
UNIVERSIDADE FEDERAL DE MINAS GERAIS
Instituto de Ciências Exatas

Programa de Pós-Graduação em Ciência da Computação

Pedro Vinícius Ferreira Baptista

TRANSFERÊNCIA DE ESTADO QUASE PERFEITA

Belo Horizonte
2021



Pedro Vinícius Ferreira Baptista

TRANSFERÊNCIA DE ESTADO QUASE PERFEITA

Versão Final

Dissertação apresentada ao Programa de
Pós-Graduação em Ciência da
Computação do Instituto de Ciências
Exatas da Universidade Federal de Minas
Gerais como requisito parcial para a
obtenção do grau de Mestre em Ciência
da Computação.

Orientador: Gabriel de Morais Coutinho

Belo Horizonte
2021



Pedro Vinícius Ferreira Baptista

PRETTY GOOD STATE TRANSFER

Final Version

Thesis presented to the Graduate
Program in Computer Science of the
Federal University of Minas Gerais in
partial fulfillment of the requirements for
the degree of Master in Computer
Science.

Advisor: Gabriel de Morais Coutinho

Belo Horizonte
2021



© 2021, Pedro Vinícius Ferreira Baptista. 

    Todos os direitos reservados 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                Baptista, Pedro Vinícius Ferreira. 
 
B222p          Pretty good state transfer [manuscrito] / Pedro Vinícius  
                Ferreira Baptista — 2021. 
                     116 f. il. 
 
                    Orientador: Gabriel de Morais Coutinho. 
                    Dissertação (mestrado) - Universidade Federal de Minas    
                Gerais, Instituto de Ciências Exatas, Departamento de Ciência  
                da Computação 
                    Referências: f. 114-116 
 
                     1. Computação – Teses. 2. Passeios quânticos – Teses. 3.  
                Teoria dos grafos – Teses. 4. Computação quântica – Teses.  
                I. Coutinho, Gabriel de Morais. III.Universidade Federal de  
                Minas   Gerais, Instituto de  Ciências Exatas, Departamento de  
               Ciência da Computação. IV.Título. 
 

CDU 519.6*51 (043) 

 
Ficha catalográfica elaborada pela bibliotecária Belkiz Inez Rezende Costa 
CRB 6ª Região º 1510 
 
 












Resumo

Passeios quânticos em tempo contínuo é uma das áreas de pesquisa em teoria algébrica
de grafos e computação quântica. Uma das suas sub-áreas de pesquisa é a de transfer-
ência de estados entre vértices de um grafo. Transferências de estados são importantes,
pois permitem avaliar em quais casos uma rede com comunicação feita através de es-
tados modelados por um grafo permitem que esses estados sejam transmitidos com o
máximo possível de probabilidade de maneira eficiente.

Em geral, trabalhos sobre transferência de estados lidam com transferências per-
feitas ou quase perfeitas entre dois vértices. Transferências perfeitas de estado possuem
caracterizações para as matrizes de Adjacência e Laplaciana. Além disso, foi mostrado
ser possível verificar transferências perfeitas de estado em um grafo com um algoritmo
polinomial.

Em relação a transferências quase perfeitas, embora existam caracterizações para
sua ocorrência, tais caracterizações demandam um certo trabalho para sua verificação
em grafos e nenhum algoritmo exato é conhecido para validar sua existência.

Alguns artigos mostram que, devido às restrições que as transferências perfeitas
impõem nos autoespaços do grafo, tais transferências são relativamente raras em classes
comuns de grafos. Portanto, é natural tentar verificar a ocorrência de transferências
quase perfeitas de estados.

Nessa dissertação, apresenta-se o primeiro algoritmo exato para conferir a ocor-
rência de transferências quase perfeita de estados em grafos. Além disso, aplicou-se
resultados conhecidos nas matrizes de adjacência e Laplaciana de transferências per-
feita e quase perfeita de estados na matriz Normalizada Laplaciana, considerando sua
relação com passeios clássicos em grafos.

Palavras-chave: Passeios Quânticos, Transferências de Estado, Computação Quân-
tica, Teoria Algébrica de Grafos.



Abstract

Continuous-time quantum walks is a recent area of research, both in quantum comput-
ing and algebraic graph theory. It has applications in quantum search algorithms, state
transfer and, more recently, in creating a set of universal quantum gates. In terms of
state transfer, its main motivation is to research in which cases there can be transfer
of states in a network comprised of vertices of a graph and how much time must we
wait for a specific probability.

One of the main topics of research in state transfer in quantum walks is about
two types of transfer: perfect state transfer and pretty good state transfer. In so far,
the former has been thoroughly researched with characterizations for its occurrence on
the Adjacency and Laplacian matrices. Furthermore, it was also shown that we can
verify its occurrence in a graph using a classical algorithm in polynomial time.

As for the pretty good state transfer, some results are known in terms of its
occurrence for some classes of graphs and also for a characterization of its occurrence.
The main problem is that the characterizations we know demand some work to verify
it for a graph, and no exact algorithm was known to do it.

Furthermore, for some common classes of graphs, it was shown that perfect state
transfer is rare. This is mostly due to the restrictions it imposes on the eigenspaces
of the graph. Therefore, since we cannot have state transfer with 1 probability, it is
natural to check for state transfer with probability close to 1 and at what time cost it
demands.

In this master’s thesis, we present the first exact algorithm for verifying pretty
good state transfer in graphs. Another path of research was to try to replicate some
known results of state transfer, perfect and pretty good state transfers, for the adja-
cency and the Laplacian matrix in the Normalized Laplacian. The motivation for that
arises in the connection of the Normalized Laplacian with the Classical Random Walk.

Palavras-chave: Quantum Walks, State Transfer, Quantum Computing, Algebraic
Graph Theory.



List of Figures

2.1 Graph and Adjacency Matrix of P6 . . . . . . . . . . . . . . . . . . . . . . 46
2.2 Approximate roots of P+(x)P−(x) . . . . . . . . . . . . . . . . . . . . . . . 47
2.3 An exact formula for roots of P+(x)P−(x) . . . . . . . . . . . . . . . . . . 47

3.1 Graph P2□P3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 Adjacency Matrix of P2□P3 . . . . . . . . . . . . . . . . . . . . . . . . . . 71



List of Tables

3.1 Table of convergents of (
√
5 + 1)/2 modulo 4 . . . . . . . . . . . . . . . . . 69

3.2 Table of convergents of
√
3 modulo 4 . . . . . . . . . . . . . . . . . . . . . 70

3.3 Table of convergents of
√
2 + 1 mod 2 . . . . . . . . . . . . . . . . . . . . 72

3.4 Convergents of
√
2 + 1 mod 3 . . . . . . . . . . . . . . . . . . . . . . . . 73



Contents

Resumo 6

Abstract 7

List of Figures 8

List of Tables 9

1 Introduction 12
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Deciding Pretty Good State Transfer 23
2.1 Conditions to test Pretty Good State Transfer . . . . . . . . . . . . . . 23
2.2 Computing the Splitting Field . . . . . . . . . . . . . . . . . . . . . . . 26
2.3 Solving Diophantine Linear Systems . . . . . . . . . . . . . . . . . . . . 35
2.4 Algorithm for Deciding Pretty Good State Transfer . . . . . . . . . . . 41
2.5 Computing the Average Mixing Matrix . . . . . . . . . . . . . . . . . . 51

3 Continued Fractions 55
3.1 Why use Continued Fractions? . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 How to Compute Continued Fractions? . . . . . . . . . . . . . . . . . . 60
3.3 Continued Fractions and State Transfer . . . . . . . . . . . . . . . . . . 67

4 Normalized Laplacian 75
4.1 Other Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2 Strong Cospectrality . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Perfect State Transfer on The Normalized Laplacian . . . . . . . . . . . 81
4.4 Perfect State Transfer in Trees . . . . . . . . . . . . . . . . . . . . . . . 93



4.5 Pretty Good State Transfer in Paths . . . . . . . . . . . . . . . . . . . 101

5 Future Work 111

Bibliography 114



12

Chapter 1

Introduction

1.1 Motivation

The development of computational systems has been one of the most fundamental
reasons for the exponential growth of technology in the last decades. This development
has been based not only on better algorithms, but also on the continued capability of
decreasing the size of transistors, which are the basic units that enable the computation
of modern computers.

This decreasing in the size of the transistors is famously known as Moore’s Law,
which was an observation made by Gordon Moore that the size of the transistors
were decreasing in half in about one and half years continuously and the amount of
transistors in a chip doubled in the same rate.

Recently, this possibility has diminished as the transistors are getting smaller and
their size is getting closer to its physical limit. Because of it, there has been a shift in
focus on research not only to try to find other materials that could further this limit,
but also in other models of computation that do not depend on transistors and could
still give us more computational power.

One of such models is quantum computing. One of the first to think of quantum
systems used for computation was Richard Feynman in his famous paper Simulating
Physics with computers, Feynman [1982]. There he discusses quantum physics phe-
nomena in which a simulation in a classical computer would require an exponentially
large complexity. His proposed solution was the development of computers that would
use quantum systems within their processing units.

As much as this paper drew some attention to the idea of quantum computers,
the real shift in focus to quantum computing appeared in the paper of Shor [1994] when
he showed that factoring integers, which is a problem thought to be difficult in classical



1. Introduction 13

models of computation, if not NP -complete for classical computers, can be solved in
polynomial time in quantum computers. This result, together with Grover’s algorithm,
Grover [1996], and others that came after it showed that quantum computers, if possible
to construct, could be very useful to solve or, at least, speed up the solution to a large
variety of modern problems.

Another area in which quantum computing can be applied is cryptography. Quan-
tum computing opens new paths for investigation, both for using quantum channels
as a way of communication, but also for creating new methods of cryptography using
quantum objects.

One extra reason for the interest in the area was because of the risk that Shor’s
algorithm could do to methods using mathematical tools like the RSA, that relied on
the widely believed assumption that it is hard to factor integers into its prime factors
in classical algorithms.

The new ways that could be explored to make cryptography, together with the
possibility that one of its most used methods could be weak against quantum algo-
rithms, made it important to find novel ways to make communication secure. One
of the first papers to propose a new idea on quantum communication as a way of
cryptography is in Bennett and Brassard [1984].

Relating more specifically to the work in this thesis, we highlight the work done in
quantum walks and its applications. First, in Farhi and Gutmann [1997], it was shown
that continuous-time quantum walks could be used for walking on a tree, similarly as
the classical random walk. Not only that, but, for some cases, classical random walks
was exponentially slower than quantum walks. Even though there were faster classical
algorithms, this showed the potential of quantum walks.

Continuing the work on quantum walks, in Childs and Goldstone [2003] it was
shown that quantum walks could be used for a searching a vertex that contained a loop
in a graph. Christandl et al. [2004] showed cases in which continuous-time quantum
walks could be used for transferring states between vertices of a graph with fidelity 1,
i.e., perfect state transfer. In Godsil [2010], Godsil showed necessary conditions on the
eigenvalues of the graph for perfect state transfer to occur.

More recently, in Herrman and Humble [2019] and Herrman and Wong [2021], it
was shown how it is possible to create a universal set of gates for quantum computation
by performing quantum walks on dynamic graphs, meaning that we can add/remove
edges from the graph between quantum walks. In these papers, it is also shown how
perfect state transfer can be used not only for creating a universal set of quantum gates,
but also for reducing the amount of graphs and the time necessary for these quantum
walks.



1. Introduction 14

Now, one might ask why is pretty good state transfer relevant. One reason is
that if we want to create quantum systems to perform operations for us, we may need
some sort of communication in a network that can have qubits as nodes. Or, as we
talked above, quantum walks can be used for creating universal sets of quantum gates.

In both scenarios, the quantum walk can be defined by a Hamiltonian that evolves
in time, as we will show in Section 1.2. At some point, we need to transfer some
unknown quantum state. Of course, we want it to have a high probability of it being
close to perfect state transfer.

However, as it is stated in Godsil et al. [2012], for the Heisenberg XY Hamiltonian
a chain of qubits has perfect state transfer if and only if it has 2 or 3 qubits. The same
paper shows us that for a chain of n qubits pretty good state transfer happens if and
only if n = p− 1 or n = 2p− 1 or n = 2m − 1 for any prime p and any positive integer
m.

Furthermore, in Coutinho and Liu [2015], the authors state that for the Laplacian
matrix model, no perfect state transfer happens for any tree on more than two vertices
and as paths are also trees the result holds also for paths on more than two vertices.
Meanwhile, in Banchi et al. [2017], it is shown that pretty good state transfer happens
between the extreme vertices of paths for the Laplacian matrix if and only if n is a
power of 2.

So these are some of the results that show that if we want to create even a simple
network, in this case a chain, unless we are willing to accept a state transfer close to,
but not equal to, perfect we are limited on the choices we may have. For this reason,
investigating pretty good state transfer can lead us to show not only on which networks
we may get an arbitrarily close to 1 probability if we accept to wait for it, but also
could lead us to show how much time we should expect to wait for a given deviation
from perfect state transfer.

1.2 Background

In classical computing, we have bits as the basic unit of information. A bit can be in
either the 0 or 1 state. For quantum computing, we have qubits as this basic unit of
information. We can write the quantum counterparts of the states as 1−dimensional
subspaces represented by vectors in C2 as the following

|0⟩ =

(︄
1

0

)︄
, |1⟩ =

(︄
0

1

)︄
.



1. Introduction 15

Above we used Dirac’s notation, where |0⟩ = e1 and ⟨0| = eT1 , and e1 is the first
vector of the standard basis of C2 with 1 in the first entry and 0 elsewhere. However,
with quantum computing, the qubit has more possible states. A state of a quantum
system is a 1−dimensional subspace of C2n , where n is the number of qubits of our
system. For example, for a single qubit we can view it as any vector that lies in the
complex sphere of dimension 2 and of distance 1 to the origin.

The time-evolution of a closed quantum system is postulated to be determined
by a unitary mapping on Cm for some integer m. So, in quantum computing, any
computation can be described as a unitary matrix U applied to a given initial state
|ϕ⟩, that is, U |ϕ⟩.

The Hamiltonian is an operator that defines the energy of a quantum system.
Schrödinger’s equation uses it to define how the quantum system evolves according to
time, as follows

iè
d

dt
|Ψ(t)⟩ = Ĥ |Ψ(t)⟩ , (1.1)

where Ĥ is the Hamiltonian of the system, |Ψ(t)⟩ is the state vector of the quantum
system in time t and è is Planck’s constant.

The solution to Schrödinger’s equation is a transition operator U(t) of the form

U(t) = exp (−itĤ), (1.2)

where Ĥ is a Hermitian matrix. Therefore, because Ĥ is a Hermitian matrix, it can be
diagonalized. Let θ0, θ1, ..., θd be its distinct eigenvalues with respective E0, E1, ..., Ed

eigenprojectors. In [Hoffman and Kunze, 1971, Theorem 9], for instance, it is de-
scribed the Spectral Decomposition Theorem for normal operators. Therefore, as U(t)
is unitary, a consequence of this theorem is that it can be written as

U(t) = exp (−itĤ) =
d∑︂

r=0

exp (−itθr)Er. (1.3)

This operator defines a continuous time quantum walk and Ĥ is the Hamiltonian
of the walk. In this thesis, we are interested in the case where Ĥ is a block matrix
and one of these blocks is a graph related matrix. The standard choice is that this
matrix is the adjacency matrix of the graph. However, it could be the Laplacian, the
Normalized Laplacian or any other representation of the graph.

For instance, in Banchi et al. [2017], we have the Heisenberg (XYZ) Hamiltonian



1. Introduction 16

defined by

HXY Z =
1

2

∑︂
i ̸=j

Aij(XiXj + YiYj + ZiZj), (1.4)

where Xi represents the operator that applies the Pauli matrix X on the qubit at
position i, but is elsewhere the identity operator. Analogously for Yi, Zi, considering
the Pauli matrices Y and Z, respectively. Aij is the (i, j)-entry of the adjacency matrix
of the graph we are modeling. Similarly, it is defined the XY Hamiltonian as follows

HXY =
1

2

∑︂
i ̸=j

Aij(XiXj + YiYj). (1.5)

If we define H1
XY and H1

XY Z to be the XY -Hamiltonian and XY Z-Hamiltonian,
respectively, restricted on the action on the single-particle subspace defined by the
product of Xi |0⟩⊗n. One can show that this action can be represented as follows

H1
XY Z = |E(G)|I − 2L,

H1
XY = 2A,

for a graph G with adjacency matrix A, Laplacian matrix L, edge set E(G) and I is
the identity matrix of appropriate dimension. So, up to a shift and scaling, we can use
A and L as Hamiltonians in this subspace, as it is explained in Banchi et al. [2017].

If we say nothing of the Hamiltonian matrix at hand, we assume that it is the
adjacency matrix A(G) of the graphG. If there is no confusion, we denote the adjacency
matrix only as A. Now, with that description of quantum walks, we can define two
types of state transfer: perfect state transfer, when we can transfer the state between
vertices with 100% probability, and pretty good state transfer, when we can get as
close to a perfect state transfer as we want, but not necessarily reach it.

Definition 1.1 (Pretty good state transfer). Let G be a graph with adjacency matrix
A, vertices a and b. If, for all 0 < ϵ ≤ 1, there is a positive time t such that

|eTb U(t)ea| = |(exp (−itA))a,b| > 1− ϵ, (1.6)

then we say that pretty good state transfer occurs between a and b.

Definition 1.2 (Perfect state transfer). Let G, A, a and b be as above. If we allow
ϵ ≥ 0 and turn the above inequality into an equality when ϵ = 0, then we say that
perfect state transfer occurs between a and b.



1. Introduction 17

This formulation does not give a practical way of testing if the phenomena occur.
In order for us to get a better characterization of perfect state transfer, we need

more basic definitions. To simplify notation, we order the vertices v1, v2, ..., vn in any
way and each has a characteristic vector that represents it, so that ei represents the
vertex vi. So let us give a few definitions first. They give some conditions that the
eigenspaces can have relative to a pair of vertices.

Definition 1.3 (Cospectral vertices). We say that two vertices a and b of a graph A(G)
are cospectral if A(G\a) and A(G\b) have the same spectrum, i.e., if they have the
same eigenvalues with respective multiplicities. Here, A(G\a) is the adjacency matrix
A of the graph G removing the vertex a.

Definition 1.4 (Parallel vertices). We say that two vertices a and b of a graph A(G)
are parallel if, for all r, the projections onto eigenspaces Erea and Ereb are parallel.

Definition 1.5 (Strongly cospectral vertices). We say that two vertices a and b of a
graph A(G) are strongly cospectral if they are cospectral and parallel.

We call Sa the eigenvalue support of a vertex a, where θr, an eigenvalue of A, is
in Sa if and only if Erea ̸= 0. When there is no confusion over which vertex we are
dealing with, we use S for it. With that defined, we can give a better characterization
of perfect state transfer that is presented in Coutinho [2014].

Theorem 1.6 (Characterization of perfect state transfer). Let a and b vertices in a
graph G and assume that S = {θ0, θ1, ..., θk} is the eigenvalue support of a, and θ0 is
the largest eigenvalue. There is perfect state transfer between vertices a and b if and
only if the following conditions hold:

1. Vertices a and b are strongly cospectral.

2. The eigenvalues in S are either integers or quadratic integers, and if the latter is
true, there are integers a, b0, b1, ..., bk,∆ where ∆ is square-free and positive, such
that

θr =
1

2
(a+ br

√
∆).

3. Let g to be as follows

g = gcd

(︃
θ0 − θr√

∆

)︃
r=0,...,k

.



1. Introduction 18

Then

• (Er)ab > 0 if and only if (θ0 − θr)/(g
√
∆) is even,

• (Er)ab < 0 if and only if (θ0 − θr)/(g
√
∆) is odd.

If the conditions hold, then the minimum time we have perfect state transfer
between a and b is τ = π/g

√
∆. Other times in which it occurs are odd multiples of τ .

This characterization was first written as it is defined in Coutinho [2014] and as
it was noted in Coutinho and Godsil [2017] this theorem can be used to construct a
polynomial time algorithm to test if perfect state transfer happens. Not only that, if
the graph has perfect state transfer it gives us the precise time, or rather, the minimal
time and its multiples such that it occurs.

Below we show how one might test this based on the same paper: Coutinho and
Godsil [2017]. In the paper, it is shown not only how to test, but also shows that we
are able to do a procedure that test if perfect state transfer happens in polynomial
time on the size of the graph.

• First, we need to check if two given vertices of the graph are strongly cospectral.
Let ϕ(A) be the characteristic polynomial of A(G). If S ⊆ V (G), then let ϕS(A)

be the characteristic polynomial of A(G\S). It is easy to see that two vertices a
and b of G are cospectral if and only if ϕa(A) = ϕb(A).

• Now, to test if they are parallel, we use [Coutinho and Godsil, 2017, Lemma 2.4]
that shows that we only need to test if the poles of ϕab(A)/ϕ(A) are simple. For
that, we need g(x) = gcd(ϕab(A), ϕ(A)), which we can get by performing the
Euclidean algorithm. So, we need f(x) = ϕ(X)/g(x) to have no repeated roots.
However, that is the same as f(x) and f ′(x) having no common divisor of degree
> 0.

• For condition 2, we take f(x) = ϕ(A)/ gcd(ϕ(A), ϕ(A\a)). As it is shown in the
paper, the roots of this polynomial are simple and are exactly the eigenvalue
support of a.

• Now, we need to check if the roots are in the form defined in condition 2 of
Theorem 1.6. They must be either all integers or all quadratic integers of the
form defined. Let ai be the coefficient of xi in f(x) and deg(f(x)) be its degree.

– First, we test if they are all integers. For this, we can just factor the polyno-
mial over the integers. If all the factors are linear, then they are all integers,
and we can get the roots by checking the zero-degree coefficient.



1. Introduction 19

– Now, if they are not integers, but they can still be of the second form, we
need to test if all roots are quadratic integers. We use the same idea as
above, we factor the polynomial over the integers and see if all the factors
are quadratic factors (besides a possible zero root).

– With that, we get all possible quadratic integer roots of f(x). Then, we
need to check if we have deg(f(x)) of them and if they are all of the form
defined in condition 2 of Theorem 1.6. To see this, we use the coefficients of
the polynomial factors to compute the square-free ∆ > 1 of each polynomial
factor and check if the square-free part ∆ of them are equal. If so, then we
test the next condition. Otherwise, there is no perfect state transfer.

• Now we only need the final condition. We already have the square-free delta.
So, we only need to check the following. Let g be the gcd of all the differences
between θ0 and all eigenvalues in the support. Compute one eigenvector, vr,
which can be done with Gaussian elimination, for each eigenvalue in the support
and check if (vr)a = (vr)b, then (θ0 − θr)/(g

√
∆) must be even. Otherwise, it

must be odd.

• If they pass all these conditions, then perfect state transfer must happen between
vertices a and b at the minimal time π/(g

√
∆).

This whole procedure is an adaptation of the one suggested in Coutinho and
Godsil [2017] and there we have a proof that it is polynomial time. In the end, we can
check if two vertices of a graph have perfect state transfer between them and at which
minimal time it does happen, if it does.

Now, perfect state transfer is a stronger version of pretty good state transfer,
meaning that if we have perfect state transfer we indeed have pretty good state transfer,
so we may want to derive similar characterizations and algorithms to test and show at
which time τ we have pretty good state transfer. In order for it to happen between
vertices a and b we need

U(τ)ea ≈ λeb, (1.7)

where |λ| = 1. Here, we are using ≈ to mean that the expression on the left can get
arbitrarily close to the expression on the right, for different choices of τ . See definition
1.1. Now, if we use Equation 1.3 and multiply the equation above by Er, we have that
pretty good state transfer is equivalent to this equation below for all r

eiτθrErea ≈ λEreb. (1.8)



1. Introduction 20

Now, as Erea is a real vector, for all r such that Erea ̸= 0, we have that eiτθr ≈
λ = eiδ and so, τθr ≈ δ + mrπ, where mr is even. That exact observation, together
with Kronecker’s theorem shown below, was key to provide a characterization of pretty
good state transfer.

Theorem 1.7 (Kronecker’s Theorem, see reference Levitan et al. [1982] , Chapter 3).
Let θ1, θ2, ..., θn and λ1, λ2, ..., λn be arbitrary real numbers. For the system of inequal-
ities

|θkt− λk| < ϵ mod 2π with k = 1, 2, ..., n (1.9)

to have consistent real solutions for any arbitrarily small positive number ϵ, it is neces-
sary and sufficient that every time the relation ℓ1θ1 + ℓ2θ2 + ...+ ℓnθn = 0 holds, where
ℓ1, ℓ2, ..., ℓn are integers, we have the congruence

ℓ1λ1 + ℓ2λ2 + ...+ ℓnλn ≡ 0 mod 2π. (1.10)

So, we make the theorem’s θk to be the eigenvalues of the graph, t = τ , and the
theorem’s λk to be equal δ +mrπ for some δ such that U(t)ea ≈ λeb and λ = eiδ. In
Banchi et al. [2017], they used these observations to prove the following characterization
of pretty good state transfer. The same can be also found in a similar form for paths
in Coutinho et al. [2017].

Theorem 1.8 ([Banchi et al., 2017, Theorem 2]). Let a and b be vertices of a graph G
represented by a symmetric matrix A. Then pretty good state transfer happens between
a and b if and only if both conditions below are satisfied.

1. Vertices a and b are strongly cospectral. In this case, let θ0, θ1, ..., θd be eigenvalues
in their support, and for r = 0, 1, ..., d, let σr be defined as 0 if the projections
onto Er are equal, and 1 if they have opposite signs.

2. For all sets of integers ℓ0, ℓ1, ..., ℓd such that
d∑︂

r=0

ℓrθr = 0 and
d∑︂

r=0

ℓrσr is odd, (1.11)

then
d∑︂

r=0

ℓr ̸= 0. (1.12)

For the Laplacian matrix, we have that one of the eigenvalues, say θ0 = 0 for the
eigenvector 1, therefore σ0 = 0. This was observed in [Banchi et al., 2017, Corollary 5]



1. Introduction 21

and allowed them to change the constraints. Because now it is always possible to make∑︁d
r=0 ℓr = 0, so we only need to show that if

∑︁d
r=1 ℓrθr = 0, then

∑︁d
r=1 ℓrσr is even.

