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A B S T R A C T

The Eucalyptus is the most cultivated kind of tree in Brazil because it has adapted to the climate and has great
importance for the industry. In cultivated forests, the wood volume is essential information to the forest man-
agement. Therefore, that information must be estimated as precisely as possible. There are several descriptive
mathematical models which were developed for that purpose. However, Computational Intelligence techniques
have been used in order to facilitate that process and substitute the volume models. Sundry works have proposed
the use of Artificial Neural Networks for wood volume estimation, but there is a type of neural network, the
Radial Basis Function – RBF, that can be designed automatically by clustering algorithms. This work presents the
application of RBF networks automatically generated by the cOptBees clustering algorithm in the estimation of
Eucalyptus volume and compares the results to the MLP networks and the classic models at the same dataset. The
cOptBees is a clustering algorithm inspired by the behavior of bees which allows the number of clusters to be
found automatically. To evaluate the various factors that can influence the quality of the results provided by
RBF, the tests consider three training algorithms, three activation functions and three heuristics to define the
spread. Besides the RBF generated by cOptBees, were evaluated another two types of RBF: randomly and k-
means generated. In the volume estimation, the results indicate that neural networks and classical equations are
equivalent to each other when there is high availability of data. However, when there are few training samples,
the classical models performed better. Nevertheless, RBF networks are a viable alternative due to its ease of
configuration and generalization capability.

1. Introduction

Because it was adapted well to the Brazil’s climate and has great
applicability as raw material for the industry, the Eucalyptus is the most
cultivated tree genus in the Brazilian territory (IBA, 2017). In this ac-
tivity, it is of fundamental importance to know the volume of wood
produced.

It is common to select one of several existing equations to provide
estimates of volume of wood. Most of these equations have as input the
diameter at breast height and the total height of sample trees and have
coefficients that are adjusted by means of the rigorous scaling of a
certain number of trees. After adjusting some equations, the best
equation, according to statistical criteria, is selected and applied to the
problem.

Although the traditional estimation method has shown good results
in most cases, recent works have demonstrated the interest of forest
engineering in Computational Intelligence. Among the Computational
Intelligence techniques, Artificial Neural Networks (or Neural
Networks) can be perfectly adapted to the described problem. Artificial

Neural Networks (ANN) are inspired by biological neural networks and
have a massively parallel distributed structure and the capacity of
learning with examples and generalizing. Generalization capacity refers
to the fact that Neural Networks provide coherent result for input that
was never presented in the training phase (Haykin, 1999).

Various works, like (Gorgens et al., 2009; Ozcelik et al., 2010; Binoti
et al., 2014; Ozcelik et al., 2014; Sanquetta et al., 2018), use Neural
Networks as a method to estimate the volume in cultivated forests.
Another example is (Lacerda et al., 2018), that estimate volume in
native trees. In the specialized literature the use Neural Networks to
volume estimation is not a novelty. However, Computational In-
telligence is in constant evolution and recently developed algorithms
have not been yet used in this area. The theory suggests that MLP and
RBF are equivalent in generalization capacity (Haykin, 1999) and RBF
presents some advantages in terms of architecture. Some paper like
(Zhang et al., 2016; Wang et al., 2018) explains more about MLP net-
works. The RBF network has an architecture with fewer parameters
than MLP. According to Blanco et al. (2013), this kind of network re-
quires fewer training samples and can be trained faster than MLP’s.
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Moreover, the default architecture of RBF can be defined by clustering
algorithms removing from the human operator this responsibility.

1.1. RBF networks

Differently to the MLP networks, that can have one or more hidden
layers, RBF networks are often defined with only one hidden layer.
Fig. 1 presents a typical architecture of a RBF network with n inputs and
m neurons.

