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RESUMO

Nessa tese é introduzido um novo paradigma de aprendizagem de parâmetros sequencial em
modelos de Markov ocultos, capaz de acomodar vários outros algoritmos encontrados na lit-
eratura como casos particulares. Essa generalidade é possı́vel principalmente devido à um
formalismo alternativo para regularização nesses modelos. Para ilustrar a flexibilidade do novo
paradigma, foram desenvolvidos três novos algoritmos, incluindo uma versão melhorada e com-
pletamente adaptada do clássico filtro de Liu e West. Considerando também esquemas de
reamostragem mais eficientes, é ilustrado que em alguns casos o desempenho inadequado de
alguns algoritmos de aprendizagem de parâmetros sequencial previamente observado na liter-
atura pode em sua maioria ser atribuı́do à degeneração de caminhos inerente à esses métodos,
degeneração essa que a metodologia proposta ativamente busca mitigar. Destaca-se também que
é fornecida evidência de que os algoritmos para aprendizagem de parâmetros discutidos aqui
podem fornecer estimativas compatı́veis com algoritmos computacionalmente intensivos e que
compõem o estado da arte dessa literatura, como Monte Carlo via cadeias de Markov baseados
em métodos de partı́culas.

Palavras-chave: Inferência Bayesiana; Métodos de Monte Carlo sequenciais; Modelos de
Markov ocultos.



ABSTRACT

In this thesis we introduce a novel framework for sequential parameter learning in Hidden
Markov models capable of accommodating several other algorithms found in the literature as
special cases. This generality is achieved mainly by providing an alternative formalism to
the role of regularization in this setting. In order to illustrate the flexibility allowed by this
framework, we develop three novel algorithms, including an improved and fully-adapted version
of the celebrated Liu and West filter. By also considering more efficient resampling schemes, we
illustrate that in some cases the poor performance of sequential parameter learning algorithms
previously observed in the literature can mostly be attributed to the inherent path degeneracy in
these methods, which we actively aim to mitigate. Crucially, we also provide evidence that the
parameter learning algorithms discussed here can provide estimates that are compatible with
state-of-the-art computationally intensive algorithms, such as particle Markov Chain Monte
Carlo.

Keywords: Bayesian inference, Sequential Monte Carlo methods, Hidden Markov models.
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Capı́tulo 1

Introduction

In this thesis we deal with inference for Hidden Markov Models (HMMs), also known
as state space models. These are discrete-time stochastic processes essentialy composed of a
Markov Chain that can only be observed via another process (hence the name). Although the
term “Hidden Markov model” is typically reserved for the cases in which the state space is finite
and the term “state space model” to refer to those in which the state space is continuous and
obey a certain type of Markov transition, here we will follow the tradition of Cappé et al. (2005)
and use the term Hidden Markov model to denote both of these objects, as well as even more
general ones as seen later on.

Although deceptively simple in their formulation, HMMs can exhibit a surprising range
of behaviors, being suitable to problems ranging from genetics to economics. Perhaps the most
classical application of this type of model is tracking a moving object subject to measurement
error. An important and quite famous case of this instance is the navigation system developed
for the Apollo project (Grewal and Andrews, 2010), which relied on the celebrated Kalman filter
(Kalman, 1960).

Another surprising fact regarding HMMs is how difficult performing inference for them
really is in the general case. Historically, substantial developments in inference for these
models could only be made by imposing several restrictions on the process, making the ensuing
results particular only to a specific subset of cases. Despite this, the corresponding procedures
have found many fruitful and important areas of application, such as genetics for the Baum-
Welch algorithm (starting with Baum and Petrie, 1966, which requires a finite state space)
and tracking for the aforementioned Kalman filter (Kalman, 1960, which requires linear and
Gaussian components).

With the advent of more powerful computers, however, the field of inference for Hidden
Markov models naturally turned from analytical to simulation-based techniques, which can in
principle be applied to any general HMM. Amongst these, the first widely successful method
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is the Bootstrap Filter of Gordon et al. (1993), which really set the tone for the subsequent
developments in the field; another landmark algorithm is the Auxiliary Particle Filter of Pitt
and Shephard (1999). Both techniques fall under the Sequential Monte Carlo (SMC) class of
methods, also known as particle filters. That particular decade saw many theoretical and applied
contributions to SMC, many of which are contained in the classical review volume by Doucet
et al. (2001).

The main defining feature of SMC methods is, as the name implies, that they are
sequential. They are therefore naturally suitable for performing inference in HMMs, exploiting
the inherent sequential structure of these models in order to yield very efficient results. This is
in stark contrast to non-sequential algorithms such as the numerically-intensive Markov Chain
Monte Carlo algorithms, which is mostly why SMC algorithms have become so popular in
practice.

Most of the early SMC methods for HMMs focused entirely on performing inference
for the underlying Markov chain, also known as the states of the model. However, HMMs are
frequently indexed by a set of “static” parameters (this naming convention is used to distinguish
these from the components of the hidden chain, which are often thought of as the “dynamic”
parameters of the model), and inference for these have been the main focus of the literature for
the last two decades.

Essentially, there are two main approaches for dealing with parameter inference in
HMMs: offline (or batch) techniques, in which data come in “batches”, i.e. in blocks at a time,
and everything has to be recomputed everytime a new block comes in; and online techniques, in
which data comes in sequentially and inference is performed on-the-fly. In a Bayesian inference
paradigm, the latter are also given the name of sequential parameter learning techniques.

To give an example of how diverse and fruitful the literature on sequential parame-
ter learning techniques is, we highlight the works of Kitagawa (1998), Andrieu et al. (1999),
BøLviken et al. (2001), Liu and West (2001), Gilks and Berzuini (2001), Chopin (2002), Fearn-
head (2002), Storvik (2002), Vercauteren et al. (2005), Polson et al. (2008), Flury and Shephard
(2009), Carvalho et al. (2010), Chopin et al. (2013) and Fulop and Li (2013). Collectively, the
variety of fields in which these techniques are used to deal with problems arising in empirical
settings also illustrate their effectiveness. Examples range from tracking (Wang et al., 2009;
Ghaeminia et al., 2010; Liang and Piché, 2010; Nemeth et al., 2013) to epidemiology (Rodeiro
and Lawson, 2006; Dukic et al., 2012; Lin and Ludkovski, 2014; Liu et al., 2015), ecology
(Peters et al., 2010), econometrics (Golightly and Wilkinson, 2006; Carvalho and Lopes, 2007;
Fulop and Li, 2013), finance (Yümlü et al., 2015; Jacquier et al., 2016; Warty et al., 2018;
Virbickaitė et al., 2019) and even psychometrics (Reichenberg, 2018).

Popular and efficient as they might be, however, sequential parameter learning methods
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suffer from the unavoidable problem of path degeneracy (Andrieu et al., 2005). Path degeneracy
mostly stems from inefficient resampling (resampling is an integral part of SMC) and poor (some
of them even having nonvanishing asymptotic biases) rules for moving the parameters around
in their space. As noted as early as Andrieu et al. (1999) and by several subsequent works in
the literature (e.g. Andrieu et al., 2005; Chopin et al., 2010; Lopes and Tsay, 2011; Prado and
Lopes, 2013; Kantas et al., 2015), path degeneracy is identified as the main culprit for the poor
performance of sequential parameter learning in most settings. Typically, however, no further
effort is made to improve upon this behavior.

Our main goal in this thesis is to provide a general framework for parameter learning
capable of accommodating several of the methods found in the literature as particular cases.
Within this unified framework, we explore the performance of methods that already exist and
some of which we also propose here. By actively attempting to reduce path degeneracy in the
ensuing algorithms, we also provide evidence that they can then perform quite well in practice,
providing compatible results with state-of-the-art numerically intensive methods.

This thesis is organized as follows: Chapters 1 and 2 contain a formalization of the main
concepts and properties regarding HMMs and essential results on state inference needed for a
proper understanding of the core material. Then, Chapter 3 on parameter inference contains our
main contributions and original research. Chapter 4 contains simulation-based experiments and
numerical results that illustrate the effectiveness of our methods in practice while providing a
further contribution in their own right, and Chapter 5 contains the concluding remarks.

1.1 Hidden Markov Models

Let (Ω,F ,Pθ) be a probability space, where Pθ is in a parametric family P = {Pθ : θ ∈
Θ}. We denote by p any generic probability density of Pθ with respect to a suitable sigma-finite
dominating measure and by z1:k the sequence (z1, . . . , zk) for positive integer k. As it is common
practice in the literature, upper and lowercase respectively are used here to distinguish random
variables from their realized values, e.g. X(ω) = x for a particular ω ∈ Ω.

Definition 1.1.1. A state space or hidden Markov model (HMM) is a discrete-time stochastic
process (Xt, Yt)t≥0 indexed by θ ∈ Θ and taking values in X × Y such that (Xt)t≥0 is an
unobserved Markov process and, for each t, the probability distribution of Yt|Xt depends only
on Xt.

The definition of a Markov process (the term Markov chain is also frequently used)
requires that, for t ≥ 1, the law of Xt|X1:t−1 depends only on Xt−1. That is,

p(xt|x1:t−1, θ) = p(xt|xt−1, θ) := f(xt|xt−1, θ), (1.1)
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. . . . . .Xt−1 Xt

Yt−1 Yt

θ

Figure 1.1: Graphical representation of a Hidden Markov model.

with ν(x0|θ) being the initial distribution1 of the chain, i.e. corresponding to X0. Informally,
the term “unobserved” (or “hidden”) is used here to point out that (Xt)t≥0 is a latent process,
i.e. not directly available for inference. Instead, inference about the model can only be made
through the measurements (more often simply referred to as observations) (Yt)t≥0.

The rest of Definition 1.1.1 requires that, for each t, Yt|Xt depend only onXt. In essence,
this means that

p(yt|xt, x1:t−1, y1:t−1, θ) = p(yt|xt, θ) := g(yt|xt, θ). (1.2)

The density function g is sometimes known as the conditional likelihood of Yt givenXt, since it
can be interpreted as the likelihood of Xt assuming a certain value xt given the observed value
Yt = yt. From here on, we will sometimes recall equation (1.2) as the conditional independence
property that the sequence (Yt)t≥0 possesses in HMMs; see item 1.5 in Proposition 1.1.1 below
for more details.

An alternative representation of an HMM is in graph form, more specifically as a directed
and acyclic graph; see Figure 1.1. This alternative representation allows us to see intuitively
how the model evolves over time, and neatly summarizes the serial dependence across (Xt)t≥0,
the conditional independence of (Yt)t≥0 and the global dependence on θ.

1Although ν is actually the probability density function of Pθ with respect to the sigma-finite dominating
measure dx0, it is a common practice in the literature to use the terms density and distribution interchangeably. We
feel that this adoption, along with some abuses in notation such as using X0 ∼ ν to denote that X0 has a distribution
with density ν, enhances the flow of the text, and is mantained here except in cases where a clear distinction cannot
be extracted from the context.
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Before moving on to further discuss state and parameter inference, we summarize in
Proposition 1.1.1 some important properties concerning HMMs that routinely appear throughout
the rest of the text.

Proposition 1.1.1. Let (Xt, Yt)t≥0 be a hidden Markov model according to Definition 1.1.1.
Then

(i) The sequence (Xt)t≥0 admits the predictive decomposition2

p(x0:t|θ) = ν(x0|θ)
t∏︂

k=1

f(xk|xk−1, θ). (1.3)

(ii) For t ≥ 1 and 0 ≤ k ≤ t− 1, Xt|Xk:t−1, Yk:t−1 =
d Xt|Xt−1 (here “=d” denotes equality

in distribution), i.e.
p(xt|xk:t−1, yk:t−1, θ) = f(xt|xt−1, θ). (1.4)

(iii) Given (Xt)t≥0, the sequence (Yt)t≥0 is conditionally independent, i.e.

p(y0:t|x0:t, θ) =
t∏︂

k=0

g(yk|xk, θ). (1.5)

(iv) The process (Xt, Yt)t≥0 is jointly Markovian, i.e. for t ≥ 1,

p(xt, yt|x1:t−1, y1:t−1, θ) = p(xt, yt|xt−1, yt−1, θ). (1.6)

Proof.

(i) The predictive decomposition of the law of X0:t is

p(x0:t|θ) = p(x0|θ)
t∏︂

k=1

p(xk|x0:k−1, θ).

Now, ν(x0|θ) ≡ p(x0|θ) is the initial distribution of (Xt)t≥0. Hence, by the Markov
property (1.1) of this sequence we have that each p(xk|x0:k−1, θ) = p(xk|xk−1, θ) ≡

2A predictive decomposition is just a useful way of writing the joint density of a sequence Z0:k as the product
of its conditional densities. That is,

p(z0:k) = p(z0)
p(z0:1)

p(z0)

p(z0:2)

p(z0:1)
· · · p(z0:k)

p(z0:k−1)
= p(z0)

k∏︂
j=1

p(z0|z0:j−1),

which follows by simple induction and the definition of a conditional density, i.e. p(zj |z0:j−1) =
p(zj , z0:j−1)/p(z0:j−1) = p(z0:j)/p(z0:j−1). Although we have assumed a specific ordering here, it is clear
the the decomposition holds for any combination of disjoint subsets of Z0:k.
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f(xk|xk−1, θ), yielding the desired result

p(x0:t|θ) = ν(x0|θ)
t∏︂

k=1

fθ(xk|xk−1, θ).

(ii) We can rewrite the probability density of Xt|Xk:t−1, Yk:t−1 as

p(xt|xk:t−1, yk:t−1, θ) =
p(yk:t−1|xt, xk:t−1, θ)p(xt|xk:t−1, θ)p(xk:t−1|θ)

p(yk:t−1|xk:t−1, θ)p(xk:t−1|θ)
.

Since by (1.2) each Yk depends only on Xk, we have that p(yk:t−1|xt, xk:t−1, θ) =

p(yk:t−1|xk:t−1, θ). Further, from the Markov property (1.1), we have p(xt|xk:t−1, θ) =

f(xt|xt−1, θ) and, therefore, that

p(xt|xk:t−1, yk:t−1, θ) =
p(yk:t−1|xk:t−1, θ)f(xt|xt−1, θ)p(xk:t−1|θ)

p(yk:t−1|xk:t−1, θ)p(xk:t−1|θ)
= f(xt|xt−1, θ),

as required.

(iii) The joint density of Y0:t|X0:t can be factored as

p(y0:t|x0:t, θ) = p(y0|x0:t, θ)p(y1|y0, x0:t, θ) · · · p(yt|y0:t−1, x0:t, θ)

= g(y0|x0, θ)g(y1|x1, θ) · · · g(yt|xt, θ) =
t∏︂

k=0

g(yk|xk, θ),

which again follows from the fact that each Yk depends only on Xk, established in (1.2).

(iv) Since the density of (Xt, Yt|Xt−1, Yt−1) admits the decomposition

p(xt, yt|xt−1, yt−1, θ) = p(yt|xt, xt−1, yt−1, θ)p(xt|xt−1, yt−1, θ),

which we know from (1.2) and item (ii) to be equal to g(xt|yt, θ) · f(xt|xt−1, θ), it suffices
to show that p(xt, yt|x0:t−1, y0:t−1) = g(xt|yt, θ) · f(xt|xt−1, θ). First, notice that

p(xt, yt|x0:t−1, y0:t−1, θ) =
p(y0:t|x0:t, θ)p(x0:t|θ)

p(y0:t−1|x0:t−1, θ)p(x0:t−1|θ)
.

Therefore, by items (i) and (iii),

p(xt, yt|x0:t−1, y0:t−1, θ) =

∏︁t
k=0 g(yk|xk, θ)∏︁t−1
k=0 g(yk|xk, θ)

ν(x0|θ)
∏︁t

k=1 f(xk|xk−1, θ)

ν(x0|θ)
∏︁t−1

k=1 f(xk|xk−1, θ)
.

This ratio is equal to g(xt|yt, θ) · f(xt|xt−1, θ), completing the proof.
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As a technical note, it must be pointed out that throughout the text we implicitly assume
that all the conditional probability distributions we deal with always exist. Although in a more
general setting this assumption can be dropped (Cappé et al., 2005), the tools required to provide
a consistent definition of HMMs in this case are considerably more involved than the ones
adopted here, and for ease of exposition we shall therefore avoid them.

In closing this section, note that since Pθ is in a parametric family and since the law of
each Yt depends only on the corresponding state Xt, both θ and Xt can be thought of as model
parameters in a general sense, with the Markov chain’s states (Xt)t≥0 typically being referred
to as dynamic parameters and θ being referred to as static parameters. This naming convention
reflects the fact that θ is a fixed (albeit usually unknown) quantity, whereas the states naturally
vary over time. Hereafter we reserve the terms state inference and parameter inference to
respectively distinguish between inference for the states and inference for the static parameters.
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Capı́tulo 2

State Inference

Upon observing a sample Y1:n = y1:n from an HMM, we usually want to infer about the
sequence of hidden states X0:n and static parameter values θ that are most consistent with this
data, i.e. performing state and parameter inference, respectively. There are however instances
where only state estimation is required, as in e.g. traditional applications in physics and biology,
where θ represents a set of known physical and/or chemical constants. In this chapter, we will
concern ourselves only with such chases: performing state inference conditional on complete
knowledge of θ. Most of the material discussed here also serve as a building block for the
subsequent parameter inference techniques we discuss in Chapter 3.

Now, state inference is usually classified into one of three main types, according to the
level of information available at time t:

(i) Prediction: computing Xt|Y1:t−1

(ii) Filtering: computing Xt|Y1:t

(iii) Smoothing: computing Xt|Y1:n

We will start our presentation of state inference techniques with the filtering problem,
since prediction and smoothing can be derived directly from the filtering solution. Since θ
is assumed to be fixed and known, throughout this chapter we will omit dependence on it to
alleviate notation. Also, note that although no explicit statistical inference paradigm is assumed
for performing state inference (since it can essentially be framed as a probabilistic problem),
traditionally the terminology developed for it is almost entirely Bayesian in nature.

2.1 Filtering

State filtering in HMMs consists in computing the marginal posterior distribution p(xt|y1:t)
for each t. Conceptually, this is a simple problem since if we have the joint posterior distribution
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of X0:t given1 Y1:t = y1:t we can simply integrate it over the image set of X0:t−1, yielding

p(xt|y1:t) :=
∫︂
X t

p(x0:t|y1:t)dx0:t−1. (2.1)

However, the problem with (2.1) is that in general neither p(x0:t|y1:t) nor its integral over X t are
available analytically. Moreover, since the dimension of the problem increases with t, techniques
that directly approximate the integral in (2.1) (such as quadrature) usually perform very poorly
as a result of the so-called curse of dimensionality phenomenom (see e.g. Asmussen and Glynn,
2007, p. 264, Liu, 2008, p. 2 and Robert and Casella, 2004, p. 136.).

An ingenious solution to the filtering problem, first made practical by Gordon et al.
(1993) is to use Monte Carlo (MC) simulation techniques (see Appendix A for a brief review).
More specifically, we rely on a subset of MC known generally as Sequential Monte Carlo (SMC),
or particle filters, which are essentially importance sampling (IS) methods which fully exploit
the sequential nature of HMMs in order to obtain substantial efficiency gains over competing
alternatives.

As in the general IS case (see Section A.2), application of SMC simply requires us to be
able to produce N random draws/particles X i

0:t|Y1:t, i = 1, . . . , N from a proposal distribution
q(x0:t|y1:t) and evaluate, up to proportionality, the corresponding unnormalized and normalized
importance weights πit ∝ p(xi0:t|y1:t)/q(xi0:t|y1:t) and wit := πit/

∑︁N
j=1 π

j
t . Since clearly wit > 0

for all i and
∑︁N

i=1w
i
t = 1, the weighted sample (X i

0:t, w
i
t)
N
i=1 forms a discrete distribution on

the probability space generated by the HMM (Xt, Yt)t≥0 with probability measure denoted by
P̂, i.e. such that P̂(X0:t = xi0:t) = wit for each i and t.

The discrete measure P̂ is also absolutely continuous with respect to the same sigma-
finite measure dominating P itself. Therefore, by the Radon-Nikodym theorem, it has a density
with respect to this measure that we will denote by p̂. It is easy to see that

p̂(x0:t|y1:t) :=
N∑︂
i=1

witδxi0:t(dx0:t), (2.2)

since by definition the probability (under P̂) of X0:t being equal a single particle xj0:t is given by
wjt , which is equal to

P̂(X0:t = xj0:t) =

∫︂
xj0:t

N∑︂
i=1

witδxi0:t(dx0:t)dx0:t = wjt .

Here, δa(dx) denotes a generic Dirac measure (or point mass) of an increment dx at the point a.

1In this work we always assume that only Y1:t is observed, so that inference for X0 is based on its prior
ν(x0|θ). This is equivalent to treating Y0 as arbitrary or as the prior information about the model itself, so that e.g.
p(x0|y0, θ) = ν(x0|θ).
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We commonly refer to p̂(x0:t|y1:t) as the Monte Carlo estimate or particle approximation
to the target density p(x0:t|y1:t). As in (2.1), the corresponding approximation to the filtering
density is obtained by simply integrating over the joint approximation p̂(x0:t|y1:t) over X0:t−1,
i.e.

p̂(xt|y1:t) :=
∫︂
X t

p̂(x0:t|y1:t)dx0:t−1

=

∫︂
X t

N∑︂
i=1

witδxi0:t(dx0:t)dx0:t−1

=

∫︂
X t

N∑︂
i=1

witδxit(dxt)δxi0:t−1
(dx0:t−1)dx0:t−1

=
N∑︂
i=1

witδxit(dxt)

∫︂
X t

δxi0:t−1
(dx0:t−1)dx0:t−1

=
N∑︂
i=1

witδxit(dxt). (2.3)

Note that from the second to the third equations above we have used the fact that any two point
masses are always disjoint, i.e. δ(a,b)(x, y) = δa(x) · δb(y). The interchangeability of sums
and integrals here is trivially justified by the fact that the sums are taken over a finite index
1 ≤ i ≤ N .

2.1.1 Sequential Importance Sampling

We now turn to the problem of how to produce draws from p(x0:t|y1:t) and evaluate the
corresponding importance weights πt := π(x0:t, y1:t) = p(x0:t|y1:t)/q(x0:t|y1:t). The first (and
simplest) of the methods we explore here is aptly named Sequential Importance Sampling, or
SIS for short.

As its name implies, SIS is an algorithm which is sequential in nature, enabling it to
exploit the natural Markovian structure of HMMs in order to obtain efficiency gains both when
sampling the particles and computing their weights. More precisely, in SIS we assume that the
proposal distribution satisfies the following assumption.

Assumption 2.1.1 (SIS). Under q, Yt|(X0:t−1, Y1:t−1) is equal in distribution to Yt|Y1:t−1.

A direct implication of the SIS Assumption 2.1.1 is that we can decompose the proposal
distribution as

q(x0:t|y1:t) =
q(x0:t, y1:t)

q(y1:t)

=
q(xt, x0:t−1, yt, y1:t−1)

q(yt, y1:t−1)



24

=
q(xt|x0:t−1, yt, y1:t−1)q(yt|x0:t−1, y1:t−1)q(x0:t−1|y1:t−1)q(y1:t−1)

q(yt|y1:t−1)q(y1:t−1)

= q(x0:t−1|y1:t−1)q(xt|x0:t−1, y1:t)
q(yt|x0:t−1, y1:t−1)

q(yt|y1:t−1)

= q(x0:t−1|y1:t−1)q(xt|x0:t−1, y1:t)
q(yt|y1:t−1)

q(yt|y1:t−1)

= q(x0:t−1|y1:t−1)q(xt|x0:t−1, y1:t). (2.4)

Essentially, Assumption 2.1.1 means that X0:t|Y1:t =d {X0:t−1|Y1:t−1, Xt|(X0:t−1, Y1:t)}, i.e.
that the joint distribution of X0:t given Y1:t admits X0:t−1|Y1:t−1 and Xt|(X0:t−1, Y1:t) as its
marginals. In practice, this means that we can sample the entire path xi0:t by first sampling
xit ∼ q(xt|xi0:t−1, y1:t) and then setting xi0:t = (xit, x

i
0:t−1).

Now, the efficiency gains of being able to marginally sample xit conditional on its history
xi0:t−1 should be very clear: at each step, SIS requires that we perform only O(N) operations
instead of the O(tN) operations that we would usually require to sample the entire path xi0:t.
If we have a sample of n observations Y1:n = y1:n, SIS therefore requires a total of O(nN)

operations to sample the entire sequence of states xi0:n rather than the O(n2N) that would be
required if this was not done sequentially2.

Another efficiency gain made possible by Assumption 2.1.1 is in computing the im-
portance weights wt. In SIS, we can evaluate importance weights recursively time in O(N)

operations, again avoiding the O(tN) complexity required if this was not done sequentially. In
order to achieve this, first note that we can decompose the target distribution p(x0:t|y1:t) as

p(x0:t|y1:t) =
p(x0:t, y1:t)

p(y1:t)

=
p(xt, x0:t−1, yt, y1:t−1)

p(y1:t)

=
p(yt|xt, x0:t−1, y1:t−1)p(xt|x0:t−1, y1:t−1)p(x0:t−1|y1:t−1)p(y1:t−1)

p(yt|y1:t−1)p(y1:t−1)
.

Since by (1.2) Yt depends only on Xt, we have p(yt|xt, x0:t−1, y1:t−1) = g(yt|xt). Further,
item (ii) of Proposition 1.1.1 applied with k = 0 yields p(xt|x0:t−1, y1:t−1) = f(xt|xt−1) and,
therefore, that

p(x0:t|y1:t) = p(x0:t−1|y1:t−1)
f(xt|xt−1)g(yt|xt)

p(yt|y1:t−1)
. (2.5)

Combining equations (2.4) and (2.5), we therefore have a recursion for the unnormalized impor-

2The n2 term arises due to O(N) +O(2N) + · · ·+O(nN) = O(n2N), since the complexity when sampling
the full xi

0:t at each time step is O(tN).
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tance weights:

πt =
p(x0:t|y1:t)
q(x0:t|y1:t)

=
p(x0:t−1|y1:t−1)

q(x0:t−1|y1:t−1)

f(xt|xt−1)g(yt|xt)
p(yt|y1:t−1)q(xt|x0:t−1, y1:t)

= πt−1
f(xt|xt−1)g(yt|xt)

p(yt|y1:t−1)q(xt|x1:t−1, y1:t)
. (2.6)

Now, in general an analytical expression for p(yt|y1:t−1) is not available, thus making
pointwise evaluation of πt impossible. However, since this density does not depend on x0:t, it
can be essentially treated as a proportionality constant and “integrated out” by summing over the
importance weights of all the sampled particles, as shown in Section A.2. More specifically, let
πit := π(xi0:t|y1:t) = p(xi0:t|y1:t)/q(xi0:t|y1:t). We then define wit := πit/

∑︁N
j=1 π

j
t and, by (2.6),

this is equivalent to

wit =
πit∑︁N
j=1 π

j
t

=
πit−1

f(xit|xit−1)g(yt|xit)
p(yt|y1:t−1)q(xit|xi0:t−1,y1:t)∑︁N

j=1 π
j
t−1

f(xjt |x
j
t−1)g(yt|x

j
t )

p(yt|y1:t−1)q(x
j
t |x

j
0:t−1,y1:t)

=

1
p(yt|y1:t−1)

πit−1

f(xit|xit−1)g(yt|xit)
q(xit|xi0:t−1,y1:t)

1
p(yt|y1:t−1)

∑︁N
j=1 π

j
t−1

f(xjt |x
j
t−1)g(yt|x

j
t )

q(xjt |x
j
0:t−1,y1:t)

=
πit−1

f(xit|xit−1)g(yt|xit)
q(xit|xi0:t−1,y1:t)∑︁N

j=1 π
j
t−1

f(xjt |x
j
t−1)g(yt|x

j
t )

q(xjt |x
j
0:t−1,y1:t)

,

as required. It is therefore common practice to simply define πt up to a proportionality constant,
since this constant is going to be factored out either way when we compute the normalized
importance weights. In light of this fact, the weight recursion for πt then takes its usual form

πt ∝ wt−1
f(xt|xt−1)g(yt|xt)
q(xt|x0:t−1, y1:t)

, (2.7)

since wit−1 is itself proportional to πit−1 up to the constant 1/
∑︁N

j=1 π
j
t−1.

Starting at t = 0, SIS is initialized by sampling xi0 ∼ ν(x0) and setting πi0 ∝ 1 and
therefore wi0 = 1/N for i = 1, . . . , N . We then proceed sequentially by sampling xit ∼
q(xt|xi0:t−1, y1:t), computing πit ∝ wit−1f(x

i
t|xit−1)g(yt|xit)/q(xit|xi0:t−1, y1:t), normalizing wit =

πit/
∑︁N

j=1 π
j
t and setting xi0:t = (xit, x

i
0:t−1) for each i = 1, . . . , N , until t = n. The entire

procedure is summarized in Algorithm 2.1.
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Algorithm 2.1: Sequential Importance Sampling (SIS)
Initialization
for i = 1 to N do

draw xi0 ∼ ν(x0)
set πi0 ∝ 1

end
for i = 1 to N do

set wi0 = 1/N
end

Main recursion
for t = 1 to n do

for i = 1 to N do
draw xit ∼ q(xt|xi0:t−1, y1:t)
compute πit ∝ wit−1f(x

i
t|xit−1)g(yt|xit)/q(xit|xi0:t−1, y1:t)

end
for i = 1 to N do

compute wit = πit/
∑︁N

j=1 π
j
t

end
end

At the end of each step in Algorithm 2.1, we have weighted samples (xi0:t, wit)Ni=1 approx-
imately distributed according toX0:t|Y1:t, resulting in a final sample (xi0:n, win)Ni=1 approximating
the law of X0:n|Y1:n. With these samples, we can compute the approximation to any of the fea-
tures of the filtering density p(xt|y1:t). For example, if h is any P-integrable and B-measurable
function, a particle approximation to EP[h(Xt)|Y1:t] =

∫︁
X h(xt)p(xt|y1:t)dxt is the weighted

sum
∑︁N

i=1w
i
th(x

i
t), obtained by simply replacing p(xt|y1:t) with our SIS estimate p̂(xt|y1:t)

given by (2.3) in the corresponding integral. More precisely,

ÊP[h(Xt)|Y1:t] ≡ EP̂[h(Xt)|Y1:t]

:=

∫︂
X
h(xt)p̂(xt|y1:t)dxt

=

∫︂
X
h(xt)

N∑︂
i=1

witδxit(dxt)dxt

=
N∑︂
i=1

wit

∫︂
X
h(xt)δxit(dxt)dxt

=
N∑︂
i=1

with(x
i
t).

Now, although the moment approximation above was derived for a function of the filtered states
Xt|Y1:t, the same argument clearly holds for more general functions and functionals of the
entire path X0:t or any of its subsets by making the appropriate substitutions (e.g. by replacing
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p̂(xt|y1:t) with p̂(x0:t|y1:t) as given in (2.2) for the entire path). Under the same conditions
discussed in Section A.2, these moment estimators can also show to obey a law of large numbers
and a central limit theorem. In particular, as N → +∞, the density estimators (2.3) and (2.2)
approximate their targets p(xt|y1:t) and p(x0:t|y1:t) arbitrarily well.

Example 2.1.1 (Gaussian random walk). Consider the HMM defined by

Xt = Xt−1 + τUt, Ut ∼ N(0, 1), (2.8)

Yt = Xt + σVt, Vt ∼ N(0, 1), , (2.9)

where τ > 0 and σ > 0 are scalars, (Ut)t≥0 and (Vt)t≥0 are mutually and serially independent
(i.e. Ut ⊥⊥ Us, Vt ⊥⊥ Vs andUt ⊥⊥ Vs for all t and s) and the state prior is given byX0 ∼ N (0, τ 2),
where N (m, s2) denotes a Normal distribution with mean m and variance s2.

The model defined by (2.8-2.9) is known as a (Gaussian) random walk plus noise, since
it is essentially a (Gaussian) random walk (Xt)t≥0 that is only observed through (Yt)t≥0 with
(Gaussian) noise σVt. In the time series literature, this model is also known as the Local Level
Model (Durbin and Koopman, 2012).

Since both the state transition and observation equations 2.8 and (2.9) are linear and
Gaussian, the filtering distribution Xt|Y1:t can actually be computed exactly through the use of
the celebrated Kalman filter (hereafter referred to as KF; see Appendix B for details). Although
the existence of an analytical solution clearly eliminates the need for simulation-based techniques,
this example is still useful as a benchmark to evaluate these methods against.
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Figure 2.1: Simulated observations (black points) and states (green solid line) of the Gaussian
random walk plus noise model (2.8-2.9) with n = 200, τ 2 = 10, σ2 = 1.

Figure 2.1 contains the observations (black points) and states (green solid line) of a
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simulated series of the Gaussian random walk model with n = 200 and θ = (τ 2, σ2) = (10, 1).
For this particular series, the observations and states seem to be almost juxtaposed, which
happens because the states are very informative relative to the observations. One way to assess
this is by looking at the signal-to-noise ratio (SNR), which for this model is SNR = τ 2/σ2 =

10/1 = 10, implying that in this configuration the states are roughly 10 times more informative
than the observations.

Intuitively, a large SNR also implies that the filtering task in a model is simpler, since the
magnitude of the noise affecting observations of the underlying hidden states is then relatively
small. Figure 2.2 shows that this is indeed the case for the Kalman filter (Algorithm B.1,
initialized with Xν = 0 and Σν = 107), with the estimated states Xt|t (solid blue lines) closely
tracking the true states (black triangles). However, the same does not hold for the SIS estimates
x̂t :=

∑︁N
i=1w

i
tx
i
t (solid red lines) produced by Algorithm 2.1 with N = 10, 000 particles

and implemented with proposal distribution q(xt|x0:t−1, y1:t) = f(xt|xt−1) = dN (xt|xt−1, τ
2),

where dN (x|m, s2) denotes the density of a Gaussian random variable with mean m and
variance s2 evaluated at the point x. Although for the first time indices there is a certain
agreement between the SIS estimates and the true states, they quickly diverge from their target
as time goes by. Note that in this problem the weight recursion (2.7) is

πt ∝ wt−1
f(xt|xt−1)g(yt|xt)
q(xt|x1:t−1, y1:t)

= wt−1
f(xt|xt−1)g(yt|xt)

f(xt|xt−1)
= wt−1g(yt|xt),

where here g(yt|xt) = dN (yt|xt, σ2).
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Figure 2.2: True states (black triangles) and corresponding Kalman filter (solid blue line) and
SIS estimates (solid red line) for the Gaussian random walk plus noise model (2.8-2.9) with
n = 200, τ 2 = 10, σ2 = 1 and N = 10, 000.

Although here we could certainly improve the performance of SIS by considering “bet-
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ter” proposal distributions (in the sense of producing less variable importance weights – see
Proposition 2.1.1 and the accompanying discussion) or even by increasing the number of simu-
lated particles N , this does not address the root of the problem. We explain this more precisely
in Section 2.1.2 below.

2.1.2 Sequential Importance Resampling

Although it might seem surprising at first, the poor performance of SIS shown in Example
2.1.1 is actually well-appreciated in the literature of sequential Monte Carlo methods, and is
caused by what is known as the weight degeneracy or particle degeneracy (and sometimes simply
degeneracy) phenomenom.

As its own name implies, degeneracy can be understood as a collapse of the weighted
sample (xi0:t, w

i
t)
N
i=1 to a single particle xj0:t, with wjt = 1 and wit = 0 for all i ̸= j. Intuitively,

this happens because as t increases, the weight recursion (2.7) assigns to the larger importance
weights even larger importance weights, leading to the eventual collapse of the system.

Formally, the degeneracy of a particle system is defined as a property of the importance
weight sequence (πt)t≥0, namely that its unconditional variance is nondecreasing with time, i.e.
var(πt) ≥ var(πt−1) for all t ≥ 1. Although degeneracy has been noted earlier in the literature
(see e.g. Gordon et al., 1993), this property was first established by Kong et al. (1994) in the
form of the following theorem.

