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Resumo

Compreender o comportamento coletivo de (grupos de) indivíduos em sistemas complexos,

mesmo em cenários em que as propriedades individuais de seus componentes sejam con-

hecidas, é um desaőo. Do ponto de vista de modelos de redes, as ações coletivas desses indi-

víduos são, frequentemente, projetadas em um grafo formando uma rede de co-interações,

aqui chamado de rede many-to-many. No entanto, o volume e a diversidade com que elas

são observadas nos mais variados sistemas atuais como, por exemplo, aplicações de mídia

social, transações econômicas e comportamento político em sistemas de votação, impõe

desaőos na extração de padrões (estruturais, contextuais e temporais) emergentes do com-

portamento coletivo e que estejam relacionados a um fenômeno alvo de estudo. Especiő-

camente, a frequente presença de um grande número de co-interações fracas e esporádicas

e que, portanto, não reŕetem necessariamente padrões relacionados ao fenômeno de inter-

esse, acabam por introduzir łruído” ao modelo de redes. A grande quantidade de ruído, por

sua vez, pode mascarar os padrões de comportamento mais fundamentais capturados pelo

modelo de rede, ou seja, os padrões que essencialmente são relevantes para o entendimento

do fenômeno sob investigação. A remoção deste ruído é, portanto, um desaőo importante.

Nesta tese, nosso objetivo é investigar a modelagem e análise do comportamento

coletivo emergente de redes formadas por co-interações em diferentes contextos, visando

extrair informação relevante e fundamental sobre um fenômeno alvo do estudo. Especiő-

camente busca-se abordar a extração de propriedades estruturais, contextuais e temporais

que emergem a partir de comportamento coletivo fundamentalmente representadas por

comunidades extraídas da rede. Para tal, nós propomos uma estratégia geral que aborda

os principais desaőos mencionados acima. Em especial, esta estratégia contempla, como

passo inicial, a identiőcação e a extração do backbone da rede, isto é, o subconjunto das

arestas relevantes para o estudo alvo. Os próximos passos consistem na extração de co-

munidades deste backbone, como reŕexo de padrões de comportamento coletivo presentes,

e a caracterização das propriedades estruturais (topológicas), contextuais (relacionadas

ao fenômeno de interesse) e temporais (dinâmica) destas comunidades. Tendo como base

essa estratégia geral, nós produzimos artefatos especíőcos para as etapas que a compõe

e avançamos o estado da arte, notavelmente, com um novo método para extração de

backbone, um novo método capaz de representar temporalmente uma sequência de redes

(temporal node embedding) possibilitando a extração de padrões temporais de interesse, e

por őm, uma metodologia para auxiliar na seleção e avaliação de estratégias de extração

de backbones do ponto de vista estrutural e contextual considerando o cenário mais co-



mum, em que não há verdade fundamental (ground truth). Além disso, exploramos esses

artefatos estudando três fenômenos que requerem diferentes estratégias de modelagem e

análise. Especiőcamente, investigamos: (i) a formação de grupos ideológicos na Câmara

dos Deputados do Brasil e dos Estados Unidos, (ii) discussões políticas online ocorrendo

no Instagram no Brasil e na Itália e (iii) disseminação de informação no WhatsApp. Em

suma, nossos resultados mostram que os artefatos propostos oferecem contribuições rele-

vantes para o campo em que esta tese está inserida.

Palavras-chave: Redes Complexas, Comportamento Coletivo, Extração de Backbones,

Detecção de Comunidades.



Abstract

Understanding the collective behavior of (groups of) individuals in complex systems, even

in scenarios where the individual properties of their components are known, is a challenge.

From the point of view of network models, the collective actions of these individuals are

often projected on a graph forming a network of co-interactions, which we here refer

to as a many-to-many network. However, the volume and diversity with which these

co-interactions are observed in the most varied systems, such as, for example, social

media platforms, economic transactions and political behavior in voting systems, impose

challenges in the extraction of patterns (structural, contextual and temporal) emerging

from collective behavior and that are fundamentally related to a phenomenon under study.

Speciőcally, the frequent presence of a large number of weak and sporadic co-interactions,

which, therefore, do not necessarily reŕect patterns related to the phenomenon of interest,

end up introducing łnoise” to the network model. The large amount of noise, in turn,

may obfuscate the most fundamental behavior patterns captured by the network model,

that is, the patterns that are essentially relevant to the understanding of the phenomenon

under investigation. Removing such noise becomes then a key challenge.

Our goal in this dissertation is to investigate the modeling and analysis of collective

behavior patterns that emerge in networks formed by co-interactions in different contexts,

aiming to extract relevant and fundamental information about a target phenomenon of in-

terest. Speciőcally, we tackle the extraction of structural, contextual and temporal prop-

erties associated with patterns of collective behavior that are fundamentally represented

by communities extracted from the network. To this end, we propose a general strategy

that addresses the aforementioned challenges. In particular, this strategy includes, as an

initial step, the identiőcation and extraction of the network backbone, that is, the sub-

set of the edges that are indeed relevant to the target study. The next steps consist of

the extraction of communities from this backbone as a manifestation of the existing col-

lective behavior patterns and the characterization of the structural (topological), contex-

tual (related to the phenomenon of interest) and temporal (dynamic) properties of these

communities. Based on this general strategy, we propose speciőc artifacts for some of the

steps that compose it and advance the state-of-the-art, in particular with a new method

for backbone extraction, a new temporal node embedding method capable of representing

and extracting different temporal patterns of interest from a sequence of networks, and

őnally a methodology to support the selection and evaluation of backbones from a struc-

tural and contextual point of view, considering the most common scenario where there



is no ground truth. Furthermore, we explore these artifacts by studying three different

phenomena that require different modeling and analysis strategies. Speciőcally, we inves-

tigate: (i) the formation of ideological groups in the Brazilian and U.S. House of Repre-

sentatives, (ii) online discussions on Instagram in Brazil and Italy, and (iii) information

dissemination on WhatsApp. Overall, our results show that the proposed artifacts offer

relevant contributions to the őeld in which this dissertation is inserted.

Keywords: Complex Networks, Collective Behavior, Backbone Extraction, Community

Detection.



Sommario

Comprendere il comportamento collettivo di (gruppi di) individui all’interno di sistemi

complessi è una sőda anche negli scenari in cui sono note le proprietà individuali dei loro

componenti. Spesso questi fenomeni sono modellati come reti e le azioni collettive di questi

individui sono proiettate su un grafo che rappresenta la rete di co-interazioni, che possiamo

deőnire come una rete many-to-many. Il volume e la diversità di queste interazioni nei

sistemi più grandi e complessi, come ad esempio, le piattaforme dei social media, l’insieme

delle transazioni economiche o il comportamento politico nei sistemi di voto, complicano

l’estrazione di schemi (strutturali, contestuali e temporali) dal comportamento collettivo e

che sono fondamentalmente legati a un fenomeno di interesse. In particolare, la presenza di

un numero elevato di co-interazioni occasionali che, quindi, non riŕettono necessariamente

pattern di interesse, introduce łrumore” nella rete modellata. Questo rumore può offuscare

gli schemi comportamentali presenti nella rete in esame, rendendo di fatto impossibile la

comprensione del fenomeno in esame. La rimozione di tale rumore diventa quindi una

sőda chiave.

L’obiettivo in questa tesi è indagare la creazione e l’analisi dei modelli di com-

portamento collettivo in reti formate da co-interazioni, con l’obiettivo di estrarre infor-

mazioni rilevanti su un fenomeno d’interesse. Nello speciőco, affrontiamo l’estrazione di

proprietà strutturali, contestuali e temporali associate a modelli di comportamento col-

lettivo, le quali sono tipicamente rappresentate da comunità estratte dalla rete stessa. A

tal őne, proponiamo una strategia generale che affronti le suddette sőde. Questa strategia

prevede, come passo iniziale, l’identiőcazione e l’estrazione della così detta rete backbone,

ovvero il sottoinsieme degli archi che sono effettivamente rilevanti per l’obiettivo preős-

sato. Il passo successivo consiste nell’estrazione di comunità dalla backbone che mani-

festino i modelli di comportamento collettivo esistenti e permettano la caratterizzazione

delle proprietà strutturali (topologiche), contestuali (relative al fenomeno d’interesse) e

temporali (dinamiche) del fenomeno. Sulla base di questa strategia generale, proponiamo

strategie speciőche che avanzano lo stato dell’arte per alcuni dei passaggi che lo compon-

gono. In particolare, questa tesi fornisce approcci innovativi per l’estrazione della back-

bone e propone un nuovo metodo di temporali nodi embedding in grado di rappresentare ed

estrarre differenti pattern temporali d’interesse da una sequenza di reti. Inőne, deőniamo

una metodologia per supportare la selezione e la valutazione delle backbone da un punto

di vista strutturale e contestuale, considerando il caso tipico di assenza di ground truth.

In questa tesi, esploriamo questi approcci studiando tre diversi fenomeni che richiedono



diverse strategie di modellazione e analisi. Nello speciőco, indaghiamo: (i) la formazione

di gruppi ideologici nella Camera dei rappresentanti Brasiliana e Statunitense, (ii) il di-

battito online su Instagram in Brasile e in Italia e (iii) la disseminazione di informazioni

via WhatsApp. Nel complesso, i nostri risultati mostrano che gli approcci proposti of-

frono contributi rilevanti nel campo in cui è inserita questa tesi.

Parole chiave: Sistemi complessi, Comportamento Collettivo, Estrazione del Backbone,

Rilevamento della Comunità.



List of Figures

1.1 A visual representation of the scope of this dissertation. . . . . . . . . . . . . . 26

2.1 Mind mapping of the topics related to this dissertation. . . . . . . . . . . . . . 31

2.2 Selected backbone extraction methods: edges connect methods already com-

pared to each other in prior work. . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1 Overview of the problem statement. . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Example of diversity of co-interactions in a given system. . . . . . . . . . . . . 57

3.3 Overall solution for modeling and analyzing collective behavior. . . . . . . . . 62

4.1 Cumulative Distribution Function of Edge Similarity. . . . . . . . . . . . . . . 75

4.2 Correlation between the percentage voting sessions that the government ob-

tained the majority and the the modularity obtained. Each point represents a

year analyzed in Table 4.2 disregarding the period 2016-2017. . . . . . . . . . 83

4.3 Modularity values for different thresholds choices on Brazil’s 2017 data. Green

dot indicates selected threshold, 0.42. . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Dynamics of Polarized Communities over 2015-2017. . . . . . . . . . . . . . . 87

4.5 2-D representation of latent ideological space. Symbols ⋄, ▽ and △ represent

party centroids (a,c) or members (b) respectively during 1st, 2nd and, in case

of Brazil, 3rd year of legislature as well. . . . . . . . . . . . . . . . . . . . . . 89

4.6 CDF of ideological shift of members over consecutive years (measured w.r.t.

cosine distance). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.7 CDF of ideological shift of Brazilian members over consecutive years (w.r.t.

cosine distance) grouped by polarization. . . . . . . . . . . . . . . . . . . . . . 91

5.1 Illustration of the backbone extraction process in a simplistic graph. The

isolated vertices are removed from the őnal B∆t
used in our analysis. . . . . . 101

5.2 Distributions of number of comments per post (notice the log scale in y-axis). 108

5.3 Network characteristics for posts of inŕuencers for Brazil - Politics (Week 1). . 109

5.4 Distribution of comments among political leaders for each community during

the main election weeks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.5 Dendogram of political inŕuencers clustered according to commenter commu-

nities. Inŕuencers are colored according to their political coalition. . . . . . . 114

5.6 Interest of communities on posts. . . . . . . . . . . . . . . . . . . . . . . . . . 116



5.7 Examples of posts by Jair Bolsonaro (jairmessiasbolsonaro) in which two com-

munities show high interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.8 (a) 2-D representation of communities based on seven metrics using PCA. (b)

Description of the two principal components in terms of the original metrics;

the bar represents the loading scores for the components (positive or negative). 118

5.9 Contrastive sentiment score (difference between fraction of positive and nega-

tive comments) of communities towards political leaders during the main elec-

tion week. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.10 Top 5 LIWC attributes and their relative difference between communities. . . 123

5.11 Temporal evolution of commenters in communities. Blue: top 1%, Orange:

top 5%, Green: all commenters. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.12 Example of how communities’ comments change over time. We set weeks 5

and 7 as reference, being the election weeks in Brazil and Italy, respectively. . 126

6.1 Example network and the backbones extracted from it by three different meth-

ods (modularity values presented within parentheses). Edge thickness repre-

sents edge weight and nodes’ color possible coordinated users’ communities. . . 132

6.2 Overall methodology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.3 Example of the execution time: HSS and NC. . . . . . . . . . . . . . . . . . . 145

6.4 Online discussions on Instagram: Weight distribution for edges retained in the

backbone by each method (distribution for original/complete network shown

for comparison). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.5 Online discussions on Instagram: Similarity of communities, estimated by Nor-

malized Mutual Information (NMI), present in different backbones and origi-

nal network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.6 Coordinated behavior on WhatsApp: Largest connected component of the

original network and extracted backbone (node color indicates community

membership, edge thickness and color indicates edge weight ś heavy/light edges

colored in red/blue). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.7 Coordinated behavior on WhatsApp: Weight distribution for edges retained

in the backbone by each method (distribution for original/complete network

shown for comparison purposes). . . . . . . . . . . . . . . . . . . . . . . . . . 161

6.8 Coordinated behavior on WhatsApp: Similarity of communities, estimated

by Normalized Mutual Information (NMI), present in different backbones and

original network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



List of Tables

4.1 Datasets overview (PD: party discipline, SD: st. dev.) . . . . . . . . . . . . . . 72

4.2 Statistics of Networks and Ideological Communities (CC: connected compo-

nents, SPL: shortest path length, Mod: modularity) . . . . . . . . . . . . . . . 81

4.3 Statistics of Strongly Tied Networks and Polarized Communities in Brazil (CC:

connected comp., SPL: shortest path length, Mod: modularity) . . . . . . . . 86

4.4 Temporal Analysis of Polarized Ideological Communities (NMI: normalized

mutual information) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Dataset Overview (weeks including election dates are shown in bold in the

respective country). The number of posts and commenters (comm.) by each

scenario and week. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Characteristics of the original network GP and network backbone BP for Brazil

- Politics (Week 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Breakdown of backbone and communities over different weeks for Brazil, Pol-

itics. In bold, the weeks of the elections. . . . . . . . . . . . . . . . . . . . . . 111

5.4 Networks backbone and identiőed communities for Brazil (BR) and Italy (IT).

We show average values over the 10 weeks. . . . . . . . . . . . . . . . . . . . . 111

5.5 Fraction of sentiment captured in comments using SentiStrenght. . . . . . . . 119

5.6 Example of words with the highest TF-IDF for some communities in the pol-

itics scenario in the main election week. . . . . . . . . . . . . . . . . . . . . . . 121

6.1 Our characterization of selected backbone extraction methods. . . . . 136

6.2 Online discussions on Instagram: Topological metrics of the network and back-

bones extracted by each candidate method. Columns 2-3 contain total numbers

for the original network and also the corresponding percentages for backbones. 150

6.3 Online discussions on Instagram: Contextual evaluation of backbones by re-

gression analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.4 Coordinated behavior on WhatsApp: Topological metrics of the network and

backbones extracted by each candidate method (Columns 2-3 contain total

numbers for the original network and also corresponding percentages for back-

bones). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.5 Coordinated behavior on WhatsApp: Contextual evaluation of backbones by

regression analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162



A.1 Online discussions on Instagram: Impact of method parameters on topological

and contextual metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

A.2 Coordinated behavior on WhatsApp: Impact of method parameters on topo-

logical and contextual metrics. . . . . . . . . . . . . . . . . . . . . . . . . . . . 207



Contents

1 Introduction 20

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Background and Related Work 31

2.1 Modeling Collective Behavior . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2 Modeling User Co-Interactions . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Network Backbone Extraction . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Community Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Temporal Network Embeddings . . . . . . . . . . . . . . . . . . . . . . . . 47

2.6 Modeling Political and Ideological Behavior . . . . . . . . . . . . . . . . . 48

2.7 Modeling Online Discussions in Social Media . . . . . . . . . . . . . . . . . 50

2.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3 Modeling and Analyzing Collective Behavior 54

3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 A General Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4 Ideological Groups in Co-voting Networks 67

4.1 Contextualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Identifying Ideological Communities . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Identifying Polarized Communities . . . . . . . . . . . . . . . . . . . . . . 84

4.5 Temporal Analysis of Polarized Communities . . . . . . . . . . . . . . . . . 85

4.6 Evaluating Ideological Changes . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5 Online Political Discussions on Instagram 94



5.1 Contextualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Structural analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Textual Properties of Discussions . . . . . . . . . . . . . . . . . . . . . . . 115

5.6 Temporal Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6 Selecting and Evaluating Backbone Methods 129

6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.4 Case Study 1: Online Discussions on Instagram . . . . . . . . . . . . . . . 146

6.5 Case Study 2: Coordinated Behavior on WhatsApp . . . . . . . . . . . . . 155

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

7 Conclusions and Future Work 165

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

7.2 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Bibliography 176

A Parameter Sensitivity Analysis 205



20

Chapter 1

Introduction

A łcomplex system” is a system formed of many individual parts called łcomponents” or

łagents” interacting with each other and leading to large-scale behaviors. A key challenge

when analyzing such complex systems is to uncover and understand the collective behavior

of (groups of) individuals, even though the individual properties of its components may

be known [193, 50]. The notion of collective behavior has been widely studied in other

domains such as Sociology and Psychology where it is deőned in different ways [250].

Here, we adopt the following deőnition, most related to the concepts explored in this

dissertation: łCollective behavior refers to the kinds of activities engaged in by sizable

but loosely organized groups of people.” [277, 295].

We are surrounded by complex systems in both online and offline worlds. Many of

them are of great interest to our society as they can strongly inŕuence and drive social,

cultural, economical and even political phenomena. Examples include (i) users helping to

disseminate ideas and pieces of information as they share messages and comments on social

media [87, 224, 180]; (ii) members of a House of Representatives voting in a series of vote

sessions and, from their voting patterns, forming ideological groups that, by crossing the

formal boundaries of established political parties, more faithfully represent the political

scenario of a country [32]; (iii) collective economic changes in a cryptocurrency market as

result of successive changes in different őnancial assets such as stocks and commodities

[281, 222]; and (iv) cultural mapping of a community by analyzing people’s visits to

different places driven by the need to pursue cultural interests [323]. These are a few

notable examples where loosely organized groups of people, acting individually, do interact

with each other, driven by common interests, common goals or even hidden factors (e.g.,

coordinated behavior), and from such interactions a group/collective behavior may emerge

without necessarily a previous social structure that explains it.

Network science has been a valuable őeld for modeling and studying these systems,

as well as providing a set of theoretical tools that can be applied to describe and analyze

the phenomena that lie behind many complex systems [205, 252]. The way interactions

between the components of a complex system take place can be understood by őrst rep-

resenting them in a mathematical model called a graph, and then forming is known as a

network. In general terms, networks are a collection of nodes mapping the system com-
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ponents and interconnected by edges describing the relationship among them [64]. Once

they have been modeled, a range of metrics such as density, diameter, clustering coeffi-

cients, number of connected components, among others can be applied to characterize the

structural properties of the interactions under analysis, and from such characterization,

obtain relevant knowledge about the underlying phenomenon being modeled [17].

In addition to the aforementioned metrics that capture different aspects of the

network topology, one of the most interesting problems in network characterization is the

question of őnding communities that are formed by the components of these networks

[82, 252]. The main interest in community detection lies in the fact that communities

typically display properties that are very particular and differ from the average properties

of the complete network [206]. Thus, analyzing properties of different communities that

build a global network may be a promising approach to reveal collective behavior patterns.

This is because such communities naturally group users that are more łsimilar”, with

respect to common interactions and other behavior patterns. As such, by focusing on

such communities, especially by exploring contextual properties associated with each such

community, i.e., characteristics of the communities that are not explicitly captured by the

network topology but rather are intrinsically related to the phenomenon being studied,

one may be able to uncover properties that can help explain the emergence of collective

behavior patterns, and, by doing so, gather a more clear glimpse of the driving factors

behind the phenomenon under investigation [323, 90, 164, 168].

Yet, many of the complex systems mentioned above (in both physical and online

environments) are essentially structured by interactions occurring among multiple (po-

tentially more than two) individuals simultaneously. For example, multiple users share

the same piece of content or engage in a discussion on a social media platform. Similarly,

multiple members of Congress may vote similarly in a particular voting session. This con-

trasts with the traditional view of a network as a set of independent interactions among

pairs of elements. The network that emerges from interactions among groups of elements

simultaneously have attracted the interest of researchers in several areas such as Biology,

Chemistry, Social Sciences and Economics [114, 280, 128, 36, 165], though only recently

in the Computer Science community [25, 188, 107]. It should be noted that the litera-

ture employs different terms with no clear consensus for this type of network as well as

for the particular interactions driving its formation. Some of the terms used to refer to

them are derived from networks formed by sets of interactions, sequences of associations,

cliques (a particular type of motif) or multi-actor interactions [23, 140, 155, 21]. We here

adopt the terms many-to-many networks and many-to-many interactions, or simply co-

interactions, as they clearly relate to the most basic concept of interactions occurring si-

multaneously among multiple elements.

Several studies have highlighted the effects of this sort of interaction on the topolog-

ical structure of networks, notably when considering the aggregate effect of co-interactions
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occurring over time. In particular, they have shown how the competing dynamics behind

them display a rich and varied pattern at different levels, including sequentiality, period-

icity and sporadicity [328, 23, 107, 55, 333, 282, 65]. In particular, it is often the case that

these many-to-many networks (as well as networks driven by traditional pairwise inter-

actions) are overwhelmed by a large volume of edges representing random, sporadic and

spurious interactions that, in essence are only weakly connected, if any at all, to the un-

derlying phenomenon being investigated [93]. As such, the large presence of these noisy

edges adds further complexity to the study of collective behavior being modeled, as it re-

quires one to őrst identify the (fewer) co-interactions that indeed are relevant to the par-

ticular target phenomenon.

In light of this, our aim in this dissertation is to investigate the modeling and anal-

ysis of collective behavior that emerges in many-to-many networks in different contexts,

focusing on the structural, contextual and temporal properties of the communities that

can be extracted from them.

1.1 Motivation

Several studies have investigated community detection in many-to-many networks

projecting those co-interactions in an undirected and weighted graph [55, 220, 32, 202,

296]. In this way, the nodes represent the system components and an edge links two given

components by the number of co-interactions in which they appear together. However,

many-to-many networks display complex and diverse temporal properties. Speciőcally,

some co-interactions may repeat consistently over time, while new ones emerge sporadi-

cally from partial copies or merge with previous ones. Thus, while persistent and repeti-

tive co-interactions may occur, many random and sporadic ones are also present. In great

volume, these weaker co-interactions may indeed hide the real underlying structure of the

network representing the phenomenon under study, masking the true communities rep-

resenting the collective behavior patterns that drive such phenomenon [23, 55, 107]. We

further elaborate on this issue, which is a key motivation to this dissertation, using a few

concrete examples.

Let’s start with the case of a co-voting network, i.e., a network modeling the

voting patterns of a set of members of Congress in a series of voting sessions. In such

network, each node is a member of Congress and the weighted edges reŕect the level of

agreement between two members of Congress along with those sessions. By analyzing

this network, one can infer collective patterns that go beyond the traditional boundaries

of political parties, revealing ideological similarities that can be useful to understand the



1.1. Motivation 23

political system of a country [235, 151, 202]. However, it is possible that a vote for a

general-interest humanitarian cause may lead members of Congress of different ideologies

to adopt the same position, thus adding edges to the co-voting network. These edges

represent sporadic interactions and are driven by a particular topic of large agreement,

and thus do not necessarily reŕect an ideological alignment. The presence of many such

sporadic interactions, especially when considering sequences of voting sessions over time,

may mask those interactions reŕecting true ideological alignment, and by doing so, make

it difficult to study, for example, the formation of the ideological groups (communities)

that emerge in the network [32].

A similar issue may arise when studying information dissemination in social media

applications. One common network model adopted in that case is to represent users

by nodes and connect two users by an edge weighted by a number of pieces of content

shared in common [220, 214, 296]. In such context, it is possible that a very popular (or

viral) piece of content is shared by a large number of different users, generating a large

number of edges in the network. Yet, these users are simply reacting to a popular content,

mostly independently from each other. This can hardly be seen as true co-interactions

if one aims at investigating patterns of collective behavior relevant to the information

dissemination process, that is, groups of users (communities) driving the information

spread in the system [28, 214]. Moreover, one may consider that measurement errors may

occur in some settings. For example, errors are common in wearable sensor networks,

used for human behavior modeling [322], as they are often subject to corruption, delay or

loss of information caused by the wireless communication and the presence of hardware

inaccuracies in the nodes [213]. This suggests that many co-interaction may indeed be

noisy in the sense that they are little value (if any at all) to the given phenomenon being

studied.

Yet, most algorithms for community detection in networks are designed under the

assumption that the network structure modeled from the individuals’ interactions faith-

fully represents the studied phenomenon [55]. In other words, all existing edges are taken

into consideration in the process of uncovering communities. As such, in face of large vol-

umes of noisy and sporadic edges, these algorithms are susceptible to misinterpretations,

producing misleading conclusions. Indeed, there has been a widespread debate about the

implications of ignoring data quality in network [53, 148, 208]. The selection of edges that

are important to the phenomenon under study, referred to as salient edges, is tackled by

algorithms that őlter out noisy edges and provide a reduced (representative) version of

the network that only contains those salient edges. Such reduced version of the network

is called the network backbone. The deőnition of edge salience is based on an ensemble of

problem-speciőc and node-speciőc perspectives of the network and quantiőes the extent

to which there is a consensus among the nodes with regard to the importance (represen-
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tativeness) of an edge [102]. Often, a statistical edge property is deőned and, then, used

as the criterion to determine whether edges should be preserved or discarded [237].

Although a number of methods for network backbone extraction are available in

the literature [276, 265, 238, 102, 274, 122, 68, 239, 72, 53, 208, 299, 321, 55, 135, 178, 204],

there is still a lack of studies that evaluate how they perform on many-to-many networks,

when applied with the purpose of uncovering collective behavior patterns represented by

communities of nodes that are both tightly connected (in a topological sense) as well as

cohesive and meaningful for the particular context under consideration (e.g., ideological

behavior of members of Congress), considering more than one method to choose the

most appropriate one for the given phenomenon. In other words, the removal of noisy

and sporadic edges considering the phenomenon to be studied leaving only the network

backbone, particularly in the case of many-to-many networks, is a necessary step prior to

applying community detection algorithms to reveal collective behavior patterns.

Another issue that arises is the frequent lack of a ground truth for evaluating the

quality of an extracted backbone, which makes it difficult to validate the obtained re-

sults. Usually, authors evaluate the results only on topological metrics, such as commu-

nity modularity, density, clustering coefficient, arguing that the extracted backbone has

more clearly deőned substructures than the original network [265, 102, 72, 68, 208, 299,

60, 204, 199]. While topological properties are important to study the quality of the ex-

tracted backbone, they are only one aspect. Contextual criteria that relate the backbone

properties (e.g., identiőed communities) to the characteristics of the phenomenon under

study (e.g., amount of information shared by a community) should also be considered as

part of the evaluation to provide a clearer picture of whether the backbone actually cap-

tures the driving factors behind the phenomenon [323, 90, 53, 60, 164, 178, 168]. Yet, to

our knowledge, there is no previous work that addresses both topological and contextual

metrics for evaluating backbones in terms of collective behavior represented by commu-

nities and, in particular, highlights how the properties of both the phenomenon and the

method should be considered.

Moreover, from a temporal perspective, there are several studies that address the

dynamics of co-interactions focusing on the challenges associated with prediction tasks

[331, 23, 282, 142, 333, 337], models for temporal representation learning [255, 150, 118],

and mining of special graph substructures (e.g., motifs) over time [223, 163, 86, 305]. The

different contexts evaluated by these studies leave no doubt that these systems display

distinct and valuable, from the perspective of understanding system dynamics, tempo-

ral properties. However, these previous studies have mostly not addressed the temporal

dynamics of communities as well as contextual information from the emerging backbone.

Understanding such temporal patterns, in turn, can offer valuable insights into the dy-

namics of collective behavior in the system and, as such, a better understanding of the

phenomenon under investigation [69, 194, 65].
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In sum, all of these issues must be considered and properly tackled when one aims

at investigating collective behavior modeled in many-to-many interactions. As argued, no

prior work has jointly addressed them all. Yet, such endeavor has the potential to reveal

fundamental knowledge that is crucial to understand the phenomenon under study. For

example, in the context of co-voting networks, it may reveal which ideological groups dom-

inate the political system and how they evolve over time. Similarly, when analyzing net-

works of information dissemination, community analysis may help explain how a particular

content becomes viral, whether particular groups of users are responsible for dictating the

online discussions or even by coordinating the spread of misinformation [214, 220, 57, 296].

Having stated the challenges and motivations driving this dissertation, we next

deőne our guiding question and introduce the problem we address.

1.2 Problem Statement

In this dissertation, we are interested in modeling and analyzing collective behavior

captured by many-to-many networks of user co-interactions in different contexts. To that

end, we face the challenges of identifying and removing random, sporadic and weak (i.e.,

noisy) edges from the network as a step to uncover the communities that emerge from

the remaining salient edges. In particular, we aim at characterizing structural, contextual

and temporal properties of such communities as a means to reveal fundamental knowledge

about collective behavior patterns driving the phenomenon of interest. Overall, the work

developed in this dissertation is driven by the following guiding question:

Given a particular phenomenon of interest to be studied in the light of collective

user behavior in a complex system, and given the (noisy) many-to-many network

model built from a set of user co-interactions collected from that system, how can we

reveal structural (topological), contextual and temporal properties of cohesive groups

of users (communities) that can help shed light into how collective behavior emerges

and evolves, driving the phenomenon under investigation?

Our goal is to tackle this guiding question in different contexts, by exploring the

general steps presented in Figure 1.1. We start with a target phenomenon to be investi-

gated and a corresponding dataset gathered from a system where such phenomenon will

be studied. This dataset should contain a sequence of timestamped co-interactions among

different individuals of the system, covering a period of interest. The őrst step is to build

a many-to-many network model of these co-interactions which, as argued, may carry a

large volume of noisy edges. Thus, as a next step, we must extract the backbone of this
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Figure 1.1: A visual representation of the scope of this dissertation.

network, i.e., the set of salient edges with respect to the phenomenon of interest. For this

purpose, we either rely on existing algorithms or propose new algorithms that exploit the

peculiarities and requirements of the system under study. In addition, we can choose a

backbone method whose assumptions are appropriate for a given phenomenon, as well

as a set of candidate methods with the goal of őnding out which of them best captures

the underlying phenomenon of the network. Finally, community detection algorithms are

used to uncover groups of users representing different collective behavior patterns inŕu-

encing the system. We then aim at analyzing such communities, focusing on topological

(community structure), contextual (system-related community attributes) and temporal

(community dynamics) properties, attempting to draw fundamental knowledge about the

target phenomenon.

1.3 Research Goals

The challenges associated with our target problem deőned in Section 1.2 have led

to the deőnition of the following research goals that we explore in this dissertation:

• RG1: Uncovering topological and contextual properties of communities

in many-to-many networks: Our őrst goal consists of identifying communities

representative of collective behavior in the target system and characterizing struc-

tural and contextual properties of such communities that are fundamentally related

to the phenomenon under investigation. As mentioned, one key challenge to be ad-

dressed is the identiőcation of the salient edges that compose the network backbone.
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We adopt different methods of backbone extraction, existing ones as well as new

ones, based on the speciőcities of the system and the phenomenon under study.

• RG2: Modeling the temporal dynamics of communities in many-to-many

networks: We are interested in analyzing the temporal dynamics of the identi-

őed communities by examining how the structural and contextual properties of the

backbones evolve over time. From the structural perspective, we are interested in

understanding and quantifying the dynamics at individual and community member-

ship levels. With the contextual perspective, we can in turn examine the contextual

properties of the phenomenon behind these communities (e.g., the discussion top-

ics, co-interactions patterns) as they evolve over time.

• RG3: Establishing a methodology for selecting and evaluating network

backbone extraction methods in the face of a phenomenon modeled in

many-to-many networks: As mentioned earlier, several methods for backbone

extraction in the literature may be used for our purposes in RG1 and RG2. How-

ever, it is challenging to select and evaluate the most appropriate method in sce-

narios for which often there is no ground truth. This largely depends on a compre-

hensive knowledge of the assumptions of both methods and phenomena. Our ulti-

mate research goal, therefore, is to identify the key properties of such methods and

potential phenomena to guide the selection, use, and evaluation of methods for the

study of a particular phenomena.

In Figure 1.1, we label the steps that compose each research goal by labeling

them with RG1, RG2, and RG3. Aiming at investigating collective behavior in different

contexts, we examine the research goals 1 and 2 in different case studies. Then, motivated

by the possibility of using more than one method and proposing alternatives for selecting

and evaluating backbone methods, we approach our RG3 with a range of methods and

structural and contextual metrics, őnally testing it on prior and new case study.

1.4 Contributions

Building on the motivation and research question presented in the previous sec-

tion, we offer our contributions to each of our RG below.

RG1 and RG2: Our contributions to RG1 and RG2 are explored through two case stud-

ies of very different domains, notably political ideologies of voting members of Congress
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and online discussions in a popular social media application. As our őrst case study, we

have investigated the emergence and the dynamics of ideological communities in political

co-voting networks. In that front, our main contributions can be summarized as:

• We propose a methodology to uncover and analyze dynamic ideological communities

and their polarization in party systems using historical data from the House of

Representative of two different countries, namely Brazil and the United States;

• As part of our methodology, we propose to extract the network backbone by sequen-

tially employing two approaches. This őrst one is driven by contextual information

of the target phenomenon, that is the formation of ideologically aligned communi-

ties. The second approach is based on structural information of the initially ex-

tracted backbone, aiming at revealing polarized ideological communities;

• We investigate the dynamics of community membership by quantifying the extent

to which community membership changes over time. We also propose a new method

to jointly learn temporal node embeddings for multiple networks representing the

target system in different periods of time. This method allows us to track the shifting

of individual members over time in the political space deőned by the identiőed

ideological communities.

• We offer an extensive characterization of the properties of ideological communities,

in particular polarized communities, in the Brazilian and American party systems

over a long period of 15 years. Our results reveal strikingly different patterns, in

terms of both structural and dynamic properties, and help understand the dynamics

of ideological groups in distinct political systems.

As our second case study, we study the emergence of communities of discussions

that may drive the information dissemination on a currently very popular social media

platform, namely Instagram. Our main contributions in that direction are the following:

• We model the interactions that occur among groups of users commenting on the

same post by an inŕuencer. For the sake of comparison, we use two groups of inŕu-

encers, one made up of politicians and political őgures and the other composed by

celebrities in general. Moreover, our study considers data from two different coun-

tries, namely Brazil and Italy, aiming at identifying cultural-driven similarities and

difference. To drive this study we gathered a very large dataset for each country,

covering, in both cases, a 10-week period around a major political election campaign.

In total, our dataset contains the activity of approximately 1.8 million unique com-

menters on almost 37 thousand posts by 320 inŕuencers in Brazil and Italy;
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• Aiming at extracting the backbone of the modeled networks, we propose TriBE, a

novel backbone extraction method based on a probabilistic reference network model

where the edges are built on the assumption of independent behavior of commenters.

The main idea is to focus on commenter co-interactions that deviate signiőcantly (in

a probabilistic sense) from this assumption, as these may more faithfully represent

the ongoing discussions and driving information spread in the system. TriBE takes

into account particular characteristics of user behavior in social media, notably the

popularity of posts and commenters’ engagement towards each inŕuencer;

• We analyze the structure of the backbones and the communities that compose them

in terms of their topological structure, textual properties of the discussions carried

out by their members and temporal evolution. Our results reveal rich and distinct

characteristics in terms of political and non-political discussions in both countries.

RG3:: Towards addressing RG3, we propose a methodology for selecting and evaluating

methods for extracting networks based on a phenomenon under study. Speciőcally, our

contributions are:

• We review ten methods for extracting backbones, characterize their assumptions

and requirements, and discuss aspects to consider for their applicability in practice.

We identify the network properties that these approaches exploit by showing how

they can be used to study various phenomena. Compared to previous works, we

offer a thorough and reasoned investigation covering a wide range of state-of-the-

art methods, including recently proposed ones.

• We propose a methodology for applying, evaluating, and selecting the best method(s)

for a given target phenomenon. Our methodology builds on the existing literature

by bringing together metrics for backbone quality that capture both structural and

contextual (i.e., phenomenon-speciőc) aspects. This allows us to evaluate the re-

sulting backbone from the perspective of the emerging structure and the extent to

which it captures the phenomenon under study. In addition, our methodology ex-

plicitly considers each method’s matching properties and requirements with the key

characteristics of the phenomenon under study as a step towards method selection.

• We apply the proposed methodology to two large-scale case studies (i.e., online

discussions on Instagram and information dissemination on WhatsApp) related to

phenomena with different requirements. For each case study, we show that different

methods can lead to very different results and that the choice of the most appropriate

method is of paramount importance to reveal knowledge about the phenomenon

under study.
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1.5 Outline

The remainder of this dissertation is organized as follows: Chapter 2 discusses

previous work in areas closely related to the topic of this dissertation. Chapter 3 states

our target problem, presents the associated challenges, and provides our general approach

to tackle it. Chapters 4 and 5 present our investigation of the őrst two research goals in

two different case studies, while Chapter 6 describes our methodology for selecting and

evaluating network extraction methods. Finally, Chapter 7 concludes this dissertation

and provides an outlook on future work.
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Chapter 2

Background and Related Work

Figure 2.1: Mind mapping of the topics related to this dissertation.

In this chapter, we present a summary of background knowledge and related work

that is essential to the understanding of this dissertation. Figure 2.1 shows the main

topics of prior work related to this dissertation are organized. In light of this, this chapter

is organized as follows:

• Section 2.1 discusses prior studies on collective behavior focusing on distinct models,

their applications and outstanding problems;

• Section 2.2 provides an overview prior strategies to model user co-interactions;

• Section 2.3 offers a brief overview of existing network backbone extraction techniques

and also focuses on previous efforts that attempt to systematize the use of a set

of backbone extraction methods for a particular purpose. We then discuss their

advantages, limitations, and opportunities for new contributions;

• Section 2.4, in turn, provides an overview on community detection in complex net-

work, here taken as a fundamental representation of collective behavior;

• Section 2.5 discusses an important alternative for extracting patterns in networks

from a temporal perspective, notably embeddings;

• Finally, Sections 2.6 e 2.7 present representative prior studies on the modeling of

political ideological behavior and online discussions, respectively, which are topics

that we tackle in our two case studies.
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2.1 Modeling Collective Behavior

Collective behavior is a wide and complex concept covering different kinds of be-

haviors, structures, processes in varied contexts. In essence, collective behavior is a mul-

tidisciplinary topic of investigation, being studied by researchers in areas such as Soci-

ology, Anthropology, Psychology, Political Science, Economics and, more recently, Com-

puter science [69]. Most of the existing theories about collective behavior are based on

speciőc phenomena. For instance, protests, riots or panic, fads and trends in which a large

number of people are obsessed with an object or idea for a period of time [277, 170, 250].

In light of that, different deőnitions of collective behavior are presented in the literature.

However, they all have something in common, namely the focus on the behavior of peo-

ple in groups, usually in response to an event or to express a common feeling.

The concept of collective behavior has changed over time, broadening in response

to changes in social relations and to the evolution of society. One of the main reasons was

technological advances, which allows collective behavior to reach global scale [69]. Pop-

ularity of online content [167, 168, 65], human mobility [274, 323], market transaction

[226, 181, 258] are notable examples where collective behavior has been studied. Here, we

consider the deőnition adopted by Neil Smelser in 1962:

Deőnition: łCollective behavior refers to the kinds of activities engaged in by siz-

able but loosely organized groups of people.” [277, 295].

In other words, according to this deőnition, collective behavior is essentially as-

sociated with a considerable number of people acting in a given context in general. Al-

though there may be any small structure for a subset of these people who act collectively,

it is extrapolated by the scale of joint actions considering all individuals. Therefore, they

still constitute a loosely organized group.

In Computer Science, the modeling of collective behavior has been explored across

different frontiers. The combination of new technologies and methodologies enables the

crawling, storage and processing of large volumes of data that are sources of information

and can contribute to a multidisciplinary sphere. In such a context, distinct computational

models have been used to study collective behavior. In the following, we discuss some

prior efforts in that direction.

For example, the adoption of models based on time series has allowed studies on

how the preference for content generated by inŕuential users favors bursts of engagement

on Twitter [65]. In [194], the authors showed a relationship between the dynamics of news

spreading on Twitter and their level of credibility. They observed that news with lower

levels of credibility tends to attract more users to spread them. Lehmann et al. [152]
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showed that the diffusion of hashtags on Twitter analyzed from a collective perspective

is naturally driven by exogenous factors. That is, co-interactions through hashtags posts

are mostly expressed by common feelings that instigate users’ actions.

In a different direction, prior studies explored machine learning techniques to an-

alyze collective behavior patterns. For example, the authors of [323] proposed to extract

cultural similarities in cities by analyzing patterns of collective behavior through the use

of Location-Based Social Networks data. By generating an affinity matrix between cities

based on the features as daily activity, mobility, and linguistic perspectives of groups

of peoples, the authors used spectral clustering techniques to discover cultural clusters

around the world.

In a similar direction, Silva et al. proposed to map people’s mobility between

places using Location-Based Social Networks (LBSN) data to build a transition graph

model. Using such model, the authors analyzed patterns of human mobility in different

cities, discussing how to identify similarities and differences in human dynamics by group-

ing cities according to characteristics of people’s mobility [274]. Other prior studies by

the same authors investigated the emergence of gender preference for venues in a given

region in the real world [198] and user preferences regarding eating and drinking habits

across populations at different scales, e.g., countries, cities, or neighborhoods [273]. In

[109], the authors modeled a network of taxi travel demands to discover latent collective

mobility patterns. The proposed model allows identifying, for example, points of origin

and destination that are more inŕuential and groups of people who constantly present

similar demands in their travels.

