UNIVERSIDADE FEDERAL DE MINAS GERAIS
Departamento de Ciéncias da Computagao

Programa de Poés-graduacao em Ciéncias da Computagao

Marcos Magno de Carvalho

QOE-AWARE CONTAINER SCHEDULING FOR CO-LOCATED
CLOUD APPLICATIONS

Belo Horizonte
2021

Marcos Carvalho

QoE-Aware Container Scheduling for Co-located Cloud Applications

Versao Final

Dissertagao apresentada ao Programa
de Pos-Graduagao em Ciéncia da Com-
putacao do Instituto de Ciéncias Exatas
da Universidade Federal de Minas Gerais
como requisito parcial para a obtencao do
grau de Mestre em Ciéncia da Computagao.

Orientador: Daniel Macedo

Belo Horizonte

2021

© 2021, Marcos Magno de Carvalho.
Todos os direitos reservados

C331q

Carvalho, Marcos Magno de.

QoE-aware container scheduling for co-located cloud
applicationss [manuscrito] / Marcos Magno de Carvalho —
2021.

111 £l

Orientador: Daniel Fernandes Macedo.

Dissertacao (mestrado) - Universidade Federal de Minas
Gerais, Instituro de Ciéncias Exatas, Departamento de Ciéncia
da Computacgao

Referéncias: f.100-111

1. Computacao — Teses. 2. Computagdo em nuvem — Teses.
3. Aprendizado profundo — Teses. 4. Transmissao de video —
Teses. |. Macedo, Daniel Fernandes. Il. Universidade Federal
de Minas Gerais, Instituto de Ciéncias Exatas, Departamento
de Ciéncia da Computacéo. Ill.Titulo.

CDU 519.6*22 (043)

Ficha Ficha catalografica elaborada pela bibliotecaria Belkiz Inez Rezende

Costa CRB 6/1510 Universidade Federal de Minas Gerais - ICEx

LAY A
o, o
ol £ 7 sennen e’
et
LR

UNIVERSIDADE FEDERAL DE MINAS GERAIS
INSTITUTO DE CIENCIAS EXATAS _
PROGRAMA DE POS-GRADUACAO EM CIENCIA DA COMPUTACAO

FOLHA DE APROVACAO
QoE-Aware Container Scheduling For Co-Located Cloud Applications

MARCOS MAGNO DE CARVALHO

Dissertagao defendida e aprovada pela banca examinadora constituida pelos Senhores:

OW,QDQW

ProF. DANIEL FERNANDES MACEDO - Orientador
Departamento de Ciéncia da Computagao - UFMG

PROF. JosE MaRcos SiLvA NOGUEIRA
Departamento de Ciéncia da Computacio - UFMG

PROF. MAGNOS MARTINELLO
Departamento de Informatica - UFES

Belo Horizonte, 1 de Outubro de 2021.

To my mother, Maria Lucia, my brother, Mateus Henrique, and my beloved

Taciana Cristina, for their unconditional support and trust.

Agradecimentos

To my mother for her love and prayers. The comfort that the difficult days will be
worth all our effort. My brother, for your care and inspiration, to continue on my way.
Thank you for understanding during this period when I was away from you.

To my girlfriend and future wife for her affection and support. How many week-
ends without seeing each other?! I am immensely grateful for the fellowship and for
believing in my dreams. You strengthened me to make it to the end.

To my advisor Daniel, for the invaluable assistance and guidance. We started
working together before me becoming a master’s student at UFMG. You have always
been solicited and encouraged to participate in my academic journey. Thanks for
everything else.

To my colleagues at the Winet laboratory, especially Vinicius Fonseca, Erik, Luis
Henrique Cantelli, Henrique Moura, Gilson, Racyus (thanks for the mattress in the
lab), among others who welcomed me to this university. You were my support in
various difficulties encountered along the way and provided several good moments.

To the DCC professors and staff, for their teaching and support, especially to
Soénia and professors José Marcos, Flip, and Flop.

To the CNPq research funding agency for making my dedication to my studies
financially viable.

To all those who contributed in some way to the accomplishment of the work.

“Research is to see what everybody else has seen, and to think what nobody else has
thought.”
(Albert Szent-Gyorgyi)

Resumo

A Computagao em nuvem tem sido bem-sucedida em fornecer recursos de Com-
putacao para implantar aplicacoes altamente disponiveis para varios provedores de
contetudo (clientes em nuvem). Nesse caso, para melhorar o uso de recursos, o provedor
de nuvem tende a compartilhar seus recursos computacionais entre diferentes clientes,
co-localizando aplicagoes no mesmo servidor. No entanto, aplicacoes co-localizadas
geram interferéncia entre elas, o que pode causar degradacao nas aplicacoes. Além
disso, cada aplicacao exige um diferente tipo de recurso e desempenho, o que torna o
gerenciamento de recursos ainda mais complexo.

Para mitigar isso, o processo de escalonamento de contéineres utiliza métricas de
Qualidade de Servigo (Quality of Service - QoS), que sao pré-estabelecidas e especifi-
cadas nos Objetivos de Nivel de Servigo (Service Level Objectives - SLO). No entanto,
para aplicacoes em que a experiéncia dos usudarios ¢ importante e mensuravel, o SLO
baseado em QoS ¢é insuficiente para garantir aos usuarios finais uma boa qualidade de
experiéncia (QoE). Isso ocorre porque as métricas de QoS nao refletem corretamente a
experiéncia dos usuarios.

A proposta desta dissertagao trata desse problema, propondo um agen-
dador/reagendador de contéiner ciente da QoE em um ambiente onde as aplicagoes
estao co-localizadas. Para tanto, propomos uma nova abordagem que considera as
métricas da nuvem para estimar a QoE que a nuvem pode oferecer. Além disso, propo-
mos o uso de QoE como uma métrica de desempenho no SLO e um algoritmo que
usa a estimativa da QoE para realizar o agendamento /reagendamento dos contéineres.
Finalmente, realizamos uma avaliacao experimental da nossa proposta considerando
duas aplicagoes diferentes de streaming de video. Os resultados obtidos mostram que
o agendamento com reconhecimento da QoE pode aumentar a QoE dos usuarios, além
de melhorar outros fatores da QoE, como travamento e mudanA§a de resolucio. Além
disso, nossos resultados mostraram que nosso agendador/reagendador foi capaz de re-

duzir a quantidade de recursos utilizados.

Keywords: Computacao em Nuvem, Agendador de Container, Aprendizado Pro-

fundo, Transmissao de Video.

Abstract

Cloud computing has been successful in providing computing resources to deploy highly
available applications for multiple content providers (cloud customers). In this case,
to improve resource usage, the cloud provider tends to share its computing resources
between different customers, co-locating applications on the same server. However, co-
located applications generate interference with each other, which can cause degradation
of the applications. Furthermore, each application demands a different type of resource
and performance, which makes resource management even more complex.

To mitigate this, the container scheduling process uses metrics based on Quality of
Service (QoS), which are pre-established and specified in the Service Level Objectives
(SLO). However, for applications where users’ experience is important and measur-
able, QoS-based SLO is insufficient to guarantee end-users good Quality of Experience
(QoE). This is because the QoS metrics do not correctly reflect the users’ experience.

The proposal of this dissertation deals with this problem, proposing a QoE-aware
container scheduler/rescheduler in an environment where applications are co-located.
To that end, we propose a new approach that considers cloud metrics to estimate the
QoE that the cloud can offer. Furthermore, we propose using QoE as a performance
metric in SLO and an algorithm that uses QoE estimation to perform the container
scheduling /rescheduling. Finally, we carried out an experimental evaluation of our
proposal considering two different streaming video applications. The results obtained
show that QoE-aware scheduling can increase users’ QoE, in addition to improving
other QoE factors, such as stall event and resolution change. Furthermore, our results

showed that our scheduler /reschedule was able to reduce the amount of resources used.

Keywords: Cloud Computing, Container Scheduler, Deep Learning, Video Stream-

ing.

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

2.9

2.10
2.11
2.12

4.1
4.2
4.3

5.1
5.2
5.3
5.4
9.5
5.6

6.1
6.2
6.3

Cloud computing architecture (Zhang et al. [2010]) 21
Taxonomy of resource management in the cloud. 23
Kubernetes Architecure 25
Network Architecture for Kubernetes - Adapted from [Xu et al., 2018] . . . 27
KS Flowchart - Adapted from [Xiao Yuan, 2019] 29
P.1203.1 Models of operation - Adapted from [Robitza et al., 2018] 32
VoD architecture using DASH standard 34
A cloud-based Live Virtual Classroom Architecture - Adapted from [Aral

et al,, 2019] . . . L 36
(a) Example of Artificial Neural Network Architecture - Adapted from [Gao

etal., 2019]. 37
Example of a DNN architecture. 38
(a) Example of RNN Architecture; (b) The unrolling of RNN in ¢ times . . 39
LSTM Architecture 40
Problem Formulation 0000000 52
System Architecture 54
Our Scheduler/Rescheduler process vs Kubernetes Scheduler 62
Training Instances Collection - Experiment Setup 68
Autocorrelation plot of MOS at 30 lags 74
Autocorrelation plot of MOS at 30 lags 75
General Architecture of RNNs Implementation 75
Feature importance permutation - VoD Model 81
Feature importance permutation - Live Virtual Classroom Model 81
Virtual Wall testbed - Figure from virtual wall website 83
Amount of scaled containers 86

Amount of used containers 86

6.4 Mean number of containers scaled per worker node

6.5 Quality of experience perceived by the clients

6.6 Mean playback stall time during video session

List of Tables

2.1

3.1
3.2

4.1
4.2
4.3

5.1
5.2
5.3
0.4

9.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4

Al

Cloud SLA contents and their SLOs 23
KCSS Example0 47
Comparison between related works 49
Example of QoE,,.q calculation for VoD 57
Example of QoFE,,, calculation for Live Classroom 59
Scheduler Decision Algorithm Notations 60
VoD and Live Virtual Classroom adaptive streaming configuration 68
Initial Dataset Description o000 71
Final Training Datasets Description 72
Spearman Correlation — VoD and Live Virtual Classroom — (C = Container,

W = Worker Node) 73
Evaluated Hyperparameters and Configurations 76
LSTM and GRU Configuration 78
GRU and LSTM RMSE 79
Evaluation of Models’ Generalization in Another Environment. 80
Servers and clients configuration 83
Extra workload in each worker node 84
Mean Over-Provisioning Reduction 87
Mean number of resolution changes 91

Metris Description 95

1 Introduction

L1 Motivation 00000 e e
1.2 Objectives L e e e e
1.3 Contributions00 Lo
L4 Organization . . . 0 ... 000
2 Background
2.1 Clond Computing 00 oL
2.1.1 Cloud Resource Management
2.2 Kubernetes: Container orchestration
2.3 Quality of Experience (QoE) and I'TU-T Recommendation P1203
2.4 Video Streaming Applicationso 0000000
241 Videoon Demand0 00000000000
2.4.2 Live Streaming - Virtual Classroom application
2.5 Machine Learning 0oL oL o
2.5.1 Deep Learning and Recurrent Neural Networks 0 0 ..
26 Summary L L L e e e e e e e e e e
3 Related Work
3.1 Methodology 0. 0oL
3.2 QoE-Aware Cloud Resource Management 0.0 ...
3.3 Computing Resource-Based Container Scheduling
34 QoS-aware Container Scheduling 00000000000
3.5 Bummary L L L e e e e

16
18
15
15
19

20
20
23
25

32
32
34
36
38
41

4 QoE-aware Container Scheduler
4.1 Contextualization and Problem Statement
4.2 System Architecture Overview
4.3 ML-Based QoE Monitor 000
4.3.1 Definition of MLL Model and Features
4.3.2 Generic Definition of Model Output
4.3.3 Training Output for the VoD Model
4.3.4 Training Output for the Live Virtual Classroom Model
4.4 Scheduler Decision Algorithm
4.5 Discussion

4.6 Summary e

5 Data Collection, Model Building, and Model Results
5.1 Data Collection
5.1.1 Data Collection Environment Setup
5.1.2 Interference Generation to simulate Co-Located Applications . .
5.1.3 Video Quality Measured at the Clients
5.1.4 Feature Collection, Selection, and Final Training
5.2 Model Building
5.2.1 Use of a time series-based model
5.2.2 Model Training Methodology
5.3 Results
5.3.1 Model Selection and Evaluation
5.3.2 Model Generalization and Feature Importance

5.4 Summary

6 Experimental Evaluation
6.1 Experimental Setup
6.2 Results.
6.2.1 Container Scheduling
6.2.2 QoE improvement

6.3 Summary

7 Conclusion and Future Work
7.1 Future Work
7.2 Publications

A Metrics Description

51
o1
23
95
95
26
57
o8
29
62
65

67
67
68
69
70
71
74
74
75
7
78
79
81

82
82
84
85
88
91

93
94
94

95

B JSON Input and Output Format

Bibliography

97

100

16

Chapter 1

Introduction

Cloud computing has become one of the most widespread technologies in recent years,
and consequently, cloud-native applications have been growing such as the Internet
of Things (IoT), machine learning-driven applications, and streaming audio/video ap-
plications [Ahmad et al., 2021]. Furthermore, with the advent of 5G networks, more
applications will be hosted on the cloud, such as Augmented Reality (AR), Virtual Re-
ality (VR), and Internet of Vehicles applications [Krogfoss et al., 2020; Qureshi et al.,
2020.

The cloud computing ecosystem comprises two agents: first, the cloud provider
such as AWS, Google Cloud, and Microsoft Azure, which provides the resources (CPU,
memory, disk, and network). Second, cloud customers (e.g., Netflix, Dropbox, Spotify),
which use cloud resources to host the applications to serve their clients. With that,
the cloud providers render their resources to their customers as Infrastructure As a
Services (IaaS) and employ a pay-per-use model [Madni et al., 2017].

The TaaS model is characterized by computing resources shared among many
cloud customers simultaneously. This means that the cloud providers deploy different
co-located applications via virtualization technologies, such as container-based virtu-
alization |Tosatto et al., 2015]. This technology allows multiple applications to run
on the same server, in which they are co-located to improve resource utilization [Ren
et al., 2018|. In addition to sharing cloud resources, another essential characteristic
of the TaaS model is horizontal elasticity |Al-Dhuraibi et al., 2017|. In this case, laaS
permits the use of resources according to demand, which means that the number of
containers allocated can be adjusted to deal with the applications’ workload variations.

Although the cloud provider wants to improve its resources usage through co-
locating applications, in practice, there is a trade-off between high resource utilization

and interference between applications precisely because they are co-located. In other

17

words, co-located applications cause interference between them, which leads to per-
formance degradation when an application demand exceeds the resources available on
the shared host [Medel et al., 2017|. Hence, the likelihood of performance degradation
increases with the degree of application co-location [Guo et al., 2019]. In addition,
latency-sensitive (online) applications are the most affected [Zhao et al., 2019|

Despite this problem, the cloud provider needs to guarantee the performance level
to their customers, which is pre-established in the Service Level Objectives (SLOs)
specified in the Service Level Agreement (SLA). Traditional cloud management sys-
tems use different Quality of Services (QoS) metrics for each type of application on the
SLOs configuration [Elhabbash et al., 2019]. This is because each application requires
a different type of resource; for example, while some applications need more compute
resources (e.g., data analysis, artificial intelligence, and data warehousing), others re-
quire more network resources (e.g., media streaming, web applications) [Mei et al.,
2020]. To deal with this heterogeneity, the applications are distributed between the
various cloud servers by the container scheduling process [Zhong et al., 2020|. However,
as mentioned, the co-location of different workloads with different QoS requirements
generates interference among them, especially in latency-sensitive applications.

Furthermore, a QoS-based SLO is often insufficient for applications where a good
Quality of Experience (QoE) is essential for the users and fundamental for the content
provider’s profits [Haouari et al., 2019]. This is because the QoS metrics themselves do
not accurately reflect the end-user experience [Juluri et al., 2015]. In other words, it is
hard to define the optimal values of QoS metrics to reach the desired QoE [Kafetzakis
et al., 2012|. In contrast, direct measuring QoE has become a more robust method
to understand end-user experience and engagement [De Cicco et al., 2019]. The most
common concept to measure QoE is Mean Opinion Score (MOS) values, proposed by
ITU-T Recommendation P. 10/G.100. This proposal maps the MOS score continuously
from 1 to 5, where the satisfaction level increases with the MOS value.

Nevertheless, several works explore QoE management applied to network man-
agement, omitting how QoE can be measured and then exploited within the cloud
computing environment to improve the end-to-end users’ QoE [Barakabitze et al.,
2019]. Therefore, it is essential to create QoE-aware cloud management techniques,

particularly considering QoE in the container scheduling process.

18

1.1 Motivation

Several content providers, such as Netflix, Youtube, and Spotify, are migrating their
applications to the cloud environment due to its advantages in terms of cost and avail-
able computing resources [Abdallah et al., 2018; Soldani et al., 2018|. However, as
mentioned, cloud providers share their computing resources among their customers,
which can cause degradation among latency-sensitive applications [Zhao et al., 2019].
Nevertheless, several works use QoS metrics and different objectives (such as maxi-
mization resource usage) to perform container scheduling to mitigate this degradation,
but these approaches do not reflect a good end-user experience [Juluri et al., 2015].
Besides that, the works presented in the literature that aiming to improve users’ QoE
do not consider the degradation caused by the co-located application in the final user’s
QoE. In general, these works measure (QoE in another part of the users’ end-to-end
path, such as in Wi-Fi networks.

Therefore, the motivation of this dissertation is based on the lack of QoE-aware
container-based solutions, as will be described in Chapter 3. In addition, the use
automatic container scheduling for QoE improvement may be of interest to the cloud

providers, which can be a differentiator when it comes to offering their services.

1.2 Objectives

The general objective of this work is to propose a QoE-aware container scheduler for
multiple colocated QoE-aware applications on the cloud environment. To achieve this

goal, the general objective was broken down into the following specific objectives:

e Propose an architecture for container scheduling using QoE estimators.

e Evaluate and develop machine learning models to estimate the user’s QoE for

different applications.

e Develop algorithms to improve the user’s QoE by choosing the best server for

container deployment.

1.3 Contributions

This dissertation proposes using QoE estimators to perform container scheduling and
rescheduling in a cloud environment. The scheduler is evaluated in an experimental en-

vironment considering two different video transmission applications; video-on-demand

19

and a specific type of live stream application. This work considers the video application
due to its high growth on the internet in recent years [Abdallah et al., 2018]. Also, as
forecasting suggests, global video traffic will be 82% of all IP traffic by 2022 [Cisco,
2017]. Despite that, other applications could be supported as well, as long as there is
a suitable QoE predictor for that application, for example, Web browsing and audio

streaming. The main contributions present in the proposed work are presented below.

e A QoE-aware container scheduling and rescheduling for co-located cloud appli-

cations.

e A management system that uses QoE objectives as SLO metrics and extends the
Kubernetes Scheduler.

e Two novel machine learning estimators to predict users’” QoE on video-on-demand
and live virtual classroom application in cloud environments, following the I'TU-P
Recommendation P.1203 [ITU Telecommunication Standardization Sector, 2017].
To the best of our knowledge, this is the first work that uses a set of cloud
computing resources (CPU, memory, disk, network) to predict QoE within the

cloud.

e The quantitative evaluation of our proposals in an experimental environment.

1.4 Organization

This work is structured into seven chapters, including this introduction. The next
chapter introduces background concepts, covering cloud computing, Kubernetes En-
gine, QoE, and ITU-T Recommendation P.1203. Also, we detail the two applications
used in this work and the Machine Learning techniques used to create each estimator.
Chapter 3 presents related work about QoE-aware cloud resource management and
QoE-aware container scheduling. Chapter 4 describes the proposed system architec-
ture, including the cloud environment as a data plane and our scheduler as the control
plane. Chapter 5 presents the data collection process and model building methodol-
ogy as well as the model result. Chapter 6 shows our evaluation in an experimental
environment. Finally, Chapter 7 presents the final considerations, the conclusions, and

future work.

20

Chapter 2

Background

This chapter discusses some basic concepts related to this dissertation. First, in section
2.1, we introduce the cloud computing architecture and cloud resource management
(2.1.1). Then, section 2.2 presents the Kubernetes platform, its components, and the
horizontal auto-scaling and resource scheduling processes. Next, section 2.3 presents
concepts related to the Quality of Experience (QoE) and ITU-T Recommendation
P1203. Section 2.4 presents the two applications used in this work, being VoD and
Live Virtual Classrooms respectively in 2.4.1 and 2.4.2.

A series of QoE influencing events such as rebuffering and rate adaptation makes
the QoE dynamic and continuously time-varying and, therefore, makes the QoE predic-
tion a challenging task that requires sophisticated machine learning methods. Because
of this, we performed a pre-study to define the best technique to deal with continuous
QoE prediction and presented this technique in this chapter. First, we discussed the
basic machine learning concepts in 2.5 and, finally, we presented the Deep Learning

technique used in this work in 2.5.1.

2.1 Cloud Computing

New technologies have rapidly developed for data processing, storage, and data trans-
fer over the internet. Moreover, computing resources have become cheaper and more
advanced than ever (Zhang et al. [2010]). With those characteristics emerged a new
computing model called Cloud Computing [Maenhaut et al., 2020|. The National Insti-
tute of Standards and Technology (NIST)! establishes cloud computing as a model that

allows access to a shared set of cloud resources, such as servers, storage, and network.

Thttps:/ /csre.nist.gov/publications/detail /sp/800-145 /final

21

These resources are provisioned on-demand and released with minimal management
effort or cloud provider cooperation.

Cloud computing can be separated into different types, being: public cloud, pri-
vate cloud, and hybrids [Maenhaut et al., 2020]. Each type has its own peculiarities,
which will be discussed below. In the public cloud, there are two agents: the cloud
provider (e.g., AWS, Google Cloud, and Microsoft Azure), which provides the comput-
ing and network resources; and the cloud customers (e.g., Netflix, Youtube, Dropbox),
which use these resources to provide an application to their clients. In a public cloud,
several cloud customers share the cloud resources among them. On the other hand,
the private cloud consists of cloud computing resources used exclusively by one cloud
customer (organization) on a private network. Besides that, the private cloud can be
deployed within either the customer’s infrastructure or on a third-party cloud provider
[Zhang et al., 2016]. In the first case, the cloud provider and cloud customer are the
same agents. Lastly, a hybrid cloud comprises of private and public clouds, which
means that this cloud type combines the local infrastructure or private cloud with the
public cloud, sharing data among them.

In terms of business model, the cloud allows their customers to use comput-
ing /networking resources in the form of three services: Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), and Software as a Service (SaaS) |Zhang et al.,
2010]. This set of services is divided into four layers, being: (1) hardware layer, (2)

infrastructure, (3) platforms, and (4) applications, as illustrated in Figure 2.1.

End Users

P Resources Managed at Each layer Examples:
W «— Y Business Applications, Google Apps,
O Web Services, Multimedia Facebook, YouTube
Soft\.,vare asa et Saleforce.com
Service (Saa$) Application

Software Framework (Java/Python/.Net) Microsoft Azure

Platformasa Storage (DB/File) Google AppEngine
Service (Paa$) . ’
l Platforms AmazonS|mp|eDB/53
.................... ' Amazon EC2,
Computation (VM) Storage (block) y GoGrid
&y Flexiscale

as a service (laa$)

Infrastructure [Infrastructure [ﬂ ______________________

CPU, Memory, Disk, Bandwidth

____________________ [Hardware l

Figure 2.1. Cloud computing architecture (Zhang et al. [2010])

The Hardware layer refers to cloud physical resources, including servers,
routers, switches, computing and network resources, such as CPU, disk and bandwidth.

