high dimensions. Further,

selecting an appropriate copula is not a trivial task. Therefore, the pair-copula construc-

tion was suggested to allow for more copula families in geostatistical processes (Gräler

et al., 2010; Gräler and Pebesma, 2011). Nevertheless, this approach does not allow for a

full likelihood inference.

The aim of this work is to propose a flexible family of geostatistical models that are able

to properly accommodate features such as positiveness, skewness, and heavy tails. That

is achieved by specifying a hierarchical model, through an augmented Poisson process

(PP), that assumes any continuous joint distribution (in a wide class of distribution) for

the process in a random finite collection of locations. Another advantage of this model

is that the conditional measure of its infinite-dimensional remainder is a GP itself. This
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feature ought to facilitate the computation in simulation and inference contexts. Inspired

by its particular hierarchical structure, the proposed family is called the Poisson-Gaussian

Mixture Process - POGAMP.

Another major advantage of the POGAMP is that its existence is guaranteed, despite

the distribution chosen for the process at the random finite collection of locations. Its

construction allows the use of scalable Gaussian methods to make inference for massive

datasets feasiable.

Attempts to naively specify a process by directly assigning arbitrary distributions to

the finite-dimensional distributions often lead to misspecified process, i.e., it does not de-

fine a probability measure for the infinite-dimensional process. For example, Mahmoudian

(2018) showed that several Skew Gaussian Random Fields considered in the literature are

ill-defined according to the Kolmogorov existence theorem (KET).

Genton and Zhang (2012) showed that a spatial random field with a multivariate skew-

normal joint distribution as defined by Azzalini and Valle (1996) cannot be identified

correctly with probability 1 by a single realization, even if the number of spatial locations

increases to infinity. They propose a simple remedy considering the modification presented

by Zhang and El-Shaarawi (2010). However, the finite-dimensional distribution of this

process is not the multivariate skew-normal distribution of Azzalini and Valle (1996).

Uribe-Opazo et al. (2021) discuss aspects of identification and robustness of maximum

likelihood estimators.

Proposing a valid process is not a trivial task. Furthermore, strategies to establish the

existence of the process may compromise its modelling capabilities. Palacios and Steel

(2006) proposed a stochastic process satisfying Kolmogorov’s conditions, called Gaussian-

log-Gaussian model, which is based on a log-Gaussian mixing process, where the t-process

is a special case. In this spatial model, however, the scale mixing introduces a potential

problem with the continuity of the resulting random field. This discontinuity essentially

derives from the fact that two separate locations, no matter how close, are assigned

independent mixing variables.

Allard and Naveau (2007) proposed a process through the Closed-Skew Normal distri-

bution, CSNn,npµ,Σ, In,0,Σq, but the marginal distribution from this process depends

on the scale matrix Σ and dimension n and is, therefore, ill-defined. Hosseini et al. (2011)

developed a new process through CSNn,1pµ,Σ,1nΣ
´1{2,0, 1q but, even with parameter
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constraints, the process is ill-defined, since it leads to a dimensional dependent marginal.

In order to make it a valid process, Mahmoudian (2018) proposed a reparametrization by

setting CSNn,m

¨

˝µ,Σ,
λ

?
1 ` λ2

Σ´1{2,0,
λ

1 ` λ2
In

˛

‚. Note that several restrictions have

been applied in order to make the process valid, such as setting the penultimate parameter

to zero.

Zareifard and Khaledi (2013) used a similar approach to define a valid process us-

ing the Unified skew-normal (SUN) distribution, SUNn,mpµ,Σ,∆,ν,Γq (Arellano-Valle

and Azzalini, 2006). The authors considered a δ-representation of the SUN distribu-

tion, such that SUNn,mp0, ω2H , ωδH ,0,Hq, but Mahmoudian (2018) showed that the

finite-dimensional distributions of this process depends on the dimension and unrelated

parameters. As result, the process does not satisfy the marginal consistency condi-

tion. In order to establish its validity, parameter constraints are considered, leading

to SUNn,mpµ, ω2H , δH1{2,0, Inq, where Σ̄ “ ω2H̄ . Also, Mahmoudian (2017) proposed

a Skew-Gaussian Process for which the existence depends on specifying a Skew-Gaussian

distribution family that is closed under marginalization and has symmetry under permu-

tation and consistency.

Another non-Gaussian process was proposed by Bevilacqua et al. (2021). The authors

formulated a stationary process with Student-t marginals obtained through scale mix-

ing of a Gaussian process with an inverse square root process having Gamma marginals.

They propose the method of weighted pairwise likelihood for the t process estimation,

since they only have the closed form for the Student-t distribution in the bivariate case.

Furthermore, the t process is well-defined only for degrees of freedom parameter ν in

t3, 4, . . . u and for ν ą 2 under non-infinite divisibility of G2 (standard GP). The authors

also propose a Skew-t process, but they do not perform any inference study since the

bivariate distribution in this case is complicated. Tagle et al. (2020) proposed a spatial

Skew-t model that relies on a partition of the spatial domain, where a common latent pro-

cess across each region of the partition is assumed and estimated, through approximated

inference. Their model has discontinuities at the boundaries and assumes conditional

independence among points for different regions.

Recently, new directions continue to appear as alternatives to model non-Gaussian

data. For example, Wang et al. (2019) overcame the traditional linearity assumption of

kriging by using neural networks, while Zheng et al. (2021) combined copulas with scalable
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Gaussian processes to handle massive non-Gaussian data.

The literature review on non-Gaussian geostatistical processes presented above mo-

tivates the development of a process that can depart from Gaussianity and still have

considerable freedom to define the desirable finite-dimensional distributions. This is the

main contribution offered by the POGAMP from a modelling perspective. Its unified

approach allows the definition of a valid process whose finite-dimensional distributions

can be arbitrarily similar to any valid continuous distribution. Some appealing choices

are: Skew-normal, Student-t, Skew-t, Gamma.

From an inference perspective, this thesis offers contribution to the literature by

proposing a not trivial MCMC algorithm to perform Bayesian inference, based on the

observation of a POGAMP in a finite collection of locations, in a compact domain S,

typically in R2. The algorithm consists of an infinite-dimensional Markov chain that

converges to the posterior distribution of all the unknown quantities of the model. The

infinite-dimensionality of the chain is due to the same property of the POGAMP and

requires the use of non-standard simulation techniques and MCMC updates to devise

a valid, exact and efficient MCMC algorithm. The term ’exact’ refers to the property

that the limiting distribution of the MCMC chain is the exact (infinite-dimensional) tar-

get posterior distribution. In particular, exact simulation of infinite-dimensional Markov

chains is achieved by a neat simulation technique called retrospective sampling.

This thesis is organized as follows. Chapter 2 presents the POGAMP, establishes

its existence and provides results related to some of its important properties. Chapter

3 presents the MCMC algorithm to perform Bayesian inference for discretely observed

POGAMPs. Simulated studies is performed in order to investigate the behavior of the

models, its flexibility and several properties; the efficiency of the MCMC algorithm is

investigated in simulated examples; and the applicability of the proposed methodology

through the analysis of a real datasets are presented in Chapter 4. Finally, some final

remarks and directions for future work are presented in Chapter 5.
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Chapter 2

A novel family of geostatistical models

2.1 The Poisson-Gaussian Mixture Process

The Poisson-Gaussian Mixture Process is hierarchically defined through conditional and

marginal measures. This not only allows for a tractable way to define the model, but

also gives good intuition about its dynamics and a clear interpretation of its components.

The definition of a joint probability measure using a decomposition into conditional and

marginal measures, however, does not guarantee the existence of the former. The existence

of the joint measure needs to be established in order to yield the existence of the marginal

geostatistical process of interest. The formal definition of the POGAMP is provided below

in Definition 2.2 and its existence is established in Theorem 2.1 and Corollary 2.1. Before

defining the POGAMP, we present the definition of Gaussian processes.

A Gaussian process (GP) is an uncountable collection of r.v.’s for which the joint

distribution of any finite collection of those variable is a multivariate Normal distribution.

Definition 2.1. A Gaussian process Y is a stochastic process in some space S P Rd such

that, @ n ą 1 and ps1, . . . , snq P Sn, we have that

pY ps1q, . . . , Y psnqq „ Nnpµps1, . . . , snq,Σps1, . . . , snqq,

where µps1, . . . , snq P Rd and Σps1, . . . , snq is a valid covariance matrix.

If µ is a constant vector and covpY psiq, Y psiqq “ σ2, @ i, and covpY psiq, Y psjqq “ σ2ρp|si´

sj|q, @ i ‰ j, the Gaussian process is called stationary and isotropic.

The main contribution of this thesis lies on the proposal of the POGAMP process

defined in Definition 2.2 below and on the establishment of its existence. In the course of



17

this chapter, some important properties of the POGAMP are presented and the theoretical

and practical implications of those properties are discussed.

Definition 2.2. The Poisson-Gaussian Mixture Process - POGAMP. Let pY,Nq,

for Y “ tY psq, s P S Ă R2u, be a coordinate process on pY ˆ N ,BpYq b BpN qq, where

b is the tensor product of algebras, Y is the Banach space of continuous functions in S

(a compact set) and BpYq is the Borel σ-algebra generated by the open sets of Y in the

strong topology. N is the locally compact separable metric space of point patterns in S,

such that no two points are in the same location and the number of points is finite, with

σ-algebra BpN q. Define P as a candidate probability measure on pY ˆ N ,BpYq b BpN qq

under which the coordinate process pY,Nq is such that:

i) N is a Poisson process on S with non-negative intensity function λ :“ tλpsq, s P Su

and define its |N | events as SN :“ t 9s1, . . . , 9s|N |u;

ii) conditional on N , YN :“ pY p 9s1q, . . . , Y p 9s|N |qq has Lebesgue probability density function

(pdf) fN , such that fN is continuous on pSN , YNq P pS|N | ˆ YNq, where YN is the support

of fN ;

iii) conditional on pN, YNq, Y is a Gaussian Process with mean µ and covariance function

Σ.