Conversely, Belhadi et al. [22] focused on identifying patterns of collective abnor-

mal human behavior in pedestrians using images. The authors referred to abnormality

as a set of pedestrians that are highly correlated, i.e, with a large number of shared loca-

tions. By proposing the use of machine learning models based on deep learning for im-

age recognition, the authors showed that it is possible to learn different characteristics

about mobility through historical data to extract collective abnormal behavior patterns.

Taking a different approach, Barros et al. propose a methodology for modeling and an-

alyzing node mobility in networks based on a node embedding method that models and

reveals the importance of nodes in mobility and connectivity patterns while maintaining

their spatial and temporal properties [19].

Other approaches propose the use of alternative models to analyze collective be-

havior. As an example, Lu et al. [167] proposed a survival model to identify factors that

motivate and drive collective attention under content generated on online social networks.

Orthogonally, Martin-Gutierrez et al. [180] proposed a probabilistic framework to analyze

how actions performed by individuals embedded in a social system trigger collective reac-

tions (or responses). In [96], the authors propose a generative model to analyze how users

collectively interact with Facebook applications taking into account the history of recent
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decisions and the cumulative popularity of each application. The results show that the

future popularity of applications on Facebook is strongly associated with recency factors

that are cumulative, suggesting that the adoption of an application among a set of users

follows a collective trend.

Focusing on network-oriented models, closer to the goals pursued in this disserta-

tion, a number of studies target the analysis of collective behavior notably in social media

applications. For example, Lu et al. [168] proposed a framework for modeling collective

behavior in cascading social systems (e.g., Twitter and Weibo). The authors found that

users following the same proőle can be organized into different groups, each one with par-

ticular characteristics driving such collective behavior, e.g., timing, structure, posts topic,

and user interests. The author of [162] used the Facebook and Wiki-talk (A dataset build

on edits on user talk pages on Wikipedia) aimed at understanding how user’s social signa-

ture changes over time considering their ego network. The results, obtained on Facebook

and Wiki-talk, show that there are strong and temporally stable social signatures built

around co-interactions on such platforms. In the same direction, Xu et al. [319] aimed

at developing strategies to predict user behavior, given some knowledge of the behavior

adopted by the user’s neighbors in the network.

By associating users with common interests, Awal et al. [10] examined collective

preferences by adopting an overlapping community detection approach. Their goal was to

extract information and predict which categories of articles a user would read or would be

interested in reading, based on his/her social collective actions on a consumer review site.

Gao et al. modeled human behavior during different extreme events by correlating data

from Twitter and GoogleTrends. The goal of the authors was to assess how human risk

and emotional intensity generate collective responses in different regions and how these

responses evolve over time. The results of a case study of the 2011 Japanese earthquake

show different communities emerging with different perceptions and actions about the

event studied [90].

Network-based modeling has also been used in other complex systems in addition

to social media platforms. For example, Mateo et al. showed how network topology has

a signiőcant impact on collective behavior in the study of swarm robots [181]. The au-

thors proved the existence of optimal network topology to produce the most effective col-

lective response. With a focus on őnal markets, Peron et al. [226] aimed at identifying

the emergence of collective behavior when stock prices exhibit a similar tendency, deőn-

ing the market’s direction synchronization. Similarly, the authors of [258] presented a

broader analysis of the degree of collective behavior among the markets and the share of

each market in the world global network. Stosic et al., in turn, studied studies the pres-

ence of communities in the context of cryptocurrency price changes, highlighting distinct

community structures built on price variation [281].
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In short, there is a large number of studies in different areas but notably in Com-

puter Science, focused on modeling collective behavior. Similar to some of the aforemen-

tioned prior efforts, we here also propose a network-oriented approach. Naturally, the col-

lective actions of groups of individuals constitute what we here refer to as co-interactions,

which can be modeled by a network. Consequently, this favors the extraction of patterns

of different natures (e.g., structural, contextual and temporal). However, most of the pre-

vious efforts neglect some aspects of paramount importance that we will discuss and ad-

dress throughout this dissertation. In particular, many such co-interactions occur from

random and sporadic behavior, thus reŕecting very weak relations from the perspective

of analyzing collective behavior to understand the target phenomenon. Thus, it is impor-

tant to őlter out such noise, focusing only on those network edges that are really relevant

(or salient) for the purpose of characterizing collective behavior [23, 65, 93]. Although

some prior studies have addressed this issue, they are limited to speciőc strategies to the

systems studied [226, 274, 281].

Similarly, focusing on the extraction of communities of people exhibiting collective

behavior, the adoption of community detection approaches seems a natural strategy to

identify structural properties of how individuals relate and provide a view of how the

system is structured. Moreover, mapping the dynamics of these groups over time converge

or contrast is something seldom explored by previous studies, although it constitutes a

fundamental property of any collective behavior [69, 96, 194].

Here, our main hypothesis is that considering these previously neglected elements

together can provide valuable insights about collective behavior in a given system. This

imposes a series of challenges, starting with the possibility of proposing a generalized and

agnostic modeling approach. In the following sections, we discuss other prior studies that

are also related to this dissertation, including prior techniques employed in the analysis of

collective behavior. We start by discussing prior studies on modeling user co-interactions,

which, though closely related to our current goal, differs by not necessarily aiming at

uncovering patterns of collective behavior.

2.2 Modeling User Co-Interactions

A plethora of phenomena related to human interactions online and in the real world

have been analyzed using concepts from complex networks. Yet, many of these interactions

occur among multiple (potentially two or more) entities simultaneously, here referred to

as co-interactions. Acknowledging the distinct properties of co-interactions, some recent

studies have empirically analyzed them through the lens of higher-order models. Such
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models focus on preserving the different structures of connectivity that can occur as two

or more individuals interact with each other [21, 330].

In the most basic form, these structures are represented by different motifs (e.g.,

triangular motifs, star, structural hubs, etc) [24, 255]. Indeed, Benson et al. [24] explored

the diversity of such co-interactions to analyze how they build networks with diverse struc-

tural patterns. Similarly, Rossi et al. [255] proposed a general framework to learn higher-

order structures embedding representations based on distinct motifs, while others have

used neural networks to extract latent patterns from signals to forecast new co-interactions

[188, 118]. Also, alternative methods have been proposed to represent different settings of

higher-order structures [312, 313]. However, analyzing such co-interactions on large scale

is, often, computationally intractable despite recent advances in high-performance data

processing, which limits the use of many of the recently developed models [305, 330].

In this dissertation, we focus on the densest and most uniform form of co-interactions,

where all individuals interact with each other, a particular type of motif known as clique

[21]. For such case, the literature adopts different nomenclatures, including sets of inter-

actions, sequences of associations, cliques, and multi-actor interactions [140, 155, 21, 330].

These co-interactions constitute an important substructure for some complex systems, ex-

hibiting diverse properties that are relevant to the study of the (often global) phenomenon

of interest [23, 188]. Examples of such co-interactions are online shopping carts with a

set of items being purchased together, co-authors of scientiőc publications, co-interactions

among proteins, people co-visiting the same places driven by cultural interests, members

of Congress taking the stand to vote during a voting session and groups of users com-

menting on the same topic on a social media application [323, 25, 208, 214, 32].

Moreover, we are interested in looking at how a sequence of such co-interactions,

driven by actions of interest of multiple individuals build a network. To that end, we

model them by projecting them into a weighted and undirected graph G = (V,E), where

nodes (or vertices) in set V correspond to individuals and an edge eij = (i, j), with weight

w, is added to set E linking the components i and j if they have already interacted. The

weight w corresponds to the number of interactions both individuals shared in common

during the period under analysis. From this network model, the structural topology can be

characterized based on traditional metrics such as density, diameter, clustering coefficient

and number of connected components, among others [64].

However, as already argued [161, 25, 55, 40, 142], such projected networks may

include a large number of random, sporadic and weak edges that are not really part

of the fundamental underlying network component representing the target phenomenon.

Indeed, although this practice of projecting the original network into a graph of pairwise

connections has been widely adopted, little attention has been paid to understanding how

the projection considering all co-interactions may obfuscate relevant structural properties

in the projected network.
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For example, Cruickshank et al. [57] proposed to analyze discussion topics on

Twitter by modeling a sequence of networks of co-interaction built on co-occurrences of

hashtags used by tweet users. Moreover, other information is considered to model the

network, for instance, the textual similarity of Tweets using the same hashtag. Then, a

community detection method is applied to identify topical clusters of hashtags. In another

work, the authors analyzed the online hate of such communities [296]. Similarly, Pacheco

et al. used contextual metrics, for instance, activity synchronization and text similarity to

model the network representing Twitter users, aiming at uncovering coordinated behavior

in Twitter [220, 221].

More recently, some studies have shown the importance of removing random or

weak edges to reveal an underlying structure (i.e., the backbone) in networks formed by

co-interactions [104, 174, 55, 54, 182, 183, 123, 127]. For example, Leão et al. showed how

removing random edges in co-authoring networks converge to a topology with more pure

social relationships and better quality community structures, compared to the original

complete network [148]. Another example is the study of information dissemination on the

WhatsApp platform [214], where the authors explored a network of co-sharing patterns

(i.e., a network connecting users who shared the same piece of content) to reveal important

properties of information spread on the platform.

Thus, as part of our approach to model co-interactions, we must tackle the chal-

lenges of using the projected network, notably the presence of a potentially large number

of weak and possibly irrelevant edges. Speciőcally, we must investigate strategies that re-

move such noise and reveal edges in the projected network that, in fact, contribute to the

study of a given phenomenon emerging from collective behavior pattern. In other words,

we must investigate strategies to extract the backbone of the original network. Moreover,

as our focus is on collective behavior, we must also extract communities from the backbone,

as each community may represent an important pattern of collective behavior. Ultimately,

our goal is to provide a methodology by combining these steps to gain relevant insight

into the phenomenon under study. Such methodology should consider backbone extrac-

tion as a crucial step in addressing this problem. In short, the őnal goal is to use the best

method for extracting backbones from a set of candidates to capture patterns of collec-

tive behavior. In the next sections, we discuss previous work on the two main components

that make up such endeavor: network backbone extraction and community detection.



2.3. Network Backbone Extraction 38

2.3 Network Backbone Extraction

Starting with applications, multiple works in various őelds have shown the impor-

tance of backbone extraction methods to deal with random, sporadic, and weak edges that

may obfuscate the phenomenon under study. For example, several studies applied early

proposed methods to study phenomena in biological networks [225, 30], transportation

networks [316, 60], economic networks [201, 182, 183], co-authoring networks [148, 89],

human mobility networks [274, 54, 29] as well as congressional voting networks [32]. More

recently, some studies have highlighted the importance of this task in social media appli-

cations [218, 1, 220, 221].

Moving to the body of work that focuses on the proposal of new methods, they

compared methods to alternatives in light of speciőc phenomena of interest in various do-

mains, such as transportation, őnance, and ecology [265, 238, 102, 72]. Most of these prior

studies rely on structural/topological properties, including node and edge coverage, clus-

tering coefficient, centrality measures, and community quality measures, to evaluate dif-

ferent backbones extracted from the same network (thus comparing alternative extraction

methods). As such, they offer only a partial view of the quality of the backbones. Contex-

tual (i.e., phenomenon-speciőc) criteria, capturing the extent to which the extracted back-

bone represents the phenomenon under study, are not considered. More recently, some

studies have proposed and compared backbone extraction methods based on regression-

models as a means to capture contextual attributes speciőc to the phenomenon, relating

them to topological properties of the backbone [53, 178, 52]. However, these studies, as

well as the aforementioned ones, do not provide a clear rationale as to why the subset

of used methods őts the given phenomenon and therefore whether they are adequate to

the study. Such reasoning is of utmost importance as different methods have different as-

sumptions and properties, which may constrain their use or introduce unwanted biases to

the study of speciőc phenomena.

We then focus on methods that are considered state of the art and that have al-

ready been used to model collective behavior in the context of many-to-many to give a

brief overview of them. In addition, in Chapter 6, we propose a categorization that high-

lights their assumptions, requirements and various relevant aspects of these methods that

have not been clearly stated in previous work as part of our methodology for selecting and

evaluating backbone methods. In this way we make our own contribution to a more fun-

damental understanding of the methods. We describe here naive threshold-based back-

bone extraction, High Salient Skeleton [102], Random rElationship ClAssiőer STrategy

(RECAST) [68], Disparity Filter [265], Polya Urn Filter [178], Marginal Likelihood Filter

[72], Noise Corrected (NC) [53], and Global Statistical Signiőcance (GloSS) Filter [238],

Stochastic Degree Sequence Model (SDSM) [204], and őnally,Tripartite Backbone Extrac-
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tion (TriBE) [78], which is a particular contribution of this dissertation and is described

in detail in Chapter 5.

Threshold-based backbone extraction: one of the simplest, most intuitive and most

used methods [239, 321, 279]. It consists on removing edges whose weights are smaller

(or higher) than a pre-deőned threshold τ , that is, edge saliency refers simply to edge

weight. This method is adequate to studies where the salient edges are those with higher

(or lower) weights. Otherwise, as previously argued [294], thresholds may bias the analy-

sis and lead to misinterpretation of the results.

High Salient Skeleton (HSS) [102]: the backbone is extracted by őrst normalizing the

edge weights and then computing shortest-path trees from each node to all other nodes in

the network. Edge saliency is deőned based on the frequency of its occurrence in the short-

est path trees: edges with frequency below a pre-deőned threshold τ are disregarded. In

doing so, this method attempts to capture edges that simultaneously have heavy weights

and are fundamental for keeping nodes connected. As such, the notion of edge saliency is

inherently connected to network topology. Moreover, like for the threshold-based method,

the use of a global threshold may lead to biases and misinterpretation.

Random rElationship ClASsifier sTrategy (RECAST) [68]: it assumes that a

salient edge connecting two nodes must have at least one of two properties that differ

signiőcantly from random graphs: (i) the common neighborhood of two adjacent nodes

(your friends are my friends) and (ii) the regularity of interactions (persistence) within

the observed time period. Following this rationale, each edge is classiőed into one of four

possible classes as follows. First, a single reference network model is created, as a random

graph with the same numbers of nodes and edges and the same node degree of the original

network. The distributions of the two aforementioned properties ś common neighborhood

and persistence ś are then computed for the random graph. The following four classes

are then obtained depending on whether each of the two properties signiőcantly deviates

(according to a pre-deőned alpha) from the random graph: Friends (both common neigh-

borhood and persistence deviate from random), Bridge (only persistence deviates), Ac-

quaintance (only common neighborhood deviates), and Random (neither deviates). These

classes provide a ŕexible concept of edge saliency as they can be employed differently, de-

pending on the phenomenon being studied, to remove edges with particular properties.

Disparity Filter (DF) [265]: it assumes that an edge connecting a given pair of nodes

is salient if it has a disproportionate weight compared to the other edges leading from the

nodes to their respective neighbors. In other words, salient edges are those whose weights

deviate signiőcantly from the null hypothesis that the weights of all edges incident to a



2.3. Network Backbone Extraction 40

given node are uniformly distributed.

Polya Urn Filter [178]: similarly to DF, this method assumes that edge weights emerge

from the aggregate process of individual nodes’ preferences to interact with each other

over time. It also assumes that interactions between nodes are maintained and reinforced,

such that the larger the number of interactions between the same two nodes, the higher

the probability of they interacting again. A reference model is built for each edge, using

the Polya Urn model [117] which captures the reinforcement of existing interactions by

examining the degree and strength (the sum of the weights of all edges incident to the

node) of each node incident to this edge. This reinforcement mechanism can be regulated

and estimated by the system through a őne-tuning process. Salient edges are those that

deviate signiőcantly from such reference model (according to a given alpha).

Marginal Likelihood Filter (MLF) [72]: assumes that edge saliency should be an-

alyzed in light of the strengths of the two nodes the edge connects. The higher the

strengths the larger the edge weight must be to be considered salient. Speciőcally, the

method builds a reference edge weight distribution model for each edge: the probability

that edge between nodes i and j ends up with weight wij is based on a Binomial distri-

bution with parameters n deőned by the total strengths of all nodes in the network and

p computed based on the strengths of nodes i and j. An edge is considered salient if the

observed weight deviates signiőcantly from the one predicted by the reference model.

Noise Corrected (NC) [53]: similarly to DF and the Polya Urn Filter methods, NC

also assumes that edge saliency arises from the cooperation between nodes. However, un-

like those methods, NC preserves peripheral-peripheral connections, which is crucial for

capturing edges that, despite having small weights, may still be considered relevant for the

phenomenon under study. These connections may be preserved by estimating the expecta-

tion and variance of edge weights using a hypergeometric distribution, taking into account

the propensity of both nodes to send and receive edges. It also provides a direct approxi-

mation through a per-edge reference Binomial distribution (similarly to the MLF method).

The main advantage of NC, though, is the ability to estimate an error for the expecta-

tion of the weights. As in the other methods, an edge is considered salient if its observed

weight signiőcantly exceeds the expected weight (given the strengths of both nodes).

Global Statistical Signiőcance (GloSS) Filter [238]: it assumes that salient edges

cannot be identiőed independently of the overall network topology, once nodes have dif-

ferent degrees. As such, it builds a single (null) reference model that preserves the edges

between nodes as well as the overall edge weight distribution. Yet, when selecting salient

edges, i.e., edges whose observed weights signiőcantly deviate from the reference model,
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the method estimates the probability of observing an edge weight between two given nodes

considering the nodes’ observed degrees and strengths as constraints.

Stochastic Degree Sequence Model (SDSM) [204]: This method considers a bi-

partite network to evaluate the salience of an edge in the projection. The SDSM speci-

őes the degree sequence of agents and artifacts of a bipartite network on the average con-

straint such that their expected row sums and expected column sums are equal to the ob-

served ones. In this way, a reference model is built based on the Poisson binomial distri-

bution that selects as salient those edges whose observed weights differ signiőcantly from

the expected value given the degree sequence constraints.

Tripartite Backbone Extraction (TriBE) [78, 79]: this method was proposed to

study phenomena driven by user interactions in social media applications. It exploits the

tripartite structure commonly found in such platforms, that is, a piece of content, the con-

tent creator, and the other users (e.g., the followers) who interact with each other in reac-

tion to that content (e.g., by commenting on a post, retweeting the same tweet, etc). As

such, the method addresses the heterogeneity in user activity level and content popularity

typically observed in social media applications. Speciőcally, it builds a reference weight

distribution model for each edge, based on a Poisson binomial distribution, whose pa-

rameters are computed based on the distributions of content popularity and user engage-

ment towards content from the same creator (as estimated by prior interactions). Once

again, salient edges are those whose observed weights signiőcantly deviate from their cor-

responding reference models. This particular method is proposed in this dissertation and

explained in more detail in Chapter 5.

The aforementioned methods have been analyzed in the context of various phenom-

ena of interest. Yet, no prior study is available in the literature where all ten methods are

evaluated under the same analysis framework. For illustration purposes, Figure 2.2 shows

which methods have been compared to each other in at least one of the studies aforemen-

tioned. Several methods have not been compared to each other (e.g, NC and MLF). Some

of them (e.g., RECAST and TriBE) have not been compared to alternatives at all. Clearly

not all methods are adequate to all studies, which justiőes the lack of some comparisons.

Yet, the literature lacks an approach for selecting backbone extraction alternatives

and evaluating them for a given study, as we note that few works evaluate existing solu-

tions for a target study. Notably, Dai et al. have evaluated six methods for extracting the

salient edges from transportation networks, i.e., those edges that are critical in the network

[60]. As most prior studies, the authors considered only topological properties in such

evaluation, which seems adequate given the interest in network connectivity (i.e., paths).

Similarly, Mukerjee et al. investigated the impact of method parameters on network con-
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Figure 2.2: Selected backbone extraction methods: edges connect methods already com-
pared to each other in prior work.

nectivity [199]. They proposed choosing the best method and its parameters based on

topological properties, notably, by maximizing the number of edges while maintaining the

network’s connectivity. Last, Zachary et al. evaluated existing methods for the speciőc

case of bipartite networks, but once again considering only topological properties [204].

In contrast, our focus is on collective human behavior in many-to-many networks,

which are expected to have more nuanced aspects (compared to, for example, transporta-

tion networks). These aspects should be investigated from both topological and contex-

tual perspectives. Thus, we see a gap in terms of a principled methodology for selecting

and evaluating the best method among alternatives for a given target phenomenon, tak-

ing into account whether the assumptions and requirements of each method are appro-

priate to the characteristics of the phenomenon.

2.4 Community Detection

Detecting communities (or clusters) in networks has been a widely studied problem

for many decades due to its considerable range of applications. There is no universal

deőnition for community detection [156]. Often, the concept of community has been

deőned as a group of nodes that have a higher likelihood of connecting (or similarity) to

each other than to nodes from other communities [17]. To extract such communities, it

is then necessary to deőne some measure of connectivity or similarity that captures such

intuition [156]. Given such a loose deőnition, a number of strategies have been proposed,

each one targeting a somewhat different goal depending on the particular system and

problem under study [84].

Existing solutions can be classiőed according to different criteria [235, 144, 325,

84]. For example, a community detection method can be classiőed as to whether or it

allows overlap among communities, whether it considers static or dynamic communities,
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or even whether it considers node attributes or only topological properties [317, 126, 252].

Here, we focus on detecting static and non-overlapping communities. In other words, we

aim primarily at extracting communities composed of disjoint sets of nodes in a given

network, to be applied in a sequence of networks representing the system in consecutive

non-overlapping time windows. Even in this particular context, the diversity of existing

methods is quite rich. In the following, we offer a brief discussion of the most important

methods, following the categorization proposed by Fortunato et al. [84].

Some of the most widely used methods for detecting communities in networks are

based on the optimization of some quality measure of the partitions representing the

identiőed communities [84]. One such measure of quality is modularity [207]. There are

different methods to compute modularity, depending on the properties of the input graph.

For a weighted graph G(V,A), the modularity Q is deőned as:

Q =
1

2M

∑

i,j∈V

[
A(i, j)−

k(i)k(j)

2M

]
δ(c(i), c(j)) (2.1)

where

• A(i, j) is the weight of edge connecting vertices i and j;

• k(i) and k(j) are the sum of the weights of the edges attached to vertices i and j,

respectively;

• M is the sum of the weights of all edges in graph G;

• c(i) and c(j) are the communities assigned to i and j, respectively; and

• δ is the Kronecker delta function, i.e., δ(c(i), c(j)) = 1 if c(i) = c(j), 0 otherwise.

Since exploring all possible partitions of the graph into communities is computa-

tionally impractical (it is NP-hard), several heuristic algorithms have been proposed. The

Louvain method is one of these [27]. One such heuristic that has been widely used in the

literature is the Louvain method [27]. This method has been applied in different domains,

from biological networks [257, 111] to social media applications [302, 214].

It starts by őnding őrst small (i.e., single-node) communities, optimizing the mod-

ularity locally on all vertices. It then proceeds iteratively: each small community is

grouped into one (meta-)node and the őrst step is repeated. At each step, the result-

ing network partition is evaluated by the modularity metric. The process is repeated un-

til no modularity increase can occur. In other words, given the graph G = (V,E), the

Louvain algorithm extracts the set of communities that provides the highest modularity

value. Modularity lies in the range [-0.5,1], although, in practice, values between 0.3 and

0.7 are can be taken as evidence of well structured communities [207].
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The Louvain method does not require deőning the number of partitions (i.e., com-

munities) in advance and does not depend on other representations of the graph (e.g.,

to encode it in a dimensional space), but the use of modularity as a measure of quality

suffers from a problem known as Resolution Limit [83]. In its original formulation [207],

the modularity metric tends to increase as very small communities are merged into larger

ones. Thus, methods that aim at optimizing this metric tend to favor such merges, which

ultimately yields results that lose inherently small communities. This is directly related

to the number of links on the network. Communities whose the sum of its nodes’ de-

gree is smaller than
√
(2 ∗ E) are invisible for the method and may be merged with other

communities [186]. There have been proposals to change the modularity metric by incor-

porating a parameter γ in its deőnition so as to make it robust to such cases, effectively

allowing small communities to be identiőed [145]. As in other studies [111, 131], we here

set γ to its maximum value (γ = 1). The revised deőnition of modularity, which is the

one we use in this dissertation, is as follows:

Q =
1

2M

∑

i,j∈V

[
A(i, j)− γ

k(i)k(j)

2M

]
δ(c(i), c(j)) (2.2)

where

• A(i, j) is the weight of edge connecting vertices i and j;

• γ is the resolution parameter;

• k(i) and k(j) are the sum of the weights of the edges attached to vertices i and j,

respectively;

• M is the sum of the weights of all edges in graph G;

• c(i) and c(j) are the communities assigned to i and j, respectively; and

• δ is the Kronecker delta function, i.e., δ(c(i), c(j)) = 1 if c(i) = c(j), 0 otherwise.

However, it has been recently argued that the Louvain method has an inherent

limitation that may lead to arbitrarily badly connected communities being extracted,

regardless of the speciőc quality metric adopted. Such limitation gave rise to the Leiden

algorithm [290]. This method works similarly to Louvain’s with some modiőcations.

Brieŕy, the Leiden algorithm consists of three steps. First, it starts by creating singletons

partition from the whole network locally moving nodes from one community to another

to őnd a partition. Unlike the Louvain algorithm that visits all the nodes in the network

after the őrst visit, the Leiden algorithm only visits those nodes whose neighborhood has

changed in each interaction, making the local moving step more efficient. In the second

step, the algorithm tries to identify reőned partitions from the ones created in the őrst

step. When reőning such partitions, they can be divided into more communities as long
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as their nodes are better connected. Nodes may be merged with any community within its

partition for which the quality function increases. This step prevents possible problems

of badly connected communities. The last step is to aggregate the network based on the

reőned partitions until no further improvements can be made [290].

Moreover, the Leiden algorithm can use the Constant Potts Model (CPM) as qual-

ity metric, which has some important differences compared to modularity [289]. One such

difference is that, unlike modularity, CPM does not suffer from the resolution limit prob-

lem. Essentially, it increases as the intra-community edges are maximized and the inter-

community edges are minimized. To achieve this, a parameter γ is established to force

that communities should have a density of at least γ, while the density between commu-

nities should be lower than γ. CPM is deőned as follows:

H =
∑

c
[ec − γ(

nc

2
)], (2.3)

where

• ec is the actual number of edges in community c;

• nc is the number of nodes in community c

• γ is parameter deőning the community density of at least γ, while the density

between communities should be lower than γ.

Other methods exploit statistical inference to őt a generative network model on the

data [270]. One of the most widely used approaches in this category builds a generative

stochastic block model (SBM) [149]. In essence, this method works as follows. Given two

components, the vector of community memberships and the block matrix, each entry of

such matrix represents the edge probability of two nodes be connected conditioned on their

group membership. This makes it possible to assess the probability of the observed data,

for modeling purposes. To őnd the latent groups of nodes in a network, it is necessary to

infer the parameters of the model that provide the best őt for the observed network [256].

However, there is one problem: for the observed graph, neither component is known

a priori. Thus, the objective of őtting a random graph constructed by SBM to an observed

graph is to infer these two components simultaneously according to a function [256].

Some more recent approaches consider identifying the number of groups as well as other

properties, such as, degree-corrected which is a new parameter that controls the expected

degree of each node [149]. An advantage of these methods is that they discover not

only communities but also other properties such as, for example, disassortativity, core-

periphery structure and the hierarchy between communities [84].

Other methods of community detection are based on spectral clustering. The fun-

damental idea behind these approaches is to identify communities using spectral proper-
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ties of the graph, for example, a Laplacian matrix [235]. In brief terms, these methods

map modes in a space using their respective eigenvectors and eigenvalues to deőne the

coordinates [84]. Finally, the resulting points can be grouped into clusters using standard

clustering techniques such as k-means [269]. Methods based on spectral clustering are ag-

nostic of the particular algorithm applied to cluster the point and, unlike those that rely

on statistical inference, do not depend on any random graph model. In addition, they do

not depend on any random graph model. Another advantage is that they tend to be quite

scalable, for example, when matrix factorization is adopted [26]. Conversely, these meth-

ods may not work well for sparse networks or networks with very heterogeneous degrees,

which is quite common in many domains [138].

Yet another class of community detection methods allows communities to be iden-

tiőed based on particular patterns, for example, by deőning structural similarity mea-

sures [144, 84]. For instance, Structural Clustering Algorithm for Networks (SCAN) is

one of them that is able to identify and isolate community that are similar based on inter-

community density, while also including two kinds of nodes that play special roles, i.e.,

vertices that bridge clusters (hubs) and vertices that are marginally connected to clusters

(outliers) [320].

In contrast, other approaches are based on running a dynamic processes on the

network. network. For example, some methods, such as the Walktrap [230], rely on

running random walks in the network. The assumption behind these methods is that

if there is a reasonably strong community structure in the network, the random walkers

tend to be trapped in nodes within a community before moving to other communities.

Though presenting some satisfactory results, Walktrap may have a high computational

cost, especially on denser networks [84].

Conversely to the aforementioned methods, which aim to identify communities

in projected networks, others are concentrated in community detection on higher-order

models. For instance, Pizzuti et al. employed a genetic algorithm to detect communities

in networks formed by motifs [229], while Yin et al. adopted a local graph clustering

approach based on motif conductance [328]. Tsourakakis et al. demonstrated the potential

of methods based on motifs for tackling clustering problems and graph mining [293].

Huang et al., in turn, proposed a motif-based community detection algorithm for high-

order multi-layer networks [119]. All these methods aim at uncovering communities that

are based on particular structural patterns (e.g., motifs) and, therefore, are not applicable

for the modeling adopted here.

In this dissertation, our focus is on exploring algorithms for detecting existing

communities, like the ones presented here, as a fundamental step to capture patterns of

collective behavior. As already mentioned, our primary focus is on detecting static non-

overlapping communities, by applying the selected method on snapshots of the network

corresponding to different time windows. Once communities are detected in each time



2.5. Temporal Network Embeddings 47

window, we are able to analyze their temporal dynamics by contrasting community mem-

bership across different time windows. To that end, different metrics and strategies can

be applied, as will be discussed in Chapters 4 and 5. In particular, one such strategy is

the use of temporal network embeddings to model the dynamics of a network. We review

prior work in this area next.

2.5 Temporal Network Embeddings

Another body of work that relates to this dissertation is the use of alternative

strategies for temporal modeling, such as temporal embeddings used to model dynamics

of behavior in different contexts. Despite the rich literature on the use of embeddings

to extract latent signals in various domains (e.g., word embeddings in textual documents

[143, 15] and node embeddings in networks [59]), the study of temporal embeddings is

relatively new. Speciőcally, in the network context, embeddings offer an important tool

to network analysis due to their capability of encoding the structures and properties of

networks with latent representations [166]. Some efforts have proposed temporal latent

space models by exploiting network embeddings [339, 211, 318], in some cases jointly with

node attributes [159, 120]. More recently, various dynamic graph embedding techniques

have been proposed for diverse purposes and applications. We refer to [18] for a complete

review of such approaches and their applications.

Recall that, in this dissertation, we build sequences of networks (backbones and

corresponding communities) for non-overlapping time windows. Thus, we are interested

in methods that learn embeddings for such time windows independently. This ultimately

leads to an łalignment problem” [327]. In simple terms, this means that while learning

different embeddings for different networks, it may not be possible to place all learned

embeddings in the same latent space, since the learning is done independently. Thus,

it may be hard to track an element (i.e., a node) across time windows. One challenge

in the łalignment problem” is to preserve similarities and to reveal differences of the

neighborhood across time in the same latent space, which is a seldom addressed problem.

Recent work has tackled this problem, yet the proposed solution has some key

properties that may not hold in several practical scenarios [100, 171, 99]. Speciőcally,

it assumes that the temporal changes in the networks are of short duration since it only

considers the network of the previous time window to learn the next time embedding. Also,

it uses the learned embedding from the previous time window to initialize the new one.

These two properties implicitly keep the new embedding (time t) close to the immediately
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previous one (time t-1). Thus, the approach is unstable in sparse networks, when not all

nodes are present in all time windows.

In a completely different context, the authors of [327] proposed a method to model

word semantic evolution which simultaneously learns time-aware word vector representa-

tions and effectively solves the aforementioned łalignment problem”. The method (pre-

sented in details in Chapter 4) tackles the problem of inferring how word semantics evolve

over time by proposing a dynamic statistical model for learning time-aware word embed-

dings using all time windows simultaneously. The main advantage is that it reaches ro-

bustness for scenarios with both smooth and rough changes, thus being more ŕexible. It

is also more robust to data sparsity and more scalable in terms of memory usage, which

is important for large networks. Inspired by this work, we here adapt the proposal to the

context of network embeddings and apply it to analyze the dynamics of individual nodes

over time. We describe how we have performed this adaptation and the results obtained

with it in Chapter 4.

2.6 Modeling Political and Ideological Behavior

A number of studies on political ideologies and behavior are based on the analysis

of user behavior in online social media applications [31, 217] as well as roll call vote

networks [67, 32]. In particular, roll call votes may be used to build networks such

that the nodes represent people (e.g., politicians), and two nodes are connected if they

have voted similarly in one (or more) voting session. Using these networks, Andris et

al.. studied committees’ formation in the US House of Representatives, concluding that,

despite the recent increase in polarization, there are moderate members in both parties

who cooperate with each other [7]. Similarly, Porter et al.. studied the committees and

subcommittees of the same chamber, exploiting the network connections that are built

according to common membership [235]. Analogously, the polarization in the US Senate

was evaluated using a network deőned by the similarity of senators’ votes [196].

In [61], the authors studied the relations between members of the Italian parlia-

ment according to their voting behavior, analyzing the community structure with respect

to political coalitions and government alliances over time. Similarly, the cohesiveness of

members of the European parliament was investigated through the analysis of network

models combining roll call votes and Twitter data [45]. Others studied the behavior of

political members, modeling roll call votes using signed networks. For example, Levo-

rato et al. used signed networks to evaluate aspects related to political governance and

party behavior in the Brazilian House of Representatives [157]. The results revealed inef-
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őcient coalitions with the government as parties that make such coalitions have members

distributed in different ideological communities over time. Mendonça et al., in turn, pro-

posed an algorithm to evaluate signed networks using the European parliament network

as case study [187]. Orthogonally, others have investigated the ideology of political mem-

bers and users through proőles of social networks [3, 62, 216, 217].

A closely related body of work has used roll call votes to measure latent ideologi-

cal patterns. One such family of procedures is known as NOMINATE, whose variants are

D-NOMINATE (originally called ‘NOMINATE’) [231], W-NOMI-NATE [232] and DW-

NOMINATE [233]. NOMINATE procedures assume a spatial model where each mem-

ber has an ideal position in a space, while ‘yea’ and ‘nay’ votes on each roll call take on

two positions in that space. Both D-NOMINATE and W-NOMINATE assume a multi-

dimensional space (typically bidimensional), where errors (i.e., a member closer to a cer-

tain vote decides to vote the opposite way) follow a logit model. Unlike the former, W-

NOMINATE assumes a distance model where dimensions are weighted differently, allow-

ing for more ŕexible utility functions. DW-NOMINATE builds and improves upon W-

NOMINATE by letting errors be normally distributed.

In [20], the authors discussed some key shortcomings of methods based on ideal

positions such as DW-NOMINATE and why they are not used more often in the American

Political Development literature. One such limitation is the assumption of linear change

in a member’s ideal position over time. Moreover, these methods disregard important

data. For instance, such methods cannot leverage information from unanimous votes ś a

typical situation in less polarized and fragmented political systems ś which are discarded

before parameter estimation [231]. Similarly, the identities of members who have changed

parties during the period of analysis are also disregarded. For instance, in [234], the

voting behavior of a member who changes parties once is considered as two independent

sequences. While this is not a severe issue in non-fragmented party systems, it can

introduce a large amount of noise when analyzing fragmented systems, such as the case

of Brazil’s party system, where such changes occurs with greater frequency.

Clinton et al. [49] proposed a Bayesian simulation approach that improves existing

methods by allowing the inclusion of ancillary information (e.g., the location of extremist

members, member-speciőc covariates, or the evolution of the legislative agenda) in the

model. The proposed framework also allows estimating changes of ideal positions over time

by modeling the process associated with that change (e.g., members switching political

parties). Although this approach offers a number of advantages over the aforementioned

point estimate models, it also retains some statistical issues in relation to Bayesian ideal

point estimation, such as proper variance estimates, scale and translation invariance,

reŕection invariance and outliers [13].

Some other prior efforts used alternative methods to network models. For instance,

the approach proposed by Vaz de Melo [67] addresses the problem of party fragmentation
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in Brazil by proposing an analytical method to identify the ideal number of parties that

the country should have. The results show that party fragmentation is a reality in Brazil

and that the number of parties that the country should have is much smaller than the

existing one. Motivated by the problem of frequent party migration in Brazil, Desposato

et al. [71] proposed a model based on game theory to identify reasons behind the high

migration of members among political parties.

Most of the aforementioned studies are based on scenarios of non-fragmented party

systems (e.g., the United States) in which ideologies are clearer and, therefore, easier dis-

tinguished. However, moving to scenarios that suffer from party fragmentation (composed

of multiple political parties), there is the challenge of dealing with the ideological over-

lap of these various political parties before analyzing ideologies. Although some studies

based on alternative models to complex networks are robust to this characteristic, they

also have limitations in terms of extracting temporal patterns. For example, quantifying

the extent to which ideological groups (communities) change over time may be quite chal-

lenging. Moreover, network models can be considered for more than two positions (i.e.,

‘yea’ and ‘nay’), eliminating the need to collapse ‘absence’ and ‘nay’ as a single opposi-

tion category, as is the case for the United Nations General Assembly, where abstention

is a milder form of disapproval than a ‘nay’ vote [251].

In this dissertation, we tackle the modeling of ideological and political behavior in

roll call votes as a one case study of our proposed general approach to model and analyze

collective behavior. In this context, the collective behavior emerges from loosely organized

individuals who, despite particular party boundaries, may form ideological groups that

cross such boundaries. In this case, co-interactions among individuals (i.e., politicians)

occur as they vote similarly, leading to a network model that exhibits, in essence, a noisy

nature. For example, co-interactions may arise as highly consensual topics generate similar

votes from many individuals, even though such behavior is no reŕection of individual

ideologies. Thus, this network model is a natural candidate to be analyzed using our

proposed general approach. Speciőcally, we contribute to the aforementioned prior studies

by using a network-oriented approach to identify and characterize ideological communities

in both fragmented and non-fragmented party systems and extract relevant properties of

them. The results from this case study are presented in Chapter 4.

2.7 Modeling Online Discussions in Social Media

The growing use of social media applications in recent years has attracted the

attention of researchers to the analysis of online user discussions, considering different
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objectives and methodologies [283]. Examples include studying online discussions aiming

at characterizing the presence and properties of hate speech [195, 75, 259], trolls [44],

conŕicts [139], abuse [306, 335, 85], toxicity [92, 241], cyberbullying [240, 326, 200] and

mental health issues [184, 275].

In this dissertation, we use online discussions in social media applications as a

case study of collective behavior, focusing on political discussions. Indeed, social media

applications have been largely studied from the perspective of platforms for political

debate. Twitter, in particular, has been the target of a large number of studies. As a

summary of prior efforts, Nguyen [211] presented a literature review of the role of Twitter

on politics, discussing prior őndings in terms of the effectiveness of the platform to help

politicians win elections, political polarization, and the beneőts of using Twitter in the

political arena. Indeed, many studies have already argued for the increasing polarization

in the online political debates [106, 300], whereas others have explored the beneőts that

politicians can have from using Twitter to reach their supporters. For example, Chi and

Yang suggested that politicians can signiőcantly beneőt from using Twitter, as they are

able to establish networks with their peers and acquire their support [46].

In [98], the authors studied user behavior on Twitter during live political debates.

They observed that people often use the social network to share their opinions, experi-

ences, make provocative or humorous statements, and interact and inform others. In [11],

the authors found evidence of the use of Twitter for political manipulation. Caetano et

al., in turn, analyzed the behavior of politically engaged user groups on Twitter during

the 2016 US presidential campaign [34]. Using information from user proőles, contact net-

works and tweet content, the authors identiőed four different groups, namely advocates

for both main candidates, bots and regular users, and analyzed their behavior in terms

of language patterns, popularity and how tweets from each candidate affected the mood

expressed in their messages.

The online discussions have also been studied in the context of other social media

platforms. For example, Tasente et al. [284] analyzed the political debate around the

Brexit on Facebook. The author focused on the frequency at which European institutions

spoke about Brexit on their Facebook pages and on identifying and analyzing the messages

that generated higher engagement from users. In [271], the authors developed a system

to detect political ads on Facebook and used it to present evidence of misuse during

the Brazilian 2018 elections. In that direction, WhatsApp has also been the target of

recent studies as an important platform for political debate and information dissemination,

notably for the spread of fake news during political elections [245, 35, 214, 179].

Considering Instagram, which is the platform used in our second case study, the

literature on user behavior and interactions is reasonably recent and somewhat restricted.

Some studies focused on how different types of content or proőles attract user engagement,

notably in the political context. For example, Zarei et al. [336] analyzed user engagement
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of twelve Instagram proőles divided into different categories (namely, sports, news and

politics), searching for impersonators ś i.e., users who simulate others’ behavior to perform

speciőc activities, such as spreading fake news. Muñoz et al. [197] studied image content

posted by candidates during the 2016 US primary elections, highlighting combined factors

that attract user engagement, whereas Trevisan et al. [292] performed a quantitative study

of the political debate on Instagram, highlighting that politician’s proőles tend to have

signiőcantly more interactions than others.

Moreover, other studies have also analyzed user engagement on online discus-

sions from different perspectives on Instagram. For example, Kang et al. [132] studied

a well-known strategy to trigger user interactions in social media, namely mentioning a

friend in a comment. The authors proposed a model capable of classifying mentions into

three categories based on its motivation: information-oriented, relationship-oriented, and

discussion-oriented. Jaakonmäki et al. [121] analyzed the inŕuence of the content posted

for social media marketing. They used machine learning algorithms to extract textual and

visual content features from posts, along with creator and context features, to model their

inŕuence on user engagement. In another direction, Yang et al. [324] studied the brand

mentioning practices of inŕuencers, őnding that audience has highly similar reactions to

sponsored and non-sponsored posts. They also proposed a neural network model to clas-

sify the sponsorship of posts combining network embedding with features related to the

posts and followers. Similarly, Kim et al. [134] proposed a multimodal deep learning model

that uses contextual information of posts, including textual and image content, to classify

inŕuencers as well as their posts into speciőc topics, such as food, fashion and traveling.