So, one application of this theorem together with the corollary above is to show
whether pretty good state transfer happens on paths for the Laplacian matrix. In
Banchi et al. [2017], they showed first that the eigenvalues of these matrices are of the
form

λr = 2− (ζr2n + ζ2n−r
2n ), (1.13)

where ζ2n = eiπ/n. This allowed them to write the linear combination of the eigenvalues
as

n−1∑︂
r=1

ℓr(−2 + (ζr2n + ζ2n−r
2n )) = 0. (1.14)

Assuming that ℓ0 =
∑︁n−1

r=1 ℓr this equation can be transformed into the following
polynomial L(x)

L(x) = 2ℓ0 +
n−1∑︂
r=1

ℓrx
r +

2n−1∑︂
r=n+1

ℓ2n−rx
r. (1.15)

So, if the above polynomial is equal to zero when applied at ζ2n, then it must
be divisible by the cyclotomic polynomial Φ2n(x) and that division, if exact, imposes
conditions on the coefficients ℓr. This fact, together with the fact that

n−1∑︂
r=0

(−1)rEr = R, (1.16)

where R is the anti-diagonal matrix and Er are eigenprojectors of the spectrum of the
Laplacian of Pn, allows them to show that pretty good state transfer happens between
the extreme vertices of Pn for the Laplacian matrix if and only if n is a power of 2.

1.3 Contributions

This master thesis will develop in the following manner. In Chapter 2, we will show
one exact algorithm that can be used for deciding whether pretty good state transfer
occurs between two vertices. Moreover, we will show that the same tools can be used
to compute other quantum objects related to quantum walks.

From Section 2.1 to Section 2.3, we show the tools already known in the literature
that we used in the algorithm. In Section 2.4, we show the algorithm. In Section 2.5,



1. Introduction 22

we show another application of the tools we used for the algorithm, now to compute
the average mixing matrix.

The algorithm we will show can have time exponential on the size of the graph.
For this reason, in Chapter 3, we will show another path that could be further devel-
oped and investigated to decide pretty good state transfer using continued fraction as
approximations of the eigenvalues. This idea came from one example found in Godsil
[2015]. We show known algorithms to compute real roots of polynomials that could be
used to compute the eigenvalues in terms of continued fractions and how we can use
them. We do not find a characterization for state transfer in terms of them, but we
show some examples that can be used to elucidate how state transfer could be studied
in this framework.

In Chapter 4, we will show some results both for perfect and pretty good state
transfer for the Normalized Laplacian Matrix. Some tools used in this chapter gave
us ideas for our algorithm for pretty good state transfer. We manage to show results
previously known for the adjacency matrix and the Laplacian matrix, but now in the
context of the Normalized Laplacian.

In Section 4.2, we show a relation between cospectral vertices in the Normalized
Laplacian and classical random walks. In Section 4.3, we show a characterization
for perfect state transfer in the Normalized Laplacian. In Section 4.4, we use this
characterization to show conditions for perfect state transfer in trees.

Finally, in Section 4.5, we show a characterization of pretty good state transfer
in paths with respect to the Normalized Laplacian.



23

Chapter 2

Deciding Pretty Good State
Transfer

2.1 Conditions to test Pretty Good State Transfer

In Chapter 1, we presented what the literature knows about perfect state transfer
and pretty good state transfer. We saw that the former has a useful characterization,
meaning that from it we can extract an exact polynomial algorithm to determine
whether it happens between two vertices in a graph and at what time it happens.

As for the latter, we also saw that there is a characterization to it. However,
differently from the former, an exact algorithm has not been found yet. One of the
goals for this thesis is to produce an algorithm that determine if pretty good state
transfer happens between two vertices in a given graph.

Now that we have a characterization for pretty good state transfer, we can think of
ways of determining if pretty good state transfer happens or not. The first observation
we might make is that the first condition of Theorem 1.8 is the same as the one in
Theorem 1.6. Since the occurrence of perfect state transfer can be verified classically
in polynomial time, we consider this condition to be dealt with.

Now, the second condition does not give us much in terms of how to determine
whether it happens or not. One way we may see this is, in order for us to test this
condition, we need a convenient way of expressing the eigenvalues of the matrix in the
support of the vertices so that we can test all integer linear combinations of them to
see if the condition holds. One difficulty of doing that is because, in general, the graph
does not need to have integer nor rational eigenvalues, so testing linear combination of
irrational values can be prone to precision errors.



2. Deciding Pretty Good State Transfer 24

There were two main ways we initially proposed to investigate this. The first was
to get the approximate eigenvalues via numerical methods and try to “guess” linear
integer relations between them. After that, use a linear system to get the general
solution and test this condition.

The main problem in doing that is how to guess these linear integer relations, and
how much can we trust this guess. The more naïve way is to get each root approximated
at d decimal places. Then, make a column vector out of each one, where each entry
is a decimal place, and then, use matrix operations to guess linear relations between
them. This is prone to precision and arithmetic errors, so we proceeded to find other
alternatives.

There are algorithms that produce integer linear relations using approximations
of real values. For example, PSLQ in Ferguson and Bailey [1992] shows an algorithm
that can extract linear integer relations. One line of investigation that could be pursued
is to see how reliable and how general are the solutions that it produces.

Since we needed all possible solutions to the linear equations defined in Theorem
1.8, and due to the possible problems with precision errors, we decided not to continue
in this path.

The second line of investigation we initially proposed to pursue would be to
find new characterizations or conditions for pretty good state transfer to occur. For
instance, Eisenberg et al. [2019] found a non-trivial sufficient condition. First, they
define how we can get the minimal polynomial of the eigenvalues in the support.

Definition 2.1 (Minimal polynomial relative to a vector). If M is a symmetric matrix
with entries in a field F, we define p(x) to be the minimal polynomial relative to a
vector z if p(x) is the smallest degree polynomial such that p(M)z = 0. It is also
required that p(x) is monic.

Definition 2.2 (Minimal polynomials of the support). For vertices a and b, let P+ be
the minimal polynomial of M relative to ea + eb and P− be the minimal polynomial of
M relative to ea − eb.

With these definitions, they give the characterization of pretty good state transfer
below. Note how this characterization is essentially the same as in Theorem 1.8, but
now using these polynomials P+ and P−.

Lemma 2.3 (Lemma 2.10 of Eisenberg et al. [2019]). Let a, b be vertices of a graph
represented by the symmetric matrix M . Then pretty good state transfer from a to b

occurs if the following two conditions are satisfied:



2. Deciding Pretty Good State Transfer 25

1. The vertices a and b are strongly cospectral.

2. Let {λi} be the roots of P+ and {µj} be the roots of P−. Then for any choice of
integers li,mj such that

∑︂
i

liλi +
∑︂
j

mjµj = 0 (2.1)

∑︂
i

li +
∑︂
j

mj = 0, (2.2)

we have

∑︂
j

mi is even. (2.3)

Finally, with that characterization, they were able to give the following sufficient
condition for pretty good state transfer to occur.

Theorem 2.4 ([Eisenberg et al., 2019, Theorem 2.11]). Let M be a symmetric matrix
representing a graph G with strongly cospectral vertices a, b ∈ V (G). Assume also that
P+ and P− are irreducible polynomials. Then if

Tr(P+)

deg(P+)
̸= Tr(P−)

deg(P−)
, (2.4)

where Tr denotes the trace, i.e., sum of the roots of a polynomial, then there is pretty
good state transfer from a to b.

This proposition gives us a simple sufficient condition to check if there is pretty
good state transfer in a graph. One point to note in this theorem is that it is assumed
that both P+ and P− are irreducible. This may not be true in general. At the same
time, just removing this condition is not enough to make an if and only if theorem.

The work of van Bommel [2020] shows this by the following example.

Example 2.5 ([van Bommel, 2020, Example 4.1]). For the graph P8, the end-vertices
are strongly cospectral, but pretty good state transfer does not occur between them.
At the same time, P+ = (x−1)(x3−3x−1) and P− = (x+1)(x3−3x+1) are reducible
polynomials such that the condition in Theorem 2.4 holds.

In his paper, he proceeds to show conditions similar to the one above that rule
out pretty good state transfer. For example, he shows the following theorem, which
removes the condition for P+ and P− to be irreducible.



2. Deciding Pretty Good State Transfer 26

Theorem 2.6 ([van Bommel, 2020, Theorem 4.2]). Let G be a graph, let a and b be
strongly cospectral vertices of G, and suppose P+ and P− have (possibly trivial) factors
f+ and f− of odd degree. Then if

Tr(f+)

deg(f+)
=

Tr(f−)

deg(f−)
, (2.5)

then there is no pretty good state transfer from a to b.

In the same paper, he shows other conditions that rule out pretty good state
transfer, but none is applicable for all graphs. In summary, there are no known simple
necessary and sufficient condition to test if pretty good state transfer happens or not.

2.2 Computing the Splitting Field

We now proceed to propose a new way of approaching the problem of testing if condition
2 of Theorem 1.8 holds. First, we show this through one example. We already know
that (see Godsil et al. [2012]) there is pretty good state transfer in the end-nodes of a
path on 4 vertices with respect to the adjacency matrix. So, we show how one could
compute it. Its eigenvalues are

θ1 =
1

2
(
√
5 + 1), θ2 =

1

2
(
√
5− 1), θ3 =

1

2
(−

√
5 + 1), θ4 =

1

2
(−

√
5− 1).

Moreover, following Lemma 2.3, θ1, θ3 are roots of P+ and θ2, θ4 are roots of P−.
Therefore, we need to verify if for all integers ℓ1, ℓ2 and m1,m2 such that

ℓ1θ1 + ℓ2θ3 +m1θ2 +m2θ4 = 0 (2.6)

ℓ1 + ℓ2 +m1 +m2 = 0, (2.7)

then m1 +m2 is even. Note that the first equation can be reorganized as

1

2
(
√
5(ℓ1 − ℓ2 +m1 −m2) + (ℓ1 + ℓ2 −m1 −m2)) = 0. (2.8)

This, in turn, can be rearranged in two equations

ℓ1 − ℓ2 +m1 −m2 = 0,

ℓ1 + ℓ2 −m1 −m2 = 0.

By adding the first equation to the second, we get that ℓ1 = m2. By subtracting,
we get that ℓ2 = m1. Using these equalities into Equation 2.7 we get that m1 = −m2.



2. Deciding Pretty Good State Transfer 27

Hence, the sum m1 +m2 is always equal to zero and therefore is always even. Thus,
pretty good state transfer happens between the end-nodes.

In Section 1.2, we showed that in order for us to characterize pretty good state
transfer in paths for the Laplacian matrix, the idea was to write the eigenvalues as
powers of a root of unity.

Here, again, we wrote the eigenvalues as powers of
√
5, for instance, θ1 = 1

2
(
√
5
1
+√

5
0
). With this representation at hand, we could create a new condition for the integer

coefficients that we needed to determine.
The problem here lies on the fact that we could only do that by knowing exactly

the eigenvalues and how to express them. Since the eigenvalues in general could be
any algebraic numbers, this is not trivial. Therefore, our work here is to create an
algorithmic way to both represent the eigenvalues exactly and with that representation
create a system that can be efficiently solved to determine whether pretty good state
transfer happens.

So we will use an alternative representation of the eigenvalues of the matrix
representing the graph. This is what we discuss below, but let us define how can we
extend the field of rationals to create a larger field that contains the eigenvalues.

Definition 2.7 (Algebraic field extension). We say that Q ⊂ Q(α) is an algebraic field
extension of Q if Q(α) is a field and α ∈ Q(α). Moreover, α ̸∈ Q and there is a rational
polynomial p(x) such that p(α) = 0.

Definition 2.8 (Splitting field). For a monic polynomial p(x) ∈ Z[x] with distinct
roots θ1, θ2, ..., θn over C, we say that F = Q(θ1, θ2, ..., θn) is the splitting field of p(x).

The splitting field of a polynomial p(x) is the smallest field extension of Q such
that p(x) factors completely.

One of the fundamental theorems of Galois Theory, the Primitive Element Theo-
rem, see for instance [Cox, 2012, Theorem 5.4.1], is that for monic integer polynomials
their splitting field F is a simple field extension, meaning, F = Q(α) for some α ∈ C.

This theorem will be key in our work on finding an algorithmic way of deciding
whether pretty good state transfer occurs. The idea is the following. We consider the
monic polynomial of the eigenvalue support, say f(x), compute the primitive element
of its splitting field F = Q(α) and then we factor f(x) over F . This gives us all factors
of f(x) as linear factors, and the constant coefficient of each factor is defined as a linear
combination of the powers of α.

Now, we take these coefficients and, together with the characterization of pretty
good state transfer in Theorem 1.8, define a linear system, compute its general solution



2. Deciding Pretty Good State Transfer 28

and see if it is possible to extract some condition on the coefficients of the general
solution that determine if condition 2 of Theorem 1.8 is satisfied or not.

There are known algorithms that compute the splitting field. In Landau [1985],
one such algorithm is shown to be polynomial in the size of the splitting field and
the polynomial that we want to split. We make use of this algorithm and others in
this paper to make our algorithm to test if pretty good state transfer happens or not.
Some results that we discuss below are also present in Trager [1976]. There he shows
some algorithms that can be used to compute splitting fields of polynomials. We focus
however on Landau’s paper, as it shows that it all can be done in polynomial time of
the polynomials given and some algebraic extension of the rationals.

Let us first explain the idea behind the main algorithm that we use for computing
the splitting field. First, the paper defines in [Landau, 1985, Section 5] an algorithm
for the factorization of a polynomial f(x) over a simple extension. This algorithm is
a key part of the algorithm to compute the splitting field. Moreover, it is also shown
that this factorization is polynomial in the size of f(x) and the minimal polynomial of
the extension. The factorization algorithm is also shown in Geddes et al. [1992].

First, we need a concept that the author uses for the algorithm of factorization
and for computing the splitting field: the norm of a polynomial. For a polynomial
f(x) ∈ Q(α)[x], we can view it as a polynomial in the two variables x and α and write
it as fα(x).

Definition 2.9 (Algebraic conjugates). Let α ∈ C be algebraic and g(x) be its minimal
polynomial over Q[x] with degree n. Then, we say that α2, α3, ..., αn, the other distinct
roots of g(x) over C, are the algebraic conjugates, or conjugates for short, of α.

Definition 2.10 (Norm of polynomials). Let f(x) ∈ Q(α)[x]. Let also α2, α3, ..., αn be
the conjugates of α = α1 over Q. Then, the norm N(f(x)) ∈ Q(x) of f(x) is defined
to be

N(f(x)) =
∏︂
i

fαi
(x). (2.9)

Thus, we can note that f(x) divides N(f(x)). Note that N(f(x)) is indeed
rational, as it is in explained in Landau [1985].

In order for us to compute the norm of the polynomial in Q(α), we would need
to find all conjugates of α and then compute the formula we defined above. For a more
practical way, the author uses another object that we define below.



2. Deciding Pretty Good State Transfer 29

Definition 2.11 (Sylvester matrix). Let p(x) =
∑︁m

i=0 pix
i and q(x) =

∑︁n
j=0 qjx

j, then
the Sylvester matrix of the polynomials, denoted by Sp(x),q(x), is a (n +m) × (n +m)

matrix that has:

• (pm, pm−1, . . . p0, 0, . . . 0) as first column,

• (0, pm, pm−1, . . . p0, 0, . . . 0) as second column and this “shift” in the rows repeats
for the first n columns,

• (qn, qn1 , . . . q0, 0 . . . 0) as the n+ 1-th column,

• (0, qn, qn−1, . . . q0, 0 . . . 0) as the n+2-th column and, again, this shift repeats now
for the final m columns.

Definition 2.12 (Resultant of polynomials). Let p(x), q(x) be polynomials as before,
then the resultant of p(x) and q(x) according to the variable x is

Resx(p(x), q(x)) = det(Sp(x),q(x)). (2.10)

Another way we can define the resultant that is also present in Landau [1985] is
the following. Let µ1, µ2, ..., µm be roots of p(x). Then,

Resx(p(x), q(x)) = pnm

m∏︂
i

q(µi). (2.11)

The equation above allows us to compute the norm of polynomials using the
formula defined in Equation 2.9. Let g(x) with degree m be the minimal polynomial
of α and αi be the conjugates of α. Let also f(x) with degree n be the polynomial we
want to compute the norm, then the following equalities hold

N(f(x)) =
∏︂
i

fαi
(x) (2.12)

=
gnm
∏︁

i f(αi, x)

gnm

=
Rest(g(t), f(t, x))

gnm
.

If g(x) is monic, that is, gm = 1, then N(f(x)) = Rest(g(t), f(t, x)). Knowing
that, we now know how to compute the norm of the polynomial. The key result for
the factorization algorithm presented in the paper is the following.

Theorem 2.13 ([Landau, 1985, Theorem 1.5]). Let f(x) ∈ Q(α)[x] be such that
N(f(x)) is square-free. Then if N(f(x)) =

∏︁
iGi(x) is a factorization into irreducible



2. Deciding Pretty Good State Transfer 30

polynomials in Q[x], then f(x) =
∏︁

i gcd(f(x), Gi(x)) is a factorization into irreducible
polynomials in Q(α)[x].

So, if we want to factor a polynomial f(x) in Q(α)[x] over this ring, as long as
its norm is square-free, we just need to take the gcd of the irreducible polynomials of
its norm. The algorithm on Landau’s paper spends a few steps into assuring that the
original polynomial, not only its norm, is also square-free. We need not worry about
this, as the polynomials P+(x) and P−(x) are square-free, as it is shown in [Kempton
et al., 2020, Lemma 2.5]. So we omit some details of the full factorization algorithm
that deal with repeated roots of the initial polynomial we want to factor.

One step we still have to deal with is that as much as the initial polynomial is
square-free, its norm could not be. So we need to transform f(x) in such a way that
its norm is square-free, and we can get it back after it. For that, Landau’s paper gives
us the following lemma.

Lemma 2.14 ([Landau, 1985, Lemma 1.6]). Let f(x) ∈ Q(α)[x] be a square-free poly-
nomial of degree n, where [Q(α) : Q] = m. Then, there are at most (nm)2/2 integers
s such that N(f(x− sα)) is not square-free.

This shows us that we can compute the norm of f(x − sα) for different values
of s until we get a N(f(x− sα)) that is square-free, and that the number of attempts
should be at most polynomial on the size of f(x) and the extension. Thus, we can
define the following pseudocode.

Algorithm 2.15 Compute square-free norm (sqrfnorm)
Input: f(x) ∈ Q(α)[x] and g(x) minimal polynomial of α over Q
Output: s such that p(x) = N(f(x− sα)) is square-free and p(x)

s = nextInteger()
p(x) = norm(t, f(x− st), g(t))
while isSquareFree(p(x)) == False do

s = nextInteger()
p(x) = norm(t, f(x− st), g(t))

end while
return (s, p(x))

One important thing to notice is the function nextInteger. It just returns a
different integer every time. One way of doing this is returning the previous integer
+1, and it can always start at some default initial integer at the beginning of the
algorithm.



2. Deciding Pretty Good State Transfer 31

In a more practical way, as we know by Lemma 2.14, the number of integers
that make the norm not square-free is polynomial in the size of the extension and
the polynomial we are trying to compute. So, if you have an integer sample set large
enough you could pick randomly, and you should expect to find a suitable integer in a
few tries.

Also, by our previous explanation, we can compute the norm of f(x − st) by
simply computing the resultant. So we write the norm function receiving the variable
that the resultant is applied over and the two polynomials that it will be applied to.
It is easy to see that it can be computed in polynomial time, as it is the determinant
of the Sylvester matrix of the two polynomials.

Now that we know that by successive transformations of f(x) into f(x− st), we
can find some integer s such that the norm N(f(x− st)) is square-free, we can apply
Theorem 2.13. We know from this theorem that if we factorN(f(x−st)) into irreducible
polynomials Gi(x) over Q, then gcd(Gi(x), f(x−st)) is an irreducible polynomial factor
of f(x− st). So, we just change the variables and take gcd(Gi(x+ st), f(x)) to get an
irreducible polynomial factor of f(x).

This algorithm can be represented by the following pseudocode. A similar version
for polynomials with repeated roots is contained in Landau [1985]. Before that, we give
two more definitions we need.

Definition 2.16 (Algebraic integer). We say that α is an algebraic integer if it is a
root of an integer monic polynomial.

Definition 2.17 (Ring of algebraic integers). Let K = Q(α) be an algebraic field
extension. We define OK to be the ring formed by the set of algebraic integers in K.

Algorithm 2.18 Factorization over Q(α)

Input: g(t) ∈ Z[t], monic, irreducible.
f(x, t) ∈ Q[x, t] square-free polynomial with coefficients in OK , K = Q[t]/(g(t))
Output: fi(x) the irreducible factors of f(x, t) over OK [x]

s, p(x) = sqrfnorm(f(x, t), g(t))
Factor p(x) =

∏︁
iGi(x) over Q

for each factor Gi(x) do
make fi(x) = gcdQ[t]/g(t)(Gi(x+ st), f(x, t))

end for
return {fi(x)} ▷ We view fi(x) as a polynomial in x with coefficients over K

The function sqrfnorm is the algorithm we defined in 2.15. It is also important to
notice that the gcd is taken over Q[t]/g(t). We omit how to do this as it is not the focus



2. Deciding Pretty Good State Transfer 32

of our paper, but Landau’s paper explains how one may do this computation and also
shows that it can be done in polynomial time on the polynomials and the extension we
are computing the gcd over. We also need to factor p(x) in Q[x], but that can also be
done efficiently, and that is also explained in Landau’s paper.

Now that we know how to factorize a polynomial in some extension, we can
proceed to the splitting field algorithm. For that, the paper gives us the following
theorem.

Theorem 2.19 ([Landau, 1985, Theorem 1.4]). Let f(x) ∈ Q(α)[x] be irreducible.
Then N(f(x)) is a power of an irreducible polynomial in Q[x].

The results above show us that if we have a polynomial f(x) we only need a
polynomial amount of tests to find a s such that N(f(x − sα)) is square-free and if
f(x − sα) is irreducible, its norm also is an irreducible polynomial. Moreover, the
following lemma gives us that if f(x) is an irreducible polynomial, everything else
follows.

Lemma 2.20 (Irreducibility of Polynomials). Let h(x) be an irreducible polynomial in
Q(β)[X], and let {α1, α2, ..., αn} be the roots of h(x). Then, h(x− sβ) is an irreducible
polynomial in Q(β)[X], for s ∈ Z.

Proof. We will prove the counter-positive of this assertion. Suppose that h(x − sβ)

is reducible over Q(β)[X]. Then, there are polynomials p(x), q(x) ∈ Q(β)[X], with
min(deg(p(x)), deg(q(x))) ≥ 1, such that h(x− sβ) = p(x)q(x).

But now, consider p(x + sβ), q(x + sβ) ∈ Q(β)[X]. They have exactly all the
roots of h(x), so h(x) = p(x+ sβ)q(x+ sβ).

Now, we know that if we have a factor h(x) of our f(x) that is irreducible over
some extension Q(α)[x], we can find in a polynomial amount of attempts a s such
that g(x) = N(h(x − sα)) is square-free. This fact gives us that g(x) is the minimal
polynomial of β + sα for h(β) = 0 over Q[x] and thus, we will show in the following
lemma that Q(α, β) = Q(β + sα). The proof is an adaptation of the one from Cox
[2012] for the Primitive Element Theorem.

Lemma 2.21. If h(x) ∈ Q[x], with β as a root, is irreducible over some extension
Q(α)[x] with u(x) being the minimal polynomial of α and g(x) = N(h(x − sα)) is
square-free for some integer s, then Q(α, β) = Q(β + sα).

Proof. By Theorem 2.19 we know that g(x) is a power of an irreducible polynomial and
being square-free means that it is an irreducible polynomial with no repeated roots.



2. Deciding Pretty Good State Transfer 33

Moreover, by the definition of the norm, h(x− sα)|g(x). This means that β+ sα

is a root of g(x) and, thus, g(x) is the minimal polynomial of β + sα. Now, we only
need to show that either α or β is in Q(β + sα) as clearly Q(β + sα) ⊂ Q(β, α).

If βi are the roots of h(x) and αj are the roots of u(x), then, by the definition
of the norm, βi + sαj are roots of g(x). As it has no repeated roots, we have that
s ̸= βi−βl

αk−αj
for k ̸= j. More specifically, if α = α1 and β = α1, then β + sα ̸= βi + sαj

for i free, but j ̸= 1.
Note that u(x) and h(β + sα − sx) are in Q(β + sα)[x] and vanish at α. Now,

take the gcd(u(x), h(β + sα − sx)) = q(x) ∈ Q(β + sα)[x]. Then, for some A(x) and
B(x), we have the following

A(x)u(x) +B(x)h(β + sα− sx) = q(x). (2.13)

Now, if we apply α to the equation above, we can see that the left-hand side is
equal to 0. So the q(x) ̸= c for some constant c ̸= 0.

So q(x) has degree greater than 0. If deg(q(x)) > 1, then, as q(x)|u(x), some αj

with j > 1 is a root of u(x). But then αj must also be a root of h(β + sα− sx), which
means that β + sα− sαj = βi. This is a contradiction.

So, q(x) = x−α ∈ Q(β+ sα)[x], which means that α ∈ Q(β+ sα). Furthermore,
as s ∈ Z, β ∈ Q(β + sα).

We can show a simple example of the procedure of the lemma above to find the
minimal polynomial of a larger extension. Suppose that we wish to factorize h(x) =
x2− 3, the minimal polynomial of β =

√
3 over Q[x], and we already have the minimal

polynomial g(x) = x2 − 2 of α =
√
2. Then, we need to compute the N(f(x)) over

Q(α), where f(x) = h(x− sα) for some integer s.
We could test different values of s until we get a square-free norm, as by Lemma

2.14 we know that we only need to test a polynomial on deg(h(x)) and deg(g(x))

amount of values of s. But one can easily check that, for s = 1, we have the following

−(
√
2 +

√
3)3 + 11(

√
2 +

√
3)

2
=

√
3, (2.14)

(
√
2 +

√
3)3 − 9(

√
2 +

√
3)

2
=

√
2. (2.15)

So, we compute N(h(x−α)). By Equation 2.12, we define both g(t) = t2−2 and
f(t, x) = (x− t)2 + 3 to compute Rest(g(t), f(t, x)). Now, first we show the Sylvester



2. Deciding Pretty Good State Transfer 34

matrix for this resultant

Sg(t),f(t,x) =

⎡⎢⎢⎢⎢⎣
1 0 1 0

−2x 1 0 1

−3 + x2 −2x −2 0

0 −3 + x2 0 −2

⎤⎥⎥⎥⎥⎦ . (2.16)

Finally, the resultant, as g(x) is monic, is just the determinant of the Sylvester
matrix

Rest(g(t), f(t, x)) = x4 − 10x2 + 1, (2.17)

which can be easily checked to be the minimal polynomial of (
√
2 +

√
3) over Q[x].