These resources are located in data centers. At a higher level, the Infrastructure

22

layer contains computing/network resources virtualized by Virtual Machines (VM)
using software like Kernel-based Virtual Machine (KVM)? or emerging container tech-
nologies such as Docker® and Linux Containers (LXC)?. Section 2.2 begins by discussing
the difference between VMs and containers.

The Platform layer is a software framework that bridges cloud customers and
the cloud provider resources. It is through this layer that the cloud customers are
authenticated and create instances of their resources. Finally, the applications offered
by cloud customers to their clients are in the Application layer. Cloud applications
take advantage of better performance from automatic resource scalability and lower
operating cost, ensuring on-demand delivery, unlike traditional applications.

The main factor motivating to use cloud computing is its ability to provide com-
puting and network resources according to their customer’s needs [Al-Dhuraibi et al.,
2017], such as on-demand resource scalability, and pay-per-use models. Besides that,
cloud providers guarantee customers a performance level established in a Service Level
Agreement (SLA) that specifies a set of Service Level Objectives (SLOs). The SLA is
a document that contains the terms for the provided services, whereas the SLOs are
usually composed of one or more Quality of Service (QoS) measurements |Elhabbash
et al., 2019].

To illustrates, Table 2.1 shows an example of SLAs content and its respective
SLOs adapted from Elhabbash et al. work. The table resulted from a survey of relevant
ISO standards, NIST, and ETSI publications and surveys.

Furthermore, different types of applications need different QoS metrics as well as
SLOs. For example, some applications require more computing resources, and others
require more network resources. Therefore, one way to guarantee the SLO for each
application is to use cloud scalability, balancing the application’s resources between the
various cloud servers by scheduling resources. However, this creates an environment
where applications are co-located in the same server, generating interference among
them, especially in latency-sensitive applications. Therefore, cloud management is
essential in this scenario to guarantee the SLO agreement and improve cloud resource
usage. The following section discusses the main terms of cloud management, such as
resource scheduling, and then the next section details the most used container-based

cloud platform, named as Kubernetes.

2www.linux-kvm.org /page/MainPage

Shttps:/ /www.docker.com/
4https://linuxcontainers.org/ptyr/

23

Table 2.1. Cloud SLA contents and their SLOs

| Content ‘ Sub-content ‘ SLOs ‘

Availability, Interval-availability

Availability | n/a Maximum Processing Time

Maximum Response Time
Performance | Response time Response Time Mean
Response Time Variance

Disk space
CPU power
Capacity Memory size,
Throughput
Bandwidth
- Elasticity speed threshold
Elasticity Elasticity Precision threshold
e . e Time to Service Recovery
Reliability Service resilience / fault tolerance Mean Time to Service Recovery
| Cost ’ n/a | Cost per Time Unit ‘
| Support ’ n/a ‘ Support Hours ‘

2.1.1 Cloud Resource Management

Next-generation cloud systems will require new methodologies to deal with cloud re-
source management. Conventional control and management systems face considerable
challenges, mainly to offer appropriate QoS and QoE levels [Al-Dhuraibi et al., 2017].

In terms of cloud resource management, the literature proposes three main cat-
egories [Singh and Chana, 2016al, as in Figure 2.2, namely, (i) Resource Provisioning,

(i) Resource Scheduling, and (iii) Resource Monitoring. Below we present each one.

Resource Management

Resource Resource

Resource Provisioning Scheduling Monitoring

Figure 2.2. Taxonomy of resource management in the cloud.

Resource provisioning: it allocates virtualized resources to cloud customers.
When the cloud provider accepts a request to create new resources (such as VM or

container), the provisioning system allocates it for the customer. Besides that, provi-

24

sioning permits the use of resources according to demand; that is, if the demand for
the cloud resources at a given time exceeds the initially reserved value, then additional
resources are provisioned. When it occurs, the system can scale the resources into two
forms: either vertically, adding more CPU cores, memory, or bandwidth into the al-
ready allocated resources, or, horizontally, that consist in adding new instances of the
same resources associated with an application [Qu et al., 2018]. Thus, the two types
of scaling are known as elasticity, one of the main characteristics of cloud computing.
Lastly, provisioning has different purposes, such as improving performance and resource
utilization, saving energy, reducing cost, and ensuring availability [Al-Dhuraibi et al.,
2017].

Resource scheduling: is a dynamic allocation process of virtualized resources
(VM /container) after its provisioning Adhikari et al. [2019], which corresponds to plac-
ing a set of newly instantiated virtual resources into the cloud’s physical infrastructure.
This can be formally explained as follows: The cloud environment consists of n servers
that are represented as S = {S1,S55,55...5,}. Each server may have m virtualized
resources that serve the cloud customers, represented as R = { Ry, Ry, R3 ... R,,}. Be-
sides, the cloud system dynamically receives multiple requests T = {13, T5, T3 ... T}
to allocate new resources R; to deal with workload variation. In this scenario, resource
scheduling has one main responsibility: choose in which server S; to allocate a resource
R;.

The mapping of R; with an appropriate server is done from the viewpoint of
cloud provider efficiency [Zhan et al., 2015]. In addition to that, several works consider
resource scheduling based on the user’s quality of service (QoS) requirements ([Singh
and Chana, 2016b]). This means that resource scheduling has to meet various QoS pa-
rameters, such as high availability, computing capacity, security, execution time, and
cost. Besides that, to ensure SLA/SLO upon system/resource failures, including un-
predictable crashes and performance degradation due to resource availability, the cloud
system performs a process known as Resource Rescheduling [Yao et al., 2016|. This
process deletes the resource (VM / Container) from the original server experiencing
some technical problem and schedules it again on another server.

Resource monitoring: refers to physical or virtual resource measurement in
real-time. The monitoring information includes available and total resource usage for
each resource component, such as CPU, memory, network, and storage. Monitoring
resource usage is used to take care of important QoS requirements like security, avail-
ability, and performance. Besides that, resource monitoring is essential to provide
adequate QoS and QoE for consumers [da Rosa Righi et al., 2019].

25

2.2 Kubernetes: Container orchestration

There are architectural differences between VMs and containers, as well as performance
differences. While each VM includes a complete operating system (OS), containers
share a single host OS, including the kernel and files, making them advantageous
over full hardware virtualization |[Kavitha and Varalakshmi, 2017|. Containers were
designed to perform isolation with low overhead and fast start-up time. Because of
that, containers are gaining widespread popularity among cloud providers [Al-Dhuraibi
et al., 2017].

Kubernetes® is the most popular open-source container-based virtualization so-
lution to manage Docker-based containers. It implements the main features of the
cloud, such as automated deployment and scaling. Figure 2.3 shows the Kubernetes
architecture in high level. The architecture is divided into a Control Plane, for manag-
ing the overall containerized workloads, and a Data Plane, which provides virtualized
computing /networking resources. As shown in the architecture, the Control Plane is
formed by a Master Node, while the Data Plane is composed of multiple Worker Nodes.

Each node is either a physical or virtual machine. The node components are described

below.
Master Node Worker Nodes
= 0
Kube ETCD o) ,8 c
Scheduler o o % £
a 4 & 28
o= ol
=]
«—> °
3 ol 2
— @ -2 =
3] Control API Server ¢ 8 8 SE|l 8
Manager = o €0 &
X S8 £
=
T
Control Plane Data Plane

Figure 2.3. Kubernetes Architecure

Worker Node: In the nomenclature used in Kubernetes, Worker Node refers to
a server (virtual/physical). Also, pod is another term explicitly used in Kubernetes. It
is the primary deployment unit in Kubernetes, into which one or more containers can
be created and grouped. This creates a cluster, which is a set of worker nodes running
containerized applications inside pods. The containers inside a pod share the same
[P Address, port space (namespace), and data volumes. Meanwhile, pods are isolated
from each other. The end user’s request is distributed to worker nodes according to

load balancing rules. The prozy receives these requests and forwards them to pods.

Swww.kubernetes.io/

26

Furthermore, Kubelet is the node agent that monitors the cluster state and reports it
to the Control Plane.

Master Node: The Master Node manages the cluster functionality, such as pod
creation, resource scheduling, and horizontal auto-scaling (discussed below). The cloud
administrator can use the kubect! Command-line interface (CLI) and client libraries,
such as Kubernetes Python Client® and client-Go’, to control the clusters through an
API Server.

Besides that, the Control Manager monitors the etcd storage component, which
stores the cluster state. For example, if a pod stopped abruptly, the Controller Manager
makes the necessary changes to restore the previous state, in this case, scaling another
pod to replace it.

Finally, the kube scheduler (KS) is the default scheduling component, which
schedules each container on a specific node in the data plane. It will be described
below.

Kubernetes Network Model: Network communication in the Kubernetes clus-
ter is pod-level communication, which means that communication is not done directly
between containers. Also, Kubernetes itself does not implement the underlying net-
working, requiring a third-party plugin [Xu et al., 2018|.

Kubernetes supports two kinds of network plugins: i) Kubenet plugin,which is a
simple network plugin that works on Linux only. In this case, Kubenet creates a Linux
bridge with the worker node. However, the cloud provider needs to set up routing
rules for communication between nodes. ii) The second option is the CNI (Container
Networking Interface) family of plugins, which is the most used solution for Kubernetes
clusters [Kapocius, 2020]. CNI creates a network interface into the container network
namespace and on the host, connecting the pods [Xu et al., 2018]. Figure 2.4(a) shows
the network architecture for Kubernetes using a CNI plugin.

Several projects create CNI plugins, such as Calico®, Weave?, and Flannel'°.
Flannel is the most used network solution for the Kubernetes cluster |Zeng et al.,
2017], [Park et al., 2018], and because of that, this work employs it in the experimental
environment. Flannel provides network virtualization on layer 2 overlaid on a layer 3
network, using VXLAN as default installation and UDP overlay as choices. Operating
in VXLAN mode, packets cross the boundary only once from the pod to the host |Qi
et al., 2020|. Figure 2.4(b) shows the Flannel plugin used on Kubernetes. Flannel

Shttps://github.com/kubernetes-client /python
"https://github.com /kubernetes /client-go

8https:/ /www.projectcalico.org/

Yhttps: / /www.weave.works/docs /net /latest /kubernetes/
Ohttps://github.com/flannel-io/flannelflannel

27

Pod 1 Pod n Pod 1 Pod n
Container 1 |Container 2 Container 1/ |Container 2
. _eth0 etpo . _eth0 . eth0

veth1 vethn

"""""" I I :

CNI Plugin
s
_ flannel.1 §
Worker Node : I : Worker Node
~ P ~ P
a) : b) :

Figure 2.4. Network Architecture for Kubernetes - Adapted from [Xu et al., 2018|

creates two network interfaces, being cni0 and flannel.1. The first one creates network
connectivity of containers, and the second allocates a subnet to each worker node.

Kubernetes horizontal autoscaling: Autoscaling methods automatically and
promptly provision and de-provision cloud resources without human intervention in re-
sponse to dynamic fluctuations in workload [Imdoukh et al., 2020]. Thus, autoscaling
reduces management overhead compared with an operator that monitors the system’s
performance and decides when adding or removing resources. In the context of Kuber-
netes, this automatic process is known as Horizontal Pod Autoscaling (HPA).

HPA performs reactive horizontal scaling (automatically) based on threshold-
based rules referring to resource utilization (e.g., CPU and memory) |Al-Dhuraibi et al.,
2017]. The threshold values are set in the HPA configuration. HPA is implemented
as a control loop, where in each iteration, the Controller Manager requests (through
an API Server) the Pod’s resource usage to compare with the target value. When the
current resource usage is greater than the target value, HPA allocates new replicas of
the container. The containers to be allocated enter a waiting queue and remain in a

pending status until the Kubernetes scheduler (KS) allocates them to a worker node.

Algorithm 1 Kubernetes Replicas Algorithm
Input: Uygrger, Active Pods
Output: P > The number of Pods to deploy

1: while True do

2 for all i € ActivePods do > Active Pods for application j
3: U; < getAverageMemoryUtilizations(i)

4: U=UuU {UZ}
)
6

P ceil(currentReplicas (sum(U) /Uarget)
wait(T) > Wait 7 seconds, the control loop period

28

However, to decide how many containers to scale, the HPA checks the ratio
between the current pod metric and the target value, multiplied by the number of
already allocated containers. Algorithm 1 shows how Kubernetes calculates the number
of additional replicas to be deployed. For instance, consider the application j with
one container already allocated, which average memory utilization is 200MB, and the
target value is 100MB. In this case, the number of ideal replicas will be two, since (1
*(200/100)). This means that one more container will be deployed, and the workload
will be balanced among the replicas through a prory or an external load balancer
[Takahashi et al., 2018].

Kubernetes Resource Scheduling (KS): Every container needing allocation
is added into a waiting queue, which KS monitors. As the containers are added to
the waiting queue, KS searches for a suitable work node to deploy them. This process
is divided into three steps. First, KS verifies which worker node can receive the new
container using a set of filters, also known as predicates. The purpose of filtering is to
consider nodes meeting all pod requirements further in the scheduling process [Santos
et al., 2019]. The second step is named scoring, where the KS ranks the filtered nodes
based on pre-defined priorities and then finds the best worker node based on one or
more scheduling algorithms.

Below we exemplify the predicates available on Kubernetes, taken from the official

website of the Kubernetes Scheduler .

e PodFitsResources: Checks if the Node has free resources (eg, CPU and Mem-

ory) to meet the requirement of the Pod.

e PodFitsHostPorts: Checks if a Node has free ports. For instance, if the pod
requires to bind the application on port 80, but another pod is already using that

port on the node, this node will not be considered.

e NoDiskConflict: This predicate checks if a Pod has conflicts on a Node due to

the volumes it requests, and those that are already mounted.

e MatchNodeSelector: This uses node labels to define a particular set of nodes
where the pod can be deployed. It is known as node-affinity. On the other hand,
a pod should not be allocated on a node with certain pods already deployed,

which is a pod-anti-affinity.

After applying the filters, the KS knows which nodes are suitable for the pod

deployment and then starts the scoring process. For example, given a pod that requires

Uhttps: //kubernetes.io/docs /reference/scheduling /policies,/

29

half a core (0.5) CPU, the PodFitsResources predicate returns False for a node that
only has 0.4 CPU free. However, if the filtering process does not find any worker node,
the pod remains unscheduled until a suitable worker node is available. On the other
hand, when several worker nodes are candidates, the KS triggers the node scoring

process based on priorities. Next, some priorities also are shown.

e SelectorSpreadPriority: Spreads Pods across hosts, considering Pods that

belong to the same application.
e EqualPriority: Gives an equal weight to all nodes.

e LeastRequestedPriority: Favors nodes with fewer requested resources. The
more Pods that are scheduled to a Node, and the more resources those Pods use,

the lower the ranking this policy will give.

e NodePreferAvoidPodsPriority: Prioritizes nodes according to node annota-
tions, for example, which operating system version is running on the Node, or
the name that specifies a Node. This priority can be used to ensure that different

Pods shouldn’t run on the same Node.

A score is calculated based on the priorities. After that, as the third step, the KS
selects a group of nodes with the highest score and then selects the most appropriate

node in a round-robin fashion to equally divide the load among the machines.

Filter
Get Next Pod

Scheduler Scoring

Containers
Waiting In Queue

Select Host

Deploy Pod

Bind

Figure 2.5. KS Flowchart - Adapted from [Xiao Yuan, 2019|

Figure 2.5 summarizes the KS algorithm, which starts in the Kubernetes Contain-
ers Waiting Queue state. As default, the three steps on Kubernetes resource scheduling
consider mainly metrics from CPU or/and memory. However, several works have pro-

posed some other QoS metric, such as network bandwidth [Santos et al., 2019], response

30

time |Priya et al., 2019], and more. Nevertheless, as discussed in the next section, the
QoS metrics themselves do not reflect the user experience, which drives this work to

propose the QoE-aware container scheduling.

2.3 Quality of Experience (QoE) and ITU-T
Recommendation P1203

User experience becomes a crucial factor in end-user engagement and, therefore, on
the cloud customer’s revenue [Seufert et al., 2014]. As such, understanding the user’s
experience is vital to cloud customers, who use costly cloud computing resources, and
to end-users, who may choose/change application providers based on their experience
|Guarnieri et al., 2017|. However, for further improvements in end-to-end user’s QoE,
cloud providers need to evolve, exploiting advances in QoE-aware and cognitive oper-
ations in cloud resource management [Skorin-Kapov et al., 2018|, [Barakabitze et al.,
2019].

Quality of Experience (QoE) has been defined as the degree of pleasure or an-
noyance a user feels towards an application or service |Patrick Le Callet and An-
drew Perkis, 2012]. In the past, the traditional network Quality of Service (QoS)
metrics, such as packet loss, delay, and throughput, were used to define the level of
satisfaction/performance of an application/service |Barakabitze et al., 2019]. However,
although users can see the effects of these metrics on their experience, QoS metrics are
insufficient to assess the user experience |Juluri et al., 2015].

There are two main QoE assessment methodologies, namely, subjective and ob-
jective. The Mean Opinion Score (MOS) is the most popular subjective measurement
scale, which collects data directly from users based on their experience with the appli-
cation [Barman and Martini, 2019|. For example, the user watches a video and rates it
on a discrete five-point scale: 1-bad, 2-poor, 3-fair, 4-good, and 5-excellent. However,
this is challenging because collecting these values requires surveying users about their
experience, which is costly and does not scale [Guarnieri et al., 2017].

On the other hand, objective metrics can be quantified with a measurement tool
[Juluri et al., 2015]). The difficulties in measuring subjective QoE motivated the devel-
opment of objective tools that estimate subjective QoE from physical characteristics
[Alreshoodi and Woods, 2013|. Several works have been proposed to map objective
metrics into subjective ones (mainly for MOS), using different approaches (machine

learning, correlation, etc) and suitable!? for each application in which the user’s QoE

12Note: Each application type can have its method for measuring the user’s QoE. For example,

31

can be measured. For example, the authors Hora et al. [2016] propose a ML-based
MOS predictor using the Wi-Fi parameters as features to estimate the user’s QoE on
the Web. In the same way, the authors Miranda et al. [2020] proposed MOS esti-
mates using machine learning for video on demand application; however, considering
the Internet Control Message Protocol (ICMP) probing metrics as inputs.

In the context of video streaming, HTTP adaptive streaming (HAS) is the most
common technology used to deliver content to the end-users, but there is no widely
accepted QoE model for them. Nevertheless, I'TU-T provides a parametric bitstream-
based quality assessment model, specifically, on ITU-T P.1203 [Skorin-Kapov et al.,
2018|. Below, we describe briefly the ITU-T Recommendation P.1203 [ITU Telecom-
munication Standardization Sector, 2017] concepts and the software developed by au-
thors Robitza et al. [2018] that implement ITU-T Rec. P.1203, which is used in this
work.

P.1203 Standardization: The ITU Telecommunication Standardization Sector
(ITU-T) develops international standards for information and communication tech-
nologies. These standards are presented as I'TU-T Recommendations, which define
how telecommunication networks operate, the quality of services, methods for objec-
tive and subjective assessment for audio and video quality, and more. The ITU-P Rec.
1203 is a set of objective parametric quality assessment modules for multimedia stream-
ing applications. Those modules can predict the impact of audio and video encodings
and IP network parameters on user’s quality. Briefly, ITU-P Rec. 1203 creates a set of
30 subjective database ratings on the 5-point scale. Out of the 30 databases, 17 were
used for model development, and 13 were used for model validation and selection. Also,
for the ITU-P Rec. 1203 model, the video was encoded with H.254 codec in Full HD
(1920X1080), and audio was encoded with the AAC codec. More information about

the model can be found in the official documentation 3.

P.1203 is composed of three modules, being P.1203.1, P.1203.2, and P.1203.3.
The first one, P.1203.1, is used in this work, referring to the video quality estimation
module. P.1203.2 refers to the audio quality estimation module, and P.1203.4 is the
audiovisual integration module.

P.1203.1 performs four models of operation that can vary to attend to different
levels of available input information. Figure 2.6 shows each one. First, Model 0 com-
prises metadata-based information, such as delay, stall event, and media information

(codec and resolution). Next, Model 1 adds frame information, and then Model 2 ac-

QoE measured in the video on demand is different from the method used to measure QoE on websites
or audio streaming.
Bhttps: / /www.itu.int /rec/ T-REC-P.1203-201611-S /en

32

« Initial loading, delay and stalling events

tadata-based
metadata-base M 0 e Codec, bitrate, resolution, framerate

packet header-based ¢ Frame sizes
Model 1 e Frame types
parser-based vl Model 2 * 2% bitstream parsing
Model 3 * Full bitstream parsing

Figure 2.6. P.1203.1 Models of operation - Adapted from |[Robitza et al., 2018§|

cesses 2% of the video bitstream information. Finally, Model 3 accesses the complete
bitstream information.

Open Software for ITU-T P.1203: The authors [Robitza et al., 2018] imple-
mented the FULL P.1203 standard in Python. The software is available on a Github!*
repository, and after installation, it works either by command line on some terminal
or by an API client. As input, the software receives one or more audiovisual segments
or a JSON-formatted specification and which model (from Figure 2.6) will be used for
evaluation. The output results are per-second audio/video quality scores, measured as
MOS, and an overall audiovisual integrated quality score. The Appendix B shows an
example of JSON-input and the JSON-output.

2.4 Video Streaming Applications

Video streaming has grown dramatically during the past few years using internet-
based video applications |Li et al., 2020], presented in various forms, such as video on
demand (VoD), live streaming, and personal broadcasting through social networks and
e-learning systems. As a result, according to |Cisco, 2017|, the global IP video traffic
will be 82% of all IP traffic by 2022, and as video streaming applications grow, they
demand more computing resources as well [Wu et al., 2017]. Because of that, video
content providers are migrating to the cloud due to its advantages (high scalability,
pay-per-use, etc.) |[Ferdaus et al., 2017]. The following subsections describe the two

video streaming applications used in this work: Video on Demand and Live Streaming.

2.4.1 Video on Demand

VoD systems stream video content to users as they make requests. This type of applica-

tion has features such as start over, pause, rewind, and forward, enabling the end-user

141 https: //github.com/itu-p1203 /itu-p1203/

33

to control and select part of the video [Juluri et al., 2015]. Hence, the video content is
exhibited as an asynchronous mode.

As mentioned, HTTP adaptive streaming (HAS) is the most common technology
used to deliver video content to the end-user [Skorin-Kapov et al., 2018]. In this context
of adaptability, the original video file is split into multiple segments, often known as
chunks. These correspond to a few seconds of the original video, encoded in different
bitrates and resolution quality [Bampis et al., 2017|. Usually, each chunk has 2-5
seconds.

The division of the video into chunks is used to adapt the video presentation to
the users as internet connectivity changes, for example, as bitrate increases/decreases.
In this case, the chunks are larger for each bitrate and, consequently, provide better
video quality. This also prevents video stall events when the bitrate decreases, which
means that the smaller video chunk will be downloaded — this always maintains chunks
on the playback buffer to be played (as described below). The user’s QoE is highly
correlated to video quality. In short, when video quality is better, users tend to have a
good experience, although it also depends on other factors. Besides that, stall events
lead to a poor user experience |Ghadiyaram et al., 2017].