Other studies have analyzed properties of the textual content shared by Instagram

users. For example, Zhan et al. [338] analyzed the sentiment of captions of Instagram posts

to provide a preview of the content to the reader. Arslan et al. [9] also used sentiment

analysis tools to develop a message-level emotion classiőer, with the goal of detecting

cyberbullying. With a similar goal, Gupta et al. [108] focused on the temporal perspective,

showing that, cyberbullying activities exhibit recurrent temporal patterns such as the

occurrence of bursts. In the same direction, Kao et al. [133] proposed a social role detection

framework to analyze cyberbullying on social media platforms, taking Instagram as one of

their case studies. The framework considers the roles of victim, bully and supporter, which

are automatically identiőed by analyzing comment network and linguistic properties.

In contrast to prior studies, we here take a completely different perspective by ana-

lyzing online discussions on Instagram, notably discussions on political subjects, through

the less of a many-to-many network. In particular, we focus on discussions triggered by

posts of particular inŕuencers. As such, co-interactions occur among users who comment

on the same post. The network that emerges from such co-interactions, just as the co-

voting network discussed in the previous section, does suffer from the presence of noisy

edges. Thus, our proposed general approach to study collective behavior may be applied



2.8. Summary 53

in this context as well: by taking the online discussions and political debates as expres-

sions of collective behavior, we are able to uncover fundamental properties governing their

dynamics.

Our present effort is orthogonal to the aforementioned prior studies as it focuses on

the network that emerges as users engage in online debates by commenting on the same

posts, an aspect mostly neglected so far, especially in the political context. Indeed, the

case study we address here largely complements prior studies of user interactions around

political subjects [336, 197, 292] by offering a much broader analysis of the dynamics of

communities of users who engage in political discussions. Thus, we are able to offer a more

comprehensive investigation by delving into the structural and contextual properties of the

discussions these communities engage in as well as on their temporal dynamics. We further

elaborate on this case study, presenting and discussing our main results in Chapter 5.

2.8 Summary

Recall that our main goal in this dissertation is to develop a general approach to

study collective behavior through the lens of many-to-many networks, focusing on struc-

tural, contextual and temporal properties, aiming at uncovering fundamental knowledge

about a phenomenon of interest. In this chapter, we have presented a review of the litera-

ture related to the main topics covered in our work. In particular, we discussed prior stud-

ies and őndings in the areas of (i) modeling of collective behavior, (ii) modeling of user co-

interactions, (iii) network backbone extraction, (iv) community detection, (v) temporal

network embeddings, as well as prior őndings related to our two case studies, notably the

modeling and analysis of (vi) political ideological behavior and (vii) online discussions.As

we discussed, our present effort builds on prior work to provide an original and novel ap-

proach to modeling and analyzing collective behavior. In the next chapter, we formally de-

őne our target problem and present an initial description of a general solution to tackle it.
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Chapter 3

Modeling and Analyzing Collective

Behavior

This chapter takes the őrst step towards modeling and analyzing collective behavior in

many-to-many networks. The chapter is divided into four sections. First, we revisit

the problem statement in Section 3.1. Then, in Section 3.2, we discuss some of the key

challenges related to our target problem. In Section 3.3, we present our general solution

to tackle this problem, focusing in particular on our őrst two research goals (deőned in

Section 1.3). We explore such solution through two case studies of interest, notably the

emergence of ideological groups in political systems and the study of online discussions

in a social media application in Chapters 4 and 5, respectively. Finally, we provide a

summary in Section 3.4.

3.1 Problem Statement

This dissertation focuses on the following setting of investigation. Consider a par-

ticular phenomenon of interest that emerges or is driven by the collective actions of a

number of individuals1. Such individuals, acting either independently or partially coordi-

nated, produce patterns of collective behavior that favor or leverage such a phenomenon

in a complex system. Our general goal is to uncover fundamental knowledge that helps

in understanding the dynamics of the given phenomenon, from the lens of these collective

behavior patterns.

Examples of such phenomena include information dissemination in social media

platforms, driven by groups of users sharing ideas and pieces of information; the emergence

of ideological groups in a political system, as politicians cross the formal boundaries of

established political parties by voting together and forming short or long term alliances;

1We argue that one and the same phenomenon can allow for different perspectives of analysis.
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and a cultural description of a geographical region built from the individual choices made

by its inhabitants in terms visitation patterns [323], eating habits [272, 39] or any other

expression of their cultural interests2.

The collective behavior driving such phenomena (e.g., content sharing, voting, visi-

tation or eating patterns) emerges from a sequence of individual actions that, intentionally

or not, coincide from the perspective of the target phenomenon. For example, multiple

users may share the same piece of information thus favoring its dissemination on the plat-

form; multiple politicians consistently vote similarly despite belonging to different political

parties, thus revealing fundamental ideological similarities; multiple inhabitants may ex-

hibit similar interests in terms of places of visitation in a city as well as similar trajectories,

revealing particular cultural patterns (e.g., popularity of particular types of restaurants

or attractions [272, 39]). We here refer to a collection of such coincident actions, involving

two or more individuals as a co-interaction. Note that individuals participating in these

co-interactions may not necessarily have any previous social structure connecting them;

rather, they are guided by common goals or interests and driven by hidden contextual el-

ements. In the light of the aforementioned example phenomena, we can cite as potential

sources of contextual elements, respectively, posts containing speciőc topics attracting in-

terested users to online discussions in social media platforms, voting sessions with speciőc

themes, and cultural interests that drive human actions in a particular geographic region.

It is important to emphasize that the collective behavior patterns driving the phe-

nomenon of interest are often fundamentally very dynamic, as the contextual elements

driving human behavior change over time. For example, user discussions on social media

platforms naturally evolve over time, covering different topics and different user groups.

Similarly, politicians in some political systems, notably those that are more fragmented,

may also change their party memberships and, ultimately, their political ideologies, as

time passes.

As described, investigating the properties of those co-interactions is a key step

to reveal the collective behavior patterns that fundamentally inŕuence and drive the

target phenomenon. One approach to pursue such investigation is to encode these co-

interactions into a graph model that captures the intensity between co-interactions. As

the co-interactions may involve more than two individuals, we refer to such graph model

as a many-to-many network to emphasize the multi-peer nature of these interactions.

In such a setting, the problem this dissertation aims to tackle is to reveal key prop-

erties associated with the collective behavior patterns driving a phenomenon of interest, as

a means to uncover fundamental knowledge about this phenomenon. We consider as key:

(1) topological properties, associated with the connectivity of individuals in the network of

co-interactions, notably communities of individuals that exhibit common (collective) be-

2In that matter, cultural mapping [274] is a practical and participatory tool to build such descriptions.
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Figure 3.1: Overview of the problem statement.

havior; (2) contextual properties, associated with the contextual elements driving individ-

ual and collective behavior; and (3) temporal properties, reŕecting the network dynamics.

Figure 3.1 illustrates the key elements that compose the problem this dissertation

aims to tackle.

3.2 Challenges

The modeling and analysis of collective behavior, notably in many-to-many net-

works, raise a number of challenges in different domains. In this section, we discuss some

of these challenges, notably those related to: (i) the presence of noise in the network;

(ii) the identiőcation of the network component that is more relevant to the target phe-

nomenon (backbone extraction); (iii) the identiőcation of groups of users exhibiting com-

mon (collective) behavior patterns (community detection); and (iv) the characterization

of speciőc patterns of interest.
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Figure 3.2: Example of diversity of co-interactions in a given system.

3.2.1 Presence of Noise in the Network

The multitude of different co-interaction patterns inŕuencing a particular phe-

nomenon of interest can be quite large. Indeed, as already shown [25, 40, 55, 88, 142, 21],

they often exhibit a richness of patterns, including sequentiality, periodicity and spo-

radicity. Moreover, it is often the case that to study the target phenomenon, one must

consider large volumes of co-interactions covering a reasonably long period of time of co-

interactions. However, not all co-interactions are equally important to the study of the

target phenomenon. As a matter of fact, it is often the case that many such co-interactions

occur only sporadically or as result of pure chance and, as such, have weak relation, or

no relation at all, to the target phenomenon.

To give an illustration, let us consider some possible scenarios when co-interactions

take place in a given system where a phenomenon is to be investigated. Figure 3.2 shows

the case of őve co-interactions represented in dashed circles involving, in total, seven

different individuals (numbered 1 to 7). Although a co-interaction may not be an atomic

action (e.g., individuals co-interacting in an online discussion post their comments at

different moments in time), for the sake of simplicity, we show them in some chronological

order from left to right in the őgure.

The simple example shown in Figure 3.2 illustrates different patterns, including:

i) the presence of individuals with a high level of activity participating in all observed co-
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interactions (e.g., individual 2); ii) individuals participating in a few co-interactions pos-

sibly due to particular interests (e.g., particular topics of discussion) driving their choices

(e.g., individual 5), and iii) individuals who sporadically co-interact (e.g., individuals 6

and 7); and iv) co-interactions involving a large fraction (or all) individuals (e.g., the 3rd

co-interaction from left to right). The last case may suggest a common goal driving in-

dividual behavior that is so general and broad that might not be of great interest to the

study, that is, it might reŕect a general trend and, as such, is not very relevant to under-

stand the speciőc collective patterns driving the phenomenon under investigation.

Given such richness of patterns, it is unclear the extent to which the aforementioned

diversity of co-interactions affects the study of the phenomenon under consideration. For

example, the presence of a large number of random, sporadic and thus weak edges, may

introduce excessive noise to the study of the phenomenon from the network perspective.

As consequence, the most fundamental underlying network substructure, built from edges

that are indeed relevant to the phenomenon, is may be obfuscated [40, 55, 88]. This

situation gives rise to the following question:

What makes a particular edge relevant (or salient) to the study of the given phe-

nomenon under consideration?

As argued by Grady et al. [102], the deőnition of edge salience is based on an

ensemble of node-speciőc perspectives in the network and quantiőes the extent to which

there is a consensus among the nodes with regard to the importance (representativeness)

of a link. Hence, there is a wide range of different factors associated with the studied

phenomenon and the target system that can deőne whether an edge is salient or not,

which makes the identiőcation of a salient edge a challenging issue.

Another challenge is to operationalize the identiőcation and extraction of these

edges in the input network, once an appropriate deőnition of edge salience has been found.

The set of salient edges is referred to as the network backbone In the following section,

we discuss some challenges related to the design and use of algorithms for extracting the

backbone in the following section.

3.2.2 Network Backbone Extraction

The identiőcation of salient edges that form the backbone in noisy networks is

widely discussed in the literature, and several algorithms to perform this task have been

proposed as presented in Section 2.3. However, each method is designed based on speciőc

assumptions and, as such, reveals a very particular underlying structure. Thus, one
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challenge is identifying the method that should be applied for a target study given a pre-

deőned deőnition of edge salience.

Some methods provide a clearer deőnition of salience criteria to be captured, mak-

ing them easier to apply to speciőc phenomena. Examples include the use of a threshold-

based approach in some biological networks, where a minimum (or maximum) level of in-

teraction is expected in a protein-protein interaction network [190], őnancial market net-

works where a minimum correlation should be observed between stocks connected by edges

[201], and co-voting networks where members of Congress with similar ideologies should

have a minimal agreement during voting sessions captured by the edge (as we present in

Chapter 4).

On the other hand, other methods are more complex and require closer examination

to capture their assumptions and main characteristics. This is the case with most of the

methods mentioned in Section 2.3. Once this is accomplished, it is possible to categorize

them according to similar assumptions and characteristics. While this is quite a challenge,

it does provide the opportunity to apply a set of methods to a particular phenomenon to

achieve a better result. Nevertheless, this leads us to another challenge in evaluating and

validating the best strategy. Newman argues that it is impossible to evaluate the quality

of the backbone extracted by a particular method under normal circumstances because the

true structure is unknown by deőnition [208]. Therefore, a major challenge is to investigate

alternatives to evaluate their quality conditioned on the phenomenon’s characteristics.

There is evidence in the literature of the construction of models that exploit available

contextual information and certain assumptions, and characteristics of the phenomenon

under study, which therefore could be useful for the present work [53, 178, 52].

Finally, we note the possibility of developing new approaches for backbone extrac-

tion. While innovative strategies can be used to study new phenomena, the challenge is

primarily to identify relevant characteristics of one or more phenomena on different sys-

tems and understand how they affect the properties of the network model to rationalize

the development of such new approaches.

3.2.3 Community Detection

Having discussed the challenges of backbone extraction, the next step is to iden-

tify patterns of collective behavior in it. The graph concept that directly maps into this

idea is that of community. The literature in community detection is quite vast, as dif-

ferent approaches capture different concepts of communities for different network models

[144, 323]. The greatest challenge in community detection is that there is a lack of a uni-
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versal deőnition of community structure [84]. One deőnition of community that is widely

adopted is a group of nodes that are more densely interconnected among themselves than

with those in the rest of the network. Strictly speaking, according to this deőnition, a

community is a cohesive subset of nodes that is distinctly separated from the rest of the

network. A number of formal interpretations of this deőnition have been made in an at-

tempt to formalize and combine both the aspects of cohesion and separation [2, 144]. For

instance, algorithms like Louvain [27] and Leiden [290] are driven by the density of the

edges. In general terms, these approaches rely on metrics (e.g., modularity, coverage, and

conductance) computed over intra-community and inter-community edges to assess the

cohesion and separation of the detected communities [84].

Moreover, other approaches are concerned with speciőc patterns in the network.

For instance, Louvain or Leiden adopting the Constant Potts Model (CPM) to establish

a minimal intra-community density [289]. Remember, that this quality function allows

a parameter to be set that makes it possible to deőne the communities with a partic-

ular density. The deőnition of a community is, to some extent, independent of the ac-

tual graph since the nature of this separation and the notion of cohesion depend on the

selected density pattern [254]. On the other hand, some approaches involve looking for

communities formed by a group of nodes that are similar to each other, but different from

the rest of the network by employing a similarity measure. The strong point of this ap-

proach is that it goes beyond structural analysis and allows contextual information to be

considered in the deőnition of the similarity function [144]. The SCAN (Structural Clus-

tering Algorithm for Networks) algorithm is an example of this kind of approach [320].

Given the diversity of community deőnitions and corresponding community detec-

tion methods, another challenge is how to choose the best method for a target study.

Once again, this choice should consider the speciőcities of the target phenomenon and the

perspective taken in the investigation as well as how the deőnition of community associ-

ated with each method maps into the types of collective behavior of interest.

3.2.4 Collective Behavior Pattern Extraction

As discussed in the last sections, the tasks of extracting the network backbone

and detecting communities exhibit particular challenges, mostly because a proper solu-

tion should consider the phenomenon under study closely. Having overcome such chal-

lenges, the communities found in the backbone offer an interpretable summary of the pat-

terns closely related to this phenomenon, both from a structural point of view and from

a contextual perspective of the system under analysis. For example, one can analyze the
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structural property of communities using metrics such as modularity [27], degree distri-

bution and clustering coefficient [64]. Moreover, context-oriented information associated

with the nodes in each community may be used to aggregate external and domain-speciőc

knowledge about it. If structural and contextual analyses are reasonably straightforward,

investigating the temporal dynamics of these communities may offer some challenges.

As mentioned in Section 2.5, there are different approaches to model temporal net-

works. One such approach, adopted in this dissertation, is by building a sequence of net-

works representing a sequence of snapshots of the real (dynamic) network. However, map-

ping the structural and contextual properties of communities across different snapshots

involves facing some particular challenges. Fundamentally, tracking a particular commu-

nity over successive snapshots may be quite hard, as nodes dynamically change commu-

nity membership and some nodes may leave or join the network as time passes.

There is a variety of metrics that can be applied to characterize the dynamics of

communities. Examples include the persistence (or coverage) of nodes or edges, Jaccard

index, degree correlation, among others [84, 253]. By applying these metrics across dif-

ferent snapshots, one may obtain a general assessment of the amount of change in the

communities across consecutive snapshots. For example, Normalized Mutual Information

(NMI) [301, 314], which will be formally deőned in Chapter 4, is an information theoretic

metric that can be used to quantify the extent to which the community structure identi-

őed in snapshot ∆t changes in snapshot ∆t+1. However, this metric requires the same set

of nodes to be present in both snapshots, thus disregarding the arrival of new nodes and

the disappearance of other nodes. Moreover, this metric, as others, offers a general per-

ception of change but does not allow to zoom in which particular members have changed

and how they changed.

Thus, it may be worth analyzing the dynamics of individual nodes, as a step

towards a more clear understanding of how the communities are evolving. Embedding

representations of nodes and graphs [105] have been proposed as an efficient means to

uncover the network structure and perform various network mining tasks at node level

[211, 318]. As such, embeddings may be a useful framework for analyzing the dynamics

of nodes. As we argue in Section 2.5, there is a challenge to track a given node across

embeddings learned for different snapshots, as such learning is performed independently.

Therefore, it is not possible to map a node (or group of nodes) across different embeddings,

leading to an łalignment problem" [327].

In summary, the modeling and analysis of collective behavior driving a target

phenomenon of interest raise a number of challenges. In this dissertation, we seek to tackle

such challenges by offering a general approach that can be instantiated in different case

studies. Our ultimate goal is to design a unifying framework that combines all the elements

of a general solution while also offering a discussion on the issues one must consider when
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Figure 3.3: Overall solution for modeling and analyzing collective behavior.

adopting it. In the following section, we offer a sketch of the őrst steps towards a general

solution, which will be instantiated, in the following chapters, in two case studies.

3.3 A General Approach

In this section, we present our general approach to study collective behavior in

many-to-many networks, which is depicted in Figure 3.3. Starting with a phenomenon

to be studied in a given system, we assume the existence of a sequence of timestamped

user actions covering a period of interest and gathered from that system. These actions

represent expressions of user behavior that are fundamentally related to the phenomenon

that will be studied (e.g., comments posted on a social media application, votes during a

voting session).

In general terms, we propose to divide the period of interest into adjacent, non-

overlapping and őxed-duration windows (snapshots). For each such snapshot, we őrst

identify co-interactions from the set of user actions. This is done by grouping together

actions that coincide from the perspective of the phenomenon under investigation. By

coincident actions we mean that, collectively, they represent the same perspective from the

study of the target phenomenon (e.g., the same ideology in a study of ideological groups).

We then build a many-to-many network by projecting the co-interactions into a weighted

graph where weights express the number of times two individuals participated in a co-
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interaction (or any other contextual metric) during the respective time window. Then, we

must extract the backbones of these networks by identifying the subset of edges that are

salient with respect to the phenomenon under investigation. For that purpose, we may

either rely on an existing algorithm or propose a new approach, exploiting singularities and

constraints of the target problem and system. Yet, we note the possibility of using more

than one method for the target phenomenon in the backbone extraction step. However,

as we mentioned in the last section, a particular challenge in this step is to select and

evaluate a set of methods to choose the one that best captures the phenomenon. Above all,

this requires knowledge and categorization of the assumptions and properties of a set of

methods under consideration. Therefore, we address this challenge later, in particular in

Chapter 6, where we present a methodology for applying and evaluating a set of methods

compatible with the same phenomenon.

Next, a community detection algorithm should be employed to uncover groups of

individuals representing different collective behavior patterns inŕuencing the system. We

then aim at analyzing such communities, focusing on topological (community structure),

contextual (system-related community attributes) and temporal (community dynamics)

properties, aiming at uncovering fundamental knowledge about the target phenomenon.

Formally speaking, we propose to model the system as follows. Given a sequence

T = (∆t1,∆t2, ...,∆tn) of non-overlapping time windows of őxed duration, consider I∆t
=

{i1, i2, ..., ij} a set of individuals who interact with the system and among themselves dur-

ing a given time window ∆t, collectively driving the dynamics of the target phenomenon

during that period. We consider that the system may deőne, explicitly or not, opportuni-

ties for individuals to interact, expressing their interests and personal goals with respect

to that particular opportunity and, at the same time, the system may also impose restric-

tions on which interactions may occur at any given time (or in response to speciőc oppor-

tunities). Speciőcally, we deőne a set O∆t
= {o1∆t

, o2∆t
, ...., om∆t

} of opportunities for indi-

viduals to interact during a given time window ∆t. A group of individuals who interact

in response to a given opportunity ok∆t
is said to form a co-interaction. In this fashion,

the panorama between individuals and opportunities in a given system is tied as two or

more individuals in I∆t
choose to co-interact, driven by a particular opportunity in O∆t

,

during a time window in ∆t ∈ T .

For instance, consider the study of online discussions in social media applications

such as YouTube and Instagram. In that case, a user who shares content on a given topic

(e.g., a user who shares a post on Instagram or a video on YouTube) may trigger comments

from others, starting a thread of discussion, which is the object of investigation. Thus,

the content initially posted opened an opportunity for users to comment on the topic, co-

interacting with each other. In this particular case, the original post is the opportunity,

whereas a co-interaction is said to occur among those users who, attracted by the original

post, choose to comment on it. Note that users act individually by commenting on a
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given post; the co-interactions happen as multiple users choose to interact with each other

by commenting on the same post. Another example, consider now the case of a study

based on a co-voting network. In that case, co-interactions occur during voting sessions

when members of Congress express their votes with respect to pre-deőned bills. In such

case, the voting sessions are the opportunities whereas co-interactions occur as members

of Congress vote similarly in the same session.

As deőned, a co-interaction represents multiple individuals simultaneously inter-

acting with the system (and with each other) in response to a given opportunity, taking

actions that impact the system and, thus, reŕect on the phenomenon. Although a given

co-interaction is driven by a single opportunity, it should be noticed that an opportunity

may generate multiple co-interactions. For instance, during a voting session (opportunity),

there might be two co-interactions, one among members of Congress who voted in favor

of the speciőc bill being analyzed (yes), another among those who voted against it (no).

Moreover, opportunities may represent particular points in time when co-interactions

can occur (e.g., voting sessions), or alternatively, speciőc events (e.g., a user post in a so-

cial media application) that drive users to co-interact, though such co-interactions may

occur at any time after the opportunity happens. In the latter case, we may or may not

deőne a limit on the user interactions following a particular opportunity that form a co-

interaction (e.g., a maximum time period or even a maximum number of users participat-

ing in a co-interaction), depending on the phenomenon under investigation. For example,

in a social media application, a given post may continue receiving new comments even af-

ter the end of the time window during which the post was shared. Still, these comments

may be included in the co-interaction triggered by that post. In a co-voting network, in

turn, a particular voting session restricts members of Congress to take a position immedi-

ately. Similarly, the number of interactions by the same user (e.g., number of comments

by the same user) in response to the same opportunity may or may not be explicitly con-

sidered, depending on the study.

Given the above description, we can see that each opportunity ok∆t
has an associated

set of co-interactions C(ok∆t
) that occurred in response to it. Each co-interaction c in

set C(ok∆t
), in turn, is a set of users who participated in the co-interaction. In other

words, C(ok∆t
) = c1k,∆t

, c2k,∆t
, ...cqk,∆t

such that cjk,∆t
⊆ I∆t

. We also deőne the set of all co-

interactions associated with time window ∆t, C∆t
, as all co-interactions associated with

opportunities that occurred during ∆t. In other words:

C∆t
= ∪ C(ok∆t

), ∀ok∆t
∈ O∆t

(3.1)

Given a set of co-interactions C∆t
, we build a many-to-many network model for

time window ∆t by projecting such co-interactions into an undirected and weighted graph

G∆t
= (V,E) such that:
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• V : is the set of vertices represented by I∆t
. In other words, all individuals who co-

interacted in the system during a time window ∆t.

• E: is the set of undirected and weighted edges, such that the weight of edge

ei1,i2 connecting two individuals i1, i2 ∈ I∆t
is γ∆t

(i1, i2) = f(C∆t
, i1, i2), where

f(C∆t
, i1, i2) may be any aggregation function (e.g, count) that takes into account

the co-interactions between i1 and i2 that happened during window ∆t and/or any

contextual information associated to them available during that period ∆t
3.

Having deőned the graph G∆t
, we are interested in extracting its backbone, B∆t

=

(Vb, Eb), such that Vb ⊆ V and Eb ⊆ E. As discussed in Section 3.2.2, choosing the best

algorithm to extract B∆t
is a challenge as characteristics of the system and phenomenon

under study may impose constraints on how co-interactions among individuals occur. For

example, it is possible that an individual i ∈ I∆t
may not be particularly interested in an

opportunity ok∆t
∈ O∆t

. Yet, a stronger constraint forces i to take part in a co-interaction

around this opportunity. For example, a member of Congress feels compelled to voice her

vote in a voting session due to her duty to the constituents, rather than by a particular

interest in the bill being voted. Similarly, it might be the case that a particular user

cannot, by system constraints, react to a particular opportunity o. For example, a member

of Congress cannot vote in a voting session if she does not attend it. Equivalently, in

a social media application, a user may not be able to comment on a post if the post is

not visible to her (e.g., she does not follow the post’s author). In other words, for any

given system and phenomenon of interest, there may be a number of factors that impact

the possibilities for co-interactions among individuals. Consequently, such speciőcities

should be reŕected in different edge weight probability distribution in G∆t
. Thus, not

only structural features but also contextual features can be used to assist in extracting

the backbone.

From the extracted backbone, a community detection algorithm should be applied

in B∆t
to reveal a set P∆t

of communities (partitions) during a time window ∆t. The com-

munities unveiled should then be analyzed with respect to their structural and contex-

tual properties, as well as with respect to their temporal dynamics. Lastly, we can deőne

universal sets for the components considered during the period analyzed as: I = {I∆t1 ∪

I∆t2 ∪ ...∪I∆tn} the universal set of individuals; O = {O∆t1 ∪O∆t1 ∪ ...∪O∆tn} the univer-

sal set of opportunities ; C = {C∆t1 ∪C∆t2 ∪ ...∪C∆tn} the universal set of co-interactions;

G = {G1, G2, ..., G∆tn} and B = {B1, B2, ..., B∆tn} the universal sets of networks and

backbones, respectively; and P = {P1, P2, ..., P∆tn} the universal set for partitions;

After formalizing our general approach, we present two case studies of interest in

Chapters 4 and 5. Next, we dive into the backbone extraction step of such approach
3As an example of contextual information being explored to build the graph G∆t

, the authors of [220,
221] used several contextual metrics to connect nodes representing Twitter users, aiming at uncovering
coordinated behavior in Online Social Networks.
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by proposing a methodology for selecting and evaluating different backbone strategies in

Chapter 6.

3.4 Summary

In this chapter, we have set out the preliminaries and fundamental concepts for the

work developed in this dissertation. We started by revisiting our problem statement. We

then discussed several key challenges associated with the target problem. In particular, we

discussed challenges related to: (1) how we őlter out noise from the network by deőning

and identifying only salient edges with respect to the problem under investigation; (2) how

the extraction of these salient edges are operationalized in different backbone extraction

algorithms and issues that must be considered when selecting one approach; (3) alternative

deőnitions of community ś a graph concept representing collective behavior ś with possible

implications on the study; and (4) how we extract relevant patterns associated with the

identiőed communities, notably temporal patterns. We then proceeded to introduce a

general solution that forms the skeleton of this dissertation. In the next two chapters, we

use it to examine two case studies.
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Chapter 4

Ideological Groups in Co-voting

Networks

In this chapter, we present our őrst case study tackling the modeling of ideological groups

in co-voting networks. It is organized as follows: Section 4.1 presents a brief contextual-

ization as well as the research questions related to the phenomenon here studied; Section

4.2 describes our methodology according to the aspects described in Chapter 3; Sections

4.3-4.6 show the results while Section 4.7 discusses our őndings on the phenomenon in

question; Finally, the Section 4.8 summarizes the contributions and implications obtained.

4.1 Contextualization

Party systems can be classiőed with respect to fragmentation and polarization [262].

Fragmentation corresponds to the number of parties existing in a political system (e.g., a

country), while polarization is related to the multiple opinions that lead to the division of

members of Congress into groups with distinct political ideologies [262, 81]. In countries

where the party system has low fragmentation, the polarization of political parties can

be more clearly observed since one party tends to occupy most seats supporting the gov-

ernment than the others opposing it [176]. Conversely, in fragmented systems, the many

political parties often create coalitions, a inter-party alliance, to raise their inŕuence in

the political system and reach a common end [6, 33]. Thus, a great deal of ideological

similarity, as expressed by voting decisions, is often observed across different parties.

Previous work has analyzed the ideological behavior of political party members of

Congress by the modeling of voting data in signed and weighted networks [7, 45, 8, 157,

187] These prior efforts tackled topics such as community detection, party cohesion and

loyalty analysis, governance of a political party and member of Congress inŕuence in such

networks. Yet, the identiőcation and characterization of ideological communities, partic-

ularly in fragmented party systems, require observing some issues, such as: (i) presidents
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may deőne coalitions to strengthen the implementation of desired public policies, which

may be ruptured after some time [172, 33]; (ii) political members have different levels of

partisanship and loyalty, and their political preferences may change over time [14, 7]; and

(iii) different parties may have the same political ideology, being redundant under a party

system [67].

In such context, we focus on the phenomenon related to the formation of ideolog-

ical groups in political systems that go beyond pre-existing party boundaries. We study

the dynamic behavior of political party members aiming at identifying how ideological

communities are created and evolve over time and how individual members change their

ideological behavior with respect to others. For the sake of comparison, we consider two

very diverse political systems : the House of Representative of Brazil, which is character-

ized as a highly fragmented political system (i.e., several political parties occupying the

seats) [67], and the House of Representative of the United States, which is mostly domi-

nated by two main parties ś Republicans and Democrats [61]. We note that the study of

such political systems, especially in Brazil, is quite challenging, since the political ideolo-

gies of the members may be inŕuenced by many other aspects [67, 32, 51, 80].

Using public voting data of the House of Representatives of both countries, covering

a 15-year period, we model and characterize the emergence and evolution of communities

of House members with similar political ideology and ideological changes of individual

members over time. We study group and individual ideological behavior, as captured by

their voting decisions, aiming at tackling four research questions (RQs):

• RQ1: How are ideological communities in governments with different

(fragmented and non-fragmented) party systems characterized? We

model the voting behavior of each House member during a given time period using

a network, where nodes represent members of Congress of the same House of Rep-

resentatives, and weighted edges are added if two members of Congress voted simi-

larly. We use the Louvain algorithm [27] to detect communities in each network and

characterize structural properties of such communities. Unlike the aforementioned

prior analyses in the political domain, we compare the properties of these commu-

nities in fragmented and in non-fragmented party systems.

• RQ2: How can we identify polarization in the ideological communities?

We use neighborhood overlap to estimate the tie strength associated to each network

edge, characterizing it as either strong or weak [64]. This approach to estimate tie

strength has been employed in several contexts [103, 129, 185, 315] and to a short

extent in the political domain [308]. But unlike prior studies, we use strong ties to

identify polarized communities in each network, comparing distinct political systems

with respect to polarization.
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• RQ3: How do polarized communities evolve over time? We analyze how

polarized communities evolve over the years of a government, characterizing how

the membership of such communities change over time.

• RQ4: How can we assess the ideological changes of individual members

of Congress over time? We capture ideological changes, as expressed by mem-

bers’ voting behavior, by mapping the network into a temporal latent ideological

space. Building upon a recent work [327], we learn temporal vertice embeddings for

consecutive networks (representing consecutive years) jointly, so that we can track

individual members of Congress over time in the deőned space. By doing so, we are

able to analyze how the locations of individual members of Congress in this space

change and thus measure ideological shifts over time. Unlike prior studies that use

contextual information (e.g., topics of voting sessions [212, 136], prior speeches of

individual members of Congress [147, 261, 74]) to build an ideological space, we use

only the topological structure of the networks (which come from the voting data it-

self) to build such space, being thus a more general approach.

4.2 Methodology

This section describes the methodology used in our study, starting with basic con-

cepts (Section 4.2.1) and our case studies (Section 4.2.2). We then present our modeling

of voting behavior (Section 4.2.3) and the time-aware node embedding approach used to

model an ideological latent space (Section 4.2.6).

4.2.1 Basic Concepts

The House of Representatives is composed of several members who occupy the seats

during each government period. House members participate in a series of voting sessions,

when bills, amendments, and propositions are discussed and voted. Thus, attending such

sessions is the most direct way for members of Congress to express their ideologies and

opinions. When these members of Congress are associated with a large number of political

parties, the party system in question is regarded as fragmented. In this case, during a term

of office, coalitions are often established, leading political parties to organize themselves
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into ideological communities, defending together common interests during voting sessions

[172, 262].

One can evaluate the behavior of parties and their members of Congress in terms of

how cohesive they are as an ideological community by analyzing voting data using widely

disseminated metrics, such as Rice’s Index [249]. Yet, the use of Rice Index has been shown

to be problematic when there are more than two voting options (other than only yes and

no) [115], as, for example, in the European parliament and in our study, as we will see.

Instead, we here employ the Partisan Discipline and Party Discipline metrics,

proposed in [67]. The former captures the ideological alignment of a member to her party

(estimated by the behavior of the majority), and the latter expresses the ideological cohe-

siveness of a party. Given a member m, belonging to party pm, the Partisan Discipline

of m, pdm, is given by the fraction of all voting sessions to which m attended and voted

similarly to the majority of pm’s members. That is, let n be the number of voting ses-

sions attended by m and I(m, pm, i) be 1 if m voted similarly to the majority of members

of Congress of pm in voting session i (i = 1..n) and 0 otherwise. Then,

pdm =

∑n

i=1 I(m, pm, i)

n
(4.1)

We note that pdm ranges from 0 to 1, where 1 indicates that member m voted

similarly to the majority of pm’s members of Congress in all voting sessions, and 0 indicates

the opposite behavior. We note also that the Partisan Discipline can be generalized to

assess the discipline and ideological alignment of a member to any community (not only

his original party).

The Party Discipline of a party p is computed as the average Partisan Discipline

of all of its members, that is,

PD(p) =

∑M

m=1 pdm
M

(4.2)

where M is the number of members of Congress of p. Party Discipline captures how

cohesive a party (or community) is in a set of votes. That is, a PD(p) value of 1 (maxi-

mum) indicates that party p is totally disciplined (or cohesive).

4.2.2 Case Studies

We consider two case studies: Brazil and the United States (US). In Brazil, the

House of Representatives consists of 513 seats. A member vote can be either Yes, No,

Obstruction or Absence in each voting session. A Yes or No vote expresses, respectively,

an agreement or disagreement with the given proposition. Both Absence and Obstruc-

tion mean that the member did not participate in the voting, although an Obstruction
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expresses the intention of the member to cause the voting session to be canceled, for in-

stance, due to insufficient quorum. Similarly, the US House of Representatives includes

435 seats, and a member vote can be Yes, No or Not Voting, whereas the last one indi-

cates the member was not present in the voting session. In our study, we disregard Ab-

sence and Not Voting votes, as they do not reŕect any particular inclination of the mem-

bers of Congress with respect to the topic under consideration. However, we do include

Obstructions as they reŕect an intentional action of the members of Congress and a clear

opposition to the topic. Thus, for Brazil, three different voting options were considered.

For both case studies, we collected voting data from public sources. The plenary

roll call votes of Brazil’s House of Representatives are available through an application

programming interface (API) maintained by the government1. We collected roll call votes

from 2003 to 2017 (4 legislatures). US voting data covering the same 15-year period (i.e.,

between the 108th and 115th congresses) was collected through the ProPublica API2. Each

dataset consists of a sequence of voting sessions; for each session, the dataset includes

date, time and voting option of each participating member.

In a preliminary analysis of the datasets, we noted that some members of Congress

had little attendance to the voting sessions, especially in Brazil. Thus, we chose to őlter

our datasets to remove members of Congress with low attendance as they introduce noise

to our analyses. Speciőcally, we removed members of Congress that had not attended

(thus had not associated vote) to more than 33% of the voting sessions during each year3.

On average, 19% and 1.98% members of Congress were removed from the Brazilian and

US datasets for each year, respectively.

Table 4.1 shows an overview of both (őltered) datasets, with Brazil on the top

part of the table and the US on the bottom. The table presents, for each year, the acting

president4 and his/her party5, total number of voting sessions, total number of member

votes, as well as numbers of parties and members of Congress occupying seats in the House

of Representatives during the year. The two rightmost columns, Avg. PD and SD PD,

present the average and standard deviation of the Party Discipline computed across all

parties. We show data for different Brazilian legislatures and US congresses in separate

blocks of the table.

Starting with the Brazilian dataset, we can see that the number of parties occupy-

ing seats has somewhat grown in recent years, characterizing an increasingly fragmented

1http://www2.camara.leg.br/transparencia/dados-abertos/dados-abertos-legislativo (in
Portuguese).

2https://projects.propublica.org/api-docs/congress-api/
3This threshold was chosen based on Article 55 of the Brazilian Constitution that establishes that a

deputy or senator will lose her mandate if she does not attend more than one third of the sessions.
4Brazilian president Dilma Rousseff was impeached from Office in 2016 and, therefore, Brazil had

two Presidents that year.
5For Brazil: Worker’s Party (PT) and Democratic Movement Party (PMDB). For the US: Democratic

(D) and Republican (R).

http://www2.camara.leg.br/transparencia/dados-abertos/dados-abertos-legislativo
https://projects.propublica.org/api-docs/congress-api/
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Table 4.1: Datasets overview (PD: party discipline, SD: st. dev.)

Brazil (52nd to 55th legislatures)

Year
President
(Party)

# of
Sessions

# of
Votes

# of
Parties

# of
Members

Avg.
PD(%)

SD
PD

2003 Lula (PT) 150 106755 23 435 88.23 0.08
2004 Lula (PT) 118 71576 23 377 87.43 0.08
2005 Lula (PT) 81 50616 24 382 88.91 0.07
2006 Lula (PT) 87 62358 24 419 91.12 0.05

2007 Lula (PT) 221 190424 31 478 92.45 0.07
2008 Lula (PT) 157 122482 31 452 92.34 0.07
2009 Lula (PT) 156 125759 30 465 91.87 0.06
2010 Lula (PT) 83 63255 29 452 92.46 0.05

2011 Dilma (PT) 98 78662 29 481 89.34 0.08
2012 Dilma (PT) 79 60219 28 454 89.56 0.05
2013 Dilma (PT) 158 115751 29 451 88.70 0.06
2014 Dilma (PT) 87 66154 28 451 92.93 0.04

2015 Dilma (PT) 273 231031 28 502 85.84 0.06

2016
Dilma (PT)

Temer (PMDB)
218 156006 28 452 90.12 0.05

2017 Temer (PMDB) 230 159704 29 435 89.76 0.08

United States (108th to 115th congresses)

Year
President
(Party)

# of
Sessions

# of
Votes

# of
Parties

# of
Members

Avg.
PD(%)

SD
PD

2003 Bush (R) 623 258867 3 432 95.76 0.03
2004 Bush (R) 502 203557 3 427 95.11 0.03

2005 Bush (R) 637 264735 3 432 95.02 0.03
2006 Bush (R) 511 210592 3 428 94.98 0.04

2007 Bush (R) 956 297957 2 414 92.23 0.04
2008 Bush (R) 605 244734 2 426 92.73 0.04

2009 Obama (D) 929 385344 3 431 93.78 0.02
2010 Obama (D) 631 253296 3 422 95.34 0.01

2011 Obama (D) 908 377601 2 428 91.98 0.01
2012 Obama (D) 621 253812 2 425 91.50 0.01

2013 Obama (D) 594 245430 2 427 93.04 0.01
2014 Obama (D) 531 217822 2 426 93.24 0.01

2015 Obama (D) 662 277732 2 432 94.87 0.01
2016 Obama (D) 588 241263 2 427 95.11 0.01

2017 Trump (R) 708 292503 2 427 95.99 0.00

party system. Yet, in general, average PD values are very high (ranging from 85% to 92%),

with small variation across parties, indicating that, despite the fragmentation, most party

members of Congress have high partisan discipline. Regarding the American dataset, Ta-

ble 4.1 shows that the number of voting sessions is much larger than in Brazil. This is

because the API of the Brazilian House of Representative provides only data related to

votes in plenary, while the US dataset covers all votes. Moreover, although the numbers

of members of Congress are comparable to those in the Brazilian dataset, the number of

parties occupying seats in each year is much smaller. Indeed, only two parties, namely

Republican (R) and Democrat (D), őll all available seats since the 112th Congress. Thus,

unlike the Brazilian case, party fragmentation is not an issue in the US system. Never-

theless, parties have a high party discipline in both systems.
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4.2.3 Network Model

We model the dynamics of ideological communities in voting sessions in each coun-

try using graphs as follows. We discretize time into non-overlapping windows of őxed

duration. Since in Brazil, government coalitions are usually made every year, we choose

one year as the time window for analyzing community dynamics. Thus, we build a set

TBR = {∆t1,∆t2, ...,∆t15} and the other for the United States TUS = {∆t1,∆t2, ...,∆t15}.

We deőne individuals as members of Congress that had seats in their respective

House of Representatives during the time window ∆t. We then deőne the sets of in-

dividuals for each time window ∆t as IBR,∆t
= {i1, i2, ..., ij1} for Brazil and IUS,∆t

=

{i1, i2, ..., ij2} for the United States, where j1 and j2 are the total number of members of

Congress in the House for Brazil and the United States, respectively, during window ∆t.

The opportunities whose those members of Congress may interact are deőned as voting

sessions that take place during a given time window ∆t (i.e., during a year). Thus, we de-

őne the sets OBR,∆t
= {o1∆t

, o2∆t
, ...., om1

∆t
} and OUS,∆t

= {o1∆t
, o2∆t

, ...., om2
∆t

} formed by all

the voting sessions that were opened, respectively, in Brazil and in the United States dur-

ing window ∆t. Notice that the numbers of voting sessions m1 and m2 may be different.

Having deőned that, a co-interaction c built around opportunity ok∆t
∈ OBR,∆t

(i.e., c ∈ C(ok∆t
)) is formed by Brazilian members of Congress who took the same posi-

tion (Yes, No or Obstruction) at the House of representative of Brazil. The collection

of co-interactions that took place during window ∆t in Brazil is referred to as CBR,∆t
.

Similarly, we deőne a co-interaction c ∈ C(ok∆t
), for ok∆t

∈ OUS,∆t
, as a set of American

members of Congress who voted alike in the kth voting sessions of the American House of

Representatives. Also we deőne set CUS,∆t
of all co-interactions that occurred during all

opportunities in OUS,∆t
.