The neurons of the hidden layer implements a radial basis function.
According to Haykin (1999), common functions applied in RBF are:
gaussian (Eq. (1)), multiquadric (Eq. (2)) and thin-plate spline (Eq. (3))
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where = ∥ − ∥v x μ , which is usually defined as the Euclidean distance, x
is the input vector and μ and σ are, respectively, the center and the
spread (or radius) of the radial basis function. Fig. 2 shows two 2D
gaussian functions with different spread values (Pazouki et al., 2015).

RBF networks can also be defined by matrix formulation to a better
comprehension of how it works. Consider three matrices G W, , and D
as, respectively, the result matrix of the hidden layer, the matrix of
synaptic weights and the matrix of desired outputs. The goal of the
training is find W, where:
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1.1.1. RBF training
There are different learning strategies that we can follow in the

design of an RBF network, depending on how the centers of the radial
basis functions of the network are specified (Haykin, 1999).

The simplest approach is to assume fixed radial basis functions de-
fining the activation functions of the hidden neurons. The locations of
the centers may be chosen randomly from the training data set. In this
approach, the only parameter that would need to be learned are the
linear weights in the output layer (W). The main problem with the
method of fixed centers is the fact that it may require a large training
set for a satisfactory level of performance (Haykin, 1999).

The centers of the radial basis functions and all others parameter
can be defined by supervised methods. Another approach suggests that
the training can be separated in two different stages (hybrid learning).
The first stage is the self-organized learning, where the purpose is to
estimate appropriate locations of the centers (μ) and the spread (σ) of
the radial basis functions in the hidden layer. At the second stage, su-
pervised methods completes the design of the network by estimating
the linear weights of the output layer (Haykin, 1999).

At the self-organized learning, is utilized a clustering algorithm that
partitions the training set into subgroups which should be as homo-
geneous as possible. A well-know algorithm is the k-means, but any
clustering algorithm can be applied at this phase. Algorithm 1 explains
how to train a RBF network.

Algorithm 1. RBF Network training

There are several clustering algorithms and they can be used to train
RBF networks. A recent work (Cruz et al., 2016) demonstrated the
feasibility of applying a clustering algorithm inspired by bee behavior
to automatically generate the optimal RBF network architecture for
data classification. This algorithm has received some changes in order
to become more efficient (Silva et al., 2016).

This paper presents RBF networks trained by the bee inspired al-
gorithm as a method to obtain volume estimates of individual trees. The

Fig. 1. Typical RBF architecture.

Fig. 2. Gaussian with =r 1 (left) and =r 1/3 (right) centered at the origin in
�2.
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results are compared to the volume equations, RBF networks trained by
other methods, and MLP networks.

2. Materials and methods

2.1. Dataset description

The dataset is composed of rigorous scaling data of 1819 trees of a
planted forest in the municipality of Aracruz in the State of Espirito
Santo - Brazil. 48 circular plots of 360m2 were randomly sampled, for a
clonal genetic material (hybrid of Eucalyptus grandis and Eucalyptus
urophylla) that is 6.5 years of age, in three (I, II and III) forest sites (16
plots in each). Table 1 details the distribution of amount of samples in
each site class. In each of the 48 plots, the DBH (diameter at 1.3 meters
from the soil) was measured with a caliper. The total height of the trees
(h) of the three central rows were measured with hypsometer
(Cabacinha, 2003). Table 2 shows some descriptive statistics of the
dataset.

After the forest inventory, all 1819 trees were cut down and rigor-
ously scaled by the Smalian method (Eq. (6)).
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where vi is the volume of the section i l, is the length of the section in
meters, g1 and g2 are the sectional areas of the lower and upper end in
square meters. According to Cabacinha (2003), the diameters were
measured at 0.1 m, 0.3 m, 0.5 m, 0.7 m, 0.9m, 1.1m, 1.3m, 2m, 3m
and successively until the total height. The height of each tree was
measured separately.