Therefore, if we try to factor h(x) over Q(t), where t =
√
2+

√
3, using the expressions

we showed in Equation 2.14 we can see that we get h(x, t) = (x− (−t3 + 11t)/2)(x−
(t3 − 11t)/2).

We can see that in this whole procedure we never used the values of α, only its
minimal polynomial, and used instead a new variable in the polynomial we wanted to
compute the norm. So this whole computation is exact. The same for the factorization
algorithm that uses the resultant.

So, with all these results above and after this explanation on why to use and com-
pute the norm above, we can finally explain the result that we needed from Landau’s
paper. It is the following corollary.

Corollary 2.22 ([Landau, 1985, Corollary 6]). Let f(x) be a polynomial in Z[x]. Let F
be the splitting field of f(x). Then, it can be determined in time polynomial in [F : Q]

and log|f(x)|.

In the corollary above, by determine the splitting field, Landau means that we
can compute the minimal polynomial of the primitive element of the splitting field and
also factor f(x) over F [x].

We can view the general idea of the algorithm in the pseudocode below. Factor
is a function that receives two polynomials f(x) and g(t). If g(t) = 0, then it factors
the f(x) over Q. Otherwise, it calls the algorithm 2.18 that factorizes the f(x) over
Q[t]/g(t). It is important to remember that while it assumes that f(x) ∈ Q[x, t],
polynomials in Q[x] are in Q[x, t] as well.

Another thing to notice is that the Algorithm 2.18 requires that g(t) is a monic
integer irreducible polynomial. The first time it is clear that it is the case as it is
one of the factors of f(x). But to see that it is still the case after we make g(t)



2. Deciding Pretty Good State Transfer 35

the minimal polynomial of a larger extension, note that we are making extensions over
algebraic integers and the linear combination of an algebraic integer is also an algebraic
integer. So, even though, sqrfnorm could return a rational polynomial, by construction
it returns an integer polynomial.

Algorithm 2.23 Compute Splitting Field and Factor Polynomial
Input: f(x) ∈ Q[x]
Output: factors of f(x) over its splitting field Q[α] and minimal polynomial of α

factors = factor(f(x), 0) ▷ factor f(x) over Q
g(x) = NULL
while hasNonLinearFactors(factors) do

h(x) = getNonLinearFactor(factors)
if g(x) == NULL then

g(x) = h(x)
else

s, g(x) = sqrfnorm(h(x), g(t))
end if
factors = factor(f(x), g(t)) ▷ factor f(x) over Q(t)/g(t)

end while
return (factors, g(x))

2.3 Solving Diophantine Linear Systems

Before we move into deciding pretty good state transfer, we need to show how to
solve Diophantine linear systems. In Theorem 1.8, we showed the characterization of
pretty good state transfer in terms of a system of linear equations over the eigenvalue
support of the matrix. Moreover, the coefficients of the linear system are assumed to
be integers. Here, we show how one may approach the problem of solving Diophantine
linear systems of equations.

In general, a system of m linear equations on n variables can be expressed as

n∑︂
j=1

aijxj = bi, where 1 ≤ i ≤ m. (2.18)

We can also view this linear system in matrix form as

Ax = b, (2.19)

where A is a matrix with entries aij, b and x are vectors with entries bi, xj respectively.
If b = 0, then we say that the system is homogeneous. If our system has the property



2. Deciding Pretty Good State Transfer 36

that the entries of A and b are integers, and we want to find only solutions x with
integer entries, we say that the system is a Diophantine system of linear equations.

Diophantine equations are a particular kind of system of equations in which we ask
for solutions over the integers. They are famous because not only they arise naturally
in various areas, but because some types of Diophantine equations are known for being
difficult to solve or having no solution at all, like the famous equation in Fermat’s Last
Theorem.

One of the main ideas to solve a general linear system is to transform a system
of linear equations into row reduced echelon form. In the case of Diophantine linear
systems we still use this technique, but we need to extend the usual row reduced
definition. Before we show how to solve it, we define what we require for a matrix to
be in row reduced echelon form. This definition was taken from Storjohann [2000].

Definition 2.24 (Row echelon and reduced row echelon forms). A m by n upper
triangular matrix A with entries aij is said to be in row echelon form if:

1. Let r be the rank of A, then only the first r rows of A are non-zero.

2. For 1 ≤ i ≤ r, let aiji be the first non-zero entry of the row i. Then j1 < j2 <

... < jr. We call [j1, j2, ..., jr] the rank profile of A.

Furthermore, if besides these two conditions A also follows the two conditions
below, we say that A is in row reduced echelon form:

1. ai,ji > 0 for 1 ≤ i ≤ r.

2. For 1 ≤ k < i ≤ r, aiji > akji ≥ 0.

Definition 2.25 (Unimodular matrix). A matrix U is said to be unimodular if it is a
square integer matrix with determinant equal to ±1.

In general, the row reduced echelon form also asks for the first non-zero entries of
each row to be the identity of the field we are dealing with. As we want all the entries
to be integers, we cannot always ask for this. Also, if we were computing the matrix
over a field, in the last condition of the definition of the row reduced echelon form, we
normally would ask for the akji = 0.

If the matrix A is a square non-singular integer matrix in row reduced echelon
form, we say that A is in Hermite normal form. Some authors also use this name for
general matrices in row reduced echelon form, but this is not standard, so we use it



2. Deciding Pretty Good State Transfer 37

only for the original case. There are more ways to extend the Hermite normal form to
matrices with arbitrary rank and dimensions, but these may not be unique.

This is different from this definition of row reduced echelon form, as it is a canon-
ical form of row equivalence. The row echelon form is not unique, but the rank profile
defined by it is unique. The positions aiji for 1 ≤ i ≤ r are called pivot positions.
These positions are unique even for the row echelon form over the rationals as the only
constraint we need to add is that the pivots are equal to 1, but this scaling of the rows
do not change the rank profile. A discussion on this can be found in [Storjohann, 2000,
section 1.4] and also at Anton and Rorres [2013].

One important feature of this row reduced echelon form is that if H is the row
reduced echelon form of a matrix A, then there is an unimodular matrix U such that
UA = H. The rows of the unimodular matrix define the standard row operations we
apply on H: multiplying a row for ±1, adding a multiple of a row into another and
switching two rows.

Note that we cannot divide or multiply a row by an integer as the matrix U would
not be unimodular, but if we use the notion of row reduction and echelon form over
the rationals we are allowed to perform these operations. The difference is that now U

would not be required to be unimodular.
Given all these definitions, we can use it to solve systems of Diophantine linear

equations. Let A be a m by n integer matrix with rank r and a system defined as
Ax = b, b an integer vector. One simple way of doing this is to take an initial system
A, transform it into row reduced echelon form, and then compute a solution if the
system has one. This is easier to do as the final matrix is upper triangular. Note that
the row operations applied in A must also be applied at b.

This is enough if one wants a solution to the system, but if we want all the
possible solutions, this is not the best way of doing it. The idea for this part was taken
from [Storjohann, 2000, section 5.3], but we explain it below. He improves the idea
given in Blankinship [1966].

If we want all possible solutions to the system Ax = b, we need one solution for
the system, say xp. We call it a particular solution. We also need a n by n− r matrix
Y such that AY = 0. The columns of Y are linear independent vectors, that define
all the solutions to the homogeneous system Ax = 0. More specifically, any integer
linear combination of the columns of Y is a solution to the homogeneous Diophantine
system. The pair (xp, Y ) forms the general solution to the system. If there is only one
particular solution for the system, Y is a zero matrix.

In order for us to get all the solutions, just computing the row reduced echelon
form of A is not enough, we need to tweak a little this procedure. First, create a matrix



2. Deciding Pretty Good State Transfer 38

B as follows

B =

(︄
−bT 1

AT 0

)︄
. (2.20)

Then, compute its row echelon form T . We will say from now on that the rank
of B = r, where r = rank (A) + 1. Now, from the discussion we had above one can see
that there is an unimodular matrix U such that

UB =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

d1 ∗ . . . ∗
d2 ∗ . . . ∗
...

...
dr xTp

0 Y T

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(︄
−bT 1

AT 0

)︄
= T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∗ ∗ . . . ∗ d1

0 ∗ . . . ∗ d2
... ∗ ...
0 0 . . . ∗ dr

0 0 . . . 0 0
...

...
0 0 . . . 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.21)

Now, if jr = m + 1, it is easy to see that Y and xp as in above form the general
solution pair for Ax = drb, but we want an integer solution for dr = 1. That is a
problem that is dealt with in the following lemma.

Lemma 2.26 (Blankinship [1966]). For the system Ax = b, let B be as in Equation
2.20 and let U be an unimodular matrix such that UB is in row echelon form. Then,
the system has a rational solution if and only if jr = m + 1. Moreover, the system
has an integer solution if and only if |dr| = 1. If |dr| = 1, then the general solution is
a pair (drxp, Y ), where they are as in Equation 2.21 and if T has full row rank, then
Y = 0.

Proof. If jr = m+ 1, clearly, the system has a rational solution, just look at the r−th
row of U and divide xp by dr. For the other direction, say the system has a rational
solution. Take AT and transform it into row echelon form. Let U ′ be the unimodular
matrix such that U ′AT is in row echelon form. Let also x′ be a rational solution to
Ax′ = b. Now, create a matrix U ′′ as in below

U ′′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0
...

U ′
1

1 x′

0
...

U ′
2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (2.22)



2. Deciding Pretty Good State Transfer 39

where U ′
1 is the matrix that has the first r − 1 rows of U ′ and U ′

2 has the rest of the
rows. Now, U ′′B is in row echelon form over the rationals with rank profile such that
jr = m+1, and as the rank profile is unique over the rationals and integers, this shows
that if Ax = b has a rational solution, then jr = m+ 1.

Now, suppose that jr = m + 1, meaning the system has a solution over the
rationals. We want to show that |dr| = 1 if and only if the system has an integer
solution. If |dr| = 1, clearly, the system has an integer solution. Just take drxp as by
Equation 2.21.

If the system has an integer solution, then let x′ be this integer solution. Thus,
there is an integer linear combination of the (n− r) last rows of U defined by a vector
v, such that (︄

dr

xp

)︄T

− vT
(︂
0 Y T

)︂
= dr

(︄
1

x′

)︄T

. (2.23)

Now, this transformation of (dr xp)
T into dr(1 x

′) in the matrix U can be ex-
pressed as an unimodular matrix U ′. But now the gcd of the entries of the r−th row
of U ′U is equal to dr. This means that the determinant of U ′U is a multiple of dr.
Because U ′U is unimodular, it follows that |dr| = 1.

Everything else follows. If T has full rank, we can define that Y = 0, as the
system has at most one solution.

This is known in the literature as one of the ways to solve Diophantine linear
systems. We only need now to show how to do it efficiently. Algorithms for computing
normal forms and row reduced echelon forms over rationals are standard, as they are
used in various branches of mathematics.

One problem that arises when dealing with row echelon form over the integers
is that the entries of the intermediate matrices that appear during the computation
can grow too much in size. This is referred to as the intermediate expression swelling.
One solution to this problem is to deal with the intermediate expressions in a residue
number system.

One algorithm that solves this problem of intermediate swell, computes the row
reduced echelon form and apply it to solving linear Diophantine systems is in the
dissertation Storjohann [2000]. There he computes the row reduced echelon form as
we defined. He calls it the Hermite normal form.

The author divides the computation of the U we defined in two parts, the first
part computes a matrix E that has the first r rows of U such that EA has the non-zero
rows of the Hermite normal form. He calls them the Hermite basis. Then, he computes



2. Deciding Pretty Good State Transfer 40

the matrix M that has the row null space of A. Therefore, our U can be written as
follows

U =

(︄
E

M

)︄
. (2.24)

The algorithm presented in the dissertation computes in some steps, from the
original matrix A, a square non-singular integer matrix A′ such that that A′ can be
written as

A′ =

(︄
B 0

D In−r

)︄
, (2.25)

where In−r is the n−r dimensional identity. So, when we refer to B, we are referring to
this B that comes from A to form the matrix A′. Now, we write the two propositions
of his dissertation that solve efficiently the problem.

Lemma 2.27 ([Storjohann, 2000, Proposition 6.3]). Let A ∈ Zn×m have rank r. A
matrix E ∈ Zr×n such that EA equals the Hermite basis of A can be recovered in
O(nrθ−1 log β + nr log(r) B(log(β))) word operations where β = (

√
r||A||)r. At most

r + ⌊log2β⌋ columns of E will be nonzero and ||E|| ≤ β.

Lemma 2.28 ([Storjohann, 2000, Proposition 6.6]). Let A ∈ Zn×∗ have column space
bounded by m and rank r̄ bounded by r. Let β = (

√
r||A||)r. A nullspace M ∈ Zn−r̄×n

for A which satisfies ||M || ≤ rβ2 can be recovered in O(nmrθ−2(log 2n/r)(log β) +

nm(log n) B(log β)) words operations.

In both lemmas, B(k) in the complexity of both algorithms is a function of the
form B(k) = O(k(log k)2(log log k)) and θ is a parameter such that two n by n matrices
in a ring can be multiplied in O(nθ) using operations (+,−, x) of the commutative ring
the entries of the matrices are in. In our case, we can assume that θ = 3.

These two lemmas give what we need for computing the general solution to a
Diophantine linear system of equations efficiently. We take A and b and construct the
matrix B as in Equation 2.20 and use the two algorithms of the two lemmas above to
compute the matrix U such that UA is in row echelon form. Then, using Lemma 2.26
we check if jr = m+1 in UA and if |dr| = 1. If both validations are true, then we take
Y and xp from U as we defined in Equation 2.21.

Corollary 2.29. For a Diophantine linear system of equations defined by A and b such
that Ax = b, if it is consistent, we can compute a pair (drxp, Y ) that defines the general
solution of the system in polynomial time.



2. Deciding Pretty Good State Transfer 41

So with that result, we can compute the general solutions to systems of linear
Diophantine equations in polynomial time.

2.4 Algorithm for Deciding Pretty Good State

Transfer

In Section 2.2, we showed how to factor f(x) over its splitting field and get the minimal
polynomial g(x) that defines the splitting field using the results of Landau [1985]. Now,
we will make use of this result to determine if pretty good state transfer happens or
not between two vertices in a given graph.

If we make f(x) = P+(x)P−(x), using what we showed in the last section, we can
factor it as follows

f(x) = P+(x)P−(x) =

deg(P+(x))−1∏︂
i=0

(x− pi(α))

deg(P−(x))−1∏︂
j=0

(x− gj(α)), (2.26)

where if λi, µj are the roots of P+(x) and P−(x) respectively, then pi(α) = λi and
gj(α) = µj, for α the primitive element of the splitting field of f(x).

Note that the algorithm receives one polynomial and splits it over its splitting
field. To get the polynomials pi and gj separately, simply compute the splitting field
of P+(x)P−(x) and then, use the minimal polynomial of the splitting field to factor P+

and P− separately using landau’s factorization algorithm.
In Section 2.2, we assumed in some algorithms that the polynomial we want to

factor is square-free, for this we need that P+(x)P−(x) to be square-free. As A is
symmetric, this is showed to be solved by the following two lemmas.

Lemma 2.30 ([Eisenberg et al., 2019, Lemma 2.5]). Given a symmetric matrix M and
cospectral vertices u, v ∈ V (M), the characteristic polynomial of M decomposes as

ϕM = P+(x)P−(x)P0(x), (2.27)

where P+ and P− have no multiple roots, and there is an orthonormal basis of eigen-
vectors such that:

1. for each root λ of P+, the basis contains a unique eigenvector φ with eigenvalue
λ and φu = φv ̸= 0,

2. for each root λ of P−, the basis contains a unique eigenvector φ with eigenvalue
λ and φu = −φv ̸= 0,



2. Deciding Pretty Good State Transfer 42

3. for each root λ of P0, with multiplicity k, the basis contains exactly k eigenvectors
with eigenvalue λ, all of which vanish on both u and v.

Lemma 2.31 ([Eisenberg et al., 2019, lemma 2.8]). The following are equivalent:

1. Vertices u and v are strongly cospectral.

2. Vertices u and v are cospectral, and P+ and P− do not have any common roots.

3. Eλeu = ±Eλev for all λ.

This ensures that, as strong cospectrality is one of the conditions of pretty good
state transfer, by testing first this condition, the square-free requirement follows. One
thing we still need to show is how to get the polynomials P+ and P− and preferably in
polynomial time.

In the explanation of the PST algorithm in Section 1.2, we showed how to get the
polynomial of the eigenvalue support with no repeated roots. This is not enough as in
this case we will be getting P+(x)P−(x), but not both separately, so we need another
way.

By the definition 2.2, we know that P+(x) and P−(x) are the minimum polyno-
mials of M relative to eu + ev and eu − ev, respectively. With this definition at hand,
we can show that we can compute them in polynomial time.

Lemma 2.32. Let P+(x) and P−(x) be the polynomials as defined in definition 2.2
for the adjacency matrix of a connected graph G with respect to the vertices u, v, and
assume |V (G)| = n. Then, we compute the polynomials in polynomial time in n.

Proof. We will show that we can do it for P+(x). For P−(x) the procedure is analogous.
Iteratively, keep checking if Ar(eu + ev) is in the span of {Ak(eu + ev)}r−1

k=0 until
it finally is. When this happens, find the linear combination of the rows that makes it
so. Note that P+ is monic, because P+|ϕM as in Lemma 2.30.

With these polynomials in hand, we can make the following modification to the
characterization in Lemma 2.3.

Lemma 2.33 (Characterization of pretty good state transfer). Let u, v be vertices of
a graph G represented by the integer symmetric matrix M . Let f(x) = P+(x)P−(x)

and Q(α) be the splitting field of f(x) and d(x) ∈ Q[x] the minimal polynomial of α.
Let pi(x), gj(x) ∈ Q[x] be polynomials such that, for λi, µj roots of P+(x) and P−(x),
respectively, pi(α) = λi and gj(α) = µj. Assume w.l.o.g. that deg(pi), deg(gj) <



2. Deciding Pretty Good State Transfer 43

deg(d). Then pretty good state transfer from u to v occurs if and only if the following
two conditions are satisfied:

1. The vertices u and v are strongly cospectral.

2. For any choice of integers li,mj such that

∑︂
i

lipi(x) +
∑︂
j

mjgj(x) = 0, (2.28)

and

∑︂
i

li +
∑︂
j

mj = 0, (2.29)

we have

∑︂
j

mi is even. (2.30)

Proof. We only need to show that the second condition, in particular, the first equation
of the second condition, is the same as the one in Theorem 2.3. First, we make the
following simple substitution

0 =
∑︂
i

liλi +
∑︂
j

mjµj

=
∑︂
i

lipi(α) +
∑︂
j

mjqj(α)

=
∑︂
i

lipi(x) +
∑︂
j

mjgj(x).

The last equality is a simple observation that as the degrees of pi(x) and gj(x) are
lower than D, then their linear combination is a polynomial with degree lower than D.
As we assumed that d(x) is already the minimal polynomial, this linear combination
must be the zero polynomial.

Now, with this characterization, we can finally propose the following algorithm
for deciding pretty good state transfer.

Theorem 2.34 (Algorithm for pretty good state transfer). Suppose we have u, v ∈
V (G) vertices represented by the integer symmetric matrix M . We can decide if pretty
good state transfer happens between them in polynomial time in n and the degree of the



2. Deciding Pretty Good State Transfer 44

splitting field of P+(x)P−(x). The complexity to get the coefficients for pi(x) and gj(x)
as before, is also polynomial in the same parameters.

Proof. Let λi be the roots of P+, µj be the roots of P−, D+ = deg(P+) and
D− = deg(P−). Let α be such that Q[α] ∼= Q[λ1, ..., λn, µ1, ..., µm] and that we
have d(x) ∈ Q[x] its minimal polynomial with deg(d(x)) = D. We also have
pi(x), gj(x) ∈ Q[x] polynomials such that pi(α) = λi and gj(α) = µj. Again, we
can assume that deg(pi), deg(gj) < D.

For the first condition of the lemma above, we know how to test it by the expla-
nation we gave for the algorithm of perfect state transfer in 1.2. So we will concentrate
on the second condition.

Let pi(x) =
∑︁D−1

k=0 aikx
k and gj(x) =

∑︁D−1
k=0 bjkx

k. If the degree of any of the
polynomials is smaller than D − 1, we make the larger than the degree coefficients
equal to zero. In practice, we just need the coefficients for both polynomials up to
the largest degree between the two, for now we can assume that it is in the worst case
D − 1.

Hence, by the same observation as in the previous lemma, as the degrees of the
pi’s and gj’s are lower than D and d(x) is the minimal polynomial of α we get the first
equation as

∑︂
i

lipi(x) +
∑︂
j

mjgj(x) = 0, (2.31)

which we can turn into the following set of equations

∑︂
i

liaik +
∑︂
j

mjbjk = 0 for 0 ≤ k < D . (2.32)

We add to these equations, the next equation of the lemma

∑︂
i

li +
∑︂
j

mj = 0. (2.33)

We turn this system into a system of Diophantine equations as follows: for each
equation 0 ≤ k < D of the first D equations, take the least common multiple of the
denominators of the aik and bjk, say dk. Now multiply each equation by its dk, such
that they will now be of the form

∑︂
i

lidkaik +
∑︂
j

mjdkbjk = 0 for 0 ≤ k < D. (2.34)



2. Deciding Pretty Good State Transfer 45

This modification does not exclude any integer solutions, and now it is an integer
linear system of the form Ax = b, where b = 0. So it is homogeneous. By applying
Corollary 2.29, we know that we can compute its general solution in polynomial time
and get a result of the form (xp, Y ), where Axp = b and AY = 0.

Since our system is homogeneous, it always has the trivial solution, so we do not
need to worry about the system being inconsistent over the integers. Moreover, all
solutions are integer linear combinations of the columns of Y . So for any integer vector
v, with appropriate dimension, AY v = 0. If the only solution of the system is the
trivial solution, we can assume that Y is the zero column vector of appropriate size.

If r′ is the number of columns of Y , then we can write the mj as follows

mj =
r′∑︂

k=1

tkYD++j,k, (2.35)

where tk is a free variable and YD++j,k is the entry corresponding to k−th column and
the row of the coefficients corresponding to mj. Now, if we sum all the mj, we get an
expression as follows

∑︂
j

mj =
r′∑︂

k=1

tk(
∑︂
j

YD++j,k) =
r′∑︂

k=1

tkβk, (2.36)

where the βk’s are integers. Now, as the tk’s can be any integers, this expression can
be odd if and only if any of the βk is odd. Thus, we can check if pretty good state
transfer happens between two vertices by simply checking if any of the βk is odd.

As every step here can be done in polynomial time, we can do this in polynomial
time.

The size of the splitting field will determine the complexity, as the polynomials
in α that define the roots of P+(x) and P−(x) can have degree equal to the size of the
minimal polynomial of the splitting field minus 1. This can be very large compared to
the size of polynomials P+ and P− we have at the beginning. In fact, it can be as large
as n!. So, this method can be exponential in n in the worst case.

We will show how the whole algorithm works through one example. Consider
the graph P6 below, the path on 6 vertices, with respect to the adjacency matrix, also
shown below. We talked before in Section 1.1 that for this graph and matrix, there is
pretty good state transfer between its end-nodes.

We assume that we already verified that the extreme vertices are strongly cospec-
tral. We proceed to verify the second condition of Lemma 2.33 using what is shown in
Lemma 2.34.



2. Deciding Pretty Good State Transfer 46

1 2 3 4 5 6

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 0 0 0
1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
0 0 0 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
Figure 2.1: Graph and Adjacency Matrix of P6

First, we need to compute the polynomials P+(x) and P−(x) as in Lemma 2.32.
So, for P+(x), apply e1 + e6 to the powers Ak, k starting at zero, until the collection of
the resulting vectors are linear dependent. In this case, we get that

A0(e1 + e6) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A1(e1 + e6) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0

0

1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A2(e1 + e6) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

1

1

0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, A3(e1 + e6) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

2

1

1

2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

One can see that ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
− 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

1

0

0

1

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

1

1

0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

2

1

1

2

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0.

And therefore,

P+(x) = 1− 2x− x2 + x3.

If the linear combination results in a polynomial that is not monic, just divide
the polynomial by the gcd of its coefficients. Similarly, for P−(x), now applying to the
vector e1 − e6, we get

P−(x) = −1− 2x+ x2 + x3.



2. Deciding Pretty Good State Transfer 47

Now, if we were to compute the roots of the eigenvalues, we would get something
like this below for its approximations and an exact form.

Figure 2.2: Approximate roots of
P+(x)P−(x)

Figure 2.3: An exact formula for
roots of P+(x)P−(x)

So, as they are not rational, we can see that it could be hard to verify the
condition manually or even algorithmically using the exact expressions or dealing with
approximations. The next step is to factor these polynomials over their splitting field.
So, we follow Algorithm 2.23 passing P+(x)P−(x) as f(x).

The first step is to factor f(x) over the rationals. The result gives us P+(x) and
P−(x) as irreducible factors. This could not be the case, as we already discussed in
Section 2.1. Regardless of that, we pick any of the irreducible non-linear factors as
the minimal polynomial of our first algebraic field extension. In our example, we take
P+(x) and make g(x) = P+(x). Thus, we factor f(x) again, now over Q(α), where α
is some root of g(x).

We want to factor f(x) as in Algorithm 2.18. In order to do so, we pass g(x)
replacing x by t and f(x) as f(x, t). Note that f(x) can still be seen as a polynomial
in x and t, even though its degree in t is zero.