Theorem 2.1.1 (Kong, Liu and Wong, 1994). The importance weights (πt)t≥0 form a martin-
gale sequence in t. This implies that their variance is nondecreasing with time.

Proof. The original proof in Kong et al. (1994) assumes a particular choice of proposal distri-
bution (namely the optimal proposal discussed in Proposition 2.1.1), but the theorem is actually
valid for any density q satisfying Assumption 2.1.1. Although this has been noted at least as
early as Doucet et al. (2000), these authors do not provide an actual proof of this statement; we
therefore provide one below.

First, consider the importance weights as an explicit function of the random variables
(rather than their realized values) X0:t and Y1:t, that is, πt ≡ π(X0:t, Y1:t) = p(X0:t|Y1:t)/
q(X0:t|Y1:t). The definition of a martingale requires that (πt)t≥0 satisfy, for all t,

(i) EQ[|π(X0:t, Y1:t)|] < +∞,

(ii) EQ[π(X0:t, Y1:t)|Ft−1] = π(X0:t−1, Y1:t−1) =: πt−1,

where Ft−1 := σ(X0:t−1, Y1:t−1) is the sigma-algebra generated by (X0:t−1, Y1:t−1) and EQ

denotes expectation taken with respect to the measure Q, defined such that q is the density of Q.
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For the first part, from πt ≥ 0 for all t (since πt is the ratio of two probability densities,
which are Q-almost surely positive) clearly comes |πt| = πt. Without any loss of generality, we
can by construction assume that the proposal q is equal to p whenever it is considered only as a
function of the observations, i.e. q(y1:t) = p(y1:t), given that in practice this does not affect the
simulation of the particle system nor the computation of the importance weights. We then have
that

EQ[π(X0:t, Y1:t)] =

∫︂
X t+1×Yt

π(x0:t, y1:t)q(x0:t, y1:t)dx0:tdy1:t

=

∫︂
X t+1×Yt

p(x0:t|y1:t)
q(x0:t|y1:t)

q(x0:t, y1:t)dx0:tdy1:t

=

∫︂
X t+1×Yt

p(x0:t, y1:t)

p(y1:t)

q(y1:t)

q(x0:t, y1:t)
q(x0:t, y1:t)dx0:tdy1:t

=

∫︂
X t+1×Yt

p(x0:t, y1:t)

p(y1:t)

p(y1:t)

q(x0:t, y1:t)
q(x0:t, y1:t)dx0:tdy1:t

=

∫︂
X t+1×Yt

p(x0:t, y1:t)dx0:tdy1:t

= 1

< +∞.

For the second part, the weight recursion (2.6) implies that

π(X0:t, Y1:t) = π(X0:t−1, Y1:t−1)
f(Xt|Xt−1)g(Yt|Xt)

p(Yt|Y1:t−1)q(Xt|X0:t−1, Y1:t)
,

where once again we use uppercase to emphasize the fact that the functions are taken with
respect to the random variablesX0:t and Y1:t themselves rather than their realized values. Taking
the conditional expectation under Q of the above expression with respect to Ft−1 then yields

EQ[π(X0:t, Y1:t)|Ft−1] =

∫︂
X×Y

π(xt, X0:t−1, yt, Y1:t−1)q(xt, yt|X0:t−1, Y1:t−1)dxtdyt

= π(X0:t−1, Y1:t−1)

∫︂
X×Y

f(xt|Xt−1)g(yt|xt)
p(yt|Y1:t−1)q(xt|X0:t−1, yt, Y1:t−1)

q(xt, yt|X0:t−1, Y1:t−1)dxtdyt.

Now, we can decompose the integrating density as

q(xt, yt|X0:t−1, Y1:t−1) = q(xt|X0:t−1, yt, Y1:t−1)q(yt|X0:t−1, Y1:t−1)

= q(xt|X0:t−1, yt, Y1:t−1)q(yt|Y1:t−1),

where the last equality follows by the SIS Assumption 2.1.1. Since we assumed that p = q when
taken as a function of Y1:t, we also have q(yt|Y1:t−1) = p(yt|Y1:t−1), which allows us to further
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write
q(xt, yt|X0:t−1, Y1:t−1) = q(xt|X0:t−1, yt, Y1:t−1)p(yt|Y1:t−1).

Finally, substituting the above equation in the expression for EQ[π(X0:t, Y1:t)|Ft−1] yields

EQ[π(X0:t, Y1:t)|Ft−1] = π(X0:t−1, Y1:t−1)·

·
∫︂
X×Y

f(xt|Xt−1)g(yt|xt)
p(yt|Y1:t−1)q(xt|X0:t−1, yt, Y1:t−1)

q(xt|X0:t−1, yt, Y1:t−1)p(yt|Y1:t−1)dxtdyt

= π(X0:t−1, Y1:t−1)

∫︂
X×Y

f(xt|Xt−1)g(yt|xt)dxtdyt

= π(X0:t−1, Y1:t−1)

∫︂
X
f(xt|Xt−1)

(︃∫︂
Y
g(yt|xt)dyt

)︃
dxt

= π(X0:t−1, Y1:t−1)

∫︂
X
f(xt|Xt−1)dxt

= π(X0:t−1, Y1:t−1)

= πt−1,

where the interchange between the order of integrability above is trivially justified by the fact
that f(xt|Xt−1) and g(yt|xt) are both probability densities (since then both integrals are finite).

Having established that (πt)t≥0 is a martingale sequence, we can use the Law of Total
Variance (Proposition C.1.2) to decompose

varQ(πt) = varQ[EQ(πt|Ft−1)] + EQ[varQ(πt|Ft−1)]

= varQ(πt−1) + EQ[varQ(πt|Ft−1)]

≥ varQ(πt−1),

where the inequality follows from the fact that EQ[varQ(πt|Ft−1)] is an almost surely-Q nonneg-
ative variable (the expectation of a nonnegative random variable is always nonnegative, which
by definition is true for varQ(πt|Ft−1) above).

Theorem 2.1.1 establishes that degeneracy is unavoidable in SIS, and Example 2.1.1
illustrates that even in simple settings the algorithm can exhibit poor performance as a result. In
practice, degeneracy is the cost of the efficiency gains provided by the sequential nature of the
algorithm.

Now, degeneracy is fundamentally caused by the weight updating mechanism assigning
ever larger importance weights to an ever smaller number of particles. Heuristically, we could
circumvent this by simply replicating the particles with the largest weights at each SIS step. This
is indeed the most popular approach to dealing with degeneracy, and is known as resampling.
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Resampling essentially ensures (at least in probability) that the diversity3 of the resulting particle
set is then at least greater than or equal to what it would be without it. In essence, resampling is
just sampling (xi0:t)

N
i=1 with replacement from the discrete distribution (xi0:t, w

i
t)
N
i=1; hence the

name.

More formally, resampling is a procedure in which we draw, for each i = 1, . . . , N , a
number of copies ξit of the particle xi0:t with probabilitywit and then let (x̃i0:t)Ni=1 be the set formed
by the ξit copies of each xi0:t. In practice, this can be accomplished in several ways, of which
the most common one is multinomial resampling. As its name implies, this method consists of
drawing (ξit)

N
i=1 jointly from a Multinomial distribution with size N and probabilities (wit)Ni=1.

Basic properties of Multinomial random variables allow us to easily establish that this scheme
has both the desirable properties of unbiasedness and maintaining the size of the particle set
intact, given that the expected number of copies of each particle is exactly N ·wit and that in this
case (ξit)

N
i=1 satisfy

∑︁N
i=1 ξ

i
t = N . We will discuss these properties in more detail in Section

3.2.2.

Resampling is clearly an instance of perfect Monte Carlo sampling (see Section A.1),
since here both the proposal and the target are the same, i.e. the discrete distribution formed
by (wit)

N
i=1. An important (and often subtle) implication of this is that the resulting particle

set (x̃i0:t)N1=1 is now an equally weighted sample from p, i.e. with uniform importance weights
(1/N)Ni=1. In practice this means that after resampling the importance weights wit are “reset” to
wit ← 1/N . The SIS weight recursion (2.7) in this case becomes

πt ∝
1

N

f(xt|x̃t−1)g(yt|xt)
q(xt|x̃0:t−1, y1:t)

∝ 1 · f(xt|x̃t−1)g(yt|xt)
q(xt|x̃0:t−1, y1:t)

=
f(xt|x̃t−1)g(yt|xt)
q(xt|x̃0:t−1, y1:t)

. (2.10)

The technique corresponding to SIS with resampling is aptly named Sequential Importance
Resampling (SIR), and it is summarized in Algorithm 2.2. Note that the particles xi0 drawn from
the prior ν(x0) are not resampled, i.e. no resampling takes place at t = 0.

Now, although the resampled set (x̃i0:t, wit)Ni=1 produced by SIR is also an approximate
sample from p(x0:t|y1:t), it is usually not desirable to use this sample to directly estimate features
of the target density. Recalling that our SIS moment estimator of EP[h(Xt)|Y1:t] is given by∑︁N

i=1w
i
th(x

i
t), Carpenter et al. (1999) proved that the variance (under Q) of the corresponding

SIR estimator
∑︁N

i=1N
−1h(x̃it) is always larger than the variance of SIS-based estimator, with

the relative difference being as large as 100% in the case where (xi0:t)
N
i=1 is already equally

weighted prior to resampling. This basically occurs due to the fact that resampling is in itself
a stochastic procedure, and thus inherently introduces additional Monte Carlo variance in the

3Most of the research on resampling methods has its roots in evolutionary optimization, a field in which
optimization techniques are inspired by the behavior of real-world biological systems (see e.g. Simon, 2013). The
nomenclature around the various aspects of resampling therefore comes mostly from this field, particularly from
the so-called genetical algorithms. Given that resampling is such an integral part of SMC methods, it is thus not
uncommon to see terms such as “swarm”, “fitness” and “diversity” in this context.
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Algorithm 2.2: Sequential Importance Resampling (SIR)
Initialization
for i = 1 to N do

draw xi0 ∼ ν(x0)
set πi0 ∝ 1

end
for i = 1 to N do

set wi0 = 1/N
end
for i = 1 to N do

set x̃i0 = xi0
end

Main recursion
for t = 1 to n do

for i = 1 to N do
draw xit ∼ q(xt|x̃i0:t−1, y1:t)
compute πit ∝ f(xit|x̃it−1)g(yt|xit)/q(xit|x̃i0:t−1, y1:t)

end
for i = 1 to N do

compute wit = πit/
∑︁N

j=1 π
j
t

end
for i = 1 to N do

sample x̃i0:t from (xi0:t, w
i
t)
N
i=1

end
end

system. In practice, when using SIR to build particle approximations of functionals of Xt|Y1:t,
these approximations should therefore be computed based on the weighted sample (xi0:t, wit)Ni=1,
i.e. just prior to resampling.

Despite the fact that resampling is relatively simple to explain and implement, it com-
plicates the underlying theory of SMC considerably, since although each xit is still drawn
independently from q, the particles xi0:t are no longer independent. It can still be proven, how-
ever, (see e.g. Crisan and Doucet 2002, Chopin et al. 2004 and Del Moral 2004) that the usual
asymptotic results for the general Importance Sampling algorithm discussed in Section A.2 (and
which are also clearly valid for SIS) still hold under resampling.

At this point it is important to point out that, even in SIR, degeneracy is unavoidable,
since in general resampling does not change the fact that the sequence of importance weights
(πt)t≥0 still constitutes a martingale in t. However, as the next example illustrates, resampling is
usually effective enough in mitigating degeneracy to make SMC-based inference feasible (and
often quite successful) in practice.
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Example 2.1.2 (Gaussian random walk, continued). Let us return to the Gaussian random
walk plus noise model (2.8-2.9) of Example 2.1.1. Figure 2.3 contains the true states (black
triangles) along with the corresponding Kalman Filter (Algorithm B.1) estimates Xt|t (solid
thicker blue lines) and SIR (Algorithm 2.2) estimates x̂t =

∑︁N
i=1w

i
tx
i
t (solid thinner red lines)

for each t = 0, . . . , n. The simulated series is the same as in Example 2.1.1, i.e. with σ2 = 1

and τ 2 = 10, and for SIR we once again use the state transition proposal q(xt|x1:t−1, y1:t) =

f(xt|xt−1) and N = 10, 000 particles. The resampling step of SIR was implemented with
the alias method of Vose (1991), designed to be a fast O(N) implementation of multinomial
resampling (see Algorithm 3.5). Note that for this model the SIR weight recursion (2.7) is

πt ∝
f(xt|xt−1)g(yt|xt)
q(xt|x1:t−1, y1:t)

=
f(xt|xt−1)g(yt|xt)

f(xt|xt−1)
= g(yt|xt),

where g(yt|xt) = dN (yt|xt, σ2).

By comparing Figures 2.2 and 2.3, we can see the clear difference in the performance
between SIS and SIR in this example. The SIS estimates quickly diverge from the Kalman Filter
estimates, whereas there seems to be almost a juxtaposition between the Kalman Filter estimates
and the SIR estimates (the Pearson correlation between them diverges from 1 by 5 · 10−7). The
difference between SIS and SIR here is entirely attributable to degeneracy, which although not
entirely eliminated from the problem is successfully mitigated by resampling.

0 50 100 150 200

−
10

0
10

20
30

Time

Figure 2.3: True states (black triangles) and corresponding Kalman filter (solid thick blue line)
and SIR estimates (solid thin red line) for the Gaussian random walk plus noise model (2.8-2.9)
with n = 200, τ 2 = 10, σ2 = 1 and N = 10, 000.

Now, a natural question that arises here is how to objectively measure the degree of
degeneracy to which a particular sample (xi0:t, wit)Ni=1 is subject to. Since degeneracy is associated
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with an increase in variance of the importance weights over time, heuristically a metric for it
should involve an estimate of this variance. This is exactly the case of the so-called effective
sample size (ESS) of Kong et al. (1994), defined by

ESSt ≡ ESS(πt) :=
1

1 + varQ(πt)
. (2.11)

Since 0 ≤ varQ(πt) < +∞, ESSt takes values in the (0, 1] interval. By analogy with the
basic theory of Analysis of Variance and Experimental Design (see e.g. Montgomery, 2018),
the effective sample size defined by (2.11) can be interpreted as the proportion of independent
and identically distributed (iid) samples from the target p that would be required to convey the
same information contained in the sample with importance weight πt. Therefore, a small ESSt
indicates a strong impact of weight degeneracy in the particle system and typically a less efficient
SMC procedure as a result.

In practice, we must estimate ESSt, given that an analytic expression for varQ(πt) is in
general not available. To accomplish this, first note that

EQ(πt) =

∫︂
X t+1×Yt

πtq(x0:t, y1:t)dx0:tdy1:t

=

∫︂
X t+1×Yt

p(x0:t|y1:t)
q(x0:t|y1:t)

q(x0:t, y1:t)dx0:tdy1:t

=

∫︂
X t+1×Yt

p(x0:t|y1:t)
q(x0:t,y1:t)
q(y1:t)

q(x0:t, y1:t)dx0:tdy1:t

=

∫︂
Yt

(︃∫︂
X t+1

p(x0:t|y1:t)dx0:t
)︃
q(y1:t)dy1:t

=

∫︂
Yt

1 · q(y1:t)dy1:t

= 1,

which, sinceEQ(π
2
t ) = [EQ(πt)]

2+varQ(πt), implies thatEQ(π
2
t )=12+varQ(πt)=1+varQ(πt).

By the Weak Law of Large Numbers (WLLN)4, we then have N−1
∑︁N

i=1(π
i
t)

2 →P EQ(π
2
t ) =

1+varQ(πt) and, by continuous mapping, that [N−1
∑︁N

i=1(π
i
t)

2]−1→P [1+varQ(πt)]
−1 = ESSt,

which establishes that [N−1
∑︁N

i=1(π
i
t)

2]−1 is a consistent estimator of ESSt (here →P denotes
convergence in probability under P, and in general an estimator θ̂ is consistent for θ if θ̂→P θ).

Now, given that we can usually only evaluate πit up to proportionality, the estimator
based on

∑︁N
i=1(π

i
t)

2 also can’t be used in practice. The solution then is to turn to an analogous
estimator based on the normalized importance weights wit, the ones that we can indeed routinely

4Although the WLLN results used here would be usually stated for convergence in probability under Q (which is
the measure that we are taking the expectations with respect to), we are implicitly using the fact that the convergence
also holds for P, given that in the Importance Sampling framework considered here (see Section A.2) the proposal
measure Q is assumed to dominate P.
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compute. Noting that

N ·
N∑︂
i=1

(wit)
2 = N ·

N∑︂
i=1

(︃
πit∑︁N
j=1 π

j
t

)︃2

= N ·
N∑︂
i=1

(︃
πit/N∑︁N
j=1 π

j
t/N

)︃2

= N ·
N∑︂
i=1

(πit)
2/N2

(
∑︁N

j=1 π
j
t/N)2

=

∑︁N
i=1(π

i
t)

2/N

(
∑︁N

j=1 π
j
t/N)2

,

the numerator
∑︁N

i=1(π
i
t)

2/N converges to 1 + varQ(πt), as established before. For the denom-
inator, the WLLN implies that

∑︁N
j=1 π

j
t/N →P EQ(πt) = 1, which by continuous mapping

then implies that (
∑︁N

j=1 π
j
t/N)2 →P 12 = 1. Finally, by applying Slutsky’s theorem (Shao,

2003, p. 60) we have that the ratio between these quantities converges in probability un-
der P to [1 + varQ(πt)]/1 = 1 + varQ(πt), which by continuous mapping then ensures that
[N ·

∑︁N
i=1(w

i
t)

2]−1→P 1 + varQ(πt) = ESSt.

In summary, our consistent estimator of the Effective Sample Size (2.11) is defined by

ˆ︃ESSt :=
1

N ·
∑︁N

i=1(w
i
t)

2
. (2.12)

Note that, unlike the true ESS, ˆ︃ESSt actually takes its values in the [1/N, 1] interval. However,
as N → +∞, this interval does converge to the correct one, i.e. (0, 1].

Example 2.1.3 (Gaussian random walk, continued). Returning to Example 2.1.2, Figure 2.4
contains the estimated ˆ︃ESSt given in (2.12) for both SIS (upper panel) and SIR (lower panel). We
can see that the ESS for SIS drops exponentially fast to 1/N = 10−4 and then becomes stationary
at this value, whereas the ESS for SIR fluctuates around its mean of about 0.28. This again
illustrates that resampling in SMC is indeed effective in mitigating degeneracy, contributing to
an increase in diversity in the particle set and thus helping to avoid its collapse.

Although resampling had already been around in the non-sequential inference literature
(see e.g. Smith and Gelfand, 1992), its first appearance in the SMC context is made in the
seminal paper of Gordon et al. (1993) with the introduction of the so-called Bootstrap Filter. The
bootstrap filter is a special case of SIR in which the proposal is q(xt|x0:t−1, y1:t) = f(xt|xt−1).
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Figure 2.4: Estimated effective sample sizes for SIS (top row) and SIR (bottom row) for the
Gaussian random walk plus noise model (2.8-2.9) with n = 200, τ 2 = 10, σ2 = 1 and
N = 10, 000.

In this case, the weight recursion (2.10) becomes

πt ∝
f(xt|x̃t−1)g(yt|xt)
q(xt|x̃0:t−1, y1:t)

=
f(xt|x̃t−1)g(yt|xt)

f(xt|x̃t−1)
= g(yt|xt). (2.13)

The simple form of (2.13) allows the implementation of the bootstrap filter in situations where
samples from f(xt|xt−1) can be produced but this density cannot be evaluated pointwise. An
important example of this instance is the case of discretely-observed diffusions (Fearnhead et al.,
2008).

Another important special case of SIR is the so-called Optimal SIR (Petetin and Desbou-
vries, 2013), in which we choose q(xt|x0:t−1, y1:t) = p(xt|xt−1, yt) as proposal distribution. The
term “optimal” here is understood in the sense of Proposition A.2.1, i.e. that the variance of the
importance weights under this proposal is minimal. To formally establish that p(xt|xt−1, yt) is
indeed optimal, we state and prove the following result (which is the analog of A.2.1 in SMC),
due to Doucet et al. (2000).

Proposition 2.1.1. The proposal distribution q(xt|x0:t−1, y1:t) = p(xt|xt−1, yt) minimizes the
conditional variance (under Q) of the importance weights πt given X0:t−1 and Y1:t−1.

Proof. We will first prove the result for the SIS case and extend it to SIR afterwards. Let us
decompose p(xt|xt−1, yt) as

p(xt|xt−1, yt) =
p(xt, xt−1, yt)

p(xt−1, yt)
=
p(yt|xt, xt−1)p(xt|xt−1)p(xt−1)

p(yt|xt−1)p(xt−1)
=
g(yt|xt)f(xt|xt−1)

p(yt|xt−1)
,
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where the last equality follows from the fact that Yt|(Xt, Xt−1) =
d Yt|Xt, as established in (1.2).

This allows us to write the weight recursion (2.7) as

πt ∝ πt−1
f(xt|xt−1)g(yt|xt)
q(xt|x0:t−1, y1:t)

= πt−1
f(xt|xt−1)g(yt|xt)
p(xt|xt−1, yt)

= πt−1
f(xt|xt−1)g(yt|xt)
f(xt|xt−1)g(yt|xt)

p(yt|xt−1)

= πt−1p(yt|xt−1). (2.14)

Since (2.14) does not depend on xt, the variance of πt under the proposal p(xt|xt−1, yt) equals
zero, which is by definition the minimum variance attainable for any random variable.

More explicitly, by taking πt := π(X0:t, Y1:t) as a function of the random variables X0:t

and Y1:t, we have that

varQ[π(X0:t, Y1:t)|X0:t−1, Y1:t] =

= EQ[π
2(X0:t, Y1:t)|X0:t−1, Y1:t]− {EQ[π(X0:t, Y1:t)|X0:t−1, Y1:t]}2

=

∫︂
X
[π(xt, X0:t−1, Y1:t)]

2q(xt|X0:t−1, Y1:t)dxt+

−
{︃∫︂

X
π(xt, X0:t−1, Y1:t)q(xt|X0:t−1, Y1:t)dxt

}︃2

=

∫︂
X
[πt−1p(Yt|Xt−1)]

2p(xt|Xt−1, Yt)dxt+

−
{︃∫︂

X
πt−1p(Yt|Xt−1)p(xt|Xt−1, Yt)dxt

}︃2

= [πt−1p(Yt|Xt−1)]
2

∫︂
X

p(xt|Xt−1, Yt)dxt+

− [πt−1p(Yt|Xt−1)]
2

{︃∫︂
X

p(xt|Xt−1, Yt)dxt

}︃2

= [πt−1p(Yt|Xt−1)]
2 · 1− [πt−1p(Yt|Xt−1)]

2 · 12

= [πt−1p(Yt|Xt−1)]
2 − [πt−1p(Yt|Xt−1)]

2

= 0.

The proof in the SIR case is essentially the same, given that (2.10) and (2.7) fundamentally differ
only by the factor πt−1, which does not depend on xt.

It is interesting to note that, even under the optimal proposal, the particle system is still
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subject to degeneracy. Remember from the proof of Theorem 2.1.1 that

varQ(πt) = varQ(πt−1) + EQ[varQ(πt|Ft−1)],

where Ft−1 := σ(X0:t−1, Y1:t−1). Under the optimal proposal, by using the target and proposal
recursions (2.5) and (2.4) we can use induction to write the importance weights as

πt =
p(x0:t|y1:t)
q(x0:t|y1:t)

=
p(x0:t−1|y1:t−1)

q(x0:t−1|y1:t−1)

f(xt|xt−1)g(yt|xt)
q(xt|x1:t−1, y1:t)

1

p(yt|y1:t−1)

=
p(x0:t−1|y1:t−1)

q(x0:t−1|y1:t−1)

f(xt|xt−1)g(yt|xt)
p(xt|xt−1, yt)

1

p(yt|y1:t−1)

=
p(x0:t−1|y1:t−1)

q(x0:t−1|y1:t−1)

f(xt|xt−1)g(yt|xt)
f(xt|xt−1)g(yt|xt)

p(yt|xt−1)

1

p(yt|y1:t−1)

=
p(x0:t−1|y1:t−1)

q(x0:t−1|y1:t−1)

p(yt|xt−1)

p(yt|y1:t−1)

. . .

=
p(x0:1|y1)
q(x0:1|y1)

t∏︂
k=2

p(yk|xk−1)

p(yk|y1:k−1)

=
p(y1|x1, x0)p(x1|x0)p(x0)

p(y1)

q(y1)

q(x1|x0, y1)q(y1|x0)q(x0)

t∏︂
k=2

p(yk|xk−1)

p(yk|y1:k−1)
.

Now, since by (1.2) comes p(y1|x1, x0) = g(y1|x1), by definition p(x0) = ν(x0), by (1.1)
p(x1|x0) = f(x1|x0), by Assumption 2.1.1 q(y1|x0) = q(y1) and by construction q(x1|x0, y1) =
p(x1|x0, y1) = f(x1|x0)g(y1|x1)/p(y1|x0), q(y1) = p(y1) and q(x0) = ν(x0), this expression
simplifies to

πt =
g(y1|x1)f(x1|x0)ν(x0)

p(y1)

p(y1)
f(x1|x0)g(y1|x1)

p(y1|x1) p(y1)ν(x0)

t∏︂
k=2

p(yk|xk−1)

p(yk|y1:k−1)

=
p(y1|x0)
p(y1)

t∏︂
k=2

p(yk|xk−1)

p(yk|y1:k−1)
,

implying that only in the case when the ratio above is not a function of yt does the term
varQ(πt|Ft−1) vanishes, avoiding the increase in variance that defines degeneracy.

Finally, the weight recursion (2.10) for optimal SIR becomes

πt ∝
f(xt|x̃t−1)g(yt|xt)
q(xt|x̃0:t−1, y1:t)

=
f(xt|x̃t−1)g(yt|xt)
p(xt|x̃t−1, yt)

=
f(xt|x̃t−1)g(yt|xt)
f(xt|x̃t−1)g(yt|xt)

p(yt|x̃t−1)

= p(yt|x̃t−1). (2.15)

Note that for implementation of optimal SIR to be feasible the ability of sampling from
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p(xt|xt−1, yt) and evaluating p(yt|xt−1) pointwise are both required. Although this severely
limits the applicability of this optimal choice in practice, Proposition 2.1.1 suggests that it still
should be made whenever possible.

2.1.3 Auxiliary Particle Filter

A convenient, popular and quite general alternative framework for including resampling
into SMC methods is the Auxiliary Particle Filter (APF) of Pitt and Shephard (1999). They
introduce an additional auxiliary variable k (hence the name) taking values into {1, . . . , N}
such that (xl:t−1, k) := xkl:t−1 for integer 0 ≤ l ≤ t − 1 and, in particular, (x0:t−1, k) = xk0:t−1

and (xt−1, k) = xkt−1. Resampling in this setting then consists of simply sampling k with
replacement from {1, . . . , N} with corresponding probability λkt (aptly named intermediate
weight) and setting x̃0:t−1 := (x0:t−1, k) = xk0:t−1. Note however that, unlike SIR, the APF
resampling step thus takes place before the propagation/sampling of the states Xt.

The main reason for reversing the resampling order in APF is the so-called property of
adaptation, defined by Pitt and Shephard (1999) as the ability of the filter to include current
information about the observations Yt prior to sampling the states Xt. Intuitively, this in most
cases avoids problems with outlying observations and noninformative conditional likelihoods
g(yt|xt), since the system has a chance to “adapt” to the current observation and thus (possibly)
lead to a more representative sample (xi0:t, wit)Ni=1. Some authors refer to the APF as a resample-
propagate framework and to SIR as a propagate-resample framework in order to make the
resampling and propagation order explicit.

Let us now derive the filtering recursions for APF. Since here we have to perform
inference for both X0:t and k, the proposal distribution is now a function of (X0:t, k), and
assumed to satisfy

q(x0:t, k|y1:t) = q(xk0:t−1|y1:t)q(xt|xk0:t−1, y1:t)λ
k
t , (2.16)

where λkt := q(k|x0:t−1, y1:t), the intermediate weight, is simply the marginal proposal for k
conditional on X0:t−1 and Y1:t. Alternatively, analogous to SIR we can derive the recursion
(2.16) explicitly. First, write

q(x0:t, k|y1:t) =
q(xt|x0:t−1, k, y1:t)q(yt|x0:t−1, k, y1:t−1)q(x0:t−1, k|y1:t−1)q(y1:t−1)

q(y1:t)

=
q(xt|xk0:t−1, y1:t)q(yt|x0:t−1, k, y1:t−1)q(x

k
0:t−1|y1:t−1)q(y1:t−1)

q(yt|y1:t−1)q(y1:t−1)

= q(xk0:t−1|y1:t−1)q(xt|xk0:t−1, y1:t)
q(yt|x0:t−1, k, y1:t−1)

q(yt|y1:t−1)

since (x0:t−1, k) = xk0:t−1 (note that we chose to leave (x0:t−1, k) explicit in the numerator of the
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third term on the right side). Then, we decompose the last term in the above equation as

q(yt|x0:t−1, k, y1:t−1)

q(yt|y1:t−1)
=

q(x0:t−1, k, y1:t)

q(x0:t−1, k, y1:t−1)q(yt|y1:t−1)

=
q(k|x0:t−1, y1:t)q(yt|x0:t−1, y1:t−1)q(x0:t−1, y1:t−1)

q(k|x0:t−1, y1:t−1)q(x0:t−1, y1:t−1)q(yt|y1:t−1)

=
q(k|x0:t−1, y1:t)q(yt|x0:t−1, y1:t−1)

q(k|x0:t−1, y1:t−1)q(yt|y1:t−1)

and, since from Assumption 2.1.1 comes q(yt|x0:t−1, y1:t−1) = q(yt|y1:t−1), this can be further
rewritten as

q(yt|x0:t−1, k, y1:t−1)

q(yt|y1:t−1)
=

q(k|x0:t−1, y1:t)q(yt|y1:t−1)

q(k|x0:t−1, y1:t−1)q(yt|y1:t−1)
=

q(k|x0:t−1, y1:t)

q(k|x0:t−1, y1:t−1)
.

Now, although we cannot simplify this ratio further, note that it is proportional to the numerator
q(k|x0:t−1, y1:t), since the denominator q(k|x0:t−1, y1:t−1) is not a function of yt. We therefore
have

q(yt|x0:t−1, k, y1:t−1)

q(yt|y1:t−1)
∝ q(k|x0:t−1, y1:t) = λkt ,

which then finally establishes5 (2.16). As mentioned above, the process for sampling (xi0:t, ki)

for each i in the APF then consists of sampling ki (i.e. resampling), sampling xit conditional on
(xi0:t−1, ki) = xki0:t−1 and then setting xi0:t = (xit, x

ki
0:t−1) as the current particle.

As for the target, we proceed analogously to the derivation of (2.5) and decompose
p(x0:t, k|y1:t) as

p(x0:t, k|y1:t) =
p(x0:t, k, y1:t)

p(y1:t)

=
p(yt|xt, x0:t−1, k, y1:t−1)p(xt|x0:t−1, k, y1:t−1)p(x0:t−1, k|y1:t−1)p(y1:t−1)

p(yt|y1:t−1)p(y1:t−1)

=
p(x0:t−1, k|y1:t−1)p(xt|x0:t−1, k, y1:t−1)p(yt|xt, x0:t−1, k, y1:t−1)

p(yt|y1:t−1)

∝ p(x0:t−1, k|y1:t−1)p(xt|x0:t−1, k, y1:t−1)p(yt|xt, x0:t−1, k, y1:t−1)

and, since (x0:t−1, k) = xk0:t−1, by (1.2) p(yt|xt, x0:t−1, k, y1:t−1) = g(yt|xt) and by item (ii) of
Proposition 1.1.1 p(xt|x0:t−1, k, y1:t−1) = f(xt|xkt−1), we get

p(x0:t, k|y1:t) ∝ p(xk0:t−1|y1:t−1)f(xt|xkt−1)g(yt|xt). (2.17)

Finally, by properly redefining our importance weights as πt := p(x0:t, k, y1:t) =

5As a technical note, it is worth pointing out that in this process we only specifiy q(x0:t, k|y1:t) up to proportion-
ality. However, since we can sample exactly from this distribution, we can deal with the constant of proportionality
in practice by normalizing λi

t = πi
λ,t/

∑︁N
j=1 π

j
λ,t, where πi

λ,t are the unnormalized intermediate weights.
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p(x0:t, k|y1:t)/q(x0:t, k|y1:t) and by applying (2.16) and (2.17), the APF weight recursion is

πt :=
p(x0:t, k|y1:t)
q(x0:t, k|y1:t)

∝
p(xk0:t−1|y1:t−1)

q(xk0:t−1|y1:t−1)

f(xt|xkt−1)g(yt|xt)
q(xt|xk0:t−1, y1:t)λ

k
t

=
πkt−1

λkt

f(xt|xkt−1)g(yt|xt)
q(xt|xk0:t−1, y1:t)

(2.18)

∝
wkt−1

λkt

f(xt|xkt−1)g(yt|xt)
q(xt|xk0:t−1, y1:t)

, (2.19)

where once again we note that wkit−1 ∝ πkit−1 up to 1/
∑︁N

j=1 π
j
t−1.

As mentioned before, it turns out that the APF framework is quite general, in that it
includes most commonly found particle filters in the literature as special cases, including SIR.
Although at first it might not seem clear that SIR fits within the APF framework (due to the
different resampling order), by taking λit = wit−1 the implementation is equivalent, since the set
(xi0:t−1) resampled at the end of a SIR step at t− 1 is the same as the one resampled at the start
of an APF step at t. Starting with xi0 ∼ ν(x0) and πi0 ∝ 1 =⇒ wi0 = 1/N for i = 1, . . . , N ,
the APF is summarized in Algorithm 2.3.

Algorithm 2.3: Auxiliary Particle Filter
Initialization
for i = 1 to N do

draw xi0 ∼ ν(x0)
set πi0 ∝ 1

end
for i = 1 to N do

set wi0 = 1/N
end

Main recursion
for t = 1 to n do

for i = 1 to N do
sample ki from {1, . . . , N} with probability λit
draw xit ∼ q(xt|xki0:t−1, y1:t)

compute πit ∝
w

ki
t−1

λ
ki
t

f(xit|x
ki
t−1)g(yt|xit)

q(xit|x
ki
0:t−1,y1:t)

end
for i = 1 to N do

compute wit = πit/
∑︁N

j=1 π
j
t

end
end

Now, there are two basic design choices that one must make within the APF framework:
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the choice of intermediate weights λkt and of the proposal density q(xt|xk0:t−1, y1:t). Usually,
these choices are made so as to keep the importance weights πt as constant as possible, since
in light of Proposition A.2.1 this ensures that the variance of πt (conditional on both X0:t−1

and Y1:t) is minimal6. The optimal choice in this sense is to let λkt ∝ wkt−1p(yt|xkt−1) and
q(xt|xk0:t−1, y1:t) = p(xt|xkt−1, yt), since in this case the weight recursion (2.19) becomes

πt ∝
wkt−1

wkt−1p(yt|xkt−1)

f(xt|xkt−1)g(yt|xt)
p(xt|xkt−1, yt)

=
1

p(yt|xkt−1)

f(xt|xkt−1)g(yt|xt)
f(xt|xkt−1)g(yt|xt)

p(yt|xkt−1)

= 1. (2.20)

Note that in the above derivation of (2.20) we have used that p(xt|xkt−1, yt) = f(xt|xkt−1)g(yt|xt)/
p(yt|xkt−1), established earlier in the proof of Proposition 2.1.1. In the terminology of Pitt and
Shephard (1999), a filter such that (2.20) holds is said to be fully-adapted (FA), and this specific
incarnation is referred to as the Fully-Adapted Auxiliary Particle Filter (FAPF).