2.2. Evaluated models

In previous works, MLP networks for volume estimation are often
used. Therefore, it was decided to consider some architectures of that
type of network in this paper as reference. Three architectures were
chosen according to Figs. 3–5. These three architectures have each
neuron of the intermediate layers implementing the logistic function
and those of the output layer implementing the linear function. In all
three cases, the training algorithm was the Levenberg-Marquardt with
learning rate 0.3 and number of epochs equal to 500. The choice of the
training algorithm is justified by the fact of the Levenberg-Marquardt is
often the fastest backpropagation algorithm in the toolbox, and is
highly recommended as a first-choice supervised algorithm, although it

does require more memory than other algorithms (Matlab doc-
umentation, 2018). All MLP networks were designed and trained in
Neural Network Toolbox of Matlab®.

It was also necessary to consider some classical equations as re-
ference. The models of Schumacher-Hall (Eq. (7)) and Spurr (Eq. (8))
were well evaluated in other studies and due to their characteristics like
non-biased estimation (Campos and Leite, 2002; Paula Neto, 1977;
Campos et al., 1985), these two models were chosen for this work.

Table 1
Samples in each forest site.

Site class Amount of samples

Site I 585
Site II 619
Site III 615
Total 1819

Table 2
Descriptive statistics of the data set.

Parameter Site Mean Std. Min. Max.

Diameter III 14.93 2.30 7.15 24.55
II 15.00 2.29 6.35 21.83
I 15.20 2.62 4.85 21.75

Height III 25.65 2.43 14.20 30.60
II 26.38 2.67 13.00 31.90
I 27.31 3.47 8.60 33.20

Volume III 0.22660 0.08248 0.02776 0.64061
II 0.23992 0.08799 0.02132 0.60083
I 0.26523 0.10656 0.00833 0.61392

Fig. 3. MLP-1-1.

Fig. 4. MLP-1-5.

Fig. 5. MLP-2-5-2.
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The main objective of this paper is to evaluate the RBF performance,
so different characteristics and training algorithms were chosen for this
network. Three training algorithms were chosen for the unsupervised
phase, three activation functions for the intermediate neuron layer and
three heuristics for the definition of the spread of these functions.
Table 3 shows the names adopted for each RBF network and their re-
spective properties.

In networks with random architecture, the number of neurons and
their respective centers were randomly defined by a uniform distribu-
tion, in which the number of neurons can vary between 2 and half of the
number of samples used in the training. For the architecture defined by
the k-means algorithm, the number of clusters was empirically set as
10.

The version of cOptBees (Algorithm 2) used was the one proposed
by Silva et al. (2016), parameterized according to Table 4.

Algorithm 2. cOptBees

In order to define the spread of the radial base functions, three
heuristics were used: constant, average, and maximum. The heuristic
called constant defines the spread of all functions equal to 1. The
heuristic that has been called maximum consists in using the Eq. (9) in
the calculation of the spreads

= = …= =σ σ σ d
2n

max
1 2 (9)

where n is the amount of centers and dmax is the biggest Euclidean
distance between all centers (Bao et al., 2011). The heuristic that re-
ceived the name of average define the spread of each function as the
average of Euclidean distances between the current center to all other
centers (Eq. (10))
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where σk is the spread of the cluster k, whose center is ck and n is the
total number of centers (Chen et al., 2008).

The supervised training phase, where the synaptic weights are ad-
justed, for all evaluated RBF’s, was done by the calculus of the pseudo-
inverse matrix. The equations and RBF models were coded in Matlab®.

2.3. Performance metrics

In order to know the accuracy of the estimations provided by each
technique, a traditional and a ”inverse” k-fold cross-validation were
done, both with number of folds equal to 10 ( =k 10). The performance

Table 3
Evaluated RBF networks.

Neural Network Training
algorithm

Activation function Spread heuristic

RBF-A-GU-MAX random Univariate Gaussian maximum
RBF-A-GU-CONST random Univariate Gaussian constant
RBF-A-GU-MED random Univariate Gaussian average
RBF-A-GM random Multivariate

Gaussian
std. dev.

