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Abstract
The literature is now filled with swarm intelligence algorithms developed by taking inspiration from a number of insects and 
other animals and phenomena, such as ants, termites, bees, fishes and cockroaches, to name just a few. Many, if not most, of 
these bioinspirations carry with them some common issues and features which happen at the individual level, promoting very 
similar collective emergent phenomena. Thus, despite using different biological metaphors as inspiration, most algorithms 
present a similar structure and it is possible to identify common macro-processes among them. In this context, this paper 
identifies a set of common features among some well-known swarm-based algorithms and how each of these approaches 
implement them. By doing this, we provide the community with the core features of swarm-intelligence algorithms. This 
diagnostic is crucial and timely to the field, because once we are able to list and explain these commonalities, we are also 
able to better analyze and design swarm intelligence algorithms.
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1 Introduction

In the last decades, many new bioinspired algorithms have 
been proposed in the literature. Most of them, especially the 
swarm intelligence (SI) based algorithms, have gained popu-
larity due to their capability of solving complex problems. 
Swarm intelligence aims to design algorithms with inspira-
tion in the collective and intelligent behavior of insects and 
other animals, characterized by a structured collection of 
agents with limited individual capabilities interacting and 
exhibiting a collective intelligent behavior able to solve com-
plex problems [17, 25, 47]. Examples of inspiration for SI 
are the collective behavior of birds, fishes, worms and, most 
commonly, social insects.

Social insects have gained attention, both from biologists 
and computer scientists, and are a rich inspirational source 
for the design and development of SI, as well as to provide 
a better understanding of biological phenomena that govern 
the fascinating abilities of social insects. Individually, social 
insects have sophisticated cognition and the capability of 
showing vast behavioral repertories. In a collective level, the 
insects are able to solve complex problems collaboratively 
in a distributed and parallel way and without the need of a 
central control [11, 31, 49].

A vast number of SI algorithms, mainly those based on 
social insects, have been proposed in the literature over the 
past decades. Examples of well-known swarm intelligence 
algorithms are the Ant Colony Optimization (ACO) [22], 
the Particle Swarm Optimization (PSO) [27], and the Bee 
Colony Optimization (BCO) [59, 60], but there are many 
variations of these and other more recent approaches, such as 
the Bat Algorithm [65] and the Firefly Algorithm [29]. Some 
broad and recent reviews of swarm intelligence algorithms 
are presented in [34, 47, 67].

The main focus of the research on SI are applications 
to solve complex problems, the design of new approaches, 
and the improvement of existing ones [47, 67]. Biological 
metaphors have inspired the design of new metaheuristics, 
but in many cases the proposals do not follow the neces-
sary scientific rigor, and this has been causing criticisms and 
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damage to the area [19, 28, 57]. In this scenario, it becomes 
necessary a more thorough study about the motivations to 
propose a new algorithm, as well as what contributions they 
are actually bringing to the scientific and applied research 
communities.

Despite using different biological metaphors as inspira-
tion, most algorithms present a similar structure and it is 
possible to identify common macro-processes among them. 
Thus, the SI algorithms, as well as their bio-inspirations, can 
be viewed from different perspectives and different abstrac-
tion levels by focusing on their key components and features. 
In this context, this paper aims to identify a set of common 
features among the well-known swarm-based algorithms, 
especially those inspired by the collective behavior of social 
insects, and how each of these approaches implement them. 
By doing this, we provide the community with the core 
features of swarm-intelligence algorithms, facilitating the 
processes of understanding and implementing such methods 
in a more structured way. In our point of view, this effort 
represents an initial step towards the restructuring of SI, as 
well as its strengthening as a field of research.

This paper is organized as follows. Section 2 provides 
a brief explanation about the swarm intelligence research 
field and presents an overview of some well-known SI algo-
rithms inspired by social insect behavior, together with some 
recent proposals. Section 3 provides an analysis of swarm-
based algorithms identifying their macro-processes and key 
components and Sect. 4 presents the conclusions and future 
trends.

2  Swarm intelligence algorithms: 
an overview

Natural computing aims to provide a better understanding 
of the world in terms of information processing, making it 
possible to investigate, model, abstract and apply this knowl-
edge in different contexts [17, 19, 38]. Swarm intelligence 
(SI) is a subfield of natural computing and takes inspiration 
in the collective behavior of insects and other social animals 
to design problem solving algorithms. It is characterized 
by a structured collection of agents with limited individual 
capabilities interacting and exhibiting a collective intelligent 
behavior [16, 17, 25].

Initially, the term swarm intelligence was used by Beni 
and Wang [6], in cellular robotic systems, to define a col-
lection of autonomous, non-synchronized, non-intelligent 
robots cooperating to achieve a global goal. Bonabeau et al. 
[9] extended their definition to include any attempt to design 
algorithms or distributed problem-solving devices inspired 
by the collective behavior of social insect colonies and other 
animal societies. A swarm intelligence system consists of 
a collection of agents with limited individual capabilities, 

but whose societies are able to present intelligent collective 
behaviors [12]. Most SI works are focused on studies about 
social insects, such as bees, ants and wasps, mainly because 
social insects develop complex and emergent colony-level 
behaviors from, relatively, simple individual behaviors. 
They are able to make decisions by weighing many factors, 
sharing information and having cognitive abilities, such as 
memory, which allow them to hone their decisions [30].