The first step to factor f(x) is to find an integer s such that the N(f(x − st))

over Q(α) is square-free. We discussed some ways this can be done in Section 2.2. For
our example, one can check that for s = 2, we get

f(x− 2t) = t6(64) + t5(−192x) + t4(240x2 − 80) + t3(−160x3 + 160x)

+t2(60x4 − 120x2 + 24) + t(−12x5 + 40x3 − 24x) + (x6 − 5x4 + 6x2 − 1).

Moreover, this is the Sylvester matrix of f(x − 2t) and g(t), where the columns
relative to the coefficients of f(x − 2t) repeat 3 times, since deg(g(t)) = 3 and the
columns relative to the coefficients of g(t) repeat 6 times, since deg(f(x− 2t)) over the



2. Deciding Pretty Good State Transfer 48

variable t is 6,

Sf(x−2t),g(t) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

64 0 0 1 0 . . . 0

−192x 64 0 −1 1 0

80(3x2 − 1) −192x 64 −2 −1 0

160(−x3 + x)
...

... 1 −2 0

12(5x4 − 10x2 + 2) 0 1 0

4(−3x5 + 10x3 − 6x) 0 0 1

f(x) 0 0 −1

0 f(x) 0 0 −2

0 0 f(x) 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and its determinant, consecutively N(f(x− 2t)), is

L(x) = det(Sf(x−2t),g(t)) = x18 − 12x17 − 3x16 + 528x15 − 1347x14 − 7700x13

+ 32256x12 + 36800x11 − 291156x10 + 56256x9 + 1176437x8 − 825968x7

− 2236577x6 + 1836996x5 + 2173953x4 − 1375672x3 − 1062006x2 + 225576x+ 132327,

which is square-free. The next step is to factor L(x) over Q, doing so results in the
factors below

L(x) = (x3 − 3x2 − 18x+ 27) (x3 − 3x2 − 4x− 1) (x3 − 3x2 − 4x+ 13)

(x3 − x2 − 16x− 13) (x3 − x2 − 16x+ 29) (x3 − x2 − 2x+ 1).

Now, by Theorem 2.13, for each irreducible factor ℓi(x) of L(x),
gcdQ(α)(ℓi(x), f(x−2t)) is an irreducible factor of f(x−2t), where the gcd is taken over
Q(α). Therefore, both ℓi(x) and f(x−2t) are seen as polynomials in x with coefficients
over Q(α), where t, in this case, represents α.

As we want the factors of f(x), we compute for each irreducible factor ℓi of L(x),
gcdQ(α)(ℓi(x+ 2t), f(x)) and get the factors of f(x) as below

f(x) = (x− t)(x+ t)(x− t2 + 2)(x+ t2 − 2)(x− t2 + t+ 1)(x+ t2 − t− 1). (2.37)

In our example, the polynomial factored completely after one extension of the
rationals. If it did not, we proceeded as in the loop of Algorithm 2.23, until we generate
a g(t) that defines the splitting field of our polynomial and factor f(x) into linear factors
over x. Since all factors are linear, we proceed.

The next procedure is to determine what are the factors of P+(x) and P−(x). In
Section 2.4, we talk about one of the methods to do so. That is, to use the Algorithm



2. Deciding Pretty Good State Transfer 49

2.18 to factor separately P+(x) and P−(x) over the final g(t).
Another possible solution is, for each linear factor of the form (x−fi(t)), compute

P+(fi(t)) mod g(t). If it is equivalent to 0, then fi(t) represents a root of P+(x),
otherwise it is a root of P−(x). For instance, (x− t) is one of the factors of f(x). Since
in our case g(x) = P+(x), one can see that

P+(t) ≡ 0 mod g(t).

Doing so for each factor, we arrive at

P+(x) = (x− (t))(x− (t2 − t− 1))(x− (−t2 + 2)),

P−(x) = (x− (−t))(x− (−t2 + t+ 1))(x− (t2 − 2)).

One property of this case is that the roots of P+(x) are exactly minus the roots
of P−(x). This is not the general case, so we cannot always assume this. After that,
we can finally write the system we have to solve. The system we have to solve in the
second condition of Lemma 2.33 becomes

ℓ1(t) + ℓ2(t
2 − t− 1) + ℓ3(−t2 + 2)

+m1(−t) +m2(−t2 + t+ 1) +m3(t
2 − 2) = 0,

ℓ1 + ℓ2 + ℓ3 +m1 +m2 +m3 = 0.

Moreover, by Lemma 2.34, we can rewrite this system as in below

t2(ℓ2 − ℓ3 −m2 +m3) = 0,

t(ℓ1 − ℓ2 −m1 +m2) = 0,

−ℓ2 + 2ℓ3 +m2 − 2m3 = 0,

ℓ1 + ℓ2 + ℓ3 +m1 +m2 +m3 = 0.

In our example, all the coefficients of the ℓ′is and mj’s are integers, but it could
be that some of them are rational numbers. If it were the case that some of them are
rationals, then just multiplying each equation by the lcm (the least common multiple)
of the denominators turns the system into a Diophantine linear system, which is what



2. Deciding Pretty Good State Transfer 50

we needed. In matrix form, our system becomes

Ax =

⎛⎜⎜⎜⎜⎝
0 1 −1 0 −1 1

1 −1 0 −1 1 0

0 −1 2 0 1 −2

1 1 1 1 1 1

⎞⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ℓ1

ℓ2

ℓ3

m1

m2

m3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0 = b.

Following that, we write A as the matrix B as in Equation 2.20. Given the matrix
B, all we have to do is to transform it into row echelon form by a series of integer
operations into its rows as explained in Section 2.3, such that we get an unimodular
matrix U whose rows have the operations we have done in B. Below we have matrices
U , B and R′, such that UB = R′ and R′ is in a row echelon form of B.

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0 0

0 1 0 0 0 0 0

0 1 1 1 0 0 0

0 1 0 0 1 0 0

1 0 0 0 0 0 0

0 −1 1 0 −1 1 0

0 −1 0 1 −1 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1

0 1 0 1 0

1 −1 −1 1 0

−1 0 2 1 0

0 −1 0 1 0

−1 1 1 1 0

1 0 −2 1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −1 2 0

0 1 0 1 0

0 0 1 3 0

0 0 0 2 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Using the language we showed in Section 2.3, we separate all the matrices into
blocks that can be written as⎛⎜⎝ d ET

dr xp

0 Y t

⎞⎟⎠(︄−bT 1

AT 0

)︄
=

⎛⎜⎝R
T d

0 dr

0 0

⎞⎟⎠ ,

where drxp is a particular solution to our system, since it is homogeneous, xp = 0

is a particular solution, and the columns of Y generate all integers solutions to our
system as in Lemma 2.26. Finally, we can verify the second condition of Lemma 2.34



2. Deciding Pretty Good State Transfer 51

by computing the sum of m′
is parameterized by the columns of Y as in below⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ℓ1

ℓ2

ℓ3

m1

m2

m3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 −1

1 0

0 1

−1 −1

1 0

0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(︄
z1

z2

)︄
.

All the integers coefficients of the second condition must be of this form. There-
fore,

m1 = −z1 − z2, m2 = z1, m3 = z2.

Hence,

∑︂
mi = (−z1 − z2) + (z1) + (z2) = 0,

which is even, thus, pretty good state transfer happens between the end-nodes of P6.
We already knew that, but now we could verify it without using approximations of the
eigenvalues or needing to know how to express them beforehand. All steps follow the
exact algorithm we showed in this Chapter.

2.5 Computing the Average Mixing Matrix

When we perform a quantum walk, we saw that it can be determined by a unitary
matrix U(t) that is equal to exp (−itH) for some Hamiltonian H. But, as much as
this unitary matrix defines the evolution of the system for a given time t, in reality we
cannot access this matrix as we can only measure the state at a given time and after
this measurement the whole quantum state collapses into the state we measured.

If one repeats this process enough times, one can get an approximation of the
probability distribution over the possible states for the measurement. That is why we
define the Mixing Matrix MG(t) of a graph, it captures this probability distribution
for a time evolution t.

Definition 2.35 (Mixing matrix). The mixing matrix MG(t) belonging to the graph
G is the following

MG(t) = U(t) ◦ U(t)¯ = U(t) ◦ U(−t), (2.38)



2. Deciding Pretty Good State Transfer 52

where ◦ is the Schur product (the entry-wise product of the matrices).
As U(t) is unitary, it follows that each row and column sum to 1, so each row and

column form a probability density over the vertices. Now, one might want to know if
by performing measurements at any given time, what is the probability distribution
they might expect to get. That is why we define the average mixing matrix M̂G as
follows

M̂G = lim
T→∞

1

T

∫︂ T

0

MG(t)dt. (2.39)

As we are dealing with the adjacency matrix, we can get to a simple expression
for the average mixing matrix.

Theorem 2.36 (Godsil [2015]). Let A =
∑︁

r θrEr be the spectral decomposition of the
adjacency matrix of G a graph, then

M̂G =
∑︂
r

Er ◦ Er. (2.40)

Proof. By definition of the mixing matrix and some simple manipulations, we get that

MG = U(t) ◦ U(−t)

=
∑︂
i,j

eit(θi−θj)Ei ◦ Ej

=
∑︂
i

Ei ◦ Ei +
∑︂
i<j

(eit(θi−θj) + e−it(θi−θj))Ei ◦ Ej

=
∑︂
i

Ei ◦ Ei +
∑︂
i<j

2 cos (t(θi − θj))Ei ◦ Ej.

Now, as

lim
T→∞

1

T

∫︂ T

0

cos(γt)dt = 0, (2.41)

together with the above expression and the definition of the average mixing matrix,
the theorem follows.

This theorem and some results of this section are contained in Godsil [2015]. This
theorem shows us that if we can find the eigenprojectors of A, we can compute the
average mixing matrix. At first, one might try to do it numerically. But this is prone
to errors. With our work in Section 2.2, we can get the exact average mixing matrix.

First, we need to show how one can construct polynomials to get the eigenpro-
jectors. This is well known in the literature.



2. Deciding Pretty Good State Transfer 53

Definition 2.37 (Lagrange polynomials). Let θ1, θ2, ..., θm be the distinct eigenvalues
of A. The Lagrange basis polynomials ℓi(x) over the eigenvalues can be defined as
follows

ℓi(x) =
∏︂
j ̸=i

(x− θj)

(θi − θj)
. (2.42)

The idea is quite simple. Use the Lagrange basis polynomials over the eigenvalues
of the adjacency matrix to get the eigenprojectors, as follows

ℓi(A) =
∑︂
r

ℓi(θr)Er = Ei. (2.43)

Given that, we repeat the steps we did in the previous Section. We get the mini-
mal polynomial of A, that is just the square-free part of the characteristic polynomial
of A as it is diagonalizable, compute its splitting field, say Q(α), factor it over its
splitting field and get polynomials pi(t), such that pi(α) = θr.

As we know, we do not have the α from the splitting field algorithm. So, initially
we only have the polynomials, but we will show that this will not be necessary for us
to compute the average mixing matrix. So, we proceed as follows, let us define the
Lagrange basis polynomials over Q(α)

ℓi(x, t) =
∏︂
j ̸=i

(x− pj(t))

(pi(t)− pj(t))
. (2.44)

If one wishes to avoid the coefficients and degree in t to grow too much, it is a
good idea to compute these polynomials over Q(α), using modular arithmetic over the
minimal polynomial of α, say g(t). Considering that we have these polynomials, we
can compute the average mixing matrix as follows

M̂G =
∑︂
r

ℓr(A, t) ◦ ℓr(A, t).

Each term of the expression above can be seen as the Schur product of two
matrices of polynomial fractions over the variable t. This might not seem too helpful
at first, but the following lemma, shown in Godsil [2015], shows us that this is exactly
what we wanted.

Lemma 2.38 (Godsil [2015]). The entries of the average mixing matrix of a graph are
rational.



2. Deciding Pretty Good State Transfer 54

We can assume that the gcd of each entry is 1, otherwise, just divide both the
numerator and denominator by their gcd. This fact, together with the lemma above,
shows us that the polynomials fractions in each entry of M̂G, when applied at α are in
fact a rational number.

So, suppose that each entry ij is of the form pij(t)/qij(t). Find the inverse of
qij(t) modulo g(t). This can be done by using the extended Euclidean algorithm to
find polynomials r(t), s(t), u(t) such that

r(t)qij(t) + s(t)g(t) = gcd(qij(t), g(t)) = u(t). (2.45)

Then, multiply both pij(t) and qij(t) by r(t)/u(t) and compute their values
modulo g(t). Since r(t)/u(t) is the inverse of qij(t), it must be that the result of
qij(t)r(t)/u(t) modular g(t) is a rational number (if the gcd is done so that the result
is normalized, the result must be equal to 1).

As we multiplied both the numerator and denominator, the new polynomial must
have the same value when applied to α. Therefore, the result of r(t)pij(t)/u(t) modulo
g(t) must also be a rational number, and we get what we wanted.

If we proceed in this way for all the entries of the matrix, we have the average
mixing matrix. All these procedures are polynomial on the size of the splitting field
and the size of the minimal polynomial of A.



55

Chapter 3

Continued Fractions

3.1 Why use Continued Fractions?

In Chapter 2 we saw an algorithm to decide if pretty good state transfer happens
between two vertices a and b in a graph. This algorithm is exact, and it is polynomial
on the size of the characteristic polynomial of the graph and the degree of the Splitting
Field of the eigenvalues in the support of either vertex.

As much as this algorithm helps us, due to the degree of the Splitting Field po-
tentially being exponential on the size of the polynomial, we might want to check the
occurrence of pretty good state transfer by other means, using approximations of the
eigenvalues. Moreover, it would be good to find a way of using these approximations
to determine a time t that, using some parameter that determines how close our ap-
proximations are to the eigenvalues, the absolute value of U(t)a,b approaches 1, i.e.,
perfect state transfer.

For example, if all our approximations are such that the absolute value of their
difference from their respective eigenvalues is at most ϵ with 0 < ϵ ≤ 1 small enough,
we might want to find a time t such that

| exp (itA)a,b| ≥ 1− ϵ, (3.1)

which is precisely our definition for pretty good state transfer.
We propose to use continued fractions as a form to give a structured approxima-

tion to the eigenvalues. From this representation we would want to derive properties
that would allow us to assert if pretty good state transfer happens and at what time.
The idea came from one example found in Godsil [2015].

Our goal here is to at least introduce this topic of research, show how it can be



3. Continued Fractions 56

used, and give some more examples. So let us define a few things first. The study of
continued fraction and its applications is extensive on its own. We will show only some
initial definitions and concepts related to it. Most of what we show can be found in
Khinchin [1964].

Definition 3.1 (Simple continued fraction). Let r be a real number. We say that the
list [a0; a1, a2, ...], where a0 ∈ Z and ai ∈ N for i ≥ 1, is a simple continued fraction
representation for r if

r = a0 +
1

a1 +
1

a2 + · · ·

. (3.2)

Definition 3.2 (Finite/infinite continued fractions). We say that the continued frac-
tion is finite if the list of integers that defines it is finite. Otherwise, we say that is
infinite. We call the numbers ai from the continued fractions by elements.

Definition 3.3 (Convergents of a continued fraction). The rational number

pi
qi

= [a0; a1, a2, ..., ai] (3.3)

is called the i-th convergent.

Definition 3.4 (Periodic continued fractions). We say that the infinite continued frac-
tion r = [a0, a1, ...] is periodic if there are positive integers k0 and h such that for all
k ≥ k0

ak+h = ak. (3.4)

We denote periodic continued fractions as follows

r = [a0, a1, ..., ak0−1, ak0 , ak0+1, ..., ak0+h−1]. (3.5)

Definition 3.5 (Best rational approximation of a real number). For a real number r,
we say that a/b, where b > 0, is a best rational approximation of r if there is no other
rational number closer to r with a denominator smaller or equal than b.

There is a generalized continued fraction for complex numbers or even other more
general definitions for real numbers, but we will focus on simple continued fractions.
So from here on when we say continued fractions we mean simple continued fractions.



3. Continued Fractions 57

Continued fractions have numerous relevant properties. For example, if a, b ∈ Z
are coprime there are infinitely many ways of describing a/b, multiplying both a and b
by any integer different from zero. However, in continued fractions, there are only two
ways. For example, if q ∈ Q, then there are a0, ..., an so that q = [a0; a1, a2, ..., an+1] =

[a0; a1, a2, ..., an, 1]. If we impose the condition that the last integer in the list cannot
be 1, then the continued fraction is always unique.

Moreover, all finite continued fractions define a rational number. Infinite contin-
ued fractions define all irrational numbers ([Khinchin, 1964, Theorem 14]). Also, with
the above restriction on the last element of the finite continued fractions, the continued
fraction of a real number is unique.

One more interesting feature of continued fractions is that we can use them to
get each one of the best rational approximations of a real number. In Khinchin [1964],
there are two definitions of the best rational approximations. The first says that for a
real number r, a/b is a best rational approximation of the first kind if for all fractions
c/d ̸= a/b, with 0 < d ≤ b, then ⃓⃓⃓

r − a

b

⃓⃓⃓
<
⃓⃓⃓
r − c

d

⃓⃓⃓
. (3.6)

Now, a/b is a best rational approximation of the second kind for r if for all
fractions c/d ̸= a/b with 0 < d ≤ b, then

|br − a| < |dr − c| . (3.7)

In Khinchin [1964], it is shown that best rational approximations of the second
kind are also of the first kind. Moreover, we have the following theorem.

Theorem 3.6 ([Khinchin, 1964, Theorem 16]). Every best approximation of the second
kind is a convergent.

Therefore, this theorem shows us that the convergents defined by the continued
fractions not only are good approximations to a given real number, but they are the
best in a given measure.

All these points may be enough to understand the interest in them as approxi-
mations of real numbers. But now we need to show how do we obtain the continued
fractions of a given number. As the continued fraction of irrational numbers are infinite
we eventually want the procedure to stop, so below is an algorithm that stops at the
k-th element of a continued fraction. A similar procedure to the one below, but with
no condition to stop, is shown in [Khinchin, 1964, Theorem 14].



3. Continued Fractions 58

Algorithm 3.7 Compute the Continued Fraction of a Real Number
Input: r ∈ R and 0 ≤ k ∈ N
Output: The continued fraction of r up to the index k: a0, a1, ..., ak

a0 = ⌊r⌋
i = 1
while i ≤ k do

r = r − ai−1

r = r−1

ai = ⌊r⌋
i = i+ 1

end while
return (a0, a1, ..., ak)

For example, for the real number r =
√
2, we have the following steps: first,

compute
⌊︁√

2
⌋︁
= 1, so a0 = 1. After that, make

r =
1√
2− 1

=
√
2 + 1.

Again, compute ⌊r⌋ = 2, so a1 = 2. Now, make

r =
1√

2 + 1− 2
=

1√
2− 1

=
√
2 + 1. (3.8)

One can check that this pattern will repeat. Therefore, as we defined before,
√
2 is

represented by [1, 2]. Periodic continued fractions are a very distinct type of continued
fractions because they define the elements of the form a + b

√
D, where a, b ∈ Q and

D ∈ N square-free. These numbers are called quadratic irrationals. This can be seen
in the following theorem.

Theorem 3.8 ([Khinchin, 1964, Theorem 28]). Every periodic continued fraction rep-
resents a quadratic irrational number, and every quadratic irrational number is repre-
sented by a periodic continued fraction.

Quadratic irrational numbers are of particular interest for state transfer as they
appear in characterizations of perfect state transfer like in Theorem 1.6 and Section
4.3. Furthermore, perfect state transfer between two vertices, as shown in Corollary
4.14, imply that the vertices are periodic. We define what it means in the next chapter
for vertices to be periodic, but it suffices to say that it is a concept related to perfect
state transfer. This is another reason why we may want to investigate their relation in
terms of pretty good state transfer.



3. Continued Fractions 59

Now, one question we might ask is if the size of the periodic part of the periodic
continued fraction is always the same when we fix the quadratic extension, meaning, if
the D in a+ b

√
D is fixed. Or even if by multiplying a quadratic irrational number, we

multiply the elements of the periodic part. That can be seen to be not true by using
the example of

√
2 above and 2

√
2 below.

Again, r = 2
√
2, then a0 =

⌊︁
2
√
2
⌋︁
= 2. Now,

r =
1

2
√
2− 2

=
1

2(
√
2− 1)

=

√
2 + 1

2
.

So, a1 = 1 and

r =
2√
2− 1

= 2(
√
2 + 1),

therefore, a2 = 4 and

r =
1

2(
√
2 + 1)− 4

=
1

2(
√
2− 1)

.

We can conclude from the calculations above that r = 2
√
2 = [2, 1, 4]. Now,

the size of the period doubled, so another question could be if the size of the period
grows with the b multiplying

√
D and this can be seen to be not true always with the

examples:

√
2 = [1; 2],

2
√
2 = [2; 1, 4],

3
√
2 = [4; 4, 8],

4
√
2 = [5; 1, 1, 1, 10],

8
√
2 = [11; 3, 5, 3, 22].

So, even when we fix a in a + b
√
2, there is not much we can say about the

pattern of the periodic part. Besides that, not much is known for continued fractions
in terms of its patterns for higher extension fields. Therefore, one line of investigation
to pursue is to see if for graphs that present pretty good state transfer, there is any
special property that helps us decide if it happens or not.

One final thing to note is that there is another formula that relates the convergents
pi/qi of a given continued fractions to the two prior convergents, pi−1/qi−1 and pi−2/qi−2

and the last element of ai. For this formula to be more general we define that p−1 = 1

and q−1 = 0 and, of course, p0 = a0 and q0 = 1.



3. Continued Fractions 60

Theorem 3.9 ([Khinchin, 1964, Theorem 1]). For k ≥ 1, the convergents pi and q1

can also be described as:

pk = akpk−1 + pk−2,

qk = akqk−1 + qk−2.

This simplifies the computation of the convergents since if we obtain the last
element we do not need to compute the whole expression again to find the next con-
vergents, we just need to have in hand the last two computed convergents.

3.2 How to Compute Continued Fractions?

In Section 3.1, we showed some of what is known in the literature about continued
fractions, some of its interesting properties and how to compute them given a real
number. In practice, we usually do not have the real number we are dealing with,
otherwise we might just use it. What we may have is an approximation of the number
or some representation of it.

In our case, what we have is a polynomial that contains the eigenvalues of the
support. Moreover, regardless of the graph matrix we are dealing with, we assume that
it is a symmetric integer-weighted matrix. Therefore, all of its eigenvalues are real and
continued fractions are a suitable representation for them. We can also assume that
the roots are simple and that they are not rational, since we can easily compute the
rational roots and leave the remainder roots for this algorithm.

Here, we will show Akritas [1980] and Akritas and King [1983] method to compute
continued fractions of polynomials with real roots. The procedure follows the same idea
as the one for computing the continued fractions given in Algorithm 3.7.

First, we will show this procedure only for the positive roots. For the negative
roots, just note that if f(x) is our polynomial, then f(−x) makes the negative roots
positive and vice-versa. The representation of continued fractions for a negative number
from a positive number can be easily computed.

The algorithm is divided into two similar parts, but with different purposes.
Initially we have one polynomial that may have more than one positive real root, so
we want to compute the continued fractions elements and at the same time to isolate
roots. This procedure would be such that we reach a point where for each positive root
we have one polynomial that comes from the initial one that has exactly that one root,
or some transformation of it, as a positive root.



3. Continued Fractions 61

After this part, we want to continue the process of computing the continued
fractions for each polynomial up to some approximation that we want to achieve.

The idea of the algorithm is based on two operations on polynomials that follow
from the algorithm of continued fractions. The first one is to shift all the roots by a
given amount, say b. This is achieved by taking f(x) and replacing x by x+ b. If b is
positive, we shift all the roots to the left by b in the x axis.

This gives us two things, first, all positive roots that have absolute value lower
than b are now negative in the new polynomial. Moreover, all roots that are between
b and b+ 1 are now between 0 and 1.

The second operation is, if d = deg(f(x)), to replace x in f(x) by 1/x and after it,
multiply the resulting function by xd. This procedure gives us that every root of f(x)
that is between 0 and 1 will be between 1 and ∞ in the new polynomial we created
with this operation. Moreover, all the roots that are larger than 1, will now be between
0 and 1.

It is a simple exercise to check that if there is only one root between b and b+ 1,
then after replacing x by x + b, then doing this second operation on the resulting
polynomial and finally, replacing x by x+ 1, the resulting polynomial will have only a
single positive real root.

Furthermore, it can be checked that if r is a root of f(x) with continued fraction
[a0, a1, ...], then applying successively, starting with a0, the substitution of x by 1/x+ai,
then multiplying it by xd, where d is the degree of the previous polynomial, eventually
for some i, we will have only the remainder continued fraction expansion of r as a
positive root.

Now, the first problem appears, as some of these operations depend exactly on
the a′is we are trying to compute. Because we are trying to compute the continued
fractions of all roots, we will show that this is not a problem. The solution is to find a
tight lower bound on the positive roots of f(x). This lower bound must be exactly the
floor of the positive root of f(x) with the smallest absolute value, i.e., it’s the ai.

So, after finding this ai, the algorithm will replace x by 1/x + ai, multiply the
resulting function by xd for the correct d, call itself recursively for f(x+1) and continue
computing the continued fractions with its current f(x). This will form a recursion tree
such that the current node divides into two nodes, one that computes the continued
fractions for roots between ai and ai + 1 and the other for roots after ai + 1.

The recursion stops when a node detects that it has a polynomial with one positive
real root. Now, it can continue to compute the continued fractions for this single root up
to the approximation that is needed. This is done by simply continuing the procedure
of computing a tight lower bound ai on this single root, replacing x by 1/x + ai,



3. Continued Fractions 62

multiplying it by xd for the current degree d, and repeating.
Of course, it is possible to stop the procedure before isolating the roots if we get

the approximation that we wanted, but it is reasonable to assume that it is not the
case, otherwise our continued fractions by that point could not distinguish sufficiently
two or more roots.

Given that the general procedure was defined, we need only to explain some
details of the algorithm. Mainly, how to get a tight lower bound, how to check if our
current approximation is enough and how to check if we have only a single positive
root.