We then move towards the network modeling. For each scenario under study

(Brazil and the United States) and for each time window ∆t in TBR and TUS we build

an undirected and weighted graph. Recall that our goal is to analyze the formation of

ideological groups, that is, members of Congress who have the same ideological alignment

during the analyzed voting sessions. Thus, for each scenario s (s = BR,US) and time

window ∆T we build a co-voting network Gs,∆t
as follows:

• Vs,∆t
: is the set of vertices represented by all members of Congress. That is, all

individuals in Is,∆t
who participated in at least one co-interaction in C·,∆t

.

• Es,∆t
: is the set of undirected and weighted edges, such that the weight of edge

ei1,i2 linking two members of Congress i1 and i2 is γ∆t
(i1, i2) = sim(i1, i2), where

sim(i1, i2) is given by the ratio of the number of sessions in which both members
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of Congress voted similarly to the total number of sessions in Os,∆t
to which both

members of Congress attended.

As a result, we have the following sets of networks for Brazil and the US: GBR =

{GBR,∆t1
, GBR,∆t2

, . . . , GBR,∆t15} and GUS = {GUS,∆t1
, GUS,∆t2

, . . . , GUS,∆t15}. Given such

networks, our goal is to infer patterns of common (collective) behavior in terms of voting

choices that extrapolate the traditional boundaries political parties, thus revealing ideo-

logical similarities among members of Congress. Based on these patterns, we intend to

study how ideological groups are formed and evolve over time in the two ś very different

ś political systems analyzed.

4.2.4 Network Backbone Extraction

After building each graph sequence, we noted that all pairs of members of Congress

voted similarly at least once in all years analyzed and in both countries, and therefore

all graphs built are complete and do not allow that patterns be extracted. This reŕects

the fact that some voting sessions are not discriminative of ideology or opinion, as most

members of Congress (regardless of party) voted similarly. For instance, it is possible that

some voting sessions target general-interest or humanitarian causes. As a consequence,

many different members of Congress, despite having different ideological beliefs and be-

haviors, may still take a similar voting position with respect to the particular bill being

voted, adding edges to the co-voting network. These edges represent sporadic interac-

tions and are driven by a particular topic of large agreement, and thus do not necessarily

reŕect an ideological alignment. Thereby, it is necessary to őlter out edges that do not

contribute to the detection of ideological communities. By doing so, we intend to reveal

the salient edges to identify the backbone Bs,∆t
for each time graph Gs,∆t

.

Intending to remove such edges and extract the backbone, we employ the threshold-

based approach. To deőne the right threshold for our problem, we follow previous works

that use contextual information to address this point [225, 30, 321]. We begin by analyzing

the distributions of edge similarity for all the networks that capture agreement between

voting members of Congress. Representative distributions for speciőc years are shown in

Figures 4.1a and 4.1b for Brazil and US, respectively.

We note that the distributions for the U.S. show clear concentrations around very

small (roughly 30%) and very large (around 85%) similarity values, while the distributions

for Brazil exhibit greater variability, which is consistent with the greater fragmentation

of the party system. Aiming at őltering out non salient edges from the networks, in line
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Figure 4.1: Cumulative Distribution Function of Edge Similarity.

with the phenomenon, we argue that the threshold should not be much smaller than the

average partisan discipline of the individual members. That is, two members of Congress

that have a much lower similarity (ideological agreement) than their partisan disciplines

observed in the political system in question should not be considered part of the same

ideological community. Therefore, these interactions can be taken out as they do not

discriminate ideology, as mentioned earlier.

Based on these assumptions, we chose to remove all edges with weights below the

90th percentile of the similarity distribution for the Brazilian graphs. For the US, we

removed edges with weights below the 55th percentile of the similarity distribution. Both

percentiles correspond roughly to a similarity value of 80%, which is not much smaller

than the average partisan disciplines in both countries (see Table 4.1). We removed

nodes that become isolated after the edge őltering. We found that these thresholds yield

a good trade-off between removing less discriminative connections and graph sparsity.

Speciőcally, the fraction of nodes and edges removed from the Brazilian networks fall in the

0-24% and 86-93% ranges, respectively, across all years analyzed. For the US, the fractions

are much lower, varying from 0% to 11% for nodes and from 54% to 56% for edges.

Therefore, we have the following sets of backbone for Brazil and the U.S., respectively,

BBR = {BBR,∆t1
, BBR,∆t2

, . . . , BBR,∆t15} and BUS = {BUS,∆t1
, BUS,∆t2

, . . . , BUS,∆t15}.

4.2.5 Community Detection

After extracting the backbones, we use the Louvain algorithm [27] to identify ideo-

logical communities Ps,∆t
in each backbone Bs,∆t

. The goal is to őnd communities formed

by members of Congress with closer ideology according to the edges that directly encode

voting similarity between members of Congress. As explained in Chapter 2, Louvain is
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based on the optimization of modularity [206], a metric to evaluate the structure of clus-

ters in a network. Modularity is large when the clustering is good, with a maximum value

of 1. Thus, we have for each scenario a set of communities Ps = {P1, P2, ..., P∆tn}.

4.2.6 Community Characterization

Once the communities are extracted, we characterize them in terms of their struc-

tural, contextual, and temporal dynamics. For the őrst two, we use modularity along with

party discipline as the main metrics to assess the cohesiveness of the communities found.

Modularity captures the quality of the result in terms of the topological structure of the

communities in the network, while party discipline, which is computed for the communi-

ties (rather than for individual parties), captures the quality in terms of context semantics.

In terms of temporal propertiesź we compute complementary metrics, namely per-

sistence and normalized mutual information (NMI) [301, 314], for each pair of consecutive

years. We deőne the persistence of two consecutive years ∆t1 and ∆t2 as the fraction of

all members of polarized communities in ∆t1 who remained in some polarized community

in ∆t2. A persistence equal to 100% implies that all members of polarized communities

in ∆t1 remained in some polarized community in ∆t2. Yet, the membership of individual

communities may have changed as members switched communities. To assess the extent

of change in community membership over consecutive years, we compute the normalized

mutual information over the communities, taking only members who persisted over the

two years.

NMI is based on Shannon entropy of information theory [267]. Given two sets of

partitions X ∈ Ps,∆t1
and Y ∈ Ps,∆t2

6, deőning community assignments for nodes, the

mutual information of X and Y can be thought as the informational łoverlap" between

X and Y , or how much we learn about Y from X (and about X from Y ). Let P (x) be

the probability that a node picked at random is assigned to community x, and P (x, y)

the probability that a node picked at random is assigned to both x in X and y in Y . The

NMI of X and Y is deőned as:

NMI(X, Y ) =

∑
x

∑
y P (x, y) log P (x,y)

P (x)P (y)√
H(X)H(Y )

(4.3)

where H(X) = −
∑

x P (x) logP (x) is the Shannon entropy for X. NMI ranges from

0 (all members changed their communities) to 1 (all members remained in the same

communities).

6For the sake of simplicity, we reduce the notation used so far to explain this metric.
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Ideological Space Model

In order to model how the ideological behavior of individual party members of Congress

evolves over time, we start from the networks deőned in Section 4.2.3, which capture

each individual’s behavior in terms of how a member voted relative to others during a

given time window. We then build a network representation that embeds vertices into

a low-dimensional vector space, which preserves properties of the network’s topological

structure. Since the ideological behavior of an individual member is here captured by how

she voted relatively to her peers (i.e., by her neighborhood in the network), we consider the

low-dimensional latent space produced by the graph embedding technique an ideological

space. One key challenge is how to track individual members of Congress over time in

this ideological space so as to identify changes in their behavior. This is difficult because

there are multiple networks (and thus network embeddings), one for each time window

under consideration. In this section, we describe our approach to address this challenge

and build a consistent time-aware ideological space.

We build upon node2vec, a popular graph embedding technique [105]. Node2vec

learns low-dimensional representations for vertices in a single graph by performing biased

random walks, and using them as input to word2vec [189], a widely used word embedding

technique. Word2vec receives as input a textual corpus and produces as output a vector

space. Each word in the input corpus is mapped into a point in the vector space such that

words that share common contexts in the input corpus fall close to each other in the vector

space. In the case of node2vec, assuming that random walks are input sentences and

visited vertices represent individual words, vertices are mapped into the low-dimensional

latent space so as to maximize the likelihood of preserving the network neighborhoods.

Grover et al. deőned a ŕexible notion of neighborhood [105], which can be instantiated

differently by carefully choosing the parameters of the biased random walk procedure (see

more details below).

However, like word2vec, node2vec also suffers from the łalignment problem” when

applied to a temporal sequence of networks. That is, the embeddings generated by the

successive application of node2vec to networks for consecutive time windows are not

mapped onto the same latent space. Thus, a vertex representation in one embedding has

no correspondence to its representation in the next embedding (i.e., the one generated

from the next time window).

Yao et al. tackled the problem of inferring how word semantics evolve over time

by proposing a dynamic statistical model for learning time-aware word embeddings [327].

The proposed solution, which we refer to as DynamicWord2Vec, effectively addresses the

łalignment problem” in the context of word embeddings. Inspired by that work, we build

a temporally-consistent ideological space to represent parties and their political members

of Congress by adapting DynamicWord2Vec to the network domain, combining it with
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node2vec. That is, we modify the node2vec implementation so that it uses Dynamic-

Word2Vec (instead of word2vec) to generate an embedding from the sampled walks. Next,

we brieŕy review how node2vec works and how we combine it with DynamicWord2Vec.

We refer the reader to [105, 327] for further details on each technique.

Node2vec [105] uses a strategy of neighborhood sampling through a biased random

walk which behaves, at each step, either as breadth-őrst sampling (BFS) or as depth-

őrst sampling (DFS). In BFS, the neighborhood of a given source vertex vs is restricted

to vertices that are immediate neighbors of the source, while DFS consists of vertices

sequentially sampled at increasing distances from vs. We here want the walk to enforce

BFS more often than DFS to better capture the similarities in the ideological space, rather

than structural equivalences in the network [105]. To control this behavior, node2vec has

two parameters, p and q. Parameter p determines the likelihood of immediately going back

to an already visited vertex. Parameter q allows us to control whether the walk stays close

to the source vertex, exploring the same neighborhood (i.e., corresponding to BFS), or

whether it should walk further away, exploring other vertices (i.e., corresponding to DFS).

We here are focused on the former, i.e., sampling immediate neighbors of the source more

often. Thus, we set the parameter values according to the authors’ recommendations for

such case [105], i.e., p = 1 and q = 0.5. By doing so, we skew the random walks towards

the immediate neighborhood of each source vertex.

In addition to p and q, node2vec allows us to deőne the number of walks per vertex

and the length of each walk (i.e., number of vertices visited in each walk). These param-

eters directly determine the sampling process, which tends to saturate at a certain point

as they increase [105]. In our experiments, we found that 16 walks per vertex, each with

length 40, are sufficient to perform the sampling process in our case studies. Increasing

either the number of walks or the length of each walk further caused a proportional in-

crease in the co-occurrence of vertices in the walks, without bringing further information.

After computing the probabilities of the possible paths according to p and q and

sampling the walks, node2vec builds a walk matrix S of size k × l, where k is the prod-

uct of number of walks and number of vertices and l is the length of each walk. S con-

tains all vertices visited in all walks performed, starting from all vertices in the graph

as sources. In the original node2vec algorithm, given a matrix S, the representations of

the vertices are optimized using stochastic gradient descent so that vertices in the same

neighborhood appear more closely in the generated latent space. Instead, we here use the

DynamicWord2Vec technique as follows.

For the sake of simplicity and generalization, hereinafter we describe our approach

independent of the considered scenarios while in Section 4.6 we instantiate it according

to our case studies. We want to learn a single latent space covering ∆t successive time
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windows, given any set of graphs G = {G∆t1
, G∆t2

, . . . , G∆tn
}7 representing the networks

produced for each windows ∆t in T . Let S = {S∆t1
, S∆t2

, . . . , S∆tn
} be the set of matrices

generated by node2vec for each graph in G, and V = {v1, v2, . . . , vj} be the set of all

vertices that appear at least once in any graph in G.

Then, we use DynamicWord2Vec to observe the association of vertices over time

according to the sampled walks, mapping them to a temporal ideological latent space.

To do this, for each matrix S∆t
and each pair of vertices v1, v2 ∈ V (representing two

party members of Congress in one of the case studies), we count: (1) the number #(v1) of

individual occurrences of v1 in the walks represented by rows of S∆t
; (2) the number #(v2)

of individual occurrences of v2; and (3) the number of co-occurrences of vertices v1 and v2,

restricted within a window of size L from v1 (either before or after v1), denoted as #(v2, v2).

Typically, L is set between 5 to 10 as proposed in [189]. Here, we use L=5, resulting in a

window containing 10 vertices in addition to the middle vertex. The degree of association

between v1 and v2 is captured by the pointwise mutual information (PMI) [158], deőned

as a function of the empirical probabilities of occurrences of v1, occurrences of v2 and co-

ocurrences of v1 and v2 in matrix S∆t
. Speciőcally, given |S∆t

| = k × l, the PMI matrix

entry corresponding to (v1, v2) is given by:

PMI(S∆t
, L)v1,v2 = log2

(
#(v1, v2) · |S∆t

|

#(v1) ·#(v2)

)
, ∀v1, v2 ∈ V. (4.4)

When v1 and v2 co-occur very frequently in the sampled walks, the corresponding

PMI is high, indicating high proximity between them. On the other hand, when the

argument inside log2(.) is very small, PMI tends to take on negative values. According to

[158, 327], the pairs (v1, v2) with more representative association have PMI values greater

than 1, that is, they co-occur more than twice in the walks sampled. Thus, considering

only the positive values of PMI does not signiőcantly affect the solution while providing

better numerical stability to matrix factorization. Thus, given a walk matrix S∆t
, we

deőne a positive PMI matrix, referred to as PPMI(S∆t
, L), whose entry for given two

vertices v1 and v2 is deőned as:

PPMI(S∆t
, L)v1,v2 = max(PMI(S∆t

, L)v1,v2 , 0) := Y (∆t). (4.5)

Given the PPMI matrix Y (∆t), DynamicWord2Vec learns the embedding vectors

uv1 and uv2 for vertices v1 and v2, respectively, by applying a low-rank factorization such

that, for any pair v1 and v2, u⊤
v1
uv2 ≈ PPMI(∆t, L)v1,v2 . Each uv1 has length d ≪ |V |.

Thus, for each time window ∆t, a temporal embedding U(∆t)={uv1 , . . . ,uvj} must satisfy

U(∆t)U(∆t)
⊤≈Y (∆t).

This low-rank factorization is obtained by solving an optimization problem. Two

regularization terms are added to the objective function in order to address, respectively,
7In particular, we here use the backbones. But for generalization purposes, here we present it to any

set of graphs.
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overőtting and alignment issues. To avoid overőtting, a typical penalty term based on

the Frobenius norm8 of each low-rank matrix U(∆t), such that, ∆t in T is added [63].

To enforce alignment, a penalty term that assumes some smoothness between subsequent

time windows is added. Also, this term is based on the Frobenius norm of the differences

between matrices U(∆t−1) and U(∆t) for each ∆t in T. The function to be minimized is

min
U(∆t1 ),...,U(∆tn )

1

2

|T |∑

n=1

∥(Y (∆tn)− U(∆tn)U(∆tn)
⊤∥2F

+
λ

2

|T |∑

n=1

∥U(∆tn)∥
2
F +

τ

2

|T |∑

n=2

∥U(∆tn−1)− U(∆tn)∥
2
F , (4.6)

where λ, τ > 0. Observe that each embedding U(∆t) depends, indirectly, on all other

∆t−1 embeddings. The smoothing term ∥U(∆t−1) − U(∆t)∥
2
F enforces alignment across

embeddings. Parameters λ and τ control the degree of the regularization and smooth-

ness, respectively. Speciőcally, parameter τ controls the alignment of the embeddings for

successive windows ∆t: τ=0 implies no alignment, whereas τ→∞ produces a static em-

bedding with U(∆t1) = U(∆t2) = . . . = U(∆tn). We discuss how to set parameters λ and

τ in Section 4.6. In order to solve Equation (4.6), DynamicWord2Vec uses the block co-

ordinate descent [332] obtaining a representation vector uv1(∆t) for each vertex v1 ∈ V

and for each time window ∆t.

Given the embedding vectors, we can compute the change of a given member v1

in the deőned ideological space between two time windows ∆t1 and ∆t2 using a metric of

distance between vectors. We here use the widely adopted cosine distance:

cos(v1(∆t1 )
, v1(∆t2 )

) = 1−
uv1(∆t1) · uv1(∆t2)

∥uv1(∆t1)∥∥uv1(∆t2)∥
. (4.7)

Cosine distance ranges from 0 to 1. Values close to 0 indicate that the two vertices uv1(∆t1)

and uv2(∆t2) coincide, i.e., the corresponding party member did not change ideologically

between windows ∆t1 and ∆t2 . Values close to 1 indicate that the member drastically

shifted his ideology within the period. Finally, note that our proposal has the advantage

of being robust to sparse data. Nodes that don’t appear in certain time windows are given

estimated representations. Such estimates are quite accurate since the dynamics of the

networks are known due to the common alignment of all time windows.

This includes emerging words and dying words that are typical in real-world news

corpora

In the next four sections, we discuss the results of our analyses when tackling the

research questions posed in Section 4.1.

8The Frobenius Norm of a given matrix Mm×n is deőned by: ∥M∥F =
√∑m

i=1

∑n

j=1
|aij |

2
.
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Table 4.2: Statistics of Networks and Ideological Communities (CC: connected compo-
nents, SPL: shortest path length, Mod: modularity)

Brazil

Year
# of

Nodes
# of
Edges

# of
CC

Avg.
SPL

Avg.
Degree

Avg.
Clust.

D
# of

Comm.
Mod.

Avg.
PD(%)

SD
PD

2003 342 9329 5 1.83 55.01 0.65 0.16 8 0.11 95.48 2.22
2004 326 7079 2 1.90 43.43 0.62 0.13 4 0.14 92.68 3.36
2005 359 7211 1 3.18 40.17 0.59 0.11 5 0.21 88.32 3.64
2006 419 8613 1 2.47 41.11 0.61 0.09 4 0.36 90.50 2.36
2007 427 11394 3 1.77 53.37 0.67 0.12 6 0.14 95.97 1.26
2008 400 10180 2 1.62 50.90 0.70 0.12 5 0.08 95.78 1.94
2009 434 10784 2 1.92 49.70 0.66 0.11 4 0.18 91.45 3.49
2010 446 10151 1 2.42 45.52 0.64 0.10 4 0.19 92.01 1.29
2011 408 11519 2 1.89 56.47 0.60 0.13 6 0.12 93.69 3.76
2012 345 6527 3 2.47 46.11 0.48 0.11 4 0.33 87.00 4.25
2013 449 10094 1 2.21 44.96 0.61 0.10 4 0.38 86.51 4.18
2014 450 10036 1 2.18 44.60 0.58 0.09 3 0.43 91.14 1.79
2015 490 12563 1 2.90 51.28 0.69 0.10 5 0.60 85.90 3.11
2016 425 10159 2 1.44 47.81 0.66 0.11 4 0.38 92.62 1.83
2017 396 9434 4 1.64 47.65 0.72 0.12 6 0.24 90.25 3.16

United States

Year
# of

Nodes
# of
Edges

# of
CC

Avg.
SPL

Avg.
Degree

Avg.
Clust.

D
# of

Comm.
Mod.

Avg.
PD(%)

SD
PD

2003 431 41892 2 1.11 194.39 0.95 0.45 2 0.48 93.60 1.03
2004 426 40928 2 1.10 192.15 0.95 0.45 2 0.48 92.97 0.55
2005 431 41892 2 1.10 194.39 0.95 0.45 2 0.48 92.60 0.79
2006 426 41112 2 1.10 193.01 0.95 0.45 2 0.49 91.45 0.33
2007 414 38471 2 1.12 185.85 0.94 0.45 2 0.44 91.55 3.78
2008 424 40729 2 1.11 192.12 0.94 0.45 2 0.46 95.45 1.97
2009 429 41698 2 1.15 194.40 0.94 0.45 2 0.40 93.86 2.42
2010 420 39969 1 3.06 190.33 0.95 0.45 3 0.43 94.92 1.86
2011 426 41119 2 1.18 193.05 0.96 0.45 3 0.44 90.31 1.91
2012 417 40545 3 1.17 194.46 0.96 0.46 3 0.44 91.63 1.86
2013 423 40921 2 1.11 193.48 0.96 0.45 2 0.47 93.23 1.03
2014 418 40735 2 1.08 194.90 0.96 0.46 2 0.48 94.37 0.34
2015 427 41890 2 1.09 196.21 0.95 0.46 2 0.47 94.40 1.36
2016 423 40927 2 1.11 193.51 0.95 0.45 2 0.48 94.70 1.36
2017 423 40928 2 1.09 193.51 0.95 0.45 2 0.46 96.02 0.44

4.3 Identifying Ideological Communities

We start by tackling our őrst research question (RQ1) and characterizing the ide-

ological communities discovered in both Brazilian and US networks. Table 4.2 shows an

overview of all networks for both countries, presenting some topological properties [64],

i.e., numbers of vertices (# of nodes) and edges (# of edges), number of connected compo-

nents (# of CC ), average shortest path length (SPL), average degree, clustering coefficient

and density9. The difference between the number of nodes in this table and the number

of members in Table 4.1 corresponds to nodes that were removed after the edge őltering.

9The density of a network is the ratio of the total number of existing edges to the maximum possible
number of edges in the graph. The clustering coefficient measures the degree at which nodes tend to
group together to form triangles, and is deőned as the ratio of the number of existing closed triplets to
the total number of open and closed triplets. A triplet is three nodes that are connected by two (open
triplet) or three (closed triplet) undirected ties.
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Table 4.2 also summarizes the characteristics of the ideological communities iden-

tiőed using the Louvain algorithm. In the four rightmost columns, it presents the number

of communities identiőed, their modularity (Mod.) as well as average and standard devi-

ation of the party discipline (Avg PD and SD PD), computed with respect to the ideo-

logical communities.

Starting with the Brazilian networks (top part of Table 4.2), we can observe great

ŕuctuation in most topological metrics over the years, but, overall, the networks are sparse:

the average shortest path length is long, the average clustering coefficient is moderate

and the network density is low. Also, the number of communities identiőed is much

smaller than the total number of parties (see Table 4.1) conőrming the fragmentation and

ideological overlap of multiple parties. Yet, the party discipline of these communities is,

on average, very close to, and, in some cases, slightly larger than the values computed

for the individual parties, despite a somewhat greater standard deviation observed across

communities. Thus, these communities are indeed very cohesive in their voting patterns.

In contrast, the topological structure of the identiőed communities, as expressed

by the modularity metric, is very weak, especially in the former years. That is, there

is still a lot of similarity across members of different ideological communities. We note

that in the former years the government had greater support from most parties, as their

members voted similarly in most sessions. Such approval dropped during a period of

political turmoil that started in 2012, when the distinction of ideologies and opinions

become more clear10,11. This may explain why the modularity starts low and increases in

the most recent years, when there is greater distinction between different communities.

This occurs despite the large average party discipline maintained by the communities.

Thus, these two metrics offer complementary interpretations of the political scenario.

Considering the greater variation in modularity, we take a step further and in-

vestigate a possible explanation for it. We note that, in the early years of our analysis,

the Presidents had higher governance by observing the number of victories obtained in

the voting sessions and assuming that the position of their respective party’s members of

Congress represents the position of the government. In this way, we look at the major-

ity positioning of the president’s party in each voting session, obtaining the percentage of

voting sessions whose őnal result is aligned with the government’s positioning. In other

words, we look at whether most of the members of Congress followed the position of those

members of Congress that represent the government party.

By doing so, we compute the Pearson’s correlation between the percentage of voting

sessions where the governing party obtained the majority per year and compare to the

modularity of communities for the respective year. The correlation between such metrics

is −0.58 considering the 15 years analyzed. Such moderate negative correlation indicates

10https://www.vox.com/2016/4/21/11451210/dilma-rousseff-impeachment
11http://www.bbc.com/news/world-latin-america-19359111

https://www.vox.com/2016/4/21/11451210/dilma-rousseff-impeachment
http://www.bbc.com/news/world-latin-america-19359111
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Figure 4.2: Correlation between the percentage voting sessions that the government ob-
tained the majority and the the modularity obtained. Each point represents a year ana-
lyzed in Table 4.2 disregarding the period 2016-2017.

that the higher the percentage of votes in the year in which the government obtained the

majority, the lower the modularity and, therefore, the weaker is the community structure.

If we disregard the last two years analyzed (2016-2017), where there was an impeachment

process and the change of President that resulted in an even more obscure period in terms

of support from his own party, the negative correlation increase to −0.94. The relation

between both variables is presented in Figure 4.2. Indeed, it is possible to observe a strong

inŕuence between the positioning and inŕuence of the government with the formation of

such ideological groups, suggesting that high governability makes it difficult to identify

distinct ideological groups for some periods.

Turning our attention to the US (bottom part of Table 4.2), we note that, unlike

in Brazil, most metrics remain roughly stable throughout the years. The networks are

much more dense, with higher average clustering (Avg. Clust.) coefficient and density and

shortest path length. The number of identiőed communities coincides with the number

of connected components as well as with the number of political parties (see Table 4.1)

in most years. These communities are more strongly structured, despite some ideological

overlap, as expressed by moderate-to-large modularity value. They are also consistent in

their ideologies, as expressed by large party disciplines, comparable to the original (party-

level) ones. These metrics reŕect the political behavior of a non-fragmented and stronger

two-party system, quite unlike the Brazilian scenario.

In sum, in Brazil, the several parties can be grouped into just a few ideological

communities, with strong disciplined members, although the separation between commu-

nities is not very clear. In the US, on the other hand, ideological communities are more

clearly deőned, both structurally and ideologically, though some inter-community simi-

larity still remains.
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(a) Modularity (b) Number of Members

Figure 4.3: Modularity values for different thresholds choices on Brazil’s 2017 data. Green
dot indicates selected threshold, 0.42.

4.4 Identifying Polarized Communities

As mentioned, the ideological communities identiőed in the previous section still

share some similarity, particularly for the Brazilian case. In this section, we address

our second research question (RQ2), with the aim of identifying polarized communities,

i.e., communities that have a more clear distinction from the others in terms of voting

behavior. To that end, we take a step further and consider that members of the same

polarized community should not only be neighbors (i.e., similar to each other) but should

also share most of their neighbors. Thus two members that, despite voting similar to each

other, have mostly distinct sets of neighbors should not be in the same group.

To identify polarized communities, we start with the networks used to identify

the ideological communities and compute the neighborhood overlap for each edge. The

neighborhood overlap of an edge (v1, v2) is the ratio of the number of nodes that are

neighbors of both v1 and v2 to the number of neighbors of at least one of v1 or v2 [64].

The neighborhood overlap of v1 and v2 is taken as an estimate of the strength of the tie

between the two nodes. Edges with tie strength below a given threshold are considered as

weak ties, whereas edges with tie strength above that threshold are classiőed as strong

ties. We consider that weak ties come from overlapping communities, and strong ties are

edges within a polarized community. Thus, edges representing weak ties are removed. As

before, nodes that become isolated after this new őltering are also removed.

Once again the selection of the best neighborhood overlap threshold is not straight-

forward as it involves a complex trade-off: larger thresholds lead to more closely connected

communities and higher modularity, which is the goal, but also produce sparser graphs,

resulting in a larger number of isolated nodes, which are disregarded. Thus, for each net-

work, we selected a threshold that produced a good trade-off between the two metrics
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(i.e., the lowest threshold yielding modularity close to maximum). Figure 4.3 shows an

example of this trade-off for one speciőc year (2017) in Brazil, with the selected thresh-

old value shown in green. For Brazil, the selected threshold fell between 0.40 and 0.55,

while for the US it was from 0.1 to 0.28. We then re-executed the Louvain algorithm to

detect (polarized) communities in the new networks.

Table 4.3 presents the topological properties of the networks as well as the struc-

tural and ideological properties of the identiőed polarized communities, for both Brazil

and US. Focusing őrst on the Brazilian networks (top part of the table), we see that the

number of nodes with strong ties decreases drastically (by up to 66%) as compared to

the networks analyzed in Section 4.3. This indicates the large presence of House mem-

bers that, despite great similarity with other members, are not strongly tied (as deőned

above) to them, and thus do not belong to any polarized community. The number of con-

nected components dropped for some years and increased for others, suggesting that some

components in the őrst set of networks were composed of structurally weaker communi-

ties or of multiple smaller communities. Network density, average shortest path length,

and clustering coefficient also dropped, indicating sparser networks, as expected.

The number of polarized communities somewhat differs from the number of com-

munities obtained when all (strong and weak) ties are considered, increasing in most years.

This suggests that some ideological communities identiőed in Section 4.3 may be indeed

formed by multiple more closely connected subgroups. Yet, those numbers are still smaller

than the number of parties in each year (Table 4.1). Moreover, compared to the ideologi-

cal communities őrst analyzed, the polarized communities are stronger both structurally

and ideologically, as expressed by larger values of modularity and average party discipline.

For the US case, the numbers in Table 4.3 are very similar to those in Table 4.2.

Less than 2% of the nodes have only weak ties and were removed from the networks in

all years. Thus, almost all members have strong ties to each other, building ideological

communities that are, in general, very polarized.

In summary, in this section we analyzed ideological communities and showed that

in Brazil, there is a high volatility in the formation of these communities within a govern-

ment, changing in recent years. Meanwhile, in the United States, there is a clearly polar-

ized party system and a third community within one of the parties.

4.5 Temporal Analysis of Polarized Communities
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Table 4.3: Statistics of Strongly Tied Networks and Polarized Communities in Brazil (CC:
connected comp., SPL: shortest path length, Mod: modularity)

Brazil

Year
# of

Nodes
# of
Edges

# of
CC

Avg.
SPL

Avg.
Degree

Avg.
Clust.

D
# of

Comm.
Mod.

Avg.
PD (%)

SD
PD

2003 186 1436 1 1.48 15.44 0.38 0.08 4 0.35 97.78 0.86
2004 154 866 1 1.52 11.25 0.33 0.07 5 0.36 97.11 0.57
2005 119 1210 2 1.19 20.34 0.59 0.17 4 0.37 95.40 0.93
2006 136 590 10 1.37 8.68 0.52 0.06 12 0.57 96.62 2.16
2007 175 977 3 1.68 11.17 0.32 0.06 6 0.44 97.31 1.36
2008 216 1019 2 1.94 9.44 0.23 0.04 5 0.42 97.11 0.46
2009 209 1217 1 1.30 11.65 0.41 0.05 5 0.56 94.57 1.67
2010 225 726 6 1.45 6.45 0.22 0.02 11 0.51 94.31 1.80
2011 250 1891 1 1.78 15.13 0.31 0.06 4 0.40 96.56 0.86
2012 145 1151 3 1.84 29.82 0.48 0.11 6 0.37 94.42 1.98
2013 318 4437 5 1.77 27.91 0.58 0.08 9 0.47 91.30 2.17
2014 287 1672 3 1.37 11.65 0.41 0.04 5 0.63 94.04 1.28
2015 372 6290 6 1.41 33.82 0.64 0.09 9 0.64 93.93 1.70
2016 269 1726 3 1.43 12.83 0.44 0.04 8 0.63 95.08 1.21
2017 227 1631 5 1.58 14.37 0.44 0.06 6 0.60 95.25 2.01

United States

Year
# of

Nodes
# of
Edges

# of
CC

Avg.
SPL

Avg.
Degree

Avg.
Clust.

D
# of

Comm.
Mod.

Avg.
PD (%)

SD
PD

2003 431 41872 2 1.11 194.30 0.95 0.45 2 0.47 93.60 1.03
2004 426 40741 2 1.12 191.27 0.95 0.45 2 0.48 92.97 0.55
2005 431 41886 2 1.11 194.37 0.95 0.45 2 0.47 92.60 0.79
2006 426 41073 2 1.10 192.83 0.95 0.45 2 0.48 91.45 0.33
2007 414 38462 2 1.12 185.81 0.94 0.44 2 0.42 91.55 3.78
2008 423 40708 2 1.11 192.47 0.95 0.45 2 0.43 95.49 1.93
2009 428 41690 2 1.15 194.81 0.94 0.45 2 0.40 93.89 2.45
2010 418 39958 2 1.13 191.19 0.95 0.45 3 0.43 94.86 1.97
2011 422 41112 2 1.15 194.84 0.97 0.46 3 0.45 90.01 3.16
2012 413 40529 2 1.07 196.27 0.97 0.47 3 0.44 91.70 2.17
2013 421 40910 2 1.10 194.35 0.96 0.46 2 0.46 93.32 0.94
2014 417 40717 2 1.08 195.29 0.96 0.46 2 0.48 94.40 0.38
2015 424 41759 2 1.08 196.98 0.95 0.46 2 0.47 94.53 1.41
2016 418 40890 2 1.08 195.65 0.96 0.46 3 0.46 95.67 0.80
2017 421 40923 2 1.08 194.41 0.95 0.46 2 0.48 95.37 0.11

We now turn to RQ3 and investigate how the polarized communities evolve over

time. Table 4.4 shows persistence (Pers) and NMI (See Section 4.2.6) results for all pairs

of consecutive years and both countries. For Brazil (BR), the values of persistence varied

over the years, ranging from 46% to 80%. Thus, a signiőcant number of new nodes join

polarized communities every year. Indeed, in most years, roughly half of the members of

polarized communities are newcomers. The values of NMI are also small, especially in the

earlier years, reŕecting great change also in terms of nodes switching communities. This

is consistent with a period of less clear distinction between the communities and weaker

polarization, as discussed in the previous sections. Since 2012, the values of NMI fall

around 0.6, reŕecting greater stability in community membership. For the US, in contras,
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Table 4.4: Temporal Analysis of Polarized Ideological Communities (NMI: normalized
mutual information)

Consecutive
Years

Brazil United States
Persistence NMI Persistence NMI

2003 - 2004 58.24% 0.14 98.13% 0.97
2004 - 2005 46.30% 0.16 90.80% 0.97
2005 - 2006 53.04% 0.20 98.36% 1.00
2007 - 2008 68.26% 0.22 97.57% 1.00
2008 - 2009 63.80% 0.18 86.74% 1.00
2009 - 2010 61.38% 0.26 96.24% 0.94
2011 - 2012 80.08% 0.14 96.18% 0.96
2012 - 2013 67.87% 0.59 96.76% 0.80
2013 - 2014 61.23% 0.56 97.85% 1.00
2015 - 2016 57.85% 0.65 97.63% 0.97
2016 - 2017 57.47% 0.58 86.26% 0.98

(a) Brazil (b) United States

Figure 4.4: Dynamics of Polarized Communities over 2015-2017.

both persistence and NMI are very large, approaching the maximum of 1. Almost all

members persist in their polarized communities over the years.

A visualization of some of these results is shown in Figure 4.4 which presents the

ŕow of nodes across polarized communities over the years of 2015 to 2017 in Brazil and

in the US. Each vertical line represents a community, and its length represents the num-

ber of members belonging to that community who persisted in some polarized commu-

nity in the following year. Thus, communities for which all members did not persist in

any polarized community in the following year are not represented in the őgure. Recall

that, according to Table 4.3, the number of polarized communities in Brazil in 2015, 2016

and 2017 was 9, 8 and 6, respectively. A cross-analysis of these results with Figure 4.4a

indicates that members of only 4 out of 9 polarized communities in 2015 persisted polar-

ized in the following year. Moreover, two polarized communities in 2016 were composed

of only newcomers and both communities disappeared in 2017 (as they do not appear in

the őgure). Similarly, one polarized community in 2017 was composed of only newcom-

ers. The őgure also shows a great amount of switching, merging and splitting across com-

munities over the years. Figure 4.4b, on the other hand, illustrates the greater stability

of community membership in the US.
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4.6 Evaluating Ideological Changes

We now turn to our őnal analyses of changes in ideological behavior. We employ

the strategy described in Section 4.2.6 to model an ideological space and track individual

members over time in this space. For analysis purposes, we focus on changes during a

period ∆t equal to the duration of a term of office (time period during which elected

members should serve), divided in yearly time windows. In Brazil, party members are

elected for a 4-year term (named legislature), whereas in the US, they are elected for a

2-year period (called Congress).

We start by deőning, for each case study and each term of office speciőed in

Table 4.1, a corresponding a set of backbones BBR = {BBR,∆t1
, BBR,∆t2

, . . . , BBR,∆t15}

and BUS = {BUS,∆t1
, BUS,∆t2

, . . . , BUS,∆t15
} representing the networks produced for win-

dows ∆t in T , as described in Section 4.2.3. For each such sequence B we then pro-

duce a single latent ideological space following the method in Section 4.2.6. Speciő-

cally, for each window ∆t (year), we obtain a matrix of embedding vectors U(∆t) =

{uv1(∆t),uv2(∆t), . . . ,uvn(∆t)} where V = {v1, v2, . . . , vn} is the set of vertices in Gs,∆T

(s = {BR,US}). Recall that our model is robust to missing values, allowing us to infer

an ideological representation of a member v1 in ∆t from (∆t−1) and (∆t+1). Neverthe-

less, we choose to include in V only members who appeared in B in at least two years.

This choice is based on a conservative approach to improve robustness, particularly for

the Brazilian case, which, as already discussed, has greater instability and a longer term

of office (4 years).

We train our ideological space model for a given term of office by carrying out

a grid search to determine the best values of parameters λ and τ , as proposed in [327].

We consider various combinations of parameter values, varying λ in [0;100] and τ in

[0;100]. For each combination, we őrst generate our latent space model and the vertice

representations (embeddings) for each window ∆t. We then evaluate the goodness of these

embeddings (and correspondingly of the generated latent space) as follows. We apply the

spherical k-means algorithm [16], which uses cosine similarity as distance metric, to group

the vertice embeddings produced for window ∆t, uv(∆t), into k clusters, where k is the

number of ideological communities detected for the same window ∆t (see Section 4.3).

We then calculate the Normalized Mutual Information (NMI) (Equation 4.3) between

the ideological communities and the clusters detected by the spherical k-means on the

embeddings yielded by our model. The most representative latent space model (i.e., the

best parameter values) is the one that best recovers the originally deőned ideological

groups, thus yielding a higher NMI result.
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Figure 4.5: 2-D representation of latent ideological space. Symbols ⋄, ▽ and △ represent
party centroids (a,c) or members (b) respectively during 1st, 2nd and, in case of Brazil,
3rd year of legislature as well.

The results of the grid search were very consistent across most terms of office for

each case study. For the US, the same values of λ = 15 and τ = 20 were found to be the

best in all cases. Also, the NMI values were very high, being at least 0.97 and very often

reaching the maximum of 1, reŕecting the clear structural and ideological separation of the

networks. For Brazil, the best values are λ = 5 and τ = 10 for all but the last term of office

for which the best parameter values are λ = 10 and τ = 5. The NMI values are lower than

in the US, yet still reasonably high, especially in the most recent terms (the NMI reached

0.85 in the last 55th legislature), reŕecting the stronger community structure and more

clear ideological separation of party members in the period (as discussed in Section 4.3).

For the sake of visualization, we select one example term of office from each case

study and plot the generated latent ideological space in a low-dimensional 2-D view using

the t-distributed Stochastic Neighbor Embedding (t-SNE) [169]. Figures 4.5a and 4.5c

show the representations obtained for the 55th legislature in Brazil12 and the 114th congress

in the United States, respectively. Each color corresponds to one political party and

each point corresponds to one party member in one of the covered years in the latent

ideological space. For the sake of graph readability, Figure 4.5a shows only the four

brazilian parties (the largest ones). Also, the őgures do not distinguish between different

members of the same party nor different locations of the same member over the years (in

case the member changed position over time): all of them are represented by points of

the same color. Yet, to illustrate changes in ideological behavior, we plot the centroids of

each party, distinguishing its location in each year of the analyzed term by using different

representations. Each centroid is represented by a diamond in the őrst year, by an upside

down triangle in the second year, and, in case of Brazil, by a regular triangle in the third

year.

We further illustrate changes in individual ideological behavior by focusing now on

5 selected Brazilian party members. Figure 4.5b shows the locations of their corresponding

vertice embeddings in the years of the 55th legislature in the same low-dimensional 2-D

view. Each member is shown in a different color and, once again, we use a diamond, an

12Recall that our dataset covers only 3 years of 55th legislature.
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Figure 4.6: CDF of ideological shift of members over consecutive years (measured w.r.t.
cosine distance).

upside down triangle and a regular triangle to represent their locations in the őrst, second

and third years, respectively.

As Figure 4.5a shows, all four Brazilian parties have changed their ideological

behavior over the years, as illustrated by the changes in the locations of their centroids

in the ideological space. However, some of them remained quite cohesive throughout

the period, that is, the changes were mostly in group. For example, despite individual

changes, the distinction between the Work Party (PT) and the Brazilian Social Democracy

Party (PSDB), represented in red and blue, respectively, is clear in all three years. These

two parties have faced each other for over twenty years in the presidential elections in

Brazil. In any of the years, the cosine distance of any given two members (one from

each party) is close to 1, indicating great ideological distinction. On the other hand, the

distance between any two members from the same party tends to be close to 0, indicating

strong ideological alignment. Another interesting example is the Brazilian Democratic

Movement Party (PMDB) which started the 55th legislature ideologically aligned with

PT, but approached the opposition, composed of PSDB and DEM (among others), as

the years went by. The change in Figure 4.5a reŕects what happened in reality as the

second government of president Dilma Rousseff (PT) started with the support of PMDB.

However, the party of the vice-president decreased its support to the left-wing president

and shifted towards center, more aligned with PSDB and DEM. Such movement, which

was replicated by other supporting parties, culminated with the presidential impeachment

in 2016.

The changes in individual ideological behavior over the three analyzed years can

be more clearly visualized in Figure 4.5b. Note that some members, such as member 3,

exhibit very small changes in the ideological space, whereas others have a much more

dynamic behavior, falling into different regions of the space over the years. Also note that

while some seem to be converging to the same region of the space (e.g., members 4 and

5), others are drifting away (e.g., member 1). In contrast, Figure 4.5c shows that, in the

US, party members have quite stable and distinct ideological behavior.
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Figure 4.7: CDF of ideological shift of Brazilian members over consecutive years (w.r.t.
cosine distance) grouped by polarization.