Several approaches inspired by social insects’ behaviors 
have been proposed in the literature to solve different prob-
lems [34, 47]. Examples of algorithms inspired by the col-
lective behavior of social insects include the Ant Colony 
Optimization (ACO) [9], the Artificial Bee Colony (ABC) 
[36, 37], and the Firefly Algorithm (FA) [29, 65]. Among 
these, several well-known swarm intelligence approaches 
inspired by other social organisms are presented in the lit-
erature, such as the Particle Swarm Optimization (PSO) 
[27], Bacterial Foraging Optimization (BFO) [48], Slime 
Mold Optimization (SMOA) [43], and the Bat Algorithm 
[65]. To build our discussion on the commonalities of swarm 
intelligence algorithms, we provide an overview of three 
well-known algorithms from the literature (Ant Colony 
Optimization, Bee Colony Optimization and Ant Clustering 
Algorithm) and two more recent approaches (Spider Swarm 
and the Firefly Algorithm).

2.1  Ant colony optimization

Many researches demonstrate the ability of the ants to 
exploit rich food sources without losing the ability to explore 
the environment. In nature, many ant species communicate 
by means of a pheromone trail when foraging [68]. The indi-
vidual ants, while moving from a food source to their nest, 
deposit a chemical substance, called pheromone, in the path. 
The pheromone trail provides the other ants information 
about the quality and location of the food source found. This 
collective trail-laying and trail-following behavior, where 
an ant is influenced by a chemical trail left by other ants, is 
an example of stigmergy and is the core of the Ant Colony 
Optimization (ACO) algorithms [9, 25].

The ACO metaheuristic, proposed by Dorigo and Caro 
[22], is inspired by the collective behavior of real ants and 
manipulates a collection of artificial ants that randomly 
explore the search space (environment), looking for promis-
ing regions that represent high quality solutions. Most of its 
applications has been on the solution of combinatorial opti-
mization problems represented as graphs. The ants evaluate 
the built solutions and deposit pheromone on a connection of 
the graph proportionally to the quality of the respective solu-
tion. In the pheromone evaporation process, the deposited 
pheromone decreases over time. This process is important 
to avoid a premature convergence toward a local optimal 
region and favors the exploration of the search space [24]. 
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The ACO metaheuristic was initially applied to solve the 
traveling salesman problem (TSP) [23, 26] and, over the 
past decades, many applications have been proposed in the 
literature, such as scheduling [7, 13], vehicle routing [4, 52], 
and feature selection [58].

2.2  Artificial bee colony

Bees of the Apis Mellifera species fly around the hive look-
ing for sources of food and water. The evaluation of the 
sources by a bee is individual and takes into account many 
factors, such as the amount and quality of food, the dis-
tance to the hive, risks of predators, etc. Animal behavior 
researches show that the evaluation of the sources is a sub-
jective judgment and that bees work with limited informa-
tion (local information). However, in a colony level, they are 
able to adjust the exploration effort according to the qual-
ity of the sources, as well as to abandon the unproductive 
sources [55]. When a bee chooses a food source, it returns to 
the hive and performs a series of movements, known as wag-
gle dance, that communicate to the other bees the features 
of the food source found. The first studies to understand this 
communication mechanism of bees was presented by Von 
Frisch [62]. The dance is based on the subjective evaluation 
of the bee. This mechanism is used to transmit information 
about the food sources and attract other bees to explore the 
sources found. The adjustment of the foraging effort of the 
colony is related to the quality of the food source found: the 
higher the quality of the food source, the higher the intensity 
of the dance, and the higher the number of bees attracted 
to exploit the source [15, 42, 55]. The collective behavior 
of bee colonies and their foraging abilities are inspiration 
for solving computational problems. Several approaches 
inspired by the collective behavior of bee colonies are pre-
sented in the literature, such as the Artificial Bee Colony 
(ABC) [36], Bee Colony Optimization (BCO) [60], Artificial 
Beehive [45] and OptBees [41].

The Artificial Bee Colony (ABC) algorithm was origi-
nally designed to solve optimization problems in continuous 
environments. In ABC, the artificial colony is composed of 
three groups of artificial bees: employed bees; onlookers; 
and scouts. The employed bees are associated with specific 
food sources, onlooker bees watch the dance of employed 
bees within the hive to choose a food source, and scout bees 
randomly search for food sources. A food source represents a 
candidate solution to the problem and the nectar amount of a 
food source corresponds to the quality (fitness) of the associ-
ated solution [3, 36]. The ABC approach has been widely 
studied and applied to solve real-world problems [37], for 
example, signal, image and video processing [1, 5], and clus-
tering problems [35, 46]. A comprehensive survey of ABC 
applications is presented in Karaboga et al. [37].