Proprietary formats implement HAS for VoD, such as Microsoft Smooth Stream-
ing (MSS)*> and Adobe HTTP Dynamic Streaming (HDS)'® |[Barman and Martini,
2019|. However, in 2011, the International Organization for Standardization (ISO)
endorsed a new open standard called MPEG-DASH, or simply DASH (Dynamic Adap-
tive Streaming Over HTTP) [Stockhammer, 2011|. DASH has been widely adopted by
video content providers, such as Netflix, Youtube, Amazon, and Hulu |Quinlan et al.,
2016.

To illustrate how DASH works, Figure 3 shows an example of communication
between client and server. First, the original video is pre-split into different bitrates
(X, Y, Z), each containing n chunks that are stored on the server’s side. Then, the
communication between DASH client and server is established using the HT'TP proto-
col. When the user requests a video, the server sends a Media Presentation Description
(MPD) file. The MPD file contains a manifest with the list of all available representa-
tions, information about video/audio resolution and their respective bitrates, as well as
the duration of each video chunk [Juluri et al., 2015]. It also contains the URLs used to
send HTTP-GET requests to get video chunks while watching the video. Each chunk
is then stored on a playback buffer to be played on the client’s device. Finally, on
the client’s side, there is the Adaptive Bit Rate (ABR) module, which implements the

Bhttps: / /www.microsoft.com/silverlight /smoothstreaming /
https: / /www.adobe.com /devnet /hds.htm

34

@
SENDS (MPD File) 7
g
% o P I LELB---LB'“‘GX
? ABR < o 123 |4 ... n |Bitrate Y
B HTTP-GET (video-bitrate Y-num-2) (3] [«] ... [n] Bitrate 2
1 [2| ... |n \
- Video chunks (pre-recorded)
Received chunks . 2

HTTP-GET (video-bitrate X-num-N)

D—

Client Server

Figure 2.7. VoD architecture using DASH standard

algorithm to choose the appropriate bitrate based on the client-side link. The bitrate
to be chosen is taken from the MPD file, processed by the MPD processor.

To summarize, streaming a video on demand means watching the current video
chunk while progressively downloading future chunks, adapting video quality as net-
work conditions change. Furthermore, VoD allows the user to navigate among the

video duration as they want.

2.4.2 Live Streaming - Virtual Classroom application

In the live streaming application, the video contents are streamed to the users
(viewer(s)) as images are captured from a source (camera, shared desktop) [Li et al.,
2020]. Unlike VoD, this type of application does not allow users to start over, rewind,
or forward while the video is transmitted. This means that the streaming is exhibited
in synchronous mode, that is, in real-time.

Live streaming has numerous purposes, which can have four architecture varia-
tions |Li et al., 2020]. In short, (a) One-to-one (unicast), when a user streams video
content to another user, such as a video call. (b) Many-to-many, that means every user
streaming video content among them, such as in a videoconference. (¢) Many-to-one
occurs when several sources capture scenes and send them to one user. An example
is multi-camera video surveillance, which streams them to one user. Finally, (d) One-
to-many (multicast) is when one user streams video content to many other users, such

as live broadcasts in social media (large audiences) and virtual classrooms (e-learning

35

system, lower audiences) [Khan and Salah, 2020]. Those architectures are based on
three main processes that implement live streaming applications, being (i) real-time
transcoding, (ii) packaging, and (iii) transmission [Aral et al., 2019]. They will be
detailed below in the context of virtual classrooms.

This work employs a one-to-many architecture, specifically for live virtual class-
room applications. The live virtual classroom is characterized by the use of videocon-
ferencing technologies, in which it has the unique ability to simulate the wealthiest
form of human interaction, namely, face-to-face. Also, it usually contains a lower au-
dience localized in the same region, which does not demand large content distribution
centers or multi-cloud. Several platforms can be used as virtual classrooms, such as
Zoom, Microsoft Meeting, and Google Hangout. Although this type of application can
be designed as many-to-many, we simplify it, considering that only the teacher (one
source) is transmitting video content while students are watching (many).

The following explains those processes applied to a cloud-based live virtual class-
room environment. The first process is video transcoding, which consists of re-encoding
and converting each stream instance (from the source) into different bitrates, resolu-
tions and then stores them. However, unlike VoD, this process is performed in real-time
as a stream is received from the source. For example, as Figure 2.8 illustrates, the source
video from a teacher is transcoded into three different segments (resolution/bitrate).
It is a computation-intensive task and consumes a massive amount of resources [Wei
et al., 2016]. Because of that, live streaming content providers have been using the
cloud to host their applications, where they can use the extensive resource capacity
and the elasticity of the cloud |Li et al., 2020].

The second process is packaging, which is a set of operations executed on the
already encoded data as soon as possible so that video players can interpret the stream.
This is also known as the video file format. These operations include (i) cutting the
video data into chunks, (ii) setting all information about the timing and structure of
the video, and (iii) generating the manifest file, which is used for progressive download
[Li et al., 2020]. Transcoder and packing is essentially the core operation for HAS
content preparation |Seufert et al., 2014].

The packaging process can be used with any HAS implementation (HDS, MSS,
DASH); however, HTTP Live Streaming (HLS) has mostly been used for the live
streaming application [Chakraborty et al., 2015]. HLS has the same approach as DASH,
which splits the video into various bitrates/resolutions (high, mid, and low), each one
in multiple chunks, and delivers a manifest file so that the client performs HTTP-GET
progressively based on the network conditions. Each HLS chunk is usually 10 seconds

in duration and has the extension .ts. The HLS manifest file has the extension .m3u8

36

Teacher/Video Source Transcoding and packaging Students/Audience
Transcoder Packaging
- Apple HLS
- 1080p/3Mbps
high.m3u8 —-
1080/5Mbps - 720p/2Mbps J wimur:tilg’;rllerézgllllii)n E
‘We— Filo maus] midmau8 ' > I;I
O

Multiple .ts files
with mid resolution
- 480p/1Mbps
low.m3u8 —-

Multiple .ts files

§ with low resolution

Cloud

Figure 2.8. A cloud-based Live Virtual Classroom Architecture - Adapted from [Aral et al.,
2019]

[La et al., 2020]. After created files (.ts) for HLS, finally, the video chunks are delivered
to the audience (students) devices, where they are sorted and merged for playback in

a media player |Aral et al., 2019|

2.5 Machine Learning

Machine learning (ML) has been identified in the literature and some market products
as the main tool to implement autonomous adaptability and improve decision-making
[Moysen and Giupponi, 2018]. ML algorithms create models that can learn to make
decisions directly from the data without following predefined rules [Wang et al., 2017|.
These algorithms are separated into four learning approaches: Supervised Learning,
Unsupervised, Semi-Supervised and Reinforcement Learning (Xie et al. [2018]).
Supervised learning takes an already labeled dataset, which is known as the train-
ing dataset. This dataset is organized into an input vector (z) and the desired output
value (y) to develop a predictive model by inferring a function f(z), returning the
predicted output §. This learning uses two statistical methods, namely: Regression
and Classification. Algorithms that use Regression have their output value defined by
a numerical value belonging to an interval in the set of real numbers, whether finite or
not. Regression approximates a continuous function from a set of examples. Finally,
algorithms using Classification have their output value defined by a set of finite classes.
These values can be numeric (integer values) or categorical. The classes are directly
linked to the problem addressed, and the goal of the learning algorithm is to build a

classifier that can correctly determine which class the new unlabeled examples belong

37

to.

Unsupervised learning receives a set of unlabeled inputs (that is, no output).
Thus, the objective of this type of learning is to find patterns, structures, or knowledge
in unlabeled data, grouping sample data according to its similarity [Xie et al., 2018].
Semi-Supervised Learning is a combination of the first two forms presented above. That
is, it starts learning with a labeled training base and, during system operation, it makes
refinements at runtime using the entry of new data. Finally, Reinforcement Learning
(RL) involves an agent, a set of states S and an action space A. The agent is a learning
entity that interacts with the environment through actions. Thereby, the agent is on
the state S; and makes an action A; in time ¢, which can change the environment and
take the agent to another state S;,;. Each action generates a reward R;,; (positive or
negative). In order to maximize the reward, the reward R;;; shows to the agent how
much good or bad was the choice in the action A; when the agent was in state S;.

Hidden
Input Output

a) ANN

Figure 2.9. (a) Example of Artificial Neural Network Architecture - Adapted from [Gao
et al., 2019).

Several algorithms have been developed to perform these learning approaches.
Among these algorithms, Artificial Neural Networks (ANN) are the most important
[Chen et al., 2019a]. An ANN is composed of several neurons in parallel, which are
inspired by the human brain. Furthermore, they consist of the input layer and pro-
cessing units (neurons) organized in hidden and output layers, as shown in Figure 2.9.
Succinctly, neurons in parallel that are on an intermediary layer form a hidden layer
on the neural network. Also, the weights W12 and W23 are the weights of the outputs
from the previous layers, and element-wise activation functions, f,, and f, implement

the nonlinear transformations in the hidden and output layers, respectively [Gao et al.,

38

2019].

There are various types of ANNs, and next, we will show one of them called
Recurrent Neural Network (RNN). However, before that, we illustrate the concepts of
deep learning from an ANN example. Then, we present the RNN and how it can be
modeled as a Deep Recurrent Neural Network (DRNN). Finally, we show an RNN-
specific architecture called Long Short-Term Memory (LSTM).

2.5.1 Deep Learning and Recurrent Neural Networks

Traditional machine learning methods obtain satisfactory results with the assistance
of experts in feature engineering (people having profound knowledge on the domain).
However, this is insufficient as some features in interactions (combinations of features)
that are implicit could not be learned by traditional methods [Yue et al., 2020]. On
the other hand, Deep Learning (DL) methods are better suited to deal with this due to
the capability of learning features (feature interactions) and extraction of hierarchical
features |Erfani et al., 2016]. This is a consequence of the deep learning ability to
represent the data as a nested hierarchy within hidden layers of an artificial neural

network [Shrestha and Mahmood, 2019],|Chalapathy and Chawla, 2019].

Deep neural network

Multiple hidden layers
Output Layer

Input Layer

'W‘ }
4\1\ MA (“’Q‘

V;AQ, A\' u
4'0*

OR

Features

b) Deep Neural Network
Figure 2.10. Example of a DNN architecture.

An example of DL is an ANN composed of multiple hidden layers of processing
units, in which, in each layer, units are connected to units in adjacent layers. These mul-
tiple hidden layers form a Deep Neural Network (DNN), as Figure 2.10 illustrates. In
this architecture, information flows in just one direction, from the input layer, through

the hidden layers to the output layer. Because of that, ANN and DNN cannot capture

39

sequential information in the input data, which is needed for dealing with sequence
data or time series forecasting.

Other ANN types have been developed to solve the ANN/DNN limitation in
different domains, such as Object Detection, Text Classification, and Natural Language
Processing (NLP). One of them is the Recurrent Neural Network (RNN) which also
can be modeled as a Deep Recurrent Neural Network (DRNN) [Pascanu et al., 2013].
Below we describe the RNN architecture and how it overcomes ANN/DNN limitation
and how to make them DRNN.

Figure 2.11. (a) Example of RNN Architecture; (b) The unrolling of RNN in ¢ times

In RNN, the processing units form a cycle based on a feedback loop, in which the
output for a layer becomes the input to the next layer. In addition, the cyclic connec-
tions in RNNs exploit a self-learned amount of temporal context, which makes RNNs
better suited for sequence modeling tasks or time-series data [Li and Wu, 2015]. This
allows the network to have a memory of the previous states |[Shrestha and Mahmood,
2019|. For instance, Figure 2.11 (a) shows a single RNN architecture and the unrolling
of RNN in time in Figure 2.11 (b). In this example, the RNN was unrolled ¢ times into
t-layer RNN.

In DNN, the depth is defined as having multiple hidden layers between the input
and output layers. Assuming this, a single RNN can be considered deep since any
RNN can be expressed as a composition of multiple layers when unfolded in time |[Pas-
canu et al., 2013]. However, the authors Pascanu et al. [2013| show other approaches
to extending an RNN into a DRNN, introducing functions, separated into four ap-
proaches: (1) Input-to-Hidden Function - consists of adding nonlinear hidden layers
before the RNN hidden layers. It can be used to extract features and, thus, improve
the performance of the model. (2) hidden-to-hidden Function - consist of adding new
fixed-length nonlinear hidden layers among the RNN layers. As the author’s example,
one option is to use Multi Layer Perceptron (MLP) with one or more hidden layers. (3)

Hidden-to-Output Function - in this case, the deep can be made by adding nonlinear

40

hidden layers before the RNN output layer. For example, add an MLP. This makes the
model able to summarize the history of previous inputs more efficiently. Finally, (4)
Stack of Hidden States Function - consists of stacking multiple recurrent hidden layers
on top of each other.

RNNSs can remember information from the recent past; however, it is challenging
to learn the long-term dependency in the data, which is the major limitation of RNN
[Shrestha and Mahmood, 2019]. This is known as the vanishing gradient problem
|Gupta and Dinesh, 2017|. However, to overcome this limitation, the authors Hochreiter
and Schmidhuber [1997] proposed a new implementation of RNN, called LSTM (Long
Short-Term Memory).

Forget gate
Input gate h Output
Cell State Outputgate \ 't
Ct-1 —x — ——{ &t
ht—l __.___' T / ht

Hidden state Next hidden state

Figure 2.12. LSTM Architecture

LSTM was designed to memorize very long-term temporal dependencies through
memory cells containing different types of mechanisms that are called gates and state
[Malakar et al., 2021], as illustrated in Figure 2.12. These gates are: (i) Forget gate.
The main idea behind a forget gate is to decide what information will be retained. A
sigmoid layer produces either 0 (discard information) or 1 (retain information). (ii)
The input gate decides what new information will be added to the current cell state.
(iii) The output gate, through a sigmoid activation function, determines long-term
state output. In short, these gates control what is stored, read and written on the cell
[Shrestha and Mahmood, 2019].

In terms of state, there are two: (i) The cell state is the main LSTM component,
where the information moves. The current cell state C;_; depends on the previous cell
state and new information that is added. Finally, (ii) the hidden state is the value
obtained from the output gate multiplied by the cell state, which produces the current
hidden state.

Another RNN implementation is Gated Recurrent Unit (GRU). GRU was pro-
posed by Cho et al. [2014] and is similar to LSTM but simpler in terms of computing
demand and implementation [Fu et al., 2016]. GRU cells have two gates: (i) Update

41

gate, which controls memory update, and (ii) reset gate, which is used to define how

the new input will be combined with GRU’s contents.

2.6 Summary

This chapter presented the fundamental concepts necessary to understand the proposal
of this dissertation. First, the cloud computing paradigm focusing on the architecture
and business model was presented. Then, three main cloud resource management
categories, including resource scheduling. Furthermore, we presented the Kubernetes
platform as well as discussed its components and network model. Also, the Kuber-
netes horizontal autoscaling and scheduler were presented. It is essential to know the
Kubernetes scheduler because it will be one of our baselines in the evaluation.

Other concepts discussed in this chapter were QoE assessment methodologies and
ITU-T Recommendation P.1203 used to measure user’s QoE in both video streaming
applications considered in this work. These applications also were discussed, focusing
on the architecture and the adaptive protocol used in each one (DASH and HAS,
respectively). Finally, we discussed machine learning and Deep Learning concepts, as
well as the RNN and LSTM architectures.

We use these concepts in the following chapters to show our proposal, which is to
perform QoE-aware resource scheduling in a cloud environment, employing deep learn-
ing techniques to estimate user’s QoE on VoD and live virtual classroom applications,

which are co-located with other applications/services.

42

Chapter 3

Related Work

This chapter summarizes the main works found in the literature related to the theme
of this dissertation. The first section of this chapter (3.1) shows the literature search
methodology, including keywords used to search the works and the criteria to select
them. The following section (3.2) describes works that perform QoE-aware cloud re-
source management but do not include the scheduling process. Next, the works related
to container scheduling are shown in Sections 3.3 and 3.4. Finally, Section 3.5 presents

a summary of this chapter’s contents.

3.1 Methodology

We surveyed the literature using Google Scholar (https://scholar.google.com.br/),
which returns papers from several scientific editors, including IEEE Xplore Digital
Library (https://iceexplore.iece.org) and ACM Digital Library (https://dl.acm.org/).

The search was refined by selecting the papers with 10 or more citations in the
last 6 years or 5 or more citations in the last 2 years. This citation quantity restriction
was applied only for works related to our, presented in Section 3.3 and 3.4. For works
presented in section 3.2 we do not apply any citation restriction.

There have been many studies on virtual machine scheduling on the cloud [Liu
and Qiu, 2016|. For works related to ours we restricted the search to those proposals
that consider only containers because: (1) our work specifically addresses container
scheduling problems. (2) We consider the growing cloud containerization, and it has
become an emerging research topic [Adhikari et al., 2019|, [Masdari and Khoshnevis,
2020.

The search results were grouped into three categories described below. First,

the works that use QoE for resource management without considering the scheduling

43

process. Then, two other categories that consider QoE and the container scheduling
process, however, using different approaches. Below we detail each one, and in the

following sections, we describe the works.

1. QoE-Aware Cloud Resource Management In this category, we selected
works that employ QoE to perform cloud resource management. The works
consider both container or VM as a resource. None of them perform resource
scheduling. The results were obtained employing the following keywords:

- QoE-Aware cloud resource management

The results ares shown in Section 3.2.

2. Computing Resource-Based Container Scheduling: Considering comput-
ing resources as parameters for making scheduling decisions. This means that
computing resources such as CPU, memory, and disk are relevant to decide where
the container will be scheduled. The results were obtained employing the follow-
ing keywords:

- Container scheduling and "cloud"

The results are shown in Section 3.3.

3. QoE/QoS-aware and ML-Based Container Scheduling: We selected works
that consider QoS or QoE to perform container scheduling. Considering QoS,
these works aim to minimize or maximize some QoS parameters, such as response
time and bandwidth. In general, these QoS parameters are configured into an
SLO (Table 2.1). These works employ several techniques, including machine
learning. In terms of QoE, we have not found any work that considers the user’s
QoE measured inside the cloud to perform container scheduling. To the best of
our knowledge, our proposal is the first work that makes QoE-aware resource
scheduling considering QoE measured into a cloud computing environment. This
search employed the following key-words:

- "QoS-aware/drive" and container scheduling
-" QoE-aware/drive" and container scheduling

The results are shown in Section 3.4.

3.2 QoE-Aware Cloud Resource Management

On the end-to-end user path, cloud resource management is critical to the overall user
experience. However, as mentioned, ensuring a good quality of service does not reflect a

good quality of experience. Thereby, some works in the literature propose QoE-aware

44

cloud resource management. This section shows some of these works that perform
resource management techniques but do not consider the resource scheduling process.

The authors |[Dutta et al., 2016] proposed QoE-aware resource management,
which performs resource elasticity analyzing the VM’s CPU/memory usage and the
end-user QoE. The proposed scheme decides on whether to trigger elasticity or not
based on QoE perceived by users. The authors consider vertical and horizontal scaling
to deal with the workload while keeping the user’s QoE. The evaluation was made as an
experimental approach using a testbed. Also, the proposed scheme was incorporated
into the ETSI MANO framework!. As a result, the authors showed that there is a
significant tradeoff between the amount of allocated resources and the user’s QoE.

The authors [Slivar et al., 2019] proposed QoE-aware resource allocation to game
applications hosted on the cloud. Specifically, the authors denoted bandwidth as a
resource and used a QoE model developed in their previous work to estimate the MOS
scores based on the video encoding parameters [Slivar et al., 2016]. Besides that, the
authors proposed an algorithm that, in the first step, defines the lowest bitrate value
possible for each player and gradually allocates more bandwidth to the player with the
largest MOS gain. As in our work, the authors consider the QoE fairness, modeled by
the equation proposed by Hofsfeld et al. [2018].

Another work that considers QoE-aware resource allocation is proposed in
[Haouari et al., 2019]. The proposal creates a prediction-driven resource allocation
framework to maximize the user’s QoE and minimize resource allocation costs on live
streaming applications over a geo-distributed cloud. The authors consider storage as
resources and, unlike our work, do not consider the live streaming transcoder process,
which means that the intensive CPU and memory used are not considered. Also, the
authors created an estimator that predicts the number of viewers in each region, not
the user’s QoE, as is proposed in our work. Based on the predicted viewers, the algo-
rithm decides the amount of storage at each cloud to ensure the user’s QoE (in terms
of startup delay) and minimize the cost per allocated GB. Moreover, the viewers are
served from their closest cloud site.

Autonomic ConTainerized Service Scaler (ACTS) is an autonomic system pro-
posed by [Santos et al., 2020] to QoE-aware horizontally and vertically scale containers
to different workloads. Horizontal scaling is performed by altering the number of in-
stances, while vertical scaling modifies the CPU and memory allocated to the current
instances of a web application. The experimental evaluation demonstrates that ACTS

keeps the user’s QoE metrics within the limits set in the SLA. However, the authors’

Thttps:/ /www.etsi.org/technologies /open-source-mano

45

proposal does not consider the user’s QQoE on the scheduling process, which could
further improve the user’s QoE.

The works mentioned above differ from our work because the main proposal does
not involve resource scheduling. Despite that, it is worth mentioning those works
to show that there is an effort in the literature towards QoE-aware cloud resources
management. Nevertheless, the literature also showed a lack of works that employ

QoE-aware cloud resource scheduling, which motivated our proposal.

3.3 Computing Resource-Based Container

Scheduling

This section shows a set of works that consider computing resources as parameters to
perform container scheduling.

The authors in [Medel et al., 2017] proposed a client-side container scheduling
based on the application’s resource demands that extends the Kubernetes platform.
Considering the client-side demand, the application provider has to define and classify
their application’s resource usage, dividing the applications into two categories: high
and low resource usage. The scheduler proposed uses this classification to balance the
number of applications in each worker node. It avoids more than one container with
high resource usage (i.e., CPU or disk) in the same worker node. Also, the scheduler
considers this classification to decide on what worker node to deploy the container to.
For example, if an application uses more network than CPU resources, it should be
allocated to a server with more available bandwidth than processing power. Notice
that, like our work, the authors take into account the degradation in the applications
due to co-location. However, it is difficult to estimate the application’s resource usage
beforehand [Masdari and Khoshnevis, 2020].

The authors [Liu et al., 2018] propose a multi-objective container scheduling al-
gorithm considering factors from the server’s side, being (1) the server’s CPU and (2)
memory usage, and (3) the time to transmit the container image over the cloud network.
Besides that, (4) the author’s proposal also needs to classify the application’s resource
demand. With that, the scheduler calculates the matching relationship between con-
tainers and available worker nodes. As in the previous work, computation-intensive con-
tainers should be allocated to worker nodes with more CPUs, while network-intensive
containers are allocated to worker nodes with high bandwidth. The last factor is (5)
the clustering of containers, which means that the authors consider the characteristics

of the application to reduce the network transmission consumption between interre-

46

lated containers (for example, in a multi-tier architecture). The interrelated containers
are scheduled to the same node whenever possible (clustering of containers). However,
the authors overlooked the effect of application co-location, which can cause overload
in the node or damage the containers. Besides that, their proposal does not use any
mechanisms to mitigate overloads, for example, container rescheduling. On the other
hand, our work reschedules the containers when the user’s QoE is degraded.