The spatial process Y is defined hierarchically through the augmented Poisson process

N . Conditional on its existence, the former is considerably general and flexible, given the

flexibility to specify the density fN and the intensity function λ. The Gaussian process

in iii is called the base GP.

We shall define each model in this family based on the choice of the class of distribu-

tions f that defines fN for each possible value of N . For example, one may consider f to

be a multivariate Skew-t distribution with isotropic covariance function.

The components N and f have clear purposes in the definition of the POGAMP. The

distribution f should have the features desired for the finite dimensional distributions

of the Y process that, in particular, are not featured by the normal distribution; for

example, skewness and heavy tails. Process N stochastically defines how close the finite

dimensional distributions (fdd) of Y should be to f and how this similarity should vary

across the region S. Intuitively, the fdd’s of Y are some sort of mixture between f and a

normal distribution and the intensity function λ regulates the “weight" of each of the two

distributions in the mixture, which may vary continuously across S. This means that, for
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a smaller λ, Y gets closer to the GP characteristics, however, as λ increases, Y gets closer

to the f characteristics.

Finally, note that the definition of the POGAMP can be extended for S Ă R
d, d P N.

Nevertheless we will focus on the case d “ 2, as this is the case in most of the geostatistical

applications.

Theorem 2.1. Existence of the POGAMP. Suppose that N is a homogeneous Poisson

process with rate λ ą 0. Then, P, as defined in Definition 2.2, is a probability measure

on pY ˆ N ,BpYq b BpN qq, which implies that Y (under P) is a valid stochastic process.

The existence of the process Y when N is a non-homogeneous Poisson process is

established by the following corollary.

Corollary 2.1. P as defined in Definition 2.2 is a probability measure on pYˆN ,BpYqb

BpN qq.

In order to prove Theorem 2.1, we present the following Lemma.

Lemma 2.1. Let pΩ1,F1, µ1q be a probability space such that, for each ω1 P Ω1, there exists

a probability measure µ2,ω1 on pΩ2,F2q. Consider the joint measurable space pΩ, σpFqq,

where Ω “ Ω1 ˆ Ω2 and F “ F1 ˆ F2, and suppose that

gApω1q “

ż

Ω2

1rpω1,ω2qPAsdµ2,ω1pω2q, is F1-measurable, @A P F .

Then, there exists a probability measure µ on pΩ, σpFqq that satisfies

µpAq “

ż

Ω1

ż

Ω2

1rpω1,ω2qPAsdµ2,ω1pω2qdµ1pω1q, @A P F , ω1 P Ω1 and ω2 P Ω2,

and µ is called the joint measure.

Lemma 2.1 provides the conditions required for the pair composed of a marginal and a

conditional probability measures to define a valid joint probability measure. The Lemma

considers a general framework, unlike the versions found in the literature which only

consider finite-dimensional real measurable spaces. The proofs of Lemma 2.1, Theorem

2.1 and Corollary 2.1 are presented in Appendix A.

Let G be the probability measure on pY ˆ N ,BpYq b BpN qq that differs from P on

the distribution of N and pYN |Nq such that, under G, N is a unit rate homogeneous PP

on S and pYN |Nq has the normal distribution induced by the same Gaussian process that
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defines the measure of Y |YN under P . We shall refer to the process pY,Nq under G as the

augmented GP, since the induced marginal measure of Y is the base GP from Definition

2.2.

Corollary 2.2. Consider the probability measures P and G as previously defined in Defi-

nition 2.2. Then P is absolutely continuous with respect to (w.r.t.) G with Radon-Nikodym

derivative given by
f

g
pYNq, where g is the respective density under G.

The Corollary 2.2 has important consequences, such as its base GP almost surely (a.s.)

convergence implies POGAMP a.s. convergence. Therefore, interesting features of the

GP are inherited, such as the continuity and differentiability of the generated surfaces.

Another important consequence of this Corollary is its implications for the derivation and

validity of the MCMC algorithm to be proposed in the next chapter.

Corollary 2.3. The Kullback Lieber divergence between the POGAMP and the augmented

GP, when the N is a homogeneous PP, is given by

DKLpP ∥ Gq “

8
ÿ

N“0

e´λµpSqλN

N !

ż

SN

ż

YN

log

»

–

f

g
pYNq

fi

fl fpYNqdYNdSN

The proofs of the corollaries 2.2 and 2.3 are given in Appendix A.

As mentioned before, one of the main advantages of the POGAMP is that its finite-

dimensional distributions inherit the characteristics of some chosen class of multivariate

distribution f and is a valid process under some very mild conditions. This idea is formally

described in the following two results.

Theorem 2.2. Consider a monotonic sequence of positive real numbers tλnu8
n“1 such

that λn Ò 8 and a set of any r locations in S, for r P N. Let Yn,r be a sequence of the

POGAMPs at those r locations such that, for each n P N, the rate of the PP N of the n-th

POGAMP is λn. Then, Yn,r
d

ÝÝÝÑ Yf,r, where Yf,r is a r-dimensional random variable

with distribution f at the r specified locations.

Corollary 2.4. Suppose that, for a given class of multivariate distributions f , the stochas-

tic process Y with finite-dimensional distributions defined by f exists. Then, the POGAMP

Yn, with rate λn Ò 8, is such that Yn
d

ÝÝÝÑ Y . Conversely, if f does not define a valid

process, there exists no limit for the sequence Yn.
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Note that, in the cases that f defines a valid process, the POGAMP can get arbitrarily

close to this by increasing the rate λ, with the advantage of having the tractability of the

Gaussian measure. Furthermore, even if f does not define a valid process, the POGAMP

can still have f.d.d.’s arbitrarily close f . In particular, the POGAMP allows us to perform

valid likelihood-based inference, given that its existence has been proved.

Example 1. Suppose that we are interested in proposing a process that has the charac-

teristics of the Skew-t distribution, that is, we want any finite-dimensional distribution to

be similar to a multivariate skew-t. Therefore, one way to obtain such a process taking

advantage of the POGAMP would be to define f as the desired Skew-t. Consider, for

example, the following two scenarios.

• If the PP has a considerably small λ, which results in a small number of points of

|N |, the resulting process will be similar to the base GP.

• However, if we define a sufficiently large λ, which results in a large number of points

of |N |, the finite-dimensional distributions of the resulting POGAMP will be similar

to f .

The Skew-t case will be considered as an example in Chapter 4 to illustrate the defi-

nition of the POGAMP. In particular, we shall consider different values of λ.

2.2 The marginal POGAMP Y

We now explore the marginal distribution of Y at a finite collection of locations s “

ts1, . . . , sru, defined as Yr. Under the POGAMP measure, we have that pYr | YN , SNq has

the multivariate normal distribution induced by the base GP.
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Defining λS “
ş

S
λpsqds, the marginal Lebesgue density of Yr is given by

ppYrq “

ż

p pN, YN , Yrq dP pN, YNq “

ż

p p|N |, SN , YN , Yrq dP p|N |, SN , YNq

“

ż

pp|N |qppSN | |N |qfpYN | SN , |N |qppYr|YN , SNqdP p|N |, SN , YNq (2.1)

“

8
ÿ

|N |“0

e´λS rλSs
|N |

|N |!

ż

S|N |

ppSN | |N |q

ż

R|N |

fpYN | SN , |N |qppYr | YN , SNqdYNdSN

9

8
ÿ

|N |“0

rλSs
|N |

|N |!

ż

S|N |

ppSN | |N |q

ż

R|N |

fpYN | SN , |N |qppYr | YN , SNqdYNdSN

“

8
ÿ

|N |“0

rλSs
|N |

|N |!
c|N |g

˚
pYr; |N |q, (2.2)

where

g˚
pYr; |N |q “

gpYr; |N |q
ş

Rn gpYr; |N |qdYr
“
gpYr; |N |q

c|N |

,

gpYr; |N |q “

ż

S|N |

ppSN | |N |q

ż

R|N |

fpYN | SN , NqppYr | YN , SNqdYNdSN .

Note that ppYr | YN , SNq is a normal distribution induced by the base GP. If N is a

homogeneous PP, we have that λS “ λµpSq, where λ is the rate and µpSq is the area

of S, and pSN | |N |q are |N | iid Uniform rv’s on S. If N is an inhomogeneous PP,

ppSN | |N |q “
ś|N |

j“1
λp 9sjq

ş

S λpsqds . Finally, note that the marginal density of Yr is typically

intractable.

2.3 Symmetry of the POGAMP

We now state an interesting property regarding symmetry of the POGAMP. First, we

consider the following definitions.

Definition 2.3. Symmetry w.r.t. S. Suppose that S is symmetric and let s and s1 be

two sets of k locations in S, for any k P N. We say that s and s1 are symmetric w.r.t. S

if there exists a rotation of R2 that does not change S and under which s in the rotated

space is equal to s1 in the non-rotated one.