2.3  Ant clustering algorithm

Some species of ants clean up their nests by forming piles 
of corpses (ants’ cemeteries). Experiments have been per-
formed to study and understand the organization of cem-
eteries by ants, as reported by Deneubourg et al. [21]. The 
basis of the clustering phenomenon observed in ants is the 
attraction between dead items. The corpses found by ants 
are picked up and dropped at locations where more similar 
items are present. The attraction increases as the cluster of 
corpses grow [9, 16].

This observation has also led to the design of new ant-
inspired algorithms. The Ant Clustering Algorithm (ACA) 
is based on the cemetery formation task observed in some 
species of ants [18], initially applied to solve clustering 
problems [20], and then adapted to graph partitioning [39], 
text mining [51] and other applications. A colony of artifi-
cial ants perform random walks in a bi-dimensional grid, 
or matrix, where the input data or objects are indexed ran-
domly. The grid represents the environment of the ants and 
the objects represent the corpses to be grouped. Each cell 
of the grid stores the object’s position. Initially, the objects 
and artificial ants are disposed randomly on the grid. The 
ants have a neighborhood radius that allow them to see eve-
rything in their neighborhood and, probabilistically, pick up 
or drop the objects over the grid taking into account the 
similarities between objects. Thus, isolated objects tend to 
be picked up, moved around and dropped close to other simi-
lar objects [9, 16].

2.4  Spider swarm optimization

Studies of animal behavior have documented a few spider 
species that exhibit social behavior [40]. The spider, like 
other insects, can be classified based on the level of coop-
erative behavior in two classes: solitary spiders and social 
spiders. The social spiders live in a colony composed of 
the members (male and female spiders) and the communal 
web. In a colony, the females are the majority, representing 
approximately 80% of the members [40, 54]. The communi-
cation among the colony members can be direct or indirect. 
The direct communication is performed by the exchange of 
fluids, also known as trophallaxis, or by body contact. An 
example of direct communication is the mating behavior. In 
indirect communication the environment is used as medium. 
The indirect interaction consists of small vibrations of the 
web that are perceived by other neighboring spiders. The 
communication by web vibration is used to transmit infor-
mation about the risks of predators, mating possibilities, 
neighbor features, among others [40, 54].

Inspired by the collective behavior of social spiders, Cue-
vas et al. [14] recently presented a swarm intelligence algo-
rithm, named Social Spider Optimization (SSO), to solve 
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optimization problems. SSO manipulates a population of 
artificial spiders (agents) composed of two types of spi-
ders, males and females. Each spider assumes a set of tasks 
according to its gender. The SSO assumes that the entire 
search space is a communal web, where all social spiders 
interact with each other. The spider’s positions in the com-
munal web represent the candidate solutions. Each spider 
in the communal web receives a weight, wi, according to 
its fitness value. The higher the spider’s weight, or size, the 
higher the quality of the solution represented by it. In the 
initialization phase, the population of spiders is randomly 
initialized and a heuristic is used to determine the number 
of males and females. The females present an attraction or 
repulsion behavior over other spiders, according to the vibra-
tion perceived in the communal web. The communication 
between the spiders is performed by means of small vibra-
tions on the communal web, which depend on the weight 
(fitness) and distance of the spider that generated it. Thus, 
the vibration perceived by spider i is a result of the informa-
tion transmitted by spider j.

The spider movement can be of attraction or repulsion 
and takes into account three elements: (1) the movement in 
relation to the nearest spider; (2) the movement in relation 
to the best spider (best fitness); and (3) a random move-
ment. On the other hand, males are divided in two groups, 
dominant and non-dominant. Dominant males represent 
those with better fitness and are attracted to other spiders 
for mating. The non-dominant males are attracted to the 
center of the males group. In real social spider colonies, 
mating occurs between dominant male and female spiders. 
The mating consists of building new candidate solutions by 
combining the solutions represented by the dominant males 
and females. This process contributes to the exploitation of 
the search space in order to find better individuals.

2.5  Firefly algorithm

In nature, fireflies (Coleoptera: Lampyridae) produce short 
and rhythmic flashes that compose a specific pattern for a 
particular species. The fireflies use their flashing light, pro-
duced by biochemical bioluminescence processes, for two 
main functions: (1) attract mating partners; and (2) warn 
potential predators. The light emitted has an intensity in 
a certain distance and decreases as the distance increases. 
Despite the light intensity being inversely proportional to the 
distance, the fireflies can be visible in a large enough dis-
tance for the communication: approximately 100 m at night.