RBF-A-M-MAX random Multiquadric maximum
RBF-A-M-CONST random Multiquadric constant
RBF-A-M-MED random Multiquadric average
RBF-KM-GU-MAX k-means Univariate Gaussian maximum
RBF-KM-GU-

CONST
k-means Univariate Gaussian constant

RBF-KM-GU-MED k-means Univariate Gaussian average
RBF-KM-GM k-means Multivariate

Gaussian
std. dev.

RBF-KM-M-MAX k-means Multiquadric maximum
RBF-KM-M-

CONST
k-means Multiquadric constant

RBF-KM-M-MED k-means Multiquadric average
RBF-BEE-GU-MAX cOptBees Univariate Gaussian maximum
RBF-BEE-GU-

CONST
cOptBees Univariate Gaussian constant

RBF-BEE-GU-MED cOptBees Univariate Gaussian average
RBF-BEE-GM cOptBees Multivariate

Gaussian
std. dev.

RBF-BEE-M-MAX cOptBees Multiquadric maximum
RBF-BEE-M-

CONST
cOptBees Multiquadric constant

RBF-BEE-M-MED cOptBees Multiquadric average

Table 4
cOptBees Parameters.

Parameter Value

Max clusters N/2
Min bees 50
Max bees 100
Percentage of recruiters 90%
Recruitment rate 0.7
Recruited for each recruiter 5
Inhibition radius 0.002
Stop criterion 5 cycles without fitness evolution

E.M. da Silva et al. Computers and Electronics in Agriculture 152 (2018) 401–408

404



metrics utilized here was the Mean Absolute Percentage Error (MAPE)
(Eq. (11)) because it is easy to interpret and is independent of the
variable scale. As this measure represent the estimation error, is de-
sirable that his value are as close to zero as possible.

̂
∑= −

=n
MAPE 100 |Y Y|

|Y|i

n
i i

i1 (11)

where n is the number of samples, Y is the observed value and ̂Y is the
estimated value.

Although these performance metrics are an important indicator of
the quality of the solution provided by a given model, other properties
must also be taken into account. Among these properties, one can list
the scalability and the need for knowledge about the data.

In addition to the performance metrics, the models were evaluated
using hypothesis testing to verify if there was any indication that the
differences between the results were significant.

3. Results and discussion

The dataset was evaluated according to the site class to which they
belong. Thus, 3 k-fold cross-validations were performed, one for each
site.

Initially, in an attempt to find models that could not accurately
represent the volumes of the trees, the estimated volumes by each
model in the cross-validation were computed and compared to the
observed volumes. Before comparing the models, a normality test was
performed to aid in the decision regarding the use of parametric or non-
parametric test.

To verify the normality of the estimated volumes, the normality test
of Lilliefors was used with a significance level of 5%. The Lilliefors test,
according to Cirillo and Ferreira (2003), is quite flexible in that the null
hypothesis H0 specifies that the population belongs to the normal dis-
tribution family, without however having to specify the mean or var-
iance of the distribution. This test had its null hypothesis rejected in at
least one case, which indicates that not all estimated volumes follow a
distribution of the normal distribution family.

As it was not possible to expect normality in all data, it was chosen
to perform non-parametric tests to compare the results. The Wilcoxon
test with a significance level of 5% was used in the peer-to-peer com-
parison between the observed volume and the estimated volume by
each of the 26 methods. In this evaluation, the test didn’t have its hull
hypothesis H0 reject in any case, which suggests that, for the sig-
nificance level of 5%, there are no significant differences between the
observed volumes and the estimated volumes by each of the models.
Therefore, this preliminary assessment did not allow any model to be
disregarded.

The previous analysis does not suggest the elimination of any
model, so all models were submitted to residual analysis. Table 5 pre-
sents the MAPE obtained by each model in the volume estimate of in-
dividual trees of the site class.