Definition 2.4. Symmetry w.r.t. N. Suppose that S is symmetric and let s and s1 be

two sets of k locations in S, for any k P N. We say that s and s1 are symmetric w.r.t.

the Poisson process N if ppsq “ pps1q, under the probability measure of N , where p is the

density of N w.r.t. some dominating measure.
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We shall refer to sets that are symmetric w.r.t S and N as doubly symmetric.

Proposition 2.1. Suppose that f is stationary and S is symmetric. Then, for any two

sets s and s1 in S that are doubly symmetric, we have that Y psq
d
“ Y ps1q, under the

POGAMP measure.

The proof of the Proposition 2.1 is presented in Appendix A.

We now present three examples of the symmetry property of the POGAMP. In Figure

2.1a, N is a homogeneous PP and the four sets of points defined by the different colours

are doubly symmetric between themselves, note that the space is symmetrical since the

four datasets have identical distances, furthermore the four sets are under the same rate

of PP λ. In Figure 2.1b, the PP N is piecewise constant. The blue and red sets are

doubly symmetric (under the PP rate λ1) and so are the black and green ones (under the

PP rate λ2). In Figure 2.1c, the PP rate is proportional to a bivariate normal density

function with symmetry at the centroid. In this case, the four sets of points defined by

the different colours are doubly symmetric between themselves, as in the first case, since

all sets are under the same value of λ (λ5).

2.4 Covariance function of Y

We now express the covariance function of Y for the general POGAMP and for the

particular (and appealing) case where the base GP and the f distribution have the same

covariance function.

Proposition 2.2. Let s1 and s2 be two arbitrary locations in S and define 9si as the i-th

location from N . Now let ΣiN be the row vector of the covariances between Y psiq and

Y p 9sjq under the base GP, for j “ 1, . . . , N , for i “ 1, 2, and let ΣNN,f be the covariance

matrix of YN under the f distribution. Then,

CovpY1, Y2q “ ErCovpY1, Y2|YNqs ` ErΣ1NΣ
´1
NNΣNN,f pΣ2NΣ

´1
NNq

T
s. (2.3)

If, additionally, the covariance function is the same under the base GP and f , we have

that

CovpY1, Y2q “ ρps1, s2q (2.4)

where ρps1, s2q is the covariance of pY ps1q, Y ps2qq under the base GP.
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Figure 2.1: Symmetry examples of the POGAMP for different λ’s
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The proof of the Proposition 2.2 is presented in Appendix A.

The second result in Proposition 2 has important practical implications as it provides

a tractably analytical representation of the covariance function of the POGAMP, allowing

for a clear interpretation of this.

This chapter presented a detailed presentation of the POGAMP theoretical results.

The results that were presented and proved are of extreme importance to the work, as

they guarantee the existence of a highly flexible process, allowing the user to choose any

pdf that has the desired characteristics for the process. That is, if one wants to model

data that have heavy tail characteristics, one can define a student-t as the f (with the

desired degree of freedom) for the POGAMP, and thus have a process where any finite

collection of points observed will have the characteristics of this chosen f . Note that the

flexibility presented here is not limited to the heavy tail or skewness, but to any desired

characteristic, depending only on the choice of f and how much POGAMP will approach

it, depending on the intensity of λ of the PP .

The following chapter will present the MCMC developed to perform inference on

POGAMP model.



25

Chapter 3

MCMC

Bayesian methods provide a complete paradigm for statistical inference under uncertainty.

The Bayesian paradigm is based on an interpretation of probability as a rational condi-

tional measure of uncertainty, there are several references that address this topic more

widely (see Robert, 2007).

The development of Bayesian Statistics is centered around the development of com-

putational methods, required to perform inference under the Bayesian paradigm. In

particular, Markov chain Monte Carlo (MCMC) has become the workhorse of Bayesian

inference in most cases where analytical tractability is unfeasible. MCMC algorithms are

based on the construction of Markov chains which have a posterior distribution as its

limiting distribution. The most popular MCMC algorithms are the Gibbs Samplings and

the Metropolis-Hastings. These are quite general and flexible and provide straightforward

efficient solutions in many cases.

The Gibbs sampling, introduced by Geman and Geman (1993) and Gelfand and Smith

(1990) in a statistical context, is an extremely useful tool in solving problems involving

the estimation of more than one parameter. It is based on a Markov chain that is updated

using the full conditional distributions of the coordinates of the chains. The algorithm

offers great flexibility in terms of coordinates blocking and update schemes. For details,

see Gamerman and Lopes (2006).

When it is not possible to sample directly from the full conditional distribution of

a block in the Gibbs sampling, the Metropolis-Hastings algorithm is a good alternative.

The algorithm proposes a move from a suitably chosen proposal distribution and accepts

it with a probability that preserves the detailed balance property. Gaussian random
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walks are generally suitable to be used as proposal distributions. Optimal tuning results

(Roberts et al., 1997) suggest that the variance of the random walk proposal should vary

from around 0.44 (for unidimensional updates) to around 0.234 (for high dimensions -

ě 5).

Performing statistical inference for infinite-dimensional models - when the dimension

of the unknown quantities of the model (parameters and latent variables) is infinitely

uncountable, is a highly complex problem. For many years, solutions had to rely on

discrete (finite-dimensional) approximations of those quantities. This naturally represents

a significant source of error in the analysis and this error is typically hard to be measured

and/or controlled. The advances in computational methods, specially Monte Carlo under

a Bayesian approach, have brought a new perspective to deal with infinite-dimensional

problems by allowing for an analysis where no discretization error is involved, only Monte

Carlo one. The latter is much simpler to quantify and control, resulting in more precise

and computationally efficient analyses.

Exact inference solutions for infinite-dimensional problems are possible mainly due to

a neat simulation technique called retrospective sampling. It basically allows to deal with

infinite-dimensional random variables by unveiling only a finite-dimensional representation

of this which has two main properties: i) it is enough to know its value in order to execute

the steps of the algorithm in context, for example, MCMC; ii) any finite-dimensional part

of the infinite-dimensional remainder of that r.v. can be simulated conditional on it. The

idea of retrospective sampling in the context of simulation of infinite-dimensional r.v.’s

was introduced in Beskos and Roberts (2005) to perform exact simulation of diffusion

paths. It was later used in a statistical context in several works (see, for example, Beskos

et al. (2006) and Gonçalves and Gamerman (2018)).

This thesis proposes an infinite-dimensional MCMC algorithm that relies on retrospec-

tive sampling to perform exact Bayesian inference for discretely-observed POGAMPs. In

particular, the proposed algorithm consists of a Gibbs sampling with Metropolis-Hastings

steps. Each step of the algorithm is carefully designed to be computationally efficient and

provide feasible and reasonable solutions to the inference problem at hands.

Suppose that a POGAMP Y is observed at some finite collection of locations s1, . . . , sn

in S. The vector of unknown quantities to be estimated is given by ψ “ pN, YN , Yu, θG, θf , λq,

where Yu “ Y zpYN , Yoq and Yo “ pYs1 , . . . , Ysnq. Vectors θG and θf are the sets of param-
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eters indexing the base GP and f , respectively.

Under the Bayesian paradigm, inference about ψ is based on the posterior distribution

of pψ | Yoq, which has a density, w.r.t. a suitable dominating measure, proportional to

πpYo, ψq “ πGP pYu | YN , Yo, θGqπGP pYo | YN , θGqπf pYN | θf , NqπpN | λq

ˆ πpλ, θf , θGq. (3.1)

We devise a Gibbs sampling MCMC with the following blocks

N, YN , λ, θG, θf , Yu,

and standard probability theory implies that all the full conditional densities are propor-

tional to (3.1).

The infinite-dimensionality of the algorithm is due to the same property of the com-

ponent Yu. As it was mentioned before, retrospective sampling is employed so that the

Markov chain can be simulated without any approximations by unveiling Yu only at a

finite (though random) collection of locations at each iteration of the Gibbs sampler.

Finally, blocks YN and θG are sample via collapsed Gibbs sampling (see Liu, 1994) by

integrating out Yu.

3.1 Sampling YN

By integrating out Yu, we have that

πpYN | ¨q9πGP pYo | YN , N, θGqπf pYN | N, θf q. (3.2)

We cannot sample directly from the density above, so YN is sampled in a Metropolis-

Hastings step. For a proposal distribution qpY ˚
N ;YNq, the acceptance probability of a move

YN Ñ Y ˚
N is given by

αpYN , Y
˚
Nq “ 1 ^

πGP pYo | Y ˚
N , N, θGqπf pY ˚

N | N, θf qqpYN |Y ˚
Nq

πGP pYo | YN , N, θGqπf pYN | N, θf qqpY ˚
Nq|YN

. (3.3)

We propose two options for the proposal distribution q. The first one consists of the

base Gaussian process conditional on the observations Yo, i.e., qpY ˚
N |YNqqpY ˚

Nq “ πGP p|

Yo, N, θGq. Simplifications in (3.3) lead to the following acceptance probability:

αpYN , Y
˚
Nq “ 1 ^

πf pY ˚
N | N, θf q

πGP pY ˚
N | N, θGq

πGP pYN | N, θGq

πf pYN | N, θf q
. (3.4)
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The second option for the proposal distribution is a Gaussian random walk, prop-

erly tuned to have an acceptance rate of approximately 0.234 (see Roberts et al., 1997),

assuming that the dimension |N | is greater than 5. Simplifications in (3.3) lead to the

following acceptance probability:

αpYN , Y
˚
Nq “ 1 ^

πf pY ˚
N | N, θf qπGP pYo | Y ˚

N , N, θGq

πf pYN | N, θf qπGP pYo | YN , N, θGq
. (3.5)

Since the locations N change along the MCMC chain, it is not possible to use an

empirical covariance matrix of the chain in the proposal random walk. Instead, we update

this matrix at some fixed iterations of chain and up to a certain point by adopting a

multiple of the correlation matrix under f , (Σf ), for values of θf given by the its average

over the last few hundred iterations. The multiplication factor is chosen so to tune the

acceptance rate accordingly.