The firefly communication by the flashing of light was 
the inspiration to design firefly-inspired algorithms, initially 
applied to solve optimization problems [29, 64, 66]. The 
Firefly Algorithm (FA) has been applied to solve many prob-
lems, such as optimization, data mining, image processing 
and different engineering applications [56, 64, 69]. In FA the 

light intensity is associated with the objective function to be 
optimized. Three aspects, inspired by the natural metaphor, 
are important in the firefly algorithm: (1) the fireflies are 
unisex, thus they attract mating partners regardless of their 
gender; (2) their attractiveness is proportional to their flash 
light intensity (fitness value); and (3) the landscape of the 
fitness function can affect the light intensity [29, 64]. Each 
firefly location in the search space represents a solution of 
the optimization problem as a vector x = [x1, …, xd], where 
d is the dimension of the problem. The initial population 
of n fireflies is randomly generated and each firefly emits a 
flash of light to attract other fireflies. The light intensity Ii 
of firefly xi is determined by a fitness function f(xi), i = 1, 2, 
…, n. The attractiveness varies with the distance rij between 
firefly i and firefly j. Thus, a firefly i is attracted to another 
more attractive (brighter) firefly j; that is, one with higher 
fitness. Fister et al. [29] present a comprehensive review of 
the firefly algorithms and classify them according to some 
common aspects, such as the encoding schemes of fireflies, 
the population (swarm) setup, fitness function and type of 
firefly movements.

3  Structural components and dynamics 
of swarm intelligence algorithms

A vast number of nature-inspired algorithms, mainly those 
based on social insects, have been proposed in the literature 
over the past 2 decades. The swarm-based algorithms, nor-
mally used to solve complex optimization problems, are pop-
ulation-based algorithms [50] that apply an iterative process 
to construct and improve solutions. Despite using different 
biological metaphors as inspirations, most algorithms pre-
sent a similar structure and it is possible to identify macro-
processes in common among them.

This section provides an analysis of insect-inspired algo-
rithms by taking into account elements related to their struc-
tural components and dynamics, as summarized in Fig. 1. As 
archetypes, we take the five approaches revised previously 
(ACO, BCO, SSO, FA and ACO) and argue that the proposal 
can be extended to most, if not all, insect-inspired methods 
available in the literature. We analyze the algorithms detach-
ing their structural commonalities and the goal is to iden-
tify macro-processes and key components so as to propose 
an analytical and design framework for such methods. The 
algorithms are described taking into account the solution 
representation schemes, the mechanisms to generate and 
modify solutions, and the mechanisms to evaluate and select 
the solutions created. We analyze two important components 
of the dynamics of SI algorithms: the exploration/exploita-
tion process; and the negative/positive feedback. Figure 1 
presents the structure of insect inspired algorithms based on 
their structural components and dynamics.
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3.1  Representation scheme

SI algorithms rely on the principles of multi-agent systems 
[53, 63]. The candidate solutions can be represented by an 
agent (position of the agent in the search space); a group of 
agents, where each agent represents part of the solution; or 
be built by the agents that move about a search space build-
ing the solution along the iterations.

The most common types of problems tackled by insect-
inspired algorithms are optimization, data analysis, and 
image and signal processing [34, 47]. To solve them, the 
first step is to define how a candidate solution, which cor-
responds to one or more insects of the colony, or the problem 
to be solved, is going to be represented. There are basically 
three main types of representation or encoding schemes for 
candidate solutions or problems:

• Vector space In this type of representation, each candi-
date solution is represented by a string of values (e.g. 
bits, integers or floating-point numbers), which map, for 
instance, the position of a candidate solution in the search 
space of a continuous optimization problem (x = [x1, x2, 
…, xn], xi ∈ ℜ , ∀i = 1, 2, …, n), or a given sequence of 
points to be moved through in a combinatorial optimiza-
tion task (y = [y1, y2, …, ym], yj ∈ Z, yj ≠ yi, ∀j ≠ i, i, j = 1, 
2, …, m). These schemes were mainly borrowed from 
evolutionary algorithms [2] and are by far the most com-
monly found in the literature.

• Graph-based Many combinatorial optimization prob-
lems, such as the Traveling Salesman Problem (TSP) 
and the like (e.g. vehicle routing and scheduling), can 
be represented as a graph G = ⟨V ,E⟩ , which is charac-
terized by a set of nodes V = {v0,v1, …, vN} and edges 
E = {(vi,vj): i ≠ j} connecting the nodes. For instance, in 
the TSP each node represents a city and each edge corre-

sponds to a path connecting a city (node) to another city 
(node). In such representation the agents move from one 
node to another until all nodes have been traversed and 
a full candidate solution to the problem (path connect-
ing all cities) is proposed. Note that this representation 
is significantly different from the previous one, because 
the agents neither are candidate solutions, nor represent 
the problem themselves. Instead, they build a solution by 
moving about the graph and defining a path connecting 
the nodes. Therefore, the graph represents the problem, 
and the agents (insects) build the solution over the graph 
representation.

• Grid-based Some specific types of problem, for instance 
data clustering tasks, can be represented as a grid in 
which each position of the grid may host one or more 
data objects, and clusters of objects represent clusters 
of data. In this case, a grid is a regular tessellation of 
cells over a, usually, 2D surface divided into a series of 
contiguous cells. The agents (insects) are responsible for 
generating a solution to the problem by moving about the 
grid modifying the positions of the objects, until a sat-
isfactory distribution of the objects in the grid is found. 
Similarly to the previous case, the agents themselves do 
not represent the candidate solutions, but, instead, they 
build a candidate solution to the problem by finding a 
suitable configuration of objects over the grid.