First, let us show how to check if we have only a single positive root. For this,
there is a rule by Descartes known as Descartes’s rule of signs that states that: for a
polynomial f(x) =

∑︁k
i=0 aix

i with real coefficients, if after removing the ai which are
equal to zero, we order the coefficients ai in descending order by the variable exponent,
the number of positive real roots (counting repeated roots) of f(x) is either equal to
the amount of sign variations between the consecutive ordered coefficients or is less
than it by an even amount.

For example, f(x) = (x+1)2(x− 1) = x3 + x2 − x− 1 has the following sequence
of signs (+,+,−,−), so it has one sign variation (between the second and third co-
efficient). Therefore, as it can only have an even number less than that of positive
real roots, it must have a single positive real root. This condition is exactly what
we wanted, that is, we just need to check if the current polynomial has a single sign
variation.

Another example with coefficients equal to zero is x3 − 1, which has a single real
root. Its sign sequence, after removing zero coefficients, is (+,−) and therefore its only
real root is positive.

This method is very useful to find the number of positive and negative (by re-
placing x by −x) real roots, because if the polynomial has no complex roots, as the
polynomials we are dealing with, the number of sign variations is exactly the number
of positive real roots. The even difference occurs only when there are complex roots
which come in pairs for real polynomials.

Now, we will show some methods known in the literature on how to compute
the lower bound on the positive roots. One simple idea is to successively replace x
by x + 1 and then check if the sign variation has changed. If yes, then the number of
substitutions we have done is the lower bound ai. Otherwise, repeat the process. It is
easy to see that this method works, but it can be very inefficient, since the ai that we
want to reach could be quite large.

Another approach is to find a function that computes a lower bound b, replace x



3. Continued Fractions 63

by x + b + 1 and check if the sign variation changed. If not, replace x by x + b and
repeat the process for the new polynomial. If the function finds good lower bounds,
the number of repetitions of this procedure tends to be low enough to be worthwhile.

In the paper Akritas and King [1983], they use the following theorem for it.

Theorem 3.10 ([Akritas and King, 1983, Theorem 2.2]). Let

p(x) =
n∑︂

i=0

aix
i

be an integral-coefficient, monic polynomial of positive degree n, and let λ be the number
of its negative coefficients. Then

b = max 1≤k≤n
an−k<0

|λan−k|1/k (3.9)

is an upper bound on the values of the positive roots of p(x).

This theorem gives us an upper bound on the positive roots of the polynomial,
therefore, if b is the upper bound for f(1/x), then it is a lower bound for f(x). According
to Akritas and King [1983], this works for the polynomials before isolating the roots.

After the root isolation, the authors say that we can use another function that
uses this property of having one sign variation.

Corollary 3.11 ([Akritas and King, 1983, Corollary 2.1]). Let

p(x) = anx
n + an−1x

n−1 + ...+ an−r+1x
n−r+1 − an−rx

n−r − ...a1x− a0

be an integral-coefficient polynomial of degree n, with only one sign variation in the
sequence of its coefficients. Then an upper bound on its (only one) positive root is
given by

b =
max0≤j≤r(|aj|)∑︁n

i=r+1 ai
+ 1. (3.10)

The point of it being an upper bound is dealt with as before.
Now, the problem of how good is this upper bound, meaning, how many times

we need to apply before we found the actual tight upper bound is not discussed much
in Akritas and King [1983].

In Sharma [2008], it is shown what is the complexity of this function and an
improved function for computing lower bounds is presented. In the paper, it is also
shown how much the growth of the coefficients of the polynomial due to the shift by



3. Continued Fractions 64

the lower bound affect the complexity of this function and the whole procedure. As
this is not our focus, we leave this discussion here. What matter for us is that it is
possible to compute this lower bound and the general idea behind it.

Now, the last point we still have to tackle is how to check if our current approxi-
mation is good enough. This is a subject that is one of the main areas of research on
continued fractions since, as we already pointed out in Theorem 3.6, every best rational
approximation of the second kind is a convergent.

One of the expressions that show how well the convergents approximate the real
number they represent can be calculated on the following sequence of theorems and
corollaries.

Theorem 3.12 ([Khinchin, 1964, Theorem 2]). For all k ≥ 0,

qkpk−1 − qk−1pk = (−1)k. (3.11)

Proof. As we defined p−1 = 1 and q−1 = 0. We know that q0 = 1 and p0 = a0. Then

q0p−1 − q−1p0 = 1. (3.12)

Now, assume that, for all i ≤ k, the formula is valid. So, use the equations in
Theorem 3.9. Multiply the first by qk−1, the second by pk−1 and then, subtracting the
first from the second gives us

qkpk−1 − qk−1pk = (akpk−1qk−1 − akpk−1qk−1)− (qk−1pk−2 − qk−2pk−1). (3.13)

Applying the formula recursively results in what we wanted.

Before we proceed, we need one more definition.

Definition 3.13 (Mediant of two fractions). The mediant of two fractions a/b and
c/d, with positive denominators, is the fraction

a+ b

c+ d
. (3.14)

It is a simple exercise to show the following lemma about mediants.

Lemma 3.14 (Khinchin [1964]). The mediant of two fractions always lie between them
in value.

Now, with that in mind, consider the following sequence



3. Continued Fractions 65

pk−2

qk−2

,
pk−2 + pk−1

qk−2 + qk−1

,
pk−2 + 2pk−1

qk−2 + 2qk−1

, ...,
pk−2 + ak−1pk−1

qk−2 + ak−1qk−1

=
pk
qk
. (3.15)

First, we can note that each element from the sequence is a mediant between the
one before it and pk−1/qk−1. Therefore, it lies between them. These fractions are called
intermediate fractions.

Now, by Theorem 3.12, if k− 1 is even, then pk−1/qk−1 < pk−2/qk−2 and, if k− 1

is odd, then pk−1/qk−1 > pk−2/qk−2. So, in this sequence, if k is even, it forms an
increasing sequence. Otherwise, the sequence is decreasing. The definition of mediants
and the discussion above can be used to show that.

Theorem 3.15 ([Khinchin, 1964, Theorem 8]). The value of an infinite continued
fraction is greater than any of its even-order convergents and is less than any of its
odd-order convergents.

All of this can be used to show how well the convergents approximate the infinite
continued fraction.

Theorem 3.16 ([Khinchin, 1964, Theorem 9]). The value α of the convergent infinite
continued fraction for arbitrary k satisfies the inequality⃓⃓⃓⃓

α− pk
qk

⃓⃓⃓⃓
<

1

qkqk+1

. (3.16)

Proof. By Theorem 3.15 we know that α is between any two consecutive convergents,
therefore ⃓⃓⃓⃓

α− pk
qk

⃓⃓⃓⃓
<

⃓⃓⃓⃓
α− pk

qk

⃓⃓⃓⃓
+

⃓⃓⃓⃓
α− pk+1

qk+1

⃓⃓⃓⃓
=

⃓⃓⃓⃓
pk+1

qk+1

− pk
qk

⃓⃓⃓⃓
. (3.17)

Using Theorem 3.12, we arrive at what we wanted⃓⃓⃓⃓
α− pk

qk

⃓⃓⃓⃓
<

⃓⃓⃓⃓
pk+1

qk+1

− pk
qk

⃓⃓⃓⃓
=

1

qkqk+1

. (3.18)

From the formula to compute the convergents in Theorem 3.9 and the fact that
q0, q1 ≥ 0 and ai ≥ 1, for i ≥ 1, we have that qi ≤ qi+1. Therefore, one simple corollary
is the one below.

Corollary 3.17. For any k ≥ 0, the inequality holds⃓⃓⃓⃓
α− pk

qk

⃓⃓⃓⃓
<

1

q2k
. (3.19)



3. Continued Fractions 66

Now, to show this bound is significant, we have the following theorem.

Theorem 3.18 ([Khinchin, 1964, Theorem 12]). For arbitrary k ≥ 2,

qk ≥ 2
k−1
2 . (3.20)

Proof. This follows directly from Theorem 3.9, the fact that qi−1 ≤ qi and ai ≥ 1 for
i ≥ 1, as

qk = akqk−1 + qk−2 ≥ 2qk−2. (3.21)

Applying this successively gives us what we want.

So, the theorem and the corollary above combined show that the denominator of
the current convergent computed can be used to check if the current approximates well
enough the roots and, moreover, that the denominator grows rather rapidly.

One question that can be made is if this is the best that can be showed for the
approximations of the convergents. The answer is no. As this is a somewhat extensive
area, we do not show it here. It can be shown that there are tighter approximations. For
a more in depth look into these approximations, we refer to [Khinchin, 1964, Chapter
2].

One important feature to consider in terms of the computation of the continued
fractions is that, even when we have only pk/qk, and we still do not know the value
of qk+1, the first inequality already shows us that the next convergent is in a way
determining the approximation. Even more, as qk+1 = ak+1qk+ qk−1, we can show that⃓⃓⃓⃓

α− pk
qk

⃓⃓⃓⃓
<

1

qkqk+1

<
1

ak+1q2k
. (3.22)

So the elements also control how well the convergents approximate the number.
This implicates the complexity of the algorithm in two ways. If in some way we know
that the elements ai are bounded above, this means that the approximation cannot be
much tighter than the one in Corollary 3.17, meaning, we cannot find a c too small
such that ⃓⃓⃓⃓

α− pk
qk

⃓⃓⃓⃓
<

c

q2k
(3.23)

always holds. This is unfortunate, as having a ai bounded above could be interesting
for the algorithm we showed, since it dictates the growth of the coefficients of f(x)
when we replace x by x+ai and how much we may need to work to find the tight lower
bound of the positive roots.



3. Continued Fractions 67

On the other hand, having the ai’s unbounded could mean that our coefficients
of f(x + b) grow too much and the process to find the lower bound gets worse. This
comes with the benefit that our approximations get better. This last fact on the
approximations is summarized on the theorem below.

Theorem 3.19 ([Khinchin, 1964, Theorem 23]). For every irrational number α with
bounded elements, and for sufficiently small c, the inequality⃓⃓⃓⃓

α− p

q

⃓⃓⃓⃓
<

c

q2
(3.24)

has no solution for integers p and q (q > 0). On the other hand, for every α with
an unbounded sequence of elements and arbitrary c > 0, the inequality above has an
infinite set of such solutions.

3.3 Continued Fractions and State Transfer

In the previous sections we showed what is known in the literature about continued
fractions, how to compute them and some of its properties that are interesting to us.
Now, we want to show some possible results for State Transfers by using continued
fractions.

We already know from Godsil et al. [2012] that perfect state transfer in the
adjacency matrix only happens between the end-nodes in paths of 2 and 3 vertices,
whilst if n = p− 1 or n = 2p− 1 or 2m − 1, for p prime and m positive integer, pretty
good state transfer happens between the end-nodes.

We want to show a possible connection between pretty good state transfer on a
graph and perfect state transfer with the convergents of the eigenvalues in the support.
We do this by some examples.

So, our first example, taken from Godsil [2015], is for p = 5. Now, for the
adjacency matrix of P4, we have that its eigenvalues are of the form

θ1 =
1

2
(
√
5 + 1), θ2 =

1

2
(
√
5− 1), θ3 =

1

2
(−

√
5 + 1), θ4 =

1

2
(−

√
5− 1).

Furthermore, it can be computed that its eigenprojectors Ei are such that

E1 − E2 + E3 − E4 =

⎛⎜⎜⎜⎜⎝
0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎞⎟⎟⎟⎟⎠ . (3.25)



3. Continued Fractions 68

Denote by R the anti-diagonal matrix above. Let p and q > 0 be integers such
that

p

q
≈ θ1. (3.26)

This means that qθ1 ≈ p and with that we can infer for the others eigenvalues
that

qθ2 = q(θ1 − 1) ≈ p− q, qθ3 = q(−θ1 + 1) ≈ −p+ q, qθ4 = −qθ1 ≈ −p.

Because they differ only by a sign and/or a constant, it is easy to see that the
approximation factor is the same for all of them.

Now, what do we mean by pretty good state transfer implying perfect state
transfer on the convergents? By Theorem 1.6, we know that the vertices that we are
dealing with (the end-nodes) must be strongly cospectral. They are. We know that
they must be all integers or of the same quadratic extension. They are. But if they
are quadratic integers, they also must be of the form

θr =
a+ br

√
D

2
, (3.27)

for a, br, D to be integers and D square-free. They do not have the form required.
Furthermore, they must have some parity condition on the eigenspaces given the eigen-
values.

So, what we do is relax the second condition to apply it on the convergents of
the eigenvalues, such that we can check the parity condition. For example, for P4 as
we wrote above, say that p = 987, q = 610 and make τ = qπ/2 = 610π/2 = 305π,
then, using the expressions we showed above we have that τθr can be approximated as
follows

τθ1 ≈ 987π/2, τθ2 ≈ 377π/2, τθ3 ≈ −377π/2, τθ4 ≈ −987π/2.

These values modulo 2π are congruent to

3π/2, π/2, 3π/2, π/2,

which means that they approximate the pattern of plus and minus’ that we wanted in
Equation 3.25. In other words, where the sign of Ei is plus, eiτθi ≈ ei3π/2 and, where



3. Continued Fractions 69

the sign of Ei is minus, eiτθi ≈ eiπ/2 = −ei3π/2. Thus, we can see that

U(305π) ≈ −iR,

which, according to Godsil [2015], is accurate to as much as five decimal places.
One question that may be asked is why we picked 987 and 610. The answer

is that they are part of the Fibonacci sequence, which is exactly the sequence of the
convergents of θ1 = [1; 1]. Meaning, if fi and fi+1 are terms in the Fibonacci sequence,
then, for some index k,

pk
qk

=
fi+1

fi
(3.28)

is a convergent of θ1. So, as we want to repeat that same pattern of 3π/2, suppose that
f0 = 1 and f1 = 1 and therefore, p0/q0 = 1 and p1/q1 = 2. Then we have the following
table.

i 0 1 2 3 4 5 6 7 8 9
pi mod 4 1 2 3 1 0 1 1 2 3 1
qi mod 4 1 1 2 3 1 0 1 1 2 3

Table 3.1: Table of convergents of (
√
5 + 1)/2 modulo 4

Therefore, for m ≥ 0,

f6m+2 ≡ 2 mod 4, f6m+3 ≡ 3 mod 4, (3.29)

hence, we can conclude that there is an infinite set of indices such that the convergents
of the eigenvalues allows us to achieve a “perfect state transfer”. As we commented
before, as the convergents grow fast, this approximation also grows fast, which comes
at the cost of a long time for achieving this.

Another example can be seen for P5. It has pretty good state transfer as 5 =

2p− 1, with p = 3 prime. By similar reasons its end-nodes are strongly cospectral and
the pattern of the eigenprojectors is the same (alternating plus and minus). It has the
following eigenvalues

θ1 =
√
3, θ2 = 1, θ3 = 0, θ4 = −1, θ5 = −

√
3.

So, similarly, we make

p/q ≈ θ1, (3.30)



3. Continued Fractions 70

thus,

qθ2 = q, qθ3 = 0, qθ4 = −q, qθ5 ≈ −p.

Now, as qθ3 = 0, we need that τθi to be equal to 0 modulo 2π if i is odd and π

if i is even. The continued fractions of
√
3 = [1; 1, 2], with convergents

1

1
,
2

1
,
5

3
,
7

4
,
19

11
,
26

15
,
71

41
,
97

56
,
265

153
...

If we compute the values of pi/qi modulo 4, we have the following table.

i 0 1 2 3 4 5 6 7 8 9
pi mod 4 1 2 1 3 3 2 3 1 1 2
qi mod 4 1 1 3 0 3 3 1 0 1 1

Table 3.2: Table of convergents of
√
3 modulo 4

This shows us that if we set τ = qπ, then at i = 4m+1, for m ≥ 0, the pi mod 4

are equal to 2 and the qi mod 4 are equal to 1 or 3, which means that we will have
the following approximations for τθr modulo 2π

0, π, 0, π, 0,

which is exactly what we wanted.
Now, both examples we showed are paths that have pretty good state transfer.

Our next example also uses paths, but it is a little more intricate.
The Cartesian product of two graphs G and H is a graph G□H, such that

V (G□H) = V (G) × V (H) and ((a, b), (c, d)) ∈ E(G□H) if either the first or the
second coordinate in each pair are equal, and the other coordinate have two adjacent
vertices in its respective graph.

Let a, b be the vertices of P2 and (1, 2, 3) be the vertices of P3, 2 being the vertex
in the middle. Then P2□P3 can be represented as below.

This graph as shown in theorem below by Pal and Bhattacharjya [2017] has pretty
good state transfer both between a1 and a3, but also between a1 and b1 at different
times.

Theorem 3.20 ([Pal and Bhattacharjya, 2017, Theorem 4.2]). Let G1 and G2 be two
graphs, so that G1 is periodic at a vertex at τ and G2 exhibits perfect state transfer at
η. If τ and η are independent over the rational numbers, then G1□G2 admits pretty
good state transfer.



3. Continued Fractions 71

a1

a2

a3

b1

b2

b3

Figure 3.1: Graph P2□P3

⎛⎜⎜⎜⎜⎜⎜⎝
0 1 0 1 0 0
1 0 1 0 1 0
0 1 0 0 0 1
1 0 0 0 1 0
0 1 0 1 0 1
0 0 1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠
Figure 3.2: Adjacency Matrix of P2□P3

In [Pal and Bhattacharjya, 2017, Example 4.1] it is shown why this theorem
applies for P2 and P3, but we already know that both of them admit perfect state
transfer between its end-nodes. Therefore, using Theorem 4.14, one just need to check
if the times in which the perfect state transfer happens in both graphs are independent
over the rationals, where the time is defined as in Theorem 1.6.

Knowing all the above, we proceed similarly, first presenting the eigenvalues

θ1 =
√
2 + 1, θ2 = 1, θ3 =

√
2− 1, θ4 = 1−

√
2, θ5 = −1, θ6 = −

√
2− 1,

with respective eigenvectors⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

1

1√
2

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1

0

1

−1

0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1

−
√
2

−1

1√
2

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

−
√
2

1

1

−
√
2

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

−1

−1

0

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1√
2

−1

1

−
√
2

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that all the eigenvalues are in the support of a1, a3, b1 and b3. First, we
consider the pretty good state transfer between a1 and a3. Now, since we want to
have a similar parity condition as perfect state transfer, we just need to look for their
respective entries in the eigenvectors and check their signs.

If they are equal, they must have the positive parity, in terms of perfect state
transfer condition, Erea = Ereb, otherwise they have negative parity and Erea =

−Ereb. In this case, we look at the first and third entries of each eigenvector. Therefore,
the signs of the eigenprojectors, in that order, are the following +,−,+,+,−,+.

As for pretty good state transfer between a1 and b1, we look at the first and
fourth entries, so the signs of the eigenvectors are +,+,−,+,−,−.



3. Continued Fractions 72

Again, we want to approximate the eigenvectors by their continued fraction. So,
suppose that

p/q ≈ θ1 =
√
2 + 1. (3.31)

√
2 + 1 has the following continued fraction [2; 2]. These are its first convergents

2

1
,
5

2
,
12

5
,
29

12
,
70

29
,
169

70
,
408

169
,
985

408
,
2378

985
,
5741

2378
...

Now, using our approximation for θ1, we can do the following

qθ1 ≈ p, qθ2 = q, qθ3 = q(θ1 − 2) ≈ p− 2q,

qθ4 = q(−θ3) ≈ −p+ 2q, qθ5 = −q, qθ6 = −qθ1 ≈ −p.

Now, for the vertices a1 and a3, using the sign sequence of the parity condition
that we had before, we want a τ such that θ1, θ3, θ4, θ6 have the same sign. Making the
table with convergents, but modulo 2 instead of 4, we get the following.

i 0 1 2 3
pi mod 2 0 1 0 1
qi mod 2 1 0 1 0

Table 3.3: Table of convergents of
√
2 + 1 mod 2

Thus, if we make τ = qπ, we have the following approximations of τθr for the
eigenvalues in the positive parity respectively

τθ1 ≈ pπ, τθ3 ≈ (p− 2q)π, τθ4 ≈ −(p− 2q)π, τθ6 ≈ −pπ.

The other two, τθ2 and τθ5, should be

qπ and − qπ,

respectively. So it is easy to see that every convergent allows for τθr modulo 2π to be
exactly as intended, with the first four being equivalent to 2π when the last two are
equivalent to π, and vice-versa.

All of these cases, together with our assumptions and knowledge about state
transfers, made us propose the following conjecture: if G is a graph with pretty good
state transfer between two vertices, then G admits “perfect state transfer” for some
time τ = aπ/b, a, b ∈ Z, for some infinite sequence, not necessarily consecutive, of the
convergents instead of the eigenvalues.



3. Continued Fractions 73

This relaxed form of perfect state transfer would happen by using the convergents
to check the parity condition works, just as we showed in the previous examples.

This would seem to be a reasonable conjecture, since the converse seems to be
quite trivial. So, we continue for the other case of P2□P3, which shows us that this
conjecture is not true.

For the second case, we want to show a similar result, but now for vertices a1 and
b1. We still made the same approximations, since the eigenvalues are the same. But
now, the set of eigenvalues that must have the same sign, using our previous defined
sign sequence, is the following: θ1, θ2, θ4.

If we were to make as before τ = qπ/n for some integer n, we would have the
following approximations of τθi for the first set of eigenvalues

pπ/n, qπ/n, (−p+ 2q)π/n.

The first option would be that n is even. In this case, simply p ≡ q ̸≡ 0 mod n

would suffice. But then, looking at the fact that p and q always have different parities
as in table 3.3 imply that there is some integer a such that

p ≡ q ≡ a ̸≡ 0 mod n

p− np′ = a

q − nq′ = a,

where p′, q′ ∈ Z. Suppose w.l.o.g. that p is the even and q is the odd one for a given
convergent p/q. Then, since n is even, the left-hand side of the second equation is even
and, so, a must be even. But, in the third equation, the left-hand side is odd and,
thus, a must be odd. So, for an even n, this is not possible.

Now, for n odd, this would mean that we want a n such that p ≡ q mod n for
any integer n. But that is not exactly what we want. Looking at the table below, we
see the convergents of

√
2 + 1, but now mod 3.

convergents 1 2 3 4 5 6 7 8 9
p mod 3 2 2 0 2 1 1 0 1 2
q mod 3 1 2 2 0 2 1 1 0 1

Table 3.4: Convergents of
√
2 + 1 mod 3

So, we see that for the convergent 169/70, we have that p ≡ q mod 3, but

169 ≡ 56 ∗ 3 + 1 ≡ 1 ≡ 23 ∗ 3 + 1 ≡ 70 mod 3. (3.32)



3. Continued Fractions 74

But then, we have

pπ/n = 169π/3 = 56π + π/3 ≡ π/3 mod 2π, (3.33)

and

qπ/n = 70π/3 = 22π + 4π/3 ≡ 4π/3 mod 2π. (3.34)

Therefore, they have opposite signs, which is not what we wanted as they have
the same sign in our sign sequence. So, if n is odd we need not only that p ≡ q mod n,
but also, that ⌊p/n⌋ ≡ ⌊q/n⌋ mod 2. This in turn means that we want that

p ≡ q mod (2n). (3.35)

As we already showed above, when n was assumed to be even, there is no solution
in this case. Therefore, our conjecture does not work.

This does not invalidate the use of continued fractions in approximating the
eigenvalues, or even in studying conditions that they may imply for state transfers. It
just means that we might need to work more in finding more useful examples to get
insights into how their convergents may or not affect state transfers.



75

Chapter 4

Normalized Laplacian

4.1 Other Matrices

In the previous chapters, we assumed that the matrix we are dealing with is the adja-
cency matrix of the graph. While some results that we presented, cited or proved are
more general, others are unique to the adjacency matrix or integer weighted adjacency
matrices.

In this chapter, we will study another matrix that can be used for representing
a graph: the Normalized Laplacian. We will show a characterization for perfect state
transfer similar to the one in Theorem 1.6. Following that, we will use this characteri-
zation to show some occurrences of perfect state transfer. Furthermore, we will show a
characterization of pretty good state transfer between the end-vertices of paths, similar
to the one showed in Section 1.2 for the Laplacian matrix.

First, let us define what is the Normalized Laplacian of a graph.

Definition 4.1 (Degree matrix). We call by D, the degree matrix of the graph G, an
n x n diagonal matrix with entry Du,u = deg(u), where deg(u) is the degree of the
vertex u.

Definition 4.2 (Laplacian matrix). A matrix L is called the Laplacian matrix of a
graph G if L = D − A, where D is the degree matrix of G and A is the adjacency
matrix of the same graph.

Definition 4.3 (Normalized Laplacian). A matrix L is called the Normalized Laplacian
of a graph G if L = D−1/2LD−1/2, where L is the Laplacian matrix of G, D is the degree
matrix of G and D−1/2 is the diagonal matrix that we get by taking the inverse of the
square root of each non-zero diagonal entry of D and the zero entries stay the same.



4. Normalized Laplacian 76

So one major difference between the Normalized Laplacian matrix of a graph
and both the adjacency matrix and the Laplacian is that while the last two have only
integer entries, the former can have rational or even irrational entries. We also define
a useful notation for us.

Definition 4.4 (Density matrix of a vertex). If ea is the initial state for a vertex a,
then Da = eae

T
a is its density matrix. Moreover, we denote by Da(t) = U(t)DaU(−t)

its time evolution density matrix.

The density matrix notation is defined here as it is a convenient way of represent-
ing a state. As this chapter is about the Normalized Laplacian, we use U(t) to denote
exp (−itL), where L is the Normalized Laplacian.

This changes nothing on results that assume only that the matrix is symmetric.
But if we assume that entries are integers or rational, the results could not be the
same. For perfect state transfer, the result we showed in Theorem 1.6 depends on the
fact that the matrix we are dealing with is integer valued.

In the Definition 1.3, we defined what are cospectral vertices. For this chapter
we will need another equivalent definition of cospectral vertices, so we use the theorem
below taken from Godsil [2015]. We do not prove it here, as it is not the focus of this
dissertation.

Theorem 4.5 (Godsil [2015]). Given G, A =
∑︁

r θrEr its adjacency matrix and ver-
tices a and b. Let also G\{a} be the graph that we get by removing the vertex a from
G and Wa,a(G, t) =

∑︁∞
k=0(A

k)a,at
k, then the following are equivalent:

1. ϕ(G\{a}, t) = ϕ(G\{b}, t).