In practice, a fully-adapted procedure produces exact draws from the target distribution
p (although we have to remember that we need infinitely many draws in order to arbitrarily
approximate p with these samples, due to (xi0:t, w

i
t)
N
i=1 consisting of a discrete support). Note

that, although still adopting the proposal q(xt|xk0:t−1, y1:t) = p(xt|xkt−1, yt), Optimal SIR is not
fully-adapted due to the choice of intermediate weights λit = wit−1. Therefore, although abiding
to Proposition 2.1.1 (ensuring minimal conditional variance of the importance weights), it does
not satisfy the more general proportional relationship q ∝ p required by Proposition A.2.1.
Also note that in general a SIR procedure can be adapted (by making the proposal q an explicit
function of yt), but the intermediate weights are not a function of yt, possibly leading to a less
efficient procedure. The converse of adapted procedures (such as the bootstrap filter, in which
the proposal f(xt|xt−1) is not a function of yt) are called blind procedures.

Now, the main problem associated with full adaptation is that it requires the ability to
simulate from p(xt|xt−1, yt) and evaluate p(yt|xt−1) pointwise, both of which are usually unfea-
sible in practice. In this case Pitt and Shephard (1999) proposed approximating these densities
by taking λkt ∝ wkt−1g(yt|µkt ) and q(xt|xk0:t−1, y1:t) = f(xt|xkt−1), where µt := µ(X0:t−1) is any
prediction of X0:t−1 (such as the one-step-ahead conditional expectation, median or mode of
Xt|X0:t−1). This so-called “lookahead” strategy is in principle readily appliable to any HMM,
and if µt is close toXt, the resulting intermediate weights will be close to the optimal ones. The
weight recursion (2.19) for the lookahead strategy is

wt ∝
wkt−1

wkt−1g(yt|µkt )
f(xt|xkt−1)g(yt|xt)

f(xt|xkt−1)
=
g(yt|xt)
g(yt|µkt )

. (2.21)

From (2.21), we can see that the closer g(yt|µt) is to g(yt|xt), the closer wt is to being constant,

6Note that although πt is proportional to a constant (as a function of X0:t and k), its unconditional variance
varQ(πt) is in general not zero, since it still involves the variance of the proportionality constant p(yt|y1:t−1).
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which implies that the lookahead strategy is also most successful whenever the observations are
very informative. Note here that although µt is denoted at time t, it is actually a function of
x0:t−1, and therefore is required to satisfy (µt, k) = µkt .

2.2 Prediction

We now turn our attention to the problem of prediction, i.e. computing p(xt|y1:t−1) or,
more generally, p(xt+h|y1:t) for positive integer h. Owing to their sequential structure, prediction
is a very natural procedure within HMMs, and it can be done in a variety of different ways (see
e.g. Doucet et al., 2000). Here, however, we shall limit ourselves to presenting only the simplest
method for accomplishing this task, since it is popular and usually yields good results in practice.

First, consider the case of h = 1, corresponding to a one-step-ahead prediction. We
have

p(xt+1|y1:t) =
∫︂
X t+1

p(xt+1, x0:t|y1:t)dx0:t

=

∫︂
X t+1

p(xt+1|x0:t, y1:t)p(x0:t|y1:t)dx0:t

=

∫︂
X t+1

f(xt+1|xt)p(x0:t|y1:t)dx0:t, (2.22)

where p(xt+1|x0:t, y1:t) = f(xt+1|xt) follows from item (ii) of Proposition 1.1.1 with k = 0.
Since in general an analytical expression for (2.22) is not available, we can approximate it by
replacing p(x0:t|y1:t) in (2.22) with its particle estimate p̂(x0:t|y1:t) given in (2.2), yielding

p̌(xt+1|y1:t) :=
∫︂
X t+1

f(xt+1|xt)p̂(x0:t|y1:t)dx0:t

=

∫︂
X t+1

f(xt+1|xt)
N∑︂
i=1

witδxi0:t(dx0:t)dx0:t

=
N∑︂
i=1

witf(xt+1|xit). (2.23)

Now, p̌(xt+1|y1:t) is typically an efficient estimator of p(xt+1|y1:t), since it is derived
using Rao-Blackwellization (see e.g. Doucet et al. 2000 and Section A.3). However, it is usually
not very useful in computing other features of Xt+1|Y1:t, such as its moments or more general
functionals, since the involved integrals might not always have analytical solutions.

An alternative approximation of p(xt+1|y1:t) can be derived directly from (2.23) by
drawing, for each i, xit+1 ∼ f(xt+1|xit) and replacing f(xt+1|xit) with its particle estimate
f̂(xt+1|xit) := δxit+1

(dxt+1) (since this is a perfect draw – see Section A.1 – the importance
weights of this procedure are uniform and equal to 1, given that for each i we are only sampling
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a single xit+1). The corresponding estimator p̂(xt+1|y1:t) is then given by

p̂(xt+1|y1:t) :=
N∑︂
i=1

witδxit+1
(dxt+1). (2.24)

Note that in analogy to the filtering problem in Section 2.1, the one-step-ahead prediction
density (2.24) can be regarded as a marginal of the joint approximation p̂(x0:t+1|y1:t) obtained
by integrating it over the image set of X0:t, where

p̂(x0:t+1|y1:t) :=
N∑︂
i=1

witδxi0:t+1
(dx0:t+1). (2.25)

For the general h-step-ahead prediction case, let

p(xt+h|y1:t) =
∫︂
X t+h

p(xt+h, x0:t+h−1|y1:t)dx0:t+h−1

=

∫︂
X t+h

p(xt+h|x0:t+h−1, y1:t)·

p(xt+h−1|x0:t+h−2, y1:t) · · · p(xt+1|x0:t, y1:t)p(x0:t|y1:t)dx0:t+h−1

=

∫︂
X t+h

[︄
h∏︂
k=1

p(xt+k|x0:t+k−1, y1:t)

]︄
p(x0:t|y1:t)dx0:t+h−1.

Again from item (ii) of Proposition 1.1.1, we have that each term p(xt+k|x0:t+k−1, y1:t) of
the product inside the integral equals f(xt+k|xt+k−1), allowing us to further write the above
expression as

p(xt+h|y1:t) =
∫︂
X t+h

[︄
h∏︂
k=1

f(xt+k|xt+k−1)

]︄
p(x0:t|y1:t)dx0:t+h−1. (2.26)

Like (2.22), p(xt+h|y1:t) can also be approximated by replacing p(x0:t|y1:t) with p̂(x0:t|y1:t) in
(2.26), i.e.

p̂(xt+h|y1:t) :=
∫︂
X t+h

[︄
h∏︂
k=1

f(xt+k|xt+k−1)

]︄
p̂(x0:t|y1:t)dx0:t+h−1

=

∫︂
X t+h

[︄
h∏︂
k=1

f(xt+k|xt+k−1)

]︄
N∑︂
i=1

witδxi0:t(dx0:t)dx0:t+h−1

=
N∑︂
i=1

wit

∫︂
Xh−1

[︄
h∏︂
k=2

f(xt+k|xt+k−1)

]︄
f(xt+1|xit)dxt+1:t+h−1. (2.27)

Unlike in the one-step-ahead prediction case (2.23), no readily available estimator exists
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for p(xt+h|y1:t), since the integral in (2.27) might not have an analytical solution. Proceeding
in the same way as before, however, we can sample xit+1 ∼ f(xt+1|xit), xit+2 ∼ f(xit+1|xit),
. . ., xit+h ∼ f(xit+h|xit+h−1) for each i and, since these are all perfect samples, replace each
f(xt+k|xt+k−1) with its IS counterpart f̂(xt+k|xit+k−1) := δxit+k

(dxt+k), k = 1, . . . , h. This
further approximation yields

p̂(xt+h|y1:t) =
N∑︂
i=1

wit

∫︂
Xh−1

[︄
h∏︂
k=2

f̂(xt+k|xit+k−1)

]︄
f̂(xt+1|xit)dxt+1:t+h−1

=
N∑︂
i=1

wit

∫︂
Xh−1

δxit+1:t+h
(dxt+1:t+h)dxt+1:t+h−1

=
N∑︂
i=1

witδxit+h
(dxt+h). (2.28)

Note that if we do not replace f(xt+h|xt+h−1) with f̂(xt+h|xit+h−1), we end up with a Rao-
Blackwellized estimator p̌(xt+h|y1:t) :=

∑︁N
i=1w

i
tf(xt+h|xit+h−1) similar to (2.23). Again we

note that p̂(xt+h|y1:t) in (2.28) is just the marginal of the jointh-step-ahead prediction distribution
p̂(x0:t+h|y1:t) defined by

p̂(x0:t+h|y1:t) :=
N∑︂
i=1

witδxi0:t+h
(dx0:t+h). (2.29)

The entire prediction procedure described here is summarized in Algorithm 2.4 for a
general positive integer h, from which the output is a weighted sample (xi0:t+h, wi0:t+h)Ni=1. Note
that entire process basically consists of keeping the importance weights constant at time t (since
at each step we simply setwi0:t+h = wit) and sequentially drawing new values from the Markovian
transition density f .

Algorithm 2.4: h-step-ahead Prediction
for k = 1 to h do

for i = 1 to N do
draw xit+k ∼ f(xt+k|xit+k−1)
set wit+k = wit

end
end

In closing, it is worth pointing out that resampling does not take place when performing
prediction in an HMM, since there are no new observations coming in the model. Also, note that
although we have derived the prediction density estimator p̂(x0:t+h|y1:t) from an MC integration
point-of-view, we could have done it from an MC sampling perspective instead. That is, by
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writing

wt+h :=
p(x0:t+h|y1:t)
q(x0:t+h|y1:t)

=

[︄
h∏︂
k=1

f(xt+k|xt+k−1)

q(xt+k|x0:t+k−1, y1:t)

]︄
p(x0:t|y1:t)
q(x0:t|y1:t)

and taking q(xt+h|x0:t+h−1, y1:t) = f(xt+k|xt+k−1) for each k, we also arrive at

wt+h =

[︄
h∏︂
k=1

f(xt+k|xt+k−1)

f(xt+k|xt+k−1)

]︄
p(x0:t|y1:t)
q(x0:t|y1:t)

=
p(x0:t|y1:t)
q(x0:t|y1:t)

= wt.

2.3 Smoothing

Our chapter on state inference closes with smoothing, which consists of computing
p(xt|y1:n) for each t = 0, . . . , n. More specifically, here we deal with forward-backward
smoothing (also known as fixed-interval smoothing) which, as its name suggests, is a type of
smoothing procedure that involves a forward filtering step and then a backward smoothing one,
which is why this type of method is also referred to as forward-filtering, backward-sampling
(FFBS) procedure (see also Section B.3). Forward-backward smoothing is a topic that has
received considerable attention in the literature of HMMs, dating from classical pieces such as
Kitagawa (1987), and although it is a very interesting and important subject in its own right,
here we mainly restrict ourselves to the presentations of Doucet et al. (2000) and Godsill et al.
(2004). Smoothing in general HMMs is intrinsycally connected to Kalman smoothing in linear
and Gaussian HMMs (Section B.4).

At first sight, since from the output of a particle filter at t = nwe have a weighted sample
(xi0:n, w

i
n)
N
i=1 approximately distributed according to X0:n|Y1:n, approximating p(xt|y1:n) should

be as simple as integrating the corresponding p̂(x0:n|y1:n) given in (2.2) over the image set of
(X0:t−1, Xt+1:n), i.e.

p̄(xt|y1:n) :=
∫︂
Xn

p̂(x0:n|y1:n)dx0:t−1dxt+1:n

=

∫︂
Xn

N∑︂
i=1

winδxi0:n(dx0:n)dx0:t−1dxt+1:n

=
N∑︂
i=1

winδxit(dxt). (2.30)

The problem with (2.30), however, is that although current particles xin are recently rejuvenated,
its paths xi0:t have been successively resampled over time, and as the distance |n − t| grows
large, the estimate p̄(xt|y1:n) is supported by an ever smaller number of unique particles. The
result is similar to degeneracy, leading to an inefficient estimator due to it being supported
only by a small set of effective (i.e. with nonnegligible weights) particles. In fact, this
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phenomenom is appropriately called path degeneracy (and sample impoverishment in the more
general resampling framework from the literature on evolutionary optimization); see Section
3.2.2 for more details.

Since the problem with (2.30) in practice lies on the fact that the weights (win)
N
i=1 are

not representative of the particle set (xi0:t)Ni=1 of interest, we might then wish to change these
weights accordingly in order to produce a better approximation to p(xt|y1:n). This is precisely
the approach taken by Doucet et al. (2000) and Godsill et al. (2004), building on the seminal
work by Kitagawa (1987).

We start by deriving a backward recursion for p(xt|y1:n). First, let

p(xt, xt+1|y1:n) = p(xt|xt+1, y1:n)p(xt+1|y1:n).

By decomposing the first term on the right side, we get

p(xt|xt+1, y1:n) =
p(xt, xt+1, y1:n)

p(xt+1, y1:n)

=
p(yt+1|xt, xt+1, y1:t, yt+2:n)p(yt+2:n|xt, xt+1, y1:t)p(xt|xt+1, y1:t)p(xt+1, y1:t)

p(yt+1|xt+1, y1:t, yt+2:n)p(yt+2:n|xt+1, y1:t)p(xt+1, y1:t)

=
g(yt+1|xt+1)p(yt+2:n|xt, xt+1, y1:t)p(xt|xt+1, y1:t)

g(yt+1|xt+1)p(yt+2:n|xt+1, y1:t)

= p(xt|xt+1, y1:t)
p(yt+2:n|xt, xt+1, y1:t)

p(yt+2:n|xt+1, y1:t)
,

since by (1.2) Yt+1 depends only on Xt+1. We can simplify this further to

p(xt|xt+1, y1:n) = p(xt|xt+1, y1:t) (2.31)

by showing that p(yt+2:n|xt, xt+1, y1:t) = p(yt+2:n|xt+1, y1:t), which follows from

p(yt+2:n|xl:t+1, y1:t) =

∫︂
Xn−t−1

p(yt+2:n, xt+2:n|xl:t+1, y1:t)dxt+2:n

=

∫︂
Xn−t−1

p(yt+2:n|xt+2:n, xl:t+1, y1:t)·

· p(xn|xt+2:n−1, xl:t+1, y1:t) · · · p(xt+2|xl:t+1, y1:t)dxt+2:n

=

∫︂
Xn−t−1

[︄
n∏︂

k=t+2

g(yk|xk)

]︄[︄
n∏︂

j=t+2

f(xj|xj−1)

]︄
dxt+2:n

for integer 0 ≤ l ≤ t+1 by applying (1.2) and item (iii) of Proposition 1.1.1 to each term of the
first product and item (ii) of Proposition 1.1.1 to each term of the second. With (2.31) we can
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then write

p(xt, xt+1|y1:n) = p(xt+1|y1:n)p(xt|xt+1, y1:n)

= p(xt+1|y1:n)p(xt|xt+1, y1:t)

= p(xt+1|y1:n)
p(xt, xt+1|y1:t)
p(xt+1|y1:t)

= p(xt+1|y1:n)
p(xt+1|xt, y1:t)p(xt|y1:t)

p(xt+1|y1:t)

= p(xt+1|y1:n)
f(xt+1|xt)p(xt|y1:t)

p(xt+1|y1:t)
(2.32)

by again applying item (ii) of Proposition 1.1.1 to get p(xt+1|xt, y1:t) = f(xt+1|xt). Finally, by
integrating p(xt|y1:n) with respect to Xt+1 and using (2.32), we get

p(xt|y1:n) =
∫︂
X
p(xt, xt+1|y1:n)dxt+1

=

∫︂
X
p(xt+1|y1:n)

f(xt+1|xt)p(xt|y1:t)
p(xt+1|y1:t)

= p(xt|y1:t)
∫︂
X

p(xt+1|y1:n)f(xt+1|xt)
p(xt+1|y1:t)

dxt+1, (2.33)

which is the desired backward recursion.

Now, assume that the approximation to p(xt|y1:n) is of the form

p̂(xt|y1:n) :=
N∑︂
i=1

wit|nδxit(dxt), (2.34)

where wit|n are the corresponding normalized importance weights. By replacing p(xt|y1:t) with
the particle estimate p̂(xt|y1:t) given in (2.3) and p(xt+1|yt) with the one-step-ahead predictive
density Rao-Blackwellized estimator (2.23) in the backward smoothing recursion (2.33), we
then have

p̂(xt|y1:n) = p̂(xt|y1:t)
∫︂
X

p̂(xt+1|y1:n)f(xt+1|xt)
p̌(xt+1|y1:t)

dxt+1

=
N∑︂
i=1

witδxit(dxt)

∫︂
X

p̂(xt+1|y1:n)f(xt+1|xt)∑︁N
j=1w

j
tf(xt+1|xjt)

dxt+1.

But (2.34) also implies that p̂(xt+1|y1:n) =
∑︁N

i=1w
i
t+1|nδxit+1

(dxt+1), which allows us to further
write

p̂(xt|y1:n) =
N∑︂
i=1

witδxit(dxt)

∫︂
X

p̂(xt+1|y1:n)f(xt+1|xt)∑︁N
j=1w

j
tf(xt+1|xjt)

dxt+1
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=
N∑︂
i=1

witδxit(dxt)

∫︂
X

∑︁N
l=1w

l
t+1|nδxlt+1

(dxt+1)f(xt+1|xt)∑︁N
j=1w

j
tf(xt+1|xjt)

dxt+1

=
N∑︂
i=1

witδxit(dxt)

{︄∑︁N
l=1w

l
t+1|nf(x

l
t+1|xt)∑︁N

j=1w
j
tf(x

l
t+1|x

j
t)

}︄

=
N∑︂
i=1

wit

N∑︂
l=1

wlt+1|nf(x
l
t+1|xt)∑︁N

j=1w
j
tf(x

l
t+1|x

j
t)
δxit(dxt).

Finally, by comparing the above expression with (2.34), we obtain a backward recursion for
computing wit|n as a function of wit+1|n, i.e.

wit|n := wit

N∑︂
l=1

wlt+1|nf(x
l
t+1|xt)∑︁N

j=1w
j
tf(x

l
t+1|x

j
t)
, (2.35)

with win|n ≡ win.

Starting withwin|n = win for each i, the forward-backward smoothing procedure described
above is summarized in Algorithm 2.5. Note that since no simulation takes place here, the process
is even simpler than that of prediction, and essentially amounts to refining the already existing
importance weights’ estimates. Similar to the filtering and prediction density approximations,
p̂(xt|y1:n) can also be seen as the marginal of a joint smoothing density p̂(x0:t|y1:n), defined by

p̂(x0:t|y1:n) :=
N∑︂
i=1

wit|nδxi0:t(dx0:t). (2.36)

Algorithm 2.5: Forward-Backward Smoothing
Initialization
for i = 1 to N do

set win|n = win
end

Backward recursion
for t = n-1 to 0 do

for i = 1 to N do
set wit|n = wit

∑︁N
l=1

wl
t+1|nf(x

l
t+1|xt)∑︁N

j=1 w
j
t f(x

l
t+1|x

j
t )

end
end

Given that smoothing requires that we observe the entire sample y1:n before actually
performing the required inference, it is generally referred to as an offline or batch procedure,
as opposed to online procedures which can be performed as new observations arrive, such as
filtering and prediction. Also, although sometimes this can be avoided (Elliott et al., 2008;
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Douc et al., 2011), typical FFBS procedures such as the one presented here have an O(nN2)

complexity, making their cost sometimes prohibitive when compared to the usual O(nN)

operations required for filtering.
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Capı́tulo 3

Parameter Inference

In this chapter we turn our attention to the general situation in which θ is unknown and has
to be estimated from the data (the act of inferring about static parameters is usually – specially
within the Bayesian inference paradigm – referred to as parameter learning). Although our
main concern in this work is in performing sequential inference for θ, i.e. in an online fashion
that consists of obtaining estimates as new observations are incorporated into the model, we
start with a brief presentation of the state-of-the-art on the literature of non-sequential inference
methods, namely the particle Markov Chain Monte Carlo algorithm of Andrieu et al. (2010).
This serves not only to introduce some ideas that will be necessary to our main contribution, but
also as a contrast to (and the main bechmark for which to test against) our methods.

Note that throughout this chapter and the rest of this work we will limit ourselves to
the Bayesian inference paradigm. This choice was essentialy made in order to give focus to
our main contribution, but is by no means exhaustive. There is a vast amount of work on
parameter inference for HMMs based on maximum likelihood and Expectation-Maximization-
based techniques and within the classical inference paradigm more generally; see e.g. Kantas
et al. (2015) and Schön et al. (2011) for two major reviews.

3.1 Particle Markov Chain Monte Carlo

The Particle Markov Chain Monte Carlo (pMCMC) algorithm of Andrieu et al. (2010) is a
landmark method in parameter learning for HMMs, since it still targets the correct joint posterior
density p(x0:n, θ|y1:n) even when sampling x0:n from a SMC proposal and approximating the
model likelihood with an unbiased particle estimate, allowing for impressive efficiency gains in
practice as compared to usual MCMC methods.

First, assume that we can sample a static parameter θ′ from the invariant Markov kernel
(see Section A.4) q(θ′|θ) and a state sequence x′0:n exactly (rather than only approximately, via
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SMC) from its target posterior p(x0:n|y1:n, θ′) given the current pair (x0:n, θ). This implies that
the joint proposal for (x′0:n, θ′) given (x0:n, θ) and Y1:n = y1:n, denoted by q(x′0:n, θ′|x0:n, θ, y1:n),
satisfies

q(x′0:n, θ|x0:n, θ, y1:n) = q(θ′|θ)p(x′0:n|y1:n, θ′). (3.1)

This is equivalent to assuming that under q the law ofX ′
0:n is perfectly adapted to the most recent

value of θ (which is θ′), that θ′ does not depend on Y1:n and that bothX ′
0:n and θ′ are independent

of the current state path X0:n, given that the identity (3.1) only holds if q(x′0:n|x0:n, θ′, θ, y1:n) =
p(x′0:n|y1:n, θ′) and q(θ′|x0:n, θ, y1:n) = q(θ′|θ), in light of

q(x′0:n, θ
′|x0:n, θ, y1:n) = q(x′0:n|x0:n, θ′, θ, y1:n)q(θ′|x0:n, θ, y1:n).

Since p(x0:n, θ|y1:n) = p(x0:n|y1:n, θ)p(y1:n|θ)p(θ), we can then write the probability (A.14)
of accepting the new pair (x′0:n, θ′) within a Metropolis-Hastings (MH) sampling framework
(Section A.4) as

α(x′0:n, θ
′|x0:n, θ, y1:n) := 1 ∧ p(x

′
0:n, θ

′|y1:n)
p(x0:n, θ|y1:n)

q(x0:n, θ|x′0:n, θ′, y1:n)
q(x′0:n, θ

′|x0:n, θ, y1:n)

= 1 ∧ p(x
′
0:n|y1:n, θ′)p(y1:n|θ′)p(θ′)

p(x0:n|y1:n, θ)p(y1:n|θ)p(θ)
q(θ|θ′)p(x0:n|y1:n, θ)
q(θ′|θ)p(x′0:n|y1:n, θ′)

= 1 ∧ p(y1:n|θ
′)p(θ′)

p(y1:n|θ)p(θ)
q(θ|θ′)
q(θ′|θ)

, (3.2)

where x ∧ y := min(x, y).

Now, in general we cannot sample exactly from p(x0:n|y1:n, θ) and neither evaluate the
observation likelihood p(y1:n|θ) necessary for computing (3.2), which is the primary reason
for why we rely on SMC methods in the first place. It turns out, however, that within a
pseudo-marginal MCMC framework (Andrieu et al., 2009) the sampler still leaves p(x0:n, θ|y1:n)
invariant even if we draw x′0:n from the particle approximation1 p̂(x0:n|y1:n, θ) defined in (2.2)
and replace p(y1:n|θ) with an unbiased estimate p̂(y1:n|θ). This perhaps surprising property,
proven in Andrieu et al. (2010), is what makes pMCMC so powerful and appealing in practice.
Under relatively weak conditions, the authors also show that the pMCMC sampler is ergodic.

Since our main objective here is to perform inference for θ, we will consider only
the version of pMCMC designed for that purpose, namely the Particle Marginal Metropolis
Hastings (PMMH) algorithm. In practice, no modification of the sampler presented so far is
necessary other than simply ignoring the sampled state paths x0:n, since we can deduce from
(3.2) that the resulting algorithm still does indeed target the correct posterior p(θ|y1:n), given
that p(θ|y1:n) ∝ p(y1:n|θ)p(θ).

1Note that since p̂(x0:n|y1:n, θ) :=
∑︁N

i=1 w
i
nδxi

0:n
(dx0:n), in practice this is equivalent to resampling a single

particle in SIR, i.e. draw xi
0:n with probability wi

n.
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Now, in order to obtain estimates of p(y1:n|θ) for a given value of θ we adopt the
APF-based likelihood estimator of Pitt et al. (2012), defined by

p̂(y1:n|θ) :=
n∏︂
t=1

[︄{︄
N∑︂
i=1

πiw,t(θ)

N

}︄{︄
N∑︂
i=1

πiλ,t(θ)

}︄]︄
(3.3)

where πiw,t(θ) and πiλ,t(θ) are the unnormalized importance and unnormalized intermediate
weights respectively (see Section D), i.e. satisfying wit = πiw,t(θ)/

∑︁N
j=1 π

j
w,t(θ) and λit =

πiλ,t(θ)/
∑︁N

j=1 π
j
λ,t(θ), taken here as explicit functions of θ. The PMMH procedure presented in

this section is summarized in Algorithm 3.1. Note that this is actually a slight generalization
introduced by Pitt et al. (2012) of the original PMMH proposed in Andrieu et al. (2010), which
is limited to the SIR framework.

Algorithm 3.1: Particle Marginal Metropolis Hastings
Initialization
draw θ0 ∼ p(θ)
run Algorithm 2.3 conditional on θ0 and store (πiw,1:n(θ

0), πiλ,1:n(θ
0))Ni=1

compute p̂(y1:n|θ0) =
∏︁n

t=1

[︂{︂∑︁N
i=1N

−1πiw,t(θ
0)
}︂{︂∑︁N

i=1 π
i
λ,t(θ

0)
}︂]︂

set θ ← θ0

set p̂(y1:n|θ)← p̂(y1:n|θ0)

Main recursion
for i = 1 to B + M do

draw θ′ ∼ q(θ′|θ)
run Algorithm 2.3 conditional on θ′ and store (πiw,1:n(θ

′), πiλ,1:n(θ
′))Ni=1

compute p̂(y1:n|θ′) =
∏︁n

t=1

[︂{︂∑︁N
i=1N

−1πiw,t(θ
′)
}︂{︂∑︁N

i=1 π
i
λ,t(θ

′)
}︂]︂

draw u ∼ U [0, 1]

compute α(θ′|θ) = 1 ∧ p̂(y1:n|θ′)p(θ′)
p̂(y1:n|θ)p(θ)

q(θ|θ′)
q(θ′|θ)

if u <= α(θ′|θ) then
set θi ← θ′

end
else

set θi ← θ
end
set θ ← θi

set p̂(y1:n|θ)← p̂(y1:n|θi)

end

The converse of PMMH, i.e. in which the target is p(x0:n|y1:n, θ) for a fixed value of
θ throughout the entire process, is called Particle Independent Metropolis Hastings (PIMH),
in allusion to the fact that the newly sampled x′0:n is always independent of the previous x0:n.
PIMH can also be obtained as a direct marginalization of the general pMCMC with target
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p(x0:n, θ|y1:n), and its acceptance probability isα(x′0:n|x0:n) = p̂x′0:n(y1:n|θ)/p̂x0:n(y1:n|θ), where
here the additional subscript in p̂(y1:n|θ) indicates the state path from which the approximation
was computed. However, since our interest in this work lies solely in performing parameter
inference, we will not consider exploring PIMH further.

Finally, it should be noted that although pMCMC is very appealing in theory, the method
needs a fair amount of tuning in order to perform well in practice. Important works in this regard
include e.g. Pitt et al. (2012), Doucet et al. (2015), Sherlock et al. (2015).

3.2 Sequential Parameter Learning

Having briefly discussed our main reference for offline parameter learning methods in
Section 3.1, we now turn our attention to our main problem, which as stated previously is to
learn about θ ∈ Θ sequentially, i.e. to compute p(θ|y1:t) for all t. In Sections 3.2.1 and 3.2.3
we introduce a novel class of algorithms for dealing with this problem, and in Section 3.2.4 we
show how this framework accomodates many of the commonly found methods for sequential
parameter learning in the literature as special cases. These sections contain the main novel
contribution of this thesis to the state-of-the-art of this literature.

3.2.1 A Novel Framework

Let θt denote the parameter associated with the posterior p(θ|y1:t) at time t. Although θ
is still inherently static, keeping track of the inference for it across time allows us to implicitly
define a sequence (θt)t≥0, where each θt := θ|Y1:t and with initial distribution given by the prior
θ0 ∼ p(θ). The joint posterior for (X0:t, k, θ0:t) given2 Y1:t = y1:t then admits the recursion

p(x0:t, k, θ0:t|y1:t) = p(θt|x0:t, k, θ0:t−1, y1:t)p(yt|x0:t, k, θ0:t−1, y1:t−1)·

· p(xt|x0:t−1, k, θ0:t−1, y1:t−1)
p(x0:t−1, k, θ0:t−1|y1:t−1)p(y1:t−1)

p(yt|y1:t−1)p(y1:t−1)
.

In the framework proposed here we implicitly assume that all marginal distributions of (Xt, Yt)t≥0

depend only on the most recent value of θ, i.e. that (Xt, Yt)t≥0 is perfectly adapted to the sequence
(θt)t≥0 (in the sense defined in Section 3.1). We also adopt the same resampling formalism as
the APF, implying that (xl:t, k) := (xt, x

k
l:t−1) and (θl:t−1, k) := θkl:t−1 for integer 0 ≤ l ≤ t− 1.

Therefore, by (1.2) and (1.1), we then have, respectively, that p(yt|x0:t, k, θ0:t−1, y1:t−1) =

g(yt|xt, θkt−1) and p(xt|x0:t−1, k, θ0:t−1, y1:t−1) = f(xt|xkt−1, θ
k
t−1), allowing us to further write

the joint target distribution as

p(x0:t, k, θ0:t|y1:t) =

2Once again we assume that only Y1:t is observed, treating Y0 as arbitrary or as the model prior information,
i.e. so that p(x0, θ0|y0) = p(x0|θ0, y0)p(θ0|y0) = ν(x0|θ0)p(θ0).
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= p(θt|xt, xk0:t−1, θ
k
0:t−1, y1:t)g(yt|xt, θkt−1)f(xt|xkt−1, θ

k
t−1)

p(xk0:t−1, θ
k
0:t−1|y1:t−1)

p(yt|y1:t−1)

∝ p(xk0:t−1, θ
k
0:t−1|y1:t−1)f(xt|xkt−1, θ

k
t−1)g(yt|xt, θkt−1)p(θt|xt, xk0:t−1, θ

k
0:t−1, y1:t). (3.4)

Assuming that the proposal for drawing (X0:t, k, θ0:t) satifies

q(x0:t, k, θ0:t|y1:t) =

= q(xk0:t−1, θ
k
0:t−1|y1:t−1)q(θt|xt, xk0:t−1, θ

k
0:t−1, y1:t)q(xt|xk0:t−1, θ

k
0:t−1, y1:t)λ

k
t , (3.5)

where λkt := q(k|x0:t−1, θ0:t−1, y1:t), we then have the weight recursion

πt :=
p(x0:t, k, θ0:t|y1:t)
q(x0:t, k, θ0:t|y1:t)

∝
p(xk0:t−1, θ

k
0:t−1|y1:t−1)f(xt|xkt−1, θ

k
t−1)g(yt|xt, θkt−1)p(θt|xt, xk0:t−1, θ

k
0:t−1, y1:t)

q(xk0:t−1, θ
k
0:t−1|y1:t−1)q(θt|xt, xk0:t−1, θ

k
0:t−1, y1:t)q(xt|xk0:t−1, θ

k
0:t−1, y1:t)λ

k
t

=
πkt−1

λkt

f(xt|xkt−1, θ
k
t−1)g(yt|xt, θkt−1)

q(xt|xk0:t−1, θ
k
0:t−1, y1:t)

p(θt|xt, xk0:t−1, θ
k
0:t−1, y1:t)

q(θt|xt, xk0:t−1, θ
k
0:t−1, y1:t)

∝
wkt−1

λkt

f(xt|xkt−1, θ
k
t−1)g(yt|xt, θkt−1)

q(xt|xk0:t−1, θ
k
0:t−1, y1:t)

p(θt|xt, xk0:t−1, θ
k
0:t−1, y1:t)

q(θt|xt, xk0:t−1, θ
k
0:t−1, y1:t)

. (3.6)

Note that pointwise evaluation of the weight recursion (3.6) requires the ability of not only
evaluating the APF weights (2.19) but also (at least up to a proportionality constant) the ratio
p(θt|xt, xk0:t−1, θ

k
0:t−1, y1:t)/ q(θt|xt, xk0:t−1, θ

k
0:t−1, y1:t). This usually requires making additional

assumptions about the specific (or approximate) form of the density p(θt|xt, xk0:t−1, θ
k
0:t−1, y1:t)

and, as illustrated below in Section 3.2.4, is essentially what distinguishes one sequential
parameter learning algorithm from the other.

The fundamental design choices in the framework proposed here are the interme-
diate weights λkt and the state and static parameter proposals q(xt|xk0:t−1, θ

k
0:t−1, y1:t) and

q(θt|xt, xk0:t−1, θ
k
0:t−1, y1:t), respectively. Starting with θi0 ∼ p(θ), xi0 ∼ ν(x0|θi0) and πi0 ∝

1 =⇒ wi0 = 1/N for i = 1, . . . , N , the algorithm for sequential parameter learning developed
here is summarized in Algorithm 3.2. It should be clear that the class proposed here also contains
the APF described in Algorithm 2.3 (i.e. without any parameter learning) by simply taking θt
to be a fixed quantity θ∗ for all t, or equivalently by assuming that p(θ) = δθ∗(dθ).

The main output from Algorithm 3.2 is the approximation

p̂(x0:t, θ0:t|y1:t) :=
N∑︂
i=1

witδ(xi0:t,θi0:t)(dx0:tdθ0:t), (3.7)

which is typically referred to as the histogram-based estimator of the joint posterior distribution
of (X0:t, θ0:t) given Y1:t = y1:t. To obtain an approximation to the target p(θ|y1:t), we can simply
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Algorithm 3.2: Sequential Parameter Learning
Initialization
for i = 1 to N do

draw θi0 ∼ p(θ)
draw xi0 ∼ ν(x0|θi0)
set πi0 ∝ 1

end
for i = 1 to N do

set wi0 = 1/N
end

Main recursion
for t = 1 to n do

for i = 1 to N do
sample ki from {1, . . . , N} with probability λit
draw xit ∼ q(xt|xki0:t−1, θ

ki
0:t−1, y1:t)

draw θit ∼ q(θt|xt, xki0:t−1, θ
ki
0:t−1, y1:t)

compute πit ∝
w

ki
t−1

λ
ki
t

f(xit|x
ki
t−1,θ

ki
t−1)g(yt|xit,θ

ki
t−1)

q(xit|x
ki
0:t−1,θ

ki
0:t−1,y1:t)

p(θit|xit,x
ki
0:t−1,θ

ki
0:t−1,y1:t)

q(θit|xit,x
ki
0:t−1,θ

ki
0:t−1,y1:t)

end
for i = 1 to N do

compute wit = πit/
∑︁N

j=1 π
j
t

end
end

integrate (3.7) over the support of (X0:t, θ0:t−1), yielding

p̂(θ|y1:t) :=
∫︂
X t+1×Θt

p̂(x0:t, θ0:t|y1:t)dx0:tdθ0:t−1 =
N∑︂
i=1

witδθit(dθ). (3.8)

Proceeding analogously, estimators of any marginal of p(x0:t, θ0:t|y1:t) can be obtained by inte-
grating (3.7) accordingly. In particular, integrating over the entire path of the static parameters
θ0:t results in the state posterior (2.2) obtained in the “pure filtering” context of Section 2.1.