As with previous works, the authors [Mao et al., 2017| propose resource-aware
scheduling called DRAPS (Dynamic and Resource-Aware Placement Scheme). DRAPS
performs scheduling based on the currently available node’s resources. In addition,
DRAPS performs container cluster monitoring to identify the dominant resource type
that is most used by each cluster (belonging to the same application). It is used to
balance resource usage among the nodes, which means that the containers will be
scheduled in a complementary way in terms of resource usage, preventing containers
that use the same resource intensively from being on the same node. However, the
proposal requires resource demands specification for each application type. As men-
tioned, it is challenging to estimate resource demand beforehand. Furthermore, the
authors’ proposal performs container migration based on resource bottlenecks on the
node. In this case, cluster monitoring checks when a resource type becomes a bottle-
neck and identifies the most resource-intensive container. After that, this container
is migrated to the most appropriate worker node and killed from the node to release
the resources. This migration can avoid user’s QoE degradation after the resource-
intensive container is migrated, releasing more resources to the user’s QoE container.
However, the authors did not specify the threshold value to determine a bottleneck,
which may be hard to decide for each application type. In contrast, our proposal uses
a sophisticated ML method to determine when the user’s QoE is degraded due to re-
source contention on the worker node caused by co-located applications. Furthermore,
instead of rescheduling the resource-intensive containers with no defined QoE method,
we decided to prioritize rescheduling those containers where QoE can be measured
while other applications/services run in best-effort mode.

A Kubernetes Container Scheduling Strategy called KCSS was proposed by
[Menouer, 2021]. KCSS can use a set of criteria to select a worker node based on
the Priority Order For Similarity to the Ideal Solution (TOPSIS)|Lai et al., 1994] al-
gorithm. The author’s criteria are related to the state of the cloud, considering three
work nodes’ resource usage metrics: CPU usage, disk usage and memory usage. Thus,
the aim is to compact the containers to use the maximum resources possible from the
worker node. Also, the authors used criteria to minimize power consumption, minimize

the number of running containers on the worker node, and minimize the time of trans-

47

mitting the image to the worker node. TOPSIS chooses a a worker node whose distance
from the best solution and the worst solution is minimal using the n-dimensional Eu-
clidean distance. This means that TOPSIS aggregates all criteria into a single rank

and selects the worker node with the highest rank.

Table 3.1. KCSS Example

CPUs | Memory | Disk Power Containers | Images
Worker Node 1 | 60% 70% 50 % | 140 watt/s 2 1
Worker Node 2 | 20% 30% 80% | 150 watt/s 3 0

Table 3.1 shows the exact example illustrated by the authors. In this example,
two worker nodes are considered, which CPU, memory, and disk utilization rate are
represented for each one. Also, power consumption, number of containers already
allocated, and whether the image is in the worker node (1) or not (0). For this example,
after KCSS runs, Worker Node 1 will be selected to execute a new container. Although
this proposal compacts the containers and improves the worker node resource usage,
the authors do not consider the interference caused by the co-located applications. In
this example, resource contention could be caused if the container achieves more than
40% of the worker node CPU.

Further, KCSS is generic, allowing the use and combination of other criteria
and resources. Due to this generalization, we use this algorithm to compare to our
work, in which we implemented two KCSS criteria versions (maximize and minimize),

considering the same metrics as used in our proposal.

3.4 QoS-aware Container Scheduling

This section shows a set of works that consider QoS metrics as parameters to perform
container scheduling.

The authors [Santos et al., 2019] proposed an extension of the Kubernetes Sched-
uler (KS) for latency-sensitive applications in a distributed cloud solution (fog com-
puting). The proposal adds new predicates and/or priorities to KS. As mentioned, the
KS default scheduler uses only CPU and/or memory information to execute container
scheduling. However, Santos et al. [2019] proposal includes two QoS requirements that
are assigned to each worker node as a label, being: Round Trip Time (RTT) and band-
width available. Moreover, the authors proposed a Network-Aware Scheduler (NAS)
algorithm that selected the suitable worker node based on the minimization of the RTT

and checks if the best candidate worker node has enough bandwidth. However, this

48

approach to extending the Kubernetes Scheduler by adding new predicates and /or pri-
orities is more complex than using the Kubernetes API. This is because it is necessary
to recompile Kubernetes. Unlike this strategy, our proposal extends the Kubernetes
Scheduler by creating a control plane over Kubernetes that uses its API. Also, our
approach can be transported to another platform, such as Docker Swarm.

The authors [Guo and Yao, 2018| proposed container scheduling to optimize sys-
tem performance based on interrelated containers (as in |Liu et al., 2018]), workload
balancing, and response time. Thus, the proposal schedules containers with dependence
between them into the same server or a neighbor server. This approach decreases the
network calls across the cluster and decreases the user’s response time. Meanwhile,
our work does not consider container dependence or intercommunication. Indeed, this
is a limitation of our work that is discussed in Section 4.5. Additionally, Guo and
Yao [2018] considered the workload on the servers. In this case, the scheduler also
balances the container cluster workload among neighbor servers. In short, this means
that the proposal considers the container configuration (amount of resources needed),
and the new container will be scheduled to the server that will keep the servers” work-
load more balanced. Furthermore, the proposal regards container migration based on
communication information between the container in the cluster and whether the load
imbalance degree exceeds a threshold value. This keeps the overall system balanced.
Hence, Guo and Yao [2018] presents good results using a simulated computational en-
vironment. However, it is important to observe that the simulation approach may not
represent the real characteristics of the cloud computing environment, such as dynamic
workload variation over time and user behavior. Also, this approach can impact the
generalization of the results when applied in the real world.

Finally, Yang et al. [2018] conducted a study to show the effectiveness of ML in
cloud resource scheduling. The authors proposed a classifier using unsupervised and
supervised learning to determine which servers are most suitable (with sufficient re-
sources) to guarantee the application’s QoS, such as throughput and response time.
They used a public dataset to create the model and validate their proposal. The
classifier training was separated into two steps — first, clustering and labeling, which
separates the servers with similar performance into groups, using the k-means tech-
nique. Also, the clusters were labeled to represent their performance level. Second, the
authors trained models based on several ML techniques, in which Random Forest and
XGBoost achieved 92.86% accuracy to predict the performance level for a given server.
This prediction is used to rank the servers and select the most suitable server for a
specific application. However, model accuracy depends on the (unsupervised) cluster-

ing step, which is complex and difficult to be replicated in other environments. On

49

the other hand, our work proposes to use only supervised learning, labeling the data
(with a QoE value), which is simpler and easier to transport to other environments.
Besides that, the authors did not employ their model in an experimental environment
like in our work. However, they argue and show that the ML methods can help with

revealing non-trivial correlations between application demands and server status.

Table 3.2. Comparison between related works

Co-location | Rescheduling Max Objective b&%ﬁigt ML | QoE
[Medel et al., 2017] Yes No Exgﬁllteion Server App. No No
[Liu et al., 2018] No No EXEC;SOH S/(irr\)/;r No No
[Mao et al., 2017] Yes Yes Scalability S/(irr\)/sr No No
Computing
[Menouer, 2021] No No resource Server No No
usage
[Santos et al., 2019] No No Network QoS Network No No
Response Container
[Guo and Yao, 2018| No Yes tirr)ne Server No No
[Yang et al., 2018] No No Application’s QoS Server Yes | No
Our proposal Yes Yes User’s QoE Container/Server | Yes | Yes

Table 3.2 lists the main characteristics of the works described in the last two
sections of this chapter and compares them with our proposal. As shown in the table,
only Medel, Mao and our proposal take the interference caused by co-located appli-
cations into account. Furthermore, as in our work, Mao and Guo perform container
rescheduling to recompose the cluster when there is poor performance. In our case,
we consider the user’s QoE degradation as poor performance while they consider QoS
metrics.

None of these works aim to improve user’s QoE. Instead, the ultimate objective
is to maximize cloud resource utilization or some QoS parameters from the SLO. Un-
fortunately, QoS-based SLO is usually insufficient, because the QoS metrics themselves
reflect poorly the end-user experience. Because of that, we propose the QoE value as
an SLO metric to guarantee the end user’s QoE. Naturally, the QoE can be put into
performance content (in Table 2.1), and the QoE-based SLO could be measured in
terms of its minimum, mean, and variance.

Most works do not consider the use of machine learning. The main advantages of
using ML in cloud management are providing intelligence and autonomous adaptability,
minimizing human intervention in cloud resource management, and improving QoS and
QoE. Although Yang used an ML approach to container scheduling, cloud resource

management can be improved with more sophisticated methods.

20

3.5 Summary

This chapter showed that there are works in the literature that use QoE as a parameter
to perform cloud resources management but do not consider resource scheduling. These
works were presented in section 3.2. In addition, some works that perform container
scheduling using two different approaches were presented. The first approach considers
computing resources as parameters (Section 3.3), while the second uses QoS metrics
(Section 3.4).

However, this chapter also showed, employing the methodology described in sec-
tion 3.1, the lack of work that considers the user’s QoE measured within the cloud to
perform the container scheduling. The following chapters show the proposal of this

dissertation to cover this gap and the results obtained.

o1

Chapter 4

QoE-aware Container Scheduler

This chapter discusses a generic architecture for container schedulers/reschedulers for
co-located applications. Section 4.1 shows the problem statement. Next, section 4.2
describes the proposed system architecture. Section 4.3 describes the ML-based QoE
Monitor module, while the general definition of ML algorithm and Model Input used
in this work are explained in Section 4.3.1. The generic Model Output is defined in
Section 4.3.2, and the specific Model Output for VoD application and Live Classroom is
described in sections 4.3.3 and 4.3.4, respectively. Section 4.5 discusses the limitations

of the proposed architecture. Finally, section 4.6 summarizes this chapter.

4.1 Contextualization and Problem Statement

This work considers a cloud infrastructure that uses container-based applications, which
is currently a widely adopted solution to deploy applications [Maenhaut et al., 2020].
In this scenario, new containers are created automatically without human intervention
and are deployed among the cloud worker nodes. This distributed deployment creates
an environment where the containers are co-located with other applications/services in
the same worker node.

Figure 4.1 shows the components considered in this work, and next we contex-
tualize each one in a top-down approach. The cloud system maintains a queue of new
containers to be deployed represented as C' = {cy, ¢, c3. .. ¢x}. This queue employs the
FIFO (First-In, First-Out) algorithm and serves only applications where the QoE can
be estimated. Each of these new containers will be scheduled into one of the worker
nodes of the set W = {wy,wq,ws ... wy,}. Besides that, containers already allocated
can be rescheduled to another worker node due to either system and hardware failures

or any cloud provider policy. The containers to be rescheduled are deleted, and new

52

containers are put into the queue to be scheduled to a new worker node of the same
set.

Furthermore, users’ connections are distributed among these containers through
a load balancing service. This creates a different quantity of users per container, rep-
resented as U = {uy, u, us ... u,}, where U is the set of all the users for all containers
and wu, represents the number of users for each container. Also, each container’s users
experience a different QoE, expressed as Q, = {1, ¢x.2: 93 - - - Qun}, Where ¢, ; is the

QokE of user ¢ for container x.

Queue
Container n - App i Container 2 - App 2| |Container 4 - App 1
[—To be scheduleg—|
¥
| Scheduler (where?) l

Worker Node 1 Worker Node 2 Worker Node m

other applications/service:
Container 2 Container 1~ cantanerz Ao | ")
w Container 3 - App 1 gotainer 2. Apo 1,
I

| Load Balance |

I

[QoE value used as SLO metric J

Figure 4.1. Problem Formulation

After contextualizing the components considered in this work, naturally, two
questions arise: (i) What is the best worker node W; to deploy a new container in order
to maximize the QoE and ensure the agreed SLO? Moreover, (ii) Given a container’s
users ¢, already deployed with degraded QoFE q,,n, how can this QoE be improved so
that there is no SLO wiolation? Consequently, in response to these questions, first, we
want to choose the best worker node to deploy a new container to either improve or keep
the users” QoE above an SLO threshold. Second, we perform container rescheduling

to deploy the container c, into another suitable worker node. For this, we need to

23

estimate how the current cloud resource usage affects the users’ QoE in their respective
applications.

One way to do that is to use machine learning techniques to map the relation-
ship between cloud resource usage and the users’ QoE. Hence, this work defines QoE
predictors based on a set of compute and network metrics observed over time. The
machine learning models serve as oracles that answer the following question: For a new
container, what will be the users’ QoE in that container if it is deployed in a specific
worker node? These oracles are used in a Scheduler Decision Algorithm that ranks
worker nodes according to the QoE values. All of those steps will be described in more
detail in the following sections. Before that, we describe the relevant elements of the

system architecture.

4.2 System Architecture Overview

Figure 4.2 shows in general lines the proposed system architecture. It is divided into two
planes, the Data Plane formed by the cloud computing platform and the Control Plane,
composed of three modules developed in this work, being: Cloud Resource Monitor,
ML-Based QoE Monitor, and Scheduler Decision Algorithm. Below we explain the
cloud environment used in this work, and then we describe the modules in the Control
Plane.

As represented in Figure 4.2, the Data Plane can be composed of several other
cloud platforms, such as OpenStack!, Docker Swarm?, and more. However, this work
employs a container-based infrastructure based on the Kubernetes Engine? for container
orchestration? As mentioned in the Kubernetes network model (see section 2.2), the
connectivity between containers relies on an external plugin, and this work used the
Flannel Plugin for that. Furthermore, the containers are deployed on physical machines
(worker nodes), where network communication among them is made through a physical
switch. Now, we briefly explain the Control Plane modules, and in the following
sections, we detail the two main modules proposed in this work. These modules are
highlighted in black in figure 4.2.

The Cloud Resource Monitor module performs data requests (container met-
rics and worker node metrics), preprocesses them, and then sends the data in bulk to

the ML-Based QQoE Monitor. This preprocessing consists of grouping the data as the

Thttps:/ /www.openstack.org/

https://docs.docker.com /engine /swarm /

3https:/ /kubernetes.io/

4Although this work uses Kubernetes, section 4.5 will discuss how to expand the Control Plane
to other platforms.

54

ML-Based QoE Monitor

QOE Predictor QoE Predictor QoE Predictor
Application 1 Application 2 Application X

A

~

Cloud Resource
Monitor

Control Plane
Vs

1 :
1 :
! :
! :
T H

Kubernetes Engine

Worker Node
Metrics

Container Metrics

Data Plane

d Dl

Worker Node 1 Worker Node 2 Worker Node N

Cloud environment

o e _

—— Application X Control

- - - Application 1 Control =~ e Application 2 Control
1 Other applications I New components

Figure 4.2. System Architecture

ML model’s was trained, respecting the order of features and timestamp, and calculates
the moving average of a predefined resource (for example, CPU) for all containers over
time. This average will be used by the Scheduler Decision Algorithm, as described in
section 4.4.

The Cloud Resource Monitor employs pre-existing tools to collect metrics. Several
tools are proposed for resource monitoring in containers, such as [Zou et al., 2019],
docker stats®, Nagios®, and Google’s cAdvisor’. This work employs cAdvisor to collect
relative resource usage metrics from worker nodes and containers. We decided to use
cAdvisor due to the ease of use and wide use in the Kubernetes environment [Peinl
et al., 2016]. Further, we consider the compatibility of the Kubernetes and cAdvisor
solutions due to their development being from the same company.

The ML-Based QoE Monitor consists of a repository that can store a set of

QoE predictors for different applications. Each predictor provides real-time estimates of

Shttps://docs.docker.com /engine/reference /commandline /stats /
Shttps://www.nagios.org/
"https://github.com/google/cadvisor

95

the QoE that the cloud can offer to a container’s users for their respective applications,
based on resource usage metrics from the worker node and container.
Finally, the Scheduler Decision Algorithm implements QoE-aware scheduling

and rescheduling.

4.3 ML-Based QoE Monitor

The proposed system architecture supports QoE predictors for several applications,
and the Cloud Resource Monitor module offers metrics that can be used to create
those predictors, which will be stored in the ML-Based QoE Monitor. Also, the cloud
provider can use the predictors’ information to monitor the QoE delivered to the users
and manage the cloud resources to support co-located applications.

This work created two QoE predictors for different applications to evaluate the
architecture’s genericity. Section 4.3.1 defines the model input used for both QoE pre-
dictors. Next, Section 4.3.2 defines the generic model output used by both applications,
then each model output is detailed in 4.3.3 and 4.3.4, respectively.

4.3.1 Definition of ML Model and Features

Our system architecture does not define how the predictors should be modeled. This
means that cloud providers can model each application with different machine learning
algorithms. However, the model must consider that the estimated QoE value is used in
the Scheduler Decision Algorithm as a numeric value. This limits the use of regression
algorithms or a transformation from a class to real numbers. The ML models should
map cloud resource usage into an expected users’ QoE. The predictors’ input includes
resource usage metrics from the worker node and the container. The next chapter will
evaluate which ML algorithm to be used and whether to consider data inputs as a time

series. Formally, the predictors are a function defined as:
flcr,wm) — QoE;pm € R (4.1)

In the equation, ¢, stands for the usage metrics of the container k, while w,,
stands for the metrics of the worker node m. QoF; ,, is the model output, which
refers to the QoE value predicted for a container’s users for application j into the
container ¢ deployed in the worker node w,,.

The resource usage metrics were separated into CPU, Disk, Memory, File system,

and Network categories. We collect all metrics equally for the worker node (w) and

26

the container (c¢). We list below each resource usage metric used as feature input. The
total number of metrics is 72 and is detailed in Appendix A.

CPU data: The CPU category contains CPU usage, user CPU time, and system
CPU time. This information is given per CPU, in nanoseconds.

Disk I/0 data: The Disk 1/O category contains the number of bytes read,
and written, and the number of async, sync, and total (sum of reads and writes) I/O
operations. Each of these metrics is collected from the I/O service and the serviced
daemon.

Memory data: This category contains memory usage, maz usage, cache, RSS,
mapped file, working set, failent, pgfault, pgmajfault and swap. All values are expressed
in bytes.

Filesystem data: The filesystem category contains filesystem capacity, filesys-
tem usage, filesystem base usage, and filesysem inodes. All values except inodes are
expressed in bytes.

Network data: The network category contains tz bytes, rx bytes, tr packets and
rz packets. This information is collected for each network interface. In the containers,
there is only one interface (eth0). There are three interfaces in the worker nodes, being:
cni (Container Network Interface), that provides network connectivity of containers;

Flannel, that allocates a subnet to each worker node; and the server’s physical interface.

4.3.2 Generic Definition of Model Output

In this work, the model output value is the expected QoE for the container’s users k
deployed into worker node w for application j, represented by QoFEj .. In this case,
we will create estimators to approximate the values obtained from Equation 4.2, which
shows the generic formula to obtain the average users’” QoE. In this equation, the mean
QokE is multiplied by a dispersion factor in order to ensure higher fairness between the

users.

U QoE yser,) % F
QoEj,k,mz(ZZlQOU“S"’)X (4.2)

Each user can have a different QoE value, which creates a challenge to fairly sum-

marize the overall QoE of the container’s users. To deal with this, the QoE incorporates

the fairness coefficient F.
_ 20(QoFE)

H-L
Fairness F is calculated using equation 4.3, as proposed by [Hofsfeld et al., 2018],

F=1 (4.3)

where o(X) is a function that calculates the standard deviation of the QoE set and

57

0 < F < 1. Equation 4.3 penalizes containers according to the amount of dispersion of
the QoE: a higher variance will lead to a lower F. H and L are variables that assume
the highest and lowest allowable QoE values, respectively. Therefore, those variables
can assume different values that depend on the method used to calculate the MOS in
each application. For example, the MOS can be measured between 1 and 5 as well as 1
and 10. As the QoE value will be used in the SLO metric, it is important to note that
the SLO threshold must be defined between that interval (H-L), since the Scheduler
Decision Algorithm will use it in the scheduler/rescheduler procedure. In other words,
the cloud provider must configure the SLO threshold value in the Scheduler Decision

Algorithm as the QoE interval is measured in each application.

4.3.3 Training Output for the VoD Model

As mentioned previously, the model output is created considering the QoE estimated for
the container’s users. In the case of VoD, to estimate the QoE, we consider combining
two main aspects of video-on-demand transmission as parameters in the I'TU-P P.1203
Recommendation. The first one is the wvideo resolution playing in each client, which
can vary due to cloud conditions and is associated with the bitrate, which is the second
aspect considered. Therefore, the QoFE, s, value in Equation 4.2 is measured as per-

second video session quality scores.

Table 4.1. Example of QoFE, ;.4 calculation for VoD

QoE | QoE | QoE | QoE | QoE | QoE | QoE | Mean
Client | Client | Client | Client | Client | Client | Client | QoE F | QoE . pu4
1 2 3 4 5 6 7 [0,1]
5.0 1.68 5.0 2.42 1.91 5.0 5.0
1.0 0.17 1.0 0.35 0.22 1.0 1.0
5.0 3.68 5.0 2.42 5.0 5.0 5.0
1.0 0.67 1.0 0.35 1.0 1.0 1.0
5.0 5.0 5.0 5.0 5.0 5.0 5.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.67 | 0,25 1.68

0.86 | 0.52 2.82

1.0 1.0 5.0

Table 4.1 shows a real example from a container’s users. Each line presents the
QokE of 7 clients, totaling three seconds of a video session. Each line results from users’
QoE, where each one has their QoE value measured between 1 and 5 (in bold are the
normalized QoE values). Besides that, the normalized mean QoE and the F value
also are presented. Finally, after employing equation 4.2, the expected result is the
container’s users’ QoE used as the output value, transformed to values between 1 and

5, as shown in last column.

28

4.3.4 Training Output for the Live Virtual Classroom Model

The model output used for the Live Virtual Classroom Model is different from the
VoD model due to the nature of the Live Virtual Classroom application. Unlike VoD,
Live Virtual Classroom needs to re-encode the original video resolution in real-time
into multiple resolutions before transmitting it to users. When the server does not
have sufficient computing resources to do it, the transcode process can be harmed, and
video data will not be sent to the users even if the network conditions allow it, which
could cause stall events. Hence, we incorporate stall events in the QoE metric for Live
Virtual Classroom to penalize the user’s QoE. Furthermore, we observed in preliminary
experiments that a stall event was also occurring when the client was watching the
video in high resolution and bitrate. Applying the same method as in VoD, the user’s
QoE would be considered high; however, the experience perceived by the users is poor
because of the interruption caused by stalling, which is more frustrating for higher
video qualities [Duanmu et al., 2016].

Equation 4.4 shows how QoE is calculated for each user 7. In addition to estimat-
ing QoFE based on ITU-T Recommendation P.1203 (considering video resolution and
bitrate), during n seconds of the video session, the QoFE is penalized by stall length,

calculated as described in equation 4.4.

n

Q0Eyser, = Y _(QoE; — Stall Length;) + 1 (4.4)

t=1
The StallLenght, is calculated based on equation 4.5, which uses the formula
proposed in |[Ghadiyaram et al., 2018].

et — 1 if stall event occurred
Stall Length, = (4.5)

0 otherwise

The author’s proposed alpha value is 0.2, which is also used in this work, and s;
denotes the length of a stall at a discrete-time instance.

Table 4.2 shows a real example of how QoFE,.,, was calculated for a user ¢ watch-
ing the video and considering a stall event occurs during six seconds. The first col-
umn QokF; refers to the QoE in each time ¢ calculated using ITU-T Recommendation
P.1203 (considering resolution and bitrate). The second column is the stall event du-
ration time ¢. The next column is the Stall Length; calculated using Equation 4.5. As
QokE is calculated based on MOS, which varies between 1 and 5, we also normalized

the Stall Lengh in this interval, represented in the fourth column. Finally, in the last

29

Table 4.2. Example of QoEs.,, calculation for Live Classroom

Stall Event normalized
QoF Time t (s) StallLength StallLength; [1-5] QoEuser,
5.0 1 0.221402 1.0 5.0
5.0 2 0.491824 1.515404 4.4
5.0 3 0.822118 2.144922 3.8
5.0 4 1.225540 2.913815 3.0
5.0 5 1.718281 3.852945 2.1
5.0 6 2.320116 5.0 1.0

column, the QoFE,;.,, is calculated based on equation 4.4 (considering the normalized
Stall Length;). Note that there is a relationship between stall length and users’ QoE
degradation captured by an exponential function. Finally, to produce the final model
output for a container’s users, equation 4.2 is applied, penalizing the average QoE due

to unfairness.