In this table, it is observed that some models presented very high
MAPE, which is justified by the presence of outliers in the estimation
promoted by them.

To evaluate the quality of the estimate provided by each model,
they were grouped into 5 classes: equations, MLP networks, RBF
random networks, RBF k-means and RBF cOptBees. This grouping was
designed to simplify the comparison, because instead of comparing 26
models, only 5 are compared, with one model representing each class of
models. To make this reduction possible, it was necessary to adopt a
criterion of choice of the best model to represent each class. As the
mean of the error was distorted due to the presence of outliers, the
median was adopted as the criterion of choice, since its measure is more
robust to outliers. Thus, the best model of each class is the one that has
the modulus of the median closest to zero. The results of the best
models of each class were compared using hypothesis tests.

3.1. Results for k-fold cross-validation

3.1.1. Results for site I
For site I data, the Wilcoxon test indicated that the results of the two

equations are equivalent. Because of the smaller modulus of the
median, the Spurr equation was chosen as representative of the classical
models. Also according to this test, the three MLP’s are equivalent, but
due to the median error, the MLP-1-1 was chosen as representative of
the MLP’s. For RBF’s with random choice of centers, the lowest median
was RBF-AM-CONST (the statistical test showed that this model differs
only in its class from RBF-A-GU-CONST and RBF-AM-MED). For RBF
networks using the k-means algorithm, RBF-KM-GU-MAX, which differs
significantly only to the RBF-KM-GM and the RBF-KM- M-MED. For RBF
trained with cOptBees, the one with the best median error was the RBF-
BEE-M-CONST, being statistically different only from the RBF-BEE-M-
MED. Table 6 shows the median values of the residuals of the models
selected as representative of each class.

After choosing the representatives, their residues were submitted to
the statistical test to evaluate the relevance of the difference between
them. The RBF-KM-GU-MAX model was the model with the median
closest to zero. The results were compared to the others using the
Wilcoxon test with a significance level of 5%, which indicated that the
three types of RBF are statistically equivalent to each other and differ
from equations and MLP’s.

To provide more information about the equivalence between the

Table 5
Mean Absolute Percentage Error (MAPE) of each model.

Id. Model site I site II site III

1 Schumacher-Hall 4.55 3 76. 4.26
2 Spurr 5.01 4.09 4.49

3 MLP-1-1 4.61 3.92 4.48
4 MLP-1-5 8.44 3.84 4 13.
5 MLP-2-5-2 4 33. 3.77 4.80

6 RBF-A-GU-MAX 6.87 4.42 31.55
7 RBF-A-GU-CONST 4.62 4.46 8.37
8 RBF-A-GU-MED 10.27 4.48 93.62
9 RBF-A-GM 4.62 4.20 11.05

10 RBF-A-M-MAX 5.28 4.70 13.73
11 RBF-A-M-CONST 4.69 4.64 8.98
12 RBF-A-M-MED 5.81 5.03 6.48

13 RBF-KM-GU-MAX 5.54 4.98 6.32
14 RBF-KM-GU-CONST 4.63 4.47 8.36
15 RBF-KM-GU-MED 5.38 4.83 7.71
16 RBF-KM-GM 4.71 4.04 4.75
17 RBF-KM-M-MAX 5.41 4.94 14.14
18 RBF-KM-M-CONST 4.71 4.71 8.95
19 RBF-KM-M-MED 5.92 4.14 16.43

20 RBF-BEE-GU-MAX 8.83 4.49 4.85
21 RBF-BEE-GU-CONST 4.63 4.46 8.37
22 RBF-BEE-GU-MED 10.21 4.57 23.51
23 RBF-BEE-GM 5.21 4.29 9.66
24 RBF-BEE-M-MAX 6.69 4.82 12.89
25 RBF-BEE-M-CONST 4.70 4.66 8.98
26 RBF-BEE-M-MED 7.64 4.85 8.04

Table 6
Median of errors in volume estimation in site I.