Besides the usual histogram-based estimator defined in (3.8), an alternative estimator of
p(θ|y1:t) can be obtained via Rao-Blackwellization (Liu and Chen, 1998; Doucet et al., 2000).
First, note that we can rewrite the target distribution as

p(θ|y1:t) =
∫︂
X t+1×Θt

p(θ, x0:t, θ0:t−1|y1:t)dx0:tdθ0:t−1

=

∫︂
X t+1×Θt

p(θ|x0:t, θ0:t−1, y1:t)p(x0:t, θ0:t−1|y1:t)dx0:tdθ0:t−1

= EP[p(θ|X0:t, θ0:t−1, Y1:t)|Y1:t], (3.9)
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i.e. as the conditional expectation (under P) of p(θ|x0:t, θ0:t−1, y1:t) given Y1:t. Now, we can
obtain a direct Monte Carlo approximation to (3.9) by simply replacing the integrating density
p(x0:t, θ0:t−1|y1:t)with its particle approximation p̂(x0:t, θ0:t−1|y1:t) in the corresponding integral.
This gives

p̌(θ|y1:t) :=
∫︂
X t+1×Θt

p(θ|x0:t, θ0:t−1, y1:t)p̂(x0:t, θ0:t−1|y1:t)dx0:tdθ0:t−1

=

∫︂
X t+1×Θt

p(θ|x0:t, θ0:t−1, y1:t)
N∑︂
i=1

witδ(xi0:t,θi0:t−1)
(dx0:tdθ0:t−1)dx0:tdθ0:t−1

=
N∑︂
i=1

witp(θ|xi0:t, θi0:t−1, y1:t). (3.10)

The resulting expression for p̌(θ|y1:t) given in (3.10) is then known as the Rao-Blackwellized
estimator of the posterior p(θ|y1:t).

The Rao-Blackwellized estimator (3.10) is typically (Liu and Chen, 1998) more efficient
than the histogram-based estimator (3.8) whenever interest lies in approximating only the poste-
rior p(θ|y1:t), i.e. the typical setting for sequential parameter learning. However, this comes at
the cost of having to evaluate p(θ|x0:t, θ0:t−1, y1:t) pointwise. Moreover, if interest lies in the mo-
ments and/or general functionals of θ|Y1:t, analytical solutions to the required integrals might be
much more involved and sometimes unattainable when compared to the simpler histogram-based
estimator (3.7).

A subtle point about the framework proposed here is that in Algorithm 3.2 we first sample
the states Xt and only then sample the parameters θt. Although this might not appear relevant
at first, explicitly adopting this order proves crucial for obtaining fully-adapted procedures, as
discussed below. See Section 3.2.3 to see how we can accommodate methods that have the
reverse sampling order, such as Liu and West (2001)’s and Storvik (2002)’s filters.

We obtain a fully-adapted sequential parameter learning procedure by taking intermediate
weights λkt ∝ wkt−1p(yt|xkt−1, θ

k
t−1), state proposal q(xt|xk0:t−1, θ

k
0:t−1, y1:t) = p(xt|xkt−1, θ

k
t−1, yt)

and static parameter proposal equal to q(θt|xt, xk0:t−1, θ
k
0:t−1, y1:t) = p(θt|xt, xk0:t−1, θ

k
0:t−1, y1:t),

since in this case the associated importance weights (3.6) become

πt ∝
wkt−1

wkt−1p(yt|xkt−1, θ
k
t−1)

f(xt|xkt−1, θ
k
t−1)g(yt|xt, θkt−1)

p(xt|xkt−1, θ
k
t−1, yt)

p(θt|xt, xk0:t−1, θ
k
0:t−1, y1:t)

p(θt|xt, xk0:t−1, θ
k
0:t−1, y1:t)

= 1.

On the other hand, if the sampling order is reversed (i.e. θt before Xt), we would end up with
the weight recursion

πt ∝
wkt−1

λkt

f(xt|xkt−1, θt)g(yt|xt, θt)
q(xt|xk0:t−1, θt, θ

k
0:t−1, y1:t)

p(θt|xk0:t−1, θ
k
0:t−1, y1:t)

q(θt|xk0:t−1, θ
k
0:t−1, y1:t)

.
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Here, even if we choose by analogy the optimal intermediate weights λkt ∝ wkt−1p(yt|xkt−1, θ
k
t−1)

and optimal proposals q(xt|xk0:t−1, θt, θ
k
0:t−1, y1:t) = p(xt|xkt−1, θt, yt) and q(θt|xk0:t−1, θ

k
0:t−1, y1:t)

= p(θt|xk0:t−1, θ
k
0:t−1, y1:t), the resulting weights would be

πt ∝
wkt−1

wkt−1p(yt|xkt−1, θ
k
t−1)

f(xt|xkt−1, θt)g(yt|xt, θt)
p(xt|xkt−1, θt, yt)

p(θt|xk0:t−1, θ
k
0:t−1, y1:t)

p(θt|xk0:t−1, θ
k
0:t−1, y1:t)

=
p(yt|xkt−1, θt)

p(yt|xkt−1, θ
k
t−1)

,

which in general are not proportional to 1. Note that in the above derivation we have used that
p(xt|xkt−1, θ, yt) = f(xt|xkt−1, θ)g(yt|xt, θ)/p(yt|xkt−1, θ) for either θ = θkt−1 or θ = θt. This
identity can easily be shown to hold by an argument analogous to the one used in the proof of
Proposition 2.1.1.

In summary, the argument for sampling the states Xt before the parameters θt lies on
the fact that at time t we cannot take the intermediate weights λkt to be a function of the
current parameter θt, since here resampling is done prior to sampling the parameters3. As far
as sequential parameter learning is concerned, this also has the benefit that we always perform
inference for the parameters based on the most recent information about the states.

3.2.2 Path Degeneracy and Resampling

Due to the unavoidable degeneracy inherent in sequential importance sampling methods,
the resampling step is an integral part of SMC. Despite its benefits, however, resampling has
an important drawback: sample impoverishment, which in this context takes the form of path
degeneracy (Andrieu et al., 2005).

Path degeneracy manifests itself as the coalescence of particles’ paths ocurring from suc-
cessive resampling steps. As an example, consider a general functional4 Zl:t−1 of (Xl:t−1, θl:t−1)

defined for integer 0 ≤ l ≤ t− 1 and computed recursively along the filter’s trajectory. At time
t, (zkil:t−1)

N
i=1 is the set resampled from (zil:t−1)

N
i=1 and, due to some zil:t−1’s typically having lower

weights than others, the resampled set (zkil:t−1)
N
i=1 will have fewer distinct values than (zil:t−1)

N
i=1.

At time t + 1, we now have (zil:t)
N
i=1, with each zil:t = (zkil:t−1, z

i
t). Therefore, when resampling

takes place, the zkil:t−1’s are going to be resampled again, taking even fewer distinct values than
before. Over time, this is compounded and the paths zil:t eventually degenerate (hence the name)
to a single point.

Now, path degeneracy is progressively worse as l is closer to 0. Whenever l = t − 1,

3Although theoretically this could be dealt with in a propagate-resample framework (i.e. one in which we
first sample the states/parameters and then perform the resampling step), this might be undesirable since then the
resampled sequences Xk

0:t−1 and θk0:t−1 will not benefit from current information on yt, i.e. the procedure will
be blind as per the APF terminology. Works comparing propagate-resample and resample-propagate frameworks
from a theoretical standpoint include e.g. Petetin and Desbouvries (2013) and from an empirical standpoint include
e.g. Lopes and Tsay (2011).

4Examples of such functionals include sufficient statistics S0:t−1 for (X0:t−1, Y1:t−1) and even the state and
static parameter paths X0:t−1 and θ0:t−1 themselves; see the various examples at Section 3.2.4.
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i.e. when only Zt−1 is of interest, the sample impoverishment due to resampling is minimal
since the transition from Zt−1 to Zt essentially “replenishes” the number of distinct values the
functional Zl:t−1 can take from one step to the other. This is why path degeneracy can for the
most part be ignored whenever interest lies only in state filtering, since the state transition from
Xt−1 toXt will usually allow for a proper exploration of the state space even when the number of
distinct values ofXt−1 is small. Formally, this property is known in the literature as exponential
forgetting (Del Moral, 2004) and as it name implies it refers to the ability of the functional to
“forget” (i.e. eliminate its dependence on) past values exponentially fast, thus avoiding path
degeneracy.

Whenever the state transition does not allow for a proper exploration of the state space
(i.e. whenever the exponential forgetting property is not satisfied), however, path degeneracy
can become problematic even if l = t − 1. This is specially true for sequential parameter
learning, since the static parameters for which we are trying to perform inference for usually
have no “natural” dynamic. Here, even if we are only interested in the most recent value θt, if
the parameters are static we implicitly have θt = θt−1 for all t and eventually θt = θ0, meaning
that at each time t we only resample from an ever-decreasing set of distinct values drawn from
the prior p(θ).

Since path degeneracy is a direct consequence of sample impoverishment, we should
therefore avoid sample impoverishment as much as possible. This can essentially be done
in two ways: by choosing optimal proposal distributions and by considering more efficient
resampling schemes. The first of these is very straightforward, since it simply consists of opting
for fully-adapted procedures whenever possible.

On the other hand, considering more efficient resampling schemes might at first sight
not be as straightforward, since there are several methodologies in the literature from which
to choose from (see e.g. Randal et al., 2005; Li et al., 2015). It turns out, however, that there
is a single resampling scheme that have been proven to have minimal variance amongst all
unbiased (i.e. such that the expected number of offspring ξit of particle zil:t−1 equals N · λit)
resampling methods. This method, introduced by Crisan and Lyons (2002), is usually known as
the tree-based branching algorithm, or simply as branching algorithm.

Essentially, the branching algorithm relies on near-deterministic allocations in order to
sample offspring, which in practice is why the method is so efficient. At time t, the ith particle
is assigned a number of offspring ξit according to

ξit =

{︄
⌊Nλit⌋ with probability 1− {Nλit}
⌊Nλit⌋+ 1 with probability {Nλit}

(3.11)

where ⌊·⌋ is the floor operator and {x} := x − ⌊x⌋ is the non-integer part of x. There are
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several ways in which we can sample an entire offspring set (ξit)Ni=1 satisfying
∑︁N

i=1 ξ
i
t = N and

(3.11). Without further details, we adhere to the procedure described in Bain and Crisan (2009),
summarized in Algorithm 3.3.

Algorithm 3.3: Tree-Based Branching Resampling
Alias Table
set g = N
set h = N

Sampling Indices
for i = 1 to N-1 do

draw u ∼ U [0, 1]
if {Nλit}+ {g −Nλit} < 1 then

if u < 1− ({Nλit}/{g}) then
set ξit = ⌊Nλit⌋

end
else

set ξit = ⌊Nλit⌋+ (h− ⌊g⌋)
end

end
else

if u < 1− (1− {Nλit})/(1− {g}) then
set ξit = ⌊Nλit⌋+ 1

end
else

set ξit = ⌊Nλit⌋+ (h− ⌊g⌋)
end

end
set g ← g −Nλit
set h← h− ξit

end
set ξNt = h

It is worth pointing out that Algorithm 3.3 does not yield a set of indices (ki)
N
i=1 from

which we can perform resampling with but rather only the set of offspring (ξit)
N
i=1 produced

by each particle. There is however a clear bijection relationship between them, in that we can
produce one set directly from the other. For completeness, a procedure to compute the index set
(ki)

N
i=1 from the set of offspring (ξit)

N
i=1 is summarized in Algorithm 3.4.

Now, in light of Algorithm 3.4 it is interesting to note that even outside the APF framework
we inevitably have to use indices for resampling, although in e.g. SIR they are not explicitly
included as a part of the particle system. In this case, the usual interpretation for resampling is
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Algorithm 3.4: Index Sampling
Initialization
set i = 1
set c = 0

Main recursion
while c < N do

if ξit > 0 then
while ξit > 0 do

set c← c+ 1
set kc = i
set ξit ← ξit − 1

end
end
set i← i+ 1

end

as a procedure for drawing (z̃il:t−1)
N
i=1 with replacement from the empirical distribution

p̂(zl:t−1|y1:t) :=
N∑︂
i=1

λitδzil:t−1
(dzl:t−1). (3.12)

However, as discussed above, this is usually accomplished by drawing a set of offspring (ξit)
N
i=1

and computing their corresponding indices using a procedure similar to Algorithm 3.4.

Finally, for completeness we briefly describe in Algorithm 3.5 a fast O(N) procedure
for directly producing index draws from a Multinomial distribution. This method was originally
proposed by Vose (1991) and consists of building in O(N) operations an alias table from
which draws can be produced in O(1) time. Note that in practice we strongly recommend
that multinomial resampling be avoided at all costs, and used only for benchmarking different
methods. In particular, it can be proven (Künsch, 2005) that by using the branching algorithm
the additional Monte Carlo variance introduced in the particle system is reduced by a factor of
at least two when compared with multinomial sampling.

3.2.3 Regularization

Other than adopting more efficient resampling techniques as mentioned in Section 3.2.2,
still another avenue for mitigating path degeneracy comprises a set of techniques that can be col-
lectively referred to as regularization algorithms (Musso et al., 2001). In essence, regularization
is a modification of the resampling step to allow for resampled particles to assume values other
than the ones specified by the current set of particles. In the above example, this means that
with regularization the number of unique values in (z̃il:t−1)

N
i=1 is typically larger than the number
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Algorithm 3.5: Alias-based Multinomial Resampling
Initialization
for i = 1 to N do

set pi = λi
t

end

Alias Table
set s = 1
set l = 1
for i = 1 to N do

if λi
t > 1/N then
set largel = i
set l← l + 1

end
else

set smalls = i
set s← s+ 1

end
end
while s ̸= 1 and s ̸= 1 do

set s← s− 1
set i = smalls
set j = largel
set probi = Nλi

t

set aliasi = j
set pj ← pj + (pi − 1/N)
if pj > 1/N then

set largel = j
set l← l + 1

end
else

set smalls = j
set s← s+ 1

end
end
while s > 1 do

set s← s− 1
set probsmalls = 1

end
while l > 1 do

set l← l − 1
set problargel

= 1

end

Index Sampling
for i = 1 to N do

draw u ∼ U [0, N ]
set j = ⌊u⌋
if (u− j) ≤ probj then

set ki = j
end
else

set ki = aliasj
end

end
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of unique values in (zil:t−1)
N
i=1, increasing diversity. This also allows for additional exploration

of the state space, which is specially important for static parameters since their support will no
longer be limited to a subset of values initially drawn from the prior.

Recall from Section 3.2.2 that the resampling step can be interpreted as drawing a set
(z̃il:t−1)

N
i=1 with replacement from the empirical distribution p̂(zl:t−1|y1:t) given in (3.12). The

corresponding regularized distribution is then defined as the convolution of p̂(zl:t−1|y1:t) with a
regularization kernel (Silverman, 1986) K(·), i.e.

p̃(zl:t−1|y1:t) :=
∫︂
K(zl:t−1 − z∗l:t−1)p̂(z

∗
l:t−1|y1:t)dz∗l:t−1

=

∫︂
K(zl:t−1 − z∗l:t−1)

N∑︂
i=1

λitδzil:t−1
(dz∗l:t−1)dz

∗
l:t−1

=
N∑︂
i=1

λitK(zl:t−1 − zil:t−1). (3.13)

Traditionally,K(·) is assumed to be the probability density of a continuous random variable with
zero mean and finite second moment taking values in R(t−1−l)×dz , where dz := dim(Zt). By
replacing the empirical measure (3.12) with the regularized measure (3.13), it is then clear that
the set of possible values assumed by (z̃il:t−1)

N
i=1 effectively goes from the finite set (zil:t−1)

N
i=1

to the uncountable image set of K(·). Note that z∗l:t−1 used in the above derivation is only an
integration variable; the density p̂ in the first and second integral is still (3.12).

As mentioned before, regularization is specially effective in sequential parameter learning
due to the fact that it allows for exploration of the parameter space by otherwise static parameters,
thus giving them “artifical dynamics”. The first widely succesful application of this idea is in
the method proposed by Liu and West (2001), which relies on a Gaussian kernel with location
and scale determined by past parameter values and an additional user-defined scale specified
via discount factors (see also Section 3.2.4.2). In order to obtain a more general framework,
however, here we will assume that K(·) is any probability distribution density, and develop an
auxiliary variable formalism for regularization analogous to the one for resampling within the
APF.

More specifically, let (z̃il:t−1)
N
i=1 be the set of resampled values drawn from (3.12).

From the auxiliary variable interpretation presented so far we clearly have z̃il:t−1 = zkil:t−1 for
each i, and by definition this is also equivalent to zkil:t−1 =: (zil:t−1, ki). Therefore, denoting
by z̃il:t−1 the regularized value instead of the resampled one, we can interpret the joint particle
(zil:t−1, ki) as a draw from the regularized measure (3.13) instead of the empirical measure (3.12),
keeping the definition for ki intact in the process. That is, we can reinterpret the regularization
procedure as drawing the particle z̃il:t−1 := (zil:t−1, ki) by first sampling ki with probability
λit and then sampling a value from K(zl:t−1 − zkil:t−1). This effectively generalizes the usual
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auxiliary interpretation for resampling in the APF, which here is clearly obtained by choosing
K(x) = δ(x), i.e. the Dirac delta function, as the regularization kernel. For completeness, the
weight recursion under regularization is

πt ∝
wkt−1

λkt

f(xt|x̃t−1, θ̃t−1)g(yt|xt, θ̃t−1)

q(xt|x̃0:t−1, θ̃0:t−1, y1:t)

p(θt|xt, x̃0:t−1, θ̃0:t−1, y1:t)

q(θt|xt, x̃0:t−1, θ̃0:t−1, y1:t)
. (3.14)

Although this novel auxiliary variable interpretation of regularization might appear to be
of little consequence, we will show in the examples of Section 3.2.4 below that this formalism is
essentially what allows for our framework to include so many of the most common methods for
sequential parameter learning found in the literature. In particular, in algorithms in which the
sampling order is the opposite of the one adopted here (i.e. in which we first sample θt and then
Xt) and exploration of the parameter space is only done through regularization, we can simply
take p(θt|xt, x̃i0:t−1, θ̃

i

0:t−1, y1:t) = δ
θ̃
i
t−1

(dθt), so that θit = θ̃
i

t−1 for each t and i.

Algorithm 3.6 summarizes a generic method in the class of sequential parameter learning
methods with regularization described so far. As stated before, if regularization is considered
as an integral part of the resampling step, Algorithm 3.6 is simply Algorithm 3.2 with zkil:t−1

replaced by z̃il:t−1 for both zkil:t−1 = xkil:t−1 and zkil:t−1 = θkil:t−1, with l = 0 or l = t− 1.

3.2.4 Special cases

We now show how the framework proposed here can accommodate several of the al-
gorithms for sequential parameter learning found in the literature as special cases. We have
grouped existing methods according to our subjective perception of their defining features, and
afterwards propose three novel algorithms as an illustration of the flexibility allowed by our
framework.

3.2.4.1 Particle Jittering

Introduced in Gordon et al. (1993), jittering consists of adding small amounts of ran-
domness to the particles during the resampling step so as to allow for further exploration of
the state space in the case of slow-moving states (this was called a “roughening procedure” in
the original paper). This idea was later expanded by Kitagawa (1998), which by taking static
parameters to be a part of the (“augmented”) state vector, allowed the method to be suitable for
sequential parameter learning.

Essentially, jittering is simply an instance of regularization with an additive kernel with
location (xkit−1, θ

ki
t−1) and user-defined variance matrix Vt−1, i.e.



66

Algorithm 3.6: Sequential Parameter Learning with Regularization
Initialization
for i = 1 to N do

draw θi0 ∼ p(θ)
draw xi0 ∼ ν(x0|θi0)
set πi0 ∝ 1

end
for i = 1 to N do

set wi0 = 1/N
end

Main recursion
for t = 1 to n do

for i = 1 to N do
sample ki from {1, . . . , N} with probability λit
draw (x̃i0:t−1, θ̃

i

0:t−1) ∼ K
(︁
(x0:t−1, θ0:t−1)− (xki0:t−1, θ

ki
0:t−1)

)︁
draw xit ∼ q(xt|x̃i0:t−1, θ̃

i

0:t−1, y1:t)

draw θit ∼ q(θt|xt, x̃i0:t−1, θ̃
i

0:t−1, y1:t)

compute πit ∝
w

ki
t−1

λ
ki
t

f(xit|x̃it−1,θ̃
i
t−1)g(yt|xit,θ̃

i
t−1)

q(xit|x̃i0:t−1,θ̃
i
0:t−1,y1:t)

p(θit|xit,x̃i0:t−1,θ̃
i
0:t−1,y1:t)

q(θit|xit,x̃i0:t−1,θ̃
i
0:t−1,y1:t)

end
for i = 1 to N do

compute wit = πit/
∑︁N

j=1 π
j
t

end
end

K
(︁
(x0:t−1, θ0:t−1)− (xki0:t−1 − θ

ki
0:t−1)

)︁
= dG

(︁
(xt−1, θt−1)|(xkit−1, θ

ki
t−1), Vt−1

)︁
·

δ
(x

ki
0:t−2,θ

ki
0:t−2)

(dx0:t−2dθ0:t−2), (3.15)

where dG(x|µ,Σ) is the density of any continuous random variable (usually Gaussian) inRdx×dθ

with mean vector µ and variance matrix Σ, evaluated at point x. Note that here only the most
recent state and parameter particles (xit−1, θ

i
t−1)

N
i=1, are regularized, since the ensuing Dirac

measures imply that (x̃i0:t−2, θ̃
i

0:t−2) = (xki0:t−2, θ
ki
0:t−2).

Since jittering was originally proposed within the SIR framework, the intermediate
weights are given by λit = wit−1 and the state proposal q(xt|x̃i0:t−1, θ̃

i

0:t−1, y1:t) is completely
user-defined. The target parameter distribution is assumed to satisfy5

p(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t) = δ
θ̃
i
t−1

(dθt) (3.16)

and, by taking q(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t)= p(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t), the corresponding weights

5Note that drawing θit from δ
θ̃
i
t−1

(dθt) simply amounts to setting θit = θ̃
i

t−1.
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(3.14) are

πit ∝
wkit−1

wkit−1

f(xit|x̃it−1, θ̃
i

t−1)g(yt|xit, θ̃
i

t−1)

q(xit|x̃i0:t−1, θ̃
i

0:t−1, y1:t)

δ
θ̃
i
t−1

(dθt)

δ
θ̃
i
t−1

(dθt)
=
f(xit|x̃it−1, θ̃

i

t−1)g(yt|xit, θ̃
i

t−1)

q(xit|x̃i0:t−1, θ̃
i

0:t−1, y1:t)
. (3.17)

3.2.4.2 Liu and West’s Filter

Liu and West (2001)’s (LW) filter is widely recognized as the first successful sequential
parameter learning method, and the main benchmark in the literature. As in particle jittering,
its main reasoning is to allow for static parameters to properly explore their state space through
regularization, but its adoption of the APF framework and adaptive kernel density estimation
techniques make for a much more efficient method.

More specifically, the LW filter adopts the kernel

K
(︁
(x0:t−1, θ0:t−1)− (xki0:t−1 − θ

ki
0:t−1)

)︁
= dN (θt−1|mki

t−1, h
2Vt−1)·

δ
(x

ki
0:t−1,θ

ki
0:t−2)

(dx0:t−1dθ0:t−2), (3.18)

where

mi
t−1 := aθit−1 + (1− a)θ̄t−1, θ̄t−1 :=

N∑︂
i=1

θit−1, (3.19)

Vt−1 :=
N∑︂
i=1

wit−1[θ
i
t−1 − θ̄t−1][θ

i
t−1 − θ̄t−1]

T , 0 ≤ h ≤ 1, (3.20)

with a =
√
1− h2. Note that in the LW filter only the most recent θit−1’s are regularized,

whereas the states are simply resampled.

The choice of kernel (3.18) builds on the work of shrinkage location by West (1993a,b),
yielding draws that are more concentrated around their mean θ̄t−1 than simply using the usual
jittering locations θkit−1. As a consequence, the overdispersion over time that usually affects
kernel-based estimates (Liu and West, 2001) is completely avoided. By also requiring that
a2 + h2 = 1, the method guarantees that the first two second moments of the regularized
estimates (θ̃

i

t−1)
N
i=1 will be the same as those of (θit−1)

N
i=1, i.e. θ̄t−1 and Vt−1. The kernel

bandwidth h is usually selected according to a discount factor (West and Harrison, 1997)
δ ∈ (0, 1] via h =

√︁
1− [(3δ − 1)/2δ]2, which according to the authors should typically be

around 0.95 to 0.99.

As for the other choices, the LW filter uses a lookahead strategy by taking (µit,m
i
t−1)

as the best guess for (xit, θit), where here specifically µit = EP(Xt|xi0:t−1, θ
i
0:t−1). This results in

the intermediate weights λit ∝ wit−1g(yt|µit,mi
t−1) and state proposal q(xt|x̃i0:t−1, θ̃

i

t−1, y1:t) =
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f(xt|x̃it−1, θ̃
i

t−1). Similar to jittering, it is also assumed that

p(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t) = δ
θ̃
i
t−1

(dθt), (3.21)

so that movement along the parameter space is only made through regularization. Finally, we
also have q(θt|xit, x̃i0:t−1, θ̃

i

0:t−1, y1:t) = p(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t), yielding weights (3.14) equal
to

πit ∝
wkit−1

wkit−1g(yt|µ
ki
t ,m

ki
t−1)

f(xit|x̃it−1, θ̃
i

t−1)g(yt|xit, θ̃
i

t−1)

f(xit|x̃it−1, θ̃
i

t−1)

δ
θ̃
i
t−1

(dθt)

δ
θ̃
i
t−1

(dθt)
=

g(yt|xit, θ̃
i

t−1)

g(yt|µkit ,mki
t−1)

. (3.22)

Note that in its original version the LW filter first samples the static parameters θit from the kernel
(3.18) and then samples the states xit conditional on θit. However, as mentioned before, this is
accommodated in our framework by setting θit = θ̃

i

t−1, yielding an equivalent implementation
of the method.

3.2.4.3 Smooth Jittering

Introduced in Flury and Shephard (2009), the so-called smoothly jittered particle filter
builds on previous work on smoothed bootstraps in the SMC context (Stravropoulos and Tit-
terington, 2001) in order to provide asymptotically optimal choices and increase the overall
efficiency of particle jittering.

The regularization kernel for the smooth jittering method is

K
(︁
(x0:t−1, θ0:t−1)− (xki0:t−1 − θ

ki
0:t−1)

)︁
= dG

(︁
(xt−1, θt−1)|ζkit−1, Ĥ t−1

)︁
·

δ
(x

ki
0:t−2,θ

ki
0:t−2)

(dx0:t−2dθ0:t−2), (3.23)

where ζ it−1 := (ζ i1,t−1, . . . , ζ
i
dx+dθ,t−1) and Ĥ t−1 := diag(ĥ1,t−1, . . . , ĥdx+dθ,t−1) are the kernel

locations and bandwidths, respectively. Here, each location ζ ij,t−1 and bandwidth hj,t−1 are
defined independently, according to

ζ ij,t−1 := µ̂j,t−1 +

⌜⃓⃓⎷ σ̂2
j,t−1 − ĥ

2

j,t−1

σ̂2
j,t−1

(zij,t−1 − µ̂j,t−1) (3.24)

and
hj,t−1 := 1.59[R̂(X ,Θ|y1:t−1)]

1/3σ̂j,t−1N
−1/3, (3.25)

where zij,t−1 is the jth element of the vector (xit−1, θ
i
t−1), j = 1, . . . , dx + dθ, µ̂j,t−1 and σ̂2

j,t−1

are estimates of the mean and variance of (zij,t−1)
N
i=1 and R̂(X ,Θ|y1:t−1) is an estimate of the
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functional defined by

R(X ,Θ|y1:t−1) :=

∫︂
X×Θ

g(yt−1|xt−1, θt−1)

p(yt−1|y1:t−2)
p(xt−1, θt−1|y1:t−1)dxt−1dθt−1. (3.26)

Note that although the location shrinkage equation (3.24) might at first appear distinct from the
LW filter shrinkage (3.19), it can be easily seen that they are equivalent (for a unidimensional
parameter) by taking zij,t−1 = θit−1, µ̂

i
j,t−1 = θ̄t−1 and ĥj,t−1 = hσ̂2

j,t−1.

Smooth jittering was proposed within a SIR framework, more specifically a bootstrap
filter. Therefore, here the intermediate weights are λit = wit−1, and the state proposal is
q(xt|x̃i0:t−1, θ̃

i

t−1, y1:t) = f(xt|x̃it−1, θ̃
i

t−1). Here we again assume that

p(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t) = δ
θ̃
i
t−1

(dθt) (3.27)

and, with q(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t) = p(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t), we get importance weights
(3.14) given by

πit ∝
wkit−1

wkit−1

f(xit|x̃it−1, θ̃
i

t−1)g(yt|xit, θ̃
i

t−1)

f(xit|x̃it−1, θ̃
i

t−1)

δ
θ̃
i
t−1

(dθt)

δ
θ̃
i
t−1

(dθt)
= g(yt|xit, θ̃

i

t−1). (3.28)

For a practical implementation of smooth jittering, Flury and Shephard (2009) prove that
a consistent estimator of the functional (3.26) is given by

R̂(X ,Θ|y1:t−1) := N
N∑︂
i=1

[︄
g(yt−1|xit−1, θ

i
t−1)∑︁N

j=1 g(yt−1|xjt−1, θ
j
t−1)

]︄2
= N

N∑︂
i=1

(wit−1)
2 (3.29)

since from (3.28) comes wit−1 = g(yt−1|xit−1, θ
i
t−1)/[

∑︁N
j=1 g(yt−1|xjt−1, θ

j
t−1)]. Although by

(3.24) the locations ζ ij,t−1 can become undefined whenever the bandwidth ĥj,t−1 is greater than
σ̂j,t−1 (which occurs if R̂(X ,Θ|y1:t−1)>N/4.02), in practice this can be dealt with by increasing
the number of particles N .

3.2.4.4 Resample-move

The resample-move algorithm proposed by Gilks and Berzuini (2001) introduces an idea
that is in principle simple but very powerful: “rejuvenating” resampled paths (xki0:t−1, θ

ki
0:t−1)

N
i=1

with Markov Chain Monte Carlo (MCMC) moves. This avoids (path) degeneracy entirely, since
by drawing completely new paths from the MCMC kernel we guarantee diversity and therefore
prevent sample impoverishment.

In our framework, the MCMC draws (x̃i0:t−1, θ̃
i

0:t−1)
N
i=1 from the resample-move algo-
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rithm can be naturally formalized as draws from the regularization kernel

K
(︁
(x0:t−1, θ0:t−1)− (xki0:t−1 − θ

ki
0:t−1)

)︁
=M

(︁
(x0:t−1, θ0:t−1)− (xki0:t−1 − θ

ki
0:t−1)

)︁
, (3.30)

where M(·) is a Markov kernel having the target posterior p(x0:t−1, θ0:t−1|y1:t−1) as invariant
density (see Section A.4). Since the algorithm is originally set within a SIR framework, the
intermediate weights are λit = wit−1, and the state proposal q(xt|x̃i0:t−1, θ̃

i

0:t−1, y1:t) is user-
defined. For the target parameter distribution, it is assumed again that

p(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t) = δ
θ̃
i
t−1

(dθt) (3.31)

and, with q(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t) = p(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t), the importance weight recur-
sion (3.14) for this method is

πit ∝
wkit−1

wkit−1

f(xit|x̃it−1, θ̃
i

t−1)g(yt|xit, θ̃
i

t−1)

q(xit|x̃i0:t−1, θ̃
i

0:t−1, y1:t)

δ
θ̃
i
t−1

(dθt)

δ
θ̃
i
t−1

(dθt)
=
f(xit|x̃it−1, θ̃

i

t−1)g(yt|xit, θ̃
i

t−1)

q(xit|x̃i0:t−1, θ̃
i

0:t−1, y1:t)
. (3.32)

Although in theory resample-move is very appealing, draws from the Markov kernel
M(·) at each step are produced at O(t) complexity, making a complete run of the algorithm
from times 1 through n an O(n2N) operation6. In order to circumvent this cost, the authors
propose performing the rejuvenation step only at predefined times, according to user-defined
probabilities O(t−γ) for γ > 0 (possibly different for each component) or even regularizing
only a part of the resampled particles, (xiL:t−1, θ

i
L:t−1) for integer 0 ≤ L ≤ t − 1. All of these

modifications can be built directly into the definition of M(·).

An ingenious way to keep the complexity constant in the resample-move algorithm is to
rely on a set of fixed-dimension sufficient statistics St := S(X0:t, Y0:t) which can be updated
recursively by the map St ≡ S(St−1, Xt, Yt). This idea was first proposed by Fearnhead (2002)
within an APF framework and, when applicable (as e.g. in exponential families), it effectively
transforms rejuvenation into a Gibbs sampling step, in which draws (x̃i0:t−1, θ̃

i

0:t−1) then consist
of sampling from p(xt−1, θt−1|xki0:t−1, θ

ki
0:t−1) = p(xt−1, θt−1|Skit−1).

3.2.4.5 Storvik’s Filter

Similarly inspired by the idea of using sets of fixed-dimensional sufficient statistics in
order to perform Gibbs sampling moves, Storvik (2002) proposed a generalization of the SIR
method capable of also performing inference for static parameters. This technique has the
additional interpretation of a procedure that marginalizes the static parameters out of the joint
target posterior p(x0:t, θ0:t|y1:t), providing additional theoretical justification for its effectiveness

6Note that O(1 ·N) +O(2 ·N) + . . .+O(n ·N) = O(n2 ·N).



71

in mitigating degeneracy.

In Storvik’s filter, only the current static parameters θit−1 are regularized; current states
xit−1 and past trajectories (xi0:t−2, θ

i
0:t−2) are simply resampled. Since θ̃it−1 is sampled from the

complete conditional p(θt−1|Skit−1), the regularization kernel here is then given by

K
(︁
(x0:t−1, θ0:t−1)− (xki0:t−1 − θ

ki
0:t−1)

)︁
= p(θt−1|Skit−1)δ(xki0:t−1,θ

ki
0:t−2)

(dx0:t−1dθ0:t−2). (3.33)

Note that the recursive update of the sufficient statistics via S it = S(S
ki
t−1, x

i
t, yt) is performed

deterministically at each time t after the newly propagated states xit are available.

Since Storvik’s method relies on regularization (and since in the original formulation θt
is sampled before Xt, as in the LW filter), we again have that the target parameter distribution
must satisfy

p(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t) = δ
θ̃
i
t−1

(dθt). (3.34)

As for the rest of the design choices, Storvik (2002) requires that the intermediate weights
satisfy λit = wit−1 (since the method is set within the SIR framework), leaving the state proposal
q(xt|x̃i0:t−1, θ̃

i

0:t−1, y1:t) to be specified by the user. By once more choosing the parameter
proposal q(θt|xit, x̃i0:t−1, θ̃

i

0:t−1, y1:t) = p(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t), we have importance weights
(3.14) of the form

πit ∝
wkit−1

wkit−1

f(xit|x̃it−1, θ̃
i

t−1)g(yt|xit, θ̃
i

t−1)

q(xit|x̃i0:t−1, θ̃
i

0:t−1, y1:t)

δ
θ̃
i
t−1

(dθt)

δ
θ̃
i
t−1

(dθt)
=
f(xit|x̃it−1, θ̃

i

t−1)g(yt|xit, θ̃
i

t−1)

q(xit|x̃i0:t−1, θ̃
i

0:t−1, y1:t)
. (3.35)

In cases where p(θt−1|St−1) can be evaluated pointwise but is still difficult/impossible to
sample from, Storvik (2002) allows the parameter proposal to differ from δ

θ̃
i
t−1

(dθt). Although
this situation rarely occurs in practice, in our framework it can be accommodated by performing
an additional importance sampling step to sample from the kernel (3.33). This marginal IS step
has importance weights given by p(θ̃

i

t−1|S
ki
t−1)/ Kq(θ̃

i

t−1|x
ki
0:t−1, θ

ki
0:t−2, y1:t), where Kq(·) is a

kernel that we can easily sample from. As a result, the original weight recursion of the method
(3.35) must also be multiplied by this marginal importance weight.