In the swarm intelligence context, Dorigo and collabora-
tors [22, 25], proposed the ACO algorithm, and were pio-
neers in introducing a graph-based representation for solv-
ing the TSP and other combinatorial optimization problems 
using swarm intelligence. In this case, the problem is repre-
sented as a graph where each node corresponds to a city, and 
each edge is a path from one city to another. The artificial 
ants build the solutions by visiting all cities sequentially. 

Fig. 1  Structural components 
and dynamics of insect-inspired 
algorithms
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With a completely different approach, the ABC, SSO and FA 
use the vector space representation scheme for solving con-
tinuous optimization problems. Given a D-dimensional con-
tinuous optimization problem, a candidate solution is given 
by x = [x1, x2, …, xD], x

i
∈ ℜ , ∀i. Thus, to solve continuous 

optimization problems the solutions are represented by a 
vector the contains the position of the agent (e.g., artificial 
bee, spider or firefly) in the search space. On the other hand, 
the ACA uses the grid-based representation scheme for solv-
ing data clustering problems. In ACA the agents build the 
solutions incrementally by moving the objects over a two-
dimensional grid.

3.2  Mechanisms to modify solutions

Once a representation scheme (candidate solutions) is 
defined, the next step is to determine how these candidate 
solutions are going to be manipulated to generate new can-
didate solutions and, thus, promote a movement in the search 
space. This is another crucial step, because the more effi-
cient the solution modification method, the more efficient 
the algorithm tend to be. Also, whilst the representation 
is defined by looking almost exclusively at the problem to 
be solved, the way solutions are manipulated is intimately 
related with the biological metaphor and the encoding 
scheme chosen. Therefore, at least in principle, it is the bio-
logical inspiration that is going to guide the search over the 
space.

In most insect-inspired algorithms, new solutions can be 
generated randomly or by using a heuristic that combines 
existing solutions to obtain a novel one. In this direction, the 
most common biological metaphors and, thus, mechanisms, 
to modify solutions are:

• Genetic operators These are borrowed from evolution-
ary algorithms and basically include crossover (specific 
recombination of two or more candidate solutions) and 
mutation (a random variation in a single existing can-
didate solution). There are many ways in which crosso-
ver and mutation can be implemented and these depend 
on the metaphor, encoding scheme, and problem to be 
solved. Some examples will be given in the following for 
the algorithms reviewed.

• Vector updating The use of a vector-space represen-
tation allows specific types of modification schemes, 
but two of them are the most common ones. For 
f loating-point representations, a typical updating 
method is performed based on the following equation: 
x(k) = x(k − 1) + Δx(k), where Δx(k) is the value to be 
added (or subtracted) to the current value of x (can-
didate solution), and k represents the time step. For 
integer strings, where a candidate solution is a permu-

tation of integers, there are several specific operators 
that can be used for generating new permutations from 
the existing ones.

• Moving over a graph or a grid The moving of an agent 
over a graph or a grid is a way to modify the solution in a 
graph-based or a grid-based representation, respectively. 
The agents move through adjacent states of the problem 
by building solutions on a graph G or a grid. In a graph, 
at each iteration, each agent moves from a node yi to a 
node yj with a probability p or following a specific heu-
ristic. In a grid, at each iteration, each agent moves from 
a cell ci to a cell cj with a probability p or following a 
specific heuristic.

In ACO the candidate solutions are built incrementally by 
the ants’ movements. The artificial ants move through adja-
cent states of the problem by building paths on a weighted 
graph G, which represent the candidate solutions. At each 
iteration, each ant moves from a node yi to a node yj. This 
movement depends basically on two parameters: the amount 
of pheromone on the edge; and the visibility of the following 
nodes. By moving over the graph the ants gradually build 
and modify the candidate solutions. In ABC, SSA and FA, 
despite the metaphor, the new candidate solutions are built in 
one of two ways: random movement of agents in the search 
space (random generation); or by moving an agent toward 
another that represents a better solution or following a spe-
cific heuristic (guided movement). Generally, the first case 
is applied to build new solutions and to explore the search 
space. The guided movement, in general, is implemented 
by means of vector updating, which modify existing solu-
tions and contribute to the exploitation of promising regions 
found by some agents. In ACA the manipulation of candi-
date solutions are performed by the ants’ movement over 
a two-dimensional grid. At each iteration, each ant moves 
randomly from a cell ci to a cell cj.

3.3  Interaction among agents

In nature, interactions represent the communication channel 
among insects and between them and the environment. The 
communication by means of interactions allows the insects 
to acquire information about the environment and the colony. 
The rules specifying these interactions are performed based 
on purely local information, without information about the 
entire colony. Thus, insects work with restrict information of 
their neighborhood, receiving social information by means 
of interactions, without having knowledge about the entire 
colony [8]. The interactions allow the insects to share and 
obtain information about the environmental and colony con-
ditions. Interactions among insects can be direct or indirect 
[44]:
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• Indirect interaction Indirect interactions are the com-
munication among insects mediated by the environ-
ment, known as stigmergy [61]. Some individuals modify 
the environment and others perceive this modification, 
adjusting their behaviors accordingly [16].