We delve deeper into the Brazilian scenario, by looking into the 54th legislature,

encompassing years 2011-2014, which, as already mentioned, consisted of a period of great

political turmoil during which ideological distinctions became more clear. Using the tem-

poral embedding obtained for this term of office, we compute, for each individual mem-

ber, her ideological shift, i.e., the cosine distance between her embedding representations,

in consecutive years. Figure 4.6a shows the cumulative distributions of the ideological

shift of individual members for each pair of consecutive years. The three distributions

are similar, but we can see a trend towards larger distances in the more recent years, in

alignment with our discussion in the previous sections. Also, although most members ex-

hibit some ideological shift over consecutive years, there is great variability across mem-

bers. For comparison purposes, Figure 4.6b shows the distribution for the two years of

the 114th US congress, when practically all members remained unchanged, conőrming the

consistency of ideologies over time.

The greater variability in the Brazilian case can be explained, to some extent,

by the heterogeneity in ideological behavior between polarized and non-polarized party

members. To further analyze this issue, we separate, for each pair of consecutive years, the

party members into polarized, i.e., members who persisted in some polarized community

in the two years (as in Table 4.4), and the other, non-polarized members. Figures 4.7a

and 4.7b show the distributions of ideological shift for each group and for each pair of

consecutive years of the 54th legislature. Clearly, non-polarized party members exhibit

much greater changes (larger cosine distances), while polarized members do exhibit a more

consistent ideology over time.

Yet, even polarized members do experience changes over time, which indirectly

affect the membership of the polarized communities. Indeed, as already discussed in

Section 4.5, polarized members often switch between polarized communities, especially in

the earlier years. To get a hint of the extent to which such polarized members shift in the

ideological space but still remain polarized, we compare them with members who started

polarized but left the polarized ideological communities (i.e., became non-polarized) in the
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following year. Figure 4.7c shows the distributions of ideological shift for the latter for the

same period. Clearly, members who ceased being polarized tend to exhibit greater changes

in ideological behavior. Thus, the changes in membership of polarized communities are

mostly due to members changing to nearby (polarized) communities, as they slowly shift

in the ideological space. Moreover, as shown in Figure 4.7c, the shift in the ideological

space of members who ceased being polarized decreases over the years. This suggests that

the polarized communities and, thus, their members, strengthen polarization over time.

4.7 Discussion

In this case study, we have proposed a methodology to analyze the formation and

evolution of ideological and polarized communities in party systems, applying it to two

strikingly different political contexts, namely Brazil and the US. Our analyses showed that

the large number of political parties in Brazil can be reduced to only a few ideological

communities, maintaining their original ideological properties, that is well disciplined

communities, with a certain degree of redundancy. These communities have distinguished

themselves both structurally and ideologically in the recent years, a reŕection of the

transformation that Brazilian politics has been experiencing since 2012. For the US, the

country’s strong and non-fragmented party system leads to the identiőcation of ideological

communities in the two main parties throughout the analyzed period. However, there

are still some highly similar links crossing the community boundaries. Moreover, for

some years, a third community emerged, without however affecting the strong discipline,

ideology and community structure of the American party system.

We then took a step further and focused on polarized communities by considering

only tightly connected groups of nodes. We found that in Brazil, despite the party frag-

mentation and the existence of some degree of similarity even across the identiőed ideo-

logical communities, it is still possible to őnd a subset of members that organize them-

selves into strongly polarized ideological communities. However, these communities are

highly dynamic, changing a large portion of their membership over consecutive years. In

the US, on the other hand, most ideological communities identiőed are indeed highly po-

larized and their membership remain mostly unchanged over the years.

Finally, we delved deeper into the individual ideological behavior of party members

by proposing a temporal ideological space model. Based on temporal vertice embeddings,

our model allows to analyze the ideological shift of individual members over the period

of a term of office. We observed that in Brazil, the vast majority of party members did

exhibit some change in ideological behavior over time, though the extent of which varies
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greatly across members. Whereas members of polarized communities had a somewhat

more consistent ideological behavior, members of non-polarized communities ŕuctuated

much more ideologically, especially after 2012. In contrast, the representations of US

party members in an ideological space conőrm much greater stability over time.

4.8 Summary

In this chapter, we have addressed our RG1 and RG2 deőned in Section 1.3 by

applying our general approach to a speciőc phenomenon. First, to extract the backbones

from the complete networks, an extreme case of noise, we relied on contextual information,

often overlooked, and showed it could be used to identify salient edges. In particular,

we employed the partisan discipline to estimate the expected agreement between two

congresses belonging to the same ideological group. Then, from the assumption that

salient edges are those whose agreement is consistent with the party discipline of each

political system, we observed different community structures merging over the analyzed

period of őfteen years in both scenarios (BR and USA). Speciőcally for Brazil, we found

that some communities capturing the collective behavior of members of Congress beyond

their original parties were weakly structured due to governability issues.

We then went a step further and proposed a second strategy that extended the őrst

assumption. The idea is to require that two members of Congress not only have a strong

ideological alignment but are also part of a common group of members of Congress that

exhibit similar ideological behavior. Therefore, we focused on ideological communities

that are strongly polarized. To satisfy the new assumption, we proposed the use of

neighborhood overlap as a second backbone extraction strategy and showed that it is

possible to combine different backbone extraction approaches. Finally, we presented our

contribution and progress in the őeld of temporal embedding of nodes. In particular,

we proposed a new technique based on the two state-of-the-art techniques of static node

embedding and temporal word embedding.

In the next Chapter, we use our general approach to examine a new case study

with completely different characteristics, which requires, above all, a more sophisticated

strategy for extracting the backbone.
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Chapter 5

Online Political Discussions on

Instagram

In this chapter, we present our second case study focused on modeling political discussions

on social media platforms, notably Instagram. It is organized as follows: Section 5.1

provides a contextualization of such study and particular questions that we tackle; Section

5.2 describes our methodology based our overall solution presented in Section 3; Section

5.3 describe our dataset; Sections 5.4-5.6 show the results while Section 5.7 discusses our

main őndings on the phenomenon in question; Finally, the Section 5.8 summarizes the

implications and contributions obtained.

5.1 Contextualization

Social media applications are a major forum for people to express their opinions

and information. By interacting with such applications, users build complex networks that

favor the dissemination of information [5]. Indeed, social media has become an important

source of information for a large fraction of the world population [268, 307, 210]. It has

been shown to play an important role in social mobilization and political engagement [245,

197], notably during major political events [228].

Instagram has observed a surge in popularity in recent years [153], especially among

youth. Use of Instagram for consuming news has doubled since 2018, and the platform

is set to overtake Twitter as a news source [209]. It is no surprise that political őgures

are increasingly using this platform to reach the population at large. Therefore, it is of

utmost importance to understand how users interact with each other to őnd out how

information is disseminated on the platform and how online debate affects our society.

Prior studies of user behavior on Instagram have mainly focused on user engagement

according to content type [243, 121, 91, 133, 134, 311], general characteristics of comments

related to political messages [292, 336], and the impact of posted content on marketing
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contexts [121, 324, 132]. However, the literature lacks an investigation of the networks

that emerge from users’ interactions, particularly in the context of political content that

fosters the spread of information.

In Instagram jargon, a profile is followed by a set of followers. A proőle with a large

number of followers is called an influencer. Inŕuencers post content, i.e., posts, containing

a photo or a video. Followers ś or any registered user in the case of public proőles ś can

view the proőle’s posts and comment on them, becoming commenters. We here refer to

multiple users who comment on the same post as co-commenters, and to the interactions

that occur among multiple users (often more than two) when they comment on the same

post as co-interactions. Co-commenters may form communities that arise either naturally

(i.e., based on common interests on speciőc topics) or driven by hidden efforts (e.g.,

ad-campaign or coordinated behavior). By feeding the discussions, these communities

may favor the spread of speciőc ideas or opinions while also contributing to increase the

visibility of particular inŕuencers. Thus, revealing how such communities emerge and

evolve over time is key to understanding information dissemination on the system.

In light of this, the phenomenon we investigate here is the analysis of online discus-

sions, notably on political themes on Instagram. Our goal in studying online discussions

is to analyze how discussion groups that emerge from collective behavior around political

and non-political personalities can be characterized by identifying similarities and differ-

ences, as well as triggers that attract them. As case studies, we analyze a large dataset of

Instagram comments containing the activity of approximately 3 million commenters on

36 824 posts of 320 inŕuencers. These inŕuencers include proőles of popular political őg-

ures ś 80 from Italy and 80 from Brazil, as well as 160 top-inŕuencers in other categories

(e.g., sportsmen, celebrities, musicians), 80 from each country, which we use as a base-

line. We focus on two months surrounding elections that took place in each country.

Our ultimate goal is to analyze how the collective behavior of such commenters

favor the dissemination of information at large. In particular, we address the following

three research questions (RQs):

• RQ1: What are the characteristics of the network backbones emerging

from salient co-interactions on Instagram? First, we model co-commenters’

activity as a network in which nodes represent commenters and edge weights indicate

the number of posts commented by both users. To őlter out uninteresting edges

and reveal the underlying network backbone, we propose TriBE, a new backbone

extraction built on a probabilistic reference network model where edges are based

on the assumption that commenters behave independently from each other. Our

model primarily considers two factors: the popularity of posts and the engagement

of commenters with each inŕuencer. By comparing the network observed in the

real data with our reference model, we prune edges whose weights are within the
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expected range under the assumption of independent user behavior, revealing the

backbones with salient for all scenarios and thus constraining them.

• RQ2: What are the distinguishing properties of the communities that

compose such backbones, notably communities formed around political

content? We delve further into the components of the network backbone by us-

ing Louvain’s algorithm to extract communities. We then analyze the structural

and contextual properties of these communities, in particular, how their structure

emerges and the interests of their proőles, textual features of their comments, in-

cluding sentiment analysis, topics they discuss, and the psycholinguistic properties.

• RQ3: How do community properties evolve over time? By observing 10

weeks around political elections, we characterize communities temporally in both

their structure and context. We analyze how their characteristics evolve over time

in terms of membership and discussions held.

5.2 Methodology

In this section we formally deőne the network of co-commenters on Instagram and

describe the probabilistic network model used as reference to uncover salient interactions.

We then describe how we extract communities from the network backbone and present

the techniques employed to characterize these communities.

5.2.1 Network Model

We model the interactions among users who comment on the same Instagram post

as a sequence of snapshots of őxed time window ∆t, where each snapshot aggregates

posts of a selected set of inŕuencers and their associated comments. We here consider

∆t equal to one week as a reasonable period to cover discussions around posts. For a

given scenario s (our scenarios is detailed in Section 5.3), we deőne a set of time windows

of one-week duration as Ts = {∆t1,∆t2, ...,∆t10}. In our solution, we model individuals

as being commenters, i.e., users commenting on posts made by inŕuencers analyzed in a

given scenario and in a given time window ∆t, thus forming the sets of individuals for

each time window ∆t and scenario as follow: Is,∆t
= {i1, i2, ..., ij}. Here, opportunities are



5.2. Methodology 97

taken as users’ posts created during a given time window ∆t. In this way, we deőne the

set of opportunities containing all posts in each scenario in ∆T as Os,∆t
= o1∆t

, o2∆t
, ...om∆t

.

The total j of commenters and opportunities m varies across scenarios and time windows.

In Section 5.3 we provide a overview of our dataset.

Here, we consider all users who commented in the same post at twice once to be a

co-interaction. In that manner we choose to disregard commenters whose activities were

concentrated on a single post, and thus reŕect sporadic behavior.1 Thus each opportunity

(post) ok∆t
leads to a single co-interaction in set C(ok∆t

). Collectively, all opportunities

during time window ∆t leads to a set Cs,∆t
of co-interactions associated with that time

period for scenario s. Having deőned these elements, we then model a network of co-

commenters Gs,∆t
for each scenario s and time window ∆t, deőned as:

• Vs,∆t
: is the set of vertices representing all commenters in Is,∆t

who participated in

at least on co-interaction in Cs,∆t
.

• Es,∆t
: is the set of undirected and weighted edges, such that the weight of edge ei1,i2

linking two commenters i1 and i2 is γ∆t
(i1, i2) = count(i1, i2), where count(i1, i2) is

the number of times both commenters commented in the same post shared during

time window ∆t.

In such network, the presence of noise occurs due to different circumstances.

First, many users become co-commenters incidentally because of the high popularity of

some posts and/or inŕuencers. Equally, very active commenters naturally become a co-

commenter of many other users as a side effect of their great frequency of commenting

activity. Yet, such co-interactions are mostly driven by chance, as opposed to true group

behavior. As such, they do not reŕect fundamental properties (if any at all) of the ongo-

ing online debate and, more broadly, of the ongoing information dissemination process.

Moreover, often happening in large volumes, those casual and incidental co-interactions

may lead to the formation of networks of co-interactions with lots of sporadic, uninterest-

ing or weak edges.

In other words, such co-interactions are to some extent expected given users’ ac-

tivity and post popularity. Thus, to analyze interactions among co-commenters, we ől-

ter out such expected edges and focus on those whose frequencies of occurrence are large

enough to allow us reject, with some conődence, the assumption of independent behav-

ior. That is, we focus on salient edges that most probably reŕect real online discussions,

forming the underlying fundamental network backbone.

In this context, we present our method in the next section. Next, Section 5.3 de-

scribes our scenarios of study. In sum, we have four scenarios built on disjoint sets of inŕu-

encers in the following fashion: Brazil and Italy and, for each one of them, two groups of
1Note that, by doing so, commenters who commented multiple times on a single post, but did not

comment on other posts, are removed.
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inŕuencers, Politics and General. Each scenario s (s = {BRPolitics, BRGeneral, ITPolitics, ITGeneral})

builds the following universal sets of networks, backbone and communities, respectively:

Gs = {Gs,∆t1
, Gs,∆t2

, . . . , Gs,∆t10}, Bs = {Bs,∆t1
, Bs,∆t2

, . . . , Bs,∆t10} and Ps = {Ps,∆t1
, Ps,∆t2

, . . . , Ps,∆t10

5.2.2 Network Backbone Extraction

A fundamental question that arises when studying complex networks is how to

quantify the statistical signiőcance of an observed network property [102, 53]. To that end,

reference models are often used to determine whether networks display certain features to a

greater extent than expected under a null hypothesis (e.g., independent behavior) [208]. A

reference (or null) model matches some of the features of a graph and satisőes a collection

of constraints, but is otherwise taken to be an unbiased random structure. It is used as a

baseline to verify whether the object in question displays some non-trivial features (i.e.,

features that would not be observed as a consequence of the constraints assumed). An

appropriate reference model behaves according to a reasonable null hypothesis for the

behavior of the system under investigation. One strategy to build a reference model is by

employing generative growing networks [64, 68, 208].

For the sake of simplicity, let’s disregard the subscript s used to refer to a scenario.

We here employ a reference generative model Ĝ∆t
for each network G∆t

that is based on

the hypothesis that commenters during ∆t behave independently from each other. That

is, edge weights in Ĝ∆t
are deőned under a generative process in which commenters act

independently from each other, although their interactions with inŕuencers’ posts (i.e.,

which post each user comments on) are not identically distributed. We can then observe

which edges of the real network G∆t
do not behave in accordance with the reference model

Ĝ∆t
ś i.e., reŕect interactions that signiőcantly deviate from an independent behavior.

Such edges will compose the network backbone. Intuitively, we want to highlight co-

interactions that occurred more often than what would be expected if commenters behaved

independently.

To achieve this, we proposed TriBE (Tripartite Backbone Extraction), a novel

backbone extraction method that uses as input the popularity of each post (number of

unique commenters) and the engagement of commenters towards each inŕuencer (number

of posts by the inŕuencer on which each commenter writes) to create a null model. Using

these statistics, comments are randomly assigned to commenters while preserving: i)

the set of inŕuencers on which each commenter writes a comment; ii) the popularity

of each post, and iii) the engagement of each commenter towards each inŕuencer. The

model assigns commenters to each post using independent and identically distributed
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(i.i.d.) draws from a distribution where the probability is proportional to the commenter’s

engagement towards the target inŕuencer. By doing so, we prevent the backbone from

being dominated by very active commenters or by those engaged in highly popular posts.

More speciőcally, let U∆t
be the set of all inŕuencers who wrote a set of posts

considered as being opportunities O∆t
. Let Io ⊆ I∆t

be the set of unique commenters in

post o ∈ O∆t
and O∆t,u ⊆ O∆t

be a partitioning of O∆t
based on the inŕuencer u ∈ U∆t

who created the post. We deőne the engagement of commenter i1 ∈ I∆t
towards inŕuencer

u (measured by the total number of posts in O∆t,u commented by i1) as

xu(i1) =
∑

o∈O∆t,u

1{i1 ∈ Io}, (5.1)

where 1{.} is the identity function. We then deőne i1’s relative engagement towards u

w.r.t. other commenters as:

fu(i1) =
xu(i1)∑

i2∈I∆t
xu(i2)

=
xu(i1)∑

o∈O∆t,u
|Io|

. (5.2)

In this way, we can describe in details the three steps of the generative process to

build our reference model Ĝ∆t
:

1. For each post o ∈ O∆t
, we consider a random assignment of each of the |Io| (unique)

commenters to a commenter i1 ∈ I∆t
with probability fu(i1), where i1 is the author of

o. Speciőcally, under the assumption of independent behavior, we consider each such

assignment as a Bernoulli random variable with parameter fu(i1). The probability

that commenter i1 is not assigned to o is thus a Binomial random variable, with

0 successes in |Io| experiments. Conversely, under the assumption of independent

behavior, the probability that i1 has commented (at least once) on a post o ∈ O∆t,u

is ro(i1) = 1− (1− fu(i1))
|Io|.

2. For each pair of commenters i1 and i2, we denote by ro(i1, i2) the probability that

both get assigned to post o and by ro(i1|i2) the probability that i2 gets assigned

to o given that i1 is assigned to o. The conditional probability ro(i1|i2) is nec-

essary because, strictly speaking, although we are drawing commenters indepen-

dently, when i1 is drawn, it decreases the number of chances i2 has for being drawn

(since |Io| is őxed). Hence, ro(i1, i2) = ro(i1)× ro(i1|i2). We approximate ro(i1, i2) ≈

ro(i1) × ro(i2), for each post o ∈ O∆t
. Intuitively, this approximation works well

when |Io| is large (as in the case of most inŕuencers’ posts), because drawing i1 de-

creases by only one the number of draws that can be used to draw i2. Then, for

each post o ∈ O∆t
, our model deőnes a distribution over the set of vertices corre-

sponding to Io, where the value of the random variable Γ̂o(i1, i2) ∈ {0, 1} indicates

the existence of an edge between commenters c and d, and is given by a Bernoulli

trial with parameter ro(i1, i2), i.e. Γ̂o(i1, i2) ∼ Bernoulli(ro(i1, i2)).
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3. The reference model Ĝ∆t
= (V̂∆t

, Ê∆t
) is composed by the superposition of all the

edges created for all posts o ∈ O∆t
. Hence, an edge êi1,i2 ∈ Ê∆t

will have a weight

distribution described by a random variable Γ̂(i1, i2) =
∑

o∈O∆t
Γ̂o(i1, i2). Therefore,

it will be a sum of Bernoulli random variables with distinct probabilities [304], which

follows a Poisson Binomial distribution with parameters r1(i1, i2), r2(i1, i2), . . . , r|O∆t
|(i1, i2).

We can then compare the reference model Ĝ∆t
with the observed network G∆t

to

extract the backbone B∆t
of the latter. We do so by keeping in B∆t

only edges of G∆t

whose weights have values exceeding the ones expected in Ĝ∆t
by a large margin. Speciő-

cally, for each edge êi1,i2 we compute the (1−α)th percentile, denoted by γ̂1−α(i1, i2), of the

distribution of edge weight Γ̂(i1, i2), and compare it with the observed edge weight γ(i1, i2).

We keep edge ei1,i2 if γ(i1, i2) > γ̂1−α(i1, i2). Intuitively, we keep only edges between co-

commenters who interacted much more often than expected under the assumption of inde-

pendent behavior. That is, edges for which the chance of such frequency of interactions be-

ing observed under the independence assumption is below α. We here set α = 5%, as done

in prior studies [265, 135]. Note that the (1 − α)th percentile is computed separately for

each edge ei1,i2 ∈ E∆t
from random variable Γ̂(i1, i2). For such a Poisson binomial distri-

bution, there is a closed form for computing a given percentile [116], which, however, is ex-

pensive to compute. Instead, we here use the Reőned Normal Approximation (RNA) [116],

a method that proved very good performance with low computational complexity.

After őltering out edges, isolated vertices are also removed. At the end, we extract

from the network G∆t
its backbone B∆t

= (V∆t,b, E∆t,b) where V∆t,b ⊆ V∆t
and E∆t

⊆ E∆t
.

Hence, we obtain a universal set of backbones being deőned as B = {B1, B2, ..., B∆tn}.

In the next section, we present a toy example to show how TriBE works.

Backbone Extraction Exempliőed

We illustrate how the backbone is extracted from a given input network G∆t
by means of

the toy example shown in Figure 5.1. Figure 5.1a shows a total of őve inŕuencers, each

with a different number of posts (o1, o2, etc), and each post with associated commenters

(A, B, etc). Posts have different popularity, and commenters have different activity levels

and engagement towards each inŕuencer. The projected graph G∆t
is depicted in Figure

5.1b, whereas the extracted backbone B∆t
is shown in Figure 5.1c. In both networks, line

thickness is proportional to the edge weight.

The question that arises is: why did we extract only the edges shown in Figure 5.1c

to compose the network backbone? Recall that our model selects as salient edges those

that have weights large enough so that we can reject the assumption of independent user

behavior. Thus, for each edge in G∆t
, we ask ourselves: is there enough evidence to reject

the assumption of independent behavior? If so, the edge is kept; otherwise, it is removed.
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(a) Raw Data

(b) Original Network G∆t
(c) Network Backbone B∆t

Figure 5.1: Illustration of the backbone extraction process in a simplistic graph. The
isolated vertices are removed from the őnal B∆t

used in our analysis.

Let’s illustrate our decisions regarding four groups of edges, focusing őrst on edges

incident to commenters A, B, C. Note that all three commenters commented on posts

only by inŕuencers 1 and 5 and they commented on all posts by both inŕuencers. These

commenters are thus quite active, and the popularity of these posts is actually high,

considering the population of users who commented on them. As such, it is possible that

A, B and C are driven by their individual interests on these two inŕuencers, and, as

such, most probably would comment in most (if not all) posts by them. Thus, based on

the observed data, we cannot reject the assumption of independent user behavior when

considering co-interactions among A, B and C and the corresponding edges are not kept

as part of the network backbone in Figure 5.1c. For example, the edge eAB has weight

γ(A,B) = 9 which is below or equal to the 95th percentile of the corresponding edge

weight distribution γ̂0.95(A,B) = 9. The same reasoning applies to commenter X, who

only commented on posts by inŕuencer 1. Thus, the co-interactions of X with A, B and

C are not considered salient and the corresponding edges are not kept.
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Let’s consider now the edges incident to commenters J , K and L. These users

co-comment with low frequency in posts by inŕuencers 2 (o2 and o3), 3 (o3) and 4 (o5).

These posts are the most popular posts by such inŕuencers, receiving comments from

several other users as well. It is therefore expected that commenters active on these posts

will have several co-commenters, as we can observe in Figure 5.1b. However, when it

comes to J , K and L, the weights of these edges are small, as the co-interactions are

somewhat sporadic. Moreover, note that the posts on which these users commented are

among the most popular ones by the corresponding inŕuencers, attracting most of their

commenters. For example, o2 by inŕuencer 2 received comments by 9 out of all 10 users

who commented on her posts. Co-interactions built around such highly popular post

are not considered salient as one cannot tell whether commenters are truly interacting

with each other or simply reacting independently to a quite attractive content. From an

operational perspective, recall that, when building the reference model Ĝ∆t
we do need

to assign commenters to comments associated with each post. In the case of such very

popular posts, most if not all potential commenters are assigned, thus raising the chance

of the edge being added to Ĝ∆t
, and thus of the edge being considered expected under

the assumption of independent behavior.

We now turn our attention to the edges incident to two groups of commenters: i)

D, E, F and X; and ii) G, H, I. In both cases, the commenters co-interact on posts by

inŕuencers 2, 3 and 4, and the co-interactions occur very often on different posts by these

inŕuencers. However, unlike the case of A, B and C, discussed above, there are other

users who also commented on the same posts. Compared to these other commenters, D,

E, F , and X (as well as G, H, I) clearly stand out as frequent co-commenters. That

is, taking the overall behavior of the commenters of these posts, we őnd that the co-

interactions among D, E, F , and X (as well as G, H, I) are more frequent than expected

if these users were being driven by independent behavior. For example, the weight of edge

eDE is γ(D,E) = 12 which is larger than the 95th percentile of the corresponding edge

weight distribution γ̂0.95(D,E) = 10. We consider this evidence strong enough to reject

the assumption of independent behavior. The same holds for the other aforementioned

commenters. As consequence, the corresponding edges are maintained in the backbone

(see Figure 5.1c).

Finally, we note that all isolated nodes are removed from the őnal network back-

bone (see, for example, nodes A, B, C, K, J , and L, no longer present in Figure 5.1c).
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5.2.3 Community Detection

Once extracted the backbone B∆t
, our next step consists of identifying communi-

ties in B∆t
. Qualitatively, a community is deőned as a subset of vertices such that their

connections are denser than connections to the rest of the network. To extract communi-

ties from B∆t
, we adopt the Louvain algorithm [27, 207] explained in Chapter 2. By do-

ing so, we expect to capture communities of commenters acting on distinct sets of posts

and Inŕuencers represented by the universal set P = {P1, P2, ..., P∆tn}.

5.2.4 Community Characterization

Once communities are extracted, we characterize them in terms of the textual

properties of the content shared by their members as well as their temporal dynamics.

Content Properties

We analyze the discussions carried out by each community by focusing on the textual

properties of the comments shared by its members. In particular, we employ three com-

plementary textual analysis approaches.

First, we perform sentiment analysis using SentiStrength,2 a lexical dictionary

labeled by humans with multi-language support, including Portuguese and Italian. Given

a sentence, SentiStrength classiőes its sentiment with a score ranging from -4 (extremely

negative) to +4 (extremely positive) [287]. SentiStrength has been widely applied to

analyze the sentiment of social media content, notably short texts (e.g., tweets), for which

identifying sentiment is usually harder [248, 286].

Second, we use Term Frequency - Inverse Document Frequency (TF-IDF) [130] to

reveal terms that characterize each community. TF-IDF is traditionally used to describe

documents in a collection with their most representative terms. Given a particular term

and a document, the TF-IDF is computed as the product of the frequency of the term in

the given document (TF ) and the inverse of the frequency at which the term appears in

distinct documents (IDF ). Whereas TF estimates how well the given term describes the

document, IDF captures the term’s capacity to discriminate the document from others.

To apply TF-IDF in our context, we represent each community as a document consisting

of all comments of the community members. We pre-process the comments to remove

2http://sentistrength.wlv.ac.uk/index.html

http://sentistrength.wlv.ac.uk/index.html
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emojis, stopwords, hashtags, punctuation and mentions to other users, perform stemming,

as well as remove the overall top-1% most popular terms and rare terms (less than 10

occurrences).3

Each community is then represented by a vector d with dimension equal to the

number of unique terms in the collection. The element d[i] is the TF-IDF of term i. We

here use a modiőed version of IDF , called probabilistic inverse document frequency [12],

which is more appropriate when the number of documents is small (as is our case). It is

deőned as IDF (i) = log N−ni

ni
, where N is the total number of communities and ni is the

number of communities using the term i. We manually evaluate the terms with large TF-

IDF of each community searching for particular subjects of discussion.

Last, we delve deeper into community contents using LIWC [285], a lexicon sys-

tem that categorizes text into psycholinguistic properties. LIWC organizes words of the

target language as a hierarchy of categories and subcategories that form the set of LIWC

attributes. Examples of attributes include linguistic properties (e.g., articles, nouns and

verbs), affect words (e.g., anxiety, anger and sadness) and cognitive attributes (e.g., in-

sight, certainty and discrepancies). The hierarchy is customized for each language, with 64

and 83 attributes for Portuguese and Italian, respectively. We apply LIWC to each com-

ment of each community to quantify the fraction of words that falls into each attribute.

We search for statistical differences across communities based on the average frequencies

of their respective attributes. We őrst use Kruskal’s non-parametric test to select only

attributes for which there is a signiőcant difference across communities [137]. Then, we

rank attributes with signiőcant differences to select the most discriminative ones using

the Gini Coefficient [329].

Temporal Properties

Finally, we analyze how communities evolve over time, both in terms of their member-

ships and the main topics of discussion. To analyze the dynamics of community mem-

bership, we use the two metrics, in particular persistence and normalized mutual infor-

mation, explained in Section 4.2.6. For topic analysis, we start by focusing on the most

representative terms used by each community, as captured by the TF-IDF metric, to ex-

amine the extent to which communities use the same lexicon in successive time windows.

To that end, we őrst generate, for each time window, the vector representation of each

identiőed community (as described in the previous section). Given the large size of the

vocabulary, we consider only the top-100 words with the highest TF-IDF scores in each

document, zero-ing other entries in the TF-IDF vectors. Next, we need to match the

communities found in week ∆t2 to the communities found in week ∆t1 so as to be able

to follow users commenting on the same topics across windows. Rather than doing so by

3The former are words whose frequency is extremely high and would not help to characterize the
communities, while the latter are mostly typing errors or grammar mistakes.
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using the structural information, we match them based on the topics or, more precisely,

on the set of terms they used in each window.

Speciőcally, we use the cosine similarity [12] of the TF-IDF vectors4 to compute the

pairwise similarity between all pairs of communities in windows ∆t1 and ∆t2, matching

each community p∆t1
1 in window ∆t1 with the most similar one in window ∆t2, provided

that this similarity exceeds a given criterion of signiőcance.

The criterion we adopt consists of comparing the similarity between two commu-

nities p∆t1
1 and p∆t2

2 and the similarity between p∆t1
1 and an łaverage" community in win-

dow ∆t2. Let d
∆t1
1 be the TF-IDF vector representation of community j in window ∆t1,

we use all comments associated with window ∆t2 to compute its TF-IDF vector d∆t2
∗ us-

ing the term frequencies in the complete document (i.e., all comments) but the IDF val-

ues previously computed considering individual communities in ∆t2. In practice, the co-

sine similarity between the TF-IDF vectors d∆t1
1 and d

∆t2
∗ gives us a signiőcance threshold

for matching the communities, i.e., when sim(d∆t1
1 ,d∆t2

2 ) > sim(d∆t1
1 ,d∆t2

∗ ), the similarity

between p∆t1
1 and p∆t2

2 is larger than the similarity between pw1 and an łaverage commu-

nity” in window ∆t2. In case no community p∆t2
2 satisőes that condition, we deem that

no match was found for p∆t1
1 . Instead, if we őnd a match, it means that we have a signif-

icant mapping between two communities in different windows.

5.3 Dataset

We now describe the dataset used in our study, which consists of over 39 million

comments produced by over 1.8 million unique commenters, participating in discussions

triggered by 320 top inŕuencers over two countries (Brazil and Italy).

5.3.1 Dataset crawling

We collected data from Instagram proőles in Brazil and Italy. Our collection targets

electoral periods to capture the political debate taking place on the social network. For

Brazil, we focus on Instagram posts submitted during the national general elections of

4The similarity between communities p1 and p2 is deőned as sim(p1, p2) = d1 × d2, where d1 and
d2 are the TF-IDF vector representations of communities c1 and p2, respectively. Note that sim(p1, p2)
ranges from 0 (maximum dissimilarity) to 1 (maximum similarity).
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Table 5.1: Dataset Overview (weeks including election dates are shown in bold in the
respective country). The number of posts and commenters (comm.) by each scenario and
week.

Week
Politics General

Brazil Italy Brazil Italy

# Posts # Comm. # Posts # Comm. # Posts # Comm. # Posts # Comm.

1 1 487 37 406 779 17 427 746 172 454 733 54 407
2 1 648 67 799 739 20 873 778 180 711 703 49 290
3 1 798 103 506 742 20 876 719 164 040 594 52 052
4 1 951 94 327 907 21 402 854 186 333 649 54 677
5 2 307 145 618 1 080 22 029 680 125 414 683 52 318
6 958 184 993 1 240 22 890 771 158 522 720 69 066
7 1 195 123 797 1 316 26 600 723 131 563 657 61 168
8 1 400 145 499 701 31 308 798 152 705 635 66 337
9 799 191 282 762 17 171 733 146 128 540 31 520
10 606 50 546 656 19 926 763 159 628 507 33 781

October 7th (őrst round) and October 28th (second round), 2018. Our dataset covers 10

weeks (from September 2nd until November 10th, 2018) which includes weeks before and

after the election dates. Similarly, for Italy we observed the European elections held on

May 26th, 2019, collecting data published from April 7th to June 15th (also 10 weeks). We

monitor posts shared by selected proőles (see below), gathering all comments associated

with those posts.

We use a custom web crawler to scrape data from Instagram that relies on the

Instaloader library5. We performed the crawling in September 2019. Given a proőle i,

the crawler looks for posts i created during the predeőned period. For each post, the

crawler downloads all comments associated with it. As the interest in posts on Instagram

tends to decrease sharply with time [292], we expect that our dataset includes almost

all comments associated with posts created during the period of analysis. We focus only

on public Instagram proőles and posts, collecting all visible comments they received. We

performed the crawling respecting Instagram rate policies to avoid overloading the service.

We did not collect any sensitive information of commenters, such as display name, photos,

or any other metadata, even if public.

For each country, we monitor two groups of inŕuencers:

• Politics : the most popular Brazilian and Italian politicians and official political pro-

őles. We consider 80 proőles for each country. In total, the Brazilian politics pro-

őles created 14 149 posts and received more than 8 million comments by 575 612

unique commenters during the monitored period. Similarly, the Italian proőles cre-

ated 8 922 posts, which received more than 1.9 million comments by 94 158 distinct

commenters.

5https://instaloader.github.io

https://instaloader.github.io
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• General : non-political inŕuencers used as a control group. We rely on the HypeAu-

ditor6 rank to obtain the list of most popular proőles for the Sport, Music, Show,

and Cooking categories in each country. Similarly to the Politics group, we pick 80

proőles for each country. The Brazilian general proőles created 7 565 posts and re-

ceived 15 million comments by 295 753 distinct commenters during the monitored

period. Similarly, the Italian general proőles created 6 421 posts and received 14

million comments carried out by 897 421 commenters.

5.3.2 Data pre-processing

We only consider commenters who commented on more than one post when build-

ing the network for a given week ∆t. This step removes 70ś85% of the commenters. We

observe that 95% of removed commenters commented fewer than three times when con-

sidering all period of the dataset. All results presented in the following refer to the dataset

after removing these occasional commenters. To build the network of co-commenters, we

aggregate posts by week separating data by country (Brazil and Italy) and category of in-

ŕuencers (general and politics).7 We then use the comments these posts received to build

the co-commenter network. This procedure generates 40 weekly-snapshots, here called

week for simplicity: one for each of the 10 evaluated weeks, for 2 countries and 2 categories.

5.3.3 Dataset overview

Table 5.1 presents an overview of our dataset, showing the numbers of posts and

distinct commenters per week. Election weeks are shown in bold. In Brazil, elections were

on Sunday of the 5th and 8th weeks (1st and 2nd rounds, respectively), whereas the election

in Italy took place on Sunday of the 7th week. Focusing őrst on politics, we observe that

the number of posts tends to steadily increase in the weeks preceding elections, reach

a (local) maximum on the week(s) of the election, and drop sharply in the following.

Interestingly, the largest number of commenters appears on the week immediately after

the elections. Manual inspection reveals this is due to celebrations by candidates and

supporters. Regarding the general category, we observe that the number of posts and

6https://hypeauditor.com/
7We consider weeks starting on Monday and ending on Sunday.

https://hypeauditor.com/
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Figure 5.2: Distributions of number of comments per post (notice the log scale in y-axis).

commenters is rather stable, with a slight decrease in the last two weeks for Italy due to

the approaching of summer holidays.

We complement the overview with Figure 5.2, which shows the distributions of the

number of comments per post during each week. We use boxplots to ease visualization.

The black stroke represents the median. Boxes span from the 1st to the 3rd quartiles,

whiskers mark the 5th and the 95th percentiles. For politics, the median is a few tens of

comments per post, while general posts receive 10 times as much (notice the log y-axes).

Recall that the number of distinct commenters is similar on both cases (see Table 5.1),

thus commenters are more active in the general proőles. Yet, posts of the main political

leaders attract thousands of comments, similar to famous singers or athletes (holding for

both countries). Considering time evolution, the number of comments on politics increases

by an order of magnitude close to elections, with a sharper increase in Brazil.

5.4 Structural analysis

We here describe the network structure emerging from our data. We őrst illustrate

characteristics of the original and network backbones. Then, we characterize the commu-

nities and highlight insights emerging from the co-commenters backbones.
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Figure 5.3: Network characteristics for posts of inŕuencers for Brazil - Politics (Week 1).

5.4.1 The Network Backbones

We őrst show an example of network backbone, using the 1st week of the Brazilian

Politics scenario as case study.

Figure 5.3a depicts the histogram of the edge weights in the original graph GP .

Notice that 82% of edges have weight equal to 1, i.e., the majority of co-commenters co-

comment in a single post. Higher weights are less frequent (notice the log scale on the

y-axis). Yet, some co-commenters interact on more than 20 posts. In the following, we

assess whether these weights are expected ś i.e., their weights agree with the assumption

of independent user behavior.

The scatter plot in Figure 5.3b compares the observed weight in GP and the 95th

percentile of weight estimated by our reference model ĜP . Colors represent the number

of edges, and lighter colors indicate larger quantities. Most edges have very low value

for both observed and estimated weights ś notice the lightest colors for weights 1 and 2

in the bottom left corner. We are interested in the edges in which weights exceed the

95th percentile of the expected weight ś i.e., those above the main diagonal. The fraction

of edges over the diagonal is higher for larger weight values. This indicates that co-

commenters interacting on many posts deviate from the expectation.

Figure 5.3c digs into that by showing the percentage of edges that are included in

the network backbones separately by observed edge weight. If the null model held true,

5% of the edges would be included (those exceeding the 95th percentile) ś highlighted by

the red dotted line. But in GP , edges weights do not always follow the null hypothesis of

independent behavior, especially for edges with large weights.

It is also important to remark that GP edge weights are integer numbers, and

our generative model provides discrete distributions. Therefore, the computation of per-
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Table 5.2: Characteristics of the original network GP and network backbone BP for Brazil
- Politics (Week 1).

Network # Nodes # Edges # Comm Modularity

Original 37 k 74.09 M 6 0.22
Backbone 26 k (70.7%) 1.06 M (1.4%) 19 0.59

centiles is critical since the same value can refer to a range of percentiles. This causes a

rounding issue that is critical for low values. Filtering weights greater than or greater or

equal to particular values results in signiőcant differences for low weights. Figure 5.3c il-

lustrates it by reporting the fraction of edges that would be included in the backbone in

the two cases. Using greater than corresponds to a conservative choice since we include

only edges for which the expected weight is strictly higher than the 95th percentile (or-

ange curve). Notice how the number of edges in the backbone is reduced for low weights.

Conversely, greater or equal to would preserve more edges, including those whose weight

possibly corresponds to a lower percentile (blue curve). We here maintain a conservative

choice and keep edges whose actual weight is strictly greater than the 95th percentile.

Table 5.2 describes the resulting network backbone BP after őltering, comparing

it with the original graph GP . We focus on week 1 here, but results are consistent for all

weeks. Our approach discards 98.6 % of the edges ś i.e., the vast majority of them is not

salient. We remove 29% of nodes, which remain isolated in BP . To highlight the beneőts

of the approach, we include the number of communities and the modularity in the original

and backbone graphs. The Louvain algorithm identiőes only 6 communities with very low

modularity in the original graph. On the backbone, it identiőes more communities, and

modularity increases from 0.22 to 0.59.

Table 5.3 summarizes the main characteristics of the network backbones obtained

on each week for Brazil, Politics. Focusing on the őrst four columns, notice that we still

include the majority of nodes, with percentages ranging from 68% to 95%. Considering

edges, the percentage is always low (0.6ś2.6%). The fourth column reports the fraction

on edges in the backbone having weight larger than 1. Remind that, by design, a random

behavior would lead to 5% of edges in the backbone, while here we observe up to 19%,

despite our conservative őltering criteria. Results are rather stable and consistent over

time.
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Table 5.3: Breakdown of backbone and communities over different weeks for Brazil, Poli-
tics. In bold, the weeks of the elections.

Week % Nodes % Edges
% Edges
γ(cd) > 1

# Comm Mod.

1 70.69 1.40 11.43 19 0.59
2 93.36 2.11 12.19 27 0.64
3 73.81 1.01 4.75 20 0.52
4 93.63 2.23 15.10 32 0.69
5 94.30 2.65 19.36 17 0.61
6 91.49 2.36 19.37 31 0.66
7 94.05 1.87 15.45 31 0.66
8 95.40 2.13 15.29 27 0.64
9 68.01 0.62 4.06 24 0.59
10 71.33 1.11 7.21 29 0.61

5.4.2 Communities of Commenters

We now study the communities obtained from the backbone graphs. The last two

columns of Table 5.3 show that we obtain from 19 to 32 communities, depending on

the week. Modularity values are high (always above 0.5), meaning that the community

structure is strong.

We summarize results for the other scenarios in Table 5.4, reporting only average

values across the 10 weeks. First, focusing on Politics and comparing Brazil and Italy (őrst

two rows), we observe similar percentages of nodes in the network backbones. For Italy a

larger fraction of edges are retained, potentially because of the smaller volume of proőles

and comments (see Section 5.3). For Brazil, we obtain a larger number of communities

with higher values of modularity than in Italy.

Moving to the General scenarios (3rd and 4th rows), we notice that fewer nodes

and edges are in the backbones compared to Politics. Interestingly, we identify more

and stronger communities. We root this phenomenon in the heterogeneity of the General

scenarios that include inŕuencers with different focuses, potentially attracting commenters

with different interests. Manual inspection conőrms the intuition ś i.e., we őnd some

communities interested in sports, others on music, etc. For politics, instead, we őnd a more

tangled scenario. Even if communities are rather strong, some of them include proőles

Table 5.4: Networks backbone and identiőed communities for Brazil (BR) and Italy (IT).
We show average values over the 10 weeks.