3.2.4.6 Particle Learning

Although also relying on sufficient statistics, the more recent Particle Learning (PL)
technique of Carvalho et al. (2010) is set within a fully-adapted APF instead of the SIR frame-
work adopted by previous methods. This is advantageous because fully-adapted procedures
have minimal variance importance weights (see Proposition 2.1.1) and consequently less vari-
able resampling weights, which in turn minimizes sample impoverishment and therefore path
degeneracy. Another benefit pointed out by the authors (see also the footnote on Section 3.2.1)
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is that the resulting method is then a resample-propagate filter instead of a propagate-resample
one, further contributing to the mitigation of degeneracy on static parameters’ paths.

In PL, no regularization takes place; only resampling is performed. This implies taking

K
(︁
(x0:t−1, θ0:t−1)− (xki0:t−1 − θ

ki
0:t−1)

)︁
= δ

(x
ki
0:t−1,θ

ki
0:t−1)

(dx0:t−1dθ0:t−1). (3.36)

Since the procedure is set within the FAPF framework, the intermediate weights and the state pro-
posal must satisfy λit ∝ wit−1p(yt|xit−1, θ

i
t−1) and q(xt|x̃i0:t−1, θ̃

i

0:t−1, y1:t) = p(xt|x̃it−1, θ̃
i

t−1, yt).
As for the target parameter distribution, the main underlying assumption here is that it satisfies

p(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t) = p(θt|S it). (3.37)

Additionally, it is also assumed that we can sample from p(θ|S it) and, therefore, that we can set
q(θt|xit, x̃i0:t−1, θ̃

i

0:t−1, y1:t) = p(θt|S it). The importance weights (3.14) for PL are thus given by

πit ∝
wkit−1

wkit−1p(yt|x̃it−1, θ̃
i

t−1)

f(xit|x̃it−1, θ̃
i

t−1)g(yt|xit, θ̃
i

t−1)

p(xit|x̃it−1, θ̃
i

t−1, yt)

p(θit|S it)
p(θit|S it)

= 1, (3.38)

which in retrospect should be obvious given that the procedure is fully-adapted. Note that
in the above derivation we have once again used that p(xit|x̃it−1, θ̃

i

t−1, yt) = f(xit|x̃it−1, θ̃
i

t−1)·
g(yt|xit, θ̃

i

t−1)/p(yt|x̃it−1, θ̃
i

t−1).

In the original formulation of PL, the sufficient statistics were included as part of an
extended vectorZt := (St, Xt, θt) and inference was actually performed forZt instead of the pair
(Xt, θt). Although unnecessary, this can be accommodated within our framework by rederiving
target and proposal recursions for Z0:t instead of (X0:t, θ0:t). The end result is the same as that
of Carvalho et al. (2010): for each time t, we have a target (and an equal proposal, cancelling
its terms in the corresponding importance weight recursion) for St given by p(St|Skit−1, x

i
t, yt)

corresponding to a deterministic update made through the map S it = S(S
ki
t−1, x

i
t, yt).

Finally, Carvalho et al. (2010) also consider the possibility of using state sufficient
statistics Tt := T (X0:t, θ0:t, Y1:t) whenever available, which unlike St can also be made func-
tions of the static parameters. These statistics are also set to satisfy a recursive mapping
Tt ≡ T (Tt−1, Xt, θt, Yt) and their use is feasible if the conditional posterior p(xt|Tt−1, yt) is
analytically available. In this case, the authors justify via Rao-Blackwellization (see Proposition
A.3.1) that the corresponding intermediate weights wit−1p(yt|Tt−1) will be less variable than
wit−1p(yt|x̃it−1, θ̃

i

t−1), yielding a more efficient procedure.
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3.2.4.7 Hybrid LW-PL Filter

Introduced by Chen et al. (2010), this method is essentially a LW filter that also in-
corporates Gibbs sampling for the static parameters for which sufficient statistics are available,
resulting in a hybrid version of Liu and West (2001) and Carvalho et al. (2010)’s algorithms.

Let θ = (ϕ, φ), where ϕ is the subset of static parameters for which LW moves are
made and φ is the subset for which draws conditional on sufficient statistics St are made. The
regularization kernel is then

K
(︁
(x0:t−1, θ0:t−1)− (xki0:t−1 − θ

ki
0:t−1)

)︁
=

dN (ϕt−1|mki
t−1, h

2Vt−1)δφki
t−1

(dφt−1)δ(xki0:t−1,θ
ki
0:t−2)

(dx0:t−1dθ0:t−2), (3.39)

wheremi
t−1 and Vt−1 are the same as in (3.19) but computed only for the subset (ϕit−1)

N
i=1 instead

of the entire (θit−1)
N
i=1.

Under the same lookahead strategy within the APF framework adopted for the LW
filter, here we also have intermediate weights λit ∝ wit−1g(yt|µit,mi

t−1, φ
i
t−1) and state proposal

q(xt|x̃i0:t−1, θ̃
i

0:t−1, y1:t) = f(xt|x̃it−1, ϕ̃
i

t−1, φ̃
i
t−1), where µit := EP(Xt|xit−1, ϕ

i
t−1, φ

i
t−1). As for

the target parameter distribution, we assume

p(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t) = δ
ϕ̃
i
t−1

(dϕt)p(φt|S it). (3.40)

and, by letting q(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t) = p(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t), we have importance
weights (3.14) given by

πit ∝
wkit−1

wkit−1g(yt|µ
ki
t ,m

i
t−1, φ̃

i
t−1)

f(xit|x̃it−1, ϕ̃
i

t−1, φ̃
i
t−1)g(yt|xit, ϕ̃

i

t−1, φ̃
i
t−1)

f(xit|x̃it−1, ϕ̃
i

t−1, φ̃
i
t−1)

δ
ϕ̃
i
t−1

(dϕt)p(φt|S it)

δ
ϕ̃
i
t−1

(dϕt)p(φt|S it)

=
g(yt|xit, ϕ̃

i

t−1, φ̃
i
t−1)

g(yt|µkit ,mi
t−1, φ̃

i
t−1)

. (3.41)

Here the sufficient statistics are updated in the same way as in the PL algorithm, i.e. by the map
S it = S(S

ki
t−1, x

i
t, yt).

Aside from the hybrid LW-PL filter of Chen et al. (2010), Rios and Lopes (2010) also
proposed a hybrid LW method but based on Storvik (2002)’s formulation of the Gibbs sampling
step associated with the propagated sufficient statistics for φ. The algorithm is very similar to
the one presented in this section, and can be obtained by simply replacing δ

φ
ki
t−1

(dφt−1) with

p(φt−1|Skit−1) in (3.39) and p(φt|S it) with δφ̃i
t−1

(dφt) in (3.40). Note that for both Chen et al.
(2010) and Rios and Lopes (2010) algorithms the same lookahead APF framework is adopted,
since the LW filter is actually the “baseline” algorithm, making the Gibbs sampling moves
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actually optional. Naturally, both methods collapse back to the LW filter whenever θ = ϕ.

3.2.4.8 Fully-adapted Liu and West’s Filter

We will now illustrate the flexibility allowed by the novel framework proposed in this
thesis with the introduction of three novel sequential parameter learning algorithms. The first of
these will be hereafter referred to as Fully-adapted Liu and West’s (FALW) filter. As its name
implies, this method consists of choosing a regularization kernel

K
(︁
(x0:t−1, θ0:t−1)− (xki0:t−1 − θ

ki
0:t−1)

)︁
=

dN
(︁
(xt−1, θt−1)|mki

t−1, ht−1Vt−1h
T
t−1

)︁
δ
(x

ki
0:t−2,θ

ki
0:t−2)

(dx0:t−2dθ0:t−2) (3.42)

similar to that of the LW filter, but under a FAPF framework instead of the original lookahead
APF one. This is done by choosing intermediate weights λit−1 ∝ wit−1p(yt|xit−1, θ

i
t−1) and state

proposal q(xit|x̃i0:t−1, θ̃
i

0:t−1, y1:t) = p(xt|x̃it−1, θ̃
i

t−1, yt). By also assuming that

p(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t) = δ
θ̃
i
t−1

(dθt), (3.43)

and that q(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t) = p(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t), the corresponding importance
weights (3.14) here become

πit ∝
wkit−1

wkit−1p(yt|x̃it−1, θ̃
i

t−1)

f(xit|x̃it−1, θ̃
i

t−1)g(yt|xit, θ̃
i

t−1)

p(xit|x̃it−1, θ̃
i

t−1, yt)

δ
θ̃
i
t−1

(dθt)

δ
θ̃
i
t−1

(dθt)
= 1. (3.44)

Although at first sight the modifications to the original method by Liu and West (2001)
that define FALW here might not warrant the definition of an entirely new algorithm, we highlight
from the discussion at the end of Section 3.2.1 that full adaptation in this case is only possible
due to our formalization of LW moves as draws from a regularization kernel, which essentially
allows us to reverse the original sampling order from θ first and then Xt to Xt first and then θ.
This is a situation which we have not encountered outside of our framework.

In light of Flury and Shephard (2009)’s work, we also make an additional improvement to
FALW by choosing a diagonal variance matrix and the optimal bandwidth proposed by these au-
thors in their smooth jittering method described in Section 3.2.4.3. More specifically, in (3.42) we
take shrinkages mi

t−1 := (mi
1,t−1, . . . ,m

i
dx+dθ,t−1), bandwidths ht−1 := (h1,t−1, . . . , hdx+dθ,t−1)

and variance matrix Vt−1 := diag((σi)21,t−1, . . . , (σ
i)2dx+dθ,t−1) equal to, respectively,

mi
j,t−1 := aj,t−1z

i
j,t−1 + (1− aj,t−1)z̄

i
j,t−1, z̄ij,t−1 :=

N∑︂
i=1

wit−1z
i
j,t−1, (3.45)
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hj,t−1 := 1.59[R̂(X ,Θ|y1:t−1)]
1/3N−1/3, σij,t−1 :=

⌜⃓⃓⎷ N∑︂
i=1

wit−1(z
i
j,t−1 − z̄ij,t−1)

2, (3.46)

where aj,t−1 =
√︂

1− h2j,t−1 and zij,t−1 is the jth element of (xit−1, θ
i
t−1), j = 1, . . . , dx + dθ.

Note that here the states xit−1 are also regularized along with the static parameters, analogous to
the smooth jittering method.

Now, the estimate R̂(X ,Θ|y1:t−1) appearing in (3.46) should not be confused with (3.29),
since although it is also a particle approximation to the same functional (3.26) as in smooth
jittering, the particle system here is different. For FALW, we can show (Appendix D) that

R̂(X ,Θ|y1:t−1) =
N∑︂
i=1

g(yt−1|xit−1, θ
i
t−1)∑︁N

j=1 p(yt−1|xjt−2, θ
j
t−2)

. (3.47)

It turns out that expressions (3.29) and (3.47) are actually particular instances of an estimator
of a more general regularization functional than (3.26). This estimator is based on the unbiased
APF particle approximation to the likelihood proposed by Pitt et al. (2012) and extended here
for our sequential parameter learning framework, and its derivation can be found in Appendix
D.

3.2.4.9 Regularized Particle Learning

The second method introduced in this work is a regularized version of the PL algorithm
of Carvalho et al. (2010), hereafter referred to as Regularized Particle Learning (RPL). The
theoretical reasoning for RPL is that, in addition to updating current parameters with sufficient
statistics, regularizing resampled states and parameters would mitigate path degeneracy even
further. In addition, for this method we do not restrict our attention to fully-adapted procedures,
which makes it applicable for a much broader class of models.

The regularization kernel adopted in RPL is the same as that of the FALW method, i.e.

K
(︁
(x0:t−1, θ0:t−1)− (xki0:t−1 − θ

ki
0:t−1)

)︁
=

dN
(︁
(xt−1, θt−1)|mki

t−1, ht−1Vt−1h
T
t−1

)︁
δ
(x

ki
0:t−2,θ

ki
0:t−2)

(dx0:t−2dθ0:t−2), (3.48)

where the components of mi
t−1, ht−1 and Vt−1 are defined in (3.45) and (3.46). Accordingly,

by adopting a general APF framework, we let the intermediate weights λit and state proposal
q(xt|x̃i0:t−1, θ̃

i

0:t−1, y1:t) to be defined by the user. Since this method is based on Particle Learning,
the target parameter distribution is assumed to satisfy

p(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t) = p(θt|S it), (3.49)
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where S it = S(Skit−1, x
i
t, yt), as usual. Finally, by also assuming q(θt|xit, x̃i0:t−1, θ̃

i

0:t−1, y1:t) =

p(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t), the weight recursion (3.14) for RPL is

πit ∝
wkit−1

λkit

f(xit|x̃it−1, θ̃
i

t−1)g(yt|xit, θ̃
i

t−1)

q(xit|x̃i0:t−1, θ̃
i

0:t−1, y1:t)

p(θit|S it)
p(θit|S it)

=
wkit−1

λkit

f(xit|x̃it−1, θ̃
i

t−1)g(yt|xit, θ̃
i

t−1)

q(xit|x̃i0:t−1, θ̃
i

0:t−1, y1:t)
. (3.50)

Note that the regularization of the past static parameters θit−1 in RPL only affects the
importance weights πit and current sampled states xit, since the current parameters θit are sam-
pled independently from θit−1. Moreover, by taking the optimal importance weights λit ∝
wit−1p(yt|xit−1, θ

i
t−1) and optimal state proposal q(xt|x̃i0:t−1, θ̃

i

0:t−1, y1:t) = p(xt|x̃it−1, θ̃
i

t−1, yt),
the procedure is once again fully-adapted, since in this case the weights (3.50) are equal to those
in (3.38), i.e. proportional to 1.

3.2.4.10 Hybrid FALW-RPL Filter

The last novel method introduced here is a hybrid between the FALW and RPL algorithms.
Similar to the hybrid LW-PL algorithm of Chen et al. (2010), this technique has the benefit of
allowing for Gibbs updates whenever sufficient statistics are available for a subset φt of the static
parameter vector θt, while also allowing for regularization-based inference for the rest of the
parameters to be performed. In fact, just as in RPL, even the past values of this subset φt−1 are
also regularized, with the aim to mitigate path degeneracy even further. In order to keep the
procedure as general as possible, we opt for the usual APF framework adopted in RPL rather
than a strictly fully-adapted one as in FALW.

Let θ = (ϕ, φ), where φ is the subset for which p(φ|St) is available. The regularization
kernel adopted here is the same as in both FALW and RPL, i.e.

K
(︁
(x0:t−1, θ0:t−1)− (xki0:t−1 − θ

ki
0:t−1)

)︁
=

dN
(︁
(xt−1, θt−1)|mki

t−1, ht−1Vt−1h
T
t−1

)︁
δ
(x

ki
0:t−2,θ

ki
0:t−2)

(dx0:t−2dθ0:t−2), (3.51)

with mi
t−1, ht−1 and Vt−1 defined in (3.45-3.46). Accordingly, we also allow intermedi-

ate weights λit to be user-defined, along with the state proposal q(xt|x̃i0:t−1, θ̃
i

0:t−1, y1:t) =

q(xt|x̃i0:t−1, ϕ̃
i

0:t−1, φ̃
i
0:t−1, y1:t). As for the target parameter distribution, it is the same as in

Chen et al. (2010), i.e.

p(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t) = δ
ϕ̃
i
t−1

(dϕt)p(φt|S it). (3.52)

Therefore, by taking q(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t) = p(θt|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t), we have the fol-
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lowing importance weights (3.14):

πit ∝
wkit−1

λkit

f(xit|x̃it−1, ϕ̃
i

t−1, φ̃
i
t−1)g(yt|xit, ϕ̃

i

t−1, φ̃
i
t−1)

q(xit|x̃i0:t−1, ϕ̃
i

0:t−1, φ̃
i
t−1, y1:t)

δ
ϕ̃
i
t−1

(dϕt)p(φt|S it)

δ
ϕ̃
i
t−1

(dϕt)p(φt|S it)

=
wkit−1

λkit

f(xit|x̃it−1, ϕ̃
i

t−1, φ̃
i
t−1)g(yt|xit, ϕ̃

i

t−1, φ̃
i
t−1)

q(xit|x̃i0:t−1, ϕ̃
i

0:t−1, φ̃
i
t−1, y1:t)

. (3.53)
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Capı́tulo 4

Numerical Experiments

In this chapter we illustrate with numerical experiments that SMC-based algoritmhs for
sequential parameter learning (both the novel ones introduced here and the ones already estab-
lished in the literature) can perform poorly if proper care is not taken in mitigating path degener-
acy, but can provide adequate inference once this issue is addressed. Through simulation-based
experiments, we also argue that these methods can even provide estimates that are compatible
with “exact” and computationally-intensive methods, such as quadrature and particle Markov
Chain Monte Carlo.

4.1 iid Model

We start with a very simple experiment proposed by Chopin et al. (2010). Here, we have
a scalar-valued state space model defined by

Xt|Xt−1 =
d Xt ∼ N (0, 1) (4.1)

Yt|Xt =
d Yt ∼ N (0, 1) (4.2)

with initial stateX0 ∼ N (0, 1). This model describes a pathological situation in which the states
are completely independent of their own past and of the observations, and there are no static
parameters. From (4.1-4.2), we have f(xit|xit−1) = dN (xit|0, 1) and g(yt|xit) = dN (yt|0, 1).

Consider in this setting the problem of recursively estimating the sample mean X̄ t :=

(X0 + X1 + . . . + Xt)/(t + 1), starting at X̄0 := X0. Since X̄ t = (tX̄ t−1 + Xt)/(t + 1) for
t ≥ 1, we can construct a particle approximation for p(x̄t|y1:t) sequentially in time with the
output of Algorithm 3.6 as

p̂(x̄t|y1:t) :=
N∑︂
i=1

witδx̄it(dx̄t),
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where each particle x̄it also satisfies x̄it = (tx̄kit−1+xit)/(t+1) for each time t ≤ 1, with x̄i0 = xi0

for all i = 1, . . . , N . For the practical implementation, both optimal importance weights and
optimal state proposal are available for this experiment as

λit ∝ wit−1p(yt|xit−1) = wit−1p(yt) ∝ wit−1 and p(xit|x̃it−1, yt) = p(xit) = dN (xit|0, 1),

since from (4.1-4.2) we have Xt ⊥⊥ Xr ⊥⊥ Ys for all t, r, s (here U ⊥⊥ V denotes independence
between the random variables U and V ). The corresponding weight recursion (3.14) is therefore

πit ∝
wit−1

wit−1

dN (xit|0, 1)dN (yt|0, 1)
dN (xit|0, 1)

= dN (yt|0, 1) ∝ 1,

given that dN (yt|0, 1) does not vary with i. After normalization, the importance weights for the
experiment are then uniform, i.e. wit = 1/N for all i and t.

Figure 4.1 contains kernel density estimates (solid blue lines) of (x̄it, 1/N)Ni=1 fromM =

50 independent runs of Algorithm 3.6 usingN = 5, 000 particles, for t = 500, t = 2, 500 and t =
5, 000, along with the true density (dashed black lines) p(x̄t|y1:t) = p(x̄t) = dN (x̄t|0, (t+1)−1).
The results on the left panel are based on the standard multinomial resampling scheme and those
on the right panel are based on the branching algorithm of Crisan and Lyons (2002); see Section
3.2.2 for details.

Naturally, at first we might attribute the poor performance of the filter in approximating
p(x̄t|y1:t) entirely to weight degeneracy. However, note that from πit ∝ dN (yt|0, 1) we have that
wit = 1, given that the constant of proportionality is 1/p(yt|y1:t−1) = 1/p(yt) = 1/dN (yt|0, 1).
Since the weights are actually constant even before normalization, their variance (conditional
or otherwise) is always zero, which by definition (Kong et al., 1994) implies that no weight
degeneracy takes place in this experiment. In retrospect, this is not surprising given that
the importance sampling procedure here is itself not sequential, given the serial and mutual
independence between the states and observations.

Now, although the system defined here is not subject to weight degeneracy, it is definitely
still subject to path degeneracy, since each particle x̄it−1 is resampled at the beginning of each
step of the filter. Implicitly, this creates a dependence of x̄it on x̄i0:t−1 for each t, and the sample
impoverishment inherent when successively resampling the latter ends up affecting the inference
for the former.

A simple way to assess sample impoverishment is by looking at the fertility factors (FFs)
(Baker, 1987) of the offspring produced by a resample algorithm over time. The FF is defined
by

FFt ≡ FF
(︁
(λit)

N
i=1

)︁
:=

#{distinct elements in (kit)
N
i=1}

#{(kit)Ni=1}
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Figure 4.1: Independent SSM experiment (4.1-4.2): kernel density estimates (solid blue lines)
of (x̄it, 1/N)Ni=1 based on M = 50 independent runs of Algorithm 3.6 and the true density
(dashed black lines) dN (x̄t|0, (t+ 1)−1) at t = 500, t = 2, 500 and t = 5, 000. The filters were
run with N = 5, 000 and multinomial (left column) and branching (right column) resampling.

=
#{distinct elements in (kit)

N
i=1}

N
, (4.3)

where #{A} denotes the cardinality of set A. Naturally, since the number of distinct elements
is at least 1 and at most N , we have 1/N ≤ FFt ≤ N .

For this experiment, the resampling weights are given by λit = 1/N for all i, t. Under
multinomial resampling, the probability that a fixed index j in {1, . . . , N} is not selected is then
equal to

p(ki ̸= j, i = 1, . . . , N) = (1− λjt)N =

(︃
1− 1

N

)︃N
,
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from which we deduce that the probability of j indeed being selected is

p(ki = j, i = 1, . . . , N) = 1−p(ki ̸= j, i = 1, . . . , N) = 1−
(︃
1− 1

N

)︃N
−→

N→+∞
1− 1

e
≃ 0.63.

Therefore, FFt ≈ 0.63 for large N , meaning that multinomial resampling does not select
approximately 37% of the values in the sample, leading over time to the poor performance
observed in Figure 4.1.

On the other hand, recall from Section 3.2.2 – more specifically (3.11) – that the number
of offspring ξjt produced by particle j in the tree-based branching algorithm of Crisan and Lyons
(2002) satisfies

ξjt :=

{︄
⌊Nλjt⌋ with probability 1− {Nλjt}
⌊Nλjt⌋+ 1 with probability {Nλjt}

where ⌊·⌋ is the floor operator and {x} := x − ⌊x⌋ is the non-integer part of x. Since here
Nλjt = N/N = 1 implies that ⌊Nλjt⌋ = 1 and therefore {Nλjt} = 0, we have that ξjt is
degenerate at 1, i.e. each particle produces exactly one descendant in the branching algorithm.
As a result, we have (ki)

N
i=1 = (i)Ni=1, implying that FFt = 1 for all t. This perfect diversity

entirely avoids any sample impoverishment and ensuing path degeneracy, leading to the sample
(x̄it, 1/N)Ni=1 being an actual exact draw from the true p(x̄it), as seen in the right panel of Figure
4.1.

In closing, we point out that although the need for more efficient resampling schemes
has long been recognized in the literature, systematic efforts to diagnose and mitigate the en-
suing path degeneracy from sample impoverishment associated with low-efficiency resampling
methods have not been made so far, at least to our knowledge. As pointed out in the discussion
accompaying the original experiment in Chopin et al. (2010), this path degeneracy can signifi-
cantly affect the inference based on any functional of the entire paths (X0:t, θ0:t) that does not
possess exponential forgetting properties (see Section 3.2.2), as illustrated in this example and
in the ones that follow.

4.2 AR(1) + Noise Model

For the next experiment, consider the state space model defined by

Xt = ϕXt−1 +
√
0.1Ut, Ut ∼ N (0, 1) (4.4)

Yt = Xt + σVt, Vt ∼ N (0, 1) (4.5)

with priors

X0 ∼ N (0, 0.1), ϕ ∼ U [−1, 1], σ2 ∼ IG(1/2, 1/2),
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where U [a, b] denotes a continuous uniform distribution on (a, b) and IG(c, d) denotes an
Inverse-Gamma distribution with shape c and scale d. We also assume that X0 ⊥⊥ Ut ⊥⊥ Vs for
all t, s, and that (Ut)t≥0 and (Vt)t≥0 are serially independent.

The state space here is X = R := (−∞,+∞) and the static parameter is θ = (ϕ, σ2),
taking values in Θ = (−1, 1)× R+, where R+ := (0,+∞). Since equations (4.4-4.5) describe
a (Gaussian) autoregressive process (Xt)t≥0 of order 1 observed via (Yt)t≥0 with (Gaussian)
noise σVt, the model is commonly referred to as the (Gaussian) AR(1) + noise model. Here
f(xit|xit−1, θ

i
t−1) = dN (xit|ϕit−1x

i
t−1, 0.1) and g(yt|xit, θit−1) = dN (yt|xit, (σ2)it−1).

We reproduce here the specific configuration adopted by Kantas et al. (2015). By taking
ϕ = 0.5 and σ2 = 1 as the true parameter values, we simulate a series of size n = 5, 000 of model
(4.4-4.5) and then perform M = 50 independent runs of the LW filter (Section 3.2.4.2) and the
PL method (Section 3.2.4.6) using N = 10, 000 particles. For the LW filter implementation,
we have used δ = 0.99. Since the model is linear and Gaussian, analytical expressions for
both p(yt|xt−1) and p(xt|xt−1, yt) can be obtained by Proposition B.6.1 with Gt = Xt and
Ft = ϕXt−1. Therefore, for the PL implementation, the optimal importance weights and state
proposal distribution are

λit ∝ wit−1p(yt|xit−1, θ
i
t−1) = wit−1dN (ϕit−1x

i
t−1, (σ

2)it−1 + 0.1)

and
p(xt|xit−1, θ

i
t−1, yt) = dN

(︃
xt

⃓⃓⃓⃓
0.1 · yt + (σ2)it−1ϕ

i
t−1x

i
t−1

(σ2)it−1 + 0.1
,
(σ2)it−1 · 0.1
(σ2)it−1 + 0.1

)︃
,

and the posterior distributions for ϕ and σ2 given the states and observations are

p(ϕ|x0:t, y1:t) = dN[−1,1](ϕ|C−1mt, 0.1 · C−1
t )

and
p(σ2|x0:t, y1:t) = dIG(σ2|at/2, bt/2),

where dN[a,b](x|m, s2) denotes the density (evaluated at x) of a Gaussian random variable
truncated in the interval [a, b] with mean m and variance s2. The sufficient statistics for this
example are St = (mt, Ct, at, bt), satisfying the following recursions for t ≥ 1:

mt :=
t∑︂

j=2

XjXj−1 =
t−1∑︂
j=2

XjXj−1 +XtXt−1 = mt−1 +XtXt−1,

Ct :=
t∑︂

j=2

X2
j−1 =

t−1∑︂
j=2

X2
j−1 +X2

t−1 = Ct−1 +X2
t−1,

at := 1 + t = 1 + (t− 1) + 1 = at−1 + 1,
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bt := 1 +
t∑︂

k=1

(Yk −Xk)
2 = 1 +

t−1∑︂
k=1

(Yk −Xk)
2 + (Yt −Xt)

2 = bt−1 + (Yt −Xt)
2,

with m0 = C0 = 0 and a0 = b0 = 1. Note that since the parameter space Θ is restricted,
we always work with transformed parameters ϕ̌ = arctanh(ϕ) and σ̌2 = log(σ2) for the LW
method; see Section E.1 for more details.

Figure 4.2 contains the corresponding estimated marginal posteriors p(ϕ|y1:n) and
p(σ2|y1:n) for both LW and PL methods (based on multinomial resampling), along with their
exact counterparts computed using quadrature based on the likelihood obtained from the Kalman
filter (see section B.5) on a 100 × 100 equispaced grid. Although the results for σ2 using PL
(bottom right panel) are reasonable, the results for ϕ and LW’s results in general are not. Over-
all, the variability across different runs is simply too large for the method’s performance to be
acceptable.

On the other hand, Figure 4.3 contains the same estimated marginal posteriors p(ϕ|y1:n)
and p(σ2|y1:n), but now for the FALW and RPL methods. Here we also performed M = 50

independent runs for each filter with N = 10, 000 particles, but resampled according to the
tree-based branching algorithm. The results for FALW and RPL are much more consistent, with
the estimated posteriors being not only much less variable across different runs, but also closer
to the true quadrature-based posterior.

As argued previously, we can attribute most of the difference in performance from Figure
4.2 to Figure 4.3 to path degeneracy, since the only striking difference between the methods
for both figures lie in the choice of resampling method (although the specific improvements
that motivate us to propose FALW and RPL are also expected to mitigate path degeneracy even
further). Although this might be expected in the LW filter (as a case of inefficient regularization,
leading to the collapse of the static parameter paths), at first the PL method should not be
susceptible to this phenomenom, given that the Gibbs sampling structure effectively marginalizes
out past parameters and only relies on information from the current and at most one previous step
via S(Skit−1, x

i
t, yt). As pointed out in e.g. Andrieu et al. (2005), Chopin et al. (2010) and Kantas

et al. (2015), however (see also Section 3.2.2), the sufficient statistics are implicitly functions of
the entire path X0:t and, without any exponential forgetting properties (since past statistics are
only resampled and do not have an associated transition law), in time they also collapse.

4.3 Nonlinear Seasonal Model

We now consider an experiment proposed by Andrieu et al. (2010). The model, which
we refer to simply as Nonlinear Seasonal Model (NLSM) was first introduced by Netto et al.
(1978) and is widely popular as a toy example in the particle filter literature (see e.g. Gordon
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Figure 4.2: AR(1) + noise model (4.4-4.5): kernel density estimates (solid blue lines) of the
posterior distributions for ϕ and σ2 based on M = 50 independent runs of the LW filter (left
column) and the PL method (right column). The filters were run with N = 10, 000 and the
true parameter values are ϕ = 0.5 and σ2 = 1. The black dashed lines are quadrature-based
estimates using the likelihood from the Kalman filter.

et al., 1993; Kitagawa, 1987; Doucet et al., 2001; Cappé et al., 2005). It is defined by

Xt =
Xt−1

2
+ 25

Xt−1

1 +X2
t−1

+ 8 cos(1.2t) + σV Vt, Vt ∼ N (0, 1) (4.6)

Yt =
X2
t

20
+ σWWt, Wt ∼ N (0, 1) (4.7)

with priors

X0 ∼ N (0, 5), σ2
V ∼ IG(1/2, 1/2), σ2 ∼ IG(1/2, 1/2),

where (Vt)t≥0 and (Wt)t≥0 are assumed to be mutually and serially independent, with X0 ⊥⊥ Vt

and X0 ⊥⊥ Wt for all t.
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Figure 4.3: AR(1) + noise model (4.4-4.5): kernel density estimates (solid blue lines) of the
posterior distributions for ϕ and σ2 based on M = 50 independent runs of the FALW filter (left
column) and the RPL method (right column). The filters were run with N = 10, 000 and the
true parameter values are ϕ = 0.5 and σ2 = 1. The black dashed lines are quadrature-based
estimates using the likelihood from the Kalman filter.

The state space for the NLSM model is once again X = R, the static parameter vector is
θ = (σ2

V , σ
2
W ) and the parameter space is Θ = R+ × R+. Here

f(xit|xit−1, θ
i
t−1) = dN

(︃
xit−1

2
+ 25

xit−1

1 + (xit−1)
2
+ 8 cos(1.2t), (σ2

V )
i
t−1

)︃
and

g(yt|xit, θit−1) = dN
(︁
yt|xit, (σ2

W )it−1)
)︁
.

For this experiment, we take σ2
V = 10 and σ2

W = 1 as the true parameter values, simulate
a series y1:n with n = 500 and then perform M = 50 independent runs of the smooth jittering
method (Section 3.2.4.3, here denoted as FS) and the RPL method (Section 3.2.4.9) using
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N = 50, 000 particles. For comparison, we also fit a pMCMC algorithm with N = 5, 000

particles, branching resampling, Markov chain size M = 50, 000, a burn-in of B = 10, 000,
initial values (σ2

V )0 = (σ2
W )0 = 100 and a random walk proposal

q(θj|θj−1) = dN

(︄[︄
(σ2

V )j

(σ2
W )j

]︄ ⃓⃓⃓⃓ [︄
(σ2

V )j−1

(σ2
W )j−1

]︄
,

[︄
0.15 0

0 0.08

]︄)︄

for j = 1, . . . ,M +B, as in Andrieu et al. (2010).

Since full adaptation in model (4.6-4.7) is not possible, the original PL algorithm is
not feasible here. Moreover, given the the high signal-to-noise ratio σ2

V /σ
2
W = 10 and the fact

that by construction the observations in this model are not very informative (since the state Xt

is only observed via its square), lookahead APF strategies are not efficient, leading the usual
LW filter to perform poorly. Therefore, design choices for RPL are the same as for the FS
method: SIR intermediate weights λit = wit−1 and blind state proposal q(xt|x̃i0:t−1, θ̃

i

0:t−1, y1:t)

= f(xt|x̃it−1, θ̃
i

t−1).

The posterior distributions for σ2
V and σ2

W for the Gibbs sampling steps of the RPL
method are given by

σ2
V |(X0:t, Y1:t) ∼ IG(at/2, bt/2) and σ2

W |(X0:t, Y1:t) ∼ IG(bt/2, ct/2),

where the sufficient statistics St = (at, bt, ct, dt) satisfy, for t ≥ 1,

at := 1 + t = 1 + (t− 1) + 1 = at−1 + 1,

bt := 1 +
t∑︂

k=1

(Xk − Fk)2 = 1 +
t−1∑︂
k=1

(Yk − Fk)2 + (Yt − Ft)2 = bt−1 + (Yt − Ft)2,

ct := 1 + t = 1 + (t− 1) + 1 = ct−1 + 1,

dt := 1 +
t∑︂

k=1

(︃
Yk −

X2
k

20

)︃2

= 1 +
t−1∑︂
k=1

(︃
Yk −

X2
k

20

)︃2

+

(︃
Yt −

X2
t

20

)︃2

= dt−1 +

(︃
Yt −

X2
t

20

)︃2

,

with a0 = b0 = c0 = d0 = 1 and Ft := Xt−1/2 + 25Xt−1/(1 + X2
t−1) + 8 cos(1.2t). Since

the parameter space Θ in this example is also restricted, we have to work with log-variances
σ̌2
V = log(σ2

V ) and σ̌2
W = log(σ2

W ) for the RPL and FS methods (see Section E.1), as well as for
pMCMC. For the latter, the transformation implies that the usual acceptance probability of the
pMCMC algorithm must be multiplied at each step j by the Jacobian⃓⃓⃓⃓

(σ2
V )j · (σ2

W )j
(σ2

V )j−1 · (σ2
W )j−1

⃓⃓⃓⃓
;
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see Section E.2 for further details. All the methods are implemented using branching resampling.
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Figure 4.4: NLSM model (4.6-4.7): kernel density estimates (solid blue lines) of the posterior
distributions for σ2

V and σ2
W based on M = 50 independent runs of the smooth jittering method

(left column) and the RPL method (right column). The filters were run withN = 50, 000 and the
true parameter values are σ2

V = 10 and σ2
W = 1. The black dashed lines are pMCMC estimates

based on a chain of size M = 50, 000, burn-in of B = 10, 000 and N = 5, 000 particles.