• Direct interaction Consists of a local communication 
where no modification of the environment is required. 
The information exchanged by direct interactions can 
be of different types, such as physical contact, fluid 
exchange or visual and acoustic signs.

Besides that, the insect can interact directly with its envi-
ronment. In this case, differently from stigmergy, the insects 
interact directly with the environment (perhaps not explored 
yet) to acquire new information. In SI algorithms this inter-
action occurs by means of random exploration of the search 
space looking for new good candidate solutions.

In ACO, stigmergy is implemented by the amount of 
pheromone in the graph’s edges and its perception by other 
ants. In ACA the stigmergy communication is implemented 
by means of the modification of the grid. In the spider-
inspired algorithms, the communication is mediated by the 
vibration on the web, which represents the spiders’ environ-
ment. In both cases, the stigmergic communication trans-
mits the social information about the quality of the solution 
found. The bee and firefly algorithms are inspired by direct 
interaction, more specifically, the transfer of messages by 
waggle dance bees and flying-mating behavior of fireflies, 
respectively. From an algorithmic perspective, the interac-
tion among the individuals represent the way the information 
represented in a solution is shared or combined to create new 
solutions or modify an existing solution, as presented above.

The indirect interactions are implemented in ACO by 
means of updating the pheromone level of each edge and 
the movement of the agent over the graph. The agents mod-
ify the amount of pheromone on the graph’s edges and this 
affects the probability of other agents choosing a path. In 
ABC, SSO and FA, the direct interactions among insects 
that conduct to attraction or recruitment of other insects are 
implemented by updating the solutions represented by these 
insects (vector updating). Besides that, in SSO the agent also 
interacts directly in the mating behavior, implemented by 
the recombination of solutions represented by two or more 
agents.

3.4  Evaluation and selection of solutions

The evaluation and selection mechanisms aim to assess 
the quality of candidate solutions and to select those more 
adapted to the problem.

The quality of a candidate solution, x, is normally 
expressed by a fitness function, f(x), which evaluates the 
adaptability of this candidate solution to the problem at 

hand. In ACO algorithms, the candidate solution is a tour 
traveled by an ant, and the quality of this solution is related 
to the cost of the tour. In ABC, SSO and FA, the candidate 
solution is represented by the agent’s position in the search 
space.

The selection mechanisms act on the candidate solutions 
and aim to select those more adapted to the problem based 
on a given criterion. The selected candidate solutions are 
submitted to mechanisms that modify them, for instance, 
by combining two candidate solutions to generate a new one 
(recombination operator), or a solution (or part of a solution) 
is modified following some heuristic (vector updating and 
moving of the agents).

In ACO, the solutions are built by means of a probabilis-
tic heuristic used to move the agent taking into account the 
amount of pheromone on each graph’s edge and the visibility 
of the other nodes on the graph. The selection mechanism 
in ACO, thus, helps ants to move through edges that form 
shorter routes. In ABC, the selection is based on the quality 
of the food source explored by the bees. In SSO, the qual-
ity of the solutions is related to a weight that represents the 
spider’s size (fitness value) and, in FA, the quality of the 
solutions is related to the light intensity (fitness value) emit-
ted by the fireflies.

Despite of different bio-inspirations, the essential idea 
of these mechanisms is to evaluate the suitability of the 
candidate solutions by means of a fitness function. Thus, 
the evaluation and selection of solutions represented by the 
agents is specific and appropriate for each problem.

Table 1 provides a summary of the structural compo-
nents and dynamics of the swarm intelligence algorithms 
reviewed.

3.5  Exploration and exploitation

The algorithms reviewed are classified as search algorithms, 
where agents represent candidate solutions in a search space. 
According to Hill et al. [33], the search process involves 
a trade-off between exploiting known opportunities and 
exploring the search space. Global search allows the explo-
ration of the entire search space and looks for new and bet-
ter solutions for the problem. It can be random or guided 
by using information about the environment (search space). 
On the other hand, local search is used to exploit prom-
ising regions of the search space to improve the solutions 
found. The search space exploration and exploitation result 
in finding (or generating) new solutions or improving known 
solutions, respectively. The trade-off between exploration 
and exploitation is essential for an effective optimization 
metaheuristic.

In ACO, the exploration is made by means of iterative and 
probabilistic procedures to construct and modify solutions. 
These procedures consist of the formation and updating of 
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the pheromone trail by the ants. Exploitation is performed 
by the recruitment of ants that tend to choose those paths 
with more pheromone, and the recruitment is performed 
indirectly by means of the pheromone trail.

In general, in algorithms inspired by the foraging behav-
ior of honey bees, such as ABC, exploitation and explora-
tion are balanced by means of the local search and global 
search performed by artificial bees. Exploration consists of 
bees randomly moving over the space, looking for new good 
solutions. The exploration of the search space is performed 
by the random fly of the drones. Exploitation relies on the 
recruitment processes when the bees are recruited to exploit 
a high-quality region assessed by other bees.