Scenario % Nodes % Edges
% Edges
γ(cd) > 1

# Comm Mod.

BR Politics 84.61 1.81 12.42 26 0.62
IT Politics 87.33 3.39 21.79 11 0.44

BR General 65.35 0.82 8.83 81 0.79
IT General 60.03 2.23 12.57 48 0.72
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commenting on politicians of different parties and embracing different topics. Next, we

evaluate communities in the Politics scenario.

5.4.3 Analysis of Political Communities

We now focus on Politics and show how the activity of commenters spreads across

political proőles of different parties. Here we focus on the election week for both countries

to better capture the peak of the political debate on Instagram.

We őrst focus on the main political leaders of the two countries and study how the

communities of co-commenters distribute their interests among their posts. We consider

six politicians in each country. Figure 5.4 shows how the commenters of each community

are spread among posts of each politician using a heatmap. Columns represent politi-

cians and rows represent communities. The color of each cell reŕects the fraction of the

comments of the community members that are published on the posts of the politician.

To gauge similarity of proőles, the top of the heatmaps report a dendrogram that

clusters politicians based on the communities of their commenters. We deőne as similarity

metric of politicians the Pearson correlation among the activity of communities on their

posts. In other words, we compare them by computing the correlation between the cor-

responding columns of the heatmap. Hence, two politicians that receive comments from

the same communities have high similarity.

Looking at the Brazilian case (Figure 5.4a), we notice that most communities are

interested in a single candidate - Jair Bolsonaro (jairmessiasbolsonaro), with the large

majority of comments focused on his posts. This behavior is expected given his large

number of followers and popularity. Indeed, communities 1− 9 comment almost uniquely

on Bolsonaro. Focusing on the dendrogram on the top of the őgure, Bolsonaro has the

highest dissimilarity from the others, i.e., he is the őrst candidate to be separated from

others. Other clusters reŕect accurately the candidates’ political orientation. Left-leaning

candidates (Ciro Gomes, Fernando Hadaad and Luiz Inacio Lula8) are close, as well as

the ones leaning towards the right-wing parties (Alvaro Dias, Cabo Daciolo and Jair

Bolsonaro).

Similar considerations hold for the Italian case (Figure 5.4b). Communities 1− 10

focus on Matteo Salvini (matteosalviniofficial). He is the only one for which we identify

multiple and well-separated communities. The other right-wing leaders have communities

active almost exclusively on their posts, e.g., communities 13 and 14 for Silvio Berlus-

coni and Giorgia Meloni. Other leaders (e.g., Matteo Renzi and Nicola Zingaretti for the

8Haddad replaced Lula, who was barred by the Brazilian Election Justice.
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Figure 5.4: Distribution of comments among political leaders for each community during
the main election weeks.

Democratic Party and Luigi Di Maio for the Five Star Movement) share a large fraction

of commenters in community 11. This suggests these commenters are almost equally in-

terested in the three leaders. Indeed, looking at the dendrogram, these last three proőles

are close to each other. Matteo Salvini (leader of the most popular party) has the maxi-

mum distance from others. Similar to the Bolsonaro’s case, Salvini is a single leader who

polarizes communities, thus well-separated from others.

We now broaden the analysis to all politicians. We label each politician according

to his/her political coalition using available public information.9 For Brazil, we rely on

9Differently from e.g., the US or UK, in both Brazil and Italy the political system is fragmented into
several parties that form coalitions during and after elections.
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(b) Italy.

Figure 5.5: Dendogram of political inŕuencers clustered according to commenter commu-
nities. Inŕuencers are colored according to their political coalition.

the Brazilian Superior Electoral Court,10 while for Italy we use the official website of

each party. Rather than reporting the activity of each community on all politicians, we

show only the dendrograms that cluster them, following the same methodology used in

Figure 5.4.

Figure 5.5 shows the results, where the party leaders/candidates shown in Fig-

ure 5.4 are marked in bold. Politicians of the same parties appear close, meaning that

their posts are commented by the same communities. For Brazil, the higher splits of the

dendrogram roughly create two clusters, for left and right-wing parties. In Italy, we can

identify three top clusters, reŕecting the tri-polar system. Less expected are the cases

in which politicians from distant political leanings attract the interest of the same com-

munities and are close in the dendrogram. For example, in Italy, we őnd the proőle of

Monica Cirinnà (left-wing) very close to Angelo Ciocca (right-wing). Manual inspection

reveals a considerable number of disapproving comments to posts of the őrst politician

that are published by commenters supporting the second. The same happens for Vladimir

10http://divulgacandcontas.tse.jus.br/divulga/#/estados/2018/2022802018/BR/

candidatos

http://divulgacandcontas.tse.jus.br/divulga/#/estados/2018/2022802018/BR/candidatos
http://divulgacandcontas.tse.jus.br/divulga/#/estados/2018/2022802018/BR/candidatos
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Luxuria, whose some supporters disapprove Marco Bussetti’s posts (and vice-versa). The

structure of the backbone graph reŕects the presence of proőles that bridge communities.

In sum, our methodology uncovers the structure of communities, which reŕect peo-

ple’s engagement to politicians over the spectrum of political orientation. Most commu-

nities are well-shaped around single proőles, but sub-communities emerge too, possibly

around particular topics, as we will check next. In some cases, commenters cross the ex-

pected political divide, commenting on proőles from different political orientations.

5.5 Textual Properties of Discussions

We now focus on how the communities differ in terms of textual, sentiment and

psychological properties of comments.

5.5.1 Political Communities’ Interests

We now look into how communities in politics are attracted by different posts.

Since communities differ in the number of members and in the number of comments they

post, we consider a relative interest index of the community in a post, given by the fraction

of the community’s comments going to the post. We use data from the week of the main

elections in Brazil (week 5).

Figure 5.6a quantiőes, for each post, the two most interested communities. The x-

axis reports the index for the community with the highest interest on the post, while the

y-axis reports the index for the second most interested community in the post. We observe

that, in all cases, the most interested community leaves less than 7% of its comments

in a unique post (see the x-axis). Given there are 2 144 posts in this snapshot, even

a relative interest of 1% could be considered highly concentrated attention, suggesting

that communities are built around speciőc posts. In ≈ 40% of the posts, the relative

interest of the second most interested community (y-axis) is very low compared to the

most interested one. We quantify this in Figure 5.6b, which reports the ratio between

the relative interests of the őrst and the second most interested communities. We observe

that, in the 55% of cases, the most interested community has at least 10 times higher

index than the second one ś notice the x-axis log-scale. Hence, we have strong evidences

that communities are attracted by speciőc posts.
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Figure 5.6: Interest of communities on posts.

(a) Community 3 -
Post about a rally
in São Paulo.
www.instagram.

com/p/

BoXpvV6Hrkk

(b) Community 3 -
Post about a rally
in Vitória.
www.instagram.

com/p/

BoXMwvwn6xj

(c) Community 7
- Post discussing
racism.
www.instagram.

com/p/

BomRItfH9p8

(d) Community 7 -
Another post dis-
cussing racism.
www.instagram.

com/p/

Boe7fQcHfJB

Figure 5.7: Examples of posts by Jair Bolsonaro (jairmessiasbolsonaro) in which two
communities show high interest.

Figure 5.7 shows posts that attracted high interest from communities 3 and 7,

which we use as running examples along with communities 10 and 11. Community 3

comments mostly on posts related to public events Bolsonaro promoted via Instagram

(as in Figures 5.7a and Figures 5.7b), while community 7 comments on posts where the

candidate tries to show his proximity with black people to debunk his associations with

racism (Figures 5.7c and Figures 5.7d).

https://www.instagram.com/p/BoXpvV6Hrkk
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5.5.2 Properties of Communities’ Comments

We now take all communities found in each week and extract properties of the

comments of their members, namely: i) Average comment length (in characters); ii)

Fraction of comments that include at least one mention; iii) Average number of hashtags

per comment; iv) Fraction of comments with at least one uppercase word; v) Average

number of comments per commenter; vi) Average number of emojis per comment; and vii)

Fraction of replies among comments. Together these metrics capture important aspects

of the communities’ behavior. For example, the comment length, the number of emojis

per comment and the use of uppercase words (commonly associated with a high tone) can

describe the way the communities interact on Instagram. Mentions, the use of hashtags

and replies are strongly associated with engagement, information spreading and direct

interaction of commenters, respectively.

We study the communities by applying Principal Component Analysis (PCA) to

vectors that represent communities using the seven previously described metrics. PCA is

a well-known method for dimensionality reduction in multivariate analysis. It projects the

data along its principal components (PCs), i.e., axes that capture most of the variance in

the data [288]. Figure 5.8a shows the representation obtained for each community using

the two principal components, where the color represents the pair country-scenario. The 2-

D representations of communities for both politics scenarios are more tightly clustered and

overlapping than for the general scenario. This behavior suggests that, when considering

the given features, communities on politics are more homogeneous than the communities

on the general scenario.

To understand which metrics best distinguish the communities in Figure 5.8a, we

study the loading scores for the two principal components. The loading score quantiőes the

contribution of each metric to a principal component. The largest the score (in absolute

value) the more the metric contributes to the component (positively or negatively).

In Figure 5.8b bars represent the magnitude of loading scores for each metric for the

PC 1 (left) and PC 2 (right). The PC 1 (left) can be associated with lengthy comments,

high usage of uppercase, emojis, replies and hashtags, and a low number of comments

per commenter. From Figure 5.8a, we see that high values for PC 1 is more common

for communities in the politics scenarios. Conversely, most communities of the general

scenario have negative x coordinates, thus pointing to the opposite behavior.

A less clear picture emerges for PC 2. Large values for PC 2 are associated with

high number of replies, mentions and comments per commenter (see Figure 5.8b, right

plot). For the politics scenario in Figure 5.8a, communities are concentrated in the y ∈

[−2, 3] range, with those for Italy being slightly more positive than those from Brazil. In

the general scenario, however, points are spread out along the y axis.
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Figure 5.8: (a) 2-D representation of communities based on seven metrics using PCA.
(b) Description of the two principal components in terms of the original metrics; the bar
represents the loading scores for the components (positive or negative).

We conclude that commenters of politics inŕuencers exhibit a more homogeneous

behavior than commenters of other inŕuencers. Particularly, commenters on politics leave

larger comments and use higher tone. They also often rely on typical online social mech-

anisms, such as replies, mentions and emojis.

5.5.3 Sentiment Analysis

Although communities grow around particular posts and inŕuencers, their mem-

bers do comment on posts from other inŕuencers. Here, we analyze whether there is a

difference between the sentiment expressed in comments across inŕuencers. As explained

in Section 5.2, we use SentiStrength to extract the sentiment of each comment. Sen-

tiStrength provides an integer score ranging from -4 (strongly negative) to +4 (strongly

positive). Score 0 implies a neutral sentiment. We here consider as negative, neutral and

positive comments with scores smaller than 0, equal to 0, and greater than 0, respectively.

Table 5.5 shows fraction of positive, neutral and negative comments. We notice

that positive comments are generally more common (between 47% and 58%), followed by

neutral comments (between 32% and 41%). We look into the neutral comments to un-

derstand why they represent a signiőcant fraction and observe a large number of short

comments, misspelled words, abbreviations etc, which seem to complicate sentiment ex-

traction by SentiStrength. Negative comments are the minority in our data, but they are

more prevalent in the politics scenarios for both countries.

We now analyze how the communities’ sentiment varies towards proőles of different

politicians. More speciőcally, we compute the breakdown of positive, neutral and negative
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Figure 5.9: Contrastive sentiment score (difference between fraction of positive and neg-
ative comments) of communities towards political leaders during the main election week.

comments of each community on posts of each inŕuencer. To summarize differences, we

report in Figure 5.9a and Figure 5.9b a contrastive score calculated as the difference

between the fractions of positive and negative comments for the particular community

and inŕuencer. We ignore cases where a community has made less than 100 comments

on a given inŕuencer’s posts to ensure that samples are representative. These cases are

marked as white cells in the heatmaps.

In Figure 5.9a we consider the six political leaders already used for Figure 5.4. We

focus on the week of the őrst election round in Brazil (week 5). Predominantly, communi-

ties make positive comments on the proőles in which they are more active, i.e., their łrefer-

ring candidate”. More negative comments are seen on łopposing candidates”. For instance,

communities 1 to 9, highly active on Jair Bolsonaro’s posts, display a more positive con-

trastive score on them. Analogously, communities 10 to 12, mostly formed by commenters

very active on the proőles of left-wing inŕuencers such as Ciro Gomes (cirogomes) and Fer-

nando Haddad (fernandohaddadoőcial), tend to write negative comments on their oppo-

nents, such as Jair Bolsonaro. This behavior appears on all weeks and suggests that com-

munities in politics tend to promote their central inŕuencers while trying to demote others.

Table 5.5: Fraction of sentiment captured in comments using SentiStrenght.

Scenario
Sentiment

Negative Neutral Positive

BR Politics 0.10 0.32 0.58
IT Politics 0.13 0.40 0.47
BR General 0.06 0.41 0.53
IT General 0.04 0.36 0.57
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Considering the Italian case, we observe similar results in Figure 5.9b. Commu-

nities exhibit positive contrastive scores towards candidates in general, but with higher

scores for the referring candidate.

5.5.4 Main Topics of Discussion

We now turn our attention to the analysis of the main topics around discussions. As

before, we focus on politics, during the election weeks. To summarize the overall behavior

of each community, we group together all their respective comments in one document.

As explained in Section 5.2, the documents build a corpus on which we then use the TF-

IDF metric to identify the most representative words of each document (i.e., community),

henceforth called top words.

We show in Table 5.6 the top-10 words (translated to English) for communities

yielding the most interesting observations. We manually inspect the comments and related

posts, providing a reference context as the last column of the table. The manual inspection

suggests that these words give a good overview of what the communities discuss.
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Table 5.6: Example of words with the highest TF-IDF for some communities in the politics scenario in the main election week.

Scenario Comm. Key Words Context

BR 3
‘Anapolis’, ‘Orla’, ‘Righteousness’, ‘Constant’,

‘Natal’, ‘Paulista’, ‘Spontaneous’,
‘JB17’, ‘Gesture’, ‘Avenue’

It refers to several places
where pro-Bolsonaro rallies took

place during the election campaign.

BR 7
‘Nazi’, ‘Jew’, ‘Hitler’,

‘Black People’, ‘Anonymity’, ‘Bozonazi’,
‘Distrust’, ‘Jerusalem’, ‘Homosexual’

It refers to Bolsonaro’s posts about
speciőc social groups in an attempt to show

he has no prejudice against such groups.

BR 10
‘Manuela’, ‘Haddad, ‘Scammer’,

‘Lulalivre’, ‘Birthday’, ‘Guilherme’,
‘Dilma’, ‘Gratefulness’, ‘Lula’

It refers to left-wing names,
such as Fernando Haddad, his

deputy Manuela, Dilma Rousseff and Lula (ex-presidents).

BR 11
‘Ciro’, ‘Experience’, ‘Political Activism’,
‘Polarization’, ‘Brazil’, ‘Second Round’,

‘Turn’, ‘Prepared’, ‘Project’

It refers to the center-left candidate
Ciro Gomes who arrived close to

reach the second round of the elections.

IT 3
‘Gooders’, ‘Big ciao”, ‘Captain’,
‘Crime’, ‘Good night’, ‘Polls’,

‘Never Give Up’, ‘Electorate’, ‘Lampedusa’, ‘Riace’

General Salvini’s jargon,
as well as places related to

the arrival of immigrants in Europe (e.g., Lampedusa).

IT 4
‘Monetary’, ‘Elite’, ‘Unity’, ‘Budget’,

‘Fiscal’, ‘Colonial’, ‘Equalize’,
‘Yellow Vests’, ‘Masonic’, ‘Store’, ‘IVA’,

Generic taxes and monetary issues.

IT 10
‘Consumption’, ‘Fuel’, ‘Insurance’, ‘Traffic’,

‘Helpless’, ‘Vehicular’, ‘Taxes’, ‘Redundancy’,
‘Veterinary’, ‘Animal rights’, ‘Cats’, ‘Abuse’, ‘Cruelty’, ‘Breeding’

A combination of terms related
to taxes, vehicles and animals’ rights.

IT 11
‘5S’, ‘Toninelli (ex-Transport Minister)’, ‘Corruption’,

‘Zingaretti (PD’s leader)’, ‘Calenda (ex-PD politician)’,
‘Honesty’, ‘Election list’, ‘Coalition’, ‘Budget’, ‘Growth’

Debate on Five Stars Movement (a government
party at the time) and Democratic

Party (the main opposition party at the time)



5.5. Textual Properties of Discussions 122

Matching with Figure 5.7, communities 3 and 7 for Brazil are associated with rallies

in different locations in the country, and with debunking Bolsonaro’s prejudice against

ethnic and racial groups. The terms highlighted by TF-IDF reŕect quite accurately the

respective topics, reporting locations of rallies and words linked to racism and Nazism.

Similarly, the top words for communities 10 and 11 are focused on the names of the

candidates whose proőles they mostly comment on. For Italy, community 3 reŕects the

typical jargon used by Salvini’s supporters. Community 4 debates on taxes and monetary

issues. Community 10’s comments refer to provoking posts that mix taxes, car costs and

animals’ rights. Last, community 11 seems to debate over the left-wing party (the main

opposition party at the time) and the 5-Stars movement (the governing party at the time).

In a nutshell, the TF-IDF is instrumental to analyze what the communities are

discussing. The analysis demonstrates that communities are well-formed around the top-

ics they discuss, even if they have been built solely on the network of commenters’ inter-

actions.

5.5.5 Psycholinguist Properties

In this section, we study the psycholinguistic properties of comments, aiming at

őnding similarities and differences in the way commenters of communities communicate.

We rely on the Linguistic Inquiry and Word Count (LIWC) tool to calculate the degree

at which various categories of words (called attributes in the LIWC terminology) are used

in a text (see Section 5.2). For example, attribute Home includes the words łKitchen”

and łLandlord, and attribute Family łDaughter”, łDad” and łAunt”.

For each community, we run LIWC on the comments and compute the average

frequency of the attributes. We then look for statistical differences between communities

based on the average values of the attributes. For Brazil, we identify 62 attributes (from

the 64 available in LIWC’s Portuguese dictionary) for which differences across communi-

ties are statistically signiőcant11. For Italy, we identify 77 (from 83 available in the LIWC

Italian dictionary). From those, we select the őve attributes that exhibit the largest vari-

ability across communities in terms of Gini index and use them characterize the psycholin-

guistic of communities.

Figure 5.10 shows heatmaps for the top-őve attributes found for the Brazilian (top)

and Italian (bottom) politics scenarios. The heatmap cells in a column indicate the relative

deviation of the given attribute for the given community from the other communities. In

11We used the Kruskal non-parametric test to select attributes with a signiőcant difference between
the distribution of community comments considering p− value = 0.01.
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(b) Italy, Politics.

Figure 5.10: Top 5 LIWC attributes and their relative difference between communities.

other words, each column (attribute) is z-score normalized ś i.e., z = (x − mean)/std.

Thus, each value gets subtracted the average of the column, then divided by the standard

deviation of the column. The results show how communities are different in terms of the

LIWC selected attributes. For instance, for Brazil, Politics, communities 6, 10, 3 and 7

frequently use words regarding death, but seldom words related to health. Communities

2, 5 and 4 show positive scores on almost all attributes. Community 13 focuses mostly on

health. In Italy, community 6 is very focused on religion (commenters debated Salvini’s

post that depicts a Rosary). Community 12 and 13 exhibit some hate speech.

In summary, LIWC is a useful tool to analyze the content of Instagram comments,

complementing the TF-IDF analysis with information on the topics being debated. We

őnd that communities debate on different topics and using different lexicon.

5.6 Temporal Analysis

In this section, we focus on the dynamics of communities during the 10 weeks

of observation. First, we analyze the community membership, studying to what extent

commenters persist in the network backbone and are found in the same communities

across weeks. Next, we characterize the dynamics of the content, i.e., the topics that

these communities are engaged in.
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Figure 5.11: Temporal evolution of commenters in communities. Blue: top 1%, Orange:
top 5%, Green: all commenters.

5.6.1 Community Membership Persistence

We start our analysis by studying the persistence of commenters inside the network

backbone and to what extent these commenters end up in the same community week by

week. We also want to check if the most engaged commenters exhibit a different behavior

ś i.e., tend to persist more than those who are less engaged. To this end, we perform

a separate analysis selecting the top-1% and top-5% commenters in terms of number

of comments in week ∆t and ∆t+1. Then, we compute the persistence and NMI score

(see Section 5.2.4), restricting to these commenters and comparing the results with those

obtained with the full set of commenters.

We report results in Figure 5.11 separately by country and for Politics and General.

Considering Politics (Figures 5.11a and 5.11b), we note that the persistence in Brazil is

moderately high, regardless the subset of commenters. Around 50-60% of commenters

remain in the backbone week after week until the őrst round of elections (week 5). Since

then, we observe a decrease (also due to the drop of commenters in general) until the

second round election (week 8), followed by a signiőcant drop after. This trend shows

that commenters were very engaged in the election period, mostly in the őrst round when
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the debate included more politicians, senators, members of Congress and governors. In

the second round, fewer candidates faced ś yet people were consistently engaged before

őnally plumbing two weeks after elections. These results corroborate the őrst intuition

we observed in Table 5.1 ś where the number of commenters varied over time. Since

persistence is similar for all subsets of commenters, we can conclude that all commenters

in the backbone are persistently engaged. That is, the backbone members are quite stable.

Considering the membership of commenters within the same community, the NMI

shows that the top-1% and top-5% most active commenters (blue and orange curves) are

considerably more stable in their communities during the whole time. When considering

all commenters in the backbone, the NMI is signiőcantly lower. This is due to the birth

and death of new communities, centered around speciőc topics, where the debate heats

up and cools down. These dynamics attract new commenters that afterward disappear

or change community.

For Italy, Politics (Figure 5.11b) different considerations hold. The constant per-

sistence suggests a stable engagement of commenters in the backbone. We just observe a

sudden drop the week after the election, where the interest in the online debate vanished.

On the other hand, the NMI is rather low, revealing more variability in community mem-

bership, even if we restrict our attention to the most active commenters. Despite com-

menters in the backbone tending to be the same (persistence is typically above 0.5), they

mix among different communities. Considering the low modularity of communities for

this scenario (see Table 5.4), we conclude that the community structure is weaker in this

case, indicating overlapping among communities that favor membership changes. This re-

sult is also visible from the dendrogram in Figure 5.5, where we observe that inŕuencers

receive comments from similar communities making the latter also more clustered.

Moving to General (Figures 5.11c and 5.11d), we observe slightly lower persistence

than in Politics, but more stable over time. NMI instead often results higher for General

than Politics, reŕecting better separation between communities, which persist over time.

More in detail, for Brazil (Figure 5.11c) we observe that persistence and NMI are high

and stable ś especially for the most active users. This suggests that the most engaged

commenters have diverse, speciőc and stable interests. Indeed, here there is no exogenous

event that pushes a temporal dynamic, like elections do for politics. Again, this result

reŕects the high heterogeneity of posts and inŕuencers in the General category. Moving

to Italy, Figure 5.11d shows that persistence is small and varies over time. Here the lower

popularity of Instagram in Italy than in Brazil may play a role, coupled with the smaller

number of comments (see Table 5.1). However, NMI is high and stable. We conclude that

although many users do not persist in the backbone, the remaining are very loyal to their

interests.
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Figure 5.12: Example of how communities’ comments change over time. We set weeks 5
and 7 as reference, being the election weeks in Brazil and Italy, respectively.

5.6.2 Topic Persistence

We now discuss how the topics discussed by communities evolve over time. To

that end, we take as reference weeks 5 for Brazil and 7 for Italy in the political scenario,

being the weeks of elections in each country. We compute the cosine similarity between

the communities in the reference weeks (illustrated in Table 5.6) and the communities

extracted in all other weeks, for each country. That is, for a given week, we identify

whether there exists a document/community that is signiőcantly similar to those found

in the reference week, following the steps presented in Section 5.2.4.

Figures 5.12 show examples for both scenarios. In weeks 5 and 7 for Brazil and Italy,

respectively, the cosine similarity is 1 since the documents are compared with themselves.

Focusing on Brazil őrst, we observe very distinct behaviors among the picked-up examples.

Remember that communities 3 and 7 are focused, mainly, on Bolsonaro’s proőle and

comment on posts related to rallies and racism, respectively. In both cases, we can

observe that discriminating terms for these communities are momentary and sporadic,

with some communities using terms about rallies that appear in some weeks, still with

a very similarity low. Conversely, the set of signiőcant terms representing community 10

and related to candidate Fernando Haddad. At last, consider community 11, focused on

Ciro Gomes. Again, we can observe that terms used by his community in the election week

were used in some communities earlier, exhibiting high similarity. However, immediately

after the őrst round (week 5) when Ciro Gomes lost, the similarity drops signiőcantly.

Indeed, Ciro Gomes was excluded from the run-off and the online debate (and community)

suddenly vanished. In Italy (Figure 5.12b) we observe a similar behavior. Community 3,

mostly consisting of Salvini’s supporters, uses very speciőc jargon and are always present.

Community 4 debates around taxes and monetary issues were already debated during

week 3. The same considerations hold for community 10, in which the őght between

democrats and őve stars supporters heats more frequently.
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In summary, people commenting in politics are more volatile than those comment-

ing on general topics, with debates suddenly growing and cooling down. Some sets of

terms remain łalive” throughout the observation period, while others include communi-

ties born around short events such as rallies, which take place on a speciőc date.

5.7 Discussion

In this chapter, we studied the political discussion on Instagram, focusing on the

co-interactions of users co-commenting on posts of inŕuencers covering ten weeks of data

from Brazil and Italy during major electoral periods in both countries to study politi-

cians and other inŕuencers. We őrst introduced TriBE, a novel method for backbone ex-

traction based on a probabilistic model that considers features particular to online social

media applications. Our model targets commenters’ noisy and sporadic nature, removing

network edges that emerge by side effects while revealing the salient co-interactions that

compose the underlying network, i.e., the network backbone.

Then, we performed our study on a large dataset of Instagram comments, including

approximately 1.8 million unique commenters on 36 824 posts by 320 inŕuencers in two

countries (Brazil and Italy). From a structural view, the analyses of the extracted back-

bones revealed the existence of stronger well-structured communities, especially around

politics. We observed that communities built the same inŕuencers, although communities

grew around speciőc topics. Also, those communities around politicians have distinguish-

ing textual properties that reŕect more assertive and engaged discussions such as emo-

tional content, longer comments containing more emojis, hashtags, and uppercase words.

Finally, we analyzed the temporal evolution of the communities. In general, we observed

that communities formed around political inŕuencers are more dynamic than those formed

around non-political inŕuencers, which may be related to the topics associated with the

posts and the evolution of the electoral process.

Moreover, we observed that communities in politics are more dynamic than non-

political inŕuencers regarding temporal evolution. Notably, we showed that the interest in

particular discussions changes drastically over successive weeks, possibly reŕecting shifts

of interest occurring in society as the electoral process evolves. This observation contrasts

with the communities in non-political cases, which are more stable over time. In addition,

we observed great variation in community membership over successive weeks in politics,

although the most active commenters tend to remain consistently active in the same

communities over time. Finally, concerning discussion topics, we observed great diversity
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in dynamics: Whereas some topics attract attention momentarily, others remain active

over time.

5.8 Summary

In this chapter, we revisited our RG1 and RG2 established in section 1.3 by apply-

ing our general approach to the study of online discussions on Instagram. In contrast to

our őrst case study, we addressed a more challenging phenomenon from a modeling per-

spective, whose study in four different scenarios resulted in a large amount of data over

a long period of time. First, we studied the interactions between users on this platform,

for which there are no antecedents in the literature, by modeling them as co-commenters

networks. In addition, we proposed TriBE, a novel backbone extraction method, to reveal

how the underlying structure of co-commenters networks facilitates the dissemination of

information through online discussions. Assuming independent user behavior, TriBE was

able to capture the interactions that act as triggers to encourage users to comment on

posts. Furthermore, by analyzing the properties of the communities that emerged on the

backbones, we found that the communities that emerge from a stronger and clearer struc-

ture unveiled by TriBE do indeed capture the collective behavior of co-commenters.

In summary, TriBE takes into account fundamental characteristics of the phe-

nomenon and the analyzed system (social media platforms) such as the tripartite struc-

ture (content creators, content sets, and users interested in a particular subset of con-

tent), the heavy-tail character of the content, and users’ popularity which generates a

large number of edges that are not necessarily relevant to such a phenomenon. Therefore,

our analyzes also open up several avenues for further research in this area, such as extend-

ing the study to other platforms like Facebook and Twitter that have a similar structure,

which could uncover both consistent and different patterns than those found here.

In the next chapter, we delve into the central point of our work, backbone extrac-

tion, and propose a methodology that extends our general approach for selecting, exper-

imenting, and evaluating different backbone extraction methods (including TriBE) for a

given phenomenon.
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Chapter 6

Selecting and Evaluating Backbone

Methods

In this chapter, we dive into the core of our general approach - backbone extraction

- and present a methodology for selecting and evaluating backbone extraction methods for

a given phenomenon. We őrst introduce the motivation for this methodology in Section

6.1, followed by an overview of the problem and its formal statement in Section 6.2. We

then describe our proposed methodology in Section 6.3 and show how it can be applied

to two different case studies in Sections 6.4 and 6.5. We discuss our őndings in Section

6.6. Finally, Section 6.7 summarizes the implications and contributions.

6.1 Motivation

In the last chapters, we have shown that the complexity and diversity of interac-

tions between users in many-to-many networks pose some challenges. In other words, the

presence of a large amount of sporadic interactions affects the understanding and inter-

pretability of the phenomenon in question. To address this problem, we have proposed

and applied a general approach based on smart algorithms whose goal is to select the

salient edges to a given phenomenon in order to obtain a reduced and representative ver-

sion of the network, the network backbone. Thus, it is intended to be a more representa-

tive model of the collective behavior driving the phenomenon under study. However, the

deőnition of edge salience is highly subjective and several methods for extracting the net-

work backbone are available in the literature, each containing speciőc assumptions about

edge salience [276, 238, 102, 53, 68, 72, 178, 78, 79, 204]. Therefore, it is often quite dif-

őcult to decide which of these methods should be applied to a particular phenomenon.

In addition, the general lack of ground truth for evaluating the quality of an ex-

tracted backbone challenges the analysis of certain methods. In most previous studies, au-
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thors evaluated results based on topological metrics, such as community modularity, den-

sity, and clustering coefficient, arguing that the extracted backbone has more clearly de-

őned substructures than the original network [60, 204, 199]. More recently, a few studies

have looked at regression models that relate topological properties of the network back-

bone to phenomenon-speciőc attributes [53, 177, 52]. In general, however, the existing

literature lacks a principled methodology for selecting the most appropriate method for

extracting backbones for a given phenomenon, taking into account both topological and

contextual aspects.

In this chapter, we take a step towards őlling this gap by presenting a methodology

for selecting and evaluating methods for extracting networks based on a phenomenon,

which extends a fundamental step of our general solution. Unlike most previous work,

we argue here for a more principled approach to selecting the most appropriate backbone

extraction method, in which the characteristics of the phenomenon under study should

be aligned with the key assumptions and properties of the method. We begin with a

discussion of ten backbone extraction methods that we reviewed in Chapter 2. We then

challenge them by highlighting their key assumptions and characterizing them in terms

of the salience criteria they capture. Finally, we consider two case studies to validate our

methodology: (i) online discussions on Instagram (as studied in the previous chapter) and

(ii) information spreading in social media applications on WhatsApp.

6.2 Problem Statement

We tackle the challenge of selecting and evaluating network backbone extraction

methods available in the literature given a target phenomenon. Inherent to such prob-

lem is the use of a potentially noisy network to model interactions driving the given phe-

nomenon. By noisy we mean a network that may contain a large number of spurious

edges that are not relevant for understanding the phenomenon at hand and, even more,

may obfuscate the relevant ones (i.e., the salient edges), jeopardizing the understanding

of the phenomenon and the validity of conclusions drawn from the study.

Problem Statement: Given (i) a particular phenomenon of interest driven by collective

behavior, and (ii) a dataset capturing real interactions that represent manifestations of

such phenomenon, how can we evaluate alternative network backbone extraction methods

and select the one that, when applied to a network model of the input interactions, is able

to accurately reveal key properties associated with the phenomenon of interest?
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One major assumption that guides our effort is that not every network backbone

is adequate to study the given phenomenon. Rather, key characteristics of such phe-

nomenon must be matched to the assumptions and requirements of each method. Thus,

a characterization of these properties is of utmost importance to drive the analysis. A

mismatch between those characteristics, assumptions and requirements may lead to bi-

ases and misinterpretations.

Speciőcally, we are interested in identifying the methods that provide the best

agreement between topological properties associated with the connectivity of vertices in

the network and the contextual properties associated with factors driving the phenomenon

that emerges from those patterns. Since our interest is in collective behavior patterns,

the topological properties of interest are mostly associated with communities representing

tightly connected groups of users who exhibit common behavior. One key challenge we

must face is that each backbone extraction method removes edges (and nodes) from

the network based on its own deőnition of edge saliency.1 Thus, backbones extracted

by different methods would reveal different topological structures, with properties that,

though possibly strong and clear, may not be relevant (or related) to the phenomenon

being studied.

Let us start presenting a simple case to exemplify the complexity of the problem.

Consider the network in Figure 6.1-a) built by connecting different users (nodes) who

shared the same content on WhatsApp. Edges are weighted by the number of times the

users shared the same content. This network, consisting of 190 nodes and 6 760 edges, is

a subgraph of the network we analyze in Chapter 6. Suppose we build this network to

investigate evidence of users’ coordination to speed up content spreading on the platform.

Figures 6.1-b), 6.1-c) and 6.1-d) show three different backbones extracted from the same

original network by three different methods, namely the threshold-based method, Gloss

Filter and Disparity Filter. As evident, each backbone contains a different subset of the

original edges and nodes. The question that arises is: Which backbone is the best one to

study our phenomenon of interest, i.e., coordinated behavior?

In all cases, all methods remove a large fraction of the original edges, underlining

the presence of a lot of spurious edges in the original network. All three methods reveal

clear topological structures in terms of communities, which is visually clear in the őgure,

and reŕected by the modularity [207] which improves w.r.t. the original network (see

values in captions of the őgures). The backbone extracted by Gloss Filter (Figure 6.1-b)2

is quite different from the other two: it misses the connections among the strong groups of

users found by the Threshold and Disparity Filter where these nodes form a very tightly

connected community. These users shared the same content many times as indicated by

1Note that nodes that end up isolated after edge removal are also removed from the backbones.
2The spatial layout of the nodes is őxed for all networks. This makes nodes that are members of the

same community spread out, which makes it hard to see how interconnected they really are.
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(a) Original network(mod=0.34) (b) GloSS Filter(mod=0.61)

(c) Threshold(mod=0.48) (d) Disparity Filter(mod=0.48)

Figure 6.1: Example network and the backbones extracted from it by three different
methods (modularity values presented within parentheses). Edge thickness represents
edge weight and nodes’ color possible coordinated users’ communities.

the reddest edges in the graph, which is a strong evidence of coordination. In addition,

the Gloss Filter keeps a large number of (weaker) edges among the various nodes in the

backbone. Conversely, the backbones extracted by the threshold-based and Disparity

Filter methods (Figures 6.1-c) and 6.1-d)) look somehow similar. Both reveal four tightly

connected groups of users. The threshold-based model misses some strong edges among

users, and the resulting backbone ends up with fewer nodes and smaller communities. At

the end, in this simple case, the Disparity Filter provides the best results.

Note that such conclusions cannot be based solely on topological/structural met-

rics. Indeed the modularity of the backbone extracted by the Gloss Filter is the high-

est one, and Disparity Filter and Threshold approach exhibit the same value at the end.

Conversely, the presence of communities formed by users tied by edges with high weights

is more visible in the backbone extracted by the Disparity Filter. We thus claim that the
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method selection must also consider contextual aspects related to the phenomenon under

study.

To generalize and tackle our target problem, in the following we propose a method-

ology to target the studies of collective behavior emerging from networks. Despite the

focus on social media, our proposed methodology is generic enough to be applied to phe-

nomena in other online and offline domains that are also modeled by noisy networks (e.g.,

co-voting [77, 76] and co-authorship [89] networks).

6.3 Methodology

Our proposed methodology consists of the 4 steps shown in Figure 6.2, a natural

extension of our overall solution presented in Chapter 3. Given a dataset capturing

user interactions that represent manifestations of collective behavior patterns driving a

phenomenon of interest, we start by building a network model of these interactions (step

1). This network potentially contains spurious and random edges with little relevance (if

any) to the target study. We then need to choose a method to identify and remove such

non-salient edges, thus revealing the network backbone. We here argue that the choice of

possible strategies to perform this task should be guided by a fundamental understanding

and careful matching between characteristics of the phenomenon and the assumptions of

each method (step 2). Having identiőed adequate candidates among alternative backbone

extraction methods, the next two steps consist of applying such methods to the network

(step 3) and evaluating the quality of the extracted backbones with respect to both

topological and contextual (phenomenon-speciőc) criteria (step 4). The backbone with

the highest quality with respect to the considered criteria is then used to investigate the

collective patterns driving the phenomenon under study. These four steps are described

in detail next.

6.3.1 Step 1 – Building a Network Model

We assume the availability of a dataset containing a temporal sequence of user

interactions gathered from the target system taking place over a period of interest. In

essence, these interactions may occur among multiple users simultaneously, being thus

referred to as many-to-many interactions. They are observable actions (e.g., comments
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Figure 6.2: Overall methodology.

posted in a social media application) reŕecting different user behavior patterns. We are

interested in revealing those patterns that are fundamentally related to (and drive) the

phenomenon that will be studied.

Such many-to-many interactions can be modeled as a network by building bipar-

tite, a hypergraph or, more broadly, higher order models [21]. Yet, a large number of

backbone extraction models work directly on projected networks where edges are added

to represent interactions among pairs of users [57, 296, 220, 70, 57, 263, 38, 127]. This is

the case of Disparity Filter, Noise Corrected, among others [53, 178, 265]. Other methods

adopt alternative network models by explicitly representing users as well as phenomenon-

speciőc artifacts through which users interact with each others. As such these methods

adopt an n-partite network model. Examples are TriBE that works on a tripartite model

representing commenting users, inŕuencers and their posts, and SDSM, which in turn

works on a bipartite network representing, for instance, members of congress and voting

sessions [76, 78, 203]. However, both methods (as others [202, 204] end up building a

backbone composed of salient user-user edges, thus effectively building a projected back-

bone. Therefore, we chose to present here the common projected network model. Yet,

we note that both Tribe and SDSM operate on the original n-partite network to extract

the projected backbone. We thus adopt an undirected and weighted projected network

G = (V,E) as the base model for our methodology, such that:

• V is the set of users who interacted at least once during the period of interest;

• E is the set of undirected and weighted edges connecting pairs of users, such that the

weight of edge ei1,i2 connecting users i1, i2 ∈ V is γ(i1, i2) = f(i1, i2), where f(i1, i2)
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is any aggregation function (e.g., count) deőned over the set of interactions between

i1 and i2 and/or any contextual information available associated to them. Examples

include the sharing of similar content (e.g., same URLs, same hashtags, or same

messages) and/or temporarily synchronized activities [220, 57, 296, 310, 38, 309].

Our methodology must give us the means to extract the backbone of the original

network where noisy edges are őltered out. Before proceeding, we note that one might be

interested on the dynamics of such backbone over different periods of time covered by the

input dataset. In that case, one strategy is to break the original data into subsets cover-

ing non-overlapping and consecutive time windows (e.g., weeks or months) and build one

network model for each window. Given that the phenomenon under study remains the

same, it is reasonable to assume that the contextual criteria impacting the selection of

the best backbone extraction method would be maintained across network models. Thus,

the methodology could be applied to one of such network models to identify the most ad-

equate backbone extraction method. Such method could then be used to extract differ-

ent backbones (one for each window) allowing an assessment of the temporal evolution of

their properties (as done in [215, 78, 32, 135, 77, 76, 214, 43]).

6.3.2 Step 2 – Selecting Candidate Backbone Extraction Methods

In principle, any backbone extraction method could be applied to a given network

model, and the backbones extracted by different methods may be quite different (as

illustrated in Figure 6.1). Some backbones may miss a few important edges while still

offering important insights, whereas others may be composed mostly of edges of little

relevance to the study. Detecting the latter is not always easy, especially for large-size

networks. Thus, we argue that a careful and principled selection of candidate methods

must be performed before evaluating the extracted backbones to avoid misinterpretations

and facilitate evaluation. To that end, our goal in this step is to shortlist backbone

extraction methods that are adequate to study the given phenomenon. By adequate we

mean that their assumptions and requirements are in alignment with key characteristics

of the phenomenon, at the cost of generating completely unrelated backbones otherwise.

In the following we offer a characterization of ten alternative methods (see Section

2.3) and discuss issues one must consider to study a target phenomenon. The discussion

below reŕects our analyses of the methods’ applicability to different scenarios. To guide

this discussion, in Table 6.1 we present a summary with some key properties of each
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Table 6.1: Our characterization of selected backbone extraction methods.