Figure 4.4 contains the estimated marginal posteriors for both σ2
V and σ2

W obtained via
smooth jittering (solid blue lines, left column), RPL (solid blue lines, right column) and pMCMC
(dashed lines, both columns). Taking the pMCMC estimates as the main reference here, we can
see that overall both smooth jittering and RPL methods perform reasonably well, with the RPL
estimates apparently having lower variance across runs than those from FS. It is worth pointing
out that the difference in complexity between pMCMC and the SMC-based methods is striking:
for an Intel® Core i7 CPU 860 running at 2.80 GHz, pMCMC took 57,251 seconds (about 15
hours and 54 minutes) to complete, while an average FS run took 20.15 seconds and an RPL
one took 27.59 seconds.
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4.4 Stochastic Volatility Model

For our last experiment, consider the discrete-time scalar-valued Stochastic Volatility
(SV) model (Taylor, 1982), defined by

Xt = ϕXt−1 + τUt, Ut ∼ N (0, 1), (4.8)

Yt = σ exp(Xt/2)Vt, Vt ∼ N (0, 1), (4.9)

with priors

X0 ∼ N (0, τ 2), ϕ ∼ N[−1,1](0.95, 0.05
2), τ 2 ∼ G(2, 0.01), σ2 ∼ LN (0, 1),

where N[a,b](m, s
2) denotes a normal distribution with mean m and variance s2 truncated in

the interval [a, b], G(c, d) denotes a Gamma distribution with shape c and rate d, i.e. with
expectation c · d and LN (mL, s

2
L) denotes a Log-Normal distribution with log-mean mL and

log-variance s2L. Here, once again (Ut)t≥0 and (Vt)t≥0 are assumed to be serially and mutually
independent, and also independent of X0.

The stochastic volatility model is a widely popular model in economics and finance,
having many different incarnations (Shephard, 2005). A particularly interesting motivation
for this model is as the discretely-observed version (Fearnhead et al., 2008) of the underlying
diffusion

dX(t) = ϕX(t)dt+ τdBX(t),

d logP (t) = σ exp{X(t)/2}dBY (t),

where Y (t) = d logP (t) is the increment of log-prices (referred to as log-returns) and dBX(t)

and dBY (t) are two independent standard Brownian motions (Doob, 1990).

The state space for the SV model is X = R, the static parameters are θ = (ϕ, τ 2σ2)

and the parameter space is Θ = (−1, 1) × R+ × R+. Here we have f(xit|xit−1, θ
i
t−1) =

dN (xit|ϕit−1x
i
t−1, (τ

2)it−1) and g(yt|xit, θit−1) = dN (yt|0, (σ2)it−1 exp(x
i
t/2)).

For this experiment, we simulate a series of size n = 1, 000 with true parameter values
ϕ = 0.97, τ 2 = 0.152 and σ2 = e−0.23. These values are based on the estimates of Dahlin and
Schön (2019) using a real time series of stock index prices. We perform M = 50 independent
runs of the LW filter (Section 3.2.4.2) and the smooth jittering method (Section 3.2.4.3, referred
to here as FS) using N = 50, 000 particles and, for comparison, we fit a pMCMC algorithm
similar to that of Dahlin and Schön (2019), but with N = 500 particles, a chain of size
M = 50, 000 and a burn-in of B = 50, 000.

For the burn-in period of the pMCMC, we adopt the Robust Adaptive Metropolis algo-
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rithm of Vihola (2012) (see also Section A.4) with step size ηj = j−2/3 (Vihola, 2012) and
desired acceptance rate α∗ = 0.234 (Sherlock et al., 2015), starting with an independent co-
variance matrix with diagonals equal to 0.1, 0.01 and 0.05 (Dahlin and Schön, 2019). For the
actual retained chain, we then use the resulting covariance matrix ΣB of the burn-in period in a
random walk metropolis of the form

θj ∼ N (θj−1,ΣB),

for j = B + 1, . . . , B +M . All the methods were implemented using branching resampling,
and due to parameter space restrictions we always work with ϕ̌ = arctan(ϕ), τ̌ 2 = log(τ 2) and
σ̌2 = log(σ2); see Sections E.1 and E.2. The Jacobian of this transformation is⃓⃓⃓⃓

(1− ϕ2
j) · (τ 2)j · (σ2)j

(1− ϕ2
j−1) · (τ 2)j−1 · (σ2)j−1

⃓⃓⃓⃓
.

Figure 4.5 contains the estimated marginal posteriors for ϕ, τ 2 and σ2 obtained from the
LW filter (solid blue lines, left column), FS (solid blue lines, right column) and pMCMC (dashed
lines, both columns). Taking the pMCMC estimates again as the main reference, both the LW
filter and the smooth jittering method perform reasonably well, with low variances across runs
and similar posteriors to the one produced by pMCMC. Overall, the LW posteriors seem to have
lower variance across runs but those from the FS method seem to agree more with the output
from pMCMC. As far as complexity is concerned, for an Intel® Core i7 CPU 860 running at
2.80 GHz, pMCMC took 19,979 seconds (about 5 hours and 33 minutes) to complete, while in
average LW took 45.64 seconds and RPL took 34.97 seconds.
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Figure 4.5: SV model (4.8-4.9): kernel density estimates (solid blue lines) of the posterior
distributions for ϕ, τ 2 and σ2 based onM = 50 independent runs of the smooth jittering method
(left column) and the FS method (right column). The filters were run with N = 50, 000 and
the true parameter values are ϕ = 0.97, τ 2 = 0.152 ≃ 0.02 and σ2 = e−0.23 ≃ 0.80. The
black dashed lines are pMCMC estimates based on a chain of size M = 50, 000, burn-in of
B = 50, 000 and N = 500 particles.
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Capı́tulo 5

Conclusions

In this thesis we introduced a novel framework for sequential parameter learning in Hid-
den Markov models, shown to be capable of accommodating several other algorithms found in
the literature as special cases. A key feature of this framework is how we reinterpret regular-
ization of past states and static parameters through the use of auxiliary variables, essentially
generalizing the approach of Pitt and Shephard (1999). As an example of the flexibility al-
lowed by our framework, we also developed three novel algorithms, including an improved and
fully-adapted version of the celebrated Liu and West filter. This general framework is the main
contribution of our work.

The other contribution we make to the literature is to further illustrate that the poor
performance of sequential parameter learning algorithms previously observed in certain settings
can mostly be attributed to the inherent path degeneracy in these methods, building on the work
of da Silva (2016). By exploring procedures that actively aim to mitigate path degeneracy (such
as more efficient resampling schemes and asymptotically unbiased regularization methods), we
consider a series of simulation-based numerical experiments in which we attempt to show that
once path degeneracy is properly assessed, even classical parameter learning algorithms such as
the “vanilla” Liu and West filter can provide estimates that are compatible with state-of-the-art
and more numerically intensive methods such as particle Markov Chain Monte Carlo.

As a main avenue for future research, hopefully the formalism developed for the frame-
work proposed here will allow for a unified exploration of the theoretical properties of general
sequential parameter learning algorithms, while also allowing for a better understanding of the
common features defining these methods. Such a development would be crucial, since due to
their apparent differences these techniques have only been traditionally studied separate from
one another.

A further promising avenue for future work would be to use the sequential parameter
learning techniques developed here in order to design more efficient proposals for particle
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Markov Chain Monte Carlo methods, as done by e.g. Wood et al. (2014) and Fearnhead
and Meligkotsidou (2016). In principle this could yield powerful algorithms indeed, since
sequential parameter learning methods require no tuning and as shown in this thesis they are
good at exploring the global features of the posterior distributions of static parameters.

As far as improving the methods explored in this thesis themselves, the theory of Hamil-
tonian Monte Carlo (more specifically Langevin-type dynamics) could also be fruitfully applied
within our framework in order to allow for even more efficient exploration of parameter spaces.
This would parallel the work of e.g. Dahlin et al. (2015) and Nemeth et al. (2016) on particle
Markov Chain Monte Carlo methods but on a sequential inference context. Other possible
improvements include e.g. the adaptive importance sampling method of Cornebise et al. (2008)
and the hybrid particle filter algorithm of Petetin and Desbouvries (2013), which in principle
could be readily adapted for performing parameter inference.

Since the literature on parameter learning methods (both online and offline) is quite
extensive, we naturally omitted even popular methods from our presentation, such as the Practical
Filtering technique of Polson et al. (2008), the SMC2 framework of Chopin et al. (2013) and
the Marginalized Resample-Move algorithm of Fulop and Li (2013). Although none of these
methods fit within our framework in their full generality, all of them can certainly benefit from
either the regularization or minimal variance resampling techniques (or even both) advocated in
our work.

In closing, note that here we avoided certain heuristics designed for mitigating path
degeneracy that although popular and insightful still do not have an established theoretical
background. Examples of these include tempering of importance weights (Liu et al., 2001),
resampling at random times according to arbitrary cutoffs (Doucet et al., 2000) and annealing
of importance distributions according to arbitrary schedules (Peters et al., 2010). Exploring the
theoretical properties and providing general practical guidelines for these heuristics could also
be important goals for future research, since they have already been shown (see e.g. da Silva,
2016) to be quite effective in certain settings.
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Apêndice A – Monte Carlo Methods

In this appendix we briefly introduce some notions about Monte Carlo methods which
are necessary for a complete understanding of the core material in this thesis. There are several
comprehensive references available on the general theory of Monte Carlo methods, such as
Asmussen and Glynn (2007), Liu (2008) and Robert and Casella (2004). In particular, the
material here is mostly inspired by Liu (2008).

A.1 Perfect Sampling

Let X be a random variable mapping the probability space (Ω,F ,PΩ) onto (X ,B,P).
If we can generate N independent random copies of X , each denoted by X i, a natural estimator
P̂ for the probability that X ∈ A for A ∈ F is the proportion of X i’s in A, that is,

P̂(X ∈ A) = 1

N

N∑︂
i=1

δxi(A), (A.1)

where xi ∈ X is the realized value of each X i, i.e. X i(ω) = xi for a particular ω ∈ Ω and
δa(A) denotes point mass/Dirac measure at the point a, i.e. δa(A) = 1 if a ∈ A and δa(A) = 0

if a /∈ A. In particular, for the event [X ≤ x] := {ω : X(ω) ≤ x}, x ∈ Rdx , we have

F̂ (x) := P̂(X ≤ x) =
1

N

N∑︂
i=1

δxi(X ≤ x), (A.2)

which is sometimes known as the empirical (cumulative) distribution function of the sample
(xi)Ni=1. Here, dx denotes the dimension of X , i.e. dx := dim(X ).

Assume now that P is dominated by a suitable σ-finite measure dx and let p := dP/dx
be its respective probability density. Then, by (A.2) we have

p̂(x) :=
dP̂(X ≤ x)

dx

=
d

dx

[︃
1

N

N∑︂
i=1

δxi(X ≤ x)

]︃
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=
1

N

N∑︂
i=1

d

dx
δxi(X ≤ x)

=
1

N

N∑︂
i=1

δxi(dx), (A.3)

where δxi(dx) := dδxi(X ≤ x)/dx, i.e. the point mass of an increment in dx at the point xi.
We call p̂ the Monte Carlo (MC) estimator of p.

Since p̂ is essentially the mean of a random sample, it should have all the good properties
associated with this class of estimator. For example, p̂ is unbiased. To see this, given that by
definition the X i’s are independent and identically distributed (iid) to X , we have

EP[p̂(X)] =
1

N

N∑︂
i=1

EP[δXi(dx)]

=
1

N
·N · EP[δX(dx)]

=

∫︂
X
δX(dx)p(x)dx

= p(X), (A.4)

where p̂(X), δX(dx) and δXi(dx) are understood as functions of the random variables X and
X i themselves, rather than their realized values.

Another important property of p̂(x) is that it is the estimator with smallest variance
amongst the set of unbiased estimators for p(x). This is clearly seen if we note that each
δXi(dx) is a Bernoulli distributed random variable with probability of success p(X); we then
have that (δXi(dx))Ni=1 forms a random sample from this distribution, which has as its sufficient
and complete statistic N · p̂(X). The Lehmann-Scheffé theorem (Shao, 2003, p. 162) then
establishes the desired result.

The estimator p̂ also posesses good asymptotic properties. From (A.4) and by the
Strong Law of Large Numbers (SLLN), we have that p̂ converges almost surely to p. Also,
since var(p̂) = p(1 − p)/N is always finite, by the Central Limit Theorem (CLT)

√
N(p̂ − p)

converges in distribution toN (0, p(1− p)), whereN (µ, σ2) denotes a Normal distribution with
mean µ and variance σ2.

The CLT guarantees that convergence of p̂ to p is O(N−1/2), which might be a descour-
aging result whenever more precise approximations are readily available, such as those based on
numerical integration methods. However, most of these alternatives have O(Ndx) complexity,
a fact widely known in the literature as curse of dimensionality (see e.g. Asmussen and Glynn,
2007, p. 264, Liu, 2008, p. 2 and Robert and Casella, 2004, p. 136.). Monte Carlo methods, on
the other hand, do not suffer from this drawback, and typically require onlyO(N) operations to
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be performed; they are therefore invaluable in settings where the dimension of X is large.

Using Monte Carlo methods, we can also estimate the moments EP[h(X)] of any B-
measurable and P-integrable function h of X . This is actually the most common setting for
presenting MC methods; the ”density-based” estimation approach taken so far is simply a
convenient formalization. Since EP[h(X)] =

∫︁
X h(x)p(x)dx, the MC approximation to this

integral is obtained by simply replacing p with p̂, i.e. by computing the expectation under P̂.
More precisely,

ÊP[h(X)] := EP̂[h(X)]

=

∫︂
X
h(x)p̂(x)dx

=

∫︂
X
h(x)

1

N

N∑︂
i=1

δxi(dx)dx

=
1

N

N∑︂
i=1

∫︂
X
h(x)δxi(dx)dx

=
1

N

N∑︂
i=1

h(xi), (A.5)

where here we have used that
∫︁
X h(x)δa(dx)dx = h(a), a property of Dirac measures directly

deduced from δa(X ) = 1. Clearly, ÊP[h(X)] thus defined is an unbiased estimator of EP[h(X)].
Further, if the variance of h(X) under P, σ2

h := varP[h(X)], is bounded, the Strong Law of Large
Numbers and the Central Limit Theorem also apply to ÊP[h(X)], with almost sure convergence
to EP[h(X)] and

√
N{ÊP[h(X)]− EP[h(X)]} converging in distribution to N (EP[h(X)], σ2

h).

A.2 Importance Sampling

So far, we have assumed that we can produce N iid copies or particles X i from p1. This
is a situation which is typically known as perfect sampling, as per the title of the last section.
Assume now instead that we can no longer sample from p directly, but that we can sample
from another distribution Q such that Q dominates P (we write P ≫ Q) and which also has
a probability density q with respect to dx. A simple change of measure allows us to express
P(X ∈ A) for any A ∈ B in terms of Q as

P(X ∈ A) =
∫︂
A

p(x)dx =

∫︂
A

q(x)

q(x)
p(x)dx =

∫︂
A

p(x)

q(x)
q(x)dx =

∫︂
A

π(x)p(x)dx, (A.6)

1Technically, samples are produced according to the law of X , which is P. However, since p is the unique
probability density associated to P, using them interchangeably whenever no confusion can be made is common
practice and simplifies the exposition.
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where π := p/q is called the importance weight. Note that, since p/q = (dP/dx)/(dQ/dx) =
dP/dQ, by the Radon-Nikodym theorem this ratio is always well defined (π is the Radon-
Nikodym derivative of P with respect to Q, which always exists since both measures are finite
and P is dominated by Q).

Now, let πi := π(xi) = p(xi)/q(xi) and define wi := πi/
∑︁N

j=1 π
j . Analogous to (A.3),

our corresponding importance sampling (IS) estimator of p is defined by

p̂(x) :=
N∑︂
i=1

wiδxi(dx). (A.7)

The term ”importance weight” comes from the fact thatπ indeed represents the ”importance”, i.e.
relative probability, of each particle xi. Since we draw from q in order to make inference about p,
the usual terminology for these functions are the proposal and target densities, respectively. To
distinguish between π and w, we often use the terms unnormalized and normalized importance
weights. Note that by definition we havewi ≥ 0 for all i and2

∑︁N
i=1w

i =
∑︁N

i=1 π
i/
∑︁N

j=1 π
j = 1,

i.e. the sampled particles and associated importance weights (xi, wi)Ni=1 define a discrete
probability distribution P̂ on (X ,B).

A subtle point we have omitted so far is that although in IS we no longer require that
direct sampling be made from p, we still assume that we can evaluate it pointwise. An advantage
of working with the estimator (A.7), however, is that we only need to compute p up to a
proportionality constant, since when computing w this constant is eliminated. To elaborate on
this point further, assume that πi ∝ p(xi)/q(xi) so that πi = Kp̌(xi)/q(xi), where p̌ represents
the part of p that we can evaluate analytically. Then

wi =
πi∑︁N
j=1 π

j
=

Kp̌(xi)/q(xi)∑︁N
j=1Kp̌(x

j)/q(xj)
=
K

K

p̌(xi)/q(xi)∑︁N
j=1 p̌(x

j)/q(xj)
=

p̌(xi)/q(xi)∑︁N
j=1 p̌(x

j)/q(xj)
,

i.e. we can still compute wi using only the analytically available part of p (as long the rest of it
is not a function of i).

Intuitively, the accuracy to which P̂ approximates P should be increasingly better as
N → +∞, i.e. p̂ should be a consistent estimator of p. To establish this, first note that the
expected value of π (under Q) is

EQ[π(X)] =

∫︂
X
π(x)q(x)dx =

∫︂
X

p(x)

q(x)
q(x)dx =

∫︂
X

p(x)dx = 1. (A.8)

By the Weak Law of Large Numbers (SLLN), it follows that π̄ := N−1
∑︁N

i=1 π
i converges in

2In order to ensure that the sum
∑︁N

j=1 π
j is finite, it is enough that πi be uniformly bounded for each i. This

is satisfied by simply adopting the convention 0 · ∞ = 0, since by definition P≫ Q means that q(x) = 0 implies
p(x) = 0 for any x ∈ X , which in turn implies that w(x) = 0 · 1/0 = 0 · ∞ = 0.
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probability (under P)3 to 1. Similarly, noting that wi = πi/
∑︁N

j=1 π
j = N−1πi/π̄, by (A.7) we

also have

p̂(x) =
N∑︂
i=1

wiδxi(dx) =
N∑︂
i=1

N−1πi

π̄
δxi(dx) =⇒ π̄ · p̂(x) = N−1

N∑︂
i=1

πiδxi(dx),

and, since under Q each πiδxi has expected value equal to (remember that the X i’s are iid)

EQ[π
iδXi(dx)] =

∫︂
X
πiδXi(dx)q(x)dx

=

∫︂
X

p(x)

q(x)
δX(dx)q(x)dx

=

∫︂
X
p(x)δXi(dx)dx

=

∫︂
X
p(x)δX(dx)dx

= p(X),

by the WLLN we have that π̄ · p̂ converges in probability under P to p4. Finally, by Slutsky’s
theorem (Shao, 2003, p. 60) and continuous mapping of the function x ↦→ x−1, p̂ = π̄/π̄ · p̂(x)
= π̄−1 · (π̄ · p̂) converges in probability to 1−1 · p = p, as required.

Note that in deriving the consistency result we cannot directly apply the WLLN to p̂,
since it involves the ratio of random variables. This is actually an example of a more general
class of ratio estimators; see e.g. (Shao, 2003, p. 204). In particular, p̂ is also biased for finite
N .

Another desirable property of the IS estimator is that it has an associated Central Limit
Theorem. Perhaps not surprisingly, the asymptotic distribution of p̂ is the same as the MC
estimator (A.3) under perfect sampling, i.e. asN → +∞we have

√
N(p̂−p)→d N (0, p(1−p)).

The proof in this case, however, is much more involved; see e.g. Geweke (1989) for further
details. Crucially, the O(N−1/2) rate of convergence of IS is the same as in perfect sampling,
and so is the O(N) complexity, with neither depending on dim(X ).

So far we have merely stated that under any Q ≫ P the asymptotic behavior of p̂ is
the same. However, the finite sample performance of the estimator depends a great deal on the
choice of proposal density. Heuristically, we want to choose q as “close” to p as possible, so

3Remember that, since P ≪ Q, convergence in probability under Q implies convergence in probability under
P.

4Note that from the third to the fourth equations we have used the fact that under P the Xi’s are equal in
distribution to X , which implies that

EP[δXi(dx)] = EP[δX(dx)] ⇐⇒
∫︂
X
p(x)δXi(dx)dx =

∫︂
X
p(x)δX(dx)dx.
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that the variability of the weights are as small as possible. The following proposition establishes
what the optimal choice of proposal distribution is, i.e. which choice of q leads to the smallest
variance of π.

Proposition A.2.1. The proposal distribution q that minimizes the variance of the importance
weight π is q ∝ p.

Proof. Since q ∝ p is equivalent to q = K · p, we have that

π(X) =
p(X)

Kp(X)
=

1

K
,

where once again π(X) is understood as a function of the random variable X . The variance of
π under Q is therefore given by

varQ[π(X)] = EQ{[π(X)]2} − E2
Q[π(X)]

=

∫︂
X
[π(x)]2q(x)dx−

[︃∫︂
X
π(x)q(x)dx

]︃2
=

∫︂
X

[︃
1

K

]︃2
q(x)dx−

[︃∫︂
X

1

K
q(x)dx

]︃2
=

[︃
1

K

]︃2
−
[︃
1

K

]︃2
= 0,

which is the minimum attainable variance for any random variable.

Although in most realistical situations we cannot sample from q ∝ p directly, Proposition
A.2.1 provides theoretical justification for the heuristic presented above, i.e. that q should be
“as close” to p as possible. In light of this result, this heuristic can be reinterpreted formally
as choosing q so as to maintain the importance weights as constant/uniform as possible with as
high a probability as possible, thus ensuring that the variance of π is relatively small.

In closing this section, note that IS clearly generalizes the case of perfect sampling by
simply taking q = p, which implies that πi = 1 and therefore wi = 1/N for each i. Not
surprisingly, it follows from Proposition A.2.1 that this is also the optimal choice whenever
possible.



107

A.3 Rao-Blackwellization

Rao-Blackwellization (Robert and Casella, 2004; Liu, 2008) is essentially based on the
reasoning that even when performing inference based on Monte Carlo simulation methods, it
is always beneficial to do as much analytical computation as possible. Although at first this
might seem like simple intuition, it can be formally proved to be true based on the so-called
Rao-Blackwell inequality (Corollary C.1.1). We will deal with the general Importance Sampling
case here (see Section A.2), and defer to a treatment using the specialization of these ideas in
the SMC context to Doucet et al. (2000).

First, assume perfect sampling conditions as in Section A.1. Suppose that we can
decompose our random variable of interest X ∼ P into X = (X1, X2), that our interest lies in
approximating EP[h(X)] for a B-measurable and P-integrable function h and that EP[h(X)|X2]

is known analytically.

Recall from Section A.1 that our estimator of EP[h(X)] (sometimes referred to as a
histogram-based estimator) is given by

ÊP[h(X)] :=
1

N

N∑︂
i=1

h(xi) (A.9)

and define the corresponding Rao-Blackwellized estimator ĚP[h(X)] by

ĚP[h(X)] =
1

N

N∑︂
i=1

E[h(xi)|X2]. (A.10)

It is easy to see that (A.9) is unbiased for EP[h(X)], since it is an average of iid copies, each
with expectation EP[h(X)]. For (A.10), we can apply the Law of Total Expectation (Proposition
C.1.1) to show that each term has expectation EP{EP[h(X)|X2]} = EP[h(X)], also yielding an
unbiased estimator.

The difference between (A.9) and (A.10) thus lies in their efficiency; by applying the Rao-
Blackwell Inequality (Corollary C.1.1), we can conclude that, for each term in both estimators,

varP[h(X
i)] ≥ varP

{︁
EP[h(X

i)|X2]
}︁

and, since the copies are iid, this is clearly true for the estimators themselves as well. Note that
although the argument was derived here using moment-based estimators, the same result holds
for density-based estimation in general.

For the more general case of Importance Sampling, it is perhaps surprising that Rao-
Blackwellization does not always yield more efficient estimators (this has to do with the behavior



108

of the normalized importance weights; see Liu 2008 for more details). It does, however, always
leads to less variable importance weights, as shown in the following result.

Proposition A.3.1. Let X := (X1, X2) ∼ P on the probability space (X ,B,P) and π(x) :=

p(x)/q(x), where X = X1 ∪ X2 such that X1 ∈ X1, X2 ∈ X2, q(x) := dQ(x)/dx and Q≫ P.
Then

varQ[π(X)] ≥ varQ[π1(X1)], (A.11)

where π1(x1) := p1(x1)/q1(x1), with p1(x1) :=
∫︁
X2
p(x)dx2 and q1(x1) :=

∫︁
X2
q(x)dx2.

Proof. Let x = (x1, x2) and q2|1(x2|x1) := q(x1, x2)/q1(x1) = q(x)/q1(x1) be the conditional
proposal density of X2 given X1. We can then write the marginal importance weights π1 as

π1(X1) =
p1(x1)

q1(x1)

=

∫︁
X2
p(x1, x2)dx2

q1(x1)

=

∫︂
X2

p(x1, x2)

q1(x1)

q2|1(x2|x1)
q2|1(x2|x1)

dx2

=

∫︂
X2

p(x1, x2)

q1(x1)q2|1(x2|x1)
q2|1(x2|x1)dx2

=

∫︂
X2

p(x1, x2)

q1(x1)
q(x1,x2)
q1(x1)

q2|1(x2|x1)dx2

=

∫︂
X2

p(x1, x2)

q(x1, x2)
q2|1(x2|x1)dx2

=

∫︂
X2

p(x)

q(x)
q2|1(x2|x1)dx2

= EQ

[︃
p(X)

q(X)

⃓⃓⃓⃓
X1

]︃
= EQ[π(X)|X1].

Finally, by applying the Rao-Blackwell inequality (Corollary C.1.1), we have

varQ[π(X)] ≥ varQ {EQ[π(X)|X1]} ,

as required.

In the form of Proposition A.3.1, we can see that the Rao-Blackwellization technique for
obtaining more efficient weights in Importance Sampling is essentially a marginalization proce-
dure, where we can obtain a reduction in variance by integrating out unnecessary components
in the importance weights. As explored by e.g. Liu and Chen (1998), Doucet et al. (2000)
and Carvalho et al. (2010) in the context of SMC methods, this type of marginalization should
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always be implemented whenever possible, and in practice can lead to substantial efficiency
gains.

A.4 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) can be considered a major cornerstone method in
Monte Carlo simulation, and is probably the most popular algorithm for estimating untractable
posterior distributions in the context of Bayesian inference. In this section we will only touch
upon what we believe are the most relevant aspects of MCMC to our work. For general references
regarding both theoretical and applied aspects of MCMC algorithms, see e.g. Gamerman and
Lopes (2006) and Liu (2008).

Essentially, MCMC algorithms rely on the construction of a Markov Chain with transition
kernel Q(x′|x) designed to have as stationary density the target density p. Although there are
certain conditions (Doob, 1990) the Markov Chain needs to satisfy in order to possess (and
reach) this stationary density, perhaps the most important of them is invariance, defined as∫︂

X
p(x)Q(x′|x)dx = p(x′). (A.12)

Regarding the choice of kernel, the most popular ones are the Gibbs and Metropolis (or
Metropolis-Hastings, MH) kernels. The Metropolis kernel is defined by a transition function
q(x′|x) and acceptance probability as

Q(x′|x) := q(x′|x)α(x′|x), (A.13)

where
α(x′|x) := 1 ∧ p(x

′)q(x|x′)
p(x)q(x′|x)

(A.14)

and x ∧ y := min(x, y).

Now, although we can directly check that the MH kernel satisfies the invariance property
(A.12), it is usually easier to check the stronger detailed balance condition, defined by

p(x)Q(x′|x) = p(x′)Q(x|x′). (A.15)

In general, a Markov Chain satifies detailed balance if and only if it is reversible, and reversibility
in turn implies invariance. For the MH kernel, we have

p(x)Q(x′|x) = p(x)q(x′|x)α(x′|x)

= p(x)q(x′|x) ·
{︃
1 ∧ p(x

′)q(x|x′)
p(x)q(x′|x)

}︃



110

= p(x)q(x′|x) ∧ p(x)q(x′|x)p(x
′)q(x|x′)

p(x)q(x′|x)
= p(x)q(x′|x) ∧ p(x′)q(x|x′)

= p(x)q(x′|x)p(x
′)q(x|x′)

p(x′)q(x|x′)
∧ p(x′)q(x|x′)

=
p(x)q(x′|x)
p(x′)q(x|x′)

p(x′)q(x|x′) ∧ p(x′)q(x|x′)

=

{︃
p(x)q(x′|x)
p(x′)q(x|x′)

∧ 1

}︃
· p(x′)q(x|x′)

= p(x′)q(x|x′) ·
{︃
1 ∧ p(x)q(x′|x)

p(x′)q(x|x′)

}︃
= p(x′)q(x|x′)α(x|x′)

= p(x′)Q(x|x′),

where in the above derivation we have used the symmetry of the minimum operator, i.e. that
x∧y = y∧x. This establishes that drawing from the MH kernel (A.13) always keeps p invariant.

The so-called Metropolis-Hastings algorithm is simply a MCMC procedure based on a
Metropolis kernel. Starting with a draw x0 from a prior distribution ν, the Markov Chain is
updated until certain converge metrics are met (Robert and Casella, 2004). Since the procedure
does not start with draws from the posterior p (which we assume to be impossible to sample
from – this is the reason for using MCMC in the first place), assume that we reach the invariant
density p only after B iterations. B is therefore referred to as the burn-in of the method, and
since it is usually hard to determine analytically, in general it is simply set to a suitable value
for which the system appears to be stationary (but see e.g. Gelman et al., 2013, for some caveats
and pitfalls related to this approach). Unlike perfect sampling (Section A.1) or even Importance
Sampling (Section A.2), we must therefore discard the samples obtained prior to reaching the
burn-in period, i.e. if the chain is run for B + M iterations, we only keep the last (xi)Mi=1

sampled values. The resulting set (xi)Mi=1 is a uniformly/equally weighted sample from p, albeit
usually a dependent one due to the sequential construction of the method. This entire process is
summarized in Algorithm A.1.

Within the class of MH kernels, an important subset are the so-called Random Walk
Metropolis (RWM) proposals. As their name implies, these consist of drawing new states x′

from a distribution centered at x with arbitrary variance matrix Σ, obeying a random walk-type
dynamic x′ = x + Σ1/2z, where z ∼ iid (0dx , Idx), 0dx is a dx × 1 vector of zeros and Idx is
the identity matrix of order dx. As a popular example, when z ∼ N (0dx , Idx) the proposal is a
Gaussian Random Walk Metropolis proposal, i.e.

q(x′|x) = dN (x′|x,Σ). (A.16)
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Algorithm A.1: Metropolis-Hastings Algorithm
Initialization
draw x0 ∼ ν(x)
set x← x0

Main recursion
for i = 1 to B + M do

draw x′ ∼ q(x′|x)
draw u ∼ U [0, 1]

compute α(x′|x) = 1 ∧ p(x′)q(x|x′)
p(x)q(x′|x)

if u <= α(x′|x) then
set xi ← x′

end
else

set xi ← x
end
set x← xi

end

Although RWM proposals are very popular and usually provide good results (Sherlock
et al., 2010), in practice the scaling behavior of the algorithm (governed by Σ) can be hard
to tune. Motivated by this fact, there have been several modifications of the “vanilla” RWM
algorithm in order to allow for a scaling that is not only robust to outlying fluctuations but also
adapts to the movement of the chain. Amongst these, we highlight the work of Vihola (2012),
which introduced the so-called Robust Adaptive Metropolis (RAM) Algorithm.

Essentially, RAM targets a certain desired acceptance rate α∗ ∈ [0, 1] and uses a robust
estimate of the variance matrix which is computed recursively. At iteration i, we sample
zi ∼ N (0dx , Idx) and set

xi = xi−1 + Si−1zi,

where Si−1 satisfies

Σi := Si(Si)T = Si−1

{︄
Idx + ηi[α(xi|xi−1)− α∗]

zi(zi)T

∥zi∥22

}︄
(Si−1)T , (A.17)

∥zi∥22 := (zi1)
2 + . . . + (zidx)

2 = (zi)T zi and (ηi)i≥1 ⊃ (0, 1] is a sequence of decreasing step
sizes.

It is important to point out that although the variance matrixΣi is computed recursively, it
is implicitly a function of the entire past of the chain. This inevitably implies that even by adopting
the MH rule (A.13) the corresponding kernel will not be invariant nor reversible (and not even
Markovian), which is certainly not desirable. However, if we only update the variance matrix
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during the burn-in period, the resulting chain will still have the correct stationary distribution
p. If the burn-in period is long enough for the variance matrix estimates to stabilize, we can
therefore use ΣB in subsequent draws, which typically ensure an acceptance rate of α∗ and an
improved mixing of the chain even without further adaptation (Vihola, 2012).

For a practical implementation of RAM, we usually do not evaluate Σi, since only Si is
necessary for sampling from the corresponding proposal. Since we can computeSi via a rank one
Cholesky update or downdate (depending on the sign of [α(xi|xi−1)−α∗]; see Vihola 2012), the
method is computationally efficient in practice. Starting from a positive definite lower-diagonal
matrix Sν , the Gaussian version of RAM discussed here is summarized in Algorithm A.2.
Note that since the Gaussian kernel is symmetric, i.e. q(xi|xi−1) = q(xi−1|xi), the acceptance
probability α(xi|xi−1) in the algorithm is not a function of q.

Algorithm A.2: Gaussian Robust Adaptive Metropolis
Initialization
draw x0 ∼ ν(x)
set S0 = Sν
Main recursion
for i = 1 to B + M do

draw zi ∼ dN (0dx , Idx)
compute yi = xi−1 + Si−1zi

draw u ∼ U [0, 1]

compute α(yi|xi−1) = 1 ∧ p(yi)
p(xi−1)

if u <= α(yi|xi−1) then
set xi = yi

end
else

set xi = xi−1

end
compute Si from Si(Si)T = Si−1

{︂
Idx + ηi[α(xi|xi−1)− α∗]

zi(zi)T

∥zi∥22

}︂
(Si−1)T

end

Another widely popular class of kernels used for MCMC algorithms are the Gibbs
kernels, the choice of which results in a subclass of MCMC methods known as Gibbs sampling
algorithms. Essentially, Gibbs sampling is used whenever we know the complete conditionals
p(xk|x1, . . . , xk−1, xk+1, . . . , xdx) for each k = 1, . . . , dx, which is frequently the case in which
we know the behavior of p only up to a global proportionality constant for which evaluation is
difficult or unfeasible.

An attractive property of Gibbs sampling is that it always leaves p invariant, regardless of
the order or even the schedule (i.e. deterministic or stochastic) chosen to update the components.
In order to establish this, suppose that the chain is at xi ∼ p, where xi := (xi1, . . . , x

i
dx
) and let
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xi[−k] := (xi1, . . . , x
i
k−1, x

i
k+1, . . . , x

i
dx
) for k = 1, . . . , dx. Then, by drawing

xi+1
k ∼ p(xk|xi[−k]),

we have (xi+1
k |xi[−k]) ⊥⊥ xi[−k], implying that their joint probability density under Q is given by

dQ(Xk ≤ xi+1
k ,X[−k] ≤ xi[−k])

dxi+1
k dxi[−k]

=
dQ(Xk ≤ xi+1

k )

dxi+1
k

dQ(X[−k] ≤ xi[−k])

dxi[−k]
,

where X[−k] := (X1, . . . , Xk−1, Xk+1, . . . , Xdx). Therefore, since the chain is at p and we have
sampled xi+1

k from its complete conditional, we have

dQ(Xk ≤ xi+1
k )

dxi+1
k

dQ(X[−k] ≤ xi[−k])

dxi[−k]
= p(xi+1

k |x
i
[−k])p(x

i
[−k])

=
p(xi+1

k ,xi[−k])

p(xi[−k])
p(xi[−k])

= p(xi+1
k ,xi[−k]),

as required.