In the SSO algorithm, exploitation occurs by the attrac-
tion of spiders for mating processes, i.e., a spider is attracted 
by others that represent a better solution by means of the web 
vibration. Exploration consists of the random movement of 
spiders in the net. In FA, the attraction of fireflies by flashing 
lights emitted by other fireflies contribute to the search space 
exploitation. The attraction is proportional to the intensity 
of flashing lights that represent the quality of solutions. In 
ACA, the exploration consists of the ant randomly moving 

over the grid looking for corpses, and exploitation occurs by 
means of ants’ attraction for regions with greater accumula-
tion of dead ants (data).

Despite the different metaphors that implement these 
mechanisms, in general they fall into the same computa-
tional procedure. In all cases presented here, the implemen-
tation of exploration and exploitation falls within one of the 
procedures to modify solutions, as presented in Sect. 3.2. In 
the SI algorithms presented here, exploration consists of a 
random search for new solutions, whilst exploitation con-
sists of a guided, local search that moves the agents towards 
good solutions (or good regions) over the search space. The 
random search moves the agents along the search space and 
consequently modifies the candidate solutions according to 
their representation schemes, as shown in Sect. 3.2. Table 2 
summarizes the representation schemes, exploration and 
exploration mechanisms of the algorithms reviewed.

3.6  Positive and negative feedback

The concept of feedback is important in many biological 
and artificial systems. Positive feedback tends to amplify 

Table 1  Summary of the structural components of ACO, ABC, SSO and FA algorithms

Algorithm Solution representation Representation scheme Mechanisms to modify 
solutions

Interaction among 
agents

Evaluation mechanisms

ACO Tour taken by an ant 
(path traveled by the 
agent)

Graph-based Moving over a graph Indirect Cost of route

ABC Food source explored by 
bee (position of agent)

Vector space Vector updating Direct Quality of region explored 
(agent position)

SSO Position of spider on the 
communal web (posi-
tion of agent)

Vector space Vector updating and 
recombination opera-
tors

Direct and indirect Size of spider (agent posi-
tion)

FA Region explored by fire-
fly (position of agent)

Vector space Vector updating Direct Light intensity (agent 
position)

ACA Clustering performed by 
agents

Grid-based Moving over a grid Indirect Clustering quality

Table 2  Representation, exploration and exploitation of some insect-inspired algorithms

Biological 
metaphor

Representation of solution Exploration (random generation of 
a new solution)

Exploitation (recruitment—modification of an existent 
solution)

ACO A route in a graph G = (V, A) Random movement over the graph Following paths with high concentration of pheromone 
and high visibility

ABC Vector-space x
i
= [x

i1
, x

i2
,… , x

id
] Random movement over the space Attraction of bees to high quality regions of the search 

space
SSO Vector-space

x
i
= [x

i1
, x

i2
,… , x

id
]

Random movement over the space Attraction of spider to high quality regions of the com-
munal web

FA Vector-space
x
i
= [x

i1
, x

i2
,… , x

id
]

Random movement over the space Movement of fireflies toward other brighter fireflies

ACA Indexed items spread on a n × n grid Random movement over the grid Attraction of groups of items over the ant that is carrying 
an item
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the response to an input stimulus, promoting the creation of 
structures. On the other hand, negative feedback works as 
a counterbalance that damps the response to input stimuli 
[32]. Feedback (positive and negative) is one of the basic 
components of self-organizing (SO) phenomena that, in turn, 
appears as major components of a wide range of collective 
behaviors presented by social animals and insects [10, 31].

In ACO, positive feedback is established by the reinforce-
ment of pheromone trails by ants and negative feedback 
occurs by pheromone trail evaporation and a limited number 
of ants, which can lead to the abandonment of a food source 
or a maximum number of ants exploiting a food source, 
respectively. In ABC, positive feedback is represented by 
the attraction of bees based on the quality of food source and 
the negative feedback is represented by the abandonment 
of the food source when it does not bring more benefits. 
In SSO and FA, the positive and negative feedback can be 
related to the attraction and repulsion behaviors of individu-
als, respectively. In ACA positive feedback is established 
by the deposit of corpses that contribute to the formation of 
small clusters and negative feedback occurs by the reduction 
of ants available. In all cases, a limited number of agents 
results in a negative feedback mechanism.

Considering the metaphors presented, positive and nega-
tive feedback are better represented in the classical meta-
phors ACO, ACA and ABC. In these cases, the recruitment 
process by pheromone trail or waggle dance allows the 
insects to assess the food sources quality (fitness), attracting 
more insects and reinforcing exploitation. Despite of similar 
metaphors, the foraging behavior of bees and ants have an 
important difference: the type of interactions. The ants use 
indirect interactions that lead to the construction of a shared 
structure (pheromone trail), and bees perform direct inter-
actions by observing the dance and follow the information 
shared. The first case is less flexible and its negative feed-
back acts more slowly, which can lead ants to neglect new 
sources that came later. The second case represents a more 
flexible behavior, i.e., bees can rapidly adjust the colony 
effort to exploit different food sources or abandon them. This 
feature is presented also in bees and ant-inspired algorithms. 
On the other hand, SSO and FA do not present an explicit 
description of negative and positive feedback as presented 
by ACO and ABC.