2. (Er)a,a = (Er)b,b for all r.

3. (Ak)a,a = (Ak)b,b for all integers k.

4. Wa,a(G, t) = Wb,b(G, t).

This theorem is shown for the adjacency matrix, but we can show it for any
symmetric real matrix that represents the graph. The main difference is that the walk
generating function W (G, t) for the adjacency matrix has a combinatorial interpreta-
tion, as its (a, b) entry has the generating function for the number of walks of fixed
lengths from a to b.

So, for the Normalized Laplacian, we need to show another result. In Section
4.2, we show how we get the strong cospectrality condition for perfect state transfer,



4. Normalized Laplacian 77

and we also show a combinatorial interpretation of cospectrality over the Normalized
Laplacian.

In Section 4.3, we will show a characterization for perfect state transfer to occur
between two vertices. This work is a continuation of the work done in the undergrad
thesis, Baptista [2019]. Following that, in Section 4.4, we use this characterization
together with other results to show some conditions for trees to present perfect state
transfer.

Finally, in Section 4.5, we will show a characterization of pretty good state trans-
fer in paths on the Normalized Laplacian. This work is also present in the undergrad
thesis, Baptista [2019].

4.2 Strong Cospectrality

In Section 4.1, we showed Theorem 4.5 from Godsil [2015] that gives equivalent defi-
nitions for two vertices to be cospectral. There it is shown for the adjacency matrix,
but the results follow for any symmetric real matrix. One of such definitions is that if
a and b are cospectral, then Ak

a,a = Ak
b,b for all k ∈ N.

In Kempton et al. [2020], it is shown that cospectrality between vertices implies a
condition on the automorphisms of the isospectral reductions over these vertices, which
shows connections of cospectrality with different concepts of graph theory.

For the adjacency matrix A this definition has a combinatorial interpretation,
because for i, j ∈ V (G), Ak

i,j is equal to the number of different walks of size k between
i and j. So, two vertices a and b being cospectral means that for any integer k the
number of closed walks, i.e., walks that start and end at the same vertex, of size k is
the same for a and b.

For weighted adjacency matrices, we could still view this definition as a “count”
of weighted closed walks, but the interpretation unless for specific weights and appli-
cations lose its meaning. So, as the Normalized Laplacian can be viewed as a weighted
adjacency matrix with loops, we want to give another interpretation for the cospec-
trality between two vertices.

First, we need to show one relation of the Normalized Laplacian and classical
random walks on graphs. Classical random walks on graphs is a procedure similar to
quantum walks, in which each vertex gets a probability distribution over its edges (the
non-edges get zero probability). Then, starting at a vertex, at each iteration we jump
from the current vertex to another vertex taken from a random sampling of the edges
of the graph defined by the probability distribution of the current vertex.



4. Normalized Laplacian 78

Random walks have multiple applications, some different definitions/formulations
and are a field of research on their own, and we do not delve into more details as they
are not our focus.

One kind of random walk can be defined by the matrix D−1A, where A is the
adjacency matrix and D is the diagonal degree matrix, as we defined before. This
matrix is stochastic, meaning its rows form uniform probability distributions over the
edges of a given graph. This, together with the procedure defined before, gives us a
Markov chain that represents the random walk.

Hereon, we assume that the graph has no isolated vertices. Now, one way of
defining the Normalized Laplacian matrix L is through the equation L = D−1/2LD−1/2.
Now, by conjugating L by D−1/2, we get that

D−1/2LD1/2 = D−1L, (4.1)

this can be rearranged and, using the definition of the Laplacian matrix, we have that

D−1A = D−1/2(I − L)D1/2. (4.2)

This relation between the classical random walk and the Normalized Laplacian
is one of the reasons on why we might want to study quantum walks on the latter.
Another reason is that some effort has been made recently in constructing weighted
graphs such that we could tweak those weights to get the state transfer we want. One
possible weight to chose from are the weights defined by the Normalized Laplacian.

Now, there are multiple questions we might ask for the classical random walks.
One question, in particular, is if we start at a vertex a, what is the chance that we
stay at that vertex after k steps of the random walk. For this question, we look at the
entry (D−1A)ka,a.

The lemma below shows that for two cospectral vertices in the Normalized Lapla-
cian, whatever this probability of staying at the same vertex is, it is the same for both
of them.

Lemma 4.6. Let a and b be cospectral vertices for a graph G with no isolated vertices
with respect to the Normalized Laplacian. Then, considering the classical random walk
modeled by the Markov Chain defined by D−1A, the probability that we start at a and
end at a after k iterations is the same that we start at b and end at b after k steps, for
any k ≥ 0.

Proof. By Theorem 4.5, we know that if a and b are cospectral over the Normalized
Laplacian, then Lk

a,a = Lk
b,b. Now, as L is a symmetric matrix, this means that for any



4. Normalized Laplacian 79

polynomial p(x),

p(L)a,a = p(L)b,b. (4.3)

Now, we know that D−1A = D−1/2(I − L)D1/2. This means that

(D−1A)ka,a = (D−1/2(I − L)D1/2)ka,a

= eTaD
−1/2(I − L)kD1/2ea

= (I − L)ka,a.

Now, the conclusion follows from the fact that (I−L)k is a polynomial in L, and
thus (I − L)ka,a = (I − L)kb,b.

Now, before we show our results for the characterization of the Normalized Lapla-
cian, we need to show what is the notion of strong cospectrality and how we prove that
it is a necessary condition for graphs with perfect state transfer. The proofs contained
below in this section are taken from Godsil [2015].

The results presented in this section follow from three inequalities derived from
|U(t)a,b|. Despite this chapter being focused on the Normalized Laplacian, in this par-
ticular section, the results presented work for any matrix A that is real and symmetric.
So, for the Laplacian or any weighted adjacency matrix, the results also work.

Let U(t) = exp (itA) and A =
∑︁
θrEr. Let also σr be the sign of (Er)a,b. Meaning,

σr = 1 if (Er)a,b > 0 and −1 if (Er)a,b < 0. Otherwise, make σr = (Er)a,b = 0. The
following lemmas define the three inequalities.

Lemma 4.7. We have |U(t)a,b| ≤
∑︁

r |(Er)a,b|. Equality holds if and only if there is a
complex number γ such that eitθr = σrγ whenever (Er)a,b ̸= 0.

Proof. By definition and the triangle inequality, the following sequence of inequalities
hold

|U(t)a,b| = |
∑︂
r

eitθr(Er)a,b|

≤
∑︂
r

|eitθr(Er)a,b|

≤
∑︂
r

|(Er)a,b|.

By the triangle inequality, the equality holds if and only if the condition stated
holds.



4. Normalized Laplacian 80

In the Definition 1.4, we defined what it means for two vertices to be parallel.
There we defined it over the adjacency matrix, but for any symmetric real matrix given
its spectral decomposition the definition applies.

Lemma 4.8. For vertices a and b, we have that
∑︁

r |(Er)a,b| ≤
∑︁

r

√︁
(Er)a,a

√︁
(Er)b,b.

Equality is true if and only if a and b are parallel.

Proof. By Cauchy-Schwarz, for each r, the following is true

((Er)a,b)
2 = ⟨Erea, Ereb⟩2 ≤ ⟨Erea⟩2⟨Ereb⟩2 = (Er)a,a(Er)b,b. (4.4)

So, applying this inequality to the sum, we have what we wanted. By the Cauchy-
Schwarz inequality, the inequality is tight if and only if Erea and Ereb are parallel.

Lemma 4.9. For vertices a and b, we have that
∑︁d

r=0

√︁
(Er)a,a

√︁
(Er)b,b ≤√︂∑︁d

r=0(Er)a,a
∑︁d

r=0(Er)b,b. Equality is true if and only if a and b are cospectral.

Proof. Create a vector va with entries vai such that vai =
√︁

(Er)aa for i ∈ 0, 1, ..., d.
Similarly, create a vector vb for entries (Er)bb. Now, by Cauchy-Schwarz, we have the
following

⟨va, vb⟩2 =

(︄
d∑︂

r=0

√︁
(Er)aa(Er)bb

)︄2

≤ ⟨va, va⟩⟨vb, vb⟩ =
d∑︂

r=0

(Er)a,a

d∑︂
r=0

(Er)b,b. (4.5)

Now, again by Cauchy-Schwarz, the equality is true if and only if va and vb are
parallel. As the entries of both vectors are positive and the sum of the (Er)a,a and
(Er)b,b sum to one, then va = vb. Thus, by Theorem 4.5, a and b are cospectral.

We know from the spectral decomposition that
∑︁

r Er = I, where I is the identity
matrix. So, these three lemmas show us the following sequence of inequalities

|U(t)a,b| ≤
∑︂
r

|(Er)a,b|

≤
∑︂
r

√︂
(Er)a,a

√︂
(Er)b,b

≤

⌜⃓⃓⎷ d∑︂
r=0

(Er)a,a

d∑︂
r=0

(Er)b,b

= 1.

A graph has perfect state transfer if and only if the three inequalities are tight.
This means, by the statement of the lemmas, that a and b are cospectral and parallel.



4. Normalized Laplacian 81

According to our definition of strongly cospectral vertices in Definition 1.5 this means
that a and b are strongly cospectral.

Another definition for strongly cospectral vertices is the following.

Definition 4.10 (Strongly cospectral vertices 2nd def). Two vertices a and b of the
graph G represented by a symmetric real matrix A =

∑︁
r θrEr are said to be strongly

cospectral if for each r, Erea = ±Ereb.

We can prove that this definition is equivalent to the one above by the following
lemma.

Lemma 4.11. Two vertices a and b for a graph G represented by a symmetric real
matrix A =

∑︁
r θrEr are strongly cospectral if and only if they are cospectral and

parallel.

Proof. We know from our definition above of strong cospectrality that if a and b

are strongly cospectral, then (Er)ea = ±(Er)eb. Thus, they are parallel. Moreover,
(Er)a,a = eTaErErea = eTb ErEreb = (Er)b,b, hence they are cospectral.

Now, assume that a and b are cospectral and parallel. This means that for each
r, there is γr ∈ C, such that (Er)ea = γr(Er)eb. Now, we know that Er is symmetric
and, as the vertices are cospectral, multiplying the above equation by eTa on the left
we get

(Er)a,a = γr(Er)a,b = γr(Er)b,a = (Er)b,b. (4.6)

Doing the same, but now multiplying it by eTb on the left, we get

(Er)b,a = γr(Er)b,b. (4.7)

This means that γ2r = 1. Thus, γr ∈ {−1, 1}. So, for all r, Erea = ±Ereb and the
vertices are strongly cospectral.

4.3 Perfect State Transfer on The Normalized

Laplacian

In this section, we want to show a characterization for perfect state transfer to occur
on a graph between two vertices with respect to the Normalized Laplacian. First, we
need some results and definitions. We still use, when the result we want to show is



4. Normalized Laplacian 82

more general, A as a real symmetric matrix. The first one is about periodic vertices,
which can be thought of as a vertex that presents perfect state transfer with itself.

Definition 4.12 (Periodic vertices). Let G be a graph and u be a vertex. We say that
u is periodic according to a real symmetric matrix A if for some time τ > 0

| exp (iτA)u,u| = 1. (4.8)

Using the lemma below, taken from Godsil [2015], we can see that perfect state
transfer between u and v implies periodicity in u.

Lemma 4.13. If we have perfect state transfer between u and v at time τ for a real
symmetric matrix A, then we have perfect state transfer between v and u at the same
time.

Proof. Suppose that we have perfect state transfer between u and v at time τ for the
matrix A, therefore we have that

U(τ)eu = exp (iτA)eu = λev, (4.9)

for |λ| = 1. Now multiply both sides by U(−τ)
λ

, we get

λ−1eu = U(−τ)ev. (4.10)

Now, take the conjugate of both sides and, as U(t) is unitary, we have

λeu = λ−1eu = U(−τ)ev = U(τ)ev. (4.11)

From that, it follows the corollary from Godsil [2015].

Corollary 4.14. If perfect state transfer happens between u in v at time τ for a real
symmetric matrix A, then u is periodic according to the same matrix at time 2τ .

Proof. By the lemma above, the sequence of equalities below follows

U(2τ)eu = U(τ)(U(τ)eu) = λU(τ)ev = λ2eu. (4.12)

As λ = eiγ, for some γ, then |λ2| = 1.

This corollary allows us to show a restriction on the possible values of the eigen-
values of the matrices of graphs that have perfect state transfer between two vertices.



4. Normalized Laplacian 83

Definition 4.15 (Ratio condition). For any θi, θj, θk, θl, with θk ̸= θl, eigenvalues in
the support of a vertex u, we say that the ratio condition holds if

θi − θj
θk − θl

∈ Q. (4.13)

This definition allows us to show the following lemma from Godsil [2015].

Lemma 4.16. A graph G is periodic at a vertex u if and only if the ratio condition
holds at the vertex u.

Proof. Let A =
∑︁

r θrEr be the spectral decomposition of the matrix we are performing
the quantum walk. Periodicity at a vertex u implies that at a time t the following holds

U(t)eu = λeu, (4.14)

where λ ∈ C and |λ| = 1. Now, if we take the left side and multiply it by its conjugate-
transpose on the right, we get

∑︂
r,s

eit(θr−θs)Ereue
T
uEs = (U(t)eu)(U(t)eu)

∗ = eue
T
u . (4.15)

Now, as the E ′
is are orthogonal to each other, if we multiply on the left by Er

and on the right by Es, for any r, s we have

eit(θr−θs)Ereue
T
uEs = Ereue

T
uEs, (4.16)

which gives us that eit(θr−θs) = 1. Now, this can only be true if for all θr, θs in the
eigenvalue support of u, there is an integer mr,s such that

t(θr − θs) = 2mr,sπ. (4.17)

Now, if we take any of these equations with any r and s and divide by any of the
same equations for indexes k and l, but now, θk ̸= θl, then the ration condition is true
as we get

θr − θl
θk − θl

=
mr,s

mk,l

∈ Q. (4.18)

On the other hand, assume that the ratio condition holds. Note that for any r, s
and θk ̸= θl, we have that for some mk,l ∈ Z

mk,l(θr − θs)

(θk − θl)
∈ Z. (4.19)



4. Normalized Laplacian 84

So, if we take t = 2mk,lπ/(θk − θl), since
∑︁

r Er = I, we have that the graph is
periodic at a vertex u as the following holds

Du(t) =
∑︂
r,s

eit(θr−θs)ErDuEs =
∑︂
r

Er(
∑︂
s

eue
T
uEs) = Du. (4.20)

Now, we need one more auxiliary result from Algebraic Number Theory before
we start showing our results.

Lemma 4.17. Let Q ⊂ L be a finite extension and S ⊂ L a set of elements that is
closed under the action of the Galois Group of the extension. Then for the αi ∈ S the
following is true

p =
∏︂
i ̸=j

(αi − αj) ∈ Q. (4.21)

Proof. This arises naturally from the fact that S is closed under the action of the
Galois Group of the extension. We know from Galois Theory that if an element from
the extension is fixed by all automorphisms of the Galois Group, then it must be an
element from the base field. In this case, a rational number. This can be seen in [Cox,
2012, Theorem 7.1.1].

Now, take an automorphism ψ ∈ Gal(L/Q) and apply on both sides of the
equation. First, we know that the automorphism is additive, so ψ(αi + αj) = ψ(αi) +

ψ(αj). Also, note that each clause cij = (αi − αj) is just mapped to itself or another
clause as the set is closed over the action of the Galois Group. Finally, two clauses
cannot be mapped to the same clause for a fixed automorphism, as the automorphism
belongs to a group. So, we have that

ψ(p) = ψ(
∏︂
i ̸=j

(αi − αj)) =
∏︂
i ̸=j

(αi − αj) = p ∈ Q. (4.22)

We still need one result before we get to what we wanted. This can be also found
in Godsil [2015]. The eccentricity of a set of vertices is a measure of the largest distance
of a set to the remainder of the graph.

Definition 4.18 (Eccentricity of a set). Let G be a graph. The eccentricity of a set
T ⊂ V (G) is the smallest integer r such that any vertex of G is at distance at most r
of any vertex in T .



4. Normalized Laplacian 85

Given the definition above, we can show the following lemma. This lemma is
shown for the Normalized Laplacian, but it can be shown that it works for other real
symmetric matrices. The restriction being that these matrices must be “adjacency
matrices”. We mean by that the off-diagonal entries must be non-zero on the entries
corresponding to adjacent vertices and zero otherwise. Moreover, we need that the off-
diagonal entries respect some restrictions, for example, that all non-zero entries have
the same sign.

Lemma 4.19. Let G be a graph, L its Normalized Laplacian, v a vertex of G and S
its eigenvalue support. If v has eccentricity r, then r + 1 ≤ |S|.

Proof. Let ev be the characteristic vector of v. As v has eccentricity r, then Lkev, for
k ∈ {0, 1, 2, ...r}, is a set of linear independent vectors, because the non-zero support
reaches a new vertex for each power.

Now, let L =
∑︁

r θrEr be the spectral decomposition of L. As we know, any
polynomial p(x) applied to L can be described as

p(L) =
∑︂
r

p(θr)Er. (4.23)

This means that the Lkev’s are linear combinations of the {Erev}. Moreover, by
Section 2.5, we know that the Er’s are polynomials in L. So, the Erev’s are linear
combinations of the Lkev’s. This means that

span{Lkev} = span{Erev}. (4.24)

Furthermore, as the Er are orthogonal, the Erev are also orthogonal, so

dim(span{Lkev}) = |{θr : Erev ̸= 0}|. (4.25)

As we showed that the Lkev’s are linear independent for 0 ≤ k ≤ r, then r+ 1 ≤
|S|.

Definition 4.20 (Algebraic number). We say that θ is an algebraic number if it is the
root of a rational polynomial.

Definition 4.21 (Quadratic irrational/integer). Let ∆ be a square-free integer. We
say that θ is a quadratic irrational if it is the root of a second degree polynomial with
rational coefficients. If the coefficients are all integers and the polynomial is monic we
say that θ is a quadratic integer.



4. Normalized Laplacian 86

The results below are similar to the ones in Godsil [2015], but there they are
presented for integer matrices. Here we show them to the Normalized Laplacian, which
is typically not rational.

Theorem 4.22. Let S = {θ0, θ1, ..., θd} be a set of real algebraic numbers, closed under
taking algebraic conjugates, and with d ≥ 3. Then, for all r, s, k, l with θk ̸= θl, we
have

θr − θs
θk − θl

∈ Q (4.26)

if and only if either condition holds:

1. The elements in S are rational.

2. The elements in S are quadratic irrational. Moreover, there is a square-free
integer ∆ > 1 and rational numbers a, b0, b1, ..., bd so that

θr =
1

2
(a+ b0

√
∆). (4.27)

Proof. Clearly, if the elements of S are all of either form, then the ratio condition,
Equation 4.26, holds. For the converse, if there are at least two elements of S that are
rational, say θ0 and θ1 with θ0 ̸= θ1, we know that for θr ∈ S the following holds by
the ratio condition

θs − θ1
θ1 − θ0

∈ Q. (4.28)

So, all the numbers in S are rational and the first condition holds. Now, assume
that at most one element in S is rational. Now, by Equation 4.18, we know that there
is a rational ar,s such that ∀ θr, θs ∈ S, the equality holds

(θr − θs) = ar,s(θ1 − θ0). (4.29)

Now, say that |S| = δ, from the equation above, one can get the following

∏︂
r ̸=s

(θr − θs) = (θ1 − θ0)
δ2−δ

∏︂
r ̸=s

ar,s. (4.30)

By Lemma 4.17, we know that the left-hand side is a rational number and the
product of the ar,s is also rational, so (θ1 − θ0)

δ2−δ must be a rational number.
So, let m be the smallest positive integer such that (θ1−θ0)m is a rational number.

That means that there are m distinct conjugates of (θ1 − θ0) of the form βe2πik/m for



4. Normalized Laplacian 87

k ∈ {0, 1, 2...,m− 1}, where β is the positive m−th root of a rational. As we assumed
that S is a set of real numbers, m ≤ 2.

So, (θ1 − θ0) is either a rational or a rational multiple of the square-root of a
square-free rational ∆ with no common factors between numerator and denominator.
In the former case, we can still view it as the latter, as in this case ∆ = 1. As

(θr − θs)
2 = a2r,s(θ1 − θ0)

2 (4.31)

we can see that (θr − θs)
2 is also rational. So, (θr − θs) is also a rational multiple of a

square-free rational, say ∆r,s. Moreover, for all θk ̸= θl,

(θk − θl)(θr − θs) = ak,lar,s(θ1 − θ0)
2. (4.32)

So, as the right-hand side is a rational, we can conclude that the square-free
rational part is the same for all r and s, meaning ∆r,s = ∆, ∀r, s.

Therefore, there are rational numbers mr such that, for each r,

θr = θ0 +mr

√
∆. (4.33)

One thing more we can note is that if

√
∆ =

√︃
a

b
, (4.34)

where gcd(a, b) = 1, a, b ∈ Z, b ̸= 0 and both square-free. Then,

√
∆ =

√
ab

b
. (4.35)

So, we can assume from now on that ∆ is a square-free integer and group the 1/b

into the mr.
If we sum over S, we get that

∑︂
r

θr = |S|θ0 +
√
∆(
∑︂
r

mr) ∈ Q. (4.36)

This can be verified as the left-hand side is fixed by all the automorphisms of
the extension containing the elements of S, and as we know it, this means that it is a
rational. Therefore, θ0 ∈ Q(

√
∆) and thus, all the elements in S are elements of the

same extension.
Moreover, the fact that the rational part is the same follows from Equation 4.33.



4. Normalized Laplacian 88

This theorem shows us that a set of real algebraic numbers that respect the
ratio condition can have only a strict format. We will show that, for the Normalized
Laplacian, we can narrow it down even further. First, let us show a few characteristics
known for the Normalized Laplacian. These results are standard for the Normalized
Laplacian. One reference for them is Chung [1997].

Definition 4.23 (Positive semidefinite matrix). We say that a symmetric matrix M

is positive semidefinite if all its eigenvalues are non-negative.

There is a whole plethora of characterizations and applications of positive semidef-
inite matrices, but this is out of our scope, so we focus on this definition and one
equivalent definition we give below. These results are standard in studies of positive
semidefinite matrices. A symmetric matrix M is called positive semidefinite if there is
a matrix B such that

M = BBT . (4.37)

Now, the Laplacian matrix is known to be positive semidefinite. It is a simple
exercise to check that for any orientation of the edges of the graph the Laplacian matrix
L = BBT , where B is the vertex-edge incidence matrix of this orientation of the graph.

This means that the Laplacian matrix is positive semidefinite. Now, by our
definition of the Normalized Laplacian we can write it as follows

L = D−1/2LD−1/2 = D−1/2BBTD−1/2 = (D−1/2B)(D−1/2B)T . (4.38)

Thus, the Normalized Laplacian is also positive semidefinite. Now, let 1 be
the all ones vector. Assume also that the graphs we are dealing with have no isolated
vertices. One thing we can notice about the eigenvalues of any graph on the Normalized
Laplacian is that because we know that 1 is an eigenvector for the eigenvalue 0 on the
Laplacian matrix, then the following is true

LD1/21 = D−1/2LD−1/2D1/21 = D−1/2L1 = 0. (4.39)

As the Normalized Laplacian is positive semidefinite, from now on we order eigen-
values of L such that 0 = θ0 ≤ θ1 ≤ ... ≤ θn−1. In Chung [1997], we have the following
two lemmas that show properties of the eigenvalues of the Normalized Laplacian. We
do not prove this results as they are not our focus, but a complete proof of them can
be found in the reference we provide.



4. Normalized Laplacian 89

Lemma 4.24 ([Chung, 1997, Lemma 1.7]). For a graph G of n vertices, Normalized
Laplacian matrix L and eigenvalues θ0 ≤ θ1 ≤ ... ≤ ...θn−1, we have:

1. ∑︂
i

θi ≤ n (4.40)

with equality holding if and only if G has no isolated vertices.

2. For n ≥ 2,

θ1 ≤
n

n− 1
(4.41)

with equality if and only if G is the complete graph on n vertices. Also, for a
graph G without isolated vertices, we have

θn−1 ≥
n

n− 1
(4.42)

3. For a graph which is not a complete graph, we have θ1 ≤ 1.

4. If G is connected, then θ1 > 0. If θi = 0 and θi+1 ̸= 0, then G has exactly i + 1

connected components.

5. For all i ≤ n− 1, we have

θi ≤ 2. (4.43)

with θn−1 = 2 if and only if a connected component of G is bipartite and nontriv-
ial.

6. The spectrum of a graph is the union of the spectra of its connected components.

Therefore, if we assume that the graph is connected, then θ0 is simple. Moreover,
with no isolated vertices, D1/21 is a positive eigenvector, meaning all its entries are
positive, then θ0 = 0 is in the eigenvalue support of all vertices.

Let den be a function that returns the denominators of a rational number. If the
number is an integer, then it returns 1. Let also lcm be a function that returns the
least common multiple of a set of integers. From this explanation above and Theorem
4.22 we can get the following theorem.



4. Normalized Laplacian 90

Theorem 4.25. Suppose G is a connected graph with at least two vertices, L its Nor-
malized Laplacian and let S = {θ0, θ1, ..., θd} be the eigenvalue support of the vertex v,
with θ0 < θ1 < ... < θd. Then G is periodic at v if and only if the eigenvalues in S are
rational. Moreover, if the conditions hold, let

m = lcm{den{θr}θr∈S} (4.44)

and

g = gcd{mθr}θr∈S. (4.45)

Then the smallest positive t, such that Dv(t) = Dv is

t =
2mπ

g
(4.46)

and any other periodicity at v occurs at integer multiples of t.

Proof. If the eigenvalues are rational, then certainly the ratio condition is true and by
Lemma 4.16 the vertex is periodic.

Now, we want to show that if the vertex v is periodic, then by Lemma 4.16 the
ratio condition holds. But first we need to show that all eigenvalues of L are algebraic
numbers. So, we will show that L is similar to a rational matrix.