4.4 Scheduler Decision Algorithm

This section describes the greedy-based approach proposed to control the scheduling
and rescheduling process. The Scheduler Decision (SD) module performs the schedul-
ing and rescheduling process taking into account the QoE. Each procedure uses the
predictors as an oracle to predict the container’s users’” QoE if instantiated on a given
worker node. This allows the container placement to be QoE-aware, which means that
the scheduler and rescheduler procedures presented below have the same objective:
maximize the QoE above an SLO value. We detail the algorithm below. Before that,
Table 4.3 describes the symbols used in the algorithms.

Algorithm 1 describes our proposed algorithms. The main procedure, named
CSD (Container Scheduler Decision), continuously checks for two conditions, being:
(i) a non-empty HPA queue; in this case, there is a pending container p in the Hori-
zontal Pod Autoscaler (HPA) queue to be deployed (line 3). Queue status is queried
via the monitorHPAQueue() function of the Kubernetes API; (ii) QoE degradation for
each container ¢; already deployed (lines 8-10). The checkBadQoE() function checks
whether the predicted QoE is below a QoE value (defined as SLO) for a specific time
interval 7. This means that this function is using the predictors to estimate the con-
tainer’s users’ QoE into all containers, taking as input the containers and worker node
metrics. These checks are done in parallel. Besides that, each application has its

own SLO threshold configuration value and time interval 7, which is defined by the

60

Table 4.3. Scheduler Decision Algorithm Notations

Symbol | Definition
P Set of new containers to be deployed.
Di New container instance 1.
Ao, Application type of container p;
Pi-£PP; (e.g., [VoDApp,LiveApp]).
Service Level Objective threshold specified by the cloud customer.

SLO (Value between the highest and lowest QQoE measured in application j)

r Container resource monitored to obtain the moving average of its usage.
cMazx | Container metric that has the highest moving average r resource.

w Set of metrics for all worker nodes available.

w; Worker node metrics for instance i € W.

C Set of metrics for already deployed containers.

G Container metrics for instance ¢ €C.

T Time interval threshold for monitoring QoE.

QoE; | A list of QoE predicted for every worker node j €W.

application provider in the container configuration file. These values are queried via
getContainerConfig(x), which is called before scheduling a new container (line 5) and
checking for QoE degradation (line 9). It is worth noting that the SLO value should
be within the highest and lowest QoE ranges defined in equation 4.3.

Scheduling works as follows. The function monitorHPAQueue() returns the new
containers to be deployed. Then, the scheduler procedure (lines 12-16) searches for a
suitable worker node to deploy a new container p;, referring to the application p;. App;,
taking as parameters a container ¢ and the available worker nodes W. However, in this
stage, we face a problem choosing which container ¢ to be considered. The scheduler
procedure uses the predictors (line 14), which require container and worker node met-
rics as input to predict the container’s users’ QoE. We already have all worker node
metrics (W), and we need to choose an existing container to serve as a baseline for
the new container p;. Thus, we estimate the usage of the new container as the worst
case scenario of the existing containers of the same application. This is implemented
in the ContainerResource Usage() procedure. This procedure constantly calculates the
moving average of each of the container’s resources r (e.g.,CPU). We employ a pes-
simistic approach, choosing the container with the highest moving average of resources
r (considering a window) at the very moment before calling the scheduler function.
Note that p;. App (see Table 4.3) is passed as a parameter so that the function searches
only within the cluster to which p; belongs. This procedure then estimates the QoE
for deploying the new container in each worker node w; (line 14). Finally, in line 15,

the algorithm chooses the worker node (w) that maximizes the QoE above the SLO.

61

Then, container p; is deployed to worker node w (line 16). The predictors were mod-
eled considering that the container and work node metrics are aggregated in timestamp
(as described in Section 5.2.2). Therefore, the first container scheduling/rescheduling

needs to wait to complete each predictor’s timestamp.

Algorithm 2 Container scheduler decision algorithm

1: procedure CsD(C, W)

2 while True do

3 P <+ monitor HPAQueue() > Non-empty HPA Queue
4: for each p; € P do

5: SLO <« getContainerConfig(p;.App)

6: cMax < max(containersResourcelUsage(p;.App, r,windows))

7

8

9

scheduler(p;, cMax, W, SLO)

for each ¢; € C' do > QoE Monitoring
: SLO,T « getContainerConfig(c;.App)
10: if checkBadQoFE(c;, SLO,T) then
11: rescheduler(c;, W, SLO)
12: procedure SCHEDULER(p, ¢, W, SLO)
13: for each w; € W do

14: QokE; < predictor(c,w,) > Scoring step
15: w < max(X) {VX € QoE | X > SLO} > Select step
16: deploy container p in w

17: procedure RESCHEDULER(container, W, SLO)
18: for each w; € W do

19: QoE; « predictor(container,w;)
20: w4 max(X) {VX € QoE | X > SLO}
21: deploy new container in w

22: delete container

The need for rescheduling is checked on the second part of the csd procedure (lines
8-10). The checkBadQoE() function returns true when there is a QoE degradation in
the container ¢; due to co-location with other applications/services. This triggers a
container to reschedule. In the proposed algorithm, rescheduling deletes the container
from the current worker node and deploys a new container in a more favorable worker
node. For that end, we first call the rescheduler procedure (line 11). This procedure
searches for the most suitable worker node to deploy the new container. Unlike the
scheduler procedure, rescheduling uses as parameters only the current container and
the available worker nodes (/). This because we already have historical data from the
current container to serve as a baseline. After choosing a worker node that maximizes

QoE, the container is deleted from the original worker node (line 22).

62

Figure 4.3 highlights how our solution works on top of Kubernetes. For both
the scheduler and rescheduler process, our solution uses the default Kubernetes Filter,
which lists those work nodes with the minimum resources available to deploy the con-
tainers. Then, our solution scores each work node based on the predicted QoE (using
the predictors) in the scoring step. Finally, in the select step, our solution chooses that
work node that maximizes the QoE above the SLO.

Get Next
Pod

Filter

Kubernetes Scheduler
Containers Waiting <—Failed—

Queue Rescheduler Scoring

QoE; « predictor(c, w;)

Deploy Pod

Select

Bind

Figure 4.3. Our Scheduler/Rescheduler process vs Kubernetes Scheduler

4.5 Discussion

This section discusses some limitations in this work and how they can be addressed.
Limitation #1: Generalization of the System Architecture : There are
two forms to port our proposal to other platforms: i) use in another docker container
orchestrator platform, such as Docker Swarm® and SaltStack?. To do that, we
have to consider using the same tools to collect metrics from containers and server,
in this case, the cAdvisor, as well as some modification in the Scheduler Decision
Algorithm (discussed below). In this case, our proposal is limited by using docker and
cAdvisor, whereas there are other container virtualization technologies (e.g., LXD!?)
and tools to collect metrics from containers and servers (e.g., mpstat or sar, docker
stats). To apply these three modules directly in another docker platform, considering

the use of cAdvisor, the Scheduler Decision Algorithm API needs some modifications

8https://docs.docker.com /engine /swarm /
9https://github.com/saltstack /salt
Ohttps: //linuxcontainers.org /lxd /introduction /

63

to interact with the docker platform to perform container scheduling/rescheduling. ii)
Another approach is to port our methodology to any cloud platform, even those that
also support virtual machines, such as OpenStack!'. This means that all three modules
in the control plane must be adapted to be used over a different data plane.

Limitation #2: Multi-tier Architecture: Both applications in this work
use a one-tier architecture. However, nowadays, many applications are modeled using
multi-tier architectures, which means that an application is developed and distributed
among more than one layer executed in separate resources (containers or VMs). For
example, an e-commerce website where the front-end is running in one container and
the database system (back-end) is on another container. In this case, there is internal
communication between those layers that is not measured in this work. Consequently,
if this communication has a problem, resulting in a degradation in the user’s QoE,
the QoE predicted in the front-end container will not reflect this problem. However,
one solution is adding the network link metrics between the back-end and front-end
containers as input to the ML model. In the same way, back-end container metrics
(CPU, memory, disk, and network) could also be added.

Limitation #3: Measuring the QoE of a group of users instead of in-
dividual QoE: This work schedules and reschedules containers based on the user’s
QoE. For that reason, the quality of the predictor is essential for good system perfor-
mance. However, QoE assessment is challenging due to the many networking factors
and compute resource variations in cloud computing systems [Hobfeld et al., 2012].
Besides that, there are technical difficulties in measuring each user’s QoE separately
on the cloud, mainly in monitoring the resource usage independently for each user.
These difficulties drove our work to consider QoE estimates for all the container’s users
instead of estimating QoE separately for each user. Limitation #6 discusses how QoE
measurements reported by the user’s devices could be used in our proposal.

Limitation #4: Applications without a well-defined QoE: Our proposal
does not deal with applications that do not have a well-defined QoE, which means that
these applications need a separate scheduling and rescheduling algorithm. Although we
can achieve good results without analyzing/managing these applications, future work
could investigate a single scheduler /resheduler algorithm for both QoE-aware and non
QoE-aware applications.

Limitation #5: Container scheduling considering QoE monitored only
in the cloud: This work estimates the container’s users’ QoE within the cloud envi-

ronment, which means that we do not consider how each technology in the end-to-end

Uhttps: / /www.openstack.org/

64

path between users and cloud can affect the users’ QoE. For example, considering the
Internet Service Provider (ISP) and the home network.

In this context, several works measure users’ QoE in each part of the network
topology between users and the cloud ([Moura et al., 2020; Miranda et al., 2020;
de Oliveira and Macedo, 2021; Carvalho et al., 2019]). Although this is outside the
scope of this work, our proposal could use these approaches to refine the container
scheduling /rescheduling,.

However, it is essential to note that only receiving the QoE measured outside the
cloud (or the end-to-end QoE) is insufficient to ensure good performance in container
placement within the cloud. This is because the QoE received from outside the cloud
does reflects the QoE offered by the cloud combined with other technologies. Consider-
ing only the QoE measured outside the cloud could erroneously start the rescheduling
process. This occurs when the cloud may have good conditions to provide a high QoE,
while technical problems outside the cloud are degrading the QoE. Thus, the Scheduler
Decision Algorithm should compare the QoE predicted within the cloud with the QoE
on the path, which would allow the cloud administrator to know how much the current
cloud configuration is degrading the overall user’s QoE.

Limitation #6: QoE measured directly in the user’s devices. In addition
to measuring QoE in various technologies into the user’s path to the cloud, another
option is to measure users’ QoE directly in their devices by the client’s software. Some
application providers do it, such as Netflix and Facebook video calls. This approach
aggregates end-to-end information about the user’s QoE. However, as in Limitation
#5, receiving only this information would not be essential for container management.
On the other hand, end-to-end QoE information would be helpful for the Scheduler
Decision Algorithm, considering that we may be optimizing the cloud’s QoE at a given
time — e.g., rescheduling a container — but the user’s QoE would not change because
of some technical problem in the user’s network path, where we can not act.

Further, user-provided QoE may have a limited use in public clouds, where the
application provider would prefer not to share the QoE measured from their clients
with the cloud provider. On the other hand, on the private cloud, where the cloud and
application provider are the same, the QoE information on the cloud and clients can
be shared.

Limitation #7: Transfer Learning to another cloud environment: As
mentioned before, the methodology proposed in this work can be used in several cloud
environments, and the control plane can be used directly in other cloud platforms.
Generalization capability to new domains is crucial for machine learning models when

deploying to real-world conditions [Dou et al., 2019]. However, transferring the model

65

trained from one cloud to another can be a theoretical limitation, considering the model
generalization capacity. The difference in the cloud environments and clients’ patterns
is the main reason for limiting an already trained model to be transferred to another
environment. This also brings another limitation that will be discussed next (#38).

However, in practice, as we will show in Section 5.3.2, we have had good results
in transferring the trained models from one cloud to another with the same platform
but different hardware configurations.

Limitation #8: Need to retrain the model: Maintaining the same accuracy
as in the trained model in the production environment is considered a challenge because
we expect the model to continue to make good predictions on unseen data. However, we
cannot assume that the new data has the same distribution as the training dataset to
hold good predictions. This distribution can vary as the worker node and the container
settings change, such as when a hardware or system update occurs. Likewise, the
distribution alters when workload patterns change. In this case, the model needs to be
retrained to maintain its accuracy, which could be a limitation, considering the cost
and time to retrain the model. Besides that, there is the difficulty of deciding when
to retrain a model. One option for future work is to use the Concept Drift technique,
which is widely used to identify when to retrain a model as the distribution of data
changes [Lu et al., 2018|.

Limitation #9: Container migration: = Our proposal employs container
rescheduling when QoE degradation occurs. However, another alternative would be
container migration. Unlike container rescheduling, the migration process requires
transferring the container’s files from the original server to another [Torre et al., 2019].
Therefore, the time needed to start the application on the new server depends on the
connection’s quality between the servers.

However, it is essential to note that, as in the container rescheduling process, the
container migration process needs to decide when and which worker node the container
will be transferred. With this, the migration process can consider the QoE degradation

and use QoE estimators to choose the best worker node.

4.6 Summary

This chapter shows the problem statement from theoretical point of view applied to the
container scheduling for co-located cloud applications. This chapter also shows how we
can use machine learning techniques to performs the QoE-aware containers scheduling

and rescheduling. Also, we presented the proposed architecture for handling QoE-

66

aware container scheduling or rescheduling, where we divided into two layers, Data
Plane and Control Plane.

Besides that, this chapter shown two machine learning model employed in the
control plane. We defined the model input for both models, where we describe the
model features collected, and we defined the model output for each application, being
Video On-Demand and Live Virtual Classroom.

Finally, we defined the scheduler decision algorithm that performs the scheduling
and rescheduling. The next chapter will present the data collection process for building

the two models used in this work.

67

Chapter 5

Data Collection, Model Building,
and Model Results

This chapter presents the complete process to train the models used to predict the
users’ QoE in each application adopted in this work. For this, two distinct models
were created. Section 5.1 presents the environment setup and the data collection
processes to create the training datasets. Next, Section 5.2 justifies the use of Deep
RNN algorithms and how the models were trained. Then, Section 5.3 exhibits the
models’ results in terms of performance, generalization and gives a brief explanation

of the models. Finally, section 5.4 summarizes this chapter.

5.1 Data Collection

Figure 5.1 summarizes the data collection process, which includes the environment
setup overview and each process adopted. These processes are separated into subsec-
tions that will be better described next.

First, Section 5.1.1 describes the environment setup, including hardware and
software used, and introduces how the data collection was conducted. Next, Subsection
5.1.2 explains the interference generation approach to simulate the co-located cloud
applications. Then, Subsection 5.1.3 describes which information was collected from
the user’s side to label the training instances. Also, the parameters used to calculate the
MOS using the software proposed by Robitza et al. [2018] that implements I'TU P.1203
Recommendation. Finally, Section 5.1.4 characterizes the amount of metrics collected
from the work node and the container to generate the initial training instances. With
that, we discuss the method applied to reduce the amount of features and conclude by

summarizing the final training datasets.

68

5.1.1 Data Collection Environment Setup

As shown in Figure 5.1, the experiment setup contains seven notebooks as clients
connected to the cloud via a Gigabit Ethernet switch and one worker node. The
worker node is an Intel(R) Core(TM) i5-4460 CPU@3.20GHz, 16 GB of RAM, and an
HD with 250GB with Ubuntu Server 16.04. The clients have different hardware, but
all run Ubuntu Desktop 18.04.

Worker
Node

[Stress-ng Tools { H]]
|7 lperf ——

Subsection 5.1.2

Worker Node Metrics
Container Metrics

Subsection 5.1.4

C:SQ'LOIC??"O” [[.]]7—1 Feature Collection
mulation L i
imuiat Subsection 5.1.1 i Servers
Experiment Setup - NGINX Server
- WOWZA Server
z : Label Collection

e

Subsection 5,1_3t|
L L L e e L ——{ctenswos

Figure 5.1. Training Instances Collection - Experiment Setup

For the VoD application, we used a DASH server into a docker container based
on the NGINX! server. For this application, we used the Big Buck Bunny video?
video with 9 minutes and 10 seconds of duration. The video was encoded using H.264
standard with chunks of 2 seconds. Also, the video has resolutions varying between
320X240 and 1920X1080 with different bitrates, as described in Table 5.1.

Table 5.1. VoD and Live Virtual Classroom adaptive streaming configuration

VoD Live Virtual Classroom
Resolution | Bitrate (Kbps) Resolution | Bitrate (Kbps)
320X240 [46, 89, 131] 426X240 300
480X240 | [178,222,263,334,396] 640X360 400
854X480 | [522,595] 854X480 500
1280X720 | [791,1000,1200,1500] 1208X720 1500
1920X1080 | [2100,2500,3100,3500,3800,4200] | 1366X768 6900

Thttps:/ /nginx.org/en/
https:/ /peach.blender.or

69

For the Live Virtual Classroom application, we employed the Wowza Streaming
Engine (https://www.wowza.com/). This platform is not an open platform but has
a complete trial version (90 days). Also, this is a live streaming solution used by
companies such as Facebook, Vimeo, and SpaceX3.

This work does not consider the network path between where the original video
is recorded and the cloud. For this case, we used a video class pre-recorded with 1
hour and 40 minutes of duration, using H.264 codec with 1366X768 dimensions, and
deployed it into the Wowza Server. Hence, the video class will be transcoded in real-
time to different resolutions and bitrates (Table 5.1, Live Class) and packaged into the
HLS format, and then it will be consumed by the clients (students). The transcoding
process creates video resolutions and bitrates based on Google Youtube Live Streaming
examples?.

In terms of the data collection process, training instances were obtained while
clients watched the video under interference (co-located environment) and without
interference. This process was repeated in decreasing rounds from 7 clients to one.
The main goal in this phase was to cover the highest amount of behavioral possibilities
from the cloud and simulate different quantities of users connected to the container.
While the experiment runs, we logged the video metadata information on the client’s
side to calculate the MOS, which is used to label each training instance (output). At
the same time, we also logged the container and worker node resource usage from the
worker node’s side to compose the features (input). Finally, we grouped input and
output to create the final training datasets. Next, we describe interference generation,
how the client’s information was collected and how the final training datasets were

created.

5.1.2 Interference Generation to simulate Co-Located

Applications

Cloud providers usually co-locate different applications on the same worker node to im-
prove resource utilization [Chen et al., 2019b|. However, these co-located applications
generate interference among them, which occurs when the demand from the application
exceeds the resources available on the shared worker node [Medel et al., 2017].
Furthermore, each cloud application has different workloads. For example, while

applications such as big data analysis, machine learning training, and video transcoder

3Note: Information available on the Wowza website.
4https:/ /support.google.com /youtube/answer/2853702?hl=enzippy=%2Cp

70

consume more CPU, memory, and disk, other applications use more network resources,
such as VoD streaming and e-commerce.

To collect cloud resource usage and video sessions under different conditions,
we use Stress-ng (https://wiki.ubuntu.com/Kernel/Reference/stress-ng) and iperf
(https://iperf.fr/) to simulate different workloads. Stress-ng is a tool that can gen-
erate workload on the CPU, memory, and disk I/O, while iperf produces workload on
the network interface. As illustrated in Figure 5.1, we use these tools to simulate other
co-located applications with the video servers®.

We determine the same extra computing and network workload to run co-located
with our video streaming applications. stress-ng creates a continuous CPU load that
varies between 40% and 95% of usage, and the memory usage increases continuously,
reaching up to 90% and decreasing gradually. Disk I/O stress ranged randomly from 1
to 40 processes, each writing and reading 500MB. At the same time, we perform a TCP
downlink and uplink transmission with iperf to create network load. Transmissions
change from 0 bytes transmitted to 1024MB transmitted every 10 seconds.

This extra computing and networking workload on the worker node creates in-
terference on the video streaming applications, which triggers the client’s adaptation
algorithm and, therefore, causes video quality switches and the user’s QoE variation.
Video transmission information is collected from the user’s side, which we describe

below.

5.1.3 Video Quality Measured at the Clients

As discussed in section 2.4, VoD and Live Virtual Classroom usually have different
HAS implementations. In this work, for the VoD application, we used the DASH.js
(https://github.com/Dash-Industry-Forum/dash.js) client, and for the Live Virtual
Classroom, we use the HLS.js client (https://hls-js.netlify.app/demo/). Besides that,
VoD and Live Virtual Classroom have different behaviors and, consequently, different
forms to calculate the MOS, as discussed in section 4.3.3. and 4.3.4.

However, to produce the label value for the training instances — in this case,
the MOS value — for both applications, the clients logged the same video metadata
information. This information is: playback stall time and timestamps for each video
session, and the codec, frames per second (fps), resolution, and bitrate played by the

clients at each second.

®We have tested these tools within the container, and we did not see a significant difference in
results.

71

This information is used to calculate the MOS based on ITU-T Recommendation
P.1203 using the software developed by [Robitza et al., 2018]. This software also
requires device information, display size and viewer distance as parameters. In our
case, we use a PC, 1920x1080 screen resolution, and 15 ¢cm distance from the monitor,
respectively. P.1203 can be run in four models, each one requiring different information,
from metadata to full bitstream data. Since we collect only metadata information, we
employ Model 0. Besides that, this software requires a JSON file input containing
the metadata and returns a JSON file containing the MOS values for every second.
Appendix B shows an example input JSON used in this work and Appendix B shows
the JSON output. After generating each JSON file (one per client), we use it to
calculate the final MOS for each application, as explained in sections 4.3.3 for VoD,
and 4.3.4 for Live Virtual Classroom. It is noteworthy that the client information
collection is only done to generate the training instances and training the models.

After that, in a production environment, the model itself will estimate the user’s MOS.

5.1.4 Feature Collection, Selection, and Final Training

As mentioned, the input instances consist of metrics from the worker node and the
container. We use the cAdvisor API to collect these metrics and group them with the
MOS. Table 5.2 describes the initial datasets. We have 32 metrics collected from the
container and 40 from the worker node for both applications, which sum 72 metrics.
These metrics are aggregated by 1 second with the MOS value (label) to create each
training instance. VoD had 99.370 training instances while the Live Virtual Classroom
had 123.596 instances.

Table 5.2. Initial Dataset Description

Container Metrics | # Worker Node Metrics | Total
32 40 72

VoD training instances Live Class training instances
99.370 123.596

The initial amount of metrics collected (72) was reduced to decrease the model
training time without affecting the predictor’s quality. For this, we employed feature
selection techniques. Given that the collected metrics have nonlinear relationships,
we use Spearman Correlation analysis. Spearman Correlation is defined as a non-
parametric test based on ranks. This test indicates the relation between two variables

by a monotonic function. With that, we transform our initial dataset into our final

72

training dataset, considering only those metrics with a Spearman Correlation higher
than or equal to 0.50 (positive or negative correlation). Note that this phase only
reduces the number of metrics (features), which means the number of instances has
not changed.