3.7  Some notes on the structure of swarm 
intelligence algorithms

As presented, swarm intelligence algorithms, more specifi-
cally those inspired by the collective behavior of social 
insects, share a similar structure when viewed from the 
same perspective and abstraction level. Despite using dif-
ferent biological metaphors as inspirations, these common-
alities can be mapped and are important to identify the key 

components and features that contribute to the emergence 
of collective behaviors.

In all cases presented here, the trade-off between 
exploitation and exploration is an important component 
for the dynamics of the algorithms. In general, exploi-
tation consists of the use of existing social information 
(shared by other insects) and exploration consists of the 
collection of new information by means of exploratory 
behaviors. The candidate solutions can often be gener-
ated by the movement of agents through the search space. 
The movement can be random, contributing to the search 
space exploration and finding of new promising regions, 
or guided, by using a heuristic specific to the problem. The 
guided movement of agents contributes to the exploitation 
of regions in order to find better solutions.

The definition of the representation (encoding) scheme 
and mechanisms to the manipulation of solutions are cru-
cial steps to more efficient algorithms. The more efficient 
the solution modification method, the more efficient the 
algorithm tends to be. These mechanisms are directly asso-
ciated with the representation scheme used to represent 
the candidate solutions. Usually, algorithms with the same 
representation scheme have similar mechanisms to mod-
ify solutions. For example, algorithms with vector space 
representation, such as SSO and FA, implement similar 
operators to combine two or more solutions, and most of 
them are typical evolutionary (crossover and mutation) 
operators.

In population-based algorithms, the agents perform a 
set of tasks simultaneously. Each agent has local informa-
tion about the region explored and, differently from the 
biological metaphors, the global information is available 
for use in some stage of the iterative process. The evalu-
ation process in most swarm intelligence algorithms is 
performed by taking into account the global information.

Table 3 summarizes the analyzed aspects taking into 
account the biological metaphors.

As presented here, SI algorithms share a common struc-
ture independently of their swarm inspirations and some 
components are essential for an effective swarm-inspired 
metaheuristic. On the other hand, in some cases, besides 
of the different swarm-inspirations, these components 
basically implement the same computational procedures, 
as presented above. For example, the exploration process 
in all cases consists of the random movement of agents 
looking for new solutions, independently if this agent is 
a spider, ant, bee or firefly. Furthermore, the attraction 
of agents for more productive regions in the exploitation 
process is implemented by the movement of agents toward 
other agents that represent better solutions, independently 
if this attraction is based on the vibration of web or flash 
light, for example.
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4  Discussion and future researches

Swarm intelligence is an active research field and has 
attracted the attention of many researches, especially engi-
neers and computer scientists. Recent works in SI include 
the use of different biological metaphors as inspiration and 
the improvement of current approaches to the application 
in several real problems. A vast number of nature-inspired 
algorithms, mainly those based on social insects or social 
animals, have been proposed in the literature over the past 
2 decades. Despite the many biological metaphors used 
as inspirations, it is possible to identify common compo-
nents and similar structures among them, according to the 
point of view and the abstraction level. Many, if not most, 
bioinspirations carry with them some common issues and 
features, which happen in an individual level promoting 
very similar collective emergent phenomena.

Swarm-based algorithms share a common structure 
independently of their swarm inspirations. For example, 
any effective swarm-based algorithm has to achieve an 
appropriate balance between the exploitation of good 
regions and the exploration of unvisited search space 
regions. The trade-off between positive and negative feed-
back is important to the convergence of the algorithm. 
In addition, swarm-based algorithms must conform to the 
self-organizing principles. As a consequence, many of the 
algorithms proposed in the literature are basically repro-
ducing the same computational procedures independently 
of the bioinspiration chosen.

The criticism about the SI research area has increased 
in recent years, but little effort has been expended toward 
the restructuration of the area and better communication 
between biology and computing. There are many types of 
swarms in nature, but just a few can be called intelligent. 
An effective metaphor to swarm intelligence must satisfy 
the principles of swarm intelligence behaviors, such as 
local rules without relation to the global patterns, interac-
tions among self-organized agents and emergent collec-
tive behaviors. A more careful and rigorous view about 
the importance of the metaphors for the design of new 
algorithms is required. Following the biological princi-
ples, despite of this common structure, the metaphor can 
provide specific details to contribute to the design of new 
algorithms that really contribute to the advancement of the 
swarm intelligence area.

As discussed in this paper, swarm intelligence algo-
rithms as well as bioinspired algorithms, can be viewed 
from different perspectives and different levels of abstrac-
tion by identifying their essential components and char-
acteristics. In this context, as a continuity of this research 
it will be proposed a biological and computational frame-
work with the objective of guiding researchers in the 
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process of analysis and synthesis of swarm intelligence 
algorithms. The framework will contribute to the analy-
sis and development of these algorithms in a structured 
and well-founded way and it represents an important step 
towards the strengthening of swarm intelligence as a line 
of research.
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