Consider the matrix, D−1/2, the diagonal matrix that has the inverse square-root
of the degrees of the vertices in the diagonal entries. As the graph is connected, this is
a valid definition. Its inverse is D1/2, the diagonal matrix that has the square-root of
the degrees of the vertices in its diagonal. Now, conjugate L by these matrices, by the
definition of the Normalized Laplacian, we have that

D−1/2LD1/2 = D−1L. (4.47)

So, as the entries of D−1L are rational, its eigenvalues, and by similarity the
eigenvalues of L, are algebraic numbers as they are roots of a polynomial with rational
coefficients, the characteristic polynomial of D−1L. They are also real, since L is
symmetric. Moreover, L have all algebraic conjugates of its eigenvalues. Finally, we
still need to show that S, the eigenvalue support of v, is closed under taking conjugates.

Now, let u be an eigenvector of L for the eigenvalue θr. Let also θs be an algebraic
conjugate of θr and ψ ∈ Gal(L/Q) be an automorphism for the Galois extension that
has both eigenvalues. It is straightforward to show that D−1/2u is an eigenvector of



4. Normalized Laplacian 91

D−1L for the eigenvalue θr

D−1LD−1/2u = D−1/2LD1/2D−1/2u = D−1/2Lu = θrD
−1/2u. (4.48)

Now, we show that the automorphism that sends θr to θs sends D−1/2u to some
eigenvector of θs.

ψ(θr)ψ(D
−1/2u) = ψ(D−1LD−1/2u) = ψ(D−1L)ψ(D−1/2u) = D−1Lψ(D−1/2u). (4.49)

So, Erev = 0 if and only if Esev = 0. So, the eigenvalue support is closed under
taking conjugates. Now, as G is connected and has at least two vertices, we know that
|S| ≥ 2 by Lemma 4.19. If |S| = 2, then either the eigenvalues in S are rational or
are roots of a second degree rational polynomial. Until this point, either condition is
possible, but we will show that this is not the case for L.

So, assume that |S| > 2. As the eigenvalues in S are real algebraic numbers
closed under taking conjugates, we can apply Theorem 4.22. Therefore, for |S| ≥ 2,
they are either all rational or all quadratic irrationals with the same rational part,
meaning, θr = 1

2
(a+ br

√
∆), for a, br rational and ∆ > 1 square-free integer.

Now, for |S| ≥ 2, assume they are all quadratic irrationals of the form above. By
our previous discussion, θ0 is in S and θ0 = 0. Therefore, a = 0. Moreover, as the
Normalized Laplacian is positive semidefinite all its eigenvalues are non-negative. But
if θr = 1

2
br
√
∆ is an eigenvalue, then, as S is closed under taking conjugates −1

2
br
√
∆ is

also an eigenvalue. Meaning, −θr must also be an eigenvalue, which is a contradiction.
Thus, the eigenvalues in S are all rational.

Now, if a vertex v is periodic at a time t, we can write t as

t = τ
2πm

g
, (4.50)

where τ is some real number. Now, in the proof of Lemma 4.16, we showed that the
periodicity at time t implies that there are integers mr,s such that t(θr − θs) = 2mr,sπ

for θr, θs ∈ S. By fixing θs = θ0, we can rewrite this equation as

t =
2mr,0π

θr
, (4.51)

for θr ̸= 0. Now, using both equations we defined for t, we can see that

τ
mθr
g

∈ Z. (4.52)

Now, from the definitions we gave for m and g, we can see that τ must be an



4. Normalized Laplacian 92

integer.

With all these results, we can finally give a characterization of perfect state
transfer to the Normalized Laplacian.

Theorem 4.26. Let a and b be vertices in a connected graph G, U(t) = exp(itL)
express the unitary time evolution of our system, L being the Normalized Laplacian and
let S = {θ0, θ1, ..., θd} be the eigenvalue support of a, with 0 = θ0 < θ1 < ... < θd. Then,
there is perfect state transfer between a and b if and only if the following conditions
hold:

1. Vertices a and b are strongly cospectral.

2. The eigenvalues in S are rational.

3. Let

m = lcm{den{θr}θr∈S} (4.53)

and

g = gcd{mθr}θr∈S. (4.54)

For all 0 ≤ r ≤ d, the following holds:

• (Er)a,b > 0 if and only if mθr/g is even,

• (Er)a,b < 0 if and only if mθr/g is odd.

If the conditions hold, then the minimum positive time we have perfect state
transfer between a and b is τ = mπ/g, and any other time it occurs is an odd
multiple of τ .

Proof. By Corollary 4.14 we have that perfect state transfer between a and b implies
periodicity. Periodicity by Theorem 4.25 implies condition 2, and Section 4.2 shows
that perfect state transfer implies strong cospectrality.

So now, we assume conditions 1 and 2 and show that perfect state transfer is an
equivalent condition to the third condition. First, note that by the Definition 4.10 of
strong cospectrality the first condition implies that S is the same for a and b.



4. Normalized Laplacian 93

Now, let τ = tmπ/g for any real t such that for some |λ| = 1 we have

U(τ)ea = λeb. (4.55)

This happens if and only if, for all θr, upon multiplying both sides by Er on the
right, we get eiτθrErea = λEreb. As G is connected, we know that θ0 = 0 is a simple
eigenvalue for an eigenvector D1/21. Therefore, E0 is a non-negative matrix.

Thus, the condition is equivalent to eiτθ0 = 1 = λ and

eiτθr = ±1, (4.56)

where the sign is determined by the sign of Erea = ±Ereb. Equivalently, this sign can
be determined by multiplying both sides by eTa on the left and, as (Er)a,a > 0, the sign
of (Er)a,b determines the sign of the equation above. Let now m0,m1, ...,md be real
numbers such that for all θr

τθr =
tπmθr
g

= mrπ. (4.57)

This means that perfect state transfer is equivalent to mr being an even integer if
(Er)a,b > 0 and an odd integer if (Er)a,b < 0. As t is a constant and the expression
holds for all θr, it must be an odd integer that makes no difference on the signs and
whether perfect state transfer happens or not.

Thus, perfect state transfer is equivalent to mθr/g being even if (Er)a,b > 0 and
mθr/g being odd if (Er)a,b < 0, which is precisely the third condition.

4.4 Perfect State Transfer in Trees

Trees are minimally connected graphs, thus good choices if one wants to build a network
and minimize resources. So, it is not surprising that research has been done in state
transfer in trees.

In Coutinho and Liu [2015], it was shown that no tree on three or more vertices
admits perfect state transfer with regards to the Laplacian matrix. So, considering how
the Normalized Laplacian can be defined in terms of the Laplacian matrix, we try to
see if something similar happens for the Normalized Laplacian. We proceed similarly
as in Coutinho and Liu [2015] and Godsil [2015].

We start by showing some useful spectrum properties of trees over the Normalized
Laplacian. We already know by Lemma 4.24 that, for any graph, 0 is an eigenvalue, and
the eigenvalues are between 0 and 2. Moreover, if the graph is a tree, hence connected



4. Normalized Laplacian 94

and bipartite, 0 and 2 are eigenvalues. Now, we can also show that if it is a tree, 2 is
also a simple eigenvalue. This can also be seen by the following lemma.

Lemma 4.27 ([Chung, 1997, Lemma 1.8]). The following statements are equivalent:

1. G is bipartite.

2. G has i connected components and θn−j = 2 for 1 ≤ j ≤ i.

3. For each θi, the value 2− θi is also an eigenvalue of G.

Proof. By Lemma 4.24, we know that the eigenvalues of G are formed by the union
of the eigenvalues of each connected component of G. Also, we know that if G is
connected 0 is a simple eigenvalue. So we only need to show the third condition for a
connected graph, and the rest follows.

Suppose that G is a connected bipartite graph such that L can be written as

L =

(︄
I C

CT I

)︄
. (4.58)

Now, let θ be an eigenvalue of L for an eigenvector v. So, if G is bipartite, its
vertices can be separated into two sets A and B such that both sets form an independent
vertex set. By indexing v by the vertex set, we can define a vector u as follows

ui =

⎧⎨⎩vi if i ∈ A

−vi otherwise.
(4.59)

Let vA be the vector with only entries in A and vB similarly. If I is an identity
matrix with proper dimension, we can see that

Lv =

(︄
I C

CT I

)︄(︄
vA

vB

)︄
=

(︄
vA + CvB

vB + CTvA

)︄
= θ

(︄
vA

vB

)︄
. (4.60)

From that we see that (θ − 1)vA = CvB and (θ − 1)vB = CTvA. Using this
definition, we can show that u is an eigenvector of L for the eigenvalue 2 − θ by the
following sequence of equalities



4. Normalized Laplacian 95

Lu =

(︄
I C

CT I

)︄(︄
vA

−vB

)︄

=

(︄
vA − CvB

−vB + CTvA

)︄

=

(︄
vA − (θ − 1)vA

−vB + (θ − 1)vB

)︄

= (2− θ)

(︄
vA

−vB

)︄
.

Before we show our results, let us define the concept of positive and negative
eigenvalue support.

Definition 4.28 (Positive and negative eigenvalue support). Let a and b be strongly
cospectral vertices and S its eigenvalue support. Then we say that S+ is the positive
eigenvalue support if for each θr ∈ S, such that Erea = Ereb, then θr ∈ S+. Similarly,
S− is the negative eigenvalue support if for each θr ∈ S, such that Erea = −Ereb, then
θr ∈ S−.

One thing we can notice is that S+ ∪ S− = S and S+ ∩ S− = ∅. Also, if perfect
state transfer happens between a and b, by Theorem 4.26, θr ∈ S+ if and only if mθr/g
is even for m and g as defined in the theorem. Similarly, θr ∈ S− if and only if mθr/g
is odd.

Also, we can show that for two strongly cospectral vertices, neither S− and S+

are empty.

Lemma 4.29. Let a and b be strongly cospectral vertices, a and b different. Then,
if S+, S− are their positive and negative eigenvalue support, respectively, then 1 ≤
min(|S−|, |S+|).

Proof. Let L =
∑︁

r θrEr be the spectral decomposition of L. We know that
∑︁

r Er = I,
where I is the identity.

Now we will show that the negative eigenvalue support is not empty. We know
that θr ∈ S− if and only if Erea = −Ereb. Now, if S− = ∅, we can write the following

ea =
∑︂
r

Erea =
∑︂

θr∈S+

Erea =
∑︂

θr∈S+

Ereb =
∑︂
r

Ereb = eb, (4.61)



4. Normalized Laplacian 96

where the sum over the θr ∈ S+ is taken over the eigenprojectors of the eigenvalues in
the positive support. This is obviously false. So, 1 ≤ |S−|. Analogously, we can show
that 1 ≤ |S+|.

The Lemma 4.27 gives us what we needed for the following lemma.

Lemma 4.30. Let G be a tree on two or more vertices. Let c and d be vertices
that have perfect state transfer between them and S−, S+ be their negative and positive
eigenvalue support, respectively. If c and d are on the same bipartite class, then |S−| =
1. Otherwise, c and d are on different bipartite classes and if θ ∈ S−, then θ = 2/k for
some odd positive integer k.

Proof. We know that L is similar to the matrix D−1L. Moreover, we also know that if
G has no isolated vertices, then Lz = θz if and only if D−1LD−1/2z = θD−1/2z.

We can see that D−1L is a rational matrix, so if θ is a rational eigenvalue of D−1L,
we can always find a rational eigenvector z such that D−1Lz = θz. Moreover, as any
multiple of an eigenvector is an eigenvector, we can assume that z is an integer vector
with gcd of its entries equal to 1. From Theorem 4.26 we know that all eigenvalues in
S are rational, so we deal only with rational eigenvalues here.

We can also note that D being a non-negative matrix changes nothing on the
signs of the entries of z, so we can analyze Lz = θDz instead, as we prefer to deal with
integers.

Now, let a, b ∈ Z such that θ = a/b, so 0 ≤ a and 1 ≤ b. If a = 0, then we can
assume that b = 1. Let also deg be a function that returns the degree of a vertex. Let
w be a leaf and v its unique neighbor, then we can see that

eTwLz = deg(w)eTwz − eTv z = eTwz − eTv z =
a

b
eTwz = θeTwz. (4.62)

The left-hand side is the sum of two integers, therefore, as gcd(a, b) = 1, b | eTwz.
This means that

eTwz − eTv z ≡
a

b
eTwz ≡ 0 mod a. (4.63)

Therefore, eTwz ≡ eTv z mod a. Now, since G is a tree we can proceed recursively,
from the leafs to their unique neighbors, at each step considering vertices that have
exactly one neighbor not considered before. We conclude that all entries of z are



4. Normalized Laplacian 97

equivalent mod a. Now, if there is perfect state transfer between c and d, then for all
θr ∈ S−, its eigenvectors vθr in L will be such that

eTc vθr = −eTd vθr . (4.64)

Because 0 ∈ S+ is a simple eigenvalue with eigenvector D1/21, then deg(c) =

deg(d). Moreover, since D−1/2 is a non-negative matrix, it changes nothing on the
signs of the entries of the vθr , therefore if a/b ∈ S− it means that for some vθr = D1/2z

and we get

eTc z ≡ −eTd z mod a. (4.65)

As we assumed that the gcd of the entries is 1, this can only happen if a = 1

or a = 2. Now, as G is bipartite and connected, either c and d are part of the same
bipartite class or they are from different classes. Assume first that they are from the
same bipartite class. From Lemma 4.27, we can see that if θr = a/b ∈ S−, and as
D−1/2 does not change the sign, then

2− θr =
2b− a

b
∈ S−. (4.66)

But, again, this means that 2b− a = 1 or 2b− a = 2. If a = 1, then b = 1 or 3/2.
Since b ∈ Z, then a/b = 1. Now, if a = 2, then b = 3/2 or b = 2, which means that
a/b = 1. Therefore, if a and b are in the same bipartite class, a/b can only be equal to
1 and from Lemma 4.29 we get that |S−| = 1.

Suppose now, that c and d are in different bipartite classes. This means that
2 − θr ∈ S+. Therefore, as we assumed that perfect state transfer happens between c

and d, then for m and g as defined in Theorem 4.26

m

gb
a is odd and

m

gb
(2b− a) is even.

Now, if a = 1, m/(gb) must be odd, which implies that 2b− a is even. But, as a
is odd, this is not possible.

The only other possible solution is that a = 2, in that case, since we assumed
that gcd(a, b) = 1, then b is odd.

Before our next lemma, we define what we mean when we say that two vertices
are twins.

Definition 4.31 (Twin vertices). Let a and b be vertices. Let also N(a) and N(b) be
the set of neighbors of a and b, respectively. Then a and b are said to be twins if either



4. Normalized Laplacian 98

N(a) = N(b) or a ∪N(a) = b ∪N(b).

So, twins can be adjacent to each other or not, but they must share every other
neighbor. It was shown in Coutinho and Liu [2015] that if a and b are strongly cospec-
tral vertices for the Laplacian and |S−| = 1, then a and b are twins. We can show the
same result for the Normalized Laplacian below.

Lemma 4.32. Let a and b strongly cospectral vertices of a connected graph according
to the Normalized Laplacian matrix. Let also S+, S− be their positive and negative
eigenvalue support. If |S−| = 1, then a and b are twins.

Proof. Let L =
∑︁

r θrEr be the spectral decomposition of the Normalized Laplacian.
Define the following vectors

z+ =
∑︂

θr∈S+

Erea, z− =
∑︂

θr∈S−

Erea.

As a and b are strongly cospectral, we can see that

z+ + z− =
∑︂

θr∈S+

Erea +
∑︂

θr∈S−

Erea =
∑︂
r

Erea = ea,

and also,

z+ − z− =
∑︂

θr∈S+

Erea +
∑︂

θr∈S−

(−Erea) =
∑︂

θr∈S+

Ereb +
∑︂

θr∈S−

Ereb =
∑︂
r

Ereb = eb.

Therefore, we conclude that z+ = 1
2
(ea + eb) and z− = 1

2
(ea − eb). We can also

see that for each Erea

LErea = θrErea.

Therefore, if |S−| = 1, we can see that z− is an eigenvector of L for some eigen-
value θ ̸= 0, as 0 ∈ S+. Now, define δ to be the number of common neighbors of a
and b, A the set of neighbors of a, B the set of neighbors of b and d() a function that
maps the vertices to its degrees. We showed in the previous lemma that if a and b are
strongly cospectral, then they have the same degree. Therefore, if a is a neighbor of b



4. Normalized Laplacian 99

L(ea − eb) = (ea −
∑︂
v∈A

ev√︁
d(a)d(v)

)− (eb −
∑︂
v∈B

ev√︁
d(b)d(v)

)

= ea − eb −
∑︂

v∈A−B

ev√︁
d(a)d(v)

+
∑︂

v∈B−A

ev√︁
d(b)d(v)

= (1 +
1√︁

d(a)d(b)
)(ea − eb) +

∑︂
v∈(A−B)\b

ev√︁
d(a)d(v)

+
∑︂

v∈(B−A)\a

ev√︁
d(b)d(v)

= θ(ea − eb).

The last equality implies that a and b must share all of their neighbors. Now, if
a and b are not adjacent, similarly

L(ea − eb) = (ea −
∑︂
v∈A

ev√︁
d(a)d(v)

)− (eb −
∑︂
v∈B

ev√︁
d(b)d(v)

)

= ea − eb −
∑︂

v∈A−B

ev√︁
d(a)d(v)

+
∑︂

v∈B−A

ev√︁
d(b)d(v)

= θ(ea − eb).

Again we have the same implication in the last equality. This means that they
must be twins.

We know that P2 has perfect state transfer between its only two vertices as L = L

in this case and in the book Godsil [2015] and in Coutinho and Liu [2015] it is shown
that for the Laplacian matrix perfect state transfer happens in this case. This, together
with the previous lemma, leads us to the following corollary.

Corollary 4.33. Let G be a tree with two or more vertices. Assume that a and b

are vertices in different bipartite classes of the tree, such that perfect state transfer
happens between them. Let also S− be their negative eigenvalue support. If 2 is the
only eigenvalue in S−, then G = P2.

Proof. From Lemma 4.32 we know that if |S−| = 1, then a and b are twins. Since a
and b are in different bipartite classes, they must be connected. They can not have
another neighbor, otherwise there would be a cycle in G. Therefore, G = P2.

Now, from Lemma 4.30 we know that if perfect state transfer happens in a tree
between a and b and they are in different bipartite classes, all the eigenvalues in S−

are of the form 2/k, for k an odd positive integer.
This corollary above shows that if we cannot find non-integer eigenvalues of this form
in the graph, then, unless the graph is P2, there is no perfect state transfer between



4. Normalized Laplacian 100

vertices in different bipartite classes. This observation simplified the search signifi-
cantly. Calculation done in SAGE, using CoCalc, showed no trees with eigenvalues of
this form for trees with up to 16 vertices.

Now, for P3, one can check that L(P3) has eigenvalues

0, 1, 2 (4.67)

with the respective eigenprojectors

1

4

⎛⎜⎝ 1
√
2 1√

2 2
√
2

1
√
2 1

⎞⎟⎠ ,
1

2

⎛⎜⎝ 1 0 −1

0 0 0

−1 0 1

⎞⎟⎠ ,
1

4

⎛⎜⎝ 1 −
√
2 1

−
√
2 2 −

√
2

1 −
√
2 1

⎞⎟⎠ .

Using Theorem 4.26, we can easily check that the end-vertices, in this case cor-
responding to the first and third row/columns, are strongly cospectral. Moreover, the
support S of both vertices is equal to {0, 1, 2}, and they are all rational.

Finally, we can easily check that, following the definitions of the characterization
of the theorem, for P3, m = 1 and g = 1. Moreover, S− = {1} and S+ = {0, 2}.
Therefore, the third condition is true and so P3 according to the Normalized Laplacian
also has perfect state transfer between its end nodes.

It is also immediate to see that the vertex in the middle is not strongly cospectral
to any of the other two vertices, so perfect state transfer happens only between the
end-vertices. Furthermore, as shown in the Theorem 4.26, the minimal positive time
that it happens is π.

One might ask if there are more paths or trees that exhibit perfect state transfer
between any pair of its vertices for the Normalized Laplacian. In Alvir et al. [2014], it
is shown that if the graph is a path on more than 3 vertices, this is not possible.

These results reduced significantly the possible cases for perfect state transfer in
trees. There are still trees that are not fulled covered in these cases, so it is still an open
question whether there are more trees that allow for perfect state transfer. Considering
that this is also an open question for trees with respect to the adjacency matrix, it is
an interesting research topic for the future to fully characterize perfect state transfer
in trees with respect to the Normalized Laplacian, as the tools necessary for it could
also be helpful to deal with the adjacency matrix problems.



4. Normalized Laplacian 101

4.5 Pretty Good State Transfer in Paths

In this Chapter, we provided a new characterization of perfect state transfer for the
Normalized Laplacian, as the known results assumed that the matrix is an integer
matrix. However, for pretty good state transfer, Theorem 1.8 assumes only that the
matrix is symmetric. So it still holds for the Normalized Laplacian.

When we look for graphs that present state transfer, one of the first graphs to
be considered are paths. If we think about how to construct a computational circuit,
paths are a particular type of graph that can be useful if not for the circuit itself, then
for connecting circuits to transfer states between them.

Paths and state transfers have been a constant topic of research in quantum
walks. Typically, one would want for paths to have perfect state transfer between the
end-nodes, as this would mean that one could successfully transfer states between them
and therefore transfer the state over circuits connected by them.

Unfortunately, this is not always the case. In the paper Christandl et al. [2004], it
was shown that perfect state transfer over the adjacency matrix for paths of n vertices
can only occur for n ≤ 3. In Coutinho and Liu [2015], it was shown that, for the
Laplacian matrix, no tree on more than two vertices admits perfect state transfer. This
means that only the path P2 admits perfect state transfer for the Laplacian matrix.

Moreover, Alvir et al. [2014] showed that, for the Normalized Laplacian of paths,
perfect state transfer between the end-nodes does not happen for n ≥ 4. We also
showed in Section 4.4 some conditions for perfect state transfer in the Normalized
Laplacian in trees.

All these restrictions show that, at least for paths on the models we cited, perfect
state transfer is restricted to only a few small graphs. Due to these restrictions, the
next step is to look for pretty good state transfer over paths. In Coutinho et al. [2017],
it was shown that pretty good state transfer happens between the end-nodes of paths
on n vertices for the Laplacian matrix if and only if n is a power of 2. We adapt these
results and proofs now applied to the context of the Normalized Laplacian.

For a path on n vertices over the Normalized Laplacian, it is shown in [Chung,
1997, Example 1.4] that the eigenvalues of the graph are of the form

λr = 1− cos
πr

n− 1
, for 0 ≤ r ≤ n− 1. (4.68)

Now, as for the characterization of both perfect and pretty good state transfer
requires only the eigenvalues in the support, we still need to show which of these
eigenvalues are in the support of either the end-vertices. The lemma below, taken from



4. Normalized Laplacian 102

Godsil [2015], show that all of them are.

Lemma 4.34 (Godsil [2015]). Let P be a weighted path of length d, with vertex set
{0, ..., d− 1}. Let E0, ..., Ed−1 be the spectral idempotents for A(P ). If the end-vertices
of P are cospectral, then P is symmetric. Furthermore, if R is the automorphism that
swaps the end-vertices of P , then R is a polynomial in A(P ) and R =

∑︁d−1
k=0(−1)kEk.

This lemma assumes that P is a weighted path, but it allows loops. So the
Normalized Laplacian is a possible candidate for A(P ). Noticing that the Normalized
Laplacian is symmetric and mirror-symmetric, i.e., symmetric over the anti-diagonal, it
is a simple exercise, using Theorem 4.5, to show that Lk

a,a = Lk
b,b for a, b the end-vertices

and k any non-negative integer.
Therefore, applying the lemma for the Normalized Laplacian, as R is a polynomial

in A(P ) it commutes with A, so we can see that for any r, by multiplying R on the
right by Er, we get that

(−1)rErea = (REr)ea = (ErR)ea = Ereb. (4.69)

Moreover, we can see by the discussion of the eigenvectors of tridiagonal matrices
in [Godsil, 2015, Section Eigenvectors, Chapter Orthogonal Polynomials] that all the
eigenvalues of L for paths are in the support of either end-nodes. This together with
our characterization for perfect state transfer on Theorem 4.26 would show that perfect
state transfer does not happen for n ≥ 4 as we only have to show that not all eigenvalues
are rational. Now, we are going to investigate pretty good state transfer between the
end-nodes of paths with respect to the Normalized Laplacian.

We know that the end-nodes are cospectral, but we still need to show that they are
strongly cospectral. Using Equation 4.68 for the eigenvalues of Paths in the Normalized
Laplacian and the following corollary, we show just that.

Corollary 4.35 (Godsil [2015]). If the eigenvalues of G, a graph, are simple, then
cospectral vertices are strongly cospectral.

First, we need to define what are of roots of unity and cyclotomic polynomials.
We define just the necessary concepts. A more in depth look of these definitions can
be seen in Cox [2012].

Definition 4.36 (Roots of unity). We call a number α to be a n-th root of unity if α
is a root of the integer polynomial xn − 1. In particular, we define ζn as ζn = e

2πi
n and

all n-th roots of unity are of the form ζkn for 0 ≤ k ≤ n− 1.



4. Normalized Laplacian 103

Definition 4.37 (Primitive roots of unity). We say that ζn is a primitive n−th root
of unity if the smallest positive integer k such that ζkn = 1 means that k = n.

Definition 4.38 (Cyclotomic polynomial). We say that Φn(x) is the n−th cyclotomic
polynomial if it is the monic integer polynomial that is the minimal polynomial over
Q of the primitive n− th roots of unity. We can also define it as

Φn(x) =
∏︂

1≤k≤n
gcd(k,n)=1

(x− ζkn). (4.70)

One thing we can note is that as Φn(x) is the minimal polynomial of the n-th
primitive roots of unity, then all polynomials that have ζn (or any other n−th primitive
root of unity) as a root are divisible by Φn(x). We know the formula for the eigenvalues
of the Normalized Laplacian of paths, showed in Equation 4.68. We can also write them
as follows

λr = 1− cos
πr

n− 1

= 1−
2 cos πr

n−1

2

= 1−
ζr2(n−1) + ζ−r

2(n−1)

2

= 1−
ζr2(n−1) + ζ

2(n−1)−r
2(n−1)

2
.