Method Edge weight Domain
Edge Salience Criteria

ParametersLocal vs.
Structural vs. Statistical

Global
Threshold-based

Backbone
Extraction

Positive/negative
continuous or discrete

Global Structural
Threshold

(Edge Weight)
or % Edges

High Salient
Skeleton (HSS) [102]

Positive continuous
or discrete

Global Structural
Threshold
(% Edges

or HSS Score)

RECAST [68] Positive discrete Global

Statistical
Reference model: Two global

distributions for all edges from
random graphs with the same

topology as the original network

alpha
(significance level)

Disparity
Filter (DF) [265]

Positive discrete Local

Statistical
Reference model:

Uniform distribution
of edge weight per node

alpha
(significance level)

Polya Urn
Filter [178]

Positive discrete Local

Statistical
Reference model:

Beta-Binomial distribution
of edge weight per edge

alpha
(significance level)

and a (RL)

Marginal
Likelihood

Filter (MLF) [72]
Positive discrete Local

Statistical
Reference model:

Binomial distribution
of edge weight per edge

alpha
(significance level)

Noise Corrected
(NC) [53]

Positive discrete Local

Statistical
Reference model:

Binomial distribution or a
Hypergeometric distribution

(obtained by a Bayesian Framework)
of edge weight per edge

alpha
(significance level)

Global
Statistical

Significance
(GloSS) [238]

Positive continuous
or discrete

Local

Statistical
Reference model: A single

null model considering both the
edges between nodes and the

weight distributions of the original
network. Each edge is evaluated
under its end nodes’ properties

using a Bayesian Approach

alpha
(significance level)

Tripartite
Backbone
Extraction

(TriBE) [78, 79]

Positive discrete Local
Statistical

Reference model: Poisson-Binomial
distribution of edge weight per edge

alpha
(significance level)

Stochastic
Degree

Sequence
Model

(SDSM) [204]

Positive discrete Local

Statistical
Reference model: Poisson-Binomial
distribution of edge weight per edge

considering the bipartite degree sequence

alpha
(significance level)

method. We categorize the methods along with four aspects that are important to assist

one in determining the suitable methods for a given case study.

Before we look at the edge salience criteria, the őrst aspect that should be consid-

ered when deciding which backbone method to apply is the nature of the edge weights

(2nd column of Table 6.1). This preliminary aspect is a fundamental step in our proposed

methodology to discard methods that are not applicable to the problem. Most of the

methods considered here are limited to discrete weight values (Noise Corrected, Disparity

Filter, TriBE, RECAST and SDSM), while others work with continuous values too (HSS,

Threshold and GloSS). Similarly, another factor to be considered is whether the method

expects only positive weights ś e.g., only the Threshold-based approach can work with

negative weights among the ten evaluated methods.
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Global vs. Local Methods

The second aspect is inherently related to how the method determines whether an edge

is salient or not (3nd column of Table 6.1). While some methods apply a single criterion

to all edges, others may use different criteria for different edges. Thus, we propose to

classify each method as either local or global. The former refers to methods that determine

the salience of each edge based on local information associated with the neighborhood of

the edge, thus capturing aspects that are speciőc to the edge (and adjacent nodes) being

analyzed. Global methods, instead, use the entire graph or a single global property for

all edges in the graph. As such, the same (global) criterion is applied to all edges. As

shown in Table 6.1, the simple threshold-based backbone extraction, HSS and RECAST

are global methods. All other seven methods are local. It is important to note that

while GloSS uses a single reference model, the selection of salient edges is based on local

information about the degree and strength of adjacent nodes [238].

The choice between a local or a global method should take into account whether

the phenomenon exhibits an inherent heterogeneity or possible biases across different

edges that are relevant to the understanding of the phenomenon. For example, it is

well-known that several attributes related to user behavior in social media applications

(e.g., content popularity, content sharing etc.) are very heterogeneous, resulting in heavy-

tailed distributions [56, 242]. Such distributions naturally lead to network models with

edge weights, node strengths and other properties that are widely distributed, often over

different scales [4, 101, 205]. If the phenomenon under investigation is inherently related

to a single (dominant) scale (e.g., revealing the most frequent interactions) or to properties

that go beyond single edges and their adjacent nodes (e.g., revealing users who can easily

reach all others in the network), then a global method should be adequate.

Otherwise, if the phenomenon occurs at all scales deőned by the heterogeneous

structure of the network, a local method is probably more adequate. By exploring local

information to deőne the salience of an edge, such methods might be able to retain edges

that are representative of multiple scales, thus being relevant to the phenomenon. One

such example is the study of online discussions in social media. Participation in such

discussions is naturally highly heterogeneous reŕecting the differences in user behavior.

Yet, to get a clear picture of what is being discussed, one must capture the contributions

of users with different levels of activity. Applying a global method may bias the extracted

backbone to the interactions among the most active users or the most popular content,

which would offer only a partial view of the discussions. A local method, instead, would

be able to retain interactions among users with different levels of activity, thus offering a

more complete and accurate representation of the interactions driving the phenomenon.

We further elaborate on this particular study in Section 6.4.
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Structural vs. Statistical Methods

A third aspect to be considered is whether edge salience is based on structural properties

or on a statistical reference model (4rd column of Table 6.1). The former relates to

methods that determine whether an edge is salient based solely on topological attributes

of the network (e.g., edge weights, neighborhood overlap, paths etc.), thus relying only on

the empirical distributions of these attributes. These distributions are often evaluated via

thresholds. As shown in Table 6.1, both the threshold-based and HSS methods fall into

this category. For the former, salient edges are those whose weights are above (or below)

a given threshold. For the latter, the number of shortest path trees that use the edge is

used as attribute. Structural methods are more adequate if the phenomenon is inherently

related to the network topology or connectivity, as represented by the used attribute.

Examples include revealing the interactions among users/nodes with the largest number

of neighbors in common (highly neighborhood overlap) [77, 76], or revealing users who

are sources of information with greater reach in the network [58].

In contrast, other phenomena may be studied in more details by examining statis-

tical deviations from an expected reference behavior. In such cases, one should consider

methods that build statistical reference models for edge weights. These methods consider

as salient the edges whose weights deviate signiőcantly (according to a given alpha) from

the reference model.3 The idea is that such reference model reŕects the random network

structure that would emerge if the phenomenon would not be taking place. As such, it

is built based on network properties (e.g., distribution of node degrees, node strengths,

or edge weights) often under the assumption of independent user behavior. By looking

at edges that statistically deviate from the reference, these methods avoid uninteresting

(common) behaviors, thus focusing on the edges that have greater chance of reŕecting un-

common interactions that drive the phenomenon under investigation.

Different methods employ different reference models, thus directly impacting the

deőnition of salience. To select a method, one should consider whether the employed ref-

erence model reŕects a baseline for analysis. Consider, for instance, the study of coordi-

nation among users to spread information where interaction occurs when two users share

the same content. A strategy to model this phenomenon is to consider that users should

have similar sharing patterns with their neighbors in the network if no coordination is

taking place. This behavior leads (as the reference model) to a uniform distribution of

edge weights for all edges incident to the same node.Edges with weights that signiőcantly

deviate from such reference offer potential evidence of coordination and, thus, should be

retained as part of the backbone. We further elaborate on this study in Section 6.5.

3Another issue that deserves attention is the presence of Type-I Errors. This factor can be investigated
when ground truth data is available.
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Parameters to Filter

The fourth aspect relates to parameters employed by each method (5th column). As

shown in Table 6.1, all structural methods rely on a threshold parameter to determine

salient edges. As mentioned in Section 2.3, the use of such approach may lead to biases in

the analyses. To avoid such problems, a threshold can be set contextually, i.e., based on

an expected value for an edge according to the phenomenon. Since setting the threshold

based on a contextual decision may be quite complex, prior work has proposed to consider

a percentile of the empirical distribution of weights, analyzing the impact of this value on

topological properties, e.g., density and community quality [55, 77, 279].

Conversely, all statistical methods make use of a parameter alpha for statistical

testing to identify salient edges. Typically, the literature uses classical values (i.e., 0.1,

0.05, 0.01 or 0.005 or 0.001) [238, 102, 178]. However, some studies have argued that such

classical values do not always yield the best topological structure of the network [55, 199].

Moreover, methods yield different reference models, some of which provide more tighter

estimates than others. Thus, we propose here to test a range within these values to

examine the effects on both topological and contextual properties, as we will explain later,

and to choose values that represent a good compromise between the two metrics for each

method. In addition to the parameter alpha, the Polya Urn őlter also requires a parameter

a that governs the process of reinforcement of existing interactions [178]. The higher the

value of a, the larger the weight of an edge between two nodes must be, compared to the

weights of the other edges adjacent to those nodes, for the edge to be considered salient.

Additional Considerations

Having discussed the aspects that must be considered when selecting backbone extraction

methods, we complete this step with some general considerations and insights about

speciőc methods that may also help guide the selection. First, we note that some of the

local statistical methods, notably TriBE, SDSM, MLF and NC, use binomial or Poisson

binomial distribution as reference model for edge weights. These statistical distributions

assume ś by design [73] ś that each unit of edge weight is assigned to a pair of nodes under

the assumption of independence. Deviations from this assumption are considered relevant

evidence of salience in the context of social media applications, as they suggest that the

weights are generated by hidden effects, e.g., when users are attracted to certain content

and therefore interact around them [78, 52]. The Polya-Urn őlter, on the other hand,

assumes the beta-binomial distribution which breaks with the assumption of independence

since each assignment is not independent of the others and changes from trial to trial (see

section 2.3).

Moreover, recall that social media applications are characterized by a great degree

of heterogeneity in user activity and content popularity. TriBE, being designed for this
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context, captures such heterogeneity directly, by using these factors to build the reference

model. In contrast, the SDSM method captures these aspects through the corresponding

degree sequences in the bipartite graph. By setting these properties, the degree at the

top (artifacts) of the bipartite network represents content popularity while the degree se-

quence at the bottom (agents) represents users activity level. MLF and NC capture that

indirectly, by considering node degrees and node strengths to build the reference models.

Intuitively, these node attributes are closely related to user activity and content popular-

ity. On one hand, as very active users tend to interact more with others, the degrees and

strengths of the corresponding nodes in the network tend to be larger. Similarly, more

popular content tends to attract more users, thus contributing to increasing the strengths

and degrees of the corresponding nodes. GloSS őlter also uses the same attributes to de-

termine whether an edge is salient, though using a somewhat different approach. There-

fore, all these őve methods share similarities in terms of the deőnition of edge salience,

producing backbones that include edges with great variety of weights.

In contrast, the other evaluated methods explore network heterogeneity in the

sense that edges with larger weights, either from a local (Polya Urn and DF) or a global

(RECAST, HSS and threshold-based) perspective, are more likely to be salient. Both

Polya Urn and DF build different reference models to seek edges that stand out (from a

local point of view) by their weights considering a subset of nodes/edges. HSS and the

threshold-based method, instead, take a global perspective (the structure of the whole

network or a target threshold) as reference to identify salient edges. RECAST, in turn,

characterizes edges into four classes, allowing different deőnitions of edge salience (see

Section 2.3). Yet, by exploring such classes, namely Friends and Bridges, one may produce

backbones that also favor edges with heavier weights. In short, in some cases structural

and statistical methods can capture similar behaviors (e.g., Threshold vs. Disparity Filter

and Polya Urn), but in other cases they capture completely different behaviors (e.g.,

Threshold vs. GloSS Filter). Thus, the choice of methods depends primarily on the

domain and the context. Considering that the network model we build encodes user

interactions, such methods favor keeping edges in the backbone based on repetitive and

consistent patterns of interactions.

6.3.3 Steps 3 and 4 – Backbone Extraction and Evaluation

Having identiőed a set of backbone extraction methods that could be employed in

a particular study, step 3 consists of applying the selected methods to the original network

to extract the corresponding backbone. Speciőcally, each candidate method c in a set of
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methods C identiőed in step 2 is applied to extract a backbone Bc = (V c
b , E

c
b), such that

Ec
b ⊆ E consists of only edges considered salient by c and V c

b ⊆ V is the set of nodes with

at least one edge in the backbone extracted by method c.4 Step 4 consists of evaluating the

quality of the produced backbones. In case multiple methods were selected in step 2, the

best alternative should be chosen according to a trade-off between the metrics discussed

next. The backbone produced by the best method would then be used to carry out the

study.

Building on prior work [207, 206, 53, 148, 178, 52], we consider metrics of backbone

quality in two categories: topological, which are closely related to network and community

structure, and contextual, which refers to phenomenon-speciőc attributes.

Topological Metrics

The topology-related metrics aim at quantifying the extent to which the network structure

emerging from the backbone provides a clear view of how users are organized. Metrics

such as node degree, density, clustering coefficient, number of connected components,

modularity (see discussion below) characterize the structural properties of interactions

considered as salient by the backbone extraction process. For the sake of brevity, we

refrain from formally presenting all such metrics here and refer the reader to [17] for

formal deőnitions.

Recall that our main focus is on phenomena related to collective user behavior.

Examples in the social media domain include efforts to promote particular ideas, brands,

or ideologies. The graph concept that can be directly applied to this notion of collective

behavior is community. Thus, the emergence of clearly deőned (i.e., strongly structured)

communities in the backbone offer potential evidence of groups of users actively engaging

in common behavior. Identifying such communities is an important step to uncover rele-

vant knowledge about the phenomenon being studied [76, 148, 78, 79, 32, 279, 214, 215].

The literature on community detection is quite extensive, with approaches focusing

on speciőc concepts of communities deőned via various network models [144, 323, 254].

Recall, however, that we have adopted here the deőnition of a community which natu-

rally implies groups of users who are more similar in terms of shared interactions and

other behavioral patterns. To capture this deőnition, which implies that users in a given

community are more strongly connected to each other than to the rest of the network, we

again chose to apply Louvain’s algorithm [27, 207] to identify communities in the back-

bones. However, as stated in Chapter 3, this is an important step that could be modiőed

from our methodology to employ alternative methods. In addition, we recommend read-

ing and exploring the various strategies and metrics for detecting and evaluating commu-

nities in networks which are comprehensively summarized in [254].

4In other words, after backbone extraction, all isolated nodes are disregarded.
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Contextual Metrics

In addition to topological metrics, the quality of a backbone should be assessed with

respect to how well it represents properties of the phenomenon. For example, by focusing

on communities and, in particular, by exploring the contextual properties associated with

them ś i.e., characteristics of the communities that are not explicitly captured by the

network topology, but are intrinsically related to the phenomenon ś we may uncover

properties that can help explain the emergence of different collective behavior patterns.

In this way, we can gain insights into factors driving the phenomenon [323, 90, 164, 168].

Unlike topological attributes, contextual criteria of backbone quality require ad-

ditional information about the phenomenon. For example, in the case of social media

applications, contextual information can be obtained through metadata that is usually

collected when studying these applications. We thus also propose to assess how well the

backbone captures phenomenon-speciőc properties by means of regression models. Specif-

ically, we build upon prior work [53, 177, 52], where contextual (phenomenon-speciőc)

properties are used as explanatory variables to build linear regression models with edge

weights as the response (dependent) variable.

Although only linear regression models have been used in these previous studies,

nonlinear models could also be considered. They are particularly appropriate when the

chosen covariates are known or expected to have a nonlinear relationship with the edge

weights. One could consider for example the task of jointly predicting the edge weights

using Exponential Random Graph Models (ERGM) or even Graph Neural Networks,

despite some limitations of the ERGMs when it comes to estimating parameters from

sampled graphs (see [266] for a deep discussion, such as on the well-known sampling

consistency issue).

Driven by the case studies presented in Sections 6.4 and 6.5, we restrict ourselves

to linear models to estimate the edge weights in the backbone (or in the entire network).

Since our goal is to compare the ability of backbone extraction models in removing spuri-

ous edges, we argue that measuring the accuracy when estimating individual edge weights

is a good proxy for performance in this task. Speciőcally, we consider the following re-

gression model:

γ(i1, i2) = β0 + β1X1 + β2X2 + ...+ βnXn + ϵ. (6.1)

where γ(i1,i2) is the weight of ei1,i2 , X1...Xn is a set of covariates related to the phenomenon,

β0...βn are the model coefficients and ϵ is an error factor.

The quality of the model őtted to the data captures how well the covariates (contex-

tual properties) can be used to explain the edge weights (topological property). The bet-

ter the őtting of the regression model, the more representative the considered edges (and

corresponding weights) are of the underlying network structure driving the target phe-
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nomenon. In particular, we expect that the őtting of the regression model produced for the

edges in a backbone (i.e., only edges in Eb) to be better than the őtting of the model pro-

duced using the entire (noisy) network (i.e., all edges in E). Similarly, we can compare the

quality of different backbones by comparing the őtting of the models produced for them.

Although this approach has been used in previous studies [53, 177, 52], we point out

some limitations. First, prior work only considered as a quality measure the coefficient of

determination R2, or its relative improvement for the backbone over the original network.

However, R2 values may be misleading as they do not account for error estimates [124].

Therefore, we propose to assess the quality of the őtting by using both R2 and the root

mean square error (RMSE), which is the square root of the mean squared difference

between estimated and observed values [125]. That is, given n edges, and the observed

and estimated weights of these edges, γi1,i2 and γ̂i1,i2 for each edge ei1,i2 respectively, the

RMSE is deőned as:

RMSE =

√∑
(i1,i2)∈E

(γi1,i2 − γ̂i1,i2)
2

|E|
, (6.2)

Smaller RMSE values suggest better (i.e., more accurate) őttings of the model. To

compare RMSE values for different networks/backbones, we use a normalized version of

RMSE [112], where edge weights are normalized by the average value deőned as:

NRMSE =
RMSE(∑

(i1,i2)∈E(γi1,i2 )

|E|

) (6.3)

Another issue is that backbones extracted by different methods may be quite dif-

ferent in terms of both the number of salient edges and the ranges of weight values, as

the methods may favor very different edges during selection of the salient ones. On the

one hand, one would like to assess the quality of each backbone using all (or most of) its

edges. On the other hand, it may be interesting to compare different methods over the

same set of (salient) edges. As a trade-off between these two scenarios, we propose to

split the data into a training and a test set, whereas the latter consists of a smaller set of

edges common to all backbones. We then evaluate the backbone quality in both sets.

Speciőcally, we őrst identify the largest common set of edges present in all extracted

backbones E∩
b =

⋂
c∈C Ec

b ,where C is the set of alternative backbone extraction methods

to be evaluated. We then propose to randomly select a sample T of E∩
b as test edges. We

choose to select 20% of E∩
b as test edges, but other sample sizes could be adopted [94].

Next, for each method c ∈ C, we build the regression model using all edges in Ec
b \T , that

is, all edges in the extracted backbone except those in the testing set are used as training

edges.5

We őrst evaluate the quality of each regression model using both R2 and NRMSE

over the training edges to assess how well the model őts the training data. Note that the

5We do the same for the entire network, using set E − T as training edges.
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training data captures the majority of the edges in the original backbones. As such, by

analyzing the model őtting to this data we are able to assess the extent to which each

backbone is indeed capturing relevant information for the phenomenon under study.

We then assess the quality of each model in the common set of test edges T . That

is, we use the trained models to estimate the weights of edges in T , and evaluate the

quality of the őtting using NRMSE.6 In a sense, T captures the consensus in terms of

edge saliency among all methods. As such, we note that similar NRMSE values in the

training and test sets for a given method suggests that this consensus is representative of

the entire backbone extracted by the method. In contrast, larger NRMSE values in the

test set suggests that the backbone extracted by the method deviates signiőcantly from

the other backbones (that is, the test set is not representative of the training data).

Note that we chose to use a sample of E∩
b as test edges, instead of the complete

set, to avoid favoring particular methods. For example, backbones with larger relative

intersections with E∩
b (i.e., the smaller backbones) could be favored in the quality assess-

ment as edges in E∩
b are more representative of the training data. Indeed, we did observe

this effect in a preliminary set of experiments when the complete set E∩
b was used as test

edges in our case studies. This effect has been reduced as we adopt the strategy of us-

ing a sample of E∩
b as test edges instead. This strategy has also the side effect of leaving

more edges to build the model, which may lead to more accurate models.

Deciding on the best parameters and methods

One question remains: How to select the best parameters for each method, which indeed

may change the obtained backbones and, as such, the respective topological and contex-

tual metrics for the method? The őnal decision on which methods to take depends on

these choices. The selection of the best parameters is a multicriteria optimization, in par-

ticular for the statistical methods. It should take into account the backbone quality in

terms of both topological and contextual perspectives (i.e., modularity, R2 and NRMSE)

as well as node and edge coverage. As argued above, for the sake of a fair comparison

among methods, we create a common set of edges across the extracted backbones out of

which we build a common (sub)set of test edges. Similar regression values in the training

and test sets for a given method suggests that the common set is representative of the

entire backbone extracted by the method, while divergent results indicate that the back-

bone extracted by the method differs signiőcantly from the others. Thus, an important

constraint on the selection of parameter values is the size of the common set of backbone

edges for all methods. Given that the methods differ greatly in terms of how aggressively

they remove edges/nodes as well as in the quality of the extracted backbones, we must

look for a compromise.

6We only use the NRMSE because it is better suited for checking how far the points of the common
test set are from the regression line [125]



6.3. Methodology 145

0 2000 4000 6000 8000 10000
# Edges

0

100

200

Ti
m

e 
(s

)

HSS NC

Figure 6.3: Example of the execution time: HSS and NC.

Our strategy is to start with the most aggressive method and choose a value for

alpha that delivers the best trade-off between modularity and regression results while

still leaving a large subset of edges. We then proceeded with the following methods in

decreasing order of aggressiveness, potentially reviewing our previous choices in case the

common subset of edges becomes small.

Another important dimension that we have not analyzed in our methodology, but

that may indeed inŕuence the choice of method, is computational complexity. However,

it is not trivial to deal with it for several reasons. First, the implementations considered

here are based on different programming languages. For example, some are in C, while

others are in Python and Java, which does not allow for a fair comparison. In addition,

some methods have peculiarities that make them difficult to re-implement in the same

language, such as libraries that are present in one language and not in another. For

example, Polya Urn Filter uses a particular Matlab optimization method that is not yet

available for alternative tools such as Octave [178]. Similarly, GloSS Filter uses the GNU

Scientiőc Library7 for certain methods that are only available in the C language [238]. We

therefore argue that for a fair scalability analysis, all these aspects should be considered.

Nevertheless, we show here the importance of such analysis for future work. To

this end, we perform a feasibility study comparing two methods implemented purely

in Python that differ signiőcantly in terms of performance: Noise Corrected and High

Salient Skeleton. To evaluate them empirically, we generate random graphs by varying

the number of edges from 1000 to 10000 in increments of 2000. Then we use the Zipf

distribution with parameter a = 2 to assign weights to these edges [340]. We then execute

each method ten times and report the average execution time in Figure 6.3.

It should be noted that the computational cost for HSS is much higher than for NC.

This is because the method is based on the idea of computing short paths from all nodes

to all (see Chapter 2). Consequently, this makes it much more computationally expensive.

Therefore, this is an important criterion to consider depending on the size of the network.

Finally, although we focus here on the quantitative assessment of the quality of the

backbone, one could also resort to visualization to identify possible differences between the

7https://www.gnu.org/software/gsl/

https://www.gnu.org/software/gsl/
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backbones extracted by different methods, especially for the denser components of each

backbone. This is important because both the topological and the contextual perspectives

are subject to approximations and should therefore be considered complementary. In

addition, one should be aware that backbone analysis from a contextual perspective,

as opposed to a topological perspective, inevitably includes subjective factors (e.g., the

selection of predictor variables).

6.4 Case Study 1: Online Discussions on Instagram

We apply here our methodology for selecting and evaluating backbone extraction

for our őrst case study examined in this chapter, which was also examined in Chapter 5.

We then start with a brief review of the phenomenon under consideration.

6.4.1 Characterization of the Phenomenon

Our őrst case study focuses on online discussions on Instagram as the phenomenon

of interest. Different factors may drive users to comment on speciőc posts. For example,

the common interest in a speciőc topic related to the original post, may drive users to

elaborate their opinions and exchange ideas in their comments, thus generating and feed-

ing on-going discussions (as we presented in Chapter 5). However, users may also com-

ment on posts due to other factors, e.g., reaction to advertising campaigns or user per-

sonalization mechanisms [227]. Not all these factors are truly related to online discus-

sions. Therefore, a network model built from such commenting interactions may contain

a number of irrelevant (i.e., non-salient) edges to the study of online discussions.

In the last chapter, we examined online discussions on Instagram by applying a

speciőc backbone extraction, TriBE, to reveal the truly relevant (i.e., salient) edges. Our

main focus was on characterizing the structural and dynamic properties of the communi-

ties that compose the extracted backbone, as representations of different groups of users

actively engaged in online discussions. Despite the interest in the same phenomenon, our

goal here is completely different. We are here interested in evaluating alternative meth-

ods of backbone extraction. In a sense, our present study should precede an investigation

of the phenomenon, as we aim here to identify the most appropriate backbone extraction

method for such an investigation. Speciőcally, we here analyze how different backbone
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extractions methods uncover the user interactions driving online discussions in posts and

forming communities that can foster the spread of information (e.g., ideas or opinions).

Our methodology can also be applied to other social media and other broader contexts.

With respect to the former, we note that user interactions when commenting on various

topics have already been studied in the context of other social media applications such as

Twitter [173] and Facebook [278, 291]. As for the latter, one can cite mobility networks

[54, 29] and biological networks [236], where some of the methods we use here have been

applied without careful investigation.

We then sampled from the dataset described in Section 5.3 focusing on content

posted by political inŕuencers in Brazil in the week surrounding the őrst round of the

2018 Brazilian general elections (i.e., from September 30th to October 6th ). In particular,

we gather posts from the eight main candidate runners.8 We use all the posts that these

proőles made during the election week, as well as the comments they received from other

Instagram users. Again, we chose not include users who commented on fewer than two

posts, as these clearly reŕect sporadic behavior. In total, we analyze here 41 099 who

made 376 779 comments on 540 posts. These data cover a speciőc time window where

user activity is high in terms of posts and comments, but user interaction patterns are

representative of other time windows analyzed in these studies.

The following sections describe how we applied our proposed methodology to the

study of online discussions on Instagram and how we performed each of the four steps.

6.4.2 Step 1 - Building the Network Model

We model the interactions among users commenting on the same Instagram posts

with the same system properties presented in Section 5.2. That is, the commenters are the

individuals (i.e., users commenting on posts made by inŕuencers analyzed ), opportunities

are the posts created and the co-interactions are co-commenters commenting on the same

post. Thus, the network model that has been shown to reveal communities of users

participating in online discussions is deőned as a weighted undirected graph GInstagram =

(V,E), where:

• V is the set nodes representing the users who commented on posts; and

8We target the proőles: @jairmessiasbolsonaro, @fernandohaddadoőcial, @lulaoőcial, @cirogomes,
@_marinasilva_, @guilhermeboulos.oőcial, @cabodaciolo, @ad.alvarodias).
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• E is the set of edges, where each edge (i1, i2) ∈ E connects nodes i1 and i2, rep-

resenting two users who commented on the same post. The edge weight γ(i1, i2) is

the number of posts that received comments by the same two users.

As mentioned earlier, many interactions captured by user comments on Instagram,

and represented by edges in our network model, may not reŕect actual discussions. For

example, a very popular post naturally attracts many users, who often comment on them,

often in an independent manner, without actually engaging in a discussion about the

topic. Also, some users are more active than others. Thus, it is very likely that the most

active users actually comment on many posts, acting completely independent of others

who commented on the same posts, without however engaging in discussions. Such cases

result in a set of edges in our network model that are simply random. Since these edges do

not reŕect discussions among users/commenters, they represent a noise for studying the

target phenomenon. This observation requires the use of backbone extraction methods

to identify and extract the salient edges for the study, őltering out those that are most

likely just random.

6.4.3 Step 2 - Selection of Candidate Backbone Extraction

Methods

The understanding on how the inherent properties of the phenomenon impact the

network model helps us to focus on backbone extraction methods that do take such prop-

erties into consideration to identify salient edges. In this context, salient edges are those

with greater evidence of reŕecting online discussions. Hence, we are looking for methods

that consider the effects of user activity level and post popularity on the emergence of ir-

relevant edges. As such, methods that are based on the assumption that edge salience

is necessarily related to edge weight (e.g., methods that assume that edges with larger

weights are more likely to be salient), either from a local or a global perspective, are not

adequate. These methods tend to retain in the backbone only edges representing repeti-

tive patterns of the most active users, disregarding interactions reŕecting discussions car-

ried out by less active (though still important) users.

Given these considerations, we select the following set of candidate methods for

further evaluation: C = {MLF, NC, Gloss Filter, TriBE, SDSM}. These methods are fun-

damentally local and statistical, and factor both user activity level and content popularity.

TriBE and SDSM explicitly build a reference model based on both characteristics. MLF,

NC and GloSS Filter evaluate the salience of an edge taking these factors into account
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indirectly, by exploring structural aspects of the network, notably node strength and de-

gree, which are affected by user activity level and content popularity (see Section 6.3.2).

Notice that although we argue that the SDSM method is adequate to the study

of online discussions [204], it has some theoretical advantages and disadvantages with

respect to the other methods. First, while SDSM explicitly controls the degree sequence

of both artifacts and agents, it does not consider that some artifacts can only have links

to certain subsets of agents. In the context under study, this implies the assumption that

all 41 k users (i.e., agents) can comment on all 540 posts (i.e., artifacts). Even though

this is possible in theory, it does not happen in reality, as users select speciőc posts and

inŕuencers to comment on [78, 79]. Thus, the expected value of an edge between two users

is underestimated, making it more likely that edges are considered salient. In contrast,

the other considered methods, which work on a projected network (i.e., [238, 72, 53, 79]),

allow for disjoint subsets of commenters per post as only the actual edges (which capture

user preferences) are represented in their reference models. In particular, TriBE [78, 79]

was designed to capture such inherent heterogeneity of user behavior and preferences. It

does so by considering user engagement towards posts of speciőc inŕuencers, i.e., a disjoint

relationship between subsets of artifacts (posts) and subsets of agents (users). In other

words, a tripartite structure is considered, which is able to compute different distributions

for a subset of users and posts and thus more accurately determine the expected value of

an edge.

6.4.4 Step 3 - Backbone Extraction

We apply each candidate backbone extraction method in C to the network model

built in step 1. Recall that all the selected methods require alpha as parameter, and we

test a range of possible values. Table 6.2 summarizes the topological properties of the

original network and the backbones extracted using the considered methods. The re-

ported backbone results were obtained with the following alpha parameters: TriBE=0.05,

SDSM=0.001, GloSS=0.10, MLF=0.001, and Noise Corrected=0.00001. Results for other

alphas are reasonably consistent ś see Table A.1 in Appendix A. Recall that we chose al-

pha that offered the best trade-off between modularity and regression results while still

producing a large subset of common edges across methods.

Columns 2-7 in the table show the results for topological metrics: nodes and edges

(total numbers for the original network and also corresponding percentages remaining

in the extracted backbones), average degree (Avg. Deg.), density, average clustering
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Table 6.2: Online discussions on Instagram: Topological metrics of the network and
backbones extracted by each candidate method. Columns 2-3 contain total numbers for
the original network and also the corresponding percentages for backbones.

Network Model Nodes Edges Avg. Deg. Density Avg. Clust. # C.C. # Comm. Gini I. Mod.
Original network 41 099 1 193 201 9 236 0.2248 0.68 1 4 0.10 0.25
TriBE’s backbone 40 816 (99.3%) 4 152 501 (2.1%) 203 0.0050 0.30 1 9 0.23 0.56
SDSM’s backbone 31 811 (77.4%) 2 794 969 (1.4%) 175 0.0055 0.33 2 10 0.38 0.46
GloSS’s backbone 28 065 (68.2%) 4 891 339 (2.5%) 348 0.0124 0.54 1 7 0.18 0.32
NC’s backbone 28 459 (69.2%) 4 285 139 (2.2%) 301 0.0106 0.31 1 7 0.34 0.61

MLF’s backbone 20 461 (49.7%) 2 195 999 (1.1%) 214 0.0105 0.33 1 7 0.49 0.62

coefficient (Avg. Clust.),9 and the number of connected components (# C.C.). Overall

the backbones are sparser than the original graph, since a large fraction of the nodes and

edges have been removed. Moreover, the average clustering coefficient shows a moderate

number of connected triangles in the network for all methods. Interestingly, four out of

the őve resulting backbones have only one connected component, as is also the case for the

original graph, suggesting the presence of key users promoting online discussions across

different Instagram proőles and connecting salient edges into a single component.

The three rightmost columns of Table 6.2 show results of community-related met-

rics.10 The number of communities (# Comm.) is larger than in the original network.

This is expected since backbones are sparser than the original graph. We analyze the

community size distributions by employing the Gini index [154], which measures a devi-

ation of the given distribution to perfect equality (i.e., uniform distribution). The larger

the Gini index, the greater inequality across community sizes. As the table shows, all

backbones exhibit greater inequality of community sizes than the original network, no-

tably the backbone extracted by MLF (largest Gini index). Considering only the back-

bones, the one extracted by GloSS Filter has communities with more evenly distributed

sizes (lowest Gini index), though still with greater inequality than the original network.

Finally, the rightmost column of Table 6.2 shows the modularity results as a measure

of community quality. All backbones clearly have more strongly connected communities

(i.e., higher modularity) than the original network, although we still need to assess the

representativeness of these backbones using contextual information.

Since the methods extract backbones with different topological structures, we fur-

ther analyze how each method deals with edges with respect to their weights. Figure 6.4

shows the distributions of weights for edges retained in the backbone by each method.

Each plot also shows the distribution of edge weight in the original network for compari-

son. TriBE and SDSM (Figures 6.4-a and 6.4-b) remove many edges with small weights

as well as some edges with large weights. GloSS Filter (Figure 6.4-c) is more aggressive

towards heavy edges and removes some of the edges over the whole range of values. Note

that this method őlters out all heaviest edges. NC (Figure 6.4-d) is the most conservative

9Due to the high execution time, we use 20% of the nodes in each network to estimate the clustering
coefficient.

10We consider only communities with more than 100 users.
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method with respect to heavy edges and removes a smaller fraction of the edges through

the whole range of weight values. MLF (Figure 6.4-e) follows a similar pattern as NC,

preserving heaviest edges. In summary, the results show that while all őve methods share

similarities (e.g., they all capture the effects of user activity levels and post popularity),

they have their peculiarities when it comes to identifying an edge as salient, and they pro-

duce quite different backbones.

6.4.5 Step 4 - Backbone Evaluation

Having extracted the backbones by the selected methods, we turn to the őnal

step of our methodology. We evaluate the quality of the extracted backbones from a

topological and contextual perspectives, aiming at identifying the most adequate backbone

extraction method, out of those selected as candidates, to the study of online discussions

on Instagram.

Topological Evaluation

We delve further into results of Table 6.2, comparing the backbones using the topological

metrics. We focus on the modularity, since it gives us information about the communities,

i.e., graphs representing collective patterns. GloSS Filter, for instance, produces the

smallest improvement with respect to the original network (the modularity increases from

0.25 to 0.32), while NC and MLF show the largest improvements (from 0.25 to 0.61 and

0.62, respectively).

We then evaluate how similar the communities in the backbones and in the orig-

inal network are, with respect to node membership. We employ the Normalized Mutual

Information (NMI) metric (see [301, 252] for details). The NMI value ranges from 0 (all

nodes are in distinct communities in the two partitions) to 1 (all nodes belong to the

same communities in both partitions). Figure 6.5 shows a heatmap of the NMI values

computed as a pairwise comparison between all őve backbones plus the original network.

Note that the NMI for two networks is computed considering only the common subset of

nodes. Results range from 0.49 to 0.81, suggesting medium to high similarity. The simi-

larity is greater among the backbones produced by TriBE, SDSM and NC.

Contextual Evaluation

We shift to the quality of the backbones from a contextual point of view. We build

regression models considering the following key assumption: If two users i1 and i2 engage
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Figure 6.4: Online discussions on Instagram: Weight distribution for edges retained in
the backbone by each method (distribution for original/complete network shown for com-
parison).

in the same online discussions, then the individual activities (comments) performed by

each user are strongly correlated with the joint activities performed by both users. If,

however, comments posted by one user (or both) are mostly reactions to popular content

or to some automatic tool (e.g., advertising or personalization mechanisms), or simply
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Figure 6.5: Online discussions on Instagram: Similarity of communities, estimated by Nor-
malized Mutual Information (NMI), present in different backbones and original network.

sporadic behavior, the activities of the user individually are only weakly correlated with

the joint behavior of both users.

Based on this assumption, we build a regression model for each backbone and the

original network. Given the edge weight γ(i1, i2) as dependent variable, the explanatory

covariates are: (i) number of posts that user i1 commented on, (ii) number of posts

that user i2 commented on, (iii) number of inŕuencers that user i1 commented on, and

(iv) number of inŕuencers that user i2 commented on. We capture user activities by

considering both the number of inŕuencers and the number of posts each user commented

on because it is often the case that the same inŕuencer has multiple posts on different

topics, each one attracting a different group of users (community) [78, 79]. Thus, we

expect that only edges representing user interactions driven by joint engagement to be

reasonably well explained by these covariates. Thus, the better the őtting of the model to

the edge weights in a backbone, the better the quality of this backbone from a contextual

perspective.

Notice that we have checked whether the covariates are linearly related to the

dependent variable, a key assumption to use a linear regression model. We found that

such linear relationship exists if a log transformation is applied to all covariates and to

the dependent variable. Such transformation is often employed in variables with very

skewed distributions, which is the case of edge weights (see Figure 6.4) and measures of

user activity in social media applications [264, 175].

Table 6.3 shows the results of the model őtting for the őve backbones and the orig-

inal network. We assess the quality of model őtting using the coefficient of determination

R2 and the NMRSE for the training edges and the NMRSE for the test edges. Focus-

ing őrst on the results for the training edges, we see that both SDSM and TriBE achieve

signiőcant improvements over the original network, both in terms of R2 and NMRSE. In-
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Table 6.3: Online discussions on Instagram: Contextual evaluation of backbones by re-
gression analysis.

Network Model
Training edges Test edges (20% of common edges)
R

2 NRMSE NRMSE
Original network 0.25 0.48 0.69
TriBE’s backbone 0.82 0.18 0.20
SDSM’s backbone 0.91 0.13 0.15
GloSS’s backbone 0.34 0.26 0.39
NC’s backbone 0.52 0.44 0.58

MLF’s backbone 0.49 0.35 0.51

deed, these two methods are able to őlter out many noisy edges and retain those more

closely related to the phenomenon under study, which is reŕected in the covariates used

to build the regression models. SDSM and TriBE, by explicitly taking into account both

the users’ activity level and the posts’ popularity when building the reference model, lead

to high R2 values of 0.91 and 0.87, and an NRMSE of only 0.13 and 0.18. In turn, the

other three methods, NC, MLF and GloSS, despite őltering out many edges (as shown in

Table 6.2), lead to only moderate improvements over the original network.

The same conclusion holds for the test edges. Compared to the original network,

the őts for both SDSM and TriBE show a notable reduction in NRMSE. This suggests that

the edges considered salient by NC, MLF, and GloSS deviate the most from the common

set of edges considered salient by all methods. This observation, in turn, suggests that

these three methods retain a large fraction of possibly non-salient edges, which ultimately

affects the őtting of the regression model.

SDSM performs slightly better than TriBE. Since we are only studying 8 popular

inŕuencers talking about politics, the effect of the third part (inŕuencers) explicitly cap-

tured by TriBE but ignored by SDSM is mostly marginal. We expect a greater difference

between the two methods, favoring TriBE for scenarios with a larger diversity of inŕu-

encers in terms of both popularity and topics of posts.

In conclusion, our results indicate that evaluating backbone quality based solely on

a single perspective may be misleading. For example, Table 6.2 shows that the backbones

extracted from NC and MLF have the highest modularity scores. Yet, the regression

analysis shows that the edges identiőed as salient by both, although well structured into

strongly connected communities, do not offer a clearer understanding of the user behavior

patterns driving the online discussions than the (poorly structured) original network.

SDSM and TriBE, in turn, stand out as the best approach when considering a tradeoff

between the quality of their communities and the ability of the selected edges to capture

the user interactions that are driving the online discussions.
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6.5 Case Study 2: Coordinated Behavior on WhatsApp

We now turn to our second case study, which we examine in this chapter. Nev-

ertheless, since this is the őrst time it is considered in this dissertation, we give a more

detailed description in the next section.

6.5.1 Characterization of the Phenomenon

Our second case study concerns coordinated actions to disseminate information in

WhatsApp groups. WhatsApp is a free messaging app widely used in many countries,

with over 2 billion active users worldwide11. The platform connects users in end-to-end

as well as group conversations. Despite being limited to only 256 simultaneous members,

WhatsApp groups have been shown to be effective channels for the large dissemination of

information [245, 244, 214, 215], notably misinformation [215], in spite of WhatsApp’s re-

cent efforts to mitigate such phenomenon (e.g., by limiting message forwarding [66]). We

here adopt the following widely used deőnition of coordination [41, 334, 220, 221]:

Coordinated behavior: coordinated users typically exhibit a repetitive and synchronized

pattern of activity.

With such deőnition as background, we have recently unveiled the presence of

communities of WhatsApp users for whom there is strong evidence of coordinated ef-

forts to spread information at large by repeatedly sharing the same content in different

groups [214, 215]. Such work, though not a central part of this dissertation, is worth men-

tioning as it represents collaboration in the application of our general approach. We őnd

that these communities often transcend the formal group boundaries enforced by What-

sApp. They have members in multiple groups building an underlying network capable

of sharing the same piece of content at very large scale on the platform. To reveal these

communities, we applied a speciőc backbone extraction method to the network that con-

nects users sharing similar content. Speciőcally, we applied the disparity őlter (DF) as a

strategy to őlter out edges that do not offer strong evidence of coordination. For example,

a highly popular piece of content is most likely shared by multiple users independently,

resulting in multiple edges in the network, even without any kind of user orchestration.

11https://backlinko.com/whatsapp-users#whatsapp-statistics
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However, the presence of a set of users who repeatedly spread similar content (more fre-

quently than would be expected by pure chance) is a clearer indication that some coordi-

nation is taking place.

In contrast to these previous studies, our present goal is not to identify and study

coordination (i.e., communities) of information spread on WhatsApp but rather to com-

pare the use of alternative backbone extraction methods to such study. We aim at evalu-

ating how well different strategies are able to extract the aforementioned underlying net-

work of information spread over WhatsApp groups, uncovering communities for which

greater evidence of coordination exists. Thus, once again, the present effort aims at iden-

tifying the most adequate backbone extraction method to be applied to a study of the

given phenomenon (as those reported in [214, 215]).

Our present investigation relies on a dataset of anonymized messages shared in

publicly accessible political-oriented WhatsApp groups in Brazil [214, 215], originally

collected by the WhatsApp Monitor [245]. We focus our analysis on the month of the

general presidential election in Brazil (October 2018), a time of great political mobilization

and strong evidence of message coordination and orchestration in WhatsApp [246, 245,

179, 214, 215]. In summary, we analyze 4 341 users who participated in 155 groups and

shared 91 417 unique pieces of information, in the form of text messages, images, audios

and videos.