There are several variations of the “vanilla” Gibbs sampling discussed here in which
the structure of the problem at hand is usually exploited in order to obtain efficiency gains; see
e.g. Liu (2008) for various examples. Within the SMC context, there are also methods which
make use of Gibbs sampling steps in order to sample states and even static parameters, such as
e.g. Storvik’s filter (Section 3.2.4.5), Particle Learning (Section 3.2.4.6), Hybrid Liu and West
filter with Particle Learning (Section 3.2.4.7), Regularized Particle Learning (Section 3.2.4.9)
and Hybrid Fully-Adapted Liu and West filter with Regularized Particle Learning (Section
3.2.4.10). All these methods thus possess the attractive property of leaving the posterior for the
static parameters p(θ|y1:t) invariant at each step. For completeness, the vanilla Gibbs sampling
method discussed here is summarized in Algorithm A.3. Regarding computational efficiency,
another attractive feature of Gibbs sampling in practice is the absence of a rejection sampling
step as in MH.
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Algorithm A.3: Vanilla Gibbs Sampler
Initialization
draw x0 ∼ ν(x)
set x← x0

Main recursion
for i = 1 to B + M do

for k = 1 to dx do
draw x′k ∼ p(xk|x′1, . . . , x′k−1, xk+1, . . . , xdx)

end
set xi ← x′

set x← xi

end
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Apêndice B – Linear and Gaussian Hidden
Markov Models

Let (Xt, Yt)t≥0 be an HMM defined by

Xt = AXt−1 +RUt, Ut ∼ N(0, Idx), (B.1)

Yt = BXt + SVt, Vt ∼ N(0, Idy), (B.2)

where (Ut)t≥0 and (Vt)t≥0 are serially and mutually independent sequences which are also
independent of X0 ∼ N(Xν ,Σν). Here, dx := dim(Xt), dy := dim(Yt), X = Rdx and
Y = Rdy . The matrices A and R are (dx × dx), B is (dy × dx) and S is (dy × dy).

The model (B.1-B.2) is an important and recurrent type of HMM throughout the literature
due to the fact that its filtering, prediction and smoothing distributions can all be computed
exactly. These so-called linear and Gaussian Hidden Markov Models therefore provide us with
a natural benchmark for which to test our methods against.

In this appendix we derive the corresponding analytical expressions for the distributions
ofXt|Y1:t,Xt|Y1:t−1 andXt|Y1:n, as well as expressions for the likelihood p(y1:n) and even discuss
approximation of the posterior distribution p(θ|y1:n) via numerical integration. Although the
notation here draws heavily on Cappé et al. (2005), our exposition is considerably simpler, and is
inspired mostly by Petris (2009). Since throughout this entire chapter we only take expectations,
variances and covariances with respect to P, we write simply E, cov and var to denote EP, covP
and varP, respectively.

B.1 The Regression Lemma

Before we move on to compute the filtering, prediction and smoothing state distributions
of the linear and Gaussian HMM, we need to first prove an auxiliary result. Due to its importance
in the theory of linear regression and more generally in multivariate statistics (Anderson, 2003),
this result is sometimes known in the time series literature simply as the regression lemma
(Durbin and Koopman, 2012).
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Lemma B.1.1 (Regression Lemma). Let X ∼ N (µx,Σxx) and Y ∼ N (µy,Σyy) be jointly
distributed as [︄

X

Y

]︄
∼ N

(︃[︄
µx

µy

]︄
,

[︄
Σxx Σxy

ΣT
xy Σyy

]︄)︃
, (B.3)

where Σxy := cov(X, Y ) and Σyy is nonsingular. The conditional distribution of X given Y is
therefore given by

X|Y ∼ N (µx|y,Σx|y), (B.4)

where

µx|y := µx + ΣxyΣ
−1
yy (y − µy), Σx|y := Σxx − ΣxyΣ

−1
yy Σ

T
xy.

Proof. Let F = (X, Y ) and denote by µF and ΣF its corresponding mean vector and covariance
matrix given in (B.3). We can then write

p(x|y) = p(x, y)

p(y)

=

(2π)−(dx+dy)/2 det(ΣF )
−1/2 exp

{︃
− 1

2
(F − µF )TΣ−1

F (F − µF )
}︃

(2π)−dy/2 det(Σyy)−1/2 exp

{︃
− 1

2
(y − µy)TΣ−1

yy (y − µy)
}︃

= (2π)−dx/2
[︃
det(ΣF )

det(Σyy)

]︃−1/2

·

· exp
{︃
− 1

2

[︂
(F − µF )TΣ−1

F (F − µF )− (y − µy)TΣ−1
yy (y − µy)

]︂}︃
.

Now, for a generic (2× 2) block matrix E such that

E =

[︄
A B

C D

]︄
,

it can be proved (Lu and Shiou, 2002) that, if D is nonsingular, the determinant of E is given by

det(E) = det

(︃[︄
A B

C D

]︄)︃
= det(D) · det(A−BD−1C). (B.5)

Further, if both D and (A−BD−1C) are nonsingular, the inverse of E is

E−1 =

[︄
A B

C D

]︄−1

=

[︄
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D +D−1C(A−BD−1C)−1BD−1.

]︄
(B.6)
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Therefore, we can use (B.5) to rewrite the determinant of ΣF as

det(ΣF ) = det

(︃[︄
Σxx Σxy

ΣT
xy Σyy

]︄)︃
= det

(︂
Σyy

)︂
· det

(︂
Σxx − ΣxyΣ

−1
yy Σ

T
xy

)︂
,

which implies that the ratio det(ΣF )/ det(Σyy) appearing in the expression for p(x|y) above is
equal to

det(ΣF )

det(Σyy)
=

det(Σyy) · det(Σxx − ΣxyΣ
−1
yy Σ

T
xy)

det(Σyy)
= det(Σxx − ΣxyΣ

−1
yy Σ

T
xy) = det(Σx|y),

where here we define Σx|y := Σxx − ΣxyΣ
−1
yy Σ

T
xy.

On the other hand, (B.6) implies that we can rewrite the inverse of ΣF as

Σ−1
F =

[︄
Σxx Σxy

ΣT
xy Σyy

]︄−1

=

[︄
(Σxx − ΣxyΣ

−1
yy Σ

T
xy)

−1 −(Σxx − ΣxyΣ
−1
yy Σ

T
xy)

−1ΣxyΣ
−1
yy

−Σ−1
yy Σ

T
xy(Σxx − ΣxyΣ

−1
yy Σ

T
xy)

−1 Σyy + Σ−1
yy Σ

T
xy(Σxx − ΣxyΣ

−1
yy Σ

T
xy)

−1ΣxyΣ
−1
xy

]︄

=

[︄
Σ−1
x|y −Σ−1

x|yΣxyΣ
−1
yy

−Σ−1
yy Σ

T
xyΣ

−1
x|y Σyy + Σ−1

yy Σ
T
xyΣ

−1
x|yΣxyΣ

−1
yy

]︄
.

Using this block inverse expression forΣ−1
F , we can expand the quadratic form (F−µF )Σ−1

F (F−
µF ) as

(F − µF )Σ−1
F (F − µF ) =

[︄
x− µx
y − µy

]︄T [︄
Σ−1
x|y −Σ−1

x|yΣxyΣ
−1
yy

−Σ−1
yy Σ

T
xyΣ

−1
x|y Σyy + Σ−1

yy Σ
T
xyΣ

−1
x|yΣxyΣ

−1
yy

]︄[︄
x− µx
y − µy

]︄
= (x− µx)TΣ−1

x|y(x− µx)+

− (y − µy)TΣ−1
yy Σ

T
xyΣ

−1
x|y(x− µx)+

− (x− µx)TΣ−1
x|yΣxyΣ

−1
yy (y − µy)+

+ (y − µy)T
(︁
Σyy + Σ−1

yy Σ
T
xyΣ

−1
x|yΣxyΣ

−1
yy

)︁
(y − µy)

= (x− µx)TΣ−1
x|y(x− µx)+

−
[︁
ΣxyΣ

−1
yy (y − µy)

]︁T
Σ−1
x|y(x− µx)+

− (x− µx)TΣ−1
x|y
[︁
ΣxyΣ

−1
yy (y − µy)

]︁
+

+
[︁
ΣxyΣ

−1
yy (y − µy)

]︁T
Σ−1
x|y
[︁
ΣxyΣ

−1
yy (y − µy)

]︁
+ (y − µy)TΣyy(y − µy)

= (x− µx)TΣ−1
x|y(x− µx)+

− 2(x− µx)TΣ−1
x|y
[︁
ΣxyΣ

−1
yy (y − µy)

]︁
+
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+
[︁
ΣxyΣ

−1
yy (y − µy)

]︁T
Σ−1
x|y
[︁
ΣxyΣ

−1
yy (y − µy)

]︁
+

+ (y − µy)TΣyy(y − µy)

= xTΣ−1
x|yx− 2xTxΣ

−1
x|yµx + µTxΣ

−1
x|yµx+

− 2xTΣ−1
x|y
[︁
ΣxyΣ

−1
yy (y − µy)

]︁
+ 2µTΣ−1

x|y
[︁
ΣxyΣ

−1
yy (y − µy)

]︁
+

+
[︁
ΣxyΣ

−1
yy (y − µy)

]︁T
Σ−1
x|y
[︁
ΣxyΣ

−1
yy (y − µy)

]︁
+

+ (y − µy)TΣyy(y − µy)

= xTΣ−1
x|yx+

− 2xTxΣ
−1
x|y
[︁
µx + ΣxyΣ

−1
yy (y − µy)

]︁
+

+ µTΣ−1
x|yµ+

+ 2µTΣ−1
x|y
[︁
ΣxyΣ

−1
yy (y − µy)

]︁
+

+
[︁
ΣxyΣ

−1
yy (y − µy)

]︁T
Σ−1
x|y
[︁
ΣxyΣ

−1
yy (y − µy)

]︁
+

+ (y − µy)TΣyy(y − µy)

= xTΣ−1
x|yx+

− 2xTxΣ
−1
x|y
[︁
µx + ΣxyΣ

−1
yy (y − µy)

]︁
+

+
[︁
µx + ΣxyΣ

−1
yy (y − µy)

]︁T
Σ−1
x|y
[︁
µx + ΣxyΣ

−1
yy (y − µy)

]︁
+

+ (y − µy)TΣyy(y − µy)

= (x− µx|y)TΣ−1
x|y(x− µx|y) + (y − µy)TΣyy(y − µy),

whereµx|y := µx+ΣxyΣ
−1
yy (y−µy). This in turn implies that the difference (F−µF )Σ−1

F (F−µF )
− (y − µy)TΣyy(y − µy) is then simply

(x− µx|y)TΣ−1
x|y(x− µx|y) + (y − µy)TΣyy(y − µy)− (y − µy)TΣyy(y − µy),

which is clearly equal to (x− µx|y)TΣ−1
x|y(x− µx|y).

Combinining all these results, we can finally rewrite the corresponding expression for
p(x|y) as

p(x|y) = (2π)−dx/2
[︃
det(ΣF )

det(Σyy)

]︃−1/2

·

· exp
{︃
− 1

2

[︂
(F − µF )TΣ−1

F (F − µF )− (y − µy)TΣ−1
yy (y − µy)

]︂}︃
= (2π)−dx/2 det(Σx|y)

−1/2 exp

{︃
− 1

2
(x− µx|y)TΣ−1

x|y(x− µx|y)
}︃
,

which is the density of a normally distributed variable with mean vector µx|y and variance matrix
Σx|y, as required.
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Note that in the above proof we have extensively used that the transpose of a product
is given by the product of the transposes in the reverse order, i.e. (AB)T = BTAT . Another
property we have used is that a quadratic form can be equivalently written either as zTAw or
wTAT z, since the end result is a scalar (which is, by definition, symmetric). This is also equal
to wTAz for a symmetric matrix A, which is clearly true for Σ−1

x|y and its inverse, given that ΣT
x|y

= (Σxx−ΣxyΣ
−1
yy Σ

T
xy)

T =ΣT
xx− (ΣT

xy)
T (Σ−1

yy )
TΣT

xy =Σxx−ΣxyΣ
−1
yy Σ

T
xy =Σx|y (both Σxx and

Σyy are symmetric, and if a matrix is symmetric, the same holds true for its inverse). Another
result deduced from zTAw = wTAz and that we have also extensively used is the association
formula for symmetric quadratic forms (z − w)TA(z − w) = zTAz − 2zTAw + wTAw.

B.2 Kalman Filtering and Prediction

Let (Xt, Yt)t≥0 be given by (B.1-B.2). In this section we consider the problem of
computing the filtered law Xt|Y1:t, resulting into a celebrated algorithm widely known as the
Kalman filter (Kalman, 1960). As a direct byproduct of this procedure, the analytical expression
for the prediction distribution Xt|Y1:t−1 can also be obtained.

The Kalman filter is essentially an efficient sequential procedure to compute the mean
and variance of Xt|Y1:t, which then completely characterizes its distribution (Gaussian laws
are almost-surely determined by their first and second moments). Hereafter, we let Xk|j :=

E(Xk|Y1:j) and Σk|j := var(Xk|Y1:j) for integers k and j to simplify notation.

Assume that at time t − 1 we have already computed Xt−1|t−1 and Σt−1|t−1. From
Xt = AXt−1+RUt, it follows that the one-step-ahead prediction state meanXt|t−1 is then given
by

Xt|t−1 : = E(Xt|Y1:t−1)

= E(AXt−1 +RUt|Y1:t−1)

= AE(Xt−1|Y1:t−1) +RE(Ut|Y1:t−1)

= AXt−1|t−1,

since Ut ⊥⊥ Y1:t−1 implies E(Ut|Y1:t−1) = E(Ut) = 0. Likewise, the one-step-ahead prediction
state variance Σt|t−1 is

Σt|t−1 := var(Xt|Y1:t−1)

= var(AXt−1 +RUt|Y1:t−1)

= var(AXt−1|Y1:t−1) + var(RUt|Y1:t−1) + 2cov(AXt−1, RUt|Y1:t−1)
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= Avar(Xt−1|Y1:t−1)A
T +Rvar(Ut|Y1:t−1)R

T + 0(dx×dx)

= AΣt−1|t−1A
T +RRT ,

since Ut ⊥⊥ Y1:t−1 implies var(Ut|Y1:t−1) = var(Ut) = Idx and Xt−1|Y1:t−1 ⊥⊥ Ut|Y1:t−1 implies
that their covariance is a (dx × dx) zero matrix, i.e. cov(Xt−1, Ut|Y1:t−1) = 0(dx×dx).

Now, consider the one-step-ahead prediction mean and variance of the observation Yt
given Y1:t−1. From Yt = BXt + SVt, we have

E(Yt|Y1:t−1) = E(BXt + SVt|Y1:t−1) = BE(Xt|Y1:t−1) + SE(Vt|Y1:t−1) = BXt|t−1,

since Vt ⊥ Y1:t−1 implies E(Vt|Y1:t−1) = E(Vt) = 0. The corresponding variance matrix is

var(Yt|Y1:t−1) = var(BXt + SVt|Y1:t−1)

= var(BXt|Y1:t−1) + var(SVt|Y1:t−1) + 2cov(BXt, SVt|Y1:t−1)

= Bvar(Xt|Y1:t−1)B
T + Svar(Vt|Y1:t−1)S

T + 0(dy×dy)

= BΣt−1|t−1B
T + SST ,

since Vt ⊥⊥ Y1:t−1 implies var(Vt|Y1:t−1) = var(Vt) = Idy and Xt|Y1:t−1 ⊥⊥ Vt|Y1:t−1 implies that
their covariance is a (dy × dy) matrix of zeroes, i.e. cov(Xt−1, Vt|Y1:t−1) = 0(dy×dy).

Finally, consider the covariance between these one-step-ahead state and observation
predictions, i.e. between Xt|Y1:t−1 and Yt|Y1:t−1. It is given by

cov(Xt, Yt|Y1:t−1) = cov(Xt, BXt + SVt, Y1:t−1)

= cov(Xt, BXt|Y1:t−1) + cov(Xt, SVt|Y1:t−1)

= Σt|t−1B
T + 0(dx×dy)

= Σt|t−1B
T ,

since we again have thatXt|Y1:t−1 ⊥⊥ Vt|Y1:t−1 implies that their covariance is the zero (dx× dy)
matrix 0(dx×dy). Note that the covariance between Yt|Y1:t−1 andXt|Y1:t−1 is simply the transpose
of cov(Xt, Yt|X1:t−1), which is given by BΣt|t−1.

Given that the sigma-algebra generated by Y1:t clearly contains that of Y1:t−1, i.e.
σ(Y1:t) ⊃ σ(Y1:t−1), we have that the conditional distribution of Xt|Y1:t−1 given Yt|Y1:t−1 is
the filtering distribution, i.e. (Xt|Y1:t−1)|(Yt|Y1:t−1) =

d Xt|Y1:t. Since the joint distribution (see
Remark B.2.1 below) of Xt|Y1:t−1 and Yt|Y1:t−1 is given by[︄

Xt|Y1:t−1

Yt|Y1:t−1

]︄
∼ N

(︃[︄
Xt|t−1

BXt|t−1

]︄
,

[︄
Σt|t−1 Σt|t−1B

T

BΣt|t−1 BΣt|t−1B
T + SST

]︄)︃
,
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by Lemma B.1.1 we have that the filtering distribution is Gaussian with mean

Xt|t := E(Xt|Y1:t) = Xt|t−1 + Σt|t−1B
T
(︁
BΣt|t−1B

T + SST
)︁−1

(Yt −BXt|t−1)

and variance

Σt|t := var(Xt|Y1:t) = Σt|t−1 − Σt|t−1B
T
(︁
BΣt|t−1B

T + SST
)︁−1

BΣt|t−1.

Remark B.2.1. To use Lemma B.1.1, we additionally need to prove that Xt|Y1:t−1 and Yt|Y1:t−1

are jointly Gaussian, which is in general a sufficient but not a necessary condition for them to
be marginally Gaussian.

By directly rewriting the joint density of Xt|Y1:t−1 and Yt|Y1:t−1 as

p(xt, yt|y1:t−1) = p(yt|xt, y1:t−1)p(xt|y1:t−1) = g(yt|xt)p(xt|y1:t−1),

we then simply have to show thatXt|Y1:t−1 is Gaussian, since g(yt|xt) is Gaussian by definition,
and the product of two Gaussian densities is also Gaussian (note that the last equality above
follows from the fact that Yt is almost surely determined by Xt).

We have

p(xt|y1:t−1) =

∫︂
X
p(xt, xt−1|y1:t−1)dxt−1

=

∫︂
X
p(xt|xt−1, y1:t−1)p(xt−1|y1:t−1)dxt−1

=

∫︂
X
f(xt|xt−1)p(xt−1|y1:t−1)dxt−1,

which establishes that Xt|Y1:t−1 is a convolution of the Gaussian densities f(xt|xt−1) and
p(xt−1|y1:t−1) (the latter follows from induction), which is once again Gaussian, as required.

It is usual (see e.g. Durbin and Koopman, 2012; Cappé et al., 2005; Petris, 2009)
to restate the above result in terms of the one-step-ahead observation prediction error ϵt :=
Yt − E(Yt|Y1:t−1) = Yt − BXt|t−1. Given Y1:t−1, the mean of ϵt is clearly zero and its variance
is the same as that of Yt|Y1:t−1. Defining this variance by Γt, and also defining the so-called
Kalman gain by Kt := Σt|t−1B

TΓ−1
t , we can collectively restate the entire sequential procedure

as

Xt|t−1 = AXt−1|t−1, (B.7)

Σt|t−1 = AΣt−1|t−1A
T +RRT , (B.8)

ϵt = Yt −BXt|t−1, (B.9)
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Γt = BΣt|t−1B
T + SST , (B.10)

Kt = Σt|t−1B
TΓ−1

t , (B.11)

Xt|t = Xt|t−1 +Ktϵt, (B.12)

Σt|t = Σt|t−1 −KtBΣt|t−1. (B.13)

Equations (B.7-B.8) are sometimes known as the Kalman prediction equations, whereas
equations (B.9-B.13) are the Kalman filtering equations. Note that we can completely restate
the filtering set of equations without the prediction part by simply replacing the appropriate
expressions for Xt|t−1 and Σt|t−1 given in (B.7-B.8) in (B.9-B.13).

We initialize the recursion withX0|0 := Xν and Σ0|0 := Σν , which are typically set to the
mean and variance of X0. The entire Kalman filtering procedure is summarized in Algorithm
B.1.

Algorithm B.1: Kalman Filter
Initialization
set X0|0 = Xν

set Σ0|0 = Σν

compute X1|0 = AXν

compute Σ1|0 = AΣνA
T +RRT

compute ϵ1 = Y1 −BX1|0
compute Γ1 = BΣ1|0B

T + SST

compute K1 = Σ1|0B
TΓ−1

1

compute X1|1 = X1|0 +K1ϵ1
compute Σ1|1 = Σ1|0 −K1BΣ1|0

Main recursion
for t = 2 to n do

compute Xt|t−1 = AXt−1|t−1

compute Σt|t−1 = AΣt−1|t−1A
T +RRT

compute ϵt = Yt −BXt|t−1

compute Γt = BΣt|t−1B
T + SST

compute Kt = Σt|t−1B
TΓ−1

t

compute Xt|t = Xt|t−1 +Ktϵt
compute Σt|t = Σt|t−1 −KtBΣt|t−1

end

B.3 Forward-Filtering, Backward-Sampling

Before computing the smoothing distributions Xt|Y1:n of linear and Gaussian models,
we first derive a recursive method for sampling from these distributions, known as the Forward-
Filtering, Backward-sampling (FFBS) algorithm. The FFBS is an invaluable ingredient when
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performing Bayesian inference for model (B.1-B.2), and was proposed independently by Carter
and Kohn (1994), Frühwirth-Schnatter (1994) and Shephard (1994). Algorithms which have as
their main goal to produce draws from the joint smoothing distribution X0:n|Y1:n (rather than
computing it analytically), are usually referred to as simulation smoothers.

The FFBS algorithm relies on the backward smoothing recursion

p(x0:n|y1:n) = p(x0|x1:n, y1:n) · · · p(xn|y1:n)

=
n∏︂
k=0

p(xk|xk+1:n, y1:n), (B.14)

which suggests filtering up to Xn|Y1:n and then sampling backwards Xn−1|(Xn, Y1:n), . . .,
X0|(X1:n, Y1:n); hence the name. Now, each term p(xk|xk+1:n, y1:n) is equivalent to

p(xk|xk+1:n, y1:n) =
p(xk, xk+1:n, y1:n)

p(xk+1:n, y1:n)

=
p(yk+1:n|xk, xk+1:n, y1:k)p(xk+2:n|xk, xk+1, y1:k)p(xk|xk+1, y1:k)p(xk+1, y1:k)

p(yk+1:n|, xk+1:n, y1:k)p(xk+2:n|xk+1, y1:k)p(xk+1, y1:k)

= p(xk|xk+1, y1:k), (B.15)

since from (1.2) and item (iii) of Proposition 1.1.1 comes

p(yk+1:n|xk, xk+1:n, y1:k) = p(yk+1:n|xk+1:n, y1:k) =
n∏︂

j=k+1

g(yj|xj)

and from item (ii) of Proposition 1.1.1 comes

p(xk+2:n|xk, xk+1, y1:k) = p(xn|xk+2:n−1, xk, xk+1, y1:k) · · · p(xk+2|xk, xk+1, y1:k)

=
n∏︂

j=k+2

f(xj|xj−1)

= p(xk+2:n|xk+1, y1:k).

Having established that Xt|(Xt+1, Y1:n) =
d Xt|(Xt+1, Y1:t), recall from Section B.2 that

Xt|Y1:t ∼ N (Xt|t,Σt|t), Xt+1|Y1:t ∼ N (AXt|t, AΣt|tA
T +RRT ).

On the other hand, from (B.1) we can deduce that

cov(Xt, Xt+1|Y1:t) = cov(Xt, AXt +RUt|Y1:t)

= cov(Xt, AXt|Y1:t) + cov(Xt, RUt|Y1:t)

= cov(Xt, Xt|Y1:t)AT + cov(Xt, Ut|Y1:t)RT
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= var(Xt|Y1:t)AT + 0dx×dxR
T

= Σt|tA
T ,

since by assumption cov(Xt, Ut|Y1:t) = 0. Therefore, the joint distribution of Xt|Y1:t and
Xt+1|Y1:t is given by[︄

Xt|Y1:t
Xt+1|Y1:t

]︄
∼ N

(︃[︄
Xt|t

AXt|t

]︄
,

[︄
Σt|t Σt|tA

T

AΣt|t AΣt|tA
T +RRT

]︄)︃
.

which, by Lemma B.1.1 and (B.15) implies that Xt|(Xt+1:n, Y1:n) is Gaussian with mean

XFFBS
t|n := Xt|t + Σt|tA

T (AΣt|tA
T +RRT )−1(Xt+1 − AXt|t) (B.16)

and variance
ΣFFBS
t|n := Σt|t − Σt|tA

T (AΣt|tA
T +RRT )−1AΣt|t. (B.17)

Starting with Xn|Y1:n, the complete FFBS procedure for producing a draw from X0:n|Y1:n is
summarized in Algorithm B.2.

Algorithm B.2: Forward-Filtering, Backward-Sampling
Initialization
draw Xn|Y1:n ∼ N (Xn|n,Σn|n)

Backward recursion
for t = n-1 to 0 do

compute XFFBS
t|n = Xt|t + Σt|tA

T (AΣt|tA
T +RRT )−1(Xt+1 − AXt|t)

compute ΣFFBS
t|n = Σt|t − Σt|tA

T (AΣt|tA
T +RRT )−1AΣt|t

draw Xt|(Xt+1:n, Y1:n) ∼ N (XFFBS
t|n ,ΣFFBS

t|n )

end

B.4 Kalman Smoothing

We finish our discussion of Kalman-filter based techniques with the so-called Kalman
smoothing algorithm, which is the forward-backward smoother for linear and Gaussian models.

Recall from Section B.3 that Xt|(Xt+1, Y1:n) ∼ N (XFFBS
t|n ,ΣFFBS

t|n ), where XFFBS
t|n and

ΣFFBS
t|n are given in (B.16) and (B.17), respectively. Since Xt|(Xt+1, Y1:n) is a function of Xt+1,

it turns out that deriving the distribution of Xt|Y1:n from Xt|(Xt+1, Y1:n) is as simple as using
the Law of Total Expectation (Proposition C.1.1) and the Law of Total Variance (Proposition
C.1.2) in order to obtain the corresponding mean and variances, since Gaussian distributions
are completely determined by their first two moments.
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For the mean Xt|n := E(Xt|Y1:n), by applying Proposition C.1.1 we obtain

Xt|n = E
[︁
E(Xt|Xt+1, Y1:n)|Y1:n

]︁
= E

[︁
Xt|t + Σt|tA

T (AΣt|tA
T +RRT )−1(Xt+1 − AXt|t)|Y1:n

]︁
= Xt|t + Σt|tA

T (AΣt|tA
T +RRT )−1(E(Xt+1|Y1:n)− AXt|t)

= Xt|t + Σt|tA
T (AΣt|tA

T +RRT )−1(Xt+1|n − AXt|t). (B.18)

As for the variance Σt|n := var(Xt|Y1:n), let Mt := (AΣt|tA
T +RRT )−1. Then, by Proposition

C.1.2,

Σt|n = var
[︁
E(Xt|Xt+1, Y1:n)|Y1:n

]︁
+ E

[︁
var(Xt|Xt+1, Y1:n)|Y1:n

]︁
= var

[︁
Xt|t + Σt|tA

T (AΣt|tA
T +RRT )−1(Xt+1 − AXt|t)|Y1:n

]︁
+

+ E
[︁
Σt|t − Σt|tA

T (AΣt|tA
T +RRT )−1AΣt|t|Y1:n

]︁
= var

[︁
Xt|t + Σt|tA

TMt(Xt+1 − AXt|t)|Y1:n
]︁
+

+ Σt|t − Σt|tA
TMtAΣt|t

= var
[︁
(Idx − Σt|tA

TMtA)Xt|t + Σt|tA
TMtXt+1|Y1:n

]︁
= var

[︁
(Idx − Σt|tA

TMtA)Xt|t|Y1:n
]︁
+

+ var
[︁
Σt|tA

TMtXt+1|Y1:n
]︁
+

+ 2cov
[︁
Idx − Σt|tA

TMtA)Xt|t,Σt|tA
TMtXt+1|Y1:n

]︁
+

+ Σt|t − Σt|tA
TMtAΣt|t

= 0dx×dx + Σt|tA
TMtvar(Xt+1|Y1:n)MT

t Σt|tA+ 0dx×dx+

+ Σt|t − Σt|tA
TMtAΣt|t

= Σt|t − Σt|tA
TMtAΣt|t + Σt|tA

TMtΣt+1|nMtΣt|tA, (B.19)

where in the above derivation we have used that var(Xt|t|Y1:n) = 0dx×dx (sinceXt|t is a constant
with respect to Y1:n) and by the same reason cov(Xt|t, Xt+1) = 0dx×dx . We have also used that
MT

t =Mt (i.e. thatMt is a symmetric matrix), which can be readily verified from its definition.
The forward-backward smoothing procedure derived here is summarized in Algorithm B.3.

Algorithm B.3: Kalman Smoothing
Backward recursion
for t = n-1 to 0 do

compute Xt|n = Xt|t + Σt|tA
TMt(Xt+1|n − AXt|t)

compute Σt|n = Σt|t − Σt|tA
TMtAΣt|t + Σt|tA

TMtΣt+1|nMtΣt|tA

end
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B.5 Quadrature-based Estimates of Posterior Densities

Whenever we are dealing with linear and Gaussian HMMs with static parameters of
a relatively small dimension dθ, we might wish to approximate the posterior distribution of θ
given Y1:n = y1:n directly via numerical integration (also known as quadrature-based) methods
(Asmussen and Glynn, 2007). This is done e.g. for the AR(1) + noise model in Section 4.2 to
provide a “true” distribution for benchmarking our sequential parameter learning algorithms.

In order to compute a quadrature-based estimate of the posterior for a linear and Gaussian
HMM (B.1-B.2), we first decompose

p(θ|y1:n) =
p(θ, y1:n)

p(y1:n)
=
p(y1:n|θ)p(θ)
p(y1:n)

=
p(y1:n|θ)p(θ)∫︁

Θ
p(y1:n|θ)p(θ)dθ

, (B.20)

where the last equality follows from Bayes’ theorem. Although in general we cannot compute the
integral

∫︁
Θ
p(y1:n|θ)p(θ)dθ even under the linearity and normality assumptions, we can indeed

compute the prior p(θ) (by assumption) and the likelihood p(y1:n|θ).

To show how the likelihood p(y1:n|θ) can be routinely obtained as a byproduct of the
Kalman Filter (Algorithm B.1), recall from Section B.2 that the one-step-ahead observation
prediction satifies

E(Yt|Y1:t−1) = BXt|t−1 and Γt := var(Yt|Y1:t−1) = BΣt|t−1B
T + SST .

Now, since Yt is Gaussian for each t, we have that Y1:t−1 and Yt|Y1:t−1 are also Gaussian (see
Remark B.2.1). Therefore, the one-step-ahead observation predictive density is

p(yt|y1:t−1, θ) = dN (yt|BXt|t−1,Γt). (B.21)

Finally, by (B.21) applying a predictive decomposition to p(y1:n|θ) then yields

p(y1:n|θ) = p(y1|θ)
n∏︂
t=2

p(yt|y1:t−1)

= dN (y1|BX1|0,Γ1)
n∏︂
t=2

dN (yt|BXt|t−1,Γt)

=
n∏︂
t=1

dN (yt|BXt|t−1,Γt) (B.22)

Naturaly, the static parameters θ are typically included in model (B.1-B.2) as a part of the
matrices/vectors A, B, R, S, Xν and Σν .

In possession of a pointwise estimate of the likelihood for any value of θ given the
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observations Y1:n = y1:n, we can also compute the integrand in
∫︁
Θ
p(y1:n|θ)p(θ)dθ for any value

of θ. This means that we can approximate this integral with

p̂(y1:n) :=

J1∑︂
j1=1

· · ·
Jdθ∑︂
jdθ=1

p(y1:n|θ1,j1 , . . . , θdθ,jdθ )·

· p(θ1,j1 , . . . , θdθ,jdθ )∆θ1,j1 · · ·∆θdθ,jdθ , (B.23)

where in the expression above we sum over all values jk of the kth component of θ (denoted
θk,jk), jk = 1, . . . , Jk and k = 1, . . . , dθ. Although there are several quadrature rules we can
choose from to specify the values θk,jk and increments ∆θk,jk (Asmussen and Glynn, 2007),
the simplest and most popular method is to choose an equispaced grid and the midpoint rule,
i.e. to let θk,1 = ak, θk,Jk = bk for ak < bk and take θk,jl = ak + (bk − ak) · l/Jk and
∆θk,jl = θk,jl − θk,jl−1

, l = 2, . . . , Jk−1. This corresponds to a certain type of Riemannian sum,
which under general conditions can be shown to converge to p(y1:n) as each ak → −∞, bk →∞
and Jk → +∞; see e.g. Bartle (1976).

In closing, our quadrature-based pointwise estimate of the posterior p(θ|y1:n) is thus
given by

p̂(θ|y1:n) :=
p(y1:n|θ)p(θ)
p̂(y1:n)

(B.24)

for each value of θ, with p̂(y1:n) defined in (B.23). Note that for numerical stability we usually
work with the estimate of the log-posterior, log p̂(θ|y1:n), although in this case we additionally
have to deal with a log-sum of exponentials (see Section E.3). Typically, we evaluate the
posterior (B.24) over the same interval used for computing (B.23).

B.6 Optimal Proposal Distributions

We now discuss how to compute the optimal importance weights p(yt|xt−1) and optimal
state proposal distribution p(xt|xt−1, yt) in a scalar-valued linear Gaussian HMM.

Proposition B.6.1. Let (Xt, Yt)t≥0 be an HMM defined by

Gt = Ft + τUt, ηt ∼ N(0, τ 2),

Yt = Gt + σVt, ϵt ∼ N(0, σ2),

where Gt := G(Xt) and Ft := F (Xt−1) are (possibly nonlinear) functions of Xt (G is also
assumed to be invertible), X0 ⊥⊥ (ϵt)t≥0 ⊥⊥ (ηt)t≥0, dx = dy = 1 and G(X ) = R. Then

p(yt|xt−1) = dN (yt|Ft, σ2 + τ 2). (B.25)
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and

p(xt|xt−1, yt) = dN
(︃
G−1(xt)

⃓⃓⃓⃓
σ2Ft + τ 2yt
σ2 + τ 2

,
σ2τ 2

σ2 + τ 2

)︃
·
⃓⃓⃓⃓
dG(x)

dx

⃓⃓⃓⃓−1

x=G−1(xt)

, (B.26)

whereG−1 denotes the inverse ofG and |dG(x)/dx|−1
x=G−1(xt)

is the Jacobian of the transforma-
tion of Xt ↦→ G(Xt) evaluated at the point G−1(xt).