In Theorem 1.8 the third condition requires that for all integers ℓi such that∑︁
r ℓrθr = 0 and

∑︁
r σrℓr is odd, then

∑︁
r ℓr ̸= 0. Now, for the Laplacian, as θ0 = 0

and σ0 = 0, it was shown that we can simplify this condition to the following.

Corollary 4.39 ([Banchi et al., 2017, Corollary 5]). Assume M is the Laplacian matrix
of a graph with strongly cospectral vertices a and b. Say θ0 = 0, and σ0 = 0. Say the
other eigenvalues in their support are θ1, ..., θd, and have σ1, ..., σd defined as in Theorem
1.8. Then pretty good state transfer occurs between a and b if and only if whenever
there are integers ℓ1, ..., ℓd such that

d∑︂
r=1

ℓrθr = 0, (4.71)

then

d∑︂
r=1

σrℓr is even. (4.72)



4. Normalized Laplacian 104

Moreover, in this case, the complex phase with which pretty good state transfer
occurs will be equal to 1.

This corollary also shows that we can define ℓ0 to be an arbitrary integer. So, we
can use it to helps us in our proofs.

For the Normalized Laplacian, the same condition is true, meaning θ0 = 0 is
an eigenvalue in the positive support for all vertices. Therefore, we can also use this
corollary to show whether pretty good state transfer happens for any vertex.

Here, as it was shown in Banchi et al. [2017], we define ℓ0 = −
∑︁d

r=1 ℓr. This
condition applied to the eigenvalues of the Normalized Laplacian gives us that

0 =
n−1∑︂
r=1

ℓrλr =
n−1∑︂
r=1

ℓr

(︄
1−

ζr2(n−1) + ζ
2(n−1)−r
2(n−1)

2

)︄
, (4.73)

which implies that

0 =
n−1∑︂
r=1

ℓr(−2 + ζr2(n−1) + ζ
2(n−1)−r
2(n−1) ). (4.74)

Now, reorganizing this equation and making ζ2(n−1) to be the variable x, we can
see that it defines the following polynomial L(x)

L(x) = 2ℓ0 +
n−1∑︂
r=1

ℓrx
r +

2(n−1)−1∑︂
r=n−1

ℓ2(n−1)−rx
r. (4.75)

This allows us to assert that whatever the integer coefficients ℓr may be if∑︁n−1
r=1 ℓrλr = 0, then Φ2(n−1) | L(x).

Therefore, divide L(x) by the cyclotomic polynomial and use the condition that
the division must be exact to see what the remainder of this division gives us in terms
of restrictions on the integer coefficients ℓr. This procedure gives us the following
theorem.

Theorem 4.40 (Baptista [2019]). Pretty good state transfer occurs in the Normalized
Laplacian between the end-nodes of a path if and only if the path has 2k + 1 vertices
with k ∈ N.

Proof. As we said, our initial procedure will be given the number of vertices of the path
n of a given form, we will divide L(x) by Φ2(n−1) and, as we will assume that the division
will be exact, we should get some polynomial Q(x), such that L(x) = Φ2(n−1)Q(x) and
this will give us a condition on the coefficients ℓi.



4. Normalized Laplacian 105

Let ci(p(x)) be the function that returns the i−th coefficient of the polynomial
p(x), i.e., the coefficient of the i−th power of x, if deg(p(x)) < i, then ci(p(x)) = 0.

For, n = 2k+1, k ∈ N, then Φ2(n−1) = 1+xn−1, we can see that Q(x) =
∑︁n−2

j=0 qjx
j

for qj ∈ Z. Now, for Φ(x)Q(x) = L(x), we can see that cn−2(Q(x)) = ℓ1. After that,
we must have that

ℓ2 = cn−3(Q(x))cn−1(Φ2(n−1)) + cn−2(Q(x))cn−2(Φ2(n−1)) = qn−3.

Similarly, we continue this procedure to get all the coefficients of Q(x), which is
equal to

2ℓn−1 +
n−2∑︂
r=1

xrℓn−1−r. (4.76)

One can readily check, by comparing the product Φ2(n−1)Q(x) to L(x), that the
division is exact if and only if ℓn−1 = ℓ0 and ℓr = ℓn−1−r for r ∈ {1, ..., n − 2}. So
whenever the equation holds,

∑︁
ℓodd is even and pretty good state transfer occurs.

If n = p+1, where p is an odd prime number, then Φ2(n−1) = 1−x+x2...+xn−2.
Now, Q(x) =

∑︁n−1
j=0 qjx

j and we can again infer that qn−1 = ℓ1. Now, for the next
coefficient we have

ℓ2 = cn−2(Q(x))cn−2(Φ2(n−1)) + cn−1(Q(x))cn−3(Φ2(n−1))

= qn−2 − qn−1

= qn−2 − ℓ1.

This means that qn−2 = ℓ2 + ℓ1. Doing the same for qn−3, we get ℓ2 + ℓ3. Doing
this repeatedly, we see that this pattern continues until we get that

2ℓn−1 =
n−2∑︂
r=0

cr(Φ2(n−1)(x))cn−1−r(Q(x))

=
n−2∑︂
r=0

(−1)rqn−1−r

= ℓ1 +
n−3∑︂
r=1

(−1)r(ℓr+1 + ℓr) + q1

= −ℓn−2 + q1.

We have that q1 = 2ℓn−1 + ℓn−2. Finally,



4. Normalized Laplacian 106

ℓn−2 =
n−2∑︂
r=0

cr(Φ2(n−1)(x))cn−2−r(Q(x))

=
n−2∑︂
r=0

(−1)rqn−2−r

=
n−3∑︂
r=0

(−1)r(ℓr+2 + ℓr+1)− (2ℓn−1 + ℓn−2) + q0

= −ℓ1 − 2ℓn−1 + q0.

So, q0 = −ℓ1 + ℓn−2 + 2ℓn−1 and thus, Q(x) =

−ℓ1 + ℓn−2 + 2ℓn−1 + ℓn−1x+
n−2∑︂
r=1

(ℓn−1−r + ℓn−r)x
r + ℓ1x

n−1. (4.77)

Now, this means that for L(x) = Φ2(n−1)(x)Q(x) we need that first 2ℓ0 = −ℓ1 +
ℓn−2 + 2ℓn−1. Then,

ℓ1 = −(−ℓ1 + ℓn−2 + 2ℓn−1) + (2ℓn−1 + ℓn−2) = ℓ1.

ℓ2 = (−ℓ1 + ℓn−2 + 2ℓn−1)− (2ℓn−1 + ℓn−2) + (ℓn−2 + ℓn−3) = −ℓ1 + ℓn−2 + ℓn−3.

ℓ3 = −(−ℓ1 + ℓn−2 + 2ℓn−1) + (2ℓn−1 + ℓn−2)− (ℓn−2 + ℓn−3) + (ℓn−3 + ℓn−4) = ℓ1 − ℓn−2 + ℓn−4.

The pattern continues, such that we have that for ℓi with 1 ≤ i ≤ n− 2

ℓi = (−1)i(ℓn−2 − ℓ1) + ℓn−1−i. (4.78)

This together with the fact that we defined that ℓ0 = −
∑︁n−1

r=1 ℓr allows us to
define a general solution for the coefficients. Let k = (p− 1)/2, m = k + 1 and q = (p

mod 4), so in order for the division to be exact we must have that the ℓ’s can be
described as

ℓ0 = (−1)m(
n−2∑︂
r=m

2ℓr + qℓn−1) (4.79)

and

ℓi = (−1)m+i(
n−1∑︂
r=m

4ℓr) + ℓn−1−i, ∀ i ∈ {1....k} (4.80)

and the rest of the ℓ’s are free variables.
Now to show that this is a valid solution first, note that the first half of the



4. Normalized Laplacian 107

equations for ℓi with 2 ≤ i ≤ n − 3 are equal to the second half up to a sign change.
Also, we do not need to check the equations ℓ1 = ℓ1 and ℓn−2 = ℓn−2.

For the equation on the ℓ′is, as we talked above we can assume that i < n/2, by
taking (4.80), equating it to (4.78) and replacing ℓ1 for its expression in (4.80) we can
see that the following holds

(−1)m+i(
n−1∑︂
r=m

4ℓr) + ℓn−1−i = ℓi

= (−1)i(ℓn−2 − ℓ1) + ℓn−1−i

= (−1)i(ℓn−2 − ((−1)m+1(
n−1∑︂
r=m

4ℓr) + ℓn−2)) + ℓn−1−i

= (−1)i((−1)m(
n−1∑︂
r=m

4ℓr)) + ℓn−1−i.

We also have the following equation for ℓ0 and we can use the same technique
using now the formula in (4.79)

2(−1)m(
n−2∑︂
r=m

2ℓr + qℓn−1) = 2ℓ0

= −ℓ1 + ℓn−2 + 2ℓn−1

= −((−1)m+1(
n−1∑︂
r=m

4ℓr) + ℓn−2) + ℓn−2 + 2ℓn−1

= (−1)m(
n−2∑︂
r=m

4ℓr) + (2 + 4(−1)m)ℓn−1.

Now, if q = (1 ≡ p mod 4), then m ≡ k + 1 ≡ (p + 1)/2 ≡ 1 mod 4 and the
equation is true. If q = (p ≡ 3 mod 4), then m ≡ k + 1 ≡ (p + 1)/2 ≡ 2 mod 4

and the equation is also true. Finally, we defined that ℓ0 = −
∑︁n−1

r=1 ℓr and we can also
check that

(−1)m(
n−2∑︂
r=m

2ℓr + qℓn−1) = ℓ0

= −
n−1∑︂
r=1

ℓr

= −
m−1∑︂
i=1

((−1)m+i(
n−1∑︂
r=m

4ℓr) + ℓn−1−i)−
n−1∑︂
i=m

ℓi.

By the same analysis as before if q = 1, we have that m − 1 is even, the 4ℓr



4. Normalized Laplacian 108

cancels and therefore the sequence above turns into

(−1)m(
n−2∑︂
r=m

2ℓr + qℓn−1) = −(
n−2∑︂
r=m

2ℓr + ℓn−1)

= −
m−1∑︂
i=1

((−1)m+i(
n−1∑︂
r=m

4ℓr) + ℓn−1−i)−
n−1∑︂
i=m

ℓi

= −
m−1∑︂
i=1

(ℓn−1−i)−
n−1∑︂
i=m

ℓi

= −
n−2∑︂
i=m

ℓi −
n−1∑︂
i=m

ℓi

and if q = 3, m− 1 must be odd and so, we now have

(−1)m(
n−2∑︂
r=m

2ℓr + qℓn−1) = (
n−2∑︂
r=m

2ℓr + 3ℓn−1)

= −
m−1∑︂
i=1

((−1)m+i(
n−1∑︂
r=m

4ℓr) + ℓn−1−i)−
n−1∑︂
i=m

ℓi

=
n−1∑︂
r=m

4ℓr −
m−1∑︂
i=1

ℓn−1−i −
n−1∑︂
i=m

ℓi

=
n−1∑︂
r=m

4ℓr −
n−2∑︂
i=m

ℓi −
n−1∑︂
i=m

ℓi.

In both cases we see that the equation is valid. Therefore, this is a valid solution.
Now, with that description of all ℓ’s possible, as n is always even and using a similar
analysis as above for the values of q and m, we get the following sequence of equalities

∑︂
ℓodd =

m−1∑︂
i=1
i odd

((−1)m+i(
n−1∑︂
r=m

4ℓr) + ℓn−1−i) +
n−1∑︂
i=m
i odd

ℓi

=
m−1∑︂
i=1
i odd

−(−1)m(
n−1∑︂
r=m

4ℓr) +
m−1∑︂
i=1
i odd

ℓn−1−i +
n−1∑︂
i=m
i odd

ℓi

=
m−1∑︂
i=1
i odd

−(−1)m(
n−1∑︂
r=m

4ℓr) +
n−2∑︂
i=m
i even

ℓi +
n−1∑︂
i=m
i odd

ℓi

= −p(−1)m
p∑︂

r=m

ℓr

and making the same analysis on the possible values of m, pretty good state transfer



4. Normalized Laplacian 109

does not occur.

We already showed for n− 1 equal to a prime and a composite number that is a
power of two. So we only need to show for composite numbers that have an odd factor.
For this case, we will change our tactics as it would be difficult to check this division
for all kinds of cyclotomic polynomials as not all of them behave nicely.

Make n = mk + 1 where k is an odd integer greater than 1 and m ≥ 2. We have
that

k−1∑︂
r=0

(−ζ2k)r = 1 + 2

(k−1)/2∑︂
r=1

(−1)r cos
πr

k
= 0. (4.81)

If we set q ∈ {1, 2} and we multiply the equation above by cos qπ
n−1

we get

cos
qπ

n− 1
+ 2

(k−1)/2∑︂
r=1

(−1)r cos
qπ

n− 1
cos

πr

k
= 0. (4.82)

After a few manipulations, we arrive at

cos
qπ

n− 1
+

(k−1)/2∑︂
r=1

(−1)r(cos
π

n− 1
(q + rm) + cos

π

n− 1
(q − rm)) = 0. (4.83)

We can then subtract (4.83) for q = 1 from q = 2 and after some algebraic
manipulations we can arrive at the following

((1− cos
π

n− 1
)− (1− cos

2π

n− 1
))

+

(k−1)/2∑︂
r=1

(−1)r((1− cos
π

n− 1
(1 + rm))− (1− cos

π

n− 1
(2 + rm)))

+

(k−1)/2∑︂
r=1

(−1)r(((1− cos
π

n− 1
(1− rm))− (1− cos

π

n− 1
(2− rm)))) = 0. (4.84)

We can conclude that

(λ1 − λ2) +

(k−1)/2∑︂
r=1

(−1)r((λrm+1 − λrm+2) + (λrm−1 − λrm−2)) = 0. (4.85)

We can finally see that (4.85) is an integer linear combination of the eigenvalues
that is equal to 0. The coefficients are all equal to ±1. Furthermore, eigenvalues of
odd indexes in the summation all come in pairs. Therefore, considering the first odd
indexed eigenvalue in the first pair, the sum of the coefficients of the odd indexed



4. Normalized Laplacian 110

eigenvalues must be odd. As we need only one integer linear combination of the odd
indexed eigenvalues in which the sum of the coefficients of the odd indexed eigenvalues
is odd, we can conclude that pretty good state transfer does not occur.

From this theorem, we know that the paths that present pretty good state transfer
between its end-nodes have a specific form for its number of vertices. Since perfect state
transfer implies pretty good state transfer, we provide a new proof to the result in Alvir
et al. [2014].

Corollary 4.41. Perfect state transfer occurs in the Normalized Laplacian between the
end-nodes of a path if and only if the path has 2 or 3 vertices.

Proof. We know that perfect state transfer implies pretty good state transfer. There-
fore, from Theorem 4.40 we know that the number of vertices must be of the form
2k + 1, for k ∈ N.

Now, if k ≥ 1, then the end-nodes must be in the same bipartite class. It follows
from Lemma 4.30, that |S−| = 1. As we commented before, the end-nodes are strongly
cospectral and then, from Lemma 4.34 the signs of the eigenspaces alternate, thus k
can only be 0 or 1.

Moreover, we showed in Section 4.4 that for P2 an P3, in the Normalized Lapla-
cian, there is perfect state transfer between the end-nodes.



111

Chapter 5

Future Work

In this master’s thesis, we worked on state transfer on continuous time quantum walks,
with a focus on pretty good state transfer. In Chapter 1 we introduced the main con-
cepts needed in the following chapters, we showed some history of quantum computing
and some applications and motivations for the study of state transfer in graphs.

In Chapter 2, we showed an algorithm for deciding pretty good state transfer.
The main tool in that algorithm was Landau’s paper, Landau [1985], on factorization
of integer polynomials over algebraic extensions. We used this paper to write the
eigenvalues as polynomials on a primitive element of the extension of their splitting
field and showed that from these polynomials it is possible to decide pretty good state
transfer exactly by computing the general solution to a Diophantine Linear system.

Moreover, we used the same tools to show that it is possible to compute exactly
the average mixing matrix of a quantum walk. One line of investigation that we leave
is to check if there are any other quantum objects that can be computed with the same
tools.

One problem with our algorithm is that it runs in polynomial time on the degree
of the splitting field. This is a problem since the size of the splitting field can be expo-
nential on the size of our initial characteristic polynomial. So, one path of investigation
that is of particular interest is to improve the complexity of our algorithm.

We know, for instance, that for perfect state transfer the eigenvalues are either
all integers or quadratic integers for the adjacency matrix. This means that the degree
of the splitting field of the eigenvalues is at most 2. For paths, over the examples we
showed, they all can be written in terms of polynomials over primitive roots of unity.
This means that the degree of the splitting field is at most polynomial in n. Therefore,
it may be possible that we could limit if not for all graphs, at least for some types of
graphs, the size of the splitting field.



5. Future Work 112

Since we are dealing with rational polynomials of graphs that have only real roots,
it may be possible to determine a limit to the size of the splitting field. Another idea
on the same topic is to see if the size of the splitting field of graphs that have pretty
good state transfer can be upper bounded.

The importance of upper bounding the size of the splitting field is twofold. First,
because it could allow for other characterizations of pretty good state transfer. Sec-
ondly, because it could be used to halt the algorithm in case the splitting field computed
at a given moment is too large, this could allow for the algorithm to have a lower worse
case complexity.

One final idea is to find other means of representing the eigenvalues that could
be used to decide if pretty good state transfer occurs in a faster way. On this topic, we
showed in Chapter 3 how continued fractions could be used to represent the eigenvalues
of the graph. We showed how it could be computed and how in some examples it can
be used to determine pretty good state transfer and even the time that we would have
to wait for some approximations.

Unfortunately, we could not find any conditions that could be used to determine
if pretty good state transfer happens or not for all graphs. Since this is only an initial
work on continued fractions for state transfer, there is still some possibility of finding
conditions that could allow us to say something about state transfer in general.

Finally, in Chapter 4 we showed a series of results that were known for the adja-
cency matrix and the Laplacian Matrix, but now applied to the Normalized Laplacian.

First, we showed that there is a connection of two vertices being cospectral in the
Normalized Laplacian in terms of the probabilities of staying in the same vertex during
a random walk. This gives us another motivation to study quantum walks over the
Normalized Laplacian. One work that could be done is to see if strong cospectrality
gives us more connections to classical random walks.

Following that, in Section 4.3, we showed a characterization for perfect state
transfer over the Normalized Laplacian. This could be used to see how much state
transfer differs in a matrix with non-rational weights in terms of the adjacency matrix
and the Laplacian matrix and find more examples of state transfer in graphs.

In Section 4.4, we showed some conditions that perfect state transfer in trees
imposes on the support of the vertices. The idea was to show a similar result as in
Coutinho and Liu [2015], but due to the differences in the eigenvalues, we could not
complete our intended task.

One possible idea for the future is to see if there are any more restrictions that
we could find for the eigenvalues. We know that for the Laplacian matrix, there is
no perfect state transfer for trees on more than 2 vertices. So, considering that the



5. Future Work 113

Normalized Laplacian is a weighted Laplacian, it may still be possible to replicate the
result.

Finally, in Section 4.5, following the result shown in Banchi et al. [2017], we
showed that pretty good state transfer occurs between the end-nodes of a path if and
only if the path has 2k + 1 vertices.

This is a similar result obtained in the paper for the Laplacian matrix. There,
the number of vertices must be equal to a power of two. This shows a connection, at
least in paths, of state transfer between the Normalized Laplacian and the Laplacian.

Therefore, one path of investigation is to see if there are any examples where
state transfer differ between the Normalized Laplacian and the Laplacian. Or, in other
terms, is it always the case that when some state transfer happens in the Normalized
Laplacian that we can create a similar graph, maybe by just removing a vertex, that
has the same state transfer in the Laplacian?



114

Bibliography

Akritas, A. G. (1980). The fastest exact algorithms for the isolation of the real roots
of a polynomial equation. Computing, 24:299–313. ISSN 0010485X.

Akritas, A. G. and King, H. N. (1983). Exact algorithms for polynomial real root
approximation using continued fractions. Computing, 30:63–76. ISSN 0010485X.

Alvir, R., Dever, S., Lovitz, B., Myer, J., Tamon, C., Xu, Y., and Zhan, H. (2014). Per-
fect state transfer in Laplacian quantum walk. Journal of Algebraic Combinatorics,
43:801–826.

Anton, H. and Rorres, C. (2013). Elementary Linear Algebra: Applications Version,
11th Edition. John Wiley & Sons Incorporated. ISBN 9781118879160.

Banchi, L., Coutinho, G., Godsil, C., and Severini, S. (2017). Pretty good state transfer
in qubit chains-the Heisenberg Hamiltonian. Journal of Mathematical Physics, 58.
ISSN 00222488.

Baptista, P. (2019). Quantum walks in the Normalized Laplacian. Undergrad Thesis,
Advised by Gabriel Coutinho, Unpublished Manuscript.

Bennett, C. H. and Brassard, G. (1984). Quantum cryptography: Public key distri-
bution and coin tossing. Proceedings of the International Conference on Computers,
Systems & Signal Processing, pages 175–179.

Blankinship, W. A. (1966). Algorithm 288: Solution of simultaneous linear diophantine
equations [f4]. Communications of the ACM, 9:514. ISSN 15577317.

Childs, A. M. and Goldstone, J. (2003). Spatial search by quantum walk. Physical
Review A - Atomic, Molecular, and Optical Physics, 70.

Christandl, M., Datta, N., Ekert, A., and Landahl, A. J. (2004). Perfect state transfer
in quantum spin networks. Physical Review Letters, 92.



Bibliography 115

Chung, F. R. K. (1997). Spectra Graph Theory. American Mathematical Society
Providence, Rhode Island.

Coutinho, G. (2014). Quantum state transfer in graphs. PhD Thesis, Waterloo 2014.

Coutinho, G. and Godsil, C. (2017). Perfect state transfer is poly-time. Quantum
Information and Computation, 17:495–502. ISSN 15337146.

Coutinho, G., Guo, K., and van Bommel, C. M. (2017). Pretty good state transfer
between internal nodes of paths. Quantum Information and Computation, 17:825–
830. ISSN 15337146.

Coutinho, G. and Liu, H. (2015). No Laplacian perfect state transfer in trees. SIAM
Journal on Discrete Mathematics, 29:2179–2188. ISSN 08954801.

Cox, D. A. (2012). Galois Theory, volume 106. John Wiley & Sons.

Eisenberg, O., Kempton, M., and Lippner, G. (2019). Pretty good quantum state
transfer in asymmetric graphs via potential. Discrete Mathematics, 342(10):2821--
2833.

Farhi, E. and Gutmann, S. (1997). Quantum computation and decision trees. Physical
Review A - Atomic, Molecular, and Optical Physics, 58:915–928.

Ferguson, H. R. P. and Bailey, D. H. (1992). A polynomial time, numerically stable
integer relation algorithm. RNR Technical Report, pages RNR–91–032.

Feynman, R. P. (1982). Simulating physics with computers. International Journal of
Theoretical Physics, 21:467–488. ISSN 00207748.

Geddes, K. O., Czapor, S. R., and Labahn, G. (1992). Algorithms for Computer
Algebra. Springer Science & Business Media.

Godsil, C. (2010). When can perfect state transfer occur? Electronic Journal of Linear
Algebra, 23:877–890.

Godsil, C. (2015). Graph Spectra and Quantum Walks. Unpublished monograph.

Godsil, C., Kirkland, S., Severini, S., and Smith, J. (2012). Number-theoretic nature
of communication in quantum spin systems. Phys. Rev. Lett., 109:050502.

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search.
Proceedings of the Annual ACM Symposium on Theory of Computing, Part
F129452:212–219.



Bibliography 116

Herrman, R. and Humble, T. (2019). Continuous-time quantum walks on dynamic
graphs. Physical Review A, 100(1):012306.

Herrman, R. and Wong, T. G. (2021). Simplifying continuous-time quantum walks on
dynamic graphs. arXiv preprint arXiv:2106.06015.

Hoffman, K. and Kunze, R. (1971). Linear Algebra. Featured Titles for Linear Algebra
(Advanced) Series. Prentice-Hall. ISBN 9780135367971.

Kempton, M., Sinkovic, J., Smith, D., and Webb, B. (2020). Characterizing cospectral
vertices via isospectral reduction. Linear Algebra and its Applications, 594:226--248.

Khinchin, A. (1964). Continued Fractions. Phoenix books. University of Chicago Press.
ISBN 9780226447490.

Landau, S. (1985). Factoring polynomials over algebraic number fields. SIAM Journal
on Computing, 14:184–195. ISSN 00975397.

Levitan, B. M., Jikov, V. V., and Zhikov, V. (1982). Almost periodic functions and
differential equations. CUP Archive.

Pal, H. and Bhattacharjya, B. (2017). Pretty good state transfer on some neps. Discrete
Mathematics, 340:746–752. ISSN 0012-365X.

Sharma, V. (2008). Complexity of real root isolation using continued fractions. Theo-
retical Computer Science, 409:292–310. ISSN 03043975.

Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and
factoring. Proceedings 35th Annual Symposium on Foundations of Computer Science,
pages 124–134.

Storjohann, A. (2000). Algorithms for matrix canonical forms. PhD Thesis, Swiss
Federal Institute of Technology – ETH 2000.

Trager, B. M. (1976). Algebraic factoring and rational function integration. Proceedings
of the third ACM symposium on Symbolic and algebraic computation - SYMSAC ’76,
pages 219–226.

van Bommel, C. M. (2020). Pretty good state transfer and minimal polynomials. arXiv
preprint arXiv:2010.06779.


	Resumo
	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Background
	Contributions

	Deciding Pretty Good State Transfer
	Conditions to test Pretty Good State Transfer
	Computing the Splitting Field
	Solving Diophantine Linear Systems
	Algorithm for Deciding Pretty Good State Transfer
	Computing the Average Mixing Matrix

	Continued Fractions
	Why use Continued Fractions?
	How to Compute Continued Fractions?
	Continued Fractions and State Transfer

	Normalized Laplacian
	Other Matrices
	Strong Cospectrality
	Perfect State Transfer on The Normalized Laplacian
	Perfect State Transfer in Trees
	Pretty Good State Transfer in Paths

	Future Work
	Bibliography