Id. Model Median

2 Spurr × −9.66 10 5

3 MLP-1-1 − × −1.65 10 4

11 RBF-A-M-CONST − × −8.03 10 5

13 RBF-KM-GU-MAX − × −3.09 10 5

25 RBF-BEE-M-CONST − × −6.31 10 5
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models, Table 7 was elaborated, in which the five models are arranged
in rows and columns and, if there is rejection of the null hypothesis of
the test between a certain pair of models, the symbol (•) appears at the
corresponding row × column intersection.

3.1.2. Results for site II
The same process of choice was carried out in the data of site II. In

this case, the models chosen based on the median criteria were:
Schumacher-Hall, MLP-1-1, RBF-A-GU-CONST, RBFKM-GU-MAX, and
RBF-BEE-M-MAX. Statistical tests indicated that the chosen models are
statistically equivalent to the other members of their classes, except for
random RBF’s, in which RBF-A-GU-CONST differs from RBF-A-GU-MAX
and RBF-AM-CONST. The median error values of each model can be
seen in Table 8.

Among the models chosen according to the median criterion, the
model that presented a median closer to zero was the RBF-KM-GU-MAX
and, according to Wilcoxon’s test, it statistically differs only from RBF-
A-GU-CONST. The Table 9 indicates the other cases in which rejection
of the null hypothesis of the Wilcoxon test occurred for the data of site
II.

3.1.3. Results for site III
For the data from site III, according the criterion of the median of

the error, the models Spurr, MLP-1-1, RBF-A-GU-CONST, RBF-KM-GU-
CONST, and RBF-BEE-GU-CONST were chosen as representatives of the
each class of models. In the equations class, both equations are statis-
tically equivalent and the same fact occurs in relation to MLP’s. In the
random RBF’s class, the selected RBF differs from the RBF-A-M-CONST;
in the class of k-means RBF’s, the chosen RBF differs only from the RBF-
KM-M-CONST; in the class of RBF’s trained by cOptBees there is statistic
difference only between the chosen model and the RBF-BEE-M-CONST.
In the Table 10 the median of the error of each chosen model can be
observed.

At the inter-class comparative, the RBF-BEE-GU-CONST presents
median closest to zero, however their results, according the Wilcoxon
test, are statistically equivalent to all others.

3.2. Results of inverse k-fold cross-validation

The previous experiment used the standard cross-validation to
evaluate the performance of each model. However, in this type of va-
lidation, most of the data (90%) is used for training and a small portion
(10%) is used for validation. For the forest inventory, its is ideal to use
models that can be adjusted with a small number of samples. Therefore,
the models were submitted to a reverse cross-validation (Treiber et al.,

2012), that is, instead of training with 90% of the data and validate with
10%, the models were trained with 10% and validated with 90%.

After performing all validation steps for the three sites, the esti-
mated volumes were compared to the observed volumes using the
Wilcoxon test at a significance level of 5%. Table 11 shows the models
whose estimated volumes differ significantly from the observed vo-
lumes at each of the three sites.

3.2.1. Results for the data from the site I
After eliminating the models that could not correctly estimate the

volumes, the others were evaluated according to the same methodology
used in the previous section. The models with lower modulus of the
median of the error can be observed in Table 12.

The model with the best median was the equation of Spurr. Their
results were compared to the others using the Wilcoxon test. The test
results indicated that the equations, RBF and MLP’s trained cOptBees
are equivalent to each other, but were statistically different from the
random RBF and the k-means RBF. Table 13 details the test results,
highlighting the line intersection × column in which the null hypothesis
of the test was rejected.

3.2.2. Results for the data from the site II
According to Table 11, two MLP’s and some randomly generated

RBF’s and through cOptBees were not able to estimate the volumes
correctly. Thus, these models were disregarded and the others were
analyzed according to the median criterion. Table 14 shows the median
error values of the selected models.