Proof. We start with the optimal weights. Since G(X ) = R, they are given by

p(yt|xt−1) =

∫︂
G(X )

p(yt, Gt|xt−1)dGt

=

∫︂ +∞

−∞
p(yt|Gt, xt−1)p(Gt|xt−1)dGt

=

∫︂ +∞

−∞
g(yt|Gt)f(Gt|xt−1)dGt

=

∫︂ +∞

−∞
f(Gt|xt−1)g(yt|Gt)dGt

=

∫︂ +∞

−∞

1√
2πτ 2

exp

{︃
− 1

2τ 2
(Gt − Ft)2

}︃
· 1√

2πσ2
exp

{︃
− 1

2σ2
(yt −Gt)

2

}︃
dGt

=
1

2π
√
σ2τ 2

∫︂ +∞

−∞
exp

{︃
− 1

2

[︃
G2
t − 2GtFt + F 2

t

τ 2
+
y2t − 2Gtyt +G2

t

σ2

]︃}︃
dGt

=
1

2π
√
σ2τ 2

exp

{︃
− 1

2

[︃
F 2
t

τ 2
+
y2t
σ2

]︃}︃
·

·
∫︂ +∞

−∞
exp

{︃
− 1

2

[︃
G2
t

(︃
1

τ 2
+

1

σ2

)︃
− 2Gt

(︃
Ft
τ 2

+
yt
σ2

)︃]︃}︃
dGt

=
1

2π
√
σ2τ 2

exp

{︃
− 1

2

1

σ2τ 2
(σ2F 2

t + τ 2y2t )

}︃
·

·
∫︂ +∞

−∞
exp

{︃
− 1

2

1

σ2τ 2

[︂
G2
t (σ

2 + τ 2)− 2Gt(σ
2Ft + τ 2yt)

]︂}︃
dGt

=
1

2π
√
σ2τ 2

exp

{︃
− 1

2

σ2 + τ 2

σ2τ 2

(︃
σ2F 2

t + τ 2y2t
σ2 + τ 2

)︃}︃
·

·
∫︂ +∞

−∞
exp

{︃
− 1

2

σ2 + τ 2

σ2τ 2

[︃
G2
t − 2Gt

(︃
σ2Ft + τ 2yt
σ2 + τ 2

)︃
+

+

(︃
σ2Ft + τ 2yt
σ2 + τ 2

)︃2

−
(︃
σ2Ft + τ 2yt
σ2 + τ 2

)︃2]︃}︃
dGt

=
1

2π
√
σ2τ 2

exp

{︃
− 1

2

σ2 + τ 2

σ2τ 2

[︃(︃
σ2F 2

t + τ 2y2t
σ2 + τ 2

)︃
−
(︃
σ2Ft + τ 2yt
σ2 + τ 2

)︃2]︃}︃
·

·
∫︂ +∞

−∞
exp

{︃
− 1

2

σ2 + τ 2

σ2τ 2

[︃
Gt −

(︃
σ2Ft + τ 2yt
σ2 + τ 2

)︃]︃2}︃
dGt,
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where from the second to the third equations we have applied (1.2) and (1.1). In the last equation,
the integral is equal to

√︁
2πσ2τ 2/(σ2 + τ 2), which is the proportionality constant for a normally

distributed random variable with mean (σ2Ft+ τ
2yt)/(σ

2+ τ 2) and variance (σ2τ 2)/(σ2+ τ 2).
On the other hand, the difference inside the first exponential is equal to

(σ2F 2
t + τ 2y2t )(σ

2 + τ 2)− (σ2Ft + τ 2yt)

(σ2 + τ 2)2
=

=
σ4F 2

t + σ2τ 2F 2
t + τ 4y2t + σ2τ 2y2t − σ4F 2

t − 2σ2τ 2Ftyt − τ 4y2t
(σ2 + τ 2)2

=
σ2τ 2F 2

t − 2σ2τ 2Ftyt + σ2τ 2y2t
(σ2 + τ 2)2

= (σ2τ 2)
(yt − Ft)2

(σ2 + τ 2)2
.

Therefore,

p(yt|xt−1) =
1

2π
√
σ2τ 2

exp

{︃
− 1

2

σ2 + τ 2

σ2τ 2
(σ2τ 2)

(yt − Ft)2

(σ2 + τ 2)2

}︃
·
√︃

2πσ2τ 2

σ2 + τ 2

=
1√︁

2π(σ2 + τ 2)
exp

{︃
− 1

2

1

σ2 + τ 2
(yt − Ft)2

}︃
,

and Yt|Xt−1 is Gaussian with mean Ft and variance σ2 + τ 2, i.e.

p(yt|xt−1) = dN (yt|Ft, σ2 + τ 2). (B.27)

We now move on to compute the optimal state proposal distribution. In Proposition 2.1.1
we have established that

p(Gt|xt−1, yt) =
f(Gt|xt−1)g(yt|xt)

p(yt|xt−1)
∝ f(Gt|xt−1)g(yt|xt).

Now, in the derivation of (B.27) we have shown that the product f(Gt|xt−1) · g(yt|Gt) is
proportional to

exp

{︃
− 1

2

σ2 + τ 2

σ2τ 2

[︃
Gt −

(︃
σ2Ft + τ 2yt
σ2 + τ 2

)︃]︃2}︃
.

Therefore,Gt|(Xt−1, Yt) is Gaussian with mean (σ2Ft+τ
2yt)/(σ

2+τ 2) and variance (σ2τ 2)/(σ2+

τ 2), i.e.

p(Gt|xt−1, yt) = dN
(︃
Gt

⃓⃓⃓⃓
σ2Ft + τ 2yt
σ2 + τ 2

,
σ2τ 2

σ2 + τ 2

)︃
. (B.28)

As for the distribution of Xt|(Xt−1, Yt), since Xt = G(G−1(Xt)), we simply have to transform
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p(Gt|xt−1, yt) in (B.28) accordingly, i.e.

p(xt|xt−1, yt) = p(G−1(xt)|xt−1, yt) ·
⃓⃓⃓⃓
dG(x)

dx

⃓⃓⃓⃓−1

x=G−1(xt)

= dN
(︃
G−1(xt)

⃓⃓⃓⃓
σ2Ft + τ 2yt
σ2 + τ 2

,
σ2τ 2

σ2 + τ 2

)︃
·
⃓⃓⃓⃓
dG(x)

dx

⃓⃓⃓⃓−1

x=G−1(xt)

. (B.29)
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Apêndice C – Useful Properties of
Conditional Expectations

In this appendix we present some properties of conditional expectations that are useful
in the main presentation of the text. As stated at the end of Chapter 1, we will avoid relying on
the general characterization of conditional expectations (Shiryaev, 1995; Shao, 2003) in order to
facilitate the exposition. In practice, this means that we always assume that in a given probability
space (Ω,F ,P) the conditional probability density (with respect to suitable measures dx and
dy dominating P) of a random variable X ∈ X given another random variable Y ∈ Y is always
well-defined, and is given by

p(x|y) := p(x, y)

p(y)
.

Similarly, the conditional expectation of X given Y is also always assumed to be well-defined
(as long as EP(|X|) < +∞, where EP denotes expectation with respect to P), and is given by

EP(X|Y ) :=

∫︂
X
x · p(x|y)dx.

A property of conditional expectations that we often use here is that EP(X|X) = X . In
terms of conditional probabilities, the analogous property is

p(x|x) = p(x, x)

p(x)
=
p(x)

p(x)
= δX(dx). (C.1)

Instances of where we implicitly use this property are in e.g. the proofs of Theorem 2.1.1 and
Proposition 2.1.1.

As an example, consider computing EP[h(X, Y )|Y ] for a P-integrable and B-measurable
function h. It is intuitive that the density with respect to which we have to integrate is p(x|y),
but this can be formally shown using (C.1), i.e.

EP[h(X, Y )|Y ] =

∫︂
X×Y

h(x, y)p(x, y|y)dxdy
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=

∫︂
X×Y

h(x, y)p(x|y)p(y|y)dxdy

=

∫︂
X×Y

h(x, y)p(x|y)δY (dy)dxdy

=

∫︂
X×Y

h(x, Y )p(x|Y )dx.

C.1 Total Expectation and Variance

In this section we prove two results frequently known as Law of Total Expectation
(sometimes Law of Iterated Expectations) and Law of Total Variance. Again, see e.g. Shiryaev
(1995) and Shao (2003) for their statements and proofs in the general case.

Proposition C.1.1 (Law of Total Expectation). Let X and Y be random variables defined on
a common probability space (Ω,F ,P) such that EP(|X|) < +∞. Then

EP[EP(X|Y )] = EP(X). (C.2)

Proof. The definition of EP[h(Y )] for a P-integrable and B-measurable function h requires that

EP[h(Y )] :=

∫︂
Y
h(y)p(y)dy.

Therefore, by taking h = EP(X|Y ) (which by assumption is a B-measurable and P-integrable
function of Y ), we have

EP[EP(X|Y )] =

∫︂
Y

[︃∫︂
X
x · p(x|y)dx

]︃
p(y)dy

=

∫︂
X

∫︂
Y
x
p(x, y)

p(y)
p(y)dydx

=

∫︂
X

∫︂
Y
x · p(x, y)dydx

=

∫︂
X
x · p(x)dx

= EP(X).

The change in integration order made in the derivation above is justified by Fubini’s
theorem (integrals of probability densities are always finite, and by assumptionEP(|X|) < +∞).
Note that we implicitly have used that the integral over Y of the joint density p(x, y) is equal to
the marginal p(x), i.e.

∫︁
Y
p(x, y)dy = p(x).
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Proposition C.1.2 (Law of Total Variance). Let X and Y be random variables defined on a
common probability space (Ω,F ,P) such thatEP[|h(Y )h(Y )T |] < +∞ andEP[|XXT |] < +∞,
where AT denotes the transpose of matrix A.. Then

varP(X) = varP[EP(X|Y )] + EP[varP(X|Y )]. (C.3)

Proof. For a P-integrable and B-measurable function h, the variance of h(Y ) under P is defined
by

varP[h(Y )] := EP

{︂[︁
h(Y )− EP[h(Y )]

]︁[︁
h(Y )− EP[h(Y )]

]︁T}︂
,

which we can decompose as

varP[h(Y )] = EP

{︂[︁
h(Y )− EP[h(Y )]

]︁[︁
h(Y )− EP[h(Y )]

]︁T}︂
= EP

{︁
h(Y )h(Y )T − h(Y )EP[h(Y )]T − EP[h(Y )]h(Y )T + EP[h(Y )]EP[h(Y )]T

}︁
= EP

{︁
h(Y )h(Y )T

}︁
− EP[h(Y )]EP[h(Y )]T+

− EP[h(Y )]EP[h(Y )]T + EP[h(Y )]EP[h(Y )]T

= EP
{︁
h(Y )h(Y )T

}︁
− EP[h(Y )]EP[h(Y )]T .

This means that by taking h(Y ) = EP(X|Y ) we then have

varP[EP(X|Y )] = EP
{︁
EP(X|Y )EP(X|Y )T

}︁
− {EP[EP(X|Y )]}{EP[EP(X|Y )]T}

and, since by Proposition C.1.1 follows that EP[EP(X|Y )] = EP(X), this is equivalent to

varP[EP(X|Y )] = EP
{︁
EP(X|Y )EP(X|Y )T

}︁
− EP(X)EP(X)T .

On the other hand, again applying Proposition C.1.1 we can write the expectationEP[varP(X|Y )]

as

EP[varP(X|Y )] = EP
{︁
EP[XX

T |Y ]− EP(X|Y )EP(X|Y )T
}︁

= EP(XX
T )− EP

{︁
EP(X|Y )EP(X|Y )T

}︁
.

Finally, using these results we can write the variance of X under P as

varP(X) = EP(XX
T )− EP(X)EP(X)T

= EP(XX
T )− EP

{︁
EP(X|Y )EP(X|Y )T

}︁
+

+ EP
{︁
EP(X|Y )EP(X|Y )T

}︁
− EP(X)EP(X)T

= varP[EP(X|Y )] + EP[varP(X|Y )],
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as required.

Corollary C.1.1 (Rao-Blackwell Inequality). Assume the conditions of Proposition C.1.2.
Then

varP(X) ≥ varP[EP(X|Y )]. (C.4)

Proof. By Proposition C.1.2, we have

varP(X) = varP[EP(X|Y )] + EP[varP(X|Y )]

and, since EP[varP(X|Y )] is an almost surely-P nonnegative variable, the inequality follows
directly.
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Apêndice D – Likelihood and
Regularization Functional

Estimators

In this appendix we derive an estimator for a general regularization functional and show
that expressions (3.29) and (3.47) are particular instances of this estimator. The functional itself
might be seen as an extension of (3.26) for the case in which interest lies in regularizing the
entire past trajectories (X0:t−1, θ0:t−1) instead of only (Xt−1, θt−1), and is defined by

R(X t,Θt|y1:t−1) :=

∫︂
X t×Θt

p(yt−1|x0:t−1, θ0:t−1, y1:t−2)

p(yt−1|y1:t−2)
·

· p(x0:t−1, θ0:t−1|yt−1, y1:t−2)dx0:t−1dθ0:t−1

=

∫︂
X t×Θt

g(yt−1|xt−1, θt−1)

p(yt−1|y1:t−2)
p(x0:t−1, θ0:t−1|y1:t−1)dx0:t−1dθ0:t−1, (D.1)

where from the first to the second line we have used the fact that p(yt−1|x0:t−1, θ0:t−1, y1:t−2) =

g(yt−1|xt−1, θt−1), directly implied from (1.2).

Naturally, the most common way to estimate (D.1) is by replacing p(x0:t−1, θ0:t−1|y1:t−1)

with its particle approximation p̂(x0:t−1, θ0:t−1|y1:t−1), yielding

R̂(X t ×Θt|y1:t−1) :=

∫︂
X t×Θt

g(yt−1|xt−1, θt−1)

p(yt−1|y1:t−2)
p̂(x0:t−1, θ0:t−1|y1:t−1)dx0:t−1dθ0:t−1

=

∫︂
X t×Θt

g(yt−1|xt−1, θt−1)

p(yt−1|y1:t−2)

N∑︂
i=1

wit−1δxi0:t−1,θ
i
0:t−1

(dx0:t−1dθ0:t−1)dx0:t−1dθ0:t−1

=
1

p(yt−1|y1:t−2)

N∑︂
i=1

wit−1g(yt−1|xit−1, θ
i
t−1). (D.2)

However, since p(yt−1|y1:t−2) is in general not available in closed form, we need to make an
additional approximation by replacing p(yt−1|y1:t−2) with an estimator p̂(yt−1|y1:t−2) in (D.2).
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The estimator we adopt here is an extension of the likelihood estimator1 proposed by Pitt et al.
(2012) in the context of our sequential learning framework.

More specifically, we have2

p(yt|y1:t−1) =

∫︂
X t+1×{1,...,N}×Θt+1

p(yt, x0:t, k, θ0:t|y1:t−1)dx0:tdkdθ0:t

=

∫︂
X t+1×{1,...,N}×Θt+1

p(θt|xt, x0:t−1, k, θ0:t−1, y1:t)p(yt|x0:t, k, θ0:t−1, y1:t−1)·

· p(xt|x0:t−1, k, θ0:t−1, y1:t−1)p(x0:t−1, k, θ0:t−1|y1:t−1)dx0:tdkdθ0:t, (D.3)

As before, we can obtain an estimator p̂(yt|y1:t−1) of p(yt|y1:t−1) by simply replacing, in (D.3),
the density p(x0:t−1, k, θ0:t−1|y1:t−1) with its particle approximation p̂(x0:t−1, k, θ0:t−1|y1:t−1),
given by

p̂(x0:t−1, k, θ0:t−1|y1:t−1) :=
N∑︂
i=1

wkit−1δ(xi0:t−1,ki,θ
i
0:t−1)

(dx0:t−1dkdθ0:t−1).

Since from (1.2) and item (ii) of Proposition 1.1.1 we also have p(yt|x0:t, k, θ0:t−1, y1:t−1) =

g(yt|xt, θ̃t−1) and p(xt|x0:t−1, k, θ0:t−1, y1:t−1) = f(xt|x̃t−1, θ̃t−1), this yields

p̂(yt|y1:t−1) :=

∫︂
X t+1×{1,...,N}×Θt+1

p(θt|xt, x̃0:t−1, θ̃0:t−1, y1:t)g(yt|xt, θ̃t−1)·

· f(xt|x̃t−1, θ̃t−1)p̂(x0:t−1, k, θ0:t−1|y1:t−1)dx0:tdkdθ0:t

=

∫︂
X t+1×{1,...,N}×Θt+1

f(xt|x̃t−1, θ̃t−1)g(yt|xt, θ̃t−1)p(θt|xt, x̃0:t−1, θ̃0:t−1, y1:t)·

·
N∑︂
i=1

wkit−1δ(xi0:t−1,ki,θ
i
0:t−1)

(dx0:t−1dkdθ0:t−1)dx0:tdkdθ0:t. (D.4)

Now, let πiw,t ≡ πw(x
i
0:t, ki, θ

i
0:t, y1:t) and πkiλ,t ≡ πλ(x

i
0:t−1, ki, θ

i
0:t−1, y1:t) respectively

denote the unnormalized importance weights and unnormalized intermediate weights at time t.
As their own names imply, these quantities are the terms that we sum in order to obtain the (thus
normalized) corresponding importance weights wit and intermediate weights λit that then sum to
one across i = 1, . . . , N . That is, they satisfy

wit =
πiw,t∑︁N
j=1 π

j
w,t

and λit =
πiλ,t∑︁N
j=1 π

j
λ,t

, (D.5)

1Here we refer to the estimator of p(yt−1|y1:t−2) as a “likelihood estimator” due to the fact that the likelihood
p(y1:t) admits the decomposition p(y1:t) = p(y1)

∏︁t
k=2 p(yk|y1:k−1), which can therefore be estimated by simply

replacing each p(yk|y1:k−1) with its corresponding estimate p̂(yk|y1:k−1).
2Here, dk is understood as a measure (e.g. the counting measure) dominating the marginal probability measure

associated with the auxiliary variable k ∈ {1, . . . , N}.
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and from relation (D.5) and the recursion (3.14), an explicit expression for the unnormalized
weights πiw,t is given by

πiw,t =
wkit−1

πkiλ,t

f(xit|x̃it−1, θ̃
i

t−1)g(yt|xit, θ̃
i

t−1)

q(xit|x̃i0:t−1, θ̃
i

0:t−1, y1:t)

p(θit|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t)

q(θit|xit, x̃i0:t−1, θ̃
i

0:t−1, y1:t)
. (D.6)

For clarity, it is useful to express wkit−1 = w(xi0:t−1, ki, θ
i
0:t−1, y1:t−1), which due to the point

masses δ(xi0:t−1,ki,θ
i
0:t−1)

(dx0:t−1dkdθ0:t−1) in (D.4) is equivalent tow(x0:t−1, k, θ0:t−1, y1:t−1) prior
to integration. Along with (D.6), this allows us to write (D.4) as

p̂(yt|y1:t−1) =

∫︂
X t+1×{1,...,N}×Θt+1

f(xt|x̃t−1, θ̃t−1)g(yt|xt, θ̃t−1)p(θt|xt, x̃0:t−1, θ̃0:t−1, y1:t)·

·
N∑︂
i=1

w(x0:t−1, k, θ0:t−1, y1:t−1)δ(xi0:t−1,ki,θ
i
0:t−1)

(dx0:t−1dkdθ0:t−1)dx0:tdkdθ0:t

=

∫︂
X t+1×{1,...,N}×Θt+1

w(x0:t−1, k, θ0:t−1, y1:t−1)f(xt|x̃t−1, θ̃t−1)g(yt|xt, θ̃t−1)·

· p(θt|xt, x̃0:t−1, θ̃0:t−1, y1:t)·

· πλ(x0:t−1, k, θ0:t−1, y1:t)

πλ(x0:t−1, k, θ0:t−1, y1:t)

q(xt|x̃0:t−1, θ̃0:t−1, y1:t)

q(xt|x̃0:t−1, θ̃0:t−1, y1:t)

q(θt|xt, x̃0:t−1, θ̃0:t−1, y1:t)

q(θt|xt, x̃0:t−1, θ̃0:t−1, y1:t)
·

·
N∑︂
i=1

δ(xi0:t−1,ki,θ
i
0:t−1)

(dx0:t−1dkdθ0:t−1)dx0:tdkdθ0:t

and, by again using that πλ(x0:t−1, k, θ0:t−1, y1:t) = πλ(x
i
0:t−1, ki, θ

i
0:t−1, y1:t) = πkiλ,t inside the

integral due to the point masses, we further have

p̂(yt|y1:t−1) =

∫︂
X t+1×{1,...,N}×Θt+1

w(x0:t−1, k, θ0:t−1, y1:t−1)

πλ(x0:t−1, k, θ0:t−1, y1:t)
·

· f(xt|x̃t−1, θ̃t−1)g(yt|xt, θ̃t−1)

q(xt|x̃0:t−1, θ̃0:t−1, y1:t)

p(θt|xt, x̃0:t−1, θ̃0:t−1, y1:t)

q(θt|xt, x̃0:t−1, θ̃0:t−1, y1:t)
·

· q(xt|x̃0:t−1, θ̃0:t−1, y1:t)q(θt|xt, x̃0:t−1, θ̃0:t−1, y1:t)·

·
N∑︂
i=1

πkiλ,tδ(xi0:t−1,ki,θ
i
0:t−1)

(dx0:t−1dkdθ0:t−1)dx0:tdkdθ0:t. (D.7)

Note at this point that the last term in (D.7) is proportional to the density from
which we resample (xi0:t−1, θ

i
0:t−1). Recall from Section 3.2.2 – more specifically equa-

tion (3.12) – that in resampling each (xki0:t−1, θ
ki
0:t−1) and ki itself is selected with probability

λkit := q(ki|xi0:t−1, θ
i
0:t−1, y1:t), satisfying λkit = πkiλ,t/

∑︁N
j=1 π

j
λ,t. That is, here we have

p̂∗(x0:t−1, k, θ0:t−1|y1:t) :=
N∑︂
i=1

λkit δ(xi0:t−1,ki,θ
i
0:t−1)

(dx0:t−1dkdθ0:t−1). (D.8)
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Since perfect draws can be produced from (D.8) through resampling, this means that we can
make a further approximation by replacing (D.8) with

N∑︂
i=1

1

N
δ(xi0:t−1,ki,θ

i
0:t−1)

(dx0:t−1dkdθ0:t−1)

and, since the summation in the last line of (D.7) is given by

N∑︂
i=1

πkiλ,tδ(xi0:t−1,ki,θ
i
0:t−1)

(dx0:t−1dkdθ0:t−1) =

=
N∑︂
i=1

πkiλ,t

∑︁N
j=1 π

j
λ,t∑︁N

j=1 π
j
λ,t

δ(xi0:t−1,ki,θ
i
0:t−1)

(dx0:t−1dkdθ0:t−1)

=

{︄
N∑︂
j=1

πjλ,t

}︄
N∑︂
i=1

λkit δ(xi0:t−1,ki,θ
i
0:t−1)

(dx0:t−1dkdθ0:t−1),

this entire term can be approximated by{︄
N∑︂
j=1

πjλ,t

}︄
N∑︂
i=1

1

N
δ(xi0:t−1,ki,θ

i
0:t−1)

(dx0:t−1dkdθ0:t−1).

Substituting this into (D.7) then gives

p̂(yt|y1:t−1) =

∫︂
X t+1×{1,...,N}×Θt+1

w(x0:t−1, k, θ0:t−1, y1:t−1)

πλ(x0:t−1, k, θ0:t−1, y1:t)
·

· f(xt|x̃t−1, θ̃t−1)g(yt|xt, θ̃t−1)

q(xt|x̃0:t−1, θ̃0:t−1, y1:t)

p(θt|xt, x̃0:t−1, θ̃0:t−1, y1:t)

q(θt|xt, x̃0:t−1, θ̃0:t−1, y1:t)
·

· q(xt|x̃0:t−1, θ̃0:t−1, y1:t)q(θt|xt, x̃0:t−1, θ̃0:t−1, y1:t)·

·

{︄
N∑︂
j=1

πjλ,t

}︄
N∑︂
i=1

1

N
δ(xi0:t−1,ki,θ

i
0:t−1)

(dx0:t−1dkdθ0:t−1)dx0:tdkdθ0:t

=

{︄
N∑︂
j=1

πjλ,t

}︄
N∑︂
i=1

∫︂
X t×Θt

w(xi0:t−1, ki, θ
i
0:t−1, y1:t−1)

πλ(xi0:t−1, ki, θ
i
0:t−1, y1:t)

·

·
f(xt|x̃it−1, θ̃

i

t−1)g(yt|xt, θ̃
i

t−1)

q(xt|x̃i0:t−1, θ̃
i

0:t−1, y1:t)

p(θt|xt, x̃i0:t−1, θ̃
i

0:t−1, y1:t)

q(θt|xt, x̃i0:t−1, θ̃
i

0:t−1, y1:t)
·

· q(xt|x̃0:t−1, θ̃0:t−1, y1:t)q(θt|xt, x̃0:t−1, θ̃0:t−1, y1:t)dxtdθt

=

{︄
N∑︂
j=1

πjλ,t

}︄
·

·
N∑︂
i=1

∫︂
X t×Θt

πw(xt, x
i
0:t−1, ki, θt, θ

i
0:t−1, y1:t)q(xt, θt|x̃i0:t−1, θ̃

i

0:t−1, y1:t)dxtdθt, (D.9)
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where in the last line of (D.9) we have used the fact that the product of the two marginal pro-
posals q(xt|x̃i0:t−1, θ̃

i

0:t−1, y1:t) and q(θt|x̃i0:t−1, θ̃
i

0:t−1, y1:t) can be expressed as the joint proposal
q(xt, θt|x̃i0:t−1, θ̃

i

0:t−1, y1:t).

Now, in general the integral in (D.9) still has no analytic solution. We therefore
make a final approximation by sampling the pair (xit, θ

i
t) directly from the joint proposal

q(xt, θt|x̃i0:t−1, θ̃
i

0:t−1, y1:t) for each i and replacing this density in (D.9) with its (exact) Monte
Carlo estimate

q̂(xt, θt|x̃i0:t−1, θ̃
i

0:t−1, y1:t) :=
1

N
δ(xit,θit)(dxtdθt),

yielding, at last,

p̂(yt|y1:t−1) =

{︄
N∑︂
j=1

πjλ,t

}︄
·

·
N∑︂
i=1

∫︂
X t×Θt

πw(xt, x
i
0:t−1, ki, θt, θ

i
0:t−1, y1:t)

1

N
δ(xit,θit)(dxtdθt)dxtdθt

=

{︄
N∑︂
j=1

πjλ,t

}︄
N∑︂
i=1

πw(x
i
t, x

i
0:t−1, ki, θ

i
t, θ

i
0:t−1, y1:t)

N

=

{︄
N∑︂
i=1

πiw,t
N

}︄{︄
N∑︂
i=1

πiλ,t

}︄
. (D.10)

As for the regularization functional estimator, replacing p(yt−1|y1:t−2) with the corresponding
p̂(yt−1|y1:t−2) obtained from (D.10) at time t− 1 in (D.2) results in

R̂(X t ×Θt|y1:t−1) =

∑︁N
i=1w

i
t−1g(yt−1|xit−1, θ

i
t−1)

p̂(yt−1|y1:t−2)

=

∑︁N
i=1w

i
t−1g(yt−1|xit−1, θ

i
t−1){︂∑︁N

i=1

πi
w,t−1

N

}︂{︂∑︁N
j=1 π

i
λ,t−1

}︂ . (D.11)

In closing, we can see how (D.11) generalizes the functional estimates of smooth jittering
(3.29) and FALW (3.47) by making the appropriate substitutions. For smooth jittering, we
have πiw,t−1 = g(yt−1|xit−1, θ̃

i

t−2), which is also equal to g(yt−1|xit−1, θ
i
t−1) given that in this

method θit−1 = θ̃
i

t−2. This implies that wit−1 = g(yt−1|xit−1, θ
i
t−1)/

∑︁N
j=1 g(yt−1|xjt−1, θ

j
t−1) and

πiλ,t−1 = wit−2, which in turn implies that
∑︁N

i=1 π
i
λ,t−1 =

∑︁N
i=1w

i
t−2 = 1, from which (D.11)

then becomes

R̂(X t ×Θt|y1:t−1) =

∑︁N
i=1

g(yt−1|xit−1,θ
i
t−1)∑︁N

j=1 g(yt−1|xjt−1,θ
j
t−1)

g(yt−1|xit−1, θ
i
t−1){︂∑︁N

i=1

g(yt−1|xit−1,θ
i
t−1)

N

}︂{︂∑︁N
i=1w

i
t−2

}︂
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= N

N∑︂
i=1

[︄
g(yt−1|xit−1, θ

i
t−1)∑︁N

j=1 g(yt−1|xjt−1, θ
j
t−1)

]︄2
.

For FALW, we have πiw,t−1 = 1, implying thatwit−1 = 1/N and πiλ,t−1 = wit−2 p(yt−1|xit−2, θ
i
t−2).

In this case, (D.11) then becomes

R̂(X t×Θt|y1:t−1) =

∑︁N
i=1

1
N
g(yt−1|xit−1, θ

i
t−1){︂∑︁N

i=1
1
N

}︂{︂∑︁N
i=1

1
N
p(yt−1|xit−2, θ

i
t−2)

}︂ =
N∑︂
i=1

g(yt−1|xit−1, θ
i
t−1)∑︁N

j=1 p(yt−1|xjt−2, θ
j
t−2)

.
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Apêndice E – Practical Implementation
Notes

In this appendix we briefly describe some important details about the practical imple-
mentation of the algorithms described in this work. Often overlooked, these aspects are not only
of theoretical interest in their own right, but also sometimes vital for a proper application of
inference techniques for HMMs in practice.

E.1 Regularization of Constrained Parameters

Let θ ∈ Θ be a parameter we want to regularize (see Section 3.2.3) such that dθ :=

dim(θ). Since the regularization kernel K usually maps from Rdθ to Rdθ , whenever Θ is a
proper subset of Rdθ it might occur that the regularized parameter θ̃ ∼ K(θ) might not be
limited to Θ. Therefore, in order to avoid a rejection-type procedure (which might be inefficient,
such as when θ occurs close to the border of Θ), we actually propose mapping

η := ψ(θ), ψ(Θ) = Rdθ , ∃ ψ−1 : θ = ψ−1(η), ψ−1(Rdθ) = Θ.

Therefore, through the use of the invertible and B-measurable function ψ, we can regularize
η̃ ∼ K(η) ∈ Rdθ and then take θ̃ = ψ−1(η̃), which is guaranteed to be constrained within Θ.

As an example, take ϕ and σ2 in the AR(1) + noise example of Section 4.2. Here,
−1 < ϕ < 1 and σ2 > 0, so that Θ = (−1, 1) × R+. By taking η := (η1, η2) = ψ(θ) =

(tanh−1(ϕ), log(σ2)), we have η ∈ R2 and θ = ψ−1(η) = (tanh(η1), exp(η2)). A LW filter (see
Section 3.2.4.2) regularization step here at time t therefore consists of drawing

η̃it−1 ∼ N (mki
t−1, h

2Vt−1),

and setting θ̃it−1 = ψ−1(η̃it−1) for each i, where mi
t−1 and Vt−1 defined in (3.19-3.20) are here

taken as functions of (ηit−1)
N
i=1 rather than (θit−1)

N
i=1.
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E.2 pMCMC on Constrained Parameter Spaces

Now, consider the same setting of Section E.1 but suppose that instead of regularization
we now want to perform inference for θ ∈ Θ based on the particle MCMC of Section 3.1.
Analogous to regularization, whenever we use a proposal distribution which is not constrained
to Θ (such as e.g. Random Walk Metropolis proposals; see Section A.4), in order to avoid
rejection sampling steps we also perform the MCMC moves on the transformed parameters η
and then obtain the original parameters through θ = ψ−1(η). The difference here, however, lies
in the fact that for pMCMC the acceptance probability is affected by the choice of parameter
transformation ψ.

Recall from Section 3.1 that the acceptance probability for the proposed θ′ given the
current θ is

α(θ′|θ) = 1 ∧ p̂(y1:t|θ
′)p(θ′)

p̂(y1:t|θ)p(θ)
q(θ|θ′)
q(θ′|θ)

. (E.1)

Now, although we can easily define a proposal q(η|η′) acting on the spaceH := ψ(Θ), we usually
only have priors for θ. We therefore need to take into account the transformation θ = ψ−1(η),
yielding the prior for η as

p(η) = p
(︁
θ = ψ−1(η)

)︁⃓⃓⃓⃓∂ψ−1(x)

∂x

⃓⃓⃓⃓
x=ψ−1(η)

,

where |∂ψ−1(x)/∂x|x=ψ−1(η) is the Jacobian of the transformation ψ : Θ → Rdθ . However,
since it is usually more convenient to evaluate the priors and likelihoods as a function of θ,
we can use the Inverse Function Theorem (Rudin, 1976, pg. 221) to express the Jacobian as
|∂ψ(x)/∂x|−1

x=ψ(θ) and thus rewrite the acceptance probability (E.1) as

α(θ′|θ) = 1 ∧ p̂(y1:t|θ
′)p(θ′)

p̂(y1:t|θ)p(θ)

[︂⃓⃓
∂ψ(x)/∂x

⃓⃓−1

x=ψ(θ)

]︂
[︂⃓⃓
∂ψ(x)/∂x

⃓⃓−1

x=ψ(θ)

]︂ q(η|η′)
q(η′|η)

. (E.2)

As an example, consider the Stochastic Volatility model of Section 4.4. Since here
θ = (ϕ, τ 2, σ2) ∈ (−1, 1) × R+ × R+, we take ψ(θ) = (tanh−1(ϕ), log(τ 2), log(σ2)), with
associated Jacobian

⃓⃓⃓⃓
∂ψ(x)

∂x

⃓⃓⃓⃓−1

x=ψ(θ)

=

⃓⃓⃓⃓
⃓
⎡⎢⎣

1
1−ϕ2 0 0

0 1
τ2

0

0 0 1
σ2

⎤⎥⎦ ⃓⃓⃓⃓⃓
−1

= |(1− ϕ2) · τ 2 · σ2|.

Given that here the proposal to move from η to η′ is

q(η′|η) = dN (η,Σ)
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for some covariance matrix Σ and that q is a symmetric function in (η′, η), i.e. q(η′|η) = q(η|η′),
the acceptance probability (E.2) in this case becomes

α(θ′|θ) = 1 ∧ p̂(y1:t|θ
′)p(θ′)

p̂(y1:t|θ)p(θ)
|[1− (ϕ′)2] · (τ ′)2 · (σ′)2|
|(1− ϕ2) · τ 2 · σ2|

q(η′|η)
q(η′|η)

= 1 ∧ p̂(y1:t|θ
′)p(θ′)

p̂(y1:t|θ)p(θ)

⃓⃓⃓⃓
[1− (ϕ′)2] · (τ ′)2 · (σ′)2

(1− ϕ2) · τ 2 · σ2

⃓⃓⃓⃓
.

E.3 Computing Log-sums of Exponentials

Now, consider the problem of computing

L(x) := log

(︄
N∑︂
j=1

exp(xj)

)︄
, (E.3)

where x := (x1, . . . , xN). This type of functional appears e.g. when computing importance
weights in SMC methods or when computing quadrature-based estimates of log-posterior distri-
butions (see Section B.5), and the main problem associated with it is that whenever some values
xj are large (in magnitude), there is overflow (if they are positive) or underflow (if they are
negative). In order to improve upon this erratic numeric behavior, we will show in this section
how we can compute L(x) without having to evaluate such large terms.

First, let m := max(x1, . . . , xN). Using standard properties of logarithms and exponen-
tials, we can then rewrite (E.3) as

L(x) = log

(︄
N∑︂
j=1

exp(xj)

)︄

= log

(︄
N∑︂
j=1

exp(m)

exp(m)
exp(xj)

)︄

= log

(︄
exp(m)

N∑︂
j=1

exp(xj)

exp(m)

)︄

= log
(︁
exp(m)

)︁
+ log

(︄
N∑︂
j=1

exp(xj −m)

)︄

= m+ log

(︄
N∑︂
j=1

exp(xj −m)

)︄
. (E.4)

In (E.4), none of the evaluated terms in the sum is greater than 1, since by definition we have that
max1≤j≤N

{︁
exp(xj −m)

}︁
= exp(m −m) = exp(0) = 1, avoiding the numerical instability

associated with computing L(x) via (E.3).
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