In terms of reduction, Table 5.3 summarizes the final amount of metrics used.
For the VoD application, the amount of input metrics was reduced from 72 to 18,
representing a reduction of 75%. In terms of container metrics, the reduction was
93.75%, from 32 to 2. For the worker node, the reduction was 60%, from 40 to 16.
Therefore, the final training dataset for VoD contains 2 metrics from the container (C)
and 16 metrics from the worker node (W), totalizing 18 metrics as features.

On the other hand, for Live Virtual Classroom, the input metrics were reduced
from 72 to 27, signifying a 62.5% decrease. In addition, there was a decrease from 32 to
17 for container metrics, representing 46.87% of the reduction. Moreover, the worker

node metrics were reduced from 40 to 10, representing a 75% of reduction.

Table 5.3. Final Training Datasets Description

VoD Live Virtual Classroom
(99.370 instances) (123.596 instances)
Container Metrics 2 17
Worker Metrics 16 10
Total 18 27

Table 5.4 shows the selected features to create both training datasets (for VoD
and Live Virtual Classroom). As can be seen, there are some container (C) and worker
node (W) metrics with a strong negative association with the MOS, indicating that
high use can degrade the user’s QoE. On the other hand, some metrics showed a strong

positive association, indicating that high use can improve the user’s QoE.

73

Table 5.4. Spearman Correlation — VoD and Live Virtual Classroom — (C = Container, W

= Worker Node)

VoD Live Virtual Classroom
Metrics Correlation | Source Metrics Correlation | Source
mem _ cache -0.80 C cpu_ usage 0.77 C
tx_bytes 0,53 C cpu_user 0.77 C
cpu_usage -0.75 W cpu_ system 0.78 C
cpu_ user -0.75 W fjllSklO_.SyIlC -0.51 C
io_service
cpu_system -0.55 W ffhsk_sy.nc -0.56 C
io_serviced
.dlSklO—.SynC -0.72 W .dlSk—W?lte -0.56 C
io_service io_serviced
'dlsk_sy'nc -0.74 W mem _usage 0.62 C
io_serviced -
.dlSk—Wl.nlte -0.74 W mem max_ usage -0.71 C
io_serviced - -
mem_ usage -0.76 W mem _cache 0.59 C
mem __cache -0.66 W mem _ rss 0.64 C
working set -0.77 W working set 0.64 C
rx_bytes cni 0.55 W filesystem usage -0.76 C
tx packets cni 0.50 W filesystem inodes -0.72 C
rx_bytes 0.55 W rx_ bytes 0.54 C
flannel
rx_packets 0.50 W rx_ packets 0.57 C
flannel
tx_bytes 0.56 W tx_bytes 0.58 C
flannel
rx_bytes 0.62 W tx_ packets 0.54 C
enp3s0
rx_packets 0.65 W .dlSkIO_.SyIlC_ 0.55 W
enp3s0 10_service
mem _cache 0.57 W
mem __container 0.68 W
pgfault
mem_'contamer 0.68 W
pgmajfault
rx_bytes cni 0.55 W%
rx_packets cni 0.57 W
tx_bytes cni 0.55 W
rx_bytes flannel 0.54 W
rx_packets flannel 0.53 W
tx_bytes flannel 0.59 W

74

5.2 Model Building

This section shows the models’ building process. First, subsection 5.2.1, justifies the
use of Deep RNN algorithms. Then, subsection 5.2.2 shows the methodology employed
to train the models. We used a search method to find the hyperparameters as well as

implemented a technique to prevent overfitting.

5.2.1 Use of a time series-based model

As mentioned, each training instance was collected sequentially over periods of 1 second
each. Therefore, we consider that the inputs represent a time series, and because of
that, we analyzed our final datasets to decide which machine learning techniques would
be more suitable for a time series.

Our analysis uses Autocorrelation Function (ACF) plots. ACF plots auto-
correlation with its lagged values |[Agrawal and Adhikari, 2013]. Figures 5.2 and 5.3
show the autocorrelation plot of MOS for 30 lags for VoD application and Live Vir-
tual Classroom application, respectively. In the x-axis, we have the lag(k), and the
y-axis gives the auto-correlation (7;) at each lag. The results show a slow decay in
the correlation between successive observations, indicating long-range dependence for
both applications, although the decay is slower for VoD. This slow decay phenomenon
is known as a strong temporal correlation in a time series [Gupta and Dileep, 2020]
and has been characterized as a common phenomenon in cloud computing [Gupta and
Dinesh, 2017; Gupta et al., 2018; Song et al., 2018] and QoE prediction|Ye et al., 2014;
Eswara et al., 2019].

MOS - VoD

1.0

::: Il

0 5 10 15 20

Figure 5.2. Autocorrelation plot of MOS at 30 lags

This long-term dependence requires more advanced prediction techniques. In
this case, we use Recurrent Neural Networks (RNNs); specifically, we implemented
and compared two variations of RNN (i) Long Short-Term Memory (LSTM) and (ii)
Gated Recurrent Unit (GRU).

75

MOS - Live Virtual Classroom

1.0

pd LA

0

Figure 5.3. Autocorrelation plot of MOS at 30 lags

The following section discusses how these RNNs methods were implemented and

the methodology applied in training the models.

5.2.2 Model Training Methodology

The methodology is the same for processing both datasets (VoD and Live Virtual
Classroom). Also, both algorithms (LSTM and GRU) follow the same implementation
method. Below we describe the datasets processing and algorithms implementation.
In the data processing phase, we prepared the training datasets. First, we sepa-
rated all datasets into training (70%), validation (20%), and test (10%) datasets. This
means that the model will fit using the training dataset, and while the training process
occurs, the fitted model uses the validation dataset to predict the values and tune the
model’s parameters. Finally, the test dataset is used to provide a final evaluation of the
model. Note that the test dataset is not used in the training process, which allows for
an unbiased final evaluation. Also, we analyzed each feature’s distribution and, given
that all of them had a uniform distribution, we chose to use feature scaling between

the 0,1] range.

Layer 1 Layer 2 Layer 3 Layer 4 MLP Layer 1

Output

MOS

Input Data

.
.
/‘\ . m
RNN RNN RNN
Unit # 1.X W W

Figure 5.4. General Architecture of RNNs Implementation

76

In terms of algorithm implementation, the models were built using Keras version
2.2.2 on a computer with Intel(R) Core(TM) i5-4460 CPU @ 3.20GHz and 16GB of
RAM. Figure 5.4 shows the general models’ architecture, composed of up to 4 RNNs
layers followed by 1 Multilayer Perceptron (MLP) layer. The amount of units vertically
depends on the timesteps (input).

The final models’ architecture was created by tuning the model’s hyper-
parameters. Hyperparameters are parameters that are not directly learned in the
training model process, however, these parameters control the performance of the
model. In this work, we employ the Grid Search technique, which is a widely-used
method to compute the optimum values of the model’s hyperparameters [Reimers and
Gurevych, 2017]. Grid Search performs an exhaustive search on a manually defined
subset of hyperparameters and their respective configuration — Table 5.5 shows which
hyperparameters were considered and the configurations used for each one, as well as

a brief description.

Table 5.5. Evaluated Hyperparameters and Configurations

Hyperparameters Values Description
Layers | [1, 2, 3, 4] Amount of LSTM/GRU Layers
of training examples used in

Batch Size | [128, 256, 512]
each epoch.
RNN units | [16, 32, 64, 128] | # of LSTM/GRU cells.
of times that the learnin

Epochs | (300, 500, 1000] jigorithm will work througfl.
Regularization method: used in the
transformation of the recurrent state.
Regularization method: in which units
are probabilistically excluded.
Amount of time steps running in

LSTM.

Recurrent Dropout | [0.25, 0.50, 0.75]

Dropout | [0.25, 0.50, 0.75]

Timestamp | [10, 20, 30]

We define the models to have a maximum of 4 layers. Besides that, the training
was made in a batch. In this case, we consider three batch sizes as described in the
table. Also, the amount of units in each layer varies from 16 to 128. Moreover, the
models were trained considering three different numbers of epochs.

The Recurrent Dropout and Dropout values represent the probability of exclud-
ing recurrent inputs and units. Deep learning models are more likely to be overfitting,
which means that they may fit the training data exactly, making it impossible to gen-
eralize to other environments or data. We use these hyperparameters as regularization

methods to reduce overfitting and improve model performance.

77

Besides that, the timestamp was divided into three options (10, 20, 30). These
values represent the time interval (s) in which the input data will be aggregated and
passed on to the algorithms. In practice, this means how far back the model must
"look" to predict the next second. For example, the algorithm takes 10 seconds of data
(from the past) as input to predict what will happen in the 11th second.

Note that the Grid Search will compare all these hyperparameter configurations.
However, for the Activation Function, Loss Function, and Optimizer hyperparameters,
were fixed. For the Activation Function, we used a sigmoid function. For Optimizer,
we use Adam |Kingma and Ba, 2015] algorithm, and for the Loss Function, we used the
Mean Squared Error (MSE) metric. Also, for the MLP layer, we set the activation
function to use the sigmoid function.

Although we had defined the number of epoch to train the models, we used the
Early Stopping technique. This technique is also considered a regularization method,
which can prevent overfitting and improve model generalization. In short, Early Stop-
ping monitors the model’s performance at each epoch and stops the training process®
when it notices a decay in performance (either decreases the accuracy or increases the
error). In our Early Stopping configuration, we set the 30 as the number of epochs with
no improvement and considered the validation loss performance to be monitored. This
means that, after 30 epoch without improving the validation loss, the training will be
stopped and moves on to the next hyperparameter configuration. This value can be
considered high compared with other works of literature [Reimers and Gurevych, 2017|.
However, we also consider larger batch sizes and train the models at more epochs.

Finally, the model will be saved during the training phase and updated as the
model improves. Hence, we will have the best possible model at the end of the train-
ing process, considering the training dataset and the evaluated hyperparameters and

configurations. The next section discusses the model’s results.

5.3 Results

This section shows the models’ results. First, Section 5.3.1 shows the final models
obtained using the feature described in Table 5.4 and performing the training method-
ology described in Section 5.2.2. Also, we selected for each application a model to be
implemented in the experimental evaluation (Chapter 6). Finally, Section 5.3.2 shows
the capacity of the selected model to generalize to another environment. Furthermore,

we analyze each feature’s importance to the model’s prediction.

6Note: Stops the training process in the current state of Grid Search and moves on to the next
hyperparameter configuration to be tested in the grid.

78

5.3.1 Model Selection and Evaluation

Grid Search and Early Stopping techniques automate the model training process, leav-
ing only the developer to choose which hyperparameters and configurations to use. As
mentioned, at the end of the model’s training, we will have the best possible model
considering the evaluated hyperparameters and configurations.

Table 5.6 shows the best models’ configurations for both applications using GRU
and LSTM. In general, both RNN algorithms had similar configurations. For example,
for both RNN algorithms and applications, the amount of layers is the same. This
means that models were configured to have depth also in space, stacking multiple
recurrent hidden layers on top of each other (in this case, 3 hidden layers). Also, the
best results considered the maximum batch size possible and the minimum value set

to dropout. Besides that, the best models were trained in 1000 epochs.

Table 5.6. LSTM and GRU Configuration

LSTM GRU
VoD Live Classroom VoD Live Classroom
of Layers 3 3 3 3
RNN units | 64,64,32 32,32,64 64,64,64 16,16,32
Batch Size 512 512 512 512
Epochs 1000 1000 1000 1000
Recurrent | 5, 0.25 0.25 0.25
Dropout
Dropout 0.25 0.25 0.25 0.25
Timestamp 30 10 10 10

However, the models’ configurations differed in the amount of RNN units in each
layer. For example, for VoD applications, the best model using LSTM converges in
the last layer, while for Live Virtual Classroom, LSTM units expand in the last layer.
On the other hand, using GRU, for VoD, the model keeps the amount of GRU units
linear through the layers and, for Live Virtual Classroom, the amount of GRU units
also expands in the last layer.

Another difference is the recurrent dropout and timestamp used in the VoD
model. Comparing these hyperparameters between RNN algorithms, LSTM performed
more recurrent dropouts as well as required more timestamps. This difference in times-
tamp between the RNN algorithm in VoD application can be explained by the LSTM
capacity to observe/learn the longer-range better than GRU. Besides that, the times-
tamp difference between VoD and Live Virtual Classroom trained by LSTM can be
explained by the autocorrelation plot. As observed in Figures 5.2 and 5.3, VoD and

Live Virtual Classroom have different behaviors in the MOS decay during successive

79

observations. VoD has a more continuous decay than Live Virtual Classroom, which
suggests that what happened in the more distant past is correlated to the present. On
the other hand, Live Virtual Classroom has a fast decay in the first 10 stages, suggest-
ing that what happens in the present has a more significant correlation to the closest
past.

Despite these differences between the architectures, both RNN algorithms achieve
satisfactory prediction quality in both applications. We use the Root Mean Squared
Error (RMSE) metric to measure this prediction quality. RMSE represents the mean
of the differences between the actual value (ground truth) and the predicted value
(generated by the prediction model), squared.

Table 5.7 shows the RMSE achieved by GRU and LSTM, measured in each ap-
plication’s validation and test datasets. In addition to the satisfactory average error
on the validation dataset, both models performed better in the training dataset. This
characteristic is present in models that did not overfit the training dataset, which means

that the models perform well in new data (unseen data).

Table 5.7. GRU and LSTM RMSE

LSTM GRU
VoD | Live Classroom | VoD | Live Classroom
Validation (20%) | 0.044 0.039 0.084 0.099
Test (10%) | 0.032 0.035 0.072 0.085

Although the RMSE for both RNN algorithms achieved a satisfactory result,
LSTM performed better than GRU in both applications. In Chapter 6, we show our
implemented proposal in an experimental environment. Since the LSTM models stood
out, we chose them to be used in the ML-Based QoE Monitor Module (see Figure 4.2).
Before that, in the following subsection, we evaluate other results considering only the
LSTM models.

5.3.2 Model Generalization and Feature Importance

To evaluate our proposal in a more realistic cloud environment, we implemented our
solution in another context different from where the models were created. This new
environment is similar to where the models were trained regarding the number of
clients and software used, but differs in computing resources (more computing resource
capacity). Chapter 6 details this environment.

Since computing capacity is different, we performed an experiment to see if our

models would generalize in this new environment, eliminating the need to conduct the

80

entire data collection and model building processes (or even retraining the models).
In this case, we consider the model’s capacity to generalize by measuring the model’s
error in this new environment. Therefore, we collect data for both applications using
the software described in section 5.1.1; the interference generation described in section
5.1.2, and we collected all the container and worker node metrics described in Table
5.4. In addition, we also collect video metrics as described in section 5.1.3 Finally, we
tested the performance of LSTM models on this data.

Table 5.8 shows the average RMSE for both models. The experiment was done
with 10 video sections. As can be seen, on average, both models keep the RMSE lower
than the RMSE obtained in the validation dataset. This result can be attributed to

the use of techniques to improve the model’s generalizability and avoid overfitting.

Table 5.8. Evaluation of Models’ Generalization in Another Environment.

RMSE) .
Model (LSTM) Average + CI (95%) # Video Session
VoD 0.043 £+ 0.015 10
Live Virtual Classroom 0.033 =+ 0.016 10

In addition to creating good models, the literature has shown the importance
of trying to explain them [Holzinger, 2018]. To better understand our models, we
quantify the impact of each feature on the model’s predictions. This concept is related
to the interpretability of models, and we employ the permutation importance technique
[Fisher and Dominici, 2018|. Permutation importance (PI) randomly shuffles a single
column of the validation dataset, while keeping the output value and other columns
unchanged. Besides that, PI is calculated after the model is trained; thus, it does not
affect the model. The main idea is to measure the error in the shuffled column. As
a result, an important feature will cause a significant change in the error, while less
important ones will make a minor change.

Figures 5.5 and 5.6 show the PI results, considering the five most important
features for the VoD and Live Virtual Classroom models, respectively. Although the
container memory cache metric had a higher Spearman Correlation with MOS, the
most important features of the VoD model came only from the worker node computing
metrics. This result suggests that the model learned the relationship between interfer-
ence on the worker node and the user’s QoE.

On the other hand, the most important feature of the Live Virtual Classroom
model came from container network metrics. Although container computing metrics
are in the set of features (such as CPU, Mem, and Disk), this is an expected result, con-

sidering that when there is more container network transmission capacity, the HLS.js

81

worker_node_cpu_system
worker_node_mem_usage
worker_node_disk_write_io_serviced
worker_node_rx_bytes_enp3s0

worker_node_disk_sync_io_serviced

0.0 0.1 0.2 0.3 0.4 0.5
Importance Factor

Figure 5.5. Feature importance permutation - VoD Model

container_tx_packets
container_rx_bytes
container_rx_packets

container_tx_bytes

worker_node_rx_packets_flannel

0.00 0.05 0.10 0.15 0.20
Importance Factor

Figure 5.6. Feature importance permutation - Live Virtual Classroom Model

client can request higher quality chunks (which are larger in size). Furthermore, even
though the CPU metrics of the worker node were not considered in the model’s input,
we know that the unavailability of this resource can affect the transmission capacity
in the container network, for example, interfering in bandwidth and delay [Cai et al.,
2021|. Also, the worker node’s high CPU and memory usage can cause stall events,
implying a decrease in transmissions. Thus, this result suggests that the model is re-
sponsive to interference in the work node, which becomes noticeable in the container’s

network utilization.

5.4 Summary

This chapter showed how the training datasets for both applications were created,
which included the data collection process and feature selection to decrease the model
training time without affecting the predictors’ quality. In addition, we explained the
use of a time series-based model and how the models were trained using two RNN
variations (LSTM and GRU). Furthermore, we present which hyperparameters were
evaluated and those used in the final models. Finally, we discussed the models’ results
in terms of performance and generalization. Also, we use an interpretability method
to identify which features are most important to prediction.

The next chapter will employ both models on our system architecture, specif-
ically on the ML-Based QoE Monitor component, and evaluate our proposal in an

experimental environment.

82

Chapter 6

Experimental Evaluation

This chapter presents an experimental evaluation of our proposal presented in Chapter
4. Section 6.1 shows the experimental setup, which included the testbed used and the
environment configuration. Then, Section 6.2 shows the results. Finally Section 6.3

summarizes this chapter.

6.1 Experimental Setup

The objective of the experimental evaluation is to assess how QoE-aware scheduling
can improve the users’ QoE. This section presents the experimental setup in which we
implement the system architecture presented in Figure 4.2 including 14 clients on a
remote testbed called Virtual Wall®.

The Virtual Wall testbed is hosted at imec IDLab.t? and has a complete ecosystem
to create a cloud computing environment, including servers to be used as physical
machines or as virtual resources [Municio et al., 2021|. Figure 6.1 shows the Testbed.

Table 6.1 shows the machine’s configuration used in our experiment. We allocated
five physical machines for the Kubernetes Engine (version V1.17.3) installation: One
to the master node and four to the worker nodes. Also, we allocated one physical
machine to implement our control plane, which runs Cloud Resource Monitor, ML-
Based QoE Monitor, and Scheduler Decision Algorithm. Besides that, we allocated 14
virtual machines as clients, seven for VoD and seven for the Live Virtual Classroom
application. These virtual machines were allocated to different physical machines from

those already mentioned. Each virtual machine runs Firefox Version 79.

Thttps:/ /doc.ilabt.imec.be/ilabt /virtualwall /
https:/ /idlab.technology/
3Note: One for Control Plane and another to Data Plane

83

Figure 6.1. Virtual Wall testbed - Figure from virtual wall website

Table 6.1. Servers and clients configuration

Servers (6) Clients (14)
2x Hexacore 2.4 GHz | 2x Dual core AMD opteron 2GHz
24GB RAM 4GB RAM
1x 250GB HD 1x 80GB HD
2 X 1 gigabit nic? 1 gigabit nic
Ubuntu Server Ubuntu Desktop 18.04

In terms of software used to implement our control plane, we use the cAdvisor
version 0.35 into a docker container (version 20.10.2) and Python 3 to collect the
container and worker node metrics on the Cloud Resource Monitor. Besides that,
the ML-Based QoE monitor uses Keras 2.2.2 to read the VoD and Virtual Classroom
models. Finally, the Scheduler Decision Algorithm was implemented using Kubernetes
Python Client Version 17.17.0 (https://github.com/kubernetes-client/python). This
means that our algorithm was implemented in Python 3.

We evaluated three HPA policies using different memory usage thresholds on HPA
configuration for both applications, being 50%, 80%, and 90%. The threshold values
were set based on the average memory usage of the seven clients connected in the
container. For each application, we conducted 20 experiments with clients watching
the video without extra workload and then stored the container memory usage (using
cAdvisor). Then, we calculate the average usage over the highest values obtained from

each repetition.There is a difference in the average memory usage between applications,

84

where the Live Virtual Classroom application consumes more memory than VoD. This
is because the Wowza server performs the video transcoding in real-time, even without
any connected user requesting the chunks. On average, in the worst case, the memory
consumption was 5 MB in the VoD application and 2.5GB in the Live Virtual Class-
room. Then, we calculate the 50%, 80%, and 90% memory thresholds out of that value,
obtaining 2,5MB, 4MB, and 4,5MB for the VoD application. The threshold used for the
Live Virtual Classroom application was 1.25GB, 2GB, and 2.25GB, respectively. This
means that new containers will be scaled (Kubernetes horizontal autoscaling) when
resource usage achieves these values, as explained in Section 2.2.

As described, the Container Scheduler Decision Algorithm (Algorithm 1) per-
forms container scheduling considering an SLO threshold value and a time interval T.
In our experiment, we configure the SLO value as QoE value to 3 and the time T of
10 seconds. Also, the moving average was calculated in the ContainerResourceUsage()
function based on the memory usage in a 30-second window for the VoD Application.
For Live Virtual Classroom, we consider the CPU usage over a 10-second window.
Window values were based on the models’ configuration. Finally, we created a sce-
nario where each worker node received a different extra workload to simulate different
co-located application conditions. This scenario follows the methodology explained in
section 5.1.2. Table 6.2 shows the extra workload in each worker node. In Disk I/0,
the stress ranged randomly from 1 to 40 processes, each writing and reading 1GB and
2GB.

Table 6.2. Extra workload in each worker node

CPU(%) | Memory (%) | Disk I/O | Network
Worker 1 | 50 - 90 5-90 0 0
Worker 2 | 50 - 55 10 - 90 1GB 1024MB
Worker 3 0 10 - 25 0 0
Worker 4 | 10 - 15 15 - 20 2GB 1024MB

The following evaluations were made with VoD and Live Virtual Classroom origi-
nal video containers deployed on worker node 1 simultaneously. Finally, 20 repetitions,
each with 9 minutes and 10 seconds, were performed, and results consider a confidence
interval of 95%.

6.2 Results

This section compares our proposal container scheduler with two baselines: the default
Kubernetes-Scheduler (KS) and KCSS [Menouer, 2021]. We implemented two versions

85

of the KCSS algorithm. The first one has as criteria the maximization of resource
usage (KCSS Max), while the second the minimization (KCSS Min). As mentioned
in related work, the KCSS algorithm allows using multiple metrics and objectives. To
become more comparable with our solution, for both KCSS versions, we consider the
same worker node metrics used in our models (Table 5.4).

However, Kubernetes and KCSS do not perform container rescheduling. There-
fore, to be fair in the evaluation, we evaluated our scheduler and rescheduler in separate
experiments. We have named these experiments in the following graphs and tables as
QoE-Scheduler and QoE-Rescheduler (respectively, performing both scheduling and
rescheduling).