3.2 Sampling N

From 3.1, we have that the full conditional density of N is proportional to

πpN | ¨q9πGP pYu | YN , Yo, θGqπGP pYo | YN , N, θGqπf pYN | θf , NqπpN | λq. (3.6)

We adopt a proposal distribution that is invariant w.r.t. πpN | λq and proposes one

of the two types of move:

w.p.
λµpSq

λµpSq ` |N | ` 1
, add one location uniformly distributed in S;

w.p.
|N |

λµpSq ` |N |
, for N ą 0, remove one uniformly chosen location; (3.7)

For large values of λ, this proposal is bound to lead to a poor mixing of the chain.

In order to mitigate this problem, we divide S into K regular squares and use that same

proposal in each of those. The value of K is chosen empirically in terms of the mixing

properties and computational cost of the algorithm.

The acceptance probability of a move Nk Ñ N˚
k in each sub-region k is given by

αp|N |k, |N |k ` 1q “ 1 ^
πf pYN˚

k zNk
| YNzk

, YNk
, θf q

πGP pYN˚
k zNk

| YNzk
, YNk

, θGq
, (3.8)

αp|N |k, |N |k ´ 1q “ 1 ^
πGP pYNkzN˚

k
| YNzk

, YN˚
k
, θGq

πf pYNkzN˚
k

| YNzk
, YN˚

k
, θf q

, (3.9)
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where YNzk
is YN in all the other K ´ 1 sub-regions and Nk is N restricted to sub-region

k and has |N |k points. The expressions above are obtained by noticing that the prior of

Nk is a PP pλq in sub-region k and the proposal distribution is invariant w.r.t. this prior.

More details about the construction of the acceptance probabilities (3.8) and (3.9) can be

found in ??.

Whenever a move of the type |N |k Ñ |N |k ` 1 is proposed, the value of Y at the new

location sk is sampled retrospectively from πGP pY pskq|YN , Yo, θGq. On the other hand,

whenever a move of the type |N |k Ñ |N |k ´ 1 is proposed and accepted, a virtual step

is performed to simply erase the value of Y at the removed location. Theoretically, this

step consists of updating Y at that location, retrospectively, from its full conditional

distribution πGP p¨ | YN , Yo, θGq. Note the infinite dimensionality of the MCMC chain

together with the retrospective sampling of Yu avoids the use of a (complicated) reversible

jump step to update N .

Since then, this block has become the most expensive of the entire MCMC, because

on each step it is possible to add or remove a point in each of the k parts of the S space,

so we have two points to consider in this scenario . The first point refers to the proposal

of a new point (πGP pY pskq|YN , Yo, θGq), where it is necessary to obtain the inverse of the

joint covariance matrix of the locations of the observed points and N . Therefore, in each

of the k parts of the space it would be necessary to calculate a new inverse of this matrix

as long as a point was added or removed. And if a point from N is added or removed,

we enter the second point mentioned above, since it becomes necessary to recalculate the

covariance matrices of both the GP and the f in the N locations, then it is possible to

perform the N acceptance probability calculations (3.8 and 3.9).

In order to overcome these issues, we have developed two approaches that allow us to

update the inverse matrices when we add/remove one dimension.

When a point is added (and this added point is always in the last entry of the matrix),

the inverse is updated using the Schur complement. Suppose that in the current step we

have already calculated the inverse of the covariance pΣ̄´1q with dimension nˆ n, then if

we add a single dimension, we are adding an integer pdq in the input pn ` 1q ˆ pn ` 1q,

that is, we will have a new inverse Σ´1˚ as follows Σ´1˚
“

»

–

Σ B

BT d

fi

fl

´1

, where B is the

covariance between the current covariance points and the new one added. Then, using

the Schur complement, we have
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Σ´1˚
“

»

–

Σ´1 ` Σ´1BΥBTΣ´1 ´Σ´1BΥ

´ΥBTΣ´1 Υ

fi

fl

´1

, where Υ “ pd ´ BTΣ´1Bq´1.

Note that Υ is a 1 ˆ 1 matrix and since we already have Σ´1 calculated, the cost to

obtain Σ´1˚ is modest.

When one point is removed, we apply some algebra to avoid the calculation of a new

inverse of the entire matrix. More details about the algebra performed above can be found

in the Appendix A.

3.3 Sampling λ, θG and θf

Standard conjugated Bayesian analysis calculations imply that, for a prior distribution

Gammapαλ, βλq, the full conditional distribution of λ is a Gammapαλ ` |N |, βλ ` µpSqq.

Both θG and θf are sampled via MH steps with properly tuned adaptive Gaussian

random walk proposals (see Roberts and Rosenthal, 2009). The respective acceptance

probabilities are given by

αpθG, θ
˚
Gq “ 1 ^

πGP pYo | YN , N, θ
˚
Gqπpθ˚

Gq

πGP pYo | YN , N, θGqπpθGq
, (3.10)

αpθf , θ
˚
f q “ 1 ^

πf pYN | θ˚
f , Nqπpθ˚

f q

πf pYN | θf , Nqπpθf q
, (3.11)

for suitably chosen priors πpθGq and πpθf q.

When the parameters θG and θf have the same interpretation and are chosen to be

the same, i.e. θG “ θf :“ θ, the acceptance probability is given by

αpθ, θ˚
q “ 1 ^

πGP pYo | YN , N, θ
˚qπf pYN | θ˚, Nqπpθ˚q

πGP pYo | YN , N, θqfpYN | θ,Nqπpθq
. (3.12)

3.4 Prediction

Under the MCMC approach presented in the previous theoretical point of view sections

to perform inference for discretely observed POGAMPs, it is straightforward to perform

prediction for functions of the unobserved (infinite-dimensional) part of the process Yu.

Let hpYuq be some some finite-dimensional real and tractable function of Yu. This

includes, for example, the process Y at a finite collection of locations. Under the Bayesian



31

approach, prediction ought to be performed through the posterior predictive distribution

of h, i.e., πphpYuq|Yoq. An approximate sample from this distribution can be obtained

within the proposed MCMC algorithm by sampling from the respective full conditional

distribution of hpYuq at each iteration of the Gibbs sampler. From a theoretical point of

view, this consist of performing the following integral via Monte Carlo.

πphpYuq|Yoq “

ż

πGP pYu|YN , Yo, θGqπpYN , θG|YoqdYNdθG. (3.13)

More specifically, hpYuq is simulated from is full conditional distribution by sampling Yu

at the finite collection of locations required to compute hpYuq, from the base GP, and then

computing this function.

More sophisticated, still simple, simulation techniques allow for Monte Carlo estima-

tion of some intractable functions hpYuq, for example, hpYuq “
ş

S
gpYuqds, for tractable

functions g. We define a random variable U „ UniformpSq and an i.i.d. sample

U p1q, . . . , U pMq of this and consider the following Monte Carlo estimator of hpYuq.

ĥpYuq “
1

M

M
ÿ

j“1

µpSqgpY pU pjq
q

pjq
q (3.14)

where µpSq is the area of S and the superscript pjq refers to the j-th values from the

MCMC sample of size M . The estimator in (3.14) is justified by the following result,

EU rµpSqgpY pUqqs “ hpYuq. (3.15)

The estimator in (3.14) can be improved, in terms of variance reduction, by dividing S

into m equal squares and applying the same idea to each of those. The final estimator is

obtained by summing the m estimators.

We conclude Chapter 3, where the development of the MCMC was presented in a rig-

orous way, detailing the functioning of each block and some tricks used to obtain a better

computational performance. In the next chapter, some results of POGAMP simulations

will be presented, illustrating some important properties of the model. Simulations of the

MCMC, presented in this chapter, will also be illustrated, as will a brief application of

POGAMP on real data.
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Chapter 4

Simulation and Application

4.1 POGAMP Simulation

We perform some simulation studies in order to explore the modelling properties of the

POGAMP model. All the simulations are coded in R (R Core Team, 2022) and run in a

2 x Intel(R) Xeon(R) CPU E5-2690 0 2.90GHz processor with 32 Gbytes RAM, provided

by lsncs - cluster of the Numerical Simulation Laboratory of FCT/UNESP.

We consider four classes of f distributions:

1) p-variate Skew Normal.

ϕppx; ξ,Ω,αq “ 2ϕppx ´ ξ;ΩqΦpαJω´1
px ´ ξqq, x P Rp; ξ P Rp; Ω ą 0;

α P Rp, where ω “ pΩ d Ipq
1{2.

2) p-variate Gamma distribution.

gppx;α,β,Σq “ cΦtG1px1q, ¨ ¨ ¨ , Gppxpq | Σu

p
ź

i“1

fpxi;αi, βiq, x P R`p

;

α,β,Σ ą 0.

where G and g are the univariate Gamma distribution function and probability function,

respectively. Also, cΦpu | Σq “ |Σ|´1{2expt´1
2
qJΣ´1q` 1

2
qJqu and q “ pq1, ¨ ¨ ¨ , qpq, with

qi “ Φ´1puiq, where Φ is the standard normal c.d.f. Details on the multivariate Gamma

distribution can be found in Xue-Kun Song (2000).
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3) p-variate Student-t.

tppx;µ,Σ, νq “
Γ rpν ` pq{2s

Γpν{2qνp{2πp{2 |Σ|
1{2

„

1 `
1

ν
px ´ µq

JΣ´1
px ´ µq

ȷ´pν`pq{2

,

x P Rp; µ P Rp; Σ ą 0; and ν ą 2 for defined variance and mean.