The model with the best median was the RBF-KM-GM, according to
the results of the Wilcoxon test. This network is equivalent to the RBF-
BEE-GU-MED and different from the other models. In Table 15, it is
possible to observe all the cases in which there was rejection of the null
hypothesis of the test.

Table 7
Cases where the null hypothesis of the Wilcoxon test was rejected in site I.

Id. 2 3 11 13 25

2 •
3 • • •
11 •
13 • •
25 •

Table 8
Median of errors in volume estimation in site II.

Id. Model Median

1 Schumacher × −1.50 10 4

3 MLP-1-1 × −8.10 10 5

7 RBF-A-GU-CONST × −1.80 10 4

13 RBF-KM-GU-MAX × −7.47 10 6

24 RBF-BEE-M-MAX × −5.75 10 5

Table 9
Cases where the null hypothesis of the Wilcoxon test was rejected in site II.

Id. 1 3 7 13 24

1 • •
3 • •
7 •
13 •
24 • •

Table 10
Median of errors in volume estimation in site III.

Id. Model Median

2 Spurr × −4.47 10 5

3 MLP-1-1 × −5.93 10 4

7 RBF-A-GU-CONST × −1.89 10 5

14 RBF-KM-GU-CONST × −3.46 10 5

21 RBF-BEE-GU-CONST × −5.71 10 6

Table 11
Models that were unable to estimate volumes correctly.

site I site II site III

RBF-A-GU-MAX MLP-1-5
RBF-A-GU-CONST MLP-2-5-2 MLP-1-1
RBF-A-M-MAX RBF-A-GU-MED RBF-A-GU-MED

RBF-A-M-CONST RBF-A-M-MAX RBF-KM-GU-MED
RBF-A-M-MED RBF-BEE-GU-MAX RBF-KM-GM

RBF-BEE-GU-MAX RBF-BEE-GM RBF-BEE-GU-MAX
RBF-BEE-GU-MED RBF-BEE-M-MAX
RBF-BEE-M-MED RBF-BEE-M-MED
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3.2.3. Results for the data from the site III
As it was done with the data from sites I and II, disregarding the

models that, according to an initial analysis, could not correctly esti-
mate the volumes of the trees, for the data from site III, the remaining
models were chosen according to the median of the residue. These
models and their respective medians can be observed in Table 16.

After selecting the models according to the criterion of the median,
they were compared to each other by means of the Wilcoxon test.
Among the five models selected, the one that presented the lowest
median was the RBF-A-GU-CONST. The test results indicated that all
models differed significantly from each other.

4. Conclusion

This study aimed to evaluate the RBF neural networks generated by
cOptBees algorithm as a way to estimate volume of individual trees. In
order to evaluate the performance of RBF networks, their results were
compared to those of the classical equations and MLP networks applied
to the same database of eucalyptus volumes.

There are several equations which can be used to estimate the vo-
lume of trees. Among these, two were chosen as reference for being well
evaluated in previous studies. MLP networks have already been object
of study in several works of forestry. For that reason, this study also had
to consider some configurations of MLP as a comparison parameter.
There is no standard method for defining MLP network parameters
based on the problem data. So, three different MLP configurations have
been chosen to be confronted to the RBF’s. For the RBF networks, three
training algorithms with different characteristics, three activation
functions and three heuristics were chosen to define the spread of these
functions to observe the effect that these factors would cause on the
results.

26 models were chosen to be evaluated in data from three forest
sites. These 26 models comprise 2 equations, 3 MLP’s and 21 RBF’s. All
models were submitted to two types of 10-fold cross-validation: stan-
dard and inverse. The data set is composed of 1819 trees distributed in
three site class and the forests sites (I, II, and III) which have, respec-
tively, 585, 619, and 615 samples. At the 10-fold cross-validation, 9
folds are used to training and 1 fold to validation, which is, approxi-
mately, 500 samples to training and 50 to validation. At the inverse 10-
fold cross-validation, occurs the inverse situation. The results obtained
make it possible to conclude that when there was a high availability of
data, around 500 samples, to fit the models, all of them were able to
estimate the volumes in a similar way. This is because when the models
were evaluated by the standard cross-validation method, about 500
samples were used for training and 50 for validation at each forest site.
It was observed that all variations of MLP’s and RBF’s were also able to
estimate the volumes, which indicates that when there is a lot of data
for training, any configuration of these models has equal capacity to
estimate volumes. None of the RBF training algorithms has been able to
stand out from the others in terms of the quality of results.