6.2.1 Container Scheduling

The first evaluation considers the schedulers and rescheduler’s effects on the number
of scaled and used containers in each HPA policy. Figures 6.2 and 6.3 show the mean
number of scaled and used containers, respectively, for each experiment in each HPA
policy as well as for each application. It was measured by the amount of containers
scaled, and we consider as used containers only those containers that received a request
to download the video.

As Figure 6.2 shows, there is a decrease in the mean amount of scaled containers
among HPA policies for both applications. This occurs because users can achieve 50%
of memory usage more quickly than 80% and 90%, which demands more containers
to balance the workload until it is below the threshold. The highest availability of
containers implies an increase in the number of used containers. As Figure 6.3 shows,
with HPA 50% threshold, seven containers were always used for each experiment in
each application. This means one user per container, which explains the confidence
intervals to be zero.

Our QoE-Scheduler reduced the number of scaled containers in HPA 50% and 80%
for both applications and in HPA 90% for the VoD application. In particular, for the
Live Virtual Classroom application in HPA 90%, the Kubernetes-Scheduler achieves
the same amount of scaled containers as our QoE-Scheduler. However, in general,
our solution achieves a more significant reduction of scaled containers when compared
to Kubernetes-Scheduler and KCSS Max; meanwhile, KCSS min kept the amount of
scaled containers closer to our solutions as in VoD HPA 50% and Live Virtual Classroom
HPA 80%. Such improvement can be explained by how each scheduler distributed the
new video containers among the worker nodes. The Kubernetes-Scheduler, KCSS Max,

and KCSS Min scheduled several of these new containers for work node 1 and work

- - -
o N »

Amount of scaled containers
[e 4]

VoD Live Classroom VoD Live Classroom VoD

mﬂﬂf b b iiinin

HPA = 50% HPA = 80% HPA = 90%

Kubernetes
KCSS MAX

KCSS MIN
QoE-Scheduler
QoE-Rescheduler

Live Classroom

Application Application Application

Figure 6.2. Amount of scaled containers

HPA = 50% HPA = 80% HPA = 90%

N W e 1O N

Amount of used containers
(=)

1)

VoD Live Classroom VoD Live Classroom VoD

o

Kubernetes
KCSS MAX
KCSS MIN
QoE-Scheduler

m M QoE-Rescheduler

Live Classroom

Application Application Application

Figure 6.3. Amount of used containers

86

node 2, where there was more interference due to high resource usage. In contrast,

our solutions did not schedule any extra containers for worker node 1 or 2. Besides,

QoE-rescheduler deleted the original container from worker node 1 and scheduled it

among workers 3 and 4.

Figure 6.4 shows the mean number of scaled containers per worker node, consider-

ing both applications in each HPA policy. Kubernetes-Scheduler uses the Round-Robin

algorithm, and because of that, the KS has a better mean distribution among the four

worker nodes. On the other hand, KCSS Min distributed more containers among work-
ers 1, 2, and 3. This is because KCSS Min tends to choose the worker node with less

resource usage. Due to the random extra workload at each worker node, the resource

utilization of worker nodes 1, 2, and 3 may be less than that of worker node 4 and

vice-versa.

In contrast, the KCSS Max compacts the containers in those worker nodes with

87

HPA 50% 9 HPA 80% 9 HPA 90% o

of L gy 61 61 o

wn © ::o‘ °ae: obo =<
QL) 8 0ot '901; g g -aoo aLt- g
C 9 9 o~
E g 'oJo'c _J,’.. 6 6 E
C 3 °o°o°| rﬁﬂa‘ 3] 3 l nolo . 5
8 0 0- 0 =
9 9 9 M
Y —
S 6 s 61 6 g
o 3 e 3 . 3 s
g 0- [2-2-2] 0- -2-21) 0 _——H’ﬁﬁ_—_;
39 9 9 N
=4 ° ° <
< 0! o.ch: 04 olo 0_*0‘0..“. [— §

B Kube-Scheduler®22:KCSS MAXZEE*KCSS MIN I QoE-Scheduler# @ QoE-Rescheduler

Figure 6.4. Mean number of containers scaled per worker node

higher resource utilization. Therefore, as worker nodes 1, 2, and 4 have more resource
usage, the KCSS Max scheduler distributed the container among these worker nodes.
Finally, our solutions distributed the containers among worker nodes 3 and 4. This is
because the VoD and Live Virtual Classroom models predicted a higher QoE on these

worker nodes.

Table 6.3. Mean Over-Provisioning Reduction

Sehedmior | Max | M | QoE-Scheduler | QoE-Rescheduler
Igg;z 45.3% 37,5% | 31,3% 26,3% 10,2% VoD
Igg;g 32,8% 29,6% | 20,7% 5,8% 0%
HPA Live
50% 30,6% 25,5% | 25,5% 7,6% 10,1% Virtual
; Classroom
S | 169% | 204% | 20,5% 11,1% 0%

The way our proposal distributed the containers among the work nodes con-
tributes to reducing over-provisioning, which is characterized by wasted resources and
extra monetary costs [Qu et al., 2018]. This work considers over-provisioning as the dif-
ference between scaled containers (Figure 6.2) and used containers (Figure 6.3). Table
6.3 shows the over-provisioning (percentage) for each experiment. We omit HPA 90%
because there was no over-provisioning. As can be seen, there was over-provisioning
in all schedulers; however, our QoE-Scheduler decreased it in both HPA policies. Fur-

thermore, QoE-Rescheduler in HPA 80% eliminates the over-provisioning.

88

6.2.2 QoE improvement

Although the Kubernetes-Scheduler, KCSS Max, and KCSS Min do not perform QoE-
aware container scheduling, we measure the effects of these schedulers on the user’s
QoE and compare it with our proposal. In other words, we compare the scheduler’s
impact on the user’s QoE when it is QoE-aware with those non-QoE-aware.

Figure 6.5 shows the mean of the user’s QoE obtained in each experiment for
both applications. We perform this analysis only with the 80% and 90% HPA policies
since these are more realistic scenarios (with more than one client per container). As
can be seen, in both HPA policies, our QoE-Scheduler improves the user’'s QoE in
each application. For example, in the HPA 80% for VoD application, QoE-Scheduler
improves the QoE by 95.2%, 86.3%, and 78.2%, from 2.1, 2.2, and 2.3 to 4.1, compared
with Kubernetes-Scheduler, KCSS Max, and KCSS Min, respectively. Furthermore,
for the Live Virtual Classroom app also in HPA 80%, QoE-Scheduler improves the
QoE by 61.5%, 82.6%, and 75%, from 2.6, 2.3, and 2.4 to 4.2. This improvement
occurs because the QoE-Scheduler chooses other worker nodes that increase the QoE
(with less interference). Besides that, as a significant result, QoE-Scheduler kept the
SLO at the proposed limit on the scheduler decision algorithm, which means that in
both applications, the mean of the user’s QoE was higher than 3. It is important
to note that a good QoE predictor performance is essential to achieve this result. If
the predictor erroneously estimates the container’s user’s QoE for a worker node with
interference to the point of degrading the QoE, it can generate an SLO violation.
However, this improvement was limited by the end-users with a degraded QoE in the
container allocated in worker node one. Another observation is about a lower observed
QoE in HPA 90% compared to HPA 80%. This is an expected result, considering that
there was an under-provision in each experiment. Under-provision is associated with
degraded performance [Qu et al., 2018|.

On the other hand, we obtained a QoE close to the maximum value (5) using the
QoE-Rescheduler. This is because the QoE-Rescheduler deleted the original containers
from worker 1 and scheduled them on other worker nodes that can improve the user’s
QoE. Thus, although there is a cost in terms of time to perform QoE-Rescheduler, which
means deleting the original container from worker one and scaling it into another worker
node, the rescheduling process was needed to improve the QoE. Also, QoE-Rescheduler
achieved a similar mean QoE in both HPA policies. This was expected since the
scheduler works regardless of HPA policies. The container scheduling decision depends
only on QoE models, which predict QoE degradation and reschedule the container

without considering the HPA operation.

Mean Playback Stalls Time (s)

89

HPA = 80% HPA = 90%
e =y =
Live Classroom Live Classroom
Appllcatlon Appllcatlon
M Kubernetes-Scheduler B KCSS MIN Q-Rescheduler
Em KCSS MAX B Q-Scheduler

Figure 6.5. Quality of experience perceived by the clients

HPA = 80% HPA = 90%
50
40
30
20
10
0
Live Class Live Class
Appllcatlon Appllcatlon
mmm Kubernetes-Scheduler mmm KCSS MIN Q-Rescheduler
Hm KCSS MAX B Q-Scheduler

Figure 6.6. Mean playback stall time during video session

90

Another QoE aspect evaluated was the mean playback stall time (in seconds)
during video sessions. Figure 6.6 shows the comparison between our solution and
the baselines. As can be seen, our QoE-Scheduler reduced the mean playback stall
time in both HPA and applications. For example, in the VoD application on HPA
80%, our solution reduced by 60.9%, 63.3%, and 43,1%, from 24.6, 26.2, and 16.9
to 9.6 seconds, compared with Kubernetes-Scheduler, KCSS Max, and KCSS min,
respectively. Also, for the Live Virtual Classroom application on the HPA 80%, the
QoE-Scheduler decreased the mean playback stall time by 51.1%, 63.0%, and 41.4%
from 34.2, 45.2, and 28.5 to 16.7. This reduction can be attributed to the scheduled
containers located at worker nodes 3 and 4 contributing to a better response to user
requests. For the Live Virtual Classroom application, this means more computing
resources to real-time transcode the video. Finally, our QoE-Rescheduler eliminates
the stall event. Again, the QoE-Rescheduler deleted the original video from worker 1
before the QoE degradation. Despite that, in both cases (rescheduling, migration), the
application’s connection can be interrupted with the server and, consequently, cause
stall events. However, it did not occur during container rescheduling. One explanation
for this is the replay of chunks in the application buffer while the rescheduling process
took place.

When comparing the mean playback stall time between applications, it is possible
to notice that the stall time is higher in the Live Virtual Classroom application. This
is an expected result considering that the Live Virtual Classroom was more likely to
have a stall event due to the lack of computing resources (caused by the co-located
application and interference) to perform the real-time video transcoding. On the other
hand, in VoD applications, the same lack of resources can be compensated for by
transmitting smaller chunks. In addition, the mean playback stall time was higher in
the HPA 90%, which we also considered an expected result due to the higher needed
time to achieve 90% of memory usage and then perform container scheduling. This
means that the container spends more time under interference at worker node 1.

Finally, we measured the mean number of resolution changes during the video
transmission in both applications. This was calculated as the sum of each user’s video
resolution changes, including the resolution change and the bitrate. In fact, some users
may experience resolution changes more often than others; however, we are interested
in analyzing this result based on the group’s perception. Table 6.4 shows the result. As
can be seen, our proposal also reduced the mean number of resolution changes in both
experiments. Again, this improvement is a consequence of the choice of work nodes
with better conditions to deploy the containers. Also, the mean number of resolution

changes has been reduced to zero on the QoE-Rescheduler because the model predicts

91

a QoE decay in advance.

In addition, in the HPA 90%, there were more resolution changes than in HPA
80%. Again, this can be explained by the time it takes to achieve 90% of memory usage.
Furthermore, in contrast to the result of the mean playback stall time, where there was
more stall event in the Live Virtual Classroom application than in the VoD application,
in this case, resolution changes occur more often in the VoD application. This can be
explained by differences in adaptive streaming configuration between applications. As
Table 5.1 shows, VoD has a set of more bitrate settings options than Live Virtual

Classroom, allowing DASH to switch more often.

Table 6.4. Mean number of resolution changes

VoD Live Virtual Classroom
HPA 80% | HPA 90% | HPA 80% | HPA 90%
Kubernetes-Scheduler | 43 4+ 1.1 56 + 3 23 £ 2.1 33+ 3
KCSS Max | 46 £+ 2.3 62 + 2 20+ 14 28 + 2.1
KCSS Min | 39 £0.6 | 68 3.1 | 36 = 0.9 46 £ 1.8
QoE-Scheduler | 26 4+ 0.9 42 + 2 21 +£0.3 28 £ 2
QoE-Rescheduler 0 0 0 0

6.3 Summary

This chapter evaluates the performance of our QoE-aware scheduler and rescheduler in
a real cloud environment. The first sessions present the methodology used to deploy the
cloud environment, the interference generation (to simulate application co-location),
and our algorithm’s parameters.

Experimental results suggest that QoE-aware container scheduling can improve
users’ QoE by 95.2% compared to the default Kubernetes-Scheduler, and by up to
86.3% between the two KCSS versions. In addition, the mean QoE value remained
above the pre-established value in the SLO configuration. In addition, other important
factors in the users’ QoE were improved, such as the stall time and the change of
resolutions. Our solution also proved to be more efficient than the analyzed baselines
in terms of scaled container amount. We attribute this improvement to the ability of
application models to rank work nodes according to their capacity to provide better
QoE to users. In other words, the way the containers were distributed in the cloud
contributes to the reduction of scaled and used containers. With that, our proposal
reduced the over-fitting in the best case by 5.8% using the QoE-Scheduler. Although

92

our proposal outperformed the analyzed baselines, the results showed that the KCSS

Min was the approach that came closest to our results.

93

Chapter 7

Conclusion and Future Work

This work proposes a QoE-aware container for co-located cloud environment. First,
two models were built using deep machine learning based on work node and container
metrics. Then, the models were used to rank the work nodes according to the expected
QokE in each one of them. With that, our scheduling algorithm chooses the work node
that maximizes and keeps the users’” QoE above a pre-established SLO.

Unlike other works found in the literature, our proposal estimates the QoE con-
sidering only the cloud state. In other words, estimates the QoE the cloud can offer
to content provider clients. Also, we consider the degradation/interference caused by
application co-location, which many cloud providers often practice [Cheng et al., 2018].
Furthermore, we carry out the container rescheduling process when the proposed mod-
els identify a QoE degradation.

The main contributions of this dissertation are the proposal of a QoE-aware con-
tainer scheduler /rescheduler and the methodology for creating machine learning models
to estimate QoE within the cloud. Furthermore, the implementation and evaluation in
a real environment, considering one of the most used cloud systems nowadays (Kuber-
netes), contributes more effectively to the evaluation of the proposal.

It was verified, through experimental evaluation, that QoE-aware scheduling in-
creased the quality of experience of users compared to methods that do not consider.
Furthermore, other user experience factors were evaluated, such as the average stall
event time and resolution changes. The results showed that choosing the most suit-
able working node in terms of QoE decreases the average number of stall events during
video transmission as well as the number of changes of resolution in the applications. In
addition, our proposal reduced the number of scheduled containers and, consequently,

the number of used containers, thus reducing over-provisioning.

94

7.1 Future Work

As mentioned, to the best of our knowledge, this is the first work that considers users’
QoE in the container scheduling process in a cloud environment with co-located ap-
plications. Given this, we found some future research opportunities derived from our
work.

The first proposal for future work is related to the complexity of the evaluated
scenario. The experiments performed had few clients for each application, and therefore
the interaction and concurrency of resources inside the container were not evaluated.
Furthermore, our evaluation was also restricted to a few work nodes.

Our current proposal considers applications with only one tier, in which the
application’s front-end and back-end are running in the same container. A second
proposal as future work is to evaluate our proposal in a scenario with multiple tiers in
which there is a dependency between containers. This future work proposal refers to
limitation #2 in section 4.5.

A third proposal is to consider the user’s QoE measured from another technology
(such as in Internet Service Providers (ISPs), Wi-Fi and 4/5G network) in the end-
to-end path between users and cloud to be combined with our solution. This means,
for example, considering the QoE measured in a Wi-Fi network (or even in the end
devices) to improve the container scheduling/rescheduling decision algorithm. On the
other hand, cloud QoE measurement can be combined with other solutions that act on

other technologies, such as the links of the Internet Service Providers (ISPs).

7.2 Publications

As a preliminary result during the development of this dissertation, we published a
scientific article (list below), and we are preparing an extended version for a journal

submission.

e Carvalho, Marcos and Macedo, Daniel Fernandes. QoE-Aware Container
Scheduler for Co-located Cloud Environments. [FIP/IEEE International
Symposium on Integrated Network Management (IM), 2021.

Appendix A

Metrics Description

Table A.1. Metris Description

Metrics

Description

Ccpu_usage

Total of time CPU usage.

cpu_ user

Amount of time a process has direct control
of the CPU.

cpu system

Amount of time the kernel is executing system calls.

diskio async io service

Indicates the number of bytes async operation.

diskio read io service

Indicates the number of bytes read operation.

diskio sync io service

Indicates the number of bytes sync operation.

diskio total io service

Indicates the number of bytes total I/O operations.

diskio write 1o service

Indicates the number of bytes write operation.

disk async io serviced

The number of async operations performed.

disk discard io_serviced

The number of discard block
(not in use by file system).

disk read io serviced

The number of read operations performed.

disk sync io serviced

The number of sync operations performed

disk total io serviced

The total of I/O operations performed.

disk write 1o serviced

The number of write operations performed.

mem usage

Total of memory usage (in bytes)

mem Imax usage

Show max memory usage recorded (in bytes)

mem cache

The amount of memory used by the processes of

mem_ rss

The amount of memory that does not
correspond to anything on disk (in bytes)

mem__swap

The amount of swap currently used
by the processes (in bytes)

mapped _file

Indicates the amount of memory mapped
by the processes (in bytes).

working set

The amount of working set memory (in bytes).

mem _ failent

The number of times that the requested
memory failed.

mem container pgfault

Indicates the number of times of page faults.

mem container pgmajfault

Indicates the number of times of major fault.

filesystem capacity

The capacity on the file system

filesystem usage

The bytes used on the filesystem.

filesystem base usage

Base usage consumed by the
container’s writable layer.

filesystem inodes

The number of used inodes on a file system.

rx_bytes The count of bytes received.

rx packets The count of packets received.

tx bytes The count of bytes transmitted.
tx packets The count of packets transmitted.

95

As mentioned in section 4.3.1, the number of metrics collected was 72, being 32

96

from the container and 40 from the worker node. However, both the container and the
worker node have the same metrics collected; the difference is that the worker node
has more network interface. Table A.1 describes the metrics collected from container
and work node. These metrics are named as in the Kubernetes API (column 1), and

we presented a brief description!:2,

Thttps://docs.docker.com /config/containers /runmetrics,/
https://github.com/splunk /fluent-plugin-kubernetes-metrics /blob /develop /metrics-
information.md

97

Appendix B

JSON Input and Output Format

Appendix B shows an example of the JSON input format for Model 0, used in this
work, and the respective output format. In short, the input content is video segment
information (bitrate, codec, fps, resolution), aggregated by start and duration ("I13").
Also, the stall event is recorded as a list of pairs of timestamps and how long the stall
lasted (duration) ("I23"). Finally, the type of device configuration is also required.
This field required device type (pc, handheld, or mobile), display size, and viewing
distance ("IGen").

The output JSON format is composed of per-second audiovisual measured as
MOS value (1-5) ("034"). An overall stalling quality ("023"), audiovisual quality score
("035") and quality score ("046"). Notice that, as mentioned, this works does not
consider audio on the user’s QoE (will assume constant high-quality audio), which
means that the 034 output refers to video quality only. Also, the stall event does not
impact the MOS value. It is calculated separately on overall stalling quality ("023").

Finally, MOS value "034" is used as the user’s QoE (QoEy.,,) on our ML model
output (discussed in Section 4.3.2). Besides that, as the stall event is not considered
on MOS, we do not consider it on VoD applications. However, we incorporate the stall
event measured on JSON input ("I23") in the Live Virtual Classroom application (also

discussed in Section 4.3.4).

98

Listing 1 P.1203 JSON Input Format

© 00 N O Ut ks W N

W W W W W W W W NN NN N NNN NN B R R e e e = e
N O O s W N EF O © 00 O Ot WO O YOt s WwWw Ny = O

{

timestamp, duration]

"T11t: {
"segments" (1,
"streamId" : 42
}
"T13": {
"segments" [
{ "bitrate": 4200.0,
"codec": "h264", //only "h264" supported in standard
"duration": 3, //duration in s
"fps": 24.0,
"resolution": "1920x1080",
"start": 0 //media start timestamp in s
+,
{
"bitrate": 791.0,
"codec": "h264",
"duration": 4,
"fps": 24.0,
"resolution": "1280x720",
"start": 3
...
1,
"streamId" : 42
},
"I23": {
"stalling": [[0,2]1,[4,11] //[start
"streamId": 42 //unique identifier for the stream
},
"IGen": {
"device": "pc", //pc, handheld, or mobile
"displaySize": "1920x1080",
"viewingDistance": "150cm"
}
}

99

Listing 2 P.1203 JSON Output Format

© 00 N O Ut ke W N

[e T e e e e e o
= O © 00 N O U ok W N = O

{

"023": 4.219206291281412, //stalling quality

"034": [

5.

[S, IS W O O NN

]

0, //per-second audtovisual qualtity scores
.0,

.67953852907711,

.67953852907711,

.67953852907711,

.67953852907711,

.67953852907711,

"035": 4.997692214848531, //audiovisual quality score
"046": 4.3135308869955145, // overall qualtity score
"date": "2020-11-27T14:24:21.356849",

"mode": 0, // used mode

"streamId": 42

100

Bibliography

Abdallah, M., Griwodz, C., Chen, K.-T., Simon, G., Wang, P.-C., and Hsu, C.-H.
(2018). Delay-sensitive video computing in the cloud: A survey. ACM Transactions
on Multimedia Computing, Communications, and Applications (TOMM), 14(3s):1--
29.

Adhikari, M., Amgoth, T., and Srirama, S. N. (2019). A survey on scheduling strategies
for workflows in cloud environment and emerging trends. ACM Computing Surveys

(CSUR), 52(4):1--36.

Agrawal, R. and Adhikari, R. (2013). An introductory study on time series modeling
and forecasting. Nova York: CoRR.

Ahmad, I., AlFailakawi, M. G., AlMutawa, A., and Alsalman, L. (2021). Container
scheduling techniques: A survey and assessment. Journal of King Saud University-

Computer and Information Sciences.

Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., and Merle, P. (2017). Elasticity in cloud
computing: state of the art and research challenges. IEFE Transactions on Services
Computing, 11(2):430--447.

Alreshoodi, M. and Woods, J. (2013). Survey on qoe\qos correlation models for mul-
timedia services. arXiv preprint arXiw:1306.0221.

Aral, A., Brandic, 1., Uriarte, R. B., De Nicola, R., and Scoca, V. (2019). Addressing
application latency requirements through edge scheduling. Journal of Grid Comput-
ing, 17(4):677--698.

Bampis, C. G., Li, Z., Moorthy, A. K., Katsavounidis, I., Aaron, A., and Bovik, A. C.
(2017). Study of temporal effects on subjective video quality of experience. IEEE
Transactions on Image Processing, 26(11):5217--5231.

BIBLIOGRAPHY 101

Barakabitze, A. A., Barman, N., Ahmad, A., Zadtootaghaj, S., Sun, L., Martini,
M. G., and Atzori, L. (2019). QoE management of multimedia streaming services in

future networks: a tutorial and survey. IEEE Communications Surveys € Tutorials,
22(1):526--565.

Barman, N. and Martini, M. G. (2019). Qoe modeling for http adaptive video
streaming—a survey and open challenges. Ieee Access, 7:30831--30859.

Cai, Q., Chaudhary, S., Vuppalapati, M., Hwang, J., and Agarwal, R. (2021). Under-

standing host network stack overheads.