4) p-variate Skew Student-t.

stppx; ξ,Ω,α, νq “ 2tppx; Ω̄, νq T

ˆ

αJx

c

ν ` p

ν ` Qpxq
; ν ` p

˙

, x P Rp;

ξ P Rp; Ω ą 0; α P Rp; and ν ą 2 for defined variance and mean.

where Qpxq “ xJΩ̄x and T p.; ρq denotes the univariate Student-t c.d.f. with ρ degrees of

freedom. Details on the Skew normal and Skew Student-t distributions can be found in

Azzalini (2013).

We parametrize the Skewness of the Skew normal and Skew t distributions through

the Pearson’s index of Skewness γ (see Henze, 1986) such that

γ “ rδ3p2r2 ´ 1qp1 ´ r2δ2q´3{2, γ P p´0.99527; 0.99527q, (4.1)

where δ “
α

?
1 ` α2

, α P p´8,8q, δ P r´1, 1s, r “
a

2{π and s “

¨

˝

2

4 ´ π

˛

‚

1{3

.

Furthermore, we have the following γ-parameterization

δ “
sγ1{3

r
a

1 ` s2γ2{3
, α “

sγ1{3

a

r2 ` s2γ2{3pr2 ´ 1q
.

Azzalini (1985) argues that the γ-parametrization eases likelihood-based inference proce-

dures.

We set S “ r0, 10s ˆ r0, 10s and consider two values for the intensity function of the

Poisson process N (0.01 and 5) combined with the following f distributions: SNppξ,Σ,γq,

Gppα,β,Σq, tppµ,Σ, νq and Stppξ,Σ,γ, νq. The base GP and all the f distributions

consider the following isotropic covariance

Σ “ σ2 expt´
1

ζ
||r ´ r1

||
l
u, @r, r1

P S,

and the following parameter values are adopted:

• Base GP: µ “ 0, σ2 “ 1, ζ “ 10, l “ 1.5;
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• G: α “ 2, β “ 2, σ2 “ 1, ζ “ 10, l “ 1.5;

• SNp: ξ “ 0, σ2 “ 1, ζ “ 10, γ “ 0.91, l “ 1.5;

• tp: µ “ 0, σ2 “ 1, ζ “ 10, ν “ 2.1, l “ 1.5;

• Stp: ξ “ 0, σ2 “ 1, ζ “ 10, γ “ 0.91, ν “ 2.1, l “ 1.5.

For each f , 50 thousand iid replications of the respective process are generated to

compute some Monte Carlo estimates. The Y process is sampled at 121 regularly spaced

locations.

4.1.1 Results

We use the results from the simulations to investigate and illustrate some properties of

the POGAMP models such as marginal stationarity and isotropy.

Figure 4.1 shows the 121 fixed locations where the processes are sampled in all the 50

thousand iid replications. The colored geometric shapes in the Figure 4.1 represent the

points where the analyzes were performed. Note that each point has an explicit coordinate

on the axes, they will be important to better understand where each analysis is referring

to.

l l l l l l l l l

l l l l l l l l l l l

l l l l l l l l l l l

l l l l l l l l l l l

l l l l l l l l l l l
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Figure 4.1: Locations used for the empirical analyses.
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We compare the marginal densities at the four blue triangle locations in Figure 4.1 for

each model. Figure 4.2 shows those marginal densities for each model with λ “ 5. Each

curve represents the density referring to the 50 thousand iid replications at each point

(blue triangles). Results illustrate the symmetry result stated in Proposition 2.1, since

all the lines are practically overlapping in all the four different pdf scenarios.
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Figure 4.2: Marginal distributions at blue triangles locations

We compare the marginal density at the centroid (red losangle in Figure 4.1) for two

different values of λ p0.01 and 5q for each model. Figure 4.3 shows how the marginal

distribution approaches f as λ increases, illustrating the result in Theorem 2.2. Note that

for a smaller λ, where consequently we will have less information from f (less points in

N), the densities are closer to the base GP, while when the λ increases (more points in

N), the density in any finite collection of points resulting from POGAMP is very similar
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to the chosen f .
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Figure 4.3: Marginal distributions at the centroid for different λ for each model

4.2 MCMC Simulation

In this chapter, we investigate the efficiency of the proposed methodology in a collection

of simulated examples. We consider a variety of scenarios in terms of the choices for the f

distribution, the values of parameter λ and the sample size n. We simulated 10 datasets

(replications) for each of the 10 scenarios considered. In all scenarios, 10 observations

were removed to make predictions at the end of this subsection.

1. Copula SNpµSN ,ΣSN , γ “ 0.75q with PP(λ “ 1) and n “ 210;

2. Copula SNpµSN ,ΣSN , γ “ 0.95q with PP(λ “ 1) and n “ 210;
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3. Copula SNpµSN ,ΣSN , γ “ 0.95q with PP(λ “ 2) and n “ 210;

4. Copula SNpµSN ,ΣSN , γ “ 0.95q with PP(λ “ 1) and n “ 410;

5. Copula SNpµSN ,ΣSN , γ “ 0.95q with PP(λ “ 2) and n “ 410;

6. tpµt,Σt, ν “ 4.1q with PP(λ “ 1) and n “ 210;

7. tpµt,Σt, ν “ 8q with PP(λ “ 1) and n “ 210;

8. Copula StpµSt,ΣSt, ν “ 7, γ “ 0.75q with PP(λ “ 2) and n “ 210;

9. Copula StpµSt,ΣSt, ν “ 7, γ “ 0.75q with PP(λ “ 1) and n “ 410;

10. Copula StpµSt,ΣSt, ν “ 7, γ “ 0.75q with PP(λ “ 2) and n “ 410;

We impose a restriction to the parameter space of the POGAMPs so that the station-

ary mean and variance of the base GP and the (conceptual) f process are the same. In

particular, we set

σ2
SN “

g

f

f

f

f

f

e

σ2
GP

1 ´
2δ2

π

; µSN “ µGP ´ σ2
SNδ

g

f

f

e

2

π
;

σ2
St “

g

f

f

f

f

f

e

σ2
GP

ν

ν ´ 2
´ pbνδq

2

; µSt “ µGP ´ σ2
Stbνδ;

σ2
t “

pν ´ 2qσ2
GP

ν
; µt “ µGP ,

where δ “
α

?
1 ` α2

and bν “

?
νΓpν´1

2
q

?
πΓpν

2
q

.

We set µGP “ 0, σ2
GP “ 1 and ζ “ 2 for all the scenarios. Furthermore, in order to

avoid identifiability problems due to the result in Theorem 2.2, we adopt a Expp0.5q prior

distribution for parameter λ. Note that this is a low informative distribution (based on

calculations of a conjugate Bayesian analysis for Poisson data) and is meant only to avoid

the "explosion" of the estimated λ.

The choice to specify the f distribution using copulas for the Skew distributions allows

for more model flexibility. The traditional multivariate versions of the Skew normal and
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t distributions (see Azzalini, 2013) have some constraints in the parameter space that

precludes the elicitation of distributions with highly asymmetric marginals. In particular,

the copula construction allows for a direct specification of the Skewness parameter of the

respective marginal distributions, given by γ, and the correlation of the respective finite-

dimensional distributions. On the other hand, for the traditional multivariate versions,

both the Skewness of marginal and correlation of the finite-dimensional distributions

depend on both γ and Σ˚.

Convergence diagnostic analyses strongly suggest the convergence of the MCMC al-

gorithm in all the scenarios. Some plots are presented in Figures A.1, A.2 and A.3 - A.6,

in Appendix A.2.

Figure 4.4 shows, for scenario 1, the empirical posterior density of all the parameters,

for all the 10 replications. Where in the vertical line in red is the real value of the param-

eters and in black the empirical posterior densities for each replication, being possible to

observe a greater concentration in the majority of the densities, concentrated around the

vertical line.
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Figure 4.4: Empirical posterior density for all replications of the model parameters;

SNγ“0.75;λ “ 1;n “ 200

We present the following statistics bellow to evaluate the predictions

Dabs “
1

10

10
ÿ

i“1

|ȳi ´ Y | EQM “
1

10

10
ÿ

i“1

pȳi ´ Y q
2 ,

where Y is the vector of the real values and ȳi is the posterior predictive.

The Table 4.1 show the mean and standard deviation of the data simulated prediction,

where one replication of each scenario is chosen to perform such tests mentioned above.

Overall, the best results were satisfactory and better when we have more observations.

It is worth mentioning that the Student-t had good results even with fewer observations,
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possibly due to the greater similarity between this distribution and the GP.