When the amount of samples available for training was reduced to
about 50 samples, not all models were able to correctly estimate tree
volumes. The number 50 comes from reverse cross-validation that uses
only 10% of the data for training and the sites have around 500 sample
trees. Only the classical models were not influenced by this large var-
iation in the amount of training data as they were able to estimate the
volume without significant differences in all evaluated situations.

The MLP’s and the RBF’s were strongly affected by the lack of data
for training, because in some cases in the reverse cross-validation, the
statistical test indicated significant differences between the volumes
that were estimated and the observed volumes. From the training al-
gorithms evaluated, only cOptBees allows the RBF to achieve similar
results to the classic models and the MLP’s, which shows that the RBF
that is generated randomly or by k-means can produce unsatisfactory
results.

Therefore, it is not possible to consider that the use of neural net-
works for the estimation of volumes represented an improvement in the
accuracy for the database studied in this study, because in all performed
experiments no differences were observed in favor of the neural net-
works, MLP or RBF. Not even the use of a more elaborate algorithm for
the training of the RBF’s was enough to make them better than the
classic models.

Therefore, what this technique brings as a benefit is its more general
structure, able to adapt to the different data sets and produce accep-
table estimates, thus avoiding the need for the forest engineer to adjust
several mathematical models to later choose the best one. RBF net-
works, in particular, have the advantage of having architecture defined
automatically by clustering algorithms, a fact that makes them easier to

Table 12
Median of errors in volume estimation in site I.

Id. Model Median

2 Spurr × −2.01 10 5

3 MLP-1-1 − × −2.56 10 4

8 RBF-A-GU-MED × −5.47 10 4

19 RBF-KM-M-MED − × −1.66 10 4

23 RBF-BEE-GM − × −6.00 10 4

Table 13
Cases where the null hypothesis of the Wilcoxon test was rejected in site I.

Id. 2 3 8 19 23

2 • •
3 • •
8 • • •
19 • • •
23 • •

Table 14
Median of errors in volume estimation in site II.

Id. Model Median

1 Schumacher × −1.41 10 4

3 MLP-1-1 × −8.04 10 4

9 RBF-A-GM × −1.06 10 4

16 RBF-KM-GM × −2.86 10 5

22 RBF-BEE-GU-MED − × −1.11 10 4

Table 15
Cases where the null hypothesis of the Wilcoxon test was rejected in site II.

Id. 1 3 9 16 22

1 • •
3 • •
9 • • •
16 • • •
22

Table 16
Median of errors in volume estimation in site III.

Id. Model Median

1 Schumacher × −6.11 10 5

5 MLP-2-5-2 − × −4.10 10 4

7 RBF-A-GU-CONST × −3.74 10 5

18 RBF-KM-M-CONST × −2.08 10 4

23 RBF-BEE-GM × −1.36 10 4
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work with when compared to MLP’s.
Although the results of this study did not indicate that neural net-

works provide better estimates than classical methods, it is important to
remember that only one database was considered as tree samples. As
future study, would be possible to propose the comparison of the neural
networks to the classical methods in another database in which there is
a higher shape variability or even using another species of tree to verify
the generalization capacity of each one of the methods in a more
challenging situation. We are developing a user-friendly interface
software to the presented methodology. So, other peoples may apply
our algorithm to solve practical problems without needing to have deep
knowledge about RBF or clustering algorithms.
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