Carvalho, M., Silva, V. F., e Silva, E. d. B., Macedo, D. F., de Resende, H. C., Marquez-
Barja, J. M., Both, C. B., Bardini, A. Z., and Wickboldt, J. (2019). Qoe-based video
orchestration for 4g networks. In 2019 IEEE 30th Annual International Symposium
on Personal, Indoor and Mobile Radio Communications (PIMRC), pages 1--6. IEEE.

Chakraborty, P., Dev, S.; and Naganur, R. H. (2015). Dynamic http live streaming
method for live feeds. In 2015 International Conference on Computational Intelli-
gence and Communication Networks (CICN), pages 1394--1398. IEEE.

Chalapathy, R. and Chawla, S. (2019). Deep learning for anomaly detection: A survey.
arXw preprint arXiw:1901.03407.

Chen, M., Challita, U., Saad, W., Yin, C., and Debbah, M. (2019a). Artificial neural
networks-based machine learning for wireless networks: A tutorial. IEEE Commu-
nications Surveys & Tutorials, 21(4):3039--3071.

Chen, W., Ye, K., and Xu, C.-Z. (2019b). Co-locating online workload and offline
workload in the cloud: An interference analysis. In 2019 IEEFE 21st International
Conference on High Performance Computing and Communications; IEEE 17th In-
ternational Conference on Smart City; IEEE 5th International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), pages 2278--2283. IEEE.

Cheng, Y., Chai, Z., and Anwar, A. (2018). Characterizing co-located datacenter
workloads: An alibaba case study. In Proceedings of the 9th Asia-Pacific Workshop
on Systems, pages 1--3.

Cho, K., Van Merriénboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
and Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder

for statistical machine translation. arXiv preprint arXiv:1406.1078.

BIBLIOGRAPHY 102

Cisco (2017). Cisco visual networking index: Global mobile data traffic forecast update,
2017-2022 white paper.

da Rosa Righi, R., Lehmann, M., Gomes, M. M., Nobre, J. C., da Costa, C. A., Rigo,
S. J., Lena, M., Mohr, R. F.; and de Oliveira, L. R. B. (2019). A survey on global
management view: toward combining system monitoring, resource management, and
load prediction. Journal of Grid Computing, 17(3):473--502.

De Cicco, L., Mascolo, S., and Palmisano, V. (2019). QoE-driven resource allocation
for massive video distribution. Ad Hoc Networks, 89:170--176.

de Oliveira, M. and Macedo, D. F. (2021). Slicing wi-fi links based on qoe video

streaming fairness. International Journal of Network Management, page e2155.

Dou, Q., Castro, D. C., Kamnitsas, K., and Glocker, B. (2019). Domain generalization

via model-agnostic learning of semantic features. arXiv preprint arXiv:1910.13580.

Duanmu, Z., Zeng, K., Ma, K., Rehman, A., and Wang, Z. (2016). A quality-of-
experience index for streaming video. IEEE Journal of Selected Topics in Signal
Processing, 11(1):154--166.

Dutta, S., Taleb, T., and Ksentini, A. (2016). Qoe-aware elasticity support in cloud-
native bg systems. In 2016 IEEE International Conference on Communications

(ICC), pages 1--6. IEEE.

Elhabbash, A., Elkhatib, Y., Blair, G. S., Lin, Y., Barker, A., and Thomson, J. (2019).
Envisioning slo-driven service selection in multi-cloud applications. In IEEE/ACM

International Conference on Utility and Cloud Computing Companion, pages 9--14.

Erfani, S. M., Rajasegarar, S., Karunasekera, S., and Leckie, C. (2016). High-
dimensional and large-scale anomaly detection using a linear one-class svm with

deep learning. Pattern Recognition, 58:121--134.

Eswara, N., Ashique, S., Panchbhai, A., Chakraborty, S., Sethuram, H. P., Kuchi, K.,
Kumar, A., and Channappayya, S. S. (2019). Streaming video qoe modeling and
prediction: A long short-term memory approach. IEEE Transactions on Circuits
and Systems for Video Technology, 30(3):661--673.

Ferdaus, M. H., Murshed, M., Calheiros, R. N., and Buyya, R. (2017). An algorithm for
network and data-aware placement of multi-tier applications in cloud data centers.

Journal of Network and Computer Applications, 98:65--83.

BIBLIOGRAPHY 103

Fisher, A., R. C. and Dominici, F. (2018). Model class reliance: Variable importance

measures for any machine learning model class, from the arashomoné perspective.

Fu, R., Zhang, Z., and Li, L. (2016). Using Istm and gru neural network methods for
traffic flow prediction. In 2016 31st Youth Academic Annual Conference of Chinese
Association of Automation (YAC), pages 324--328. IEEE.

Gao, C., Yan, J., Zhou, S., Varshney, P. K., and Liu, H. (2019). Long short-term
memory-based deep recurrent neural networks for target tracking. Information Sci-
ences, 502:279--296.

Ghadiyaram, D., Pan, J., and Bovik, A. C. (2017). A subjective and objective study
of stalling events in mobile streaming videos. IEEE Transactions on Circuits and
Systems for Video Technology, 29(1):183--197.

Ghadiyaram, D., Pan, J., and Bovik, A. C. (2018). Learning a continuous-time stream-

ing video qoe model. IEEE Transactions on Image Processing, 27(5):2257--2271.

Guarnieri, T., Drago, I., Vieira, A. B., Cunha, 1., and Almeida, J. (2017). Charac-
terizing qoe in large-scale live streaming. In GLOBECOM 2017-2017 IEEE Global

Communications Conference, pages 1--7. IEEE.

Guo, J., Chang, Z., Wang, S., Ding, H., Feng, Y., Mao, L., and Bao, Y. (2019). Who
limits the resource efficiency of my datacenter: An analysis of alibaba datacenter
traces. In 2019 IEEE/ACM 27th International Symposium on Quality of Service
(IWQoS), pages 1--10.

Guo, Y. and Yao, W. (2018). A container scheduling strategy based on neighborhood

division in micro service. In NOMS 2018-2018 IEEE/IFIP Network Operations and
Management Symposium, pages 1--6. IEEE.

Gupta, S. and Dileep, A. D. (2020). Long range dependence in cloud servers: a statis-

tical analysis based on google workload trace. Computing, pages 1--19.

Gupta, S., Dileep, A. D., and Gonsalves, T. A. (2018). A joint feature selection
framework for multivariate resource usage prediction in cloud servers using stability

and prediction performance. The Journal of Supercomputing, 74(11):6033--6068.

Gupta, S. and Dinesh, D. A. (2017). Resource usage prediction of cloud workloads using
deep bidirectional long short term memory networks. In 2017 IEEE International
Conference on Advanced Networks and Telecommunications Systems (ANTS), pages
1--6. IEEE.

BIBLIOGRAPHY 104

Haouari, F., Baccour, E., Erbad, A., Mohamed, A., and Guizani, M. (2019). Qoe-aware
resource allocation for crowdsourced live streaming: A machine learning approach.
In ICC 2019-2019 IEEE International Conference on Communications (ICC), pages
1--6. IEEE.

Hobfeld, T., Schatz, R., Varela, M., and Timmerer, C. (2012). Challenges of qoe
management for cloud applications. IEEE Communications Magazine, 50(4):28--36.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural compu-
tation, 9(8):1735--1780.

Holzinger, A. (2018). From machine learning to explainable ai. In 2018 world sympo-
sium on digital intelligence for systems and machines (DISA), pages 55--66. IEEE.

Hora, D. N. d., Teixeira, R., Van Doorselaer, K., and Van Oost, K. (2016). Predicting
the effect of home wi-fi quality on web qoe. In Proceedings of the 2016 workshop

on QoE-based Analysis and Management of Data Communication Networks, pages
13--18.

Hoffeld, T., Skorin-Kapov, L., Heegaard, P. E., and Varela, M. (2018). A new qoe

fairness index for qoe management. Quality and User Experience, 3(1):4.

Imdoukh, M., Ahmad, I., and Alfailakawi, M. G. (2020). Machine learning-based
auto-scaling for containerized applications. Neural Computing and Applications,
32(13):9745--9760.

ITU Telecommunication Standardization Sector (2017). ITU-T Rec P.1203: Parametric
bitstream-based quality assessment of progressive download and adaptive audiovisual

streaming services over reliable transport.

Juluri, P., Tamarapalli, V., and Medhi, D. (2015). Measurement of quality of experience
of video-on-demand services: A survey. IEEE Communications Surveys € Tutorials,
18(1):401--418.

Kafetzakis, E., Koumaras, H., Kourtis, M. A., and Koumaras, V. (2012). Qoe4cloud:
A QoE-driven multidimensional framework for cloud environments. In 2012 inter-

national conference on telecommunications and multimedia (TEMU), pages T77--82.
[EEE.

Kapocius, N. (2020). Performance studies of kubernetes network solutions. In 2020
IEEE Open Conference of Electrical, Electronic and Information Sciences (eStream,),
pages 1--6. IEEE.

BIBLIOGRAPHY 105

Kavitha, B. and Varalakshmi, P. (2017). Performance analysis of virtual machines
and docker containers. In International Conference on Data Science Analytics and

Applications, pages 99--113. Springer.

Khan, M. A. and Salah, K. (2020). Cloud adoption for e-learning: Survey and future
challenges. Education and Information Technologies, 25(2):1417--1438.

Kingma, D. and Ba, J. (2015). Adam: A method for stochastic optimization in:
Proceedings of the 3rd international conference for learning representations (iclral5).

San Diego.

Krogfoss, B., Duran, J., Perez, P., and Bouwen, J. (2020). Quantifying the value of
5g and edge cloud on qoe for ar/vr. In 2020 Twelfth International Conference on
Quality of Multimedia Experience (QoMEX), pages 1--4. IEEE.

La, H.-L., Tran, A-T. N., Le, Q.-T., Yoshimi, M., Nakajima, T., and Thoai, N.
(2020). A use case of content delivery network raw log file analysis. In 2020 In-
ternational Conference on Advanced Computing and Applications (ACOMP), pages
71--78. IEEE.

Lai, Y.-J., Liu, T.-Y., and Hwang, C.-L. (1994). Topsis for modm. European journal
of operational research, 76(3):486--500.

Li, X., Darwich, M., Bayoumi, M., and Salehi, M. A. (2020). Cloud-based video
streaming services: A survey. arXiv preprint arXiv:2011.14976.

Li, X. and Wu, X. (2015). Constructing long short-term memory based deep recurrent
neural networks for large vocabulary speech recognition. In 2015 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4520--4524.
[EEE.

Liu, B., Li, P., Lin, W., Shu, N., Li, Y., and Chang, V. (2018). A new container schedul-
ing algorithm based on multi-objective optimization. Soft Computing, 22(23):7741--
7752.

Liu, L. and Qiu, Z. (2016). A survey on virtual machine scheduling in cloud comput-
ing. In 2016 2nd IEEE International Conference on Computer and Communications
(ICCC), pages 2717--2721. IEEE.

Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., and Zhang, G. (2018). Learning under
concept drift: A review. IEFE Transactions on Knowledge and Data Engineering,
31(12):2346--2363.

BIBLIOGRAPHY 106

Madni, S. H. H., Abd Latiff, M. S., Coulibaly, Y., et al. (2017). Recent advancements
in resource allocation techniques for cloud computing environment: a systematic
review. Cluster Computing, 20(3):2489--2533.

Maenhaut, P.-J., Volckaert, B., Ongenae, V., and De Turck, F. (2020). Resource
management in a containerized cloud: status and challenges. Journal of Network
and Systems Management, 28(2):197--246.

Malakar, S., Goswami, S., Ganguli, B., Chakrabarti, A., Roy, S. S., Boopathi, K., and
Rangaraj, A. (2021). Designing a long short-term network for short-term forecasting
of global horizontal irradiance. SN Applied Sciences, 3(4):1--15.

Mao, Y., Oak, J., Pompili, A., Beer, D., Han, T., and Hu, P. (2017). Draps: Dynamic
and resource-aware placement scheme for docker containers in a heterogeneous clus-

ter. In 2017 IEEE 36th International Performance Computing and Communications
Conference (IPCCC), pages 1--8. IEEE.

Masdari, M. and Khoshnevis, A. (2020). A survey and classification of the workload
forecasting methods in cloud computing. Cluster Computing, 23(4):2399--2424.

Medel, V., Tolén, C., Arronategui, U., Tolosana-Calasanz, R., Bafiares, J. A., and
Rana, O. F. (2017). Client-side scheduling based on application characterization
on kubernetes. In International Conference on the Economics of Grids, Clouds,
Systemns, and Services, pages 162--176. Springer.

Mei, Y., Cheng, L., Talwar, V., Levin, M. Y., Jacques-Silva, G., Simha, N., Banerjee,
A., Smith, B., Williamson, T., Yilmaz, S., et al. (2020). Turbine: Facebookés service

management platform for stream processing. In International Conference on Data

Engineering (ICDE), pages 1591--1602.

Menouer, T. (2021). Kess: Kubernetes container scheduling strategy. The Journal of
Supercomputing, 77(5):4267--4293.

Miranda, G., Macedo, D. F., and Marquez-Barja, J. M. (2020). A qoe inference method
for dash video using icmp probing. In 2020 16th International Conference on Network
and Service Management (CNSM), pages 1--5. IEEE.

Moura, H. D., Macedo, D. F., and Vieira, M. A. (2020). Wireless control using rein-

forcement learning for practical web qoe. Computer Communications, 154:331--346.

Moysen, J. and Giupponi, L. (2018). From 4g to 5g: Self-organized network manage-

ment meets machine learning. Computer Communications, 129:248--268.

BIBLIOGRAPHY 107

Municio, E., Cevik, M., Ruth, P., and Marquez-Barja, J. M. (2021). Experimenting
in a global multi-domain testbed. In IEEE INFOCOM 2021-IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), pages 1--2. IEEE.

Park, Y., Yang, H., and Kim, Y. (2018). Performance analysis of cni (container net-
working interface) based container network. In 2018 International Conference on
Information and Communication Technology Convergence (ICTC), pages 248--250.
IEEE.

Pascanu, R., Gulcehre, C., Cho, K., and Bengio, Y. (2013). How to construct deep

recurrent neural networks. arXiv preprint arXiw:1312.6026.

Patrick Le Callet, S. M. and Andrew Perkis, eds., L. S. (2012). Qualinet white paper
on definitions of quality of experience. European Network on Quality of Experience
in Multimedia Systems and Services (COST Action IC 1003), 4(5):2.

Peinl, R., Holzschuher, F., and Pfitzer, F. (2016). Docker cluster management for the
cloud-survey results and own solution. Journal of Grid Computing, 14(2):265--282.

Priya, V., Kumar, C. S.; and Kannan, R. (2019). Resource scheduling algorithm with
load balancing for cloud service provisioning. Applied Soft Computing, 76:416--424.

Qi, S., Kulkarni, S. G., and Ramakrishnan, K. (2020). Understanding container net-
work interface plugins: design considerations and performance. In 2020 IEEE In-
ternational Symposium on Local and Metropolitan Area Networks (LANMAN, pages
1--6. IEEE.

Qu, C., Calheiros, R. N., and Buyya, R. (2018). Auto-scaling web applications in
clouds: A taxonomy and survey. ACM Computing Surveys (CSUR), 51(4):1--33.

Quinlan, J. J.; Zahran, A. H., and Sreenan, C. J. (2016). Datasets for avc (h. 264)
and heve (h. 265) evaluation of dynamic adaptive streaming over http (dash). In

Proceedings of the 7th International Conference on Multimedia Systems, pages 1--6.

Qureshi, K. N., Din, S., Jeon, G., and Piccialli, F. (2020). Internet of vehicles: Key
technologies, network model, solutions and challenges with future aspects. IEFEE

Transactions on Intelligent Transportation Systems, 22(3):1777--1786.

Reimers, N. and Gurevych, I. (2017). Optimal hyperparameters for deep lstm-networks
for sequence labeling tasks. arXiv preprint arXiw:1707.06799.

BIBLIOGRAPHY 108

Ren, R., Li, J., Wang, L., Zhan, J., and Cao, Z. (2018). Anomaly analysis for co-located
datacenter workloads in the alibaba cluster. arXiv preprint arXiv:1811.06901.

Robitza, W., Goring, S., Raake, A., Lindegren, D., Heikkila, G., Gustafsson, J., List, P.,
Feiten, B., Wiistenhagen, U., Garcia, M.-N., et al. (2018). Http adaptive streaming
qoe estimation with itu-t rec. p. 1203: open databases and software. In Proceedings
of the 9th ACM Multimedia Systems Conference, pages 466--471.

Santos, G., Paulino, H., and Vardasca, T. (2020). Qoe-aware auto-scaling of heteroge-
neous containerized services (and its application to health services). In Proceedings
of the 35th Annual ACM Symposium on Applied Computing, pages 242--249.

Santos, J., Wauters, T., Volckaert, B., and De Turck, F. (2019). Towards network-
aware resource provisioning in kubernetes for fog computing applications. In 2019
IEEE Conference on Network Softwarization (NetSoft), pages 351--359. IEEE.

Seufert, M., Egger, S., Slanina, M., Zinner, T., Hokfeld, T., and Tran-Gia, P. (2014). A
survey on quality of experience of http adaptive streaming. IEEE Communications
Surveys € Tutorials, 17(1):469--492.

Shrestha, A. and Mahmood, A. (2019). Review of deep learning algorithms and archi-
tectures. IEEE Access, 7:53040--53065.

Singh, S. and Chana, I. (2016a). Cloud resource provisioning: survey, status and future
research directions. Knowledge and Information Systems, 49(3):1005--1069.

Singh, S. and Chana, I. (2016b). Resource provisioning and scheduling in clouds: Qos
perspective. The Journal of Supercomputing, 72(3):926--960.

Skorin-Kapov, L., Varela, M., Hoffeld, T., and Chen, K.-T. (2018). A survey of emerg-
ing concepts and challenges for qoe management of multimedia services. ACM Trans-
actions on Multimedia Computing, Communications, and Applications (TOMM),
14(2s):1--29.

Slivar, 1., Skorin-Kapov, L., and Suznjevic, M. (2016). Cloud gaming qoe models for
deriving video encoding adaptation strategies. In Proceedings of the 7th international

conference on multimedia systems, pages 1--12.

Slivar, 1., Skorin-Kapov, L., and Suznjevic, M. (2019). Qoe-aware resource allocation
for multiple cloud gaming users sharing a bottleneck link. In 2019 22nd conference on
innovation in clouds, internet and networks and workshops (ICIN), pages 118--123.
IEEE.

BIBLIOGRAPHY 109

Soldani, J., Tamburri, D. A., and Van Den Heuvel, W.-J. (2018). The pains and gains of
microservices: A systematic grey literature review. Journal of Systems and Software,
146:215--232.

Song, B., Yu, Y., Zhou, Y., Wang, Z., and Du, S. (2018). Host load prediction
with long short-term memory in cloud computing. The Journal of Supercomput-
ing, 74(12):6554--6568.

Stockhammer, T. (2011). Dynamic adaptive streaming over http— standards and de-
sign principles. In Proceedings of the second annual ACM conference on Multimedia

systems, pages 133--144.

Takahashi, K., Aida, K., Tanjo, T., and Sun, J. (2018). A portable load balancer for
kubernetes cluster. In Proceedings of the International Conference on High Perfor-

mance Computing in Asia-Pacific Region, pages 222--231.

Torre, R., Urbano, E., Salah, H., Nguyen, G. T., and Fitzek, F. H. (2019). Towards
a better understanding of live migration performance with docker containers. In
FEuropean Wireless 2019; 25th European Waireless Conference, pages 1--6. VDE.

Tosatto, A., Ruiu, P., and Attanasio, A. (2015). Container-based orchestration in
cloud: state of the art and challenges. In 2015 Ninth international conference on

complez, intelligent, and software intensive systems, pages 70--75. IEEE.

Wang, M., Cui, Y., Wang, X., Xiao, S., and Jiang, J. (2017). Machine learning for
networking: Workflow, advances and opportunities. IEEE Network, 32(2):92--99.

Wei, L., Cai, J., Foh, C. H., and He, B. (2016). Qos-aware resource allocation for
video transcoding in clouds. IEEE Transactions on Circuits and Systems for Video
Technology, 27(1):49--61.

Wu, J., Cheng, B., Yang, Y., Wang, M., and Chen, J. (2017). Delay-aware qual-
ity optimization in cloud-assisted video streaming system. ACM Transactions on
Multimedia Computing, Communications, and Applications (TOMM), 14(1):1--25.

Xiao Yuan, A. C. (2019). A brief analysis on the implementation of the kubernetes

scheduler.

Xie, J., Yu, F. R., Huang, T., Xie, R., Liu, J., Wang, C., and Liu, Y. (2018). A survey of
machine learning techniques applied to software defined networking (sdn): Research
issues and challenges. IEEE Communications Surveys € Tutorials, 21(1):393--430.

BIBLIOGRAPHY 110

Xu, C., Rajamani, K., and Felter, W. (2018). Nbwguard: Realizing network qos
for kubernetes. In Proceedings of the 19th International Middleware Conference

Industry, pages 32--38.

Yang, R., Ouyang, X., Chen, Y., Townend, P., and Xu, J. (2018). Intelligent resource
scheduling at scale: a machine learning perspective. In 2018 IEEE symposium on

service-oriented system engineering (SOSE), pages 132--141. IEEE.

Yao, G., Ding, Y., Ren, L., Hao, K., and Chen, L. (2016). An immune system-inspired
rescheduling algorithm for workflow in cloud systems. Knowledge-Based Systems,
99:39--50.

Ye, Z., EL-Azouzi, R., Jimenez, T., and Xu, Y. (2014). Computing quality of experience
of video streaming in network with long-range-dependent traffic. arXww preprint
arXw:1412.2600.

Yue, T., Wang, H., Cheng, S., and Shao, J. (2020). Deep learning based qoe evaluation
for internet video. Neurocomputing, 386:179--190.

Zeng, H., Wang, B., Deng, W., and Zhang, W. (2017). Measurement and evaluation
for docker container networking. In 2017 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery (CyberC), pages 105--108. IEEE.

Zhan, Z.-H., Liu, X.-F., Gong, Y.-J., Zhang, J., Chung, H. S.-H., and Li, Y. (2015).
Cloud computing resource scheduling and a survey of its evolutionary approaches.
ACM Computing Surveys (CSUR), 47(4):1--33.

Zhang, J., Huang, H., and Wang, X. (2016). Resource provision algorithms in cloud
computing: A survey. Journal of Network and Computer Applications, 64:23--42.

Zhang, Q., Cheng, L., and Boutaba, R. (2010). Cloud computing: state-of-the-art and

research challenges. Journal of internet services and applications, 1(1):7--18.

Zhao, S., Xue, S., Chen, Q., and Guo, M. (2019). Characterizing and balancing the
workloads of semi-containerized clouds. In International Conference on Parallel and
Distributed Systems (ICPADS), pages 145--148.

Zhong, Z., He, J., Rodriguez, M. A., Erfani, S., Kotagiri, R., and Buyya, R. (2020).
Heterogeneous task co-location in containerized cloud computing environments. In

International Symposium on Real-Time Distributed Computing (ISORC), pages 79-
-88.

BIBLIOGRAPHY 111

Zou, Z., Xie, Y., Huang, K., Xu, G., Feng, D., and Long, D. (2019). A docker container
anomaly monitoring system based on optimized isolation forest. IEEE Transactions

on Cloud Computing.