Table 4.1: MCMC simulation posterior predictive

Scenario Mean (SD) of Dabs Mean (SD) of EQM

SNγ“0.75; λ = 1; n = 200 0.224 (0.17) 2.472 (1.268)

SNγ“0.95; λ = 1; n = 200 0.136 (0.127) 1.431 (1.142)

SNγ“0.95; λ = 2; n = 200 0.204 (0.149) 0.932 (0.414)

SNγ“0.95; λ = 1; n = 400 0.058 (0.053) 1.258 (0.69)

SNγ“0.95; λ = 2; n = 400 0.103 (0.089) 1.033 (0.418)

tν“4.1; λ = 1; n = 200 0.053 (0.032) 1.187 (0.517)

tν“8; λ = 1; n = 200 0.053 (0.032) 1.263 (0.554)

Stγ“0.75;ν“7; λ = 2; n = 200 0.075 (0.05) 2.481 (1.708)

Stγ“0.75;ν“7; λ = 1; n = 400 0.057 (0.051) 1.113 (0.644)

Stγ“0.75;ν“7; λ = 2; n = 400 0.041 (0.039) 1.137 (0.488)

4.3 Application

In this section, we fit the POGAMP for different choices of f to a dataset of maximum

temperature data observed in Australia. We consider a subset of a global dataset of

merged maximum daily temperature measurements from the ’Global Surface Summary of

Day’ data with ’European Climate Assessment & Dataset’ data in July 2011. The dataset

is available in the R package meteo. The data consist of the maximum temperature

observed on July 5 at 449 location sites, in the region with longitude r110; 154s and

latitude r39; 12s. We transform the coordinates to Cartesian and rescale this to obtain

S “ p0, 10qˆp0, 6.7057q. We remove 10 randomly chosen observations which are predicted

by the POGAMP and used to compare the different choices of f ’s. The same dataset,

with similar locations, was used in Bevilacqua et al. (2021).

The POGAMP is fit with the following f ’s: 1) Copula SN; 2) Copula St; and 3) Copula

Student-t. In order to choose the initial values of θ in the MCMC, we fit a GP with the

same covariance function as the base GP of the POGAMP and estimate its parameters

via maximum likelihood. For the remaining parameters, we set initial values γ “ 0.7 and

ν “ 8. It is worth mentioning that the prior used for the λ parameter was an Exp. with

rate = 0.9, then λ does not explode, therefore we are able to control the number of points
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and consequently the major cost of the algorithm.

Figure 4.5 shows the observed locations.

0 2 4 6 8 10

0
2

4
6

8

Normalized longitude

Nor
mal

ized
 lati

tude

Figure 4.5: Locations of the Australia temperature example. The red dots are the 10

locations removed to perform prediction.

We impose a restriction to the parameter space of the POGAMPs so that the sta-

tionary mean and variance of the base GP and of the (conceptual) f process are the

same.

Convergence diagnostics strongly suggest the convergence of the MCMC algorithm for

all 3 models - see Figures A.7 - A.12, in Appendix A.3.

Table 4.2 shows some posterior statistics of the parameters. As it is expected, the

estimates of the common parameters are very similar among the different models. Figure

4.6 shows the prediction at the 10 locations removed from the data.
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Results suggest that the data do not present a significant symmetry departure but does

present heavy tails, indicating the Student-t model to be the best choice. Nevertheless,

the prediction for the 10 removed locations is very similar for all the 3 models, as we can

see in Figure 4.6. This is probably due to the very low estimate of the range parameter

p1.13q.

Table 4.2: Posterior mean, median and s.d. of parameters.

SN Student-t St

Parameters Mean / Median (SD) Mean / Median (SD) Mean / Median (SD)

µ 21.3 /21.24 (2.34) 23.16 /23.25 (1.61) 24.1 /24.08 (1.65)

σ2 19.33 /19.11 (2.23) 16.04 /15.74 (2.16) 16.81 /16.58 (2.2))

ζ 1.167 /1.152 (0.153) 1.136 /1.13 (0.163) 1.115 /1.099 (0.155)

γ -0.105 /-0.149 (0.542) – -0.391 /-0.357 (0.251)

ν – 6.026 /5.829 (1.527) 7.194 /6.873 (2.081)

N 44.78 /42 (21.63) 214.53 /190 (134.88) 86.39 /82 (30.25)

λ 0.67 /0.63 (0.33) 3.17 /2.78 (2) 1.29 /1.23 (0.47)
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Chapter 5

Final remarks

5.1 Final remarks

This thesis proposes a novel geostatistical process, called the POGAMP, aiming at pro-

viding a valid, flexible and efficient solution to fit and predict geostatiscal phenomena.

The development of the POGAMP is motivated by the need to consider more flexible

properties than those offered by Gaussian process but, at the same time, retain a rea-

sonable level of computational complexity. The POGAMP offers a flexible way to define

geostatistical processes based on any finite-dimensional multivariate distribution.

The existence of the POGAMP is established in a collection of theoretical results which

are rigorously proved in the thesis. Moreover, a reasonably efficient infinite-dimensional

MCMC algorithm is proposed to carry out inference for discretely observed POGAMPs.

The proposed algorithm is exact in the sense of not resorting to discrete approximations of

the process and having the exact target posterior distribution as its invariant distribution.

The key idea to achieved the exactness of the method is that of retrospective sampling,

where only a finite-dimensional representation of the unobserved part of the POGAMP

needs to be unveiled to perform the steps of the MCMC algorithm.

A collection of simulated examples is presented to illustrate and investigate important

properties of the POGAMP and of the proposed MCMC algorithm. An application to

temperature data is also presented and analysed with 3 different models.

We believe that this thesis provides highly relevant contributions to the literature of

geostatistics and may give rise to further developments in the area. Nevertheless, we also

acknowledge that the proposed methodology urges further exploration, specially in the
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lines described in the previous two sections.

5.2 An NNGP approach to deal with large datasets

The computational bottleneck of proposed methodology is the the cost related to the

Gaussian process, in particular, the computation of inverses and Choleski decompositions

of covariance matrices. This is a practical limitation of the methodology that prevents its

use with large datasets (Opn3q).

One possible solution is to replace the base Gaussian process in the definition of Y by

a Nearest Neighbor Gaussian Process (NNGP) approximation. Although the NNGP is an

approximation to the original GP, it does define a valid Gaussian process measure. This

means that the resulting process is a valid process, but for which the base GP is of the

NNGP type. Moreover, since the finite-dimensional distributions of the resulting process

aim at resembling the f distribution, it is reasonable to interpret this process not as an

approximation for the originally proposed one but simply as an alternative to fulfill the

same modelling properties.

An NNGP Z is a valid Gaussian process, devised from a parent GP pµ,Σpσ2, τ 2qq

by imposing some conditional independence structure that leads to a sparse covariance

structure. For a reference set S “ ts1, . . . , sru and a maximum number m of neighbors,

the NNGP factorises the distribution of Z (conditional on parameters) as follows:

πpZq “ πpZSqπpZSzS |ZSq,

πpZSq “ πPGpZs1qπPGpZs2 |Zs1qπPGpZs3 |Zs1 , Zs2q . . . πPGpZsm`1 |Zs1 , . . . , Zsmq

πPGpZsm`2 |ZN psm`2qq . . . πPGpZsr |ZN psrqq,

πPGpZS0 |ZSq “

I
ź

i“1

πPGpZsi|ZN psiqq, for any finite set S0 “ ts1, . . . , sIu Ă SzS,

where πPG is the respective density under the parent GP measure, N psiq is the set of the

m closest neighbors of si in ts1, . . . , si´1u, for i ě m ` 2, and N psiq is the set of the m

closest neighbors of si in S.

In our case, the parent process is the GP on SzSN defined by the conditional measure

of YSzSN
given YN , under the GP measure with mean µ and covariance function Σpσ2, τ 2q.
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This implies that

πpYSzSN
|YNq “ πPGpYs1 |YNqπPGpYs2 |Ys1 , YNqπPG . . . πPGpYsm`1 |Ys1 , . . . , Ysm,YN

q

πPGpYsm`2 |YN psm`2q, YNq . . . πPGpYsr |YN psrq, YNq,

πpYS0 |YSq “

I
ź

i“1

πPGpY si|YN psiq, YNq,

for any finite set S0 “ ts1, . . . , sIu Ă SzpS
ď

SNq,

It is common to set S to be the set of observed locations. In our case, we set S to

be a regular mesh in S, which allows us to use computational strategies to optimise the

sampling steps of Y in SzpS
Ť

SNq. Based on the results in Gonçalves and Dias (2020)

and results of several simulated examples with our model, we could set r “ 2500 and

m “ 16.

The computational gains from using the NNGP are quite significant and allow the

use of our methodology with large datasets. Whilst the computational cost to generate

Y at a given location conditional on pYN , Y0q is OppN ` nq3q, the same task has a cost

OppN ` mq3q under the NNGP approach, where m is fixed and m ! n.

5.3 Simulations and applications

It is essential to further explore the methodology proposed in this thesis trough simulated

and real examples. Simulations ought to include f distributions with new parameter

configurations and data sizes as well as more replications from each model. This also

includes examples in which the NNGP approach proposed in the previous section in

employed. Several prediction exercises will be performed for all the scenarios considered.

Other classes of the proposed family of models will also be explored. In particular,

models in which the latent Poisson process N is inhomogeneous. This structure allows

us to consider, for example, non-isotropic processes, by setting f to be Normal with a

different covariance function than the one from the base GP, whilst still working with an

isotropic structure.

Finally, new applications should vary in terms of data size and behavior in terms of

asymmetry and heavy tail.
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Appendix A

Appendix

A.1 Proofs

Proof of Lemma 2.1. In order to show the existence of the probability measure µ, we will

prove that it satisfies the Kolmogorov axioms.

piq µpAq P r0, 1s, @A P F . We have that

µpAq “

ż

Ω1

ż

Ω2

1rpω1,ω2qPAsdµ2,ω1pω2qdµ1pω1q.

Define gA : Ω1 Ñ R

gApω1q “

ż

Ω2

1rpω1,ω2qPAsdµ2,ω1pω2q.

The fact that µ2,ω1 is a probability measure on pΩ2,F2q implies that 0 ď gApω1q ď 1.

0 “

ż

Ω1

0dµ1pω1q ď

ż

Ω1

gApω1qdµ1pω1q ď

ż

Ω1

1dµ1pω1q “ 1.

piiq For each ω1 P Ω1, we have that
ż

Ω2

1rpω1,ω2qPΩsdµ2,ω1pω2q “ 1,

hence

µpΩq “

ż

Ω1

ż

Ω2

1rpω1,ω2qPΩsdµ2,ω1pω2qdµ1pω1q “

ż

Ω1

1dµ1pω1q “ 1.

piiiq (σ-additivity). µp
Ť8

i“1Aiq “
ř8

i“1 µpAiq, for all countable sequence of disjoint events

A1
is. Defining A “

Ť8

i“1Ai and noting that we have that 1rpω1,ω2qPAs “
ř8

i“1 1rpω1,ω2qPAis

and
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µp

8
ď

i“1

Aiq “ µpAq “

ż

Ω1

ż

Ω2

1rpω1,ω2qPAsdµ2,ω1pω2qdµ1pω1q “

ż

Ω1

ż

Ω2

8
ÿ

i“1

1rpω1,ω2qPAisdµ2,ω1pω2qdµ1pω1q,

since dµ2,ω1pω2q is a probability measure, we have

µpAq “

ż

Ω1

8
ÿ

i“1

„
ż

Ω2

1rpω1,ω2qPAisdµ2,ω1pω2q

ȷ

dµ1pω1q,

since gipω1q “
ş

Ω2
1rpω1,ω2qPAisdµ2,ω1pω2q is F1-measurable we have that

µpAq “

ż

Ω1

8
ÿ

i“1

gipω1qdµ1pω1q “

8
ÿ

i“1

ż

Ω1

gipω1qdµ1pω1q

“

8
ÿ

i“1

ż

Ω1

ż

Ω2

1rpω1,ω2qPAisdµ2,ω1pω2qdµ1pω1q “

8
ÿ

i“1

µpAiq.

Therefore µ is a probability measure.

Proof of Theorem 2.1. (a)First we will consider the process with fixed N . We have that

G is the measure of the augmented Gaussian process and define GN as the conditional

measure of YN given N , under G, ν as the Lebesgue measure and g “
dGN

dν
. Analogously,

PN is defined as the conditional measure of YN given N , under P .

Define the function h : Y Ñ R
` such that hpyq “

f
g
pyNq, where yN “ h1pyq, @y P Y ,

for h1 : Y Ñ R
N and f

g
: RN Ñ R

` @yN P YN .

We have that h is BpYq-measurable, since YN is measurable and f
g

is continuous. Since

h is measurable and non-negative, by the Radon-Nikodym Theorem (RNT) we have that

there exists a measure PpAq “
ş

A
hpyqdGpyq, y P Y and @A P BpYq such that

dP
dG

pyq “ hpyq “
f

g
pyNq.

We now show that P is a probability measure.

piq 0 ď PpAq ď 1, @A P BpYq.

Let h a non-negative measurable function and G a measure, then

PpAq “

ż

A

hpyqdGpyq ě 0, furthermore

PpAq ď

ż

Y
hpyqdGpyq “

ż

RN

f

g
pyNqdGNpyNq “

ż

RN

f

g
pyNqgpyNqdν

“

ż

RN

fpyNqdν “ 1.
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piiq PpYq “ 1. See previous equation.

piiiq pσ-finiteq.

Pp
Ť8

i“1Aiq “
ř8

i“1PpAiq, for all countable sequence of disjoint events Ai in BpYq.

Defining A “
Ť8

i“1Ai we have that 1ryPAs “
ř8

i“1 1ryPAis and

PpAq “ Pp

8
ď

i“1

Aiq “

ż

Y

8
ÿ

i“1

1ryPAishpyqdGpyq

“

8
ÿ

i“1

ż

Y
1ryPAishpyqdGpyq “

8
ÿ

i“1

ż

Ai

hpyqdGpyq “

8
ÿ

i“1

PpAiq.

Therefore P is a probability measure.

We now show that P satisfies Definition 2.2 for fixed N . Let Y “ pY´N , YNq and

consider P̃N to be the conditional measure of pY´N |YN , Nq under P . Analogously, consider

G̃N to be the conditional measure of pY´N |YN , Nq under G. Since PN ! GN ! ν, we have

that

f

g
pyNq “

dP
dG

pyq “
dPN

dGN

pyNq
dP̃N

dG̃N

py´Nq “

dPN

dν
dGN

dν

pyNq
dP̃N

dG̃N

py´Nq (A.1)

“
ϕ

g
pyNq

dP̃N

dG̃N

py´Nq G-a.s. (A.2)

Since the RN derivative above does not depend on Y´N , we have that there exists

c P R` such that
dP
dG

pyq “
ϕ

g
pyNqc G-a.s. (A.3)

Therefore, ϕ “
f
c
G-a.s and, since

ş

RN ϕpyNqdν “
ş

RN fpyNqdν “ 1, we have that ϕ “ f

and dP̃N

dG̃N
py´Nq “ 1, G-a.s. This proves that P is a probability measure and satisfies

Definition 2.2 for fixed N .

(b) We now show the existence of the stochastic process pY,Nq defined in Definition

2.2. We decompose the PP N into p|N |, SNq, where |N | is the number of events from N

and SN is their respective locations. We have that |N | is defined on pN,BpNqq and SN is

defined on pR|N |,BpR|N |qq. We first show the the existence of the process pY, SNq, for all

fixed |N |.

If the integral
ż

Y
1rpy,SN qPAsdPN (A.4)

is BpR|N |q-mensurable, @A P BpR|N |q bBpYq, then Lemma 2.1 implies in the existence of

the joint measure of pY, SNq for all fixed |N |. In order to establish the mensurability of

A.4, we show that it is a continuous function of SN .
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Consider A “ Ay ˆ ASN
P BpYq b BpR|N |q. Hence

ż

Y
1rpy,SN qPAsdPN “

ż

Y
1rSNPASN

s1ryPAY sdPN

“ 1rSNPASN
s

ż

Y
1ryPAY s

f

g
pyNqdG

ď 1rSNPASN
s

ż

Y

f

g
pyNqdG “ 1rSNPASN

s.

This implies that there exists G-integrable mpyNq such that 1ryPAY s
f
g
pyNq ď mpyNq.

Furthermore, by hypothesis, f
g
pyNpSNqq is continuous in SN . Therefore, by the Dominated

Convergence Theorem and the continuity of Y psq in s, we have that

lim
nÑ8

ż

Y
1ryPAY s

f

g
pyNpsnqqdG “

ż

Y
lim
nÑ8

1ryPAY s

f

g
pyNpsnqqdG

“

ż

Y
1ryPAY s

f

g
pyNpsqqdG.

Since 1rSNPASN
s is BpR|N |q-mensurable and is continuous in SN (therefore BpR|N |q-mensurable),

we have that the integral in A.4 is BpR|N |q-mensurable, implying the desired result.

Once the existence of the process pY, SNq is established for each fixed |N |, it remains

to show that the joint process pY,Nq exists. In order to do that, it is enough to show that

the integral

ż

R|N |ˆY
1r|N |PA|N |s

1rsNPASN
s1ryPAY s

1

µpSq
dPNdSN (A.5)

is BpNq-measurable. Since N has a discrete marginal measure, it is enough to show that

the integral in A.5 is a real function of N . We have that
ż

R|N |ˆY
1r|N |PA|N |s

1rsNPASN
s1ryPAY s

1

µpSq
dPNdSN

“ 1r|N |PA|N |s

ż

R|N |

1

µpSq|N |
1rsNPASN

s

ż

Y
1ryPAY s

f

g
pyNqdGdSN

ď 1r|N |PA|N |s

ż

R|N |

1

µpSq|N |
1rsNPASN

s

ż

Y

f

g
pyNqdGdSN

“ 1r|N |PA|N |s

ż

ASN

1

µpSq
dSN ď 1,

which implies the desired result.

Proof of Corollary 2.1. The result is implied by the fact that the two uses of Lemma 2.1

in the proof of Theorem 2.1 depends only on the σ-algebra of N , which is the same for

both the homogeneous and inhomogeneous cases.
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Proof of Corollary 2.2. The result follows from equations pA.1q and pA.3q in the proof of

Theorem 2.1 and

dP
dG

pN, Y q “
dP
dG

pNq
dP
dG

pY |Nq “ 1
f

g
pYNq “

f

g
pYNq.

Proof of Corollary 2.3.

DKLpP ∥ Gq “

ż

log

ˆ

dP
dG

˙

dP “ EN

$

&

%

ESN

»

–EYN

¨

˝log

¨

˝

f

g
pYNq

˛

‚

˛

‚

fi

fl

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

N

,

.

-

“

8
ÿ

N“0

e´λµpSqrλµpSqsN

N !

ż

SN

»

–

ż

YN

log

¨

˝

f

g
pYNq

˛

‚fpYNqdYN

fi

fl

ˆ

¨

˝

1

µpSq

˛

‚

N

dSN

“

8
ÿ

N“1

e´λµpSqλN

N !

ż

SN

ż

YN

log

»

–

f

g
pYNq

fi

fl fpYNqdYNdSN

Proof of Theorem 2.2. For each Yn,r, define 9Sn as the k-vector with the closest locations

to each point in r. We have that, for all ϵ ą 0, when λn Ò 8, the probability that at least

one point of 9Sn is inside each open ball of radius ϵ around each location of r - converges

to 1. Consider, without loss of generality, that ϵ is small enough so that all the k balls

are disjoint. This implies that the probability measures on the points inside each ball are

independent Poisson processes with rate λ. Therefore, the probability above is given by
¨

˝1 ´
pλπϵ2q0 expt´λπϵ2u

0!

˛

‚

k

λÑ8
ÝÝÝÝÝÑ 1.

This implies that 9Sn
p

ÝÝÑ r and, given the continuity of the covariance function of the

base GP, CorpYn,r, Y 9Sn
q

p
ÝÝÑ 1

r

, where 1
r

is a k by k matrix of 1’s.

We also have that

lim
nÑ8

Pp|Yn,r ´ Y 9Sn
| ď ϵq

“ lim
nÑ8

ż

Rk

Pp|Yn,r ´ Y 9Sn
| ď ϵ | YSN

“ ySN
qfpySN

qdySN
, (A.6)
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where, from Definition 2.2, pYn,r | YSN
q „ Nppµ,Σq with µ “ µ1 `Σ12Σ

´1
22 pYSn ´µ1q and

Σ “ Σ11 ´ Σ12Σ
´1
22 Σ21. The fact that CorpYn,r, Y 9Sn

q
p

ÝÝÑ 1
r

implies that Σ
p

ÝÝÑ 0
r

and

µ
p

ÝÝÑ Y 9Sn
entry-wise. Thus, the Dominated Convergence Theorem implies that

lim
nÑ8

Pp|Yn,r ´ Y 9Sn
| ď ϵq

“

ż

Rk

lim
nÑ8

Pp|Yn,r ´ Y 9Sn
| ď ϵ | YSN

“ ySN
qfpySN

qdySN
“

ż

Rk

1fpySN
qdySN

“ 1.

Therefore |Yn,r ´ Y 9Sn
|

P
ÝÝÝÑ 0.

Now let fn and fr be the pdf of Y 9Sn
and Yu under the f distribution. Note that

fnpyq “
ş

Rk fnpy | SN “ sNqfpsNqdsN “ ESN
rfnpy | SNqs. Hence, we have that

fnpyq ´ fpyq “ ESN
rfnpy | SNq ´ fpyqs “ ESN

rdpSN , rqs, (A.7)

where dpSN , rq is a continuous function of pSN , rq. Since 9Sn
p

ÝÝÑ r, we have that

dpSN , rq
p

ÝÝÑ 0. Now, because dpSN , rq is uniformly bounded, it is also uniformly inte-

grable and, by Theorem 1.8 from Shao (2003), we have that ESN
rdSN ,rs ÝÝÑ 0. Therefore,

Y 9Sn,f
d

ÝÝÑ Yr,f , where Y 9Sn,f
and Yr,f are the r.v.’s with pdf f at 9Sn and r respectively.

Finally, using all the three results above and by Slutsky’s Theorem (see Resnick,

2013, Theorem 8.6.1 (a)), we have that |Yn,r ´ Y 9Sn
|

P
ÝÝÝÑ 0 and Y 9Sn,f

d
ÝÝÑ Yr,f implies

Yn,r
d

ÝÝÝÑ Yr,f . This concludes the proof.

Proof of Proposition 2.1. We have the marginal density of a Ys, for some finite set of

locations s is given by

ppYu | Θq “

ż

ppYu | YN , NqfpYN | NqppNqdPpN,YNq (A.8)

Now take Ys and Ys1 for two symmetric sets s and s1 w.r.t. the Poisson process N .

Then, by the symmetry of the PP measure of N and the stationarity and isotropy of the

base GP and f , we have that, for each n P ΩN , there exists n1 P ΩN such that ppnq “ ppn1q,

fpYn | nq “ fpYn1 | n1q and ppYs | Yn, nq “ ppYs1 | Yn1 , n1q. Therefore, given the equality in

A.8, we have that ppYs | Θq “ ppYs1 | Θq.
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Covariance of Y .

CovpY1, Y2q “ EpY1Y2q ´ EpY1qEpY2q

“ EYN
rEY1Y2|YN

pY1Y2|YNqs ´ EYN
rEY1|YN

pY1|YNqsEYN
rEY2|YN

pY2|YNqs

“ EYN
rCovpY1, Y2|YNqs ` EYN

rEY1|YN
pY1|YNqEY2|YN

pY2|YNqs

´ EYN
rEY1|YN

pY1|YNqsEYN
rEY2|YN

pY2|YNqs

“ EYN
rCovpY1, Y2|YNqs ` CovrEY1|YN

pY1|YNq,EY2|YN
pY2|YNqs

“ EYN
rCovpY1, Y2|YNqs

` Covrµ1 ` Σ1NΣ
´1
NNpYN ´ µNq,µ2 ` Σ2NΣ

´1
NNpYN ´ µNqs

“ EYN
rCovpY1, Y2|YNqs ` Σ1NΣ

´1
NNCovpYN , YNqpΣ2NΣ

´1
NNq

J

“ EYN
rCovpY1, Y2|YNqs ` Σ1NΣ

´1
NNΣNN,fΣ

´1
NNΣ

J
2N

“ EN rEYN
rCovpY1, Y2|YNq|N s ` EN rΣ1NΣ

´1
NNΣNN,fΣ

´1
NNΣ

J
2N |N s

where ΣNN,f is the YN covariance function under the f ’s distribution and since Yi|YN „

Nni
pµi ` ΣiNΣ

´1
NNpYN ´ µNq,Σii ´ ΣiNΣ

´1
NNΣNiq for i “ 1, 2.

If the covariance of the 1f 1 is the same as the base GP, then we have the following

representation, when N is fixed.

CovpY1, Y2q “ EYN
rCovpY1, Y2|YNqs ` Σ1NΣ

´1
NNΣ

J
2N

Now, considering the case where the covariance is isotropic.

CovpY1, Y2q “ EYN
rCovpY1, Y2|YNqs

`

〈 N
ÿ

i“1

ρp|s1 ´ 9si|qρ
´1
ij

〉N

j“1
ΣNN,f

«〈 N
ÿ

i“1

ρp|s2 ´ 9sj|qρ
´1
ij

〉N

i“1

ffJ

“ EYN

#

ρ1,2 ´

N
ÿ

j“1

«

N
ÿ

i“1

ρp|s1 ´ 9si|qρ
´1
ij ρp|s2 ´ 9sj|q

ff+

`

N
ÿ

l“1

«

N
ÿ

k“1

N
ÿ

i“1

ρp|s1 ´ 9si|qρ
´1
ik ρkl,f

N
ÿ

j“1

ρ´1
lj ρp|s2 ´ 9sj|q

ff

“ EN

#

ρ1,2 ´

N
ÿ

j“1

«

N
ÿ

i“1

ρp|s1 ´ 9si|qρ
´1
ij ρp|s2 ´ 9sj|q

ff
ˇ

ˇ

ˇ

ˇ

ˇ

N

+

` EN

#

N
ÿ

l“1

«

N
ÿ

k“1

N
ÿ

i“1

ρp|s1 ´ 9si|qρ
´1
ik ρkl,f

N
ÿ

j“1

ρ´1
lj ρp|s2 ´ 9sj|q

ffˇ

ˇ

ˇ

ˇ

ˇ

N

+

.
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A.2 MCMC Simulation

The following results come from the first scenario presented in the MCMC simulation,

where f has the following parameters Copula SNmpµSN ,ΣSN , γ “ 0.75q with PP(λ “ 1)

and n “ 200.

Convergence diagnostic for the mean of the vector YN .
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Figure A.1: Convergence diagnosis of the YN mean for the model SNγ“0.75;λ “ 1;n “ 200

for one replication.

Convergence diagnostic for the number of the points N .

Convergence diagnostic for the block N , parameters µ, σ2, ζ and γ.
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Figure A.2: Convergence diagnosis of the number of the points N for the model

SNγ“0.75;λ “ 1;n “ 200 for one replication.

A.3 MCMC Application

Convergence results referring to the MCMC application using ’f ’ as Skew-Normal.

Convergence diagnostic for the mean of the vector YN .

Convergence diagnostic for the number of the points N .

Convergence diagnostic for the block N , parameters µ, σ2, ζ and γ.
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Figure A.3: Convergence diagnosis of the parameter µ for the model SNγ“0.75;λ “ 1;n “

200 for one replication.
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Figure A.4: Convergence diagnosis of the parameter σ2 for the model SNγ“0.75;λ “ 1;n “

200 for one replication.
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Figure A.5: Convergence diagnosis of the parameter ζ for the model SNγ“0.75;λ “ 1;n “

200 for one replication.
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Figure A.6: Convergence diagnosis of the parameter γ for the model SNγ“0.75;λ “ 1;n “

200 for one replication.



65

0 10 20 30 40

0.0
0.2

0.4
0.6

0.8
1.0

0 2000 6000 10000

5
10

15
20

25
30

valo
r_tr

ace

Figure A.7: Convergence diagnosis of the YN .
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Figure A.8: Convergence diagnosis of the number of the points N .
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Figure A.9: Convergence diagnosis of the parameter µ.
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Figure A.10: Convergence diagnosis of the parameter σ2.
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Figure A.11: Convergence diagnosis of the parameter ζ.
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Figure A.12: Convergence diagnosis of the parameter γ.
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