6.5.2 Step 1 - Building the Network Model

Before describing the network model, we should explain the components of such

a system in terms of our general approach. Fundamentally, these user interactions,just

like those discussed in Chapters 4 and 5, can be modeled as a many-to-many network as

follows. The individuals are WhatsApp users, i.e., users who have shared at least one

piece of content during the observed time period and thus form the set of individuals

IWhatsApp = {i1, i2, ..., ij}. Here, opportunities are taken as the pieces of content. In

this way, we deőne the set of opportunities containing all the pieces of content posted

as OWhatsApp = o1, o2, ...om. We consider all users who shared the (near-)duplicate piece

piece of content as a co-interaction. Thus, each opportunity (post) ok leads to a single co-

interaction in the set C(ok). Collectively, all opportunities during the observed period lead

to a set CWhatsApp. Having deőned these elements, we use the same network model adopted

in [214, 215], referred to as media-centric network, which is deőned as an undirected and

weighted graph GWhatsApp=(V,E) such that:
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• V is the set of nodes representing users who shared at least one message in one of

the monitored groups during the period of analysis;

• E represents the set of edges, where each edge connects two users if they share

similar content in the same or different groups. The similarity between message

content was estimated using a set of heuristics for őltering and identifying (near-

)duplicate content. We refer the reader to [215] for more details on these heuristics.

The edge weight represents the number of times the two users shared similar content,

regardless of the group in which the sharing was made.

In light of the deőnition of coordination adopted, presented in the previous section,

salient edges are those whose weights are unusually high, considering individual patterns

or not. However, as deőned, the network may contain a number of noisy edges, that emerge

due to sporadic or weak interactions. For example, endogenous factors (e.g., temporary

common interest or even large popularity of some particular content) may cause different

users to share similar content, which may overshadow the actions of coordinated users who

regularly and repeatedly share the same content. Therefore, the interest is to separate

users who persistently engage in such common sharing from users who only sporadically

exhibit such behavior. This separation implies favoring as salient those edges with heavier

weights, either taking a local perspective (e.g., other edges incident to the same two nodes)

or a global perspective (i.e., all edges in the network). This principle is used as guideline

in the selection of candidate backbone extraction methods, as discussed next.

6.5.3 Step 2 - Selection of Candidate Backbone Extraction

Methods

As argued, we aim at selecting methods that explore the heterogeneity of the net-

work by identifying as salient the edges with unusually heavier weights, based on indi-

vidual (local) or network (global) patterns, as representative of persistent and repetitive

interactions. As argued in Section 6.3.2, Threshold, HSS and RECAST are global meth-

ods that explore the heterogeneity of the edge weight distribution, favoring as salient the

edges with heavier weights in the whole network. From a local perspective, Polya Urn

Filter and Disparity Filter (DF) select as salient those edges whose weights are heavier

compared to the weights associated with a subset of the edges (e.g., edges incident to the

same pair of nodes). Thus, we deőne the set M of candidate methods as M = {Threshold,

HSS, RECAST, Poly Urn and DF}. Recall that both Threshold and HSS explore struc-
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Table 6.4: Coordinated behavior on WhatsApp: Topological metrics of the network and
backbones extracted by each candidate method (Columns 2-3 contain total numbers for
the original network and also corresponding percentages for backbones).

Network Model Nodes Edges Avg. Deg. Density Avg. Clust. # C.C. # Comm. Gini I. Mod.
Original network 4341 221002 103 0.0241 0.62 4 15 0.39 0.25
DF’s backbone 800 (18.7%) 9962 (4.51%) 24 0.0312 0.59 4 13 0.41 0.48

Polya’s backbone 734 (17.1%) 10527 (4.76%) 28 0.0391 0.59 5 15 0.44 0.48
Threshold’s backbone 495 (11.5%) 9489 (4.29%) 38 0.0776 0.73 3 8 0.38 0.45
RECAST’s backbone 313 (7.3%) 1875 (0.85%) 11 0.0384 0.49 2 7 0.50 0.37

HSS’s backbone 4281 (100%) 10996 (4.98%) 5 0.0012 0.14 4 29 0.35 0.44

tural properties, whereas the other three methods rely on statistical reference models to

identify the salient edges.

6.5.4 Step 3 - Backbone Extraction

Table 6.4 summarizes the topological characteristics of the original network and the

backbones extracted by each candidate method. The candidate methods have different

parameters. Disparity Filter (DF), Polya Urn Filter (Polya) and RECAST require a a,

which we set to 0.05, as shown in Table A.2 in Appendix A. The Polya Urn method

also requires a second parameter a related to the heterogeneity of the network. This

parameter was set to 0.25, following a őne-tuning process, as brieŕy mentioned in Section

2.3. The High Salient Skeleton (HSS) and Threshold approaches, on the other hand, take

an arbitrary threshold value τ as input parameter. In both cases, we select τ to retain

the top-k% most salient edges. Table 6.4 shows results for values of τ corresponding to

the top 5% edges but we also tested for other values of k (thus of τ), as reported in Table

A.2. According to Table 6.4, the fractions of edges retained by both HSS and Threshold

are slightly below 5%. This discrepancy is due to the removal of very small components

(up to 3 nodes) of the backbone and the original network.

To further support the following discussions, we show visualizations of the original

network and each backbone in Figure 6.6, focusing on their largest connected component.

In each graph, nodes belonging to the same community are represented by the same color,

and edge weights are represented by both edge thickness and color (heavier/lighter edges

are colored in red/blue).

As shown in the table and the graphs, DF, Polya and Threshold retain somewhat

similar fractions of nodes (11-18%) and edges (4%) in the extracted backbones. Despite

such large removal of nodes and edges, all three backbones have a number of connected

components that approximate the original network. Interestingly, we also őnd that these

backbones have larger density (especially the backbone extracted by Threshold) and com-

parable (if not higher) average clustering coefficient to the original network. RECAST, in
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turn, is the most aggressive method, retaining only around 7% of the original nodes and

fewer than 1% of the original edges. This leads to a smaller number of components and

average clustering coefficient, though the backbone’s density is still comparable to that of

the DF’s and Polya’s backbones. At the other extreme, HSS extracts a rather large back-

bone while preserving all the original nodes. This backbone has a very different topolog-

ical structure than the others, being much sparser and exhibiting lower density, degree,

and average clustering, as shown in Figure 6.6-e).

Turning to the analysis of the communities (3 rightmost columns of Table 6.4),

we observe that the number of communities varies considerably, being smaller for the

backbones extracted by Threshold and RECAST. The former may be a consequence of

the much denser backbone, while the latter may be related to the smaller number of

nodes in the backbone. Nevertheless, the inequality in the distributions of community

sizes is moderately similar, as captured by the Gini index. This can also be observed

in the visualizations of Figures 6.6. Recall that we still need contextual information to

investigate the extent to which such communities are representative of the phenomenon.

To further understand how the selected methods work, we analyze the distribution

of edge weights, reported in Figure 6.7. All methods except HSS remove mostly edges

with small weights. In particular, all edges with weights between 1 and 3 are removed

by all four methods. HSS, in contrast, removes large fractions of edges across the whole

range of weight values. As we will see in the next section, the HSS backbone is inferior to

the others from a contextual perspective and, therefore, in terms of how well it captures

edges related to the phenomenon under study.

6.5.5 Step 4 - Backbone Evaluation

As our őnal step, we compare the őve selected methods with respect to topological

and contextual properties of the extracted backbones.

Topological Evaluation

As in our őrst case study, the results presented in Table 6.4 and illustrated in Figure

6.6 show that all backbones are composed of more strongly connected and more clearly

discriminated communities than the original network. The improvements in community

structure, as captured by the modularity metric, are particularly large for the DF, Polya

Urn and Threshold approaches. The backbones extracted by these methods are mostly

composed of well structured communities of users who repeatedly share the same con-



6.5. Case Study 2: Coordinated Behavior on WhatsApp 160

(a) Original network (b) DF’s backbone (c) Polya Filter’s backbone

(d) Threshold’s backbone (e) HSS’s backbone (f) RECAST’s backbone

Figure 6.6: Coordinated behavior on WhatsApp: Largest connected component of the
original network and extracted backbone (node color indicates community membership,
edge thickness and color indicates edge weight ś heavy/light edges colored in red/blue).

tent, which favors the information spread at large. RECAST and HSS, in turn, produce

backbones with weaker community structures.

Delving deeper into the membership of the identiőed communities, we again com-

pute the pairwise NMI value for all őve backbones and the original network. Results are

shown in Figure 6.8. We observe greater similarity in community membership for the

backbones extracted by Threshold and HSS.

Contextual Evaluation

The following key assumption guides our contextual evaluation of the backbone extraction

methods: If two users i1 and i2 are acting in coordination to share the same pieces of

content repeatedly, such coordination should be reflected in their sharing patterns and user

activity. Guided by this assumption, we build a regression model where the dependent
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Figure 6.7: Coordinated behavior on WhatsApp: Weight distribution for edges retained
in the backbone by each method (distribution for original/complete network shown for
comparison purposes).

variable γ(i1, i2) is related with the following 11 explanatory variables: (i) total number of

messages shared by i1 (i2); (ii) number of distinct messages shared by i1 (i2); (iii) number

of messages with new content introduced (i.e., shared őrst) by i1 (i2); (iv) number of

groups i1 (i2) participates in (inferred by the groups he/she shared content at least once);

(v) Gini index of the number of messages shared by i1 (i2) across different groups; and (vi)

number of common groups both i1 and i2 participate in. All variables, but the last one,

are computed separately for i1 and i2, thus contributing as two covariates to the model.

These variables capture different facets of user activity. The only variable related to the

joint behavior of both users is the number of common groups, which indirectly captures
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Figure 6.8: Coordinated behavior on WhatsApp: Similarity of communities, estimated
by Normalized Mutual Information (NMI), present in different backbones and original
network.

Table 6.5: Coordinated behavior on WhatsApp: Contextual evaluation of backbones by
regression analysis.

Network Model
Training edges Test edges (20% common edges)
R

2 NMRSE NMRSE
Original network 0.21 1.33 0.92
DF’s backbone 0.35 0.40 0.53

Polya Urn’s backbone 0.30 0.51 0.55
Threshold’s backbone 0.22 0.37 0.51
RECAST’s backbone 0.22 0.51 0.51

HSS’s backbone 0.44 1.25 0.71

whether or not the two users act in the same subset of observed groups. For example,

users may act in a coordinated manner by frequently sharing the same content (i.e., heavy

edge), even though the number of groups in which both participate is small. This could

indicate, for example, that each of them forwards the same content to a particular subset

of groups. As in our őrst case study, we also tested for the assumption of linearity, őnding

that it holds reasonably well after a square root transformation is applied to all covariates

and the dependent variable.

Table 6.5 summarizes the results of the model őtting for each backbone and the

original network for both training and test edges. Compared to our őrst case study, the

őttings are generally poorer (note the lower R2 values in the training edges). We emphasize

that it is much more challenging to perform a contextual evaluation of the network and

backbone structures in this case study because we are focusing on messages shared in only

155 groups. All monitored groups belong to the same context (political domain) and are

strongly interconnected as many users belong to multiple groups. However, these groups

offer only a partial view of WhatsApp. The same users might participate in other groups,

where they share and forward content, contributing to the information spread at large
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(see [245]). Thus, our analysis is limited by the lack of an unknown number of edges that

most probably exist in the real underlying network connecting these users.

Under this constraint, the contextual evaluation leads to results consistent with

those of topological evaluation. HSS has the highest R2, but also the highest errors

(NMRSE), which are almost similar to the original network. The backbones extracted

by DF, Polya Urn and Threshold, have the lowest errors in both the training and test

sets. Concerning R2 the results are generally poor, with DF and Polya Urn performing

better. Threshold performs worse than DF and Polya, suggesting that a global approach

may leave out some important edges for the investigation. Indeed, as shown in Figure

6.7, both DF and Polya retain a more diversiőed set of edges in terms of edge weights.

In sum, we őnd that both DF and Polya Urn are the best methods to uncover

evidence of user coordination when sharing similar content on WhatsApp. If one has to

choose a method, DF is possibly the best choice as it contextually reveals communities

closer to the phenomenon.

6.6 Discussion

We have proposed a principled methodology to select and evaluate the best meth-

ods for extracting the network backbone that more accurately represents the collective

behavior driving a given phenomenon of interest. This methodology includes 4 steps to

apply, evaluate and select the best method(s) for a given target phenomenon. We used

two case studies with different requirements: Online discussions on Instagram and coor-

dinated behavior in WhatsApp groups to validate it. Our characterization and applica-

tion conőrm that these are very different scenarios that require different solutions and il-

lustrate the complexity of selecting appropriate methods for backbone extraction.

Moreover, we found that some methods extract rather useless backbones, while

others are particularly suitable to capture and describe the phenomenon under study,

taking into account a trade-off between topological and contextual measures. In this

sense, we hope that our methodology helps to highlight and demonstrate the risks of using

inappropriate and inadequate backbone extraction techniques.
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6.7 Summary

In this chapter, we formalized and proposed a methodology for backbone extrac-

tion. This effort contributes, fundamentally and systematically, to several recent network-

oriented studies relying on backbone extraction strategies to unveil useful knowledge about

various phenomena of interest. In particular, our work őlls a gap in the literature by em-

phasizing the need to: (1) carefully match assumptions and properties of the method with

characteristics of the given phenomenon, showing that different methods may, in fact, ex-

tract quite different backbones, some which offer little (if any) useful knowledge to the

study, and (2) consider different criteria to evaluate the quality of alternative backbones,

especially when there is no ground truth (which is often the case).

In addition, we offered a reasoned characterization of ten state-of-the-art methods,

including TriBE we proposed here, for extracting backbones and discussed their assump-

tions, properties, and issues to consider when applying them in practice. This characteri-

zation, developed based on our experience with the methods, advances existing knowledge

available in the literature and is intended to aid in selecting candidate methods for a par-

ticular study. We also combine alternatives for validating the extracted backbones, both

structurally (based on topological measures extracted from the network) and contextually

(based on phenomenon-speciőc attributes). In this way, we őlled the gap of a systematic

procedure for comparing and selecting backbones by proposing a principled methodology

for selecting the most appropriate backbone extraction method for a given phenomenon.
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Chapter 7

Conclusions and Future Work

This chapter concludes this dissertation and is organized as follows: Section 7.1 presents

the conclusions, followed by Section 7.2, which summarizes our main publications. Next,

Section 7.3 discusses some limitations we observed during the development of this work.

Finally, Section 7.4 describes possible future work.

7.1 Conclusions

For several years, researchers have used network-based models, particularly projec-

tions that we refer to here as many-to-many networks, to study various phenomena in the

physical and online worlds. These models have indeed made it possible to extract an im-

measurable range of knowledge in different knowledge domains. However, little attention

has been paid to the various challenges naturally faced by these models. This dissertation

set out to model and analyze collective behavior captured by many-to-many networks. We

addressed several neglected challenges, most notably the presence of noise in the network

and its drastic impact on the analysis. To achieve this, we deőned three research goals:

• RG1: Uncovering topological and contextual properties of communities in many-to-

many networks.

• RG2: Modeling the temporal dynamics of communities in many-to-many networks.

• RG3: Establishing a methodology for selecting and evaluating network backbone ex-

traction methods in the face of a phenomenon modeled in many-to-many networks.

We addressed the őrst two research goals with results in the context of two very

different case studies. Speciőcally, we were interested in uncovering and modeling struc-

tural, contextual, and temporal properties of communities in the context of a phenomenon

under study. To this end, we proposed a general approach consisting of a sequence of
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steps that primarily address several challenges that have been mostly neglected in previ-

ous efforts to model collective behavior, especially when considered together. For some

of these challenges, we proposed alternative solutions to those available in the literature.

We then applied our general approach to these two very different case studies, bringing to

light fundamental insights about the phenomena under study that would not have been

observed without the challenges addressed here. We then extend this general approach

by proposing a methodology that allows us to select and evaluate the backbone strategy

that better captures the structural and contextual properties of the phenomenon. Finally,

we analyzed this methodology in the face of two phenomena, one of those studied in the

previous research goals and a new one. Thus, our main contributions to the modeling and

analysis of collective behavior in many-to-many networks for RG1, RG2, and RG3 in the

context of these three case studies can be summarized as follows:

RG1: Uncovering topological and contextual properties of communities in

many-to-many networks

In the őrst case study, presented in Chapter 4, we were interested in examining the

behavior of politicians, particularly members of the House of Representatives, during the

legislative session in order to infer their political ideologies. To this end, we modeled roll

call votes as a many-to-many network. In such system, the latent relationships that exist

among members of Congress who vote alike on roll call votes correspond to our notion

of co-interaction. Thus, the collective behavior of interest in this case-the emergence of

groups of members of Congress with similar political ideologies over time through co-

interactions. As a natural consequence of such structure, some of these co-interactions are

noisy and, when projected into a network, form a complete network (i.e., density equals

one) and hide the actual ideological similarities that exist among members of Congress.

We have taken up the challenge of such modeling and analysis for two very different party

systems (Brazil and the United States) covering a large 15-year period.

To identify the salient edges and remove the noisy ones from the network, we

deliberately explored two strategies through contextual and structural information and

uncovered the backbones and their topological and contextual properties. Speciőcally,

we őrst applied a global threshold-based approach where the choice of the value to judge

whether an edge is salient or not in each scenario is guided by contextual information

(i.e., partisan discipline). In this way, we highlight how contextual information, which

is often overlooked, can be used to identify salient edges. Yet, in characterizing such

ideological communities and their structural and contextual properties, we found that

they were nebulous to some degree in some periods, which is a particular feature of this

phenomenon in Brazil. For this reason, we went a step further and proposed to apply

a second local neighborhood-based aimed at extracting a backbone composed mainly of
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ideological communities composed only of the more polarized members. This approach

allowed us to reőne the originally extracted backbone structure as needed and to uncover

new properties about the phenomenon that had not been observed before: more structured

and more polarized ideological communities.

Most importantly, such strategy sheds light on the debate about the possibility

of combining different methods to extract the backbone. So far, we have found that the

above questions have been fundamental to gaining insights into the analyzed phenomenon,

mainly considering that the original networks modeled are complete and do not favor the

extraction of the patterns observed according to our strategies.

We then moved on to a second case study, presented in Chapter 5, which focuses on

the study of online discussions, particularly in social media applications. Here, we focused

on user comments on Instagram and proposed studying the co-interactions between users

commenting on the same post by an inŕuencer. We re-applied our general approach to four

different scenarios (two political and two non-political) from two very different countries to

investigate this phenomenon. Our novelty for modeling and analyzing collective behavior

(online discussions) starts with networks of co-commenters, capturing the concept of co-

interactions when groups of users collectively co-comment on the same post. In doing so,

we found that the network model we used here is unprecedented in the literature because

it captures co-interactions from the many-to-many perspective that can occur on topics

of interest.

However, social media applications have characteristics that make hard the mod-

eling and analysis of user behavior. Most notably, these include the heavy tail nature of

content popularity and user activity, resulting in many edges that are not necessarily rel-

evant to this study. Despite this, we have not found any backbone extraction techniques

in the literature that explicitly exploit this information to identify salient edges. We then

proposed TriBE, an alternative to backbone extraction that works by building a reference

model under the null assumption independent behavior and considers these two main fac-

tors into account. Accordingly, we found that TriBE can capture co-interactions repre-

sented by edges arising from triggers that lead users to interact with certain content, thus

reŕecting real interactions driven by potentially interesting topics and not suffering from

side effects such as those mentioned above.

Analyzing the structural and contextual properties of the backbones study ex-

tracted from TriBE, we found that there are stronger and well-structured communities

representing groups of users who frequently participate in online discussions that were

not seen in the original modeled networks without the application of TriBE. Moreover,

under the assumption of independent behavior, we observed a much higher volume of in-

teractions and thus intense discussions in the political context that, when characterized,

reveal the presence of multiple triggers (e.g., topics) and patterns of communication and

interest. Overall, TriBE has demonstrated its ability to capture how these interactions
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occur. When applied in four different contexts, both interesting similarities and topolog-

ical and contextual differences between them became apparent.

RG2: Modeling the temporal dynamics of communities in many-to-many net-

works

We addressed the temporal properties of our two case studies discussed in RG1.

Beginning with the őrst case study, i.e., a study of the behavior of House of Representatives

politicians, we extracted patterns about the permanence and community affiliation of

members of Congress in the backbones over the observed period. Yet, we found that

these metrics and others in the literature capture such community-level dynamics but

do not track individual members over time. In addition, while strategies based on low-

dimensional latent representations, such as embeddings, were beginning to be explored

over time, we found that there were few and very limited efforts in this direction at the

time. We then proposed a new method to jointly learn temporal node embeddings from

a sequence of networks modeled by discrete-time windows - a particular contribution of

this dissertation that builds on this case study. In summary, our method is based on two

state-of-the-art approaches and allows us to obtain a temporal representation of the target

system in the direction of temporal patterns. Furthermore, the results show that it is

possible to capture the dynamics at the member level, which is an important contribution

to the őeld as it allows a wide range of analyses.

In our second case, examining online discussions led by commenters on Instagram,

we again quantiőed patterns related to the persistence and organization of individuals in

communities extracted from the backbone over the analyzed period. We have shown that

interest in particular debates changes dramatically over the weeks. This reŕects the shifts

in interest that occur in real-world society, particularly during election periods such as

the one analyzed here. In addition, we also highlighted the dynamics of the discussion

topics in which communities participate. In this regard, we observed a great diversity in

dynamics, while some topics attract attention only for a short period, while others remain

active for a longer time.

RG3: Establishing a methodology for selecting and evaluating network back-

bone extraction methods in the face of a phenomenon modeled in many-to-

many networks

Finally, we dove into the major step of our general approach and addressed how to

select and evaluate potential backbone methods in a studied phenomenon when ground

truth is constantly lacking. To this end, we proposed a methodology in which we reviewed

ten backbone extraction methods, characterize their assumptions and requirements, and
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discussed aspects to consider for their applicability in practice. Next, we identiőed the

network characteristics that these approaches exploit by showing how they can be used to

study different phenomena. Thus, our methodology explicitly considers the characteristics

and correspondence of both methods and phenomenon as a step in method selection. In

particular, our methodology brings together metrics for backbone quality that capture

both structural and contextual (i.e., phenomenon-speciőc) aspects. Thus, it evaluates

the resulting backbone from the perspective of the emerging structure and the extent to

which it captures the phenomenon under study.

We applied the proposed methodology to two large-scale case studies related to

phenomena with different requirements. Compared to other similar previous studies

[60, 204, 199], we offered a thorough and reasoned investigation that includes a larger

number of state-of-the-art methods. Our results conőrmed our interpretation that differ-

ent methods can lead to very different backbones and that choosing the most appropri-

ate method is paramount to gaining insight into the phenomenon under investigation. In

particular, we found that our proposed method, TriBE, yielded the best results when an-

alyzing online discussions on Instagram. In summary, we őlled the gap of a systematic

procedure for selecting and evaluating backbones by proposing a principled methodology

for selecting the most appropriate backbone extraction method for a given phenomenon.

7.2 Publications

The results obtained according to our research goals were summarized in the fol-

lowing publications:

• Ferreira, C. H. G.; Souza, B. M.; Almeida, J. M.. Analyzing Dynamic Ideological

Communities in Congressional Voting Networks. In: 10th International Conference

on Social Informatics, 2018. (RG1 and RG2).

• Ferreira, C. H. G.; Ferreira, F. M. ; Souza, B. M.; Almeida, J. M.. Modeling Dy-

namic Ideological Behavior in Political Networks. In: The Journal of Web Science,

v. 1, p. 1-14, 2019. (RG1 and RG2).

• Ferreira, C. H. G.; Murai, F.; Da Silva, A. P. C.; Almeida, J. M.; Trevisan, M.;

Vassio, L.; Drago, I.; Mellia, M.. Unveiling Community Dynamics on Instagram

Political Network. In: 12th ACM Conference on Web Science, 2020. (RG1 and

RG2).
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• Ferreira, C. H. G.; Murai, F.; Da Silva, A. P. C.; Almeida, J. M.; Trevisan, M.;

Vassio, L.; Drago, I.; Mellia, M.. On the Dynamics of Political Discussions on

Instagram: A Network Perspective. In: Elsevier Online Social Networks and Media

Journal, 2021. (RG1 and RG2).

• Ferreira, C. H. G.; Murai, F.; Da Silva, A. P. C.; Trevisan, M.; Vassio, L.; Drago,

I.; Mellia, M., Almeida, J. M.. On network backbone extraction for modeling online

collective behavior. Submitted to Plos One, 2022. (RG3).

Our general approach and particular efforts developed here have been used in some

collaborations. Therefore, we also note our involvement in those studies, which, although

not part of this dissertation, should be mentioned because they are closely related to the

efforts pursued here. We list the publications as results of these collaborations and explain

our contribution in each case:

• Souza, B. M.; Ferreira, C. H. G.; Almeida, J. M.. Analisando a governabilidade

presidencial a partir de padrões de homofilia na Câmara dos Deputados: Estudos de

Casos no Brasil e nos EUA. In: VII Brazilian Workshop on Social Network Analysis

and Mining, 2018.

• Nobre, G. P.; Ferreira, C. H. G.; Almeida, J. M.. Beyond Groups: Uncovering

Dynamic Communities on the WhatsApp Network of Information Dissemination.

In: 12th International Conference on Social Informatics, 2020.

• Nobre, G. P.; Ferreira, C. H. G.; Almeida, J. M.. Misinformation Dissemination on

WhatsApp: A Hierarchical Network-Oriented Analysis. In: Information Processing

& Management, 2021.

• Malagoli, L. G., Stancioli, J., Ferreira, C. H., Vasconcelos, M., Couto da Silva, A.

P., Almeida, J. M.. A look into COVID-19 vaccination debate on Twitter. In: 13th

ACM Web Science Conference, 2021.

• Barros, M. F., Ferreira, C. H., Santos, B. P. D., Júnior, L. A., Mellia, M., Almeida,

J. M.. Understanding mobility in networks: A node embedding approach. In: ACM

SIGMETRICS Performance Evaluation Review, 2022.

In summary, the őrst work is a parallel effort to understand more aspects related

to political governance issues on the phenomenon studied in our őrst case study (Chapter

4.1). The next two works focused on the spreading (mis-)information on WhatsApp by

using our overall solution for modeling and analyzing many-to-many networks. However,

only one method was used to extract the backbone, and the focus was on analyzing the con-

tent properties and propagation dynamics of users involved in misinformation, considering
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three perspectives: Individuals, WhatsApp groups, and communities of users. Next, the

work of Malagoli et al. had our contribution in terms of the use of contextual characteriza-

tion strategies, which we used in Chapter 5, for the study of a similar phenomenon but in

a different case study (speciőcally Twitter). Finally, the work of Barros et al. is an exten-

sion and application of the temporal embedding method proposed here for the context of

computer networks and focuses on the extraction of mobility patterns of groups of people.

7.3 Limitations

This dissertation investigated and addressed several challenges in modeling collec-

tive behavior through network modeling. However, the results should be considered in

light of the existing limitations that are listed below.

Deőnition and Interpretation of Social Phenomena:

An inherent limitation of our study is the deőnition of a particular phenomenon

under study and its interpretation during modeling and analysis. The deőnition is quite

subjective and can be done in different ways. For example, the deőnition of coordinated

behavior, whether in computer or social networks, may vary depending on the context

and purpose of the study [279, 305, 221]. The same is true for interpretation. Thus, our

case studies, especially the őrst one related to political ideologies, may be interpreted

differently, especially by researchers from other őelds such as political scientists. Indeed,

as we have highlighted, the study of political ideology in Brazil is a major challenge

[32, 67, 80].

In addition, we use linear regression to assess the extent to which a phenomenon

is captured by our models. However, not all relationships can be accurately captured by

linear models. Therefore, other non-linear models may be more appropriate for this task,

as they provide an alternative view of the same phenomenon.

Community Detection:

All of our case studies were based on a single community deőnition and a single

algorithm was used to capture that deőnition. However, the deőnition of community in

networks is very broad in the literature. As mentioned in Section 3.2, other algorithms

consider different deőnitions to uncover different patterns of collective behavior. In addi-

tion, there is the possibility of exploring algorithms that consider both the structure and
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attributes of the network [48]. The growing interest in approaches of this type would al-

low exploration of contextual attributes to enrich the knowledge of the phenomenon and

favor identifying communities that best capture the patterns of interest.

Temporal Dynamics:

We have proposed to analyze the dynamics of the phenomena by dividing the ob-

served period into discrete time windows. This may impose some limitations. First, topo-

logical changes may occur when modeling network snapshots if the window size is őxed.

Even if there are potentially very regular moments in the observed phenomenon that facil-

itate the choice of window size, the analysis is not free of ŕuctuations that may even hide

interesting features of the phenomenon. Therefore, the size of the őxed duration time win-

dows may be a potential limitation of our results, as we have not quantiőed the impact of

this parameter on the network modeling. For example, at various points in this disserta-

tion, we have analyzed user dynamics, whether at the community or individual level. In

particular, at the community level, we measured the extent to which individuals switch

communities using normalized mutual information. Although this gives us insight into the

dynamics of the community, this measure may be limited by the size of the time windows.

Sampled Dataset:

In the case study of information dissemination via WhatsApp explored in Chap-

ter 6, we used datasets that represent samples of the existing political WhatsApp groups.

Thus, the media co-sharing network we built represents the potential channels through

which information can be disseminated, but we cannot state if or when these channels were

actually used as we only see a subset of the entire network. This is a limitation inherent in

many social media applications due to crawling or API limitations, privacy issues, or even

difficulties in managing and processing the often large amounts of data involved [37, 141].

Scalability:

We have not evaluated the computational cost and, consequently, the scalabil-

ity of the different backbone extraction methods we used in this dissertation. However,

given the modeling of larger-scale phenomena, this may be an important and limiting fac-

tor. Moreover, evaluating this aspect would allow for a more rational decision on which

method is most appropriate for a given phenomenon, taking into account not only per-

formance in capturing structural and contextual properties, but also execution time.
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7.4 Future Work

We address here the main future work that offers a range of possibilities and, most

importantly, explores most of the limitations mentioned above.

Social Phenomena Evolution:

Society changes, and as a direct consequence, the properties of phenomena change

as well. In this way, co-interactions can take place in different ways, which poses some chal-

lenges to the choice of the backbone extraction method. In addition to the immediate ap-

plication of the entire methodology developed here in other phenomena, the proprieties of

both phenomena and the methods certainly need to be updated over time. Another point

is that different strategies can be used to explore the notion of co-interaction based on con-

textual features that open up new immediate possibilities. For example, in the context of

coordinated behavior, this possibility has recently been explored in various ways in [221].

Alternatives for Backbone Evaluation:

In this dissertation we have seen that the structural and contextual evaluation of

the backbone extraction process is fundamental. In the structural dimension, one pos-

sibility is to use benchmarks to generate topologies with the ground truth plus noise

[146, 298]. However, one must consider the representativeness of this structure with re-

spect to real phenomena. On the one hand, benchmarks allow us to evaluate the struc-

ture of backbone extraction methods; on the other hand, they may not fully represent the

structure of networks modeling real social phenomena.

In terms of contextual properties, the investigation of alternative techniques to lin-

ear regression is an important task that should be considered as an extension of this work.

In particular, the use of matrix factorization techniques [303], machine and deep learning

models [110, 191], and other alternatives that capture nonlinear relationships can be con-

sidered.

Temporal dynamics:

One way to analyze the evolution of these communities in more detail is to charac-

terize them in terms of events, particularly births, deaths, mergers, and splits of commu-

nities. An alternative to modeling such events that trigger such dynamics is the heuris-

tic event graph formalism [42]. By adopting such model, it would be possible to analyze

in more detail how the phenomenon evolves in terms of community membership, how
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it differs in the original network and in the backbone, and őnally provide another mea-

sure to quantify the presence of noise in the original network. However, a more detailed

approach is the possibility of using a fully dynamic modeling known as online networks

[252]. Finally, we highlighted that community dynamics problem can be quantiőed using

a latent space studied through the temporal node embedding technique we have proposed

in Chapter 5.

Another possibility to be explored is the proposal of backbone extraction tech-

niques that consider temporal properties over a set of time windows. The idea is to iden-

tify the best backbone consisting of users that remain essentially stable in their interac-

tions across different time windows. Moreover, considering this dimension allows us to

study phenomena where consistent user interactions may be central, e.g., co-authorship,

coordinated behavior, and others. A different direction can also be taken by studying

higher order models such as hypergraphs, e.g., considering node attributes, to obtain a

more comprehensive representation for backbone extraction [260, 113].

Finally, it is possible to analyze the effects of time windows of different sizes. In-

deed, this has already been discussed in the literature [247, 297], but only recently we

observe an advance in approaches that are quantitatively interpretable and allow us to

determine the impact of the size of the chosen time window [219, 47]. Thus, there is the

possibility of dynamically exploring the identiőcation of the time window when the co-

interactions become more extensive than generally observed.

Sampled Dataset:

When working with a sampled dataset, one question that arises is how to achieve

a reliable extraction of the backbone since the sampling procedure may directly impact

the topological structure of the network and, consequently, on the salience analysis of

an edge. Some works have addressed the challenges of working with samples from the

perspective of potential bias [97, 192] and sampling strategies [95, 160]. Another related

work has proposed a strategy based on the noise-corrected backbone extraction method

to select edges in networks based on sampling processes [52]. The goal is to select edges

to achieve the largest information gain over the entire network structure. This őrst effort

opens new possibilities for other backbone extraction techniques that can be extended to

address this problem.

In addition, an immediate opportunity is to quantify how sensitive backbone ex-

traction techniques are to sampled networks by using full networks as a ground truth.

This can be done using the Instagram dataset that we used in Chapter 5. Given the

crawling date, our dataset is complete because it contains all users who commented on

the posts of the target inŕuencers. In this way, it is possible to apply several sampling al-

ternatives described in the literature, simulate the criteria of APIs such as Twitter that
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provide samples of only 1% of tweets, and compare the backbones extracted from the net-

works with and without sampling methods to quantify the extent to which this affects

the study of a particular phenomenon.

Scalability:

It is not new that the volume of stored data is growing every year, as it is the

interest in various phenomena that can be studied with those data. Therefore, scalability

is an issue that arises in the methods used here. In terms of network modeling and

community detection, there are several approaches that explore parallel and distributed

execution, such as Apache Sparth Graphx1, Neo4j2, and Distributed Graph Analytics

(DGA)3. However, for backbone extraction, a few studies evaluate the scalability of the

approaches reviewed here [238, 53], but even those do not take advantage of parallel and

distributed computing. Thus, there is an opportunity to make a rather technical but

very valuable contribution to the performance analysis and parallelization of backbone

extraction methods, which hopefully, after this dissertation, will be considered a crucial

step for the modeling and analysis of many-to-many networks.

1https://spark.apache.org/docs/latest/graphx-programming-guide.html
2https://neo4j.com/
3https://sotera.github.io/distributed-graph-analytics/

https://spark.apache.org/docs/latest/graphx-programming -guide.html
https://neo4j.com/
https://sotera.github.io/distributed-graph-analytics/
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Appendix A

Parameter Sensitivity Analysis

We report in this appendix additional results from a sensitivity analysis we performed to

parameterize the backbone extraction methods. Table A.1 shows results of the impact

of the alpha (input parameter) on the methods selected as candidates for the study of

online discussions on Instagram (case study 1 reported in Section 6.4). Table A.2 shows

corresponding results for the methods selected as candidates for the study of coordinated

behavior on WhatsApp (case study 2, discussed in Section 6.5).

As pointed out in Section 6.3, deőning such parametrization leads to a multicri-

teria problem. To guarantee the existence of a common set of edges under the notion of

saliency consensus between the methods, we adopted the following strategy. In both sce-

narios, we based the most aggressive method in terms of the number of removed edges

in the backbone and adjusted the parameters so that each method maintains an approx-

imate percentage of edges in the backbone. For the őrst case study in Table A.1, this

bound was based on the GloSS Filter retaining 0.18% of the edges in the backbone. How-

ever, keeping this approximate percentage of edges for all methods does not allow us to

create the minimum common set. To account for this, we parameterized the GloSS Fil-

ter with alpha=0.1. Consequently, we look for parameters within the tested values for all

methods that hold approximately 2.58% edges in the backbone. We found that such pa-

rameterization is detrimental to the GloSS Filter, but on the other hand, it allows us to

create such a set that is representative of a consensus among methods with respect to a

set of edges that are considered salient.

For the second case study, presented in Table A.2, we started with RECAST, which

is quite aggressive and consequently alpha=0.051. Thus, we assumed that each method

has about 0.85% of the edges in the backbone. However, with such a restrictive value, we

could not create a common set. After incrementally increasing each method and assuming

that this was the limit for RECAST, we found that a percentage of 4% to 5% of edges

would satisfy this requirement.

1Note that RECAST produces a global discrete distribution and thus some alpha values do not change
the backbone extraction.
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Table A.1: Online discussions on Instagram: Impact of method parameters on topological
and contextual metrics.

Method % N % E # Comm. Mod. Parameter R2 NMRSE
TriBE 99.86 9.43 6 0.43

alpha

0.1 0.80 0.18
TriBE 99.31 2.19 11 0.56 0.05 0.82 0.18
TriBE 92.97 0.48 18 0.73 0.01 0.85 0.18
TriBE 62.43 0.14 93 0.81 5e-3 0.91 0.21
TriBE 28.32 0.03 44 0.74 1e-3 0.95 0.18
TriBE 21.64 0.02 38 0.77 5e-4 0.96 0.17
TriBE 12.40 0.01 45 0.86 1e-4 0.96 0.19
SDSM 99.87 25.07 7 0.27

alpha

0.1 0.60 0.23
SDSM 99.54 15.71 8 0.30 0.05 0.80 0.18
SDSM 94.22 5.43 8 0.38 0.01 0.91 0.14
SDSM 92.66 4.61 9 0.40 0.005 0.93 0.13
SDSM 77.40 1.47 12 0.46 0.001 0.91 0.13
GloSS 68.29 2.58 7 0.32

alpha

0.1 0.34 0.26
GloSS 65.45 0.73 6 0.39 0.05 0.65 0.28
GloSS 58.59 0.27 7 0.58 0.01 0.71 0.32
GloSS 56.44 0.18 7 0.70 0.005 0.81 0.37
NC 100.00 63.74 5 0.39

alpha

0.1 0.28 0.46
NC 100.00 47.20 5 0.49 0.05 0.27 0.48
NC 100.00 23.93 5 0.59 0.01 0.21 0.52
NC 100.00 18.96 6 0.57 0.005 0.21 0.54
NC 98.10 11.52 6 0.52 0.001 0.28 0.52
NC 95.80 9.12 8 0.52 5e-4 0.33 0.51
NC 86.20 5.17 9 0.56 1e-4 0.41 0.48
NC 81.18 4.06 10 0.57 5e-5 0.45 0.47
NC 69.24 2.26 8 0.61 1e-5 0.52 0.45
NC 64.88 1.73 10 0.62 5e-6 0.53 0.44
NC 57.31 0.96 8 0.67 1e-6 0.55 0.42
NC 54.96 0.76 8 0.68 5e-7 0.56 0.42
NC 50.16 0.44 9 0.69 1e-7 0.60 0.41
NC 47.95 0.35 11 0.69 5e-8 0.62 0.41
NC 41.99 0.21 16 0.70 1e-8 0.65 0.40
NC 39.21 0.17 19 0.70 5e-9 0.67 0.40
NC 32.96 0.11 22 0.70 1e-9 0.70 0.40
NC 30.54 0.09 20 0.69 5e-10 0.71 0.40
NC 25.63 0.06 22 0.69 1e-10 0.74 0.39

MLF 98.79 16.16 7 0.51

alpha

0.1 0.17 0.54
MLF 94.78 10.27 19 0.49 0.05 0.28 0.49
MLF 74.61 3.95 8 0.55 0.01 0.47 0.38
MLF 65.75 2.71 9 0.54 5e-3 0.50 0.36
MLF 49.78 1.16 12 0.62 1e-3 0.49 0.35
MLF 46.82 0.85 10 0.63 5e-4 0.52 0.35
MLF 43.95 0.45 12 0.63 1e-4 0.63 0.35
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Table A.2: Coordinated behavior on WhatsApp: Impact of method parameters on topo-
logical and contextual metrics.

Method % N % E # Comm. Mod. Parameter R2 NMRSE
DF 4.30 0.33 10 0.55

alpha

0.001 0.33 1.31
DF 8.34 0.91 13 0.54 0.005 0.30 1.30
DF 10.77 1.51 13 0.52 0.010 0.31 1.31
DF 18.69 4.51 13 0.48 0.050 0.35 1.47
DF 26.26 7.23 13 0.45 0.100 0.34 1.63

Polya Urn 7.62 1.21 10 0.50

alpha

0.001 0.23 1.11
Polya Urn 10.35 2.10 11 0.50 0.005 0.27 1.20
Polya Urn 11.82 2.66 12 0.49 0.010 0.29 1.26
Polya Urn 17.15 4.76 15 0.48 0.050 0.30 1.43
Polya Urn 19.36 6.20 13 0.45 0.100 0.30 1.52
Threshold 3.22 0.45 6 0.43

Threshold/
Percentile

99.5 0.38 0.87
Threshold 4.06 0.94 6 0.41 99.0 0.31 0.82
Threshold 11.56 4.29 8 0.45 95.0 0.22 1.36
Threshold 19.55 8.13 12 0.42 90.0 0.24 1.65
Threshold 26.91 11.17 12 0.37 80.0 0.24 1.81
RECAST 2.80 0.14 9 0.38

alpha

0.001 0.34 2.06
RECAST 2.80 0.14 8 0.38 0.005 0.34 2.06
RECAST 2.80 0.14 8 0.38 0.010 0.34 2.06
RECAST 7.31 0.85 7 0.37 0.050 0.22 1.97
RECAST 7.31 0.85 8 0.36 0.100 0.22 1.97

HSS 22.78 0.36 176 0.98

Threshold/
Percentile

99.5 0.36 0.89
HSS 51.23 0.91 198 0.96 99.0 0.29 1.36
HSS 100.00 4.98 29 0.44 95.0 0.44 2.71
HSS 100.00 9.93 21 0.31 90.0 0.46 2.56
HSS 100.00 19.98 18 0.33 80.0 0.48 2